
Dissecting the contributions
of tumor heterogeneity on metastasis

at single-cell resolution
Juliane Winkler1,2,�, Weilun Tan3, Catherine M. M. Diadhiou1, Christopher S. McGinnis4, Aamna Abbasi1, Saad Hasnain1,

Sophia Durney2, Elena Atamaniuc2, Daphne Superville2, Leena Awni2, Joyce V. Lee2, Johanna H. Hinrichs1,5, Marco Y. Hein3,
Michael Borja3, Angela Detweiler3, Su-Yang Liu1, Ankitha Nanjaraj1, Vaishnavi Sitarama1, Hope S. Rugo6, Norma Neff3,

Zev J. Gartner4,7, Angela Oliveira Pisco3,�, Andrei Goga2,�, Spyros Darmanis3,8,�, and Zena Werb1,†

1Department of Anatomy, University of California, San Francisco, San Francisco CA 94143, USA
2Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco CA 94143, USA

3Chan Zuckerberg Biohub, San Francisco CA 94143, USA
4Department of Pharmaceutical Chemistry, University of California, San Francisco San Francisco CA 94143, USA

5Institute of Internal Medicine D, Medical Cell Biology, University Hospital Münster, Münster, Germany
6Department of Medicine, University of California, San Francisco, San Francisco CA 94143, USA

7Chan Zuckerberg Biohub Investigator, San Francisco CA 94143, USA
8Genentech Inc., South San Francisco, CA 94080, USA

†deceased 6/2020

Metastasis is the leading cause of cancer-related deaths, but
metastasis research is challenged by limited access to patient
material and a lack of experimental models that appropriately
recapitulate tumor heterogeneity. Here, we analyzed single-
cell transcriptomes of matched primary tumor and metasta-
sis from patient-derived xenograft models of breast cancer,
demonstrating that primary tumor and metastatic cells show
profound transcriptional differences across heterogeneous tu-
mors. While primary tumor cells upregulated several metabolic
genes, metastatic cells displayed a motility phenotype in
micrometastatic lesions and increased stress response signaling
during metastatic progression. Additionally, we identified gene
signatures that are associated with the metastatic potential and
correlated with patient outcomes. Poorly metastatic primary
tumors showed increased immune-regulatory control that may
prevent metastasis, whereas highly metastatic primary tu-
mors upregulated markers of epithelial-mesenchymal transition
(EMT). We found that intra-tumor heterogeneity is dominated
by epithelial-mesenchymal plasticity (EMP) which presented as
a dynamic continuum with intermediate cell states that were
characterized by novel, specific markers. These intermediate
EMP markers correlated with worse patient outcomes and
could serve as potential new therapeutic targets to block
metastatic development.
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Current cancer treatment is most effective in attacking the
primary tumor but has little effect on metastatic cells. This
is a substantial problem because metastases account for
the vast majority of cancer-related deaths (1). During the
multistep process of metastasis, tumor cells adapt to various
microenvironments that are distinct from their site of origin,
but our understanding of the processes that lead to these
adaptations is limited. Moreover, phenotypic alterations of
metastatic cells may also cause resistance to therapeutics that
cannot be accounted for by just genotypic changes (2).
The reason why some cancers metastasize while others
do not is poorly understood. For example, specific

genetic alterations are not necessarily required for metastatic
progression (3), highlighting the importance of phenotypic
adaptations of individual tumor cells to microenvironmental
influences. In order to metastasize, tumor cells have to
acquire complex traits; some of these include the ability to
invade, intravasate and survive in circulation until they reach
the metastatic site, where tumor cells extravasate into a new
tissue and give rise to a secondary tumor. One concept aiming
to explain these complex phenotypic changes is that tumor
cells undergo epithelial-to-mesenchymal transition (EMT)
and gain mesenchymal features. Thus, EMT has been
suggested to play a fundamental role for tumor cells to
disseminate to distant organs (4). However, to form overt
metastasis, these disseminated tumor cells need to revert the
EMT process, undergo mesenchymal-to-epithelial transition
(MET), and gain epithelial features again. Epithelial-
mesenchymal plasticity (EMP) therefore describes the ability
of tumor cells to dynamically switch between epithelial and
mesenchymal cell states. EMT is often described by the
loss or gain of a few canonical markers involved in cell
adhesion and motility (e.g. VIM, EPCAM, CDH1, CDH2),
the expression of which are regulated by a set of core
transcription factors (e.g. SNAI1, SNAI2, TWIST1, ZEB1).
However, these commonly used markers are context- and
tissue-dependent and change dynamically during the EMT
process (5–7) leading to controversies in the field that rely
on these few markers (8–14). Moreover, tumor tissues are
heterogeneous, displaying various phenotypes and cell states
within one tumor and thus require the analysis of individual
cells within one tumor. To better understand the contributions
of EMP to the metastatic process we need to comprehensively
analyze individual heterogeneous tumor cells both at the
primary tumor and metastatic site.

Advances in single-cell transcriptomics have enabled in-
vestigation into intra-tumor heterogeneity in breast cancer
(BC) (15–18) and many other cancers (19–21). For
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instance, an integration of these studies across multiple
different tumor entities has highlighted both the importance
and the context-dependency of the EMT process in tumor
biology (22). However, with a few notable exceptions (23,
24), these studies focus on characterizing primary tumors.
Moreover, they lack information about patient outcomes
and metastatic phenotypes due to the necessary long-term
follow-up. Comparing tumor heterogeneity at single-cell
resolution between matched primary and metastatic tumors
is logistically difficult; patient metastatic tumor samples are
often collected years after the primary tumor was resected.
Moreover, analyzing metastatic lesions is also technically
difficult because they may consist of individual or small
numbers of metastatic cells within complex tissues, which
are hard to locate and isolate from patients. It is particularly
challenging to investigate EMP in vivo, in both primary
tumors and metastatic lesions, using an unperturbed system
that resamples heterogeneous human tumor tissue. Finally,
while xenograft models of metastasis can alleviate many of
these limitations, such models that rely on transplanted cell
lines do not faithfully reproduce the heterogeneity present
in primary tumors. Thus, a detailed understanding of the
involvement of the dynamic and context-dependent EMP
process in metastasis is lacking (14).
Here, we characterized the metastatic potential of a large
panel of patient-derived xenograft (PDX) models of hu-
man BC that spontaneously metastasize and preserve the
heterogeneity of the primary human tumor. We analyzed
the transcriptional profiles of individual primary tumor and
matched metastatic cells using different single-cell RNA
sequencing (scRNA-seq) approaches. Our study provides a
rich dataset that allows us to investigate the impact of tumor
heterogeneity on metastatic phenotypes both at the primary
tumor and metastatic site at single-cell resolution. We
identified gene signatures that are associated with metastatic
potential. Specifically, we found that highly metastatic
tumors express elevated EMT markers and demonstrate that
EMP is a key factor of intra-tumor heterogeneity both at the
primary tumor and the metastatic site. Within the continuum
of EMP, we identified intermediate EMP cell states that are
characterized by specific marker genes. High expression
of those EMP marker genes was correlated with worse
outcomes in a subset of BC patients.

BC PDX models with varying metastatic potential
show transcriptional heterogeneity

To investigate intrinsic factors that impact a tumor’s ability to
metastasize, we analyzed the transcriptional heterogeneity of
primary tumors as well as matched metastases at single-cell
resolution using PDX BC models (Figure 1A). Human breast
tumors were orthotopically transplanted into the cleared
mouse mammary fat pad and spontaneously metastasized
to the lung and other organs. They thereby preserve the
heterogeneity of the primary human tumor, fully recapitulate
the metastatic cascade, and mimic the metastatic pattern
of the patient (25–27). We characterized PDX models
derived from 13 BC patients, belonging to different BC

subtypes (three luminal B, ten basal) with varying metastatic
potential. Our PDXs included two estrogen receptor (ER)
and progesterone receptor (PR) positive, one triple-positive
(ER, PR, HER2), and ten triple-negative BC (TNBC) models
(25, 28); three of the basal TNBC PDX models were newly
established in this study (Supplementary Table 1).

First, we characterized the metastatic phenotype of the
different tumor models once primary tumors reached a size
of 2.5 cm in diameter. Based on the number and size of
metastatic foci in the lungs of recipient mice the tumor
models were grouped into those with low (n=6 models),
moderate (n=3), and high metastatic potential (n=4). PDX
models with low metastatic potential form no or very few
micrometastases (< 10 cells), moderate models show more
micro- and intermediate-sized (10 - 100 cells) metastases,
and highly metastatic models develop either a high number of
micrometastases and/or many macrometastases (> 100 cells)
resulting in a substantial metastatic burden (proportion of
metastatic cells in the lung) (Figure 1B, C, Supplementary
Figure S1A, B). The metastatic potential based on this
classification was independent of the primary tumor growth
rate (Supplementary Figure S1C). For example, the fast-
growing but poorly metastatic HCI002 model developed
very few but larger metastatic foci even after primary tumor
resection with subsequent tumor recurrence (Supplementary
Figure S1E, F). Tumor resection allowed HCI002 to grow for
a similar period as the slower growing but highly metastatic
HCI010 model (Supplementary Figure S1D), indicating that
HCI002’s low metastatic potential is independent of primary
tumor growth rate.

To investigate the transcriptional landscape of primary tumor
and metastatic cells, individual tumor cells were isolated
from primary tumors and matched metastatic lungs from 12
PDX models for scRNA-seq. Tumor cells stained with a
human-specific antibody directed against a ubiquitous cell
surface marker (CD298) (29) were isolated by fluorescent
activated cell sorting (FACS) and subjected to scRNA-
seq (Smart-Seq2). High-quality single-cell transcriptome
data were collected for 2,090 cells (1,395 primary tumor
and 695 metastatic cells). Of note, we were not able
to isolate a sufficient number of metastatic cells from the
poorly metastatic HCI002 model. The PAM50 BC subtype
(Supplementary Table 1) and receptor status was confirmed
for most samples (Figure 1D) according to ESR1 (ER), PGR
(PR), and ERBB2 (HER2) transcript detection. Interestingly,
ERBB2 was detected in all tumors including those not
clinically classified as HER2-positive. This was potentially
due to the required threshold for the clinical classification
of the original tumor by histochemistry and/or single region
sampling of the heterogeneous original tumor. In addition,
receptor expression was maintained in metastatic cells in
our data (Figure 1D and Supplementary Figure S1G). These
results are in contrast to studies that reported a change
of receptor status during tumor progression and recurrence
occurring in up to 40 % of patients depending on the specific
receptor, which had implications for treatment options and
poor patient outcomes (30–32). However, our data indicate
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Figure 1. BC PDX models with varying metastatic
potential show transcriptional heterogeneity. (A)
Schematic overview of the experimental setup. Metastatic
lung and primary tumor tissue were isolated from BC
PDX models and dissociated. The resulting single-cell
suspensions were enriched for human cells, sorted into
384 well plates and scRNA-Seq was performed using
Smart-Seq2. (B) Bar chart shows the median number
of metastatic foci per mm2 lung tissue area per tumor
model (upper panel) determined by histology. The size
of metastatic foci is colored in shades of gray (mi-
crometastasis: < 10 cells, intermediate: 10–100 cells and
macrometastasis: > 100 cells). Boxplot shows the fraction
of metastatic tissue per total lung tissue area determined
by histology. Annotations indicate the metastatic potential
of the tumor models. (C) Representative H&E images of
metastatic lung tissues of tumor models for low, moderate
and high metastatic potential. Scale = 100 µm. (D)
Bubble plot shows the expression of receptors in primary
tumor (PT) and metastatic cells (Met) per tumor model.
The size of dots indicates the fraction of expressing
cells and the red color indicates the magnitude of gene
expression. Box annotations show BC subtype and
receptor classification. Tumor models are ordered by
increasing metastatic potential as determined in (B). (E)
Ridgeplot shows the normalized number of cells along
Principal Component 1 (PC) coordinates color-coded by
ER status. (F) Ridgeplot shows the normalized number of
cells along PC1 coordinates color-coded by BC subtype.
(G) UMAP projection of single-cell transcriptomes color-
coded by individual tumor models. (H) UMAP projection
of single-cell transcriptomes color-coded by primary tumor
(PT, orange) and metastatic cells (Met, blue).

that changes in receptor status are not caused by the
metastatic process but are likely a consequence of selection
during receptor-targeted therapy.

The ER status and BC subtype were the major sources of
variation in our dataset. This is illustrated by principal
component (PC) analysis, which showed a clear separation of
ER status and BC subtypes along PC1 (Figure 1E, F, Supple-
mentary Figure S1H). Moreover, individual tumors clustered
separately from other tumors, reflecting the effect of inter-
patient heterogeneity on gene expression (Figure 1G).
Notably, variability between technical batches (individual
plates) or biological replicates (same tumor implanted
into different animals) was not observed (Supplementary
Figure S1I, J). Finally, within individual tumor models,
primary and metastatic cells clustered separately in all
cases, highlighting the transcriptional differences between
primary and metastatic cells from a particular tumor model
(Figure 1H).

Taken together, we established and characterized PDX
models of different BC subtypes with varying metastatic
potentials that were independent of their primary tumor
growth rate. Receptor status was maintained between
primary tumor and metastatic cells. In addition to inter-
patient heterogeneity, primary tumor and metastatic cells
showed strong transcriptional differences within individual
tumors.

Differential gene expression analysis reveals
metastasis-associated gene signatures and
heterogeneity between cells

To characterize general transcriptional programs unique to
metastatic cells, cells were grouped across all samples by
tissue source (primary tumor or metastatic lung) and differen-
tial gene expression was determined using MAST (33) with
the tumor model as a covariate. We found 132 differentially
expressed genes (DEGs), 79 of which were upregulated in
metastatic cells conserved across all 12 tumor models (log2
fold change > 0.5; Figure 2A, Supplementary Figure S2A,
Supplementary Table 2). Among the top metastasis-
associated genes were several cytokeratins (KRT5, KRT6B,
KRT14, KRT17, KRT81), calcium-binding S100 proteins
(S100A16, S100A14), heat shock protein HSP1, cell-surface
proteins such as TSPAN1, serine proteases (KLK6, KLK7),
and the glycoproteins CEACAM6 and PSCA. Pathway-
level analysis revealed that metastatic cells were enriched
in MYC, E2F, PI3K/AKT/MTOR signaling and oxidative
phosphorylation (Figure 2B). This observation is consistent
with studies showing enrichment of MYC signaling and
oxidative phosphorylation pathways in metastatic BC cells
found in the lung (29, 34). Interestingly, metastatic cells
additionally upregulated genes involved in immune response
pathways (IL6/JAK/STAT3), presumably as an adaptation to
the metastatic microenvironment (Figure 2B, Supplementary
Figure S2B). In contrast, hypoxia, EMT, angiogenesis,
and glycolysis were pathways enriched in primary tumor
cells (Figure 2B). To determine whether the identified
pathways were upregulated in all individual primary tumor
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Figure 2. Differential gene expression between pri-
mary tumor and matched metastatic cells. (A) Volcano
plot shows log2 fold change of expression and p-value
of DEGs in primary tumors vs metastases. Highlighted
are top DEGs. (B) Barplot shows pathways enriched
in primary tumors (negative normalized enrichment score
(NES), orange) and metastases (positive NES, blue) using
HALLMARK gene sets from MSigDB. (C) Ridgeplots show
normalized cell counts along PC2 color-coded by primary
tumor and metastatic cells of all tumor models grouped
together (global, upper panel) and a representative
individual tumor model (HCI010, lower panel). (D) Bar
charts show the number of DEGs (gray bars) upregulated
in primary tumors (PT, left) and metastases (met, right)
for each individual tumor model. Color bars indicate
the proportion of DEGs that are shared between two
or multiple individual tumor models (blue color scale)
or exclusive to one tumor model (yellow). (E) Bubble
plot shows enriched HALLMARK pathways (MSigDB)
that are shared between at least four tumors. NES
indicates enrichment in primary tumors (negative, orange)
or metastasss (positive, blue), size of bubbles indicates p-
values, and circled outline indicates significant p-value <
0.05. (F) Heatmaps show mean expression in individual
tumor models of DEGs upregulated in the primary tumor
(left) or metastasis (right) that are shared between at least
2 tumor models within the same metastatic potential group
(black box). Annotations indicate selected DEGs, tumor
model, and metastatic potential.

or metastatic cells or only in a subset of cells we examined
the expression of DEGs associated with the top enriched
pathways in either primary tumor (hypoxia) or metastatic
cells (MYC). The analysis revealed a profound heterogeneity
both between and within tumor models (Supplementary
Figure S2C). However, when analyzed individually, primary
tumor and metastatic cells displayed strong transcriptional
differences illustrated by separation along PC2 (Figure 2C;
Supplementary Figure S2D–G) mirroring our previous
observations (Figure 1H).

To control for this pronounced variability amongst our tumor
models, we next analyzed DEGs between primary tumor and
metastatic cells for each model separately (Supplementary
Table 2) and compared these across tumor models. Due
to insufficient metastatic cell numbers, two tumor models
with low metastatic potential (J55454, H5471) were excluded
from this analysis (Supplementary Figure S2E, F). The
different tumor models showed a wide range of numbers of
DEGs (Figure 2D). Notably, more than 50 % of DEGs were
tumor model-specific and only a few (< 5 %) were shared
between more than 5 tumor models, highlighting again the
magnitude of inter-patient heterogeneity (Figure 2D). We
focused on enriched pathways that were shared between
tumor models (Figure 2E). Although most shared pathways
were also identified in the previous analysis across tumor
models (Figure 2B, Supplementary Figure S2B), some
pathways showed intriguing enrichment differences between
tumor models. For example, whereas the combined analysis
revealed an overall suppression of the estrogen-response
pathway in the primary tumor, the individual analyses

showed that this pathway was specifically upregulated in
ER+ primary tumors (HCI005, HCI011, H5097) compared to
matched metastatic samples. This suggests that estrogen sig-
naling is impaired in the metastatic cells despite maintained
ESR1 expression (Figure 2E, Figure 1D, Supplementary
Figure S1G). Additionally, while this analysis showed that
metastatic cells of some tumor models were enriched in the
G2M checkpoint pathway, we could not confirm an overall
more active proliferation or substantial cell cycle shifts of
metastatic cells in our data (Supplementary Figure S2H,
I). Owing to their larger size, primary tumors have limited
access to nutrients; thus, it is not surprising that enrichment
of glycolysis and hypoxia seemed to be a general feature
in primary tumors. Moreover, EMT was enriched either in
primary tumors or metastasis in the majority of the analyzed
tumor models indicating a dynamic activity of this pathway
in both compartments.

Since individual DEGs were shared only between a few
tumor models, we focused on DEGs that were common
between tumor models with a similar metastatic phenotype
(Figure 2F, Supplementary Table 3). We found 74 upreg-
ulated genes in metastatic cells that were shared between
at least two tumors of low metastatic potential. Among
these were many genes involved in cytoskeleton assembly
and cell motility (e.g. MYL12B, MYL6, PFN1, TMSB4X,
TMSB10, ARPC1B, EZR, FLII). In contrast, among the 91
genes upregulated in metastatic cells from high metastatic
tumor models were many genes indicative of high stress-
response signaling, including several heat shock proteins
(HSPB1, HSPA8, HSPA6, HSPH1, HSP90AB3P, DnaJs A1,
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B1, C3, and BAG3), PPM1G and genes involved in DNA
damage repair (SSRP1, NONO). Several genes involved in
glycolysis (ALDOA, LDHA, PGK1, PFKL, PGM1) and
other metabolic processes (GPX4, PRDX4, ACO2, ASPH,
IDH2, SQLE, NPC2, SPTSSA) were upregulated in primary
tumor cells suggesting differential metabolism in primary
tumors as compared to the metastasis.
In summary, we observed strong transcriptional differences
between primary tumor and metastatic cells on an individual
tumor level with the majority of DEGs being specific to
each tumor. Shared features across models are upregulation
of hypoxia, glycolysis and other metabolic-related genes
in primary tumor cells. Shared upregulated genes among
metastatic cells are involved in cytoskeleton assembly and
motility and stress response signaling.

Metastatic signatures are correlated with patient
outcomes

The tumor models used in this study exhibit consistent
metastatic behaviors and were classified into tumors with
low, moderate, and high metastatic potential (Figure 1B, C,
Supplementary Figure S1A). One fundamental question is
whether intrinsic features of the primary tumor are predictive
of the observed different metastatic potential of those
tumor models. To address this question we generated an
additional, larger scRNA-Seq dataset, which better reflected
the intra-tumor heterogeneity of the primary tumors. To this
end, we performed high-throughput, droplet-based scRNA-
Seq with MULTI-Seq (36) sample multiplexing on 10
different primary tumors with varying metastatic potential
(Figure 3A), resulting in 16,861 tumor cells (Supplementary
Figure S3A–C).
To identify signatures that were associated with the
metastatic potential of the primary tumor, we looked
for DEGs between different metastatic potential groups
(Figure 3B, Supplementary Table 4, Supplementary Table
5). For each metastatic potential group, we selected genes
that were shared between both scRNA-Seq methods that
were used in this study (Figure 3C, Supplementary Table
6). Among the shared genes upregulated in primary tumors
with a low metastatic potential were genes related to immune
regulation processes such as antigen processing and cross-
presentation (e.g. HLA-A, HLA-B, HLA-C, HLA-E, B2M,
TAP1), and innate immunity (e.g. NFKBIA, PSMB3,
SQSTM1, LAMP2, IFI6, IFI35) (Figure 3D, Supplementary
Figure S3D). As our model used immunocompromised mice
that lack B, T and NK cells, these findings potentially reflect
a tumor-intrinsic, anti-metastatic feature independent of the
canonical function of these genes in immune regulation.
Genes upregulated in highly metastatic primary tumors
included known metastasis-related genes such as S100A4
(37–39), MUC1 (40) and genes associated with EMT
(VIM, PLOD1, BGN), including the common EMT marker
vimentin (VIM) (Figure 3D). MYC signaling was among
the top 5 enriched pathways in highly metastatic primary
tumors (Supplementary Figure S3E). MYC signaling can
lead to evasion from immune surveillance by the suppression

of interferon signaling and antigen-presentation pathways
including the down-regulation of B2M and MHC-I (41,
42). This anti-correlation could explain the observed
upregulation of immune regulatory pathways in poorly
metastatic compared to highly metastatic primary tumors
that showed elevated MYC signaling (Supplementary Fig-
ure S3F). Supporting our experimental data (Supplementary
Figure S1C) a highly metastatic phenotype is not the result of
more proliferation since proliferation rate or cell cycle phase
distributions were not significantly changed between primary
tumors of different metastatic potentials (Supplementary
Figure S3G, H).
Next, we tested whether the observed metastasis-associated
signatures were correlated with patient-related outcomes
using publicly available bulk gene expression data of BC
patients across different subtypes (35) (Figure 3E). Indeed,
patients with a high expression of the poorly metastatic
signature exhibit improved distant metastasis-free survival
(DMFS). A high expression of moderate metastatic genes
was associated with worse recurrence-free survival (RFS)
and a high expression of the highly metastatic signature
showed the worst outcome for patients.
In summary, we identified intrinsic metastasis-associated
gene signatures in primary tumors that were correlated with
patient-related outcomes of an external dataset. While
genes upregulated in poorly metastatic primary tumors are
involved in immune regulation presenting potential non-
canonical anti-metastatic functions, genes present in the
highly metastatic signature were associated with EMT.

Epithelial-mesenchymal plasticity is a key feature of
tumor heterogeneity and is associated with metastatic
potential

Markers of EMT were upregulated in primary tumors of
highly metastatic tumor models as compared to models with
low metastatic potential. However, we also found EMT to
be enriched in either primary tumor or metastatic cells in
different tumor models indicating a dynamic process during
metastatic progression. Tumor cells must switch phenotypes
multiple times during the metastatic process to adapt to
different environments. While numerous studies have
established a role for the epithelial-mesenchymal transition
(EMT) in cancer progression, fewer have examined the role
of epithelial-mesenchymal plasticity (EMP) in this process
(14). Studying the latter is challenging, as most studies
focus on a limited set of end-point markers to distinguish
epithelial and mesenchymal cell states and/or to perturb these
markers to test the role of EMT either in vitro or in mouse
models in vivo. Here, using single-cell transcriptomics, we
seek to identify those cell states across the spectrum of EMT
and in multiple heterogeneous human tumor populations
that correlate with their metastatic potential in vivo. To
this end, we used a pan-cancer gene signature of 303
mesenchymal and epithelial markers to characterize the EMP
state of individual cells (43). Individual canonical epithelial
markers (EPCAM and CDH1) were highly expressed in
cells with a high epithelial signature and also mesenchymal

Winkler et al. | Dissecting the contributions of tumor heterogeneity on metastasis at single-cell resolution bioRχiv | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.04.502697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502697
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3

Low

High

Metastatic potential

Tumor model
Dataset

Patient derived 
xenografts (PDX)

FACS of
human cells 

and pool

scRNA-seq
10x

Orthotopic breast 
cancer transplantation

Data analysisTissue 
isolation

Single-cell 
suspension and 
MULTI-labelling

Primary tumor x
x

x

x

x
x

x

x
x

x

x
x

x
x

x
x

x
x

x
x

A

CB

ED Low Moderate High

1

0.5

0.25

0.75

0

Time (months)

R
ec

ur
re

nc
e 

fre
e 

su
rv

iv
al

p=0.967 p=1.2e-5 p=4.1e-13
Low
High

Expression

2001000 2001000 2001000

metastatic potential metastatic potentialmetastatic potential

D
is

ta
nt

 m
et

as
ta

si
s 

fre
e 

su
rv

iv
al

p=0.020 p=0.132 p=0.060
Low
High

Expression

1501000

1

0.5

0.25

0.75

0
50 1501000 50 1501000 50

Time (months)

Low Moderate
metastatic potential

High
metastatic potentialmetastatic potential

22164 59

98360 237

140421 143

MULTI-SeqSmart-Seq2

Moderate

metastatic
potential

metastatic
potential

metastatic
potential

Low
Moderate
High

Gene expression

-2
-1
0
1
2

H3204
H4272

H5097
HCI001

HCI005

HCI009

HCI010

HCI011

J2036
J53353

H5471
J55454
HCI002

Smart-Seq2
MULTI-Seq

Dataset

Metastatic potentialTumor
Legend for panels B and D

HLA−A
HLA−B
HLA−C
HLA−E
B2M
TAP1
NFKBIA
PSMB3
SQSTM1
LAMP2
IFI6
IFI35
TPM2
BGN
GJA1
EMP3
CTHRC1
PCOLCE
VIM
S100A4
MUC1

Im
m

un
e 

re
gu

la
tio

n
E

M
T

Low Moderate High Met potential
Tumor model
Dataset

D
E

G
s

Cells
Figure 3. Metastatic signatures are correlated with
patient outcomes. (A) Schematic workflow about the
experimental setup using MULTI-Seq. (B) Heatmaps
show DEGs between individual tumors and tumors of
the other metastatic potential groups that are shared
between at least 2 tumors. Annotations show the
tumor model, dataset and metastatic potential group.
(C) Venn diagram shows the number of DEGs shared
between the Smart-Seq2 and MULTI-Seq datasets for the
different metastatic potential groups. (D) Heatmaps show
the mean expression of selected metastasis-associated
genes. Legends for annotations are the same as in
Figure 4B. (E) Recurrence-free survival (RFS, top, n
= 2,032 patients) and distant metastasis-free survival
(DMFS, bottom, n = 958 patients) of BC patients using
the mean expression of the metastasis-associated gene
signatures (generated with KM-plotter (35)).

markers (VIM, FN1, CDH2) showed the expected expression
patterns (Supplementary Figure S4A). However, some of
these commonly used markers, such as FN1 and CDH2, were
minimally detected on an individual cell level, indicating
the importance of using multi-gene signatures to define cell
states. To illustrate that cells can express epithelial and
mesenchymal markers dynamically, we combined epithelial
and mesenchymal signatures to define the overall EMP cell
state; e.g. an EMP signature >0 reflects cells with a higher
mesenchymal signature than epithelial signature. These
EMP signatures of individual tumor models were strongly
correlated (R2 = 0.78) between our two datasets (Smart-
Seq2 and MULTI-Seq), demonstrating reproducibility of
results across different sequencing methods and experiments
(Supplementary Figure S4B). Tumors that consistently
metastasized expressed a significantly higher (p<0.001) EMP
signature compared to those that poorly metastasized (Fig-
ure 4A, Supplementary Figure S4C). For individual tumor
models, a high EMP state was associated with metastatic
potential (Figure 4B, Smart-Seq2 R = 0.336, Supplementary
Figure S4D, MULTI-Seq R = 0.606). Surprisingly, the
overall EMP state of each tumor model was similar for both
primary tumor and metastatic cells (Figure 4C) suggesting an
intrinsic determinant of EMP that is potentially independent
of environmental influences which were likely very different
between the tissues. However, across individual cells, the
EMP state was highly variable within one tumor model.
Indeed, EMP signatures of individual tumor models were
strongly correlated with PC1 coordinates, indicating that
the EMP cell state is a major source of variation between

cells within one tumor model and significantly contributes
to intra-tumor heterogeneity (Supplementary Figure S4E, F).
Finally, we observed that EMP state was gradually changing
in transcriptional space, further illustrating that EMP is a
continuum of cell states (Figure 4 D).
Next, we asked whether the metastatic potential is associated
with the EMP state of individual cells or their proportion
within the tumor. Cells were classified by the magnitude
of their EMP signature expression into three different cell
states: epithelial-like (epithelial > mesenchymal signature),
intermediate EMP (epithelial = mesenchymal signature) and
mesenchymal-like cells (epithelial < mesenchymal signature)
(Figure 4E, Supplementary Figure S4G). The proportion of
mesenchymal-like cells largely aligned with the metastatic
potential, with no classified mesenchymal-like cells present
in poorly metastatic tumors and almost no epithelial-
like cells present in tumors with high metastatic potential
(Figure 4F, Supplementary Figure S4H). ER+ and luminal
B tumors showed the highest proportion of epithelial-like
cells. However, even within this group, the proportion
of mesenchymal-like cells was associated with increased
metastatic potential. Similar associations were observed for
the group of TNBC basal tumors which showed an overall
higher fraction of mesenchymal-like cells.

EMP is a continuum of cell states with intermediate
EMP cells expressing distinct marker genes
Studies suggest that both mesenchymal and epithelial
functions are necessary for the metastatic cascade (44).
Therefore, the intermediate EMP cells were of special
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Figure 4. EMP is a key feature of tumor heterogeneity.
(A) Violin plot shows EMP signature expression of tumor
models with low and intermediate/high metastatic potential
using the Smart-Seq2 dataset. Boxplot showing median,
significance p<0.001 by Wilcox test. (B) Violin plot shows
EMP signature per tumor model ordered by metastatic
potential using the Smart-Seq2 dataset. (C) Scatter plot
shows the correlation of the mean EMP signature of
the primary tumor and metastatic cells colored by the
tumor model. Linear regression with 95 % confidence
intervals and Pearson correlation coefficient are shown.
(D) UMAP projections of single-cell transcriptomes for
individual tumor models. The color scale indicates the
magnitude of EMP signature expression. (E) Cells ranked
by EMP signature define three cell states: epithelial-like
(blue), intermediate EMP (purple) and mesenchymal-like
cells (red) using the Smart-Seq2 dataset. (F) Bar chart
shows the proportion of the three different EMP cell states
in each tumor model ranked by the increasing proportion
of mesenchymal-like cells. Gray-scale boxes indicate
the metastatic potential. Other annotations indicate ER
status and BC subtype. Showing the Smart-Seq2 dataset.
(G) Violin plots (top) show expression of EMT-associated
TFs in expressing cells grouped by EMP cell states
(Epi = epithelial-like, Inter = Intermediate EMP, Mes =
mesenchymal-like cells). Bar charts (bottom) show the
fraction of expressing cells colored in gray. Showing
the Smart-Seq2 dataset. (H) Heatmap shows DEGs for
epithelial-like, mesenchymal-like, and intermediate EMP
cells for the Smart-Seq2 data. Cells are ordered by
increasing EMP signature. Annotations indicate EMP
cell state, EMP signature expression, tumor model and
metastatic potential. The arrow highlights intermediate
EMP cell marker genes. (I) Same as in (H) using the
MULTI-Seq data. (J) Venn diagrams show overlap DEGs
of epithelial-like, mesenchymal-like, and intermediate
EMP cells between Smart-Seq2 and MULTI-Seq data.
Highlighted are overlapped markers for intermediate EMP
cells.

interest as they may represent cells with both epithelial and
mesenchymal capabilities and a high degree of plasticity
and therefore might contribute to the pool of cells that
are more likely to metastasize (45, 46). However, the
identified intermediate EMP cells, which expressed both
epithelial and mesenchymal signatures at similar levels
(Figure 4E), were present in every tumor although their
abundance did not correlate with metastatic potential (Fig-
ure 4F). Intermediate EMP cells expressed core transcription
factors (TFs) promoting EMT such as SNAI2, TWIST1,
ZEB1 and ZEB2 (13) (upper panels of Figure 4G and
Supplementary Figure S4I) at higher levels than epithelial-
like cells but lower than mesenchymal-like cells highlighting
their intermediate character. Moreover, the fraction of cells
expressing these TFs also increased from epithelial-like to

intermediate EMP to mesenchymal-like cells (lower panels
of Figure 4G and Supplementary Figure S4I). To further
characterize this intermediate EMP cell state we performed
a more comprehensive differential gene expression analysis
between the three EMP cell states in both datasets (Smart-
Seq2 and MULTI-Seq) and identified genes upregulated
in epithelial-like, intermediate EMP and mesenchymal-like
cells (Figure 4H, I, Supplementary Table 7, Supplementary
Table 8). For each EMP cell state, we focused on
marker genes that were shared between the two datasets
(Figure 4J). Surprisingly, only 13 % (40/303, MULTI-Seq)
– 18 % (56/303, Smart-Seq2) of DEGs were shared with
the published markers (43) that were used to classify the
three EMP states. Most identified DEGs were exclusive to
one or both of our datasets and were not found in the set
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of published markers (Supplementary Figure S4J). Genes
shared across all three sets included common mesenchymal
(e.g. VIM, BGN, SNAI2, LOX) and epithelial (e.g. KRT18,
KRT8) markers; whereas other broadly used markers such as
EPCAM, CDH1, CDH2 and FN1 were not included. Only
5 intermediate EMP cell marker genes were shared between
our datasets (Figure 4J). The expression of all 5 intermediate
EMP markers (CRYAB, KRT15, S100A2, CD24, CALML5)
peaked in intermediate EMP cells and decreased in epithelial-
like and mesenchymal-like cells (Figure 5A, Supplementary
Figure S5A).

The five markers of the intermediate EMP cell state have
been previously implicated in EMT, cancer stemness, and
metastasis pathways. For example, we identified the
cell surface protein CD24, for which there are conflicting
results as to its role in tumor progression. For example,
whereas CD24−/low/CD44+ have been shown to initiate
breast tumors in NOD/scid mice (47), other studies reported
that high CD24 expression increased metastasis (48) and
that CD24+/CD90+ cells initiate metastases that display
a mesenchymal phenotype (49, 50). CD24+/CD44+ cells
were shown to be plastic and express epithelial and mes-
enchymal markers forming mammospheres more efficiently
than epithelial-like CD24+/CD44− or mesenchymal-like
CD24−/CD44+ cells (51–54). Interestingly, a mixture of
CD24+/CD44− and CD24−/CD44+ was more efficient in
mammosphere formation than either population alone (52).
Collectively, these data suggest that CD24 could indeed mark
a plastic intermediate EMP cell state with potential stem-
like properties and that cooperativity may exist between cell
populations with different EMP characteristics.

Another identified intermediate EMP marker, CRYAB,
encodes the small heat shock protein α-basic-crystallin (αB-
crystallin), which protects cells from apoptosis by inhibiting
caspase-3 activation under various stress conditions such as
oxidative stress (55, 56). Importantly, αB-crystallin confers
anoikis resistance and thereby enables metastatic dissemi-
nation (57). CRYAB is overexpressed in various tumors
(58, 59) including the basal BC subtype (60) and has been
associated with poor patient outcomes and metastasis (61–
64). CRYAB expression levels in hepatocellular carcinoma
cell lines were accompanied by EMT marker expression
indicating that CRYAB could promote a mesenchymal
phenotype (59). Importantly, a study investigating brain
metastasis found that CRYAB is expressed in a small
non-proliferative metastatic cell population and might be
required for the survival of single metastatic cells and
micrometastasis (65). Additionally, CRYAB is highly
expressed in dormant micrometastasis in the lung compared
to proliferative macrometastasis (65, 66). These combined
features could also indicate an intermediate EMP cell state,
although not explored in these studies.

Additional intermediate EMP markers were KRT15,
CALML5 and S100A2. KRT15, an intermediate filament
protein belonging to the epithelial Keratin Type I family, has
been suggested to be an epidermal stem cell marker (67).
One study reported that high KRT15 expression correlated

with better outcomes for BC patients (68); whereas others
reported that KRT15 was upregulated in advanced stage
BC and BC with high-relapse risk (69, 70), as well as
being associated with poor prognosis in other types of
cancers (71, 72). CALML5 (Calmodulin-Like Protein 5) is
a calcium-binding protein that is predominantly expressed
in keratinocytes. It has recently been shown that calmodulin
may mediate the induction of a partial EMP cell state
(measured by loss of E-cadherin surface expression and
a partial upregulation of mesenchymal markers) through
calcium signaling (73). Also involved in calcium signaling
is S100A2, which belongs to the S100 protein family that
can both bind calcium and function extracellularly. S100A2
is deregulated in cancers suggesting both tumor-promoting
and suppressing roles (74–76) and may also have dual roles
with regard to EMT. S100A2 was shown to be regulated by
TGF-β1 (77) and partially mediate TGF-β1-induced EMT
(78, 79) but seems to repress EMT in other contexts (80).

Recent studies describing the existence of intermediate EMP
cells have associated these with an increased ability to
form metastases after tail vein injection using genetically
engineered mouse models of skin squamous cell carcinoma
(45). Here, we identified 5 novel markers, CD24, CRYAB,
KR1T15, S100A2, and CALML5, that are expressed by
human intermediate EMP cells in BC in vivo (Figure 5A,
Supplementary Figure S5A). These genes could serve as
biomarkers to identify BC patients with an increased
proportion of potentially more aggressive tumor cells. To test
the clinical significance of our findings we analyzed two BC
gene expression datasets. In the first dataset (35), patients
across different BC subtypes that showed a high expression
of the epithelial-like gene signature had a better RFS,
whereas patients with a high expression of the intermediate
EMP or mesenchymal-like gene signature showed worse
RFS (Supplementary Figure S5B). In an independent dataset
(METABRIC (81)), intermediate EMP cell gene signature
showed a BC subtype-dependent correlation with patient-
related outcome (Figure 5B). Whereas luminal tumors did not
show a correlation, high expression of the intermediate EMP
cell signature in patients with basal and Her2-like classified
BC showed worse RFS. These subtypes also showed the
worst outcomes and resistance to therapy compared to the
other subtypes (82).

Taken together, we identified cells co-expressing epithelial
and mesenchymal markers that belong to an intermediate
EMP cell state. These intermediate EMP cells were present
in primary tumors and metastases of all tumor models studied
and were characterized by low expression of EMT-associated
TFs. Specific marker genes could identify intermediate
EMP cells and a high expression of these markers was
associated with worse patient-related outcomes. These novel
intermediate EMP cell marker genes could serve as targets to
block the dynamic process of EMP by directly targeting the
potentially most plastic cells and thereby interfering with the
metastatic cascade.
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Figure 5. Intermediate EMP cell markers were
correlated with patient outcome. (A) Scatter plots
show the expression of indicated genes ordered by
increasing EMP signature expression. Dots show the
expression for individual cells and lines show smoothed
expression of expressing cells. Bar charts on top show
the proportion of positive expressing cells for the three
EMP cell states (blue=epithelial-like, purple=intermediate
EMP, red=mesenchymal-like cells). Showing the MULTI-
Seq dataset. (B) Recurrence-free survival of BC patients
(METABRIC) separated by PAM50 BC subtype using
the mean expression of the epithelial-like (top panel),
intermediate EMP (middle panel), and mesenchymal-like
signatures (lower panel). The number of patients (n) and p-
value (p) are shown. The purple box indicates a significant
p-value.

Discussion

Metastasis is responsible for the majority of cancer-related
deaths but the underlying processes that drive metastasis are
not fully elucidated. Recent advances in single-cell biology
shed light on the profound heterogeneity of tumors between
and within patients that likely contributes to the complexity
of the metastatic phenotype. By analyzing matched primary
tumor and metastatic cells we found significant differences
in the transcriptional profiles of metastatic cells compared
to their primary tumor of origin in distinct BC subtypes
that showed strong patient-to-patient variability. Specifically,
we found that primary tumor cells consistently upregulated
genes involved in hypoxia, glycolysis and other metabolic
pathways across all tumor models. Moreover, metastatic
cells frequently upregulated genes involved in cytoskeleton
assembly, cell motility, cellular stress and immune response
signaling. These transcriptional differences presumably
are necessary to acquire traits for dissemination and are
a result of the adaptations to different environments. A
better understanding of this observed heterogeneity and
the transcriptional differences between primary tumor and
metastatic cells could have implications for therapy response.
One of these cellular traits is EMT, which has long been

suggested as being an important driver of metastasis. Our
current work highlights the complexity of the process (i.e.
EMP) and its associated cell states. Recent research suggests
that epithelial and mesenchymal cell states are the edges of
a wider dynamic continuum of EMP including intermediate
cell states (13, 83). However, these intermediate EMP cells
remain poorly characterized. Here, we report that EMP
is a dominant feature of tumor heterogeneity observed in
different human BC tumors in vivo. We identified epithelial-
and mesenchymal-like cells as well as intermediate EMP
cells that surprisingly co-exist in every tumor. Intermediate
EMP cells (described previously also as partial-EMT, hybrid-
EMT, or EMT-transition cells) have recently been reported
to exhibit the greatest metastatic potential when compared
to mesenchymal or epithelial cells using tail vein injection
of skin squamous carcinoma cells or orthotopic injection
of highly metastatic pancreatic ductal adenocarcinoma cells,
both derived from genetic mouse models (45, 46). On
the contrary, we did not observe a correlation between the
abundance of intermediate EMP cells in tumors and their
metastatic potential. Indeed, we found that intermediate
EMP cells were also present in very poorly metastatic tumor
models. Instead, we found that a stronger mesenchymal
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phenotype (high EMP signature) and a higher proportion
of mesenchymal-like cells correlated with the metastatic
potential and this correlation could be further influenced
by the BC subtype. Overall, our data suggest that the
propensity to metastasize is a function of the entire tumor
cell population, as opposed to the presence or absence of
a ‘rogue’ and a potentially small subset of cells. It will be
important for future studies to investigate the interactions of
a heterogeneous tumor cell population with non-malignant
cells of the environment and their involvement in the
metastatic process.

Notably, our findings build upon, but do not necessarily
contradict, the recently described importance of intermediate
EMP cells for metastasis. Potentially, a higher proportion
of epithelial-like cells may prevent intermediate EMP cells
from metastasizing. Conversely, a higher proportion of
mesenchymal cells may support the metastatic capabilities
of intermediate EMP cells. One example of this pro-
posed cooperativity between different EMP cells states is
the observation that an admix culture of (epithelial-like)
CD24+/CD44− and (mesenchymal-like) CD24−/CD44+

immortalized normal human mammary epithelial (HMLER)
cells was more efficient in mammosphere formation than
either population alone (52). Thus, one hypothesis is that the
critical factor determining the metastatic potential of a tumor
is a combination of its composition of cells with varying
EMP states and the level of cooperativity between them.
The observation that metastasis can have polyclonal origins
(84) and that circulating tumor cell (CTC) clusters are more
effective in metastasis formation than individual CTCs (85)
supports our idea that cooperativity between different EMP
cell states may result in more effective metastasis formation.

EMP is likely a highly context and tumor type-specific
process involving different signaling (6). Although the
presence or proportion of intermediate EMP cells was not
correlated with more metastasis in our models, we did find
that high expression of intermediate EMP marker genes was
associated with poorer outcomes in a subset of BC patients
whereas a mesenchymal or epithelial gene expression did not
show a subtype-specific correlation. This observation not
only highlights the potential importance of the intermediate
EMP cell state for patient outcomes but also indicates
that the EMP process and its involvement in metastatic
disease might be subtype-specific. Other markers of
intermediate EMP cell states have been identified and linked
to tumorigenesis, metastasis and stemness (such as CD104,
EPCAM−/CD106+, ALDH1) (45, 54, 86, 87). These and
our study highlight the need for a deeper understanding of the
involvement of the intermediate EMP cell state in metastasis
and its potential spatio-temporal context specify (23).

Surprisingly, there seems to be a predetermined, intrinsic
equilibrium of EMP cell states within the tumor that appears
to be independent of extrinsic signals and microenviron-
mental adaptations. Thus, primary tumor and metastatic
cells exhibit very similar levels of the EMP signature
expression despite showing remarkable differences in their
overall transcriptomes. Sustaining plasticity and reversing

the mesenchymal into a more epithelial-like cell state (MET)
is proposed to occur during the formation of overt metastasis
(88, 89). In this context, we would expect to detect
more mesenchymal-like cells isolated from micrometastases
and more epithelial-like phenotypes in macrometastases.
Based on our histological characterization, poorly metastatic
models show primarily micrometastases but also a few
intermediate sized foci and potentially even rare macrometas-
tases. Since metastatic cells were isolated from whole
lung tissue, we were unable to distinguish whether cells
obtained from poorly metastatic models were associated with
intermediate-sized foci or (very rare) macrometastases or
compare the transcriptome of micro- and macrometastases.
Nonetheless, our single-cell analysis of primary tumor and
metastasis revealed that EMP represents a continuum during
spontaneous metastasis of a large panel of patient-derived
breast tumors. Recent technology developments in spatial
transcriptomics and multiplexed antibody-based imaging will
be perfectly suited for future studies to investigate the
dynamics of the various EMP cell states as metastatic tumors
form.
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Materials and Methods

Animal experiments
Fresh primary breast tumor samples were obtained from the Cooperative Human Tissue Network (CHTN) in accordance with
the Institutional Review Boards’ approval. Tissues were received as de-identified samples and all subjects provided written
informed consent. Medical reports were obtained without personally identifiable information. The UCSF Institutional Animal
Care and Use Committee (IACUC) reviewed and approved all animal experiments. Tumor tissues were cut into 1 mm thick
chunks and orthotopically transplanted into cleared mammary fat pats of 4-week-old NOD-SCID gamma mice to generate
novel PDX models (J53353, J2036, and J55454, Supplementary Table 1). Established PDX lines were transplanted in the same
way and as previously described (25, 28). Once palpable, tumors were measured 2×/week using a caliper to monitor growth
kinetics. Tumor volume was calculated using following formula: π

6 · height1.5 · width1.5. Unless otherwise noted, all PDX
animals were euthanized at the endpoint, when the primary tumor reached 2.5 cm in diameter. In resection experiments, tumors
were surgically removed at 1.0–2.0 cm in diameter. Resected animals were allowed to grow metastases until endpoint was
reached (2.5 cm diameter of recurrent tumor). At endpoint, primary tumor and metastatic lungs were harvested, cut in small
chunks and cryopreserved using Recovery Cell Culture Freezing Medium (Thermo Fisher, 12648010) and stored in liquid
nitrogen until further analysis.

Histology and tissue staining
For each PDX animal, after dissection, the middle and postcaval lobes of the right lung were fixed in 4 % PFA overnight and
processed for paraffin embedding. For histological analysis, tissue sections were stained with haematoxylin and eosin using
standard protocols. Tissue slides were scanned (Zeiss Axio ScanZ.1) and images were analyzed using QuPath. Metastatic
foci were easily identified by a larger nuclei/cytoplasm ratio. Micrometastases were defined as < 10 tumor cells, intermediate
metastatic foci 10–100 cells and macrometastases >100 cells. Number and area of metastatic foci and total tissue area were
determined.

Lysis plate preparation
Lysis plates were prepared by dispensing 0.4 µL lysis buffer (0.5 U Recombinant RNase Inhibitor (Takara Bio, 2313B),
0.0625 % Triton™ X-100 (Sigma, 93443-100ML), 3.125 mM dNTP mix (Thermo Fisher, R0193), 3.125 µM Oligo-dT30VN
(IDT, 5′-AAGCAGTGGTATCAACGCAGAGTACT30VN-3′) and 1:600,000 ERCC RNA spike-in mix (Thermo Fisher,
4456740)) into 384-well hard-shell PCR plates (Biorad HSP3901) using a Dragonfly liquid handler (STP Labtech). All plates
were then spun down for 1 min at 3220×g and snap-frozen on dry ice. Plates were stored at -80 °C until used for sorting.

Sample preparation and FACS sorting
Primary tumor and metastatic lung tissues were processed, stained, MULTI-Seq labeled and FACS sorted as previously
described (36). In brief, tissues were thawed, dissociated in digestion media containing 50 µg/ml Liberase TL (Sigma-Aldrich)
and 2·104 U/ml DNase I (Sigma-Aldrich) in DMEM/F12 (Gibco) using standard GentleMacs (37C_m_LDK_1, 37_m_TDK1)
protocols. Washed and filtered single-cell suspension were stained with viability dye (Zombie NIR, 1:500, BioLegend, no.
423105), blocked with Fc-block (1:200, Tonbo, 70-0161-U500), and with LIN (anti-mouse TER119-FITC, Thermo Fisher, 11-
5921-82; anti-mouse CD31-FITC, Thermo Fisher, 11-0311-85; anti-mouse CD45-BV450, Tonbo, 75-0451-U100; anti-mouse
MHC-I-APC, eBioscience, 17-5999-82) and anti-human CD298 (PE, BioLegend, 341704). For the Smart-Seq2 experiments,
live, LIN−/hCD298+ primary tumor and metastatic cells were sorted directly into cooled lysis plates and snap-frozen until
library preparation. If multiple plates were sorted from one PDX model, each plate contained half primary tumor and metastatic
cells to avoid plate-specific batch effects. For the MULTI-Seq experiments, MULTI-Seq LMO barcode anchor and co-anchor
were used at a final concentration of 2.5 µM directly after antibody staining before FACS sorting as described previously
(36). For one experiment (PDX1) we used sets of three unique MULTI-seq barcodes/sample. After sorting, enriched live,
LIN−/hCD298+ cells were pooled and loaded into 10x microfluidics lanes at an average loading concentration of about 30,000
cells/lane.

cDNA synthesis and library preparation
cDNA synthesis was performed using the Smart-seq2 protocol (90–92). Briefly, 384-well plates containing single-cell
lysates were thawed on ice followed by first-strand synthesis. 0.6 µL of reaction mix (16.7 U/µl SMARTScribe Reverse
Transcriptase (Takara Bio, 639538), 1.67 U/µl Recombinant RNase Inhibitor (Takara Bio, 2313B), 1.67X First-Strand Buffer
(Takara Bio, 639538), 1.67 µM TSO (Exiqon, 5′-AAGCAGTGGTATCAACGCAGACTACATrGrG+G-3′), 8.33 mM DTT
(Bioworld, 40420001-1), 1.67 M Betaine (Sigma, B0300-5VL), and 10 mM MgCl2 (Sigma, M1028-10X1ML)) was added
to each well using a Dragonfly liquid handler (STP Labtech). Reverse transcription was carried out by incubating wells on a
ProFlex 2x384 thermal-cycler (Thermo Fisher) at 42 °C for 90 min and stopped by heating at 70 °C for 5 min. Subsequently,
1.5 µL of PCR mix (1.67X KAPA HiFi HotStart ReadyMix (Kapa Biosystems, KK2602), 0.17 µM IS PCR primer (IDT, 5′-
AAGCAGTGGTATCAACGCAGAGT-3′), and 0.038 U/µl Lambda Exonuclease (NEB, M0262L)) was added to each well with
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a Dragonfly liquid handler (STP Labtech), and second strand synthesis was performed on a ProFlex 2x384 thermal-cycler by
using the following program: 1. 37 °C for 30 min, 2. 95°C for 3 min, 3. 23 cycles of 98 °C for 20 s, 67 °C for 15 s, and 72 °C
for 4 min, and 4. 72 °C for 5 min. The amplified product was diluted 1:10 with 10 mM Tris-HCl (Thermo Fisher, 15568025).
0.6 µL of diluted product was transferred to a new 384-well plate using the Viaflow 384 channel pipette (Integra). Illumina
sequencing libraries were prepared using a library preparation protocol modified from previously reported tagmentation-based
protocols (93, 94). Briefly, tagmentation was carried out by mixing each well with 1 uL of 1.6x Homebrew Tn5 Tagmentation
Buffer and 0.2 uL of homebrew Tn5 enzyme, then incubated at 55 °C for 3 min. The reaction was stopped by adding 0.4 µl 0.1 %
sodium dodecyl sulfate (Fisher Scientific, BP166-500) and centrifuging at room temperature at 3,220g for 5 min. Indexing PCR
reactions were performed by adding 0.4 µL of 5 µM i5 indexing primer, 0.4 µL of 5 µM i7 indexing primer, and 1.2 µL of Nextera
NPM mix (Illumina). All reagents were dispensed with the Mosquito liquid handlers (STP Labtech). PCR amplification was
carried out on a ProFlex 2x384 thermal cycler using the following program: 1. 72 °C for 3 min, 2. 95°C for 30 s, 3. 12 cycles
of 98 °C for 10 s, 67 °C for 30 s, and 72 °C for 1 min, and 4. 72 °C for 5 min.

Library sequencing
Following library preparation, wells of each library plate were pooled using a Mosquito liquid handler (STP Labtech). Pooling
was followed by two purifications using 0.7x AMPure beads (Fisher, A63881). Library quality was assessed using high
sensitivity capillary electrophoresis on a Tapestation (Agilent), and libraries were quantified by qPCR (Kapa Biosystems,
KK4923) on a CFX96 Touch Real-Time PCR Detection System (Biorad). Plate pools were normalized to 2 nM and equal
volumes from library plates were mixed together to make the sequencing sample pool. Sequencing libraries from 384-well
plates Libraries were sequenced on the NextSeq or NovaSeq 6000 Sequencing System (Illumina) using 2×100 bp paired-end
reads and 2×12 bp index reads. NextSeq runs used high output kits, whereas NovaSeq runs used 300-cycle kit (Illumina,
20012860). PhiX control library was spiked in at ∼1 %.

Sequencing libraries from MULTI-seq
For the MULTI-Seq dataset, gene expression library preparation was performed using the v2 10x library kit with modifications
as described previously to generate MULTI-seq libraries (36).

Data extraction
For Smart-Seq2, sequences from the NovaSeq or NextSeq were de-multiplexed using bcl2fastq v.2.19.0.316. Reads were
aligned to the gencode V30 genome using STAR v.2.5.2b with parameters TK. Gene counts were produced using HTSEQ
v.0.6.1p1 with default parameters, except ‘stranded’ was set to ‘false’, and ‘mode’ was set to ‘intersection-nonempty’. For
MULTI-Seq, sequences from the microfluidic droplet platform were de-multiplexed and aligned using CellRanger v.5.0.1,
available from 10x Genomics with default parameters.

MULTI-Seq demultiplexing
MULTI-seq barcode FASTQs were converted to barcode UMI count matrices using the ‘MULTIseq.preProcess’ and
‘MULTIseq.align’ functions in the deMULTIplex R package (36) with default parameters. Notably, ‘PDX3’ FASTQs were
randomly down-sampled to 108 total reads prior to UMI count matrix conversion in order to minimize computation time. Next,
since cells labeled with the same MULTI-seq barcodes were split across multiple 10x Genomics microfluidics lanes in each
experiment, MULTI-seq UMI count matrices from each lane were concatenated (PDX1 and PDX3 matrices were concatenated
separately) to maximize classification performance. Using these concatenated matrices, samples were then classified into
sample groups using the deMULTIplex workflow desired previously (with semi-supervised negative-cell reclassification) (36).
Notably, since samples in the PDX1 experiment were encoded by sets of three unique MULTI-seq barcodes, classification was
performed on each cell’s median barcode count for each set. Moreover, cells with the top and bottom 5 % of MULTI-seq barcode
counts were masked during the initial classification workflow in the PDX1 data, and were reintroduced as ‘negatives’ during
semi-supervised negative cell reclassification. Analogous barcode count-merging and outlier-masking were not necessary for
the PDX3 data, which was classified successfully using the default deMULTIplex workflow.

Data pre-processing
For Smart-seq 2 data, gene count tables were combined with the metadata variables using the Scanpy Python package version
1.8.1 (95). We removed the genes that were not expressed in at least 5 cells. Cells with less than 5,000 counts and 500 detected
genes were removed. Additionally, we removed cells with more than 50 % mitochondrial genes and 20 % ERCC reads. The
data were then normalized using size factor normalization such that every cell has 10,000 counts and log-transformed. We
selected the top 2,000 genes with the highest standardized variance as the highly variable genes by using VST method from
Seurat V3 (96), which is also implemented in Scanpy. Cell-cycle regression was performed after calculating the score of S and
G2M phases for each cell (97). The data was then scaled to a maximum value of 10. We then computed principal component

Winkler et al. | Dissecting the contributions of tumor heterogeneity on metastasis at single-cell resolution bioRχiv | 15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.04.502697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502697
http://creativecommons.org/licenses/by-nc-nd/4.0/


(PC) analysis, neighborhood graph and clustered the data using Louvain and Leiden methods. The data was visualized using
UMAP projection.
For MULTI-seq data, for each 10x lane, we first removed the cells with less than 2,500 UMI and 250 genes and more than 50 %
mitochondria reads by using the Scanpy Python package version 1.8.1. In addition, in order to filter out reads from ambient
RNA, we ran DecontX (98) separately for each 10x lane by using default parameters. Next, we re-filtered the dataset from every
10x run when cells did not contain a minimum number of genes (250), minimum of counts/UMIs (2,500), and/or having more
than 50 % mitochondria reads. The data were then further processed as described above for the Smart-Seq2 dataset. Cells were
sample assigned using the MULTI-Seq demultiplexing result, thereby removing doublets but including unassigned ‘negative’
cells. In order to recover MULTI-Seq-unassigned ‘negative’ cells, we used DBSCAN clustering. Based on the results of the
Smart-Seq2 data, cells from different PDX tumors would cluster distinct from each other in transcriptional space. Negative
cells in one DBSCAN cluster were assigned as the same tumor sample as the majority of MULTI-Seq classified cells in that
cluster. After completed cell assignment, all 10x runs were combined to one MULTI-Seq dataset and removed genes that were
not expressed in at least 20 cells. We then performed normalization, log-transformation, finding highly variable genes, cell
cycle regression, principal component analysis, UMAP dimension reduction, and Louvain and Leiden clustering as described
for the Smart-Seq data.

EMP scoring and classification
We used GSVA scoring with its default parameters to assign each cell an epithelial (E-score) and mesenchymal score (M-score)
using epithelial and mesenchymal marker genes (43). The EMP-score for each cell is calculated by the sum of E-score and
M-score for that cell. Cells with an EMP-score > 0.2 were classified as mesenchymal-like cells, cells with an EMP-score < -0.2
were classified as epithelial-like cells, and cells with an EMP-score between -0.2 and 0.2 were classified as EMP intermediate
cells.

Cell Phase Proportion Statistical Test
Cells were assigned in different cell cycle phases based on the cell cycle score calculated previously. Then cell phase proportions
in each tumor were calculated in different groups in each category, such as EMP cell stage, sort, and metastatic potential group.
Finally, Wilcoxon rank test was performed for comparing group to group in each category in each cell phase. The statistical
tests were generated by using Seaborn (99) and Statannot (100) packages in Python.

ROC Curve and AUC Value
The cells were first ordered by their PC2 value either in the whole SS2 dataset or in individual tumor models. The true and
false-positive rates were calculated based on the cell’s label (primary tumor cell or metastatic cell) and PC2 value by using the
“roc_curve” function from Scikit-learn (101). In addition, “roc_auc_score” from Scikit-learn was used to calculate the AUC
value by using the true and false-positive rates.

Differentially expressed genes
Identifying DEGs in primary tumor and metastatic cells. We performed differential expression analysis between primary tumor
and metastatic cells in the entire dataset using the Seurat function FindMarkers using MAST (33) and the tumor model as the
latent variable. In addition, we identified DEGs between primary tumor and metastatic cells for each tumor sample separately
using the same Seurat function without setting the latent variable. Genes with p-values < 0.05 and log2 fold change > 0.5 were
kept for further analysis. After filtering, we combined the DEGs from tumors within the same metastatic potential group. We
included DEGs that are shared between at least two tumors in the same metastatic potential group.

Identifying gene signatures associated with metastatic potential. To identify genes in the primary tumor that are associated
with metastatic potential we first removed metastatic cells from the data. Then, we used the Seurat function FindMarkeres
using the MAST test and tumor model as the latent variable for identifying DEGs between one individual tumor and all tumors
in the other metastatic groups. Genes were filtered based on p-values < 0.05 and log2 fold change > 0.5. After filtering,
we combined the up-regulated gene lists from tumors within the same metastatic potential group. Signature genes related to
metastatic potential were determined as genes that are shared between at least two tumors in the same metastatic potential
group.

Identifying EMP marker genes. We identified EMP marker genes for each EMP category (epithelial-like, EMP intermediate,
mesenchymal-like) using the Seurat function FindMarkers using the MAST test and tumor model as the latent variable. Genes
were filtered based on p-values < 0.05 and log2 fold change > 0.5.
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Gene set enrichment analysis
To identify pathways that were enriched in primary tumor or metastatic cells, we used the fgsea package (102) with Hallmark
and GO gene sets from MSigDB (103, 104). We examined pathways that were significantly enriched in at least four tumor
models. Enriched pathways in highly and poorly metastatic signatures were identified with the online tool of MSigDB.

Survival Analysis
For survival analysis, we used the KM-plotter (35) website’s breast cancer gene chip mRNA dataset. The mean expression of
the signature genes were calculated for each sample in the dataset. The patient samples were separated based on the median
of the mean expression in low and high expressing samples. Visualization was done using Lifelines Python package (105).
The metastatic potential gene lists resulted from the overlap genes between the MULTI-seq and Smart-Seq2 datasets from each
metastatic potential group. For EMP signature gene lists, the epithelial signature gene list and mesenchymal signature gene list
were the overlapping genes from the top 100 differentially expressed genes in the MULTI-Seq and Smart-Seq2 datasets, and the
intermediate EMP marker gene signature included the overlapping genes found in both MULTI-seq and Smart-Seq2 datasets.
In addition, METABRIC (81) dataset was obtained from cBioPortal. We used “all_sample_Zscores” to create Kaplan-Meier
survival plots (105) and perform logrank tests for each breast cancer subtype using the mean expression of the intermediate
EMP marker genes.

Supplemental Tables
• Table S1. PDX info

• Table S2. SS2 met vs. primary DEGs filtered
(Tabs: global, HCI005, H3404, H4272, HCI009, HCI011, HCI001, H5097, J2036, J53353, HCI010)

• Table S3. Overlaped DEGs primary tumor vs. metastasis per metastatic potential group

• Table S4. MULTI primary tumor 1 vs. rest DEGs filtered
(Tabs: HCI002_MULTI, J55454_MULTI, HCI005_MULTI, H4272_MULTI, HCI011_MULTI, HCI001_MULTI,
H5097_MULTI, J2036_MULTI, J53353_MULTI, HCI010_MULTI)

• Table S5. SS2 primary tumor 1 vs. rest DEGs filtered
(Tabs: J55454_SS2, H5471_SS2, HCI005_SS2, H3404_SS2, H4272_SS2, HCI009_SS2, HCI011_SS2, HCI001_SS2,
H5097_SS2, J2036_SS2, J53353_SS2, HCI010_SS2)

• Table S6. Low, moderate, high met. signature

• Table S7. SS2 EMP DEGs filtered
(Tabs: Epithelial-like, Mesenchymal, EMP intermediate)

• Table S8. MULTI EMP DEGs filtered
(Tabs: Epithelial-like, Mesenchymal, EMP intermediate)

Data and materials availability
Raw sequencing files are available at the NCBI BioProject number PRJNA847563. Raw and processed data have
been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number
GSE210283. Processed data are available as h5ad files on figshare (https://figshare.com/s/328942c0b8dc9aa69be1 and
https://figshare.com/s/b53f327a8b612a7b2eeb). Code is available on github https://github.com/czbiohub/scBC.
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Figure S1. Biological characteristics of the PDX models.
(A) Bar chart shows the number of metastatic foci per mm2 lung tissue area for individual animals ordered by the metastatic potential of the tumor models determined
by histology. Each tick mark represents one animal. The size of metastatic foci is colored in shades of gray (micrometastasis < 10 cells, intermediate 10–100 cells and
macrometastasis > 100 cells). (B) Scatter plot shows the correlation of mean metastatic burden assessed by histology (proportion of metastatic tissue area to total lung
tissue area) and flow cytometry (proportion of metastatic cells to total live cells) colored by individual tumor models. Linear regression with 95 % confidence intervals and
Pearson correlation coefficient are shown. (C) Boxplot shows median days until endpoint (2.5 cm diameter of primary tumor) after tumor transplantation per tumor model
ordered by the metastatic potential as determined in Figure 1B. (D) Boxplot shows median days until endpoint (2.5 cm diameter of the primary tumor or recurrent tumor)
after tumor transplantation comparing HCI002 (black) and after HCI002 resection (red). (E) Bar chart shows the number of metastatic foci per mm2 lung tissue area for
individual animals of HCI002 and resected HCI002 at endpoint. The size of metastatic foci is colored in shades of gray (micrometastasis < 10 cells, intermediate 10–100
cells and macrometastasis > 100 cells). Each tick mark represents one animal showing 2/6 (control) and 3/8 animals (resected) that developed metastases (p-value=0.872,
Chi-Square test). (F) Spider plot shows tumor growth (volume in cm3) for each animal transplanted with HCI002 (black) or resected with subsequent recurrent tumor (red).
(G) Scatterplots show the correlation of the mean expression of the indicated receptors in primary tumor and metastatic cells colored by individual tumor models. Linear
regressions with 95 % confidence intervals and Pearson correlation coefficients are shown. (H) ROC curves with the corresponding area under the curve (AUC) show PC1
categorized based on ER status (left) and BC subtype (right). (I) UMAP projection of single-cell transcriptomes color-coded by batch (individual plates). Dashed lines highlight
clusters of cells from the same tumor model measured in multiple batches (technical replicates). (J) UMAP projection of single-cell transcriptomes color-coded by individual
animals. Dashed lines highlight clusters of cells from the same tumor model retrieved from multiple animals (biological replicates).
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Figure S2. Differential gene expression between primary tumor and matched metastatic cells.
(A) Heatmap shows mean expression per tumor model of DEGs between primary tumors and metastases. Annotations indicate tissue, tumor model, and metastatic potential.
(B) Bar chart shows pathways enriched in primary tumors (negative NES, orange) and metastases (positive NES, blue) using GO biological pathways from MSigDB. (C)
Enrichment plots show hypoxia as the top enriched pathway in primary tumors (top) and MYC targets as the top enriched pathway in metastases (bottom). Heatmaps show
expression in single cells of DEGs associated with either hypoxia (top) or MYC targets (bottom). Annotations show tissue and tumor model. (D) ROC curve using PC2
coordinates to classify cells into either primary tumor or metastatic cells of all tumors grouped together (global) with depicted AUC. (E) Bar chart shows the number of primary
tumor (orange) and metastatic cells (blue) for each tumor model. (F) Ridge plots show normalized cell counts along PC2 color-coded by primary tumor and metastasis for
tumor models J55454 and H5471 without a sufficient number of metastatic cells and corresponding ROC curves (same as in (D)). (G) Ridge plots show normalized cell
counts along PC2 color-coded by primary tumor and metastasis for individual tumor models with a sufficient number of metastatic cells and corresponding ROC curves of
PC2 (same as in (D)). Clear separations in PC2 are reflected by AUC > 0.7 by ROC curve analysis. Heatmaps show the expression of DEGs between primary tumor and
metastatic cells. (H) Ridge plot shows proliferation score for primary tumors and metastases. (I) Bar chart shows the proportion of cells in G1/G2M/S cell cycle phase for
primary tumors and metastases. Not significant using Wilcoxon rank test.
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Pathway (HALLMARK) p-value FDR q-value Genes
OXIDATIVE_PHOSPHORYLATION 5.57E-11 2.78E-09 CYC1, MDH2, GPX4, ECHS1, MRPL15, NDUFB7, 

UQCRC1, LDHB, IDH2, UQCRFS1

MYC_TARGETS_V1 1.35E-09 3.37E-08 CYC1, MDH2, RACK1, PRDX4, SRM, FBL, RPS2, RPS3, 
RPS6, RPL14 

ADIPOGENESIS 5.43E-07 6.79E-06 CYC1, MDH2, GPX4, ECHS1, MRPL15, NDUFB7, 
UQCRC1 

EPITHELIAL_MESENCHYMAL_TRANSITION 5.43E-07 6.79E-06 TPM2, BGN, GJA1, EMP3, CTHRC1, PCOLCE, VIM 

MYOGENESIS 8.79E-06 7.33E-05 TPM2, SPHK1, CLU, CFD, APOD, IGFBP7 

Pathway (Reactome) p-value FDR q-value Genes

TRANSLATION 3.95E-14 2.87E-10
RPS2, RPS6, RPS3, RPS3A, RPS20, RPL7, RPL13, 
RPL32, RPL37, RPL14, RPN2, TRAM1, EIF3E, EIF3H, 
EEF1D, MRPL15 

SRP_DEPENDENT_COTRANSLATIONAL_PRO
TEIN_TARGETING_TO_MEMBRANE 7.50E-14 2.87E-10 RPS2, RPS6, RPS3, RPS3A, RPS20, RPL7, RPL13, 

RPL32, RPL37, RPL14, RPN2, TRAM1

EUKARYOTIC_TRANSLATION_INITIATION 5.16E-13 1.32E-09
RPS2, RPS6, RPS3, RPS3A, RPS20, RPL7, RPL13, 
RPL32, RPL37, RPL14, EIF3E, EIF3H 

EUKARYOTIC_TRANSLATION_ELONGATION 2.38E-11 3.95E-08
RPS2, RPS6, RPS3, RPS3A, RPS20, RPL7, RPL13, 
RPL32, RPL37, RPL14, EEF1D 

CELLULAR_RESPONSES_TO_STIMULI 2.58E-11 3.95E-08
RPS2, RPS6, RPS3, RPS3A, RPS20, RPL7, RPL13, 
RPL32, RPL37, RPL14, TUBA1B, CYBA, HMGA1, 
CDKN2A, IGFBP7, UBE2S, PRDX2, BLVRB, MYDGF, 

Pathway (GOBP) p-value FDR q-value Genes

PEPTIDE_METABOLIC_PROCESS 3.95E-14 2.87E-10
PKM, RPS3, RPL37, RPS20, RPS6, RPS3A, RPS2, 
RPL7, RPL14, RPL13, RPL32, RACK1, VIM, EEF1D, 
EIF3E, EIF3H, CLU, GPX4, TMED10, ETHE1 

CYTOPLASMIC_TRANSLATION 7.50E-14 2.87E-10 PKM, RPS3, RPL37, RPS20, RPS6, RPS3A, RPS2, 
RPL7, RPL14, RPL13, RPL32

CELLULAR_AMIDE_METABOLIC_PROCESS 5.16E-13 1.32E-09
PKM, RPS3, RPL37, RPS20, RPS6, RPS3A, RPS2, 
RPL7, RPL14, RPL13, RPL32, RACK1, VIM, EEF1D, 
EIF3E, EIF3H, CLU, GPX4, TMED10, ETHE1, SPHK1

PEPTIDE_BIOSYNTHETIC_PROCESS 2.38E-11 3.95E-08
PKM, RPS3, RPL37, RPS20, RPS6, RPS3A, RPS2, 
RPL7, RPL14, RPL13, RPL32, RACK1, VIM, EEF1D, 
EIF3E, EIF3H

AMIDE_BIOSYNTHETIC_PROCESS 2.58E-11 3.95E-08
PKM, RPS3, RPL37, RPS20, RPS6, RPS3A, RPS2, 
RPL7, RPL14, RPL13, RPL32, RACK1, VIM, EEF1D, 
EIF3E, EIF3H

Pathway (HALLMARK) p-value FDR q-value Genes
TNFA_SIGNALING_VIA_NFKB 6.17E-11 3.09E-09 FOS, CCND1, AREG, ZFP36, TAP1, SOD2, NFKBIA, 

ATF3, SQSTM1, DUSP1 

ESTROGEN_RESPONSE_LATE 1.48E-09 2.46E-08 FOS, CCND1, AREG, ZFP36, KRT19, SLC9A3R1, BLVRB, 
PLAAT3, CD9 

INTERFERON_GAMMA_RESPONSE 1.48E-09 2.46E-08 B2M, UBE2L6, PSMB8, IFI35, HLA-A, HLA-B, TAP1, 
SOD2, NFKBIA 

INTERFERON_ALPHA_RESPONSE 4.00E-09 5.00E-08 B2M, UBE2L6, PSMB8, IFI35, CD47, HLA-C, TAP1

ESTROGEN_RESPONSE_EARLY 3.13E-08 3.13E-07 FOS, CCND1, AREG, KRT19, SLC9A3R1, BLVRB, 
PLAAT3, ELF3

Pathway (GOBP) p-value FDR q-value Genes
REGULATION_OF_CELL_POPULATION_PRO
LIFERATION 2.63E-12 1.67E-08

HLA-E, HLA-A, B2M, ZFP36, NFKBIA, SOD2, ROMO1, LGALS3, 
CD47, IFI35, CDK6, DUSP1, ATF3, SLC9A3R1, CD9, NUPR1, 
MALAT1, CCND1, S100A11, PLAAT4, AREG, FTH1, RARRES1 
CAPN1 

ANTIGEN_PROCESSING_AND_PRESENTATI
ON_OF_ENDOGENOUS_PEPTIDE_ANTIGEN 4.36E-12 1.67E-08 HLA-E, HLA-A, B2M, HLA-B, HLA-C, TAP1 

ANTIGEN_PROCESSING_AND_PRESENTATI
ON_OF_ENDOGENOUS_ANTIGEN 3.65E-11 8.66E-08 HLA-E, HLA-A, B2M, HLA-B, HLA-C, TAP1 

BIOLOGICAL_PROCESS_INVOLVED_IN_INTE
RSPECIES_INTERACTION_BETWEEN_ORGA 4.52E-11 8.66E-08

HLA-E, HLA-A, B2M, ZFP36, NFKBIA, SOD2, ROMO1, LGALS3, 
CD47, IFI35, CDK6, HLA-B, HLA-C, OPTN, FOS, S100A14, 
WFDC2, PLAAT3, OCIAD2, C15orf48, IFI6, CHMP2A 

ANTIGEN_PROCESSING_AND_PRESENTATI
ON_OF_PEPTIDE_ANTIGEN_VIA_MHC_CLAS 7.48E-11 1.15E-07 HLA-E, HLA-A, B2M, HLA-B, HLA-C, TAP1 

Pathway (Reactome) p-value FDR q-value Genes

INNATE_IMMUNE_SYSTEM 1.66E-16 2.68E-13
HLA-A, HLA-B, HLA-C, B2M, LAMTOR2, LAMTOR1, LAMP2, 
LGALS3, DSP, CAPN1, FTH1, CD59, CD47, MGST1, S100A11, 
CREG1, HLA-E, PSMB8, UBC, PSMB3, FOS, UBE2L6, NFKBIA, 
ATP6V0E1

NEUTROPHIL_DEGRANULATION 4.01E-14 3.24E-11
HLA-A, HLA-B, HLA-C, B2M, LAMTOR2, LAMTOR1, LAMP2, 
LGALS3, DSP, CAPN1, FTH1, CD59, CD47, MGST1, S100A11, 
CREG1

CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM 1.54E-12 8.31E-10
HLA-A, HLA-B, HLA-C, B2M, HLA-E, PSMB8, UBC, PSMB3, FOS, 
UBE2L6, NFKBIA, SOD2, IFI6, IFI35, SQSTM1, CCND1, IL32 

ANTIGEN_PROCESSING_CROSS_PRESENTA
TION 4.97E-12 2.01E-09 HLA-A, HLA-B, HLA-C, B2M, HLA-E, PSMB8, UBC, PSMB3, TAP1 

ANTIGEN_PRESENTATION_FOLDING_ASSEM
BLY_AND_PEPTIDE_LOADING_OF_CLASS_I_ 2.81E-11 8.88E-09 HLA-A, HLA-B, HLA-C, B2M, HLA-E, TAP1 
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Figure S3. Characteristics of the metastatic signatures.
(A) UMAP projection of single-cell transcriptomes color-coded by individual tumor models. (B) UMAP projection of single-cell transcriptomes color-coded by ER status. (C)
Bubble plot shows the expression of receptors per tumor model. The size of dots indicates the fraction of cells expressing and the red color indicates gene expression. (D)
Pathway enrichment of DEGs shared between poorly metastatic tumors. (E) Pathway enrichment of DEGs shared between highly metastatic tumors. (F) Scatterplot shows
the correlation of MYC (42) and immune regulation signature expression colored by tumor model. Pearson correlation coefficient is shown. (G) Ridge plot shows proliferation
score for primary tumor of low and moderate/high metastatic potential. The bar chart shows proportion of cells in different cell cycle phases for primary tumors of low and
moderate/high metastatic potential. Showing MULTI-Seq dataset. Proportion changes are not significant using Wilcoxon rank test. (H) Same as in (G) for the Smart-Seq2
dataset. Not significant using Wilcoxon rank test.
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Figure S4. EMP is a key feature of tumor heterogeneity.
(A) Scatter plots show mesenchymal against epithelial signatures for individual cells colored by the expression of indicated epithelial (EPCAM, CDH1) and mesenchymal
markers (VIM, FN1, CDH2). The upper panels show Smart-Seq2 and the lower panels show MULTI-Seq datasets. The color scale indicates the magnitude of gene
expression. (B) Scatter plot shows the correlation of the mean EMP signature expression per tumor model between Smart-Seq2 and MULTI-Seq datasets. Linear regression
with 95 % confidence intervals and Pearson correlation coefficient are shown. (C) Violin plot shows EMP signature expression of tumor models with low and intermediate/high
metastatic potential using the MULTI-Seq dataset. Boxplot showing median, significance p<0.001 by Wilcox test. (D) Violin plot shows EMP signature expression per tumor
model ordered by metastatic potential using the MULTI-Seq dataset. (E) Bubble plot shows the correlation of EMP signature with PCs 1-5 using Smart-Seq2 dataset. The
color indicates positive (green) or negative (purple) correlation coefficient, larger circle indicates significant p-value < 0.05, small circle indicates no significant p-value >
0.05. (F) same as in (E) for the MULTI-Seq dataset. (G) Cells ranked by EMP signature defining three cell states: epithelial-like (blue), intermediate EMP (purple) and
mesenchymal-like cells (red) using the MULTI-Seq dataset. (H) Bar chart shows the proportion of the three different EMP cell states per tumor model ranked by the increasing
proportion of mesenchymal-like cells. Gray-scale boxes indicate the metastatic potential. Other annotations indicate ER status and BC subtype as in Figure 4F. Showing
MULTI-Seq dataset. (I) Violin plots (top) show expression of EMT-associated TFs in expressing cells grouped by EMP cell states (Epi = epithelial-like, Inter = Intermediate
EMP, Mes = mesenchymal-like cells). Bar charts (bottom) show the fraction of expressing cells in gray. Showing MULTI-Seq dataset. (J) Venn diagrams show overlaps of
epithelial (blue, left panel) and mesenchymal markers (red, right panel) for Smart-Seq2, MULTI-Seq and Tan et al. 2014. Highlighted are genes shared between all three sets.
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Supplementary Figure 5
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Figure S5. Intermediate EMP cell markers were correlated with patient outcome.
(A) Scatter plots show the expression of indicated genes ordered by increasing EMP signature expression. Dots show expression for individual cells, lines show smoothed
expression of expressing cells. Bar charts on top show the proportion of positive expressing cells for the three EMP cell states (blue=epithelial-like, purple=intermediate EMP,
red=mesenchymal-like cells). Showing the Smart-Seq2 dataset. (B) Recurrence-free survival of BC patients using the mean expression of the overlapped genes for each
EMP cell state (generated with KM-plotter (35)).
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