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Abstract

Generating and analyzing overlapping peptides through multienzymatic digestion is an efficient 

procedure for de novo protein using from bottom-up mass spectrometry (MS). Despite improved 

instrumentation and software, de novo MS data analysis remains challenging. In recent years, deep 

learning models have represented a performance breakthrough. Incorporating that technology into 

de novo protein sequencing workflows require machine-learning models capable of handling highly 

diverse MS data. In this study, we analyzed the requirements for assembling such generalizable deep 

learning models by systematically varying the composition and size of the training set. We assessed 

the generated models' performances using two test sets composed of peptides originating from the 

multienzyme digestion of samples from various species. The peptide recall values on the test sets 

showed that the deep learning models generated from a collection of highly N- and C-termini diverse 

peptides generalized 76% more over the termini-restricted ones. Moreover, expanding the training 

set's size by adding peptides from the multienzymatic digestion with five proteases of several species 

samples led to a 2-3 fold generalizability gain. Furthermore, we tested the applicability of these 

multienzyme deep learning (MEM) models by fully de novo sequencing the heavy and light monomeric 

chains of five commercial antibodies (mAbs). MEM models extracted over 10000 matching and 

overlapped peptides across six different proteases mAb samples, achieving a 100% sequence coverage 

for 8 of the ten polypeptide chains. We foretell that the MEM models' proven improvements to de 

novo analysis will positively impact several applications, such as analyzing samples of high complexity, 

unknown nature, or the peptidomics field.  
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Introduction

Bottom-up mass spectrometry-based proteomics (MS) is focused on the sensitive identification and 

quantification of peptides and, thereby, proteins in arbitrarily complex samples[1,2]. In the standard 

workflow, peptides are first produced through the proteolysis of proteins with the enzyme trypsin. In 

the following step, the generated peptides are separated by liquid chromatography and measured by 

mass spectrometry in tandem (LC-MS/MS). Finally, the peptide-spectrum matches (PSM), the 

assignment of the peptide sequences to individual MS spectra, are produced using comprehensive 

compendia of reference protein sequences database[3]. 

Some of MS's remarkable applications are in the infection medicine proteomics field, where it is 

employed to characterize the molecular mechanism behind invasive bacterial diseases[4–6], modeling 

host-pathogen interactions[7–13] and investigate systemic proteome changes[14–18]. The use of the 

trypsin protease is justified by its efficiency, stability, and specificity to cleave only at the C-terminal 

of the basic residues, arginine, and lysine[19]. However, its applicability is limited by the amino acid 

composition of the target proteins and the pH of the digestion solution[20,21]. Proteases other than 

trypsin, such as Elastase, Glu-C, Asp-N, Pepsin, ProAlanasa, are employed to achieve different cleavage 

patterns or work in various pH ranges[22–25]. Despite the increasing maturity of bottom-Up MS, 

peptide identification is restricted to the sequences included in a reference database. Consequently, 

it is unattainable to study proteins derived from organisms without sequence or which are extinct, 

environmental samples, and microbiomes. Other examples involve therapeutic monoclonal 

antibodies, i.e., immune system proteins composed of heavy (HC) and light (LC) chains containing 

conserved and variable regions. The latter region is typically not contained in the traditional sequence 

databases for either chain[24,26,27]. To overcome this limitation, de novo MS peptide sequencing is 

intended to extract partial or complete sequence information directly from collected MS spectra. In 

this strategy, the identities and positions of the amino acids are determined by the differences in mass 

of a series of consecutive fragments, for example, fragment ions of type b and y. To this end, programs 

have been created which implement algorithms based on graph theory, Hidden Markov models, linear 

and dynamic programming, such as PEAKS[28], NovoHMM[29], Lutefisk[30], Sherenga[31], 

pNOVO[32,33], and PepNovo[34], among others. As in other fields of proteomics[35], the application 

of deep learning represented a performance breakthrough in de novo MS peptide sequencing, as in 

the case of DeepNovo[27]. Deep learning algorithms attempt to simulate the behavior of the human 

brain—albeit by using many connected layers of neurons, which allows it to learn multiple levels of 

representation of high-dimensional data[35–38]. This key aspect translates into revolutionary 

advances in many research fields, such as image processing[39], speech recognition[40], and natural 

language processing[37]. In the supervised learning flavor, a model learns to make predictions based 
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on labeled training data. Here, features like the amount of data and their diversity directly impact the 

resulting model's generalizability, i.e., their ability to react to new data and make accurate predictions. 

Therefore, generalizability is central to the success of a model and its further implementation[36,38]. 

DeepNovo software outperformed other state-of-the-art methods at the level of amino acids and 

peptides. It combines convolutional and recurrent neural networks and local dynamic programming 

to learn the characteristics of tandem mass spectra, fragment ions, and sequence patterns of peptides. 

A later version (DeepNovoV2) added an order-invariant network architecture (T-Net) and a sinusoidal 

m/z positional embedding[41], which exceeds its predecessor by at least 13% at the peptide level[42]. 

It has been reported that the generation and analysis of overlapping peptides through multi enzymatic 

digestion is an efficient procedure for tandem MS de novo protein sequencing[24,25,33,43]. This 

approach can even resolve some of the challenges encountered in conventional strategies, which 

depend on the cloning/sequencing of coding mRNAs[43–45]. Given the mentioned facts, integrating 

DeepNovo deep learning architecture to handle the multi enzymatic MS samples can be game-

changing for the de novo protein sequencing field. In order to accomplish this, it requires generalized 

models for successfully decoding the peptide sequences from MS samples treated with a wide variety 

of proteases. Previous DeepNovo studies reported models trained exclusively from a compendium of 

tryptic peptides. i.e., trypsin-SEM models[27,42]. This fact leaves the door open to questions related 

to the generalizability of the trypsin SEM models. Firstly, it is uncertain whether these models have 

extended applicability to other MS datasets, i.e., having high accuracy on samples generated using 

proteases with different cleavages specificities to the one employed to produce the model's training 

set. In like matter, how the training set's composition impacts the resulting model's generalizability. 

Similarly, the effects of characteristics of the target spectra that facilitate peptide sequencing remain 

unexplored.

We studied the requirements for building generic DeepNovo models for the de novo MS sequencing 

task in the present work. For that purpose, we analyzed how the peptide composition and size of the 

training set affect the resulting model's generalizability. The efficiency of these models was assessed 

by calculating the peptide recall on two highly sequence diverse test sets. Data showed reiteratively 

that using a collection of peptides with a wide variety of N- and C-termini amino acids led to 76% more 

generalizable models than the termini-restricted ones. Furthermore, DeepNovo models kept 

improving in the de novo peptide MS sequencing task as we continued extending the training set data 

with the multienzyme digestion of various species samples. We further proved the relevance of these 

multienzyme deep learning (MEM) models by de novo sequencing the heavy and light monomeric 

chains of five commercial monoclonal antibodies (mAbs). MEM models fully sequenced 8 of 10 target 
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proteins, extracting over 10000 confirming and overlapping peptides from mAb MS samples digested 

with six different proteases. We consider that MEM models, combined with other mass spectrometric 

techniques, will help de novo analyze MS samples of higher complexity, such as the mixture of mAbs. 

 

Figure 1. We started with three sample cohorts; Detroit 562 cells, 5 commercially available antibodies, 
and a large collection of samples from different species. The samples were aliquoted and digested 
using five enzymes, measured using LC-MS/MS, and analyzed using traditional database searches with 
multiple search engines. All data were also analyzed using the published DeepNovo deep learning 
model. Several DeepNovo models were created, see text for details, and evaluated in three ways. The 
internal validation evaluated the model performance on data generated with the same enzyme(s) as 
the model was trained with. The external validation evaluated the model performance using data 
generated with enzyme(s) different from the model creation data. We finally assessed each model's 
performance in de novo sequencing five full-length antibodies. 

Results and discussions

To integrate DeepNovo into the de novo protein sequencing pipeline, we need deep learning models 

capable of performing de novo sequencing in MS spectra of samples digested with numerous 

proteases. Therefore, it is first mandatory to determine the basis for building such generic models. For 

that purpose, we explored the effect of the training set composition on the resulting model 
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generalizability, following the workflow in Figure 1. We initially created five peptide datasets by 

digesting Detroit 562 cell line samples with five proteases: trypsin, chymotrypsin, elastase, gluc, and 

pepsin (see Material and Methods section for LC-MS/MS and spectra annotation details). In each 

dataset, 21492 annotated spectra were randomly selected and split into training(90%), validation(5%), 

and test (5%) sets. We then systematically built multiple models from the training sets data. In order 

to assess all models' generalizability, it was essential to evaluate their performance on a dataset 

composed of highly variable peptides in terms of amino acid composition and peptide length 

distribution. For that reason, we constructed the Detroit test set by merging all five test sets. Here, 

we used the peptide recall as a quantitative metric for the generalizability assessment. In addition, 

given that the protease employed during the sample preparation has a direct effect on the resulting 

peptides collection termini variability, we calculated the number of unique trimers on the N-terminal 

(Tn) and C-terminal (Tc) for all the generated models' training sets in this study. Tn and Tc are 

quantitative metrics for the extent of the training sets' variability at each peptide termini. Higher 

values of Tn and Tc represent higher variability in the peptide dataset at N and C-termini, respectively. 

We also introduced the diversity factor (DF), defined as log(Tn/Tc), as a measure of the variability 

balance between the training set's N- and C-terminus. DF values near zero represent models with a 

better balance between the number of trimers at each terminal. Similarly, positive and negative DF 

values indicate a larger proportion of Tn and Tc, respectively. 
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Figure 2. Single Enzyme models (SEM models) performance on Detroit test set: A) Tn and Tc values for 
SEM training sets; B) SEM models' generalizability vs. training set' diversity factor C) SEM models 
peptide performance on the individual enzyme-specific datasets composing the Detroit test set. The 
color scheme for both models and samples is at the bottom.

Nonspecific enzymes training datasets yield more generalized models

We built the first round of models from the five individual enzyme datasets and identified them as 

Single Enzyme Models (SEM). Figure 2 displays the characteristics and performance of the SEM model 

on the Detroit test set. Two findings are worth mentioning regarding SEM models: 1) Using less specific 

proteases for the peptide generation leads to more N/C termini balanced training sets (Figure 2A). In 

contrast to pepsin, trypsin protease has a high specific cleave pattern that generates a training set 

with high Tn and low Tc values, as the peptides end in either arginine or lysine amino acids. This 

observation is supported by the DF values for SEM models, i.e., pepsin (0.52) < chymotrypsin (0.76) < 

elastase (0.79) < Glu-C (0.88) < trypsin (1.50); 2) Models' generalizability correlates inversely with DF 

values (Figure 2B). Data shows that SEM models built with less specific enzymes, such as pepsin, 

chymotrypsin, and elastase, outperform 14 - 46% of those generated from using proteases with more 

specific cleave patterns, like gluc and trypsin, on nonspecific N/C termini peptides datasets. These 

differences in SEM models' generalizability are explained when considering their performance on the 

Detroit set's components (Figure 2C). We found that the most contributing factor was related to the 

models' performance on inter-enzyme datasets, e.g., where the proteases for generating the training 

and test sets differed. For example, the pepsin-SEM model performed 46 - 86% better than the trypsin-

SEM model on chymotrypsin, elastase, and gluc peptide datasets. In addition, all SEM models 

performed best when there was a match between the protease employed to generate the SEM 

model's training set and the Detroit set's portion. In these cases, peptide recall ranged from 0.46 to 

0.69. These results are comparable to previous DeepNovo works where only trypsin was used[27,42]. 

Here, less specific SEM models outperformed 6 - 48% of the highly cleave pattern-specific ones. These 

results suggest that SEM models generated from the digestion with trypsin and gluc are more biased 

at the spectra decoding stage, especially for purposing the C-terminus peptide amino acids.

Inspired by the results of the first round, we then decided to test if it was possible to modulate models' 

generalizability as a function of their training set's diversity factor. Here, the number of spectra 

selected for the construction of each model was equal to those of SEM models for a fair comparison. 

For that purpose, we built new models distributed in two categories: 11 monoterminal (MoTM) and 

12 multiterminal (MuTM) models. In MoTM models, all training set's peptides share a specific amino 

acid at one termini position; for example, in the ThrN and PheC MoTM models, all peptides have a Thr 
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or Phe amino acid at the N- or C-terminal, respectively. Contrary, MuTM models prioritized maximum 

variability at both terminals by selecting peptides from all SEM models' training sets. Figure 3 displays 

MoTM and MuTM model characteristics and performance on the Detroit test set.

Figure 3. Modulating models' generalizability by varying their training sets' termini variability. 
Comparing Monoterminal (MoTM) and Multiterminal (MutM) models' characteristics and 
performances on the Detroit test set: A. Training sets N/C-termini variability for MoTM and MuTM 
models; B. Models' generalizability as a function of their termini diversity factor; C. MoTM and MuTM 
models peptide recall on Detroit test set components. We included SEM models' Tn, Tc, and diversity 
factor parameters as a quantitative reference. Color and shape schemes for models and sample types 
are at the bottom.
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Considering SEM models as reference, three new groups are distinguishable regarding Tn and Tc 

values distributions (Figure 3A). Two groups belong to MoTM models, which have low Tn and Tc values 

for the N-termini and C-termini restricted MoTM models, respectively. The third group belongs to the 

MuTM models, containing high values for both Tn and Tc parameters. Figure 3B shows that MuTM 

models are more termini-balanced and generalized than all MoTM ones. According to the mean values 

of the peptide recall on the Detroit test set, MuTM models outperform 76% of MoTM models. 

Moreover, half of the MuTM models generalize better than the pepsin-SEM model, while the other 

half of the models were better than the chymotrypsin-SEM one. In contrast, 10 of 11 MoTM-biased 

models were worst than the trypsin-SEM model at generalizing. On the other hand, the models' 

performance on the Detroit test set's components shows how MuTM models cluster together as they 

exhibited more uniform peptide recall values across all sample types (Figure 3C). On the contrary, the 

MoTM models' performance depended on the cleave rules' overlap between the sample and the 

model's training set. For example, the ArgC-MoTM model performed best on the trypsin sample. 

However, peptide recall values dropped 57 - 90% in the remaining sample types. Other similar cases 

involved the GluC and PheC-MoTM models. These observations suggest that, under the same amount 

of training data, it is possible to design more generalizable models by maximizing and balancing the 

training set's Tn and Tc values. 

Large multienzyme models perform best

Since all SEM models perform the best on similar data types as the model's training set, we then 

decided to build 26 new models by mixing all possible combinations of the five Single Enzyme models' 

training sets, e.g., multienzyme models (MEM) from the combination of 2 (n=10), 3 (n=10), 4 (n=5), 

and 5 (n=1) SEM-datasets. Here, the MEM model composed for all five Detroit 562 peptide datasets 

was called the Kilo MEM. Data shows that appending one or more different peptide datasets to any 

existing SEM dataset yields growth in Tn, Tc, and generalizability parameters for the resulting MEM 

model (Figure 4). As expected, the increase in Tn and Tc values was more noticeable when the merged 

datasets did not share the same cleave rules as in chymotrypsin - gluc and trypsin - elastase - gluc 

dataset combinations (Figure 4A). Furthermore, generalizability and diversity factor values suggest 

that MEM models generalize better and are more termini-balanced as we increase the number of 

peptide datasets (Figure 4B). An illustrative example of MEM models' rising performance is shown 

in Figure 4C, where we displayed the path to generating the Kilo MEM from the pepsin-SEM model. 

Two observations are worth mentioning: 1) new datasets contributed positively to the resulting MEM 

model's generalization, and 2) the formed MEM model always performed better than its antecessors 
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models. The Kilo MEM model not only doubles the termini peptide dataset variability but also 

produced an increase of 38% in diversity factors concerning all SEM models. As a result, the Kilo MEM 

model outperforms 1.8 - 2.4 times the SEM models. 

Figure 4. Characteristics and performance of multienzyme (MEM) models: A. Training sets' Tn and Tc 
values; B.  MEM models' generalizability vs. diversity factor; C.  Sequential building of Kilo MEM model 
from all five SEM datasets. The size of circles is proportional to their generalizability values on the 
Detroit test set. The color scheme at the bottom reflects the models' characteristics variation with the 
number of combined datasets. SEM model data (displayed in gray) were used as reference.  

The results of the SEM and MEM models demonstrated that features such as the training set's size 

and peptide sequence variability significantly impact the resulting model's generalizability. At this 

point, we hypothesized that expanding sequence variability by creating a training set that includes 

peptides across different species will lead to a more generic model than the Kilo MEM model. To prove 

it, we generated an external Giga dataset by digesting various species samples, such as Saccharomyces 

cerevisiae, Escherichia Coli, Equus caballus, Streptococcus pyogenes, and Mus musculus with trypsin, 

chymotrypsin, elastase, and gluc proteases. We followed the same protocol for sample injection, MS 
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detection, and database search (See Material and methods). After spectra annotation, the Giga 

dataset was ten times larger than the Detroit 562 dataset. We then trained and applied the Giga MEM 

model to the Detroit test set and compared the results with the Kilo MEM model. Data shows that the 

Giga MEM model generalized 29.4% better than the Kilo MEM model, outperforming 24 - 41% in all 

Detroit test set's sample types (Figure 5). In the same way, the Giga MEM model generalizes 2.1 - 3.0 

times better than the SEM models. 

Figure 5. Comparing the performance of the Giga and Kilo MEM models across the Detroit test set's 
different sample type components.

The Giga dataset was also used as an external test set. Specifically, we tested the generalizability of 

the 5 SEM and 26 MEM models. Interestingly, generalizability values on the Giga test set supported 

our previous findings on the best conditions to build more generic models (Supplementary 

Information A). Here, it is crucial to mention the pepsin-SEM model results; In the Detroit test set 

case, the most considerable portion of de novo sequenced spectra corresponded to peptides 

generated with the same protease as the SEM model's training set. However, pepsin was not part of 

the multienzyme protocol for generating the Giga external peptide test set. Despite that, the pepsin-

SEM performed best among all SEM models. Overall, generalizability results on the Detroit and Giga 

test sets suggest that, like other deep learning architectures, DeepNovo kept improving in the de 

novo peptide MS sequencing task as we fed the model with extensive and highly diverse peptide MS 

data.

Fragment ions distribution impact MS de novo peptide sequencing

After establishing the criteria for building generalizable models, we further explored how the peptide 

composition impacts the ability to de novo sequence its spectrum correctly. In this respect, we studied 

the Kilo MEM model results on the Giga test set (Figure 6). Initially, we evaluated the effect of the 

peptide length distribution on the overall deep learning model's performance by tracking the peptide 

recall as we varied the maximum peptide length (Figure 6A). We observed that performance 
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decreased as we included longer peptides in the test set. Data shows that the probability of de 

novo MS sequencing correctly 6-residue peptides was 86.1% and fell quickly to 40% when considering 

peptides of up to 14 residues.

Moreover, this performance decay differed for all components of the Giga set, suggesting that the 

identity of the peptides also impacts their chance of being MS sequenced. To explain these differences 

across the four datasets, we calculated the peptide length distribution (Figure 6B). Data shows that 

75% of data in the elastase dataset are peptides of length 12 or shorter, explaining why it was more 

accessible to de novo MS sequence elastase data over chymotrypsin and gluc data. For the latter, 75% 

of the data were peptides of length 13 or longer. 

Figure 6. Kilo MEM model de novo sequencing results on the Giga external test set: A. peptide recall 
as a function of the maximum peptide length in the test set; B.  peptide length distribution for all the 
Giga test set's sample types; C. peptide recall as a function of the minimum singly-charged b-y ion 
recall grid values; D. y-ion recall and E. b-ion recall distributions for the trypsin, chymotrypsin, 
elastase, and gluc sample types spectra. The color scheme for the sample types is at the bottom.

Since the peptide length distributions could not explain performance differences related to the trypsin 

sample, we further calculated singly-charged b- and y-ion recall for all peptides spectra composing the 

Giga test set, e.g., the proportion of the fragment ions found experimentally over the total expected 

ones theoretically. Here the ion recall is a quantitative metric of the ability of a particular peptide to 

produce b/y-ions under specific experimental conditions[24,25,46,47]. For the fragment ions 
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extraction, the m/z tolerance was 15ppm. We also calculated the peptide recall as a function of the 

minimum values for the b/y-ion recall pairs. 

The b/y-ions recall grid shows that the probability of de novo MS sequence correctly a peptide 

increase with its capacity of producing either b- or y-ions (Figure 6C). Data shows that the peptide 

recall was higher than 70% when peptides produced at least 80% and 60% of the expected b- and/or 

y-ion fragments. These results suggest that the de novo MS sequencing performance on a specific 

sample type is bound to its b/y ion recall distributions. Figure 6D shows that the y-ion recall 

distribution order fits the peptide recall behavior for all sample types. It is worth mentioning that the 

tryptic peptides had the highest proportion of the expected singly-charged y-ions compared to the 

other sample types, explaining its remarkable performance across a wide range of peptide lengths 

(Figure 6A), e.g., 55% of the annotated spectra had at least 60% of the y-ions expected. For these 

peptides, y-ion fragments bear a charged residue, like arginine or lysine, which are more abundant 

and produce more intense peaks under the HCD fragmentation method [48,49]. On the contrary, the 

peptides from the digestion with gluc had a low proportion of y- and b-ions (Figure 6E). Furthermore, 

elastase b/y-ion recall distributions are consistent with a high proportion of short peptides. 

MEM models for full-length de novo sequencing of antibodies

Once we established the requirements for building generalizable models and how the quality of the 

input spectra impacts the subsequent de novo MS peptide sequencing process, we tested the 

efficiency of using the MEM models in the de novo protein sequencing pipeline. For this effort, we 

selected a challenging and biological interest system, such as the complete sequencing of monoclonal 

antibodies (mAbs). We aimed to fully de novo MS sequence the heavy (HC) and light (LH) chains of five 

commercial mAbs: Erbitux, Herceptin, Prolia, Silulite, and Xolair. We digested each mAb sample with 

six proteases: trypsin, chymotrypsin, elastase, gluc, pepsin, and aspn. It is worth mentioning that the 

latter enzyme was not part of the models' generation protocol. On the other hand, we created the 

Giga+ MEM model by combining the training sets of the Kilo and Giga MEM models. We considered 

eight models (5 SEM + 3 MEM models) for comparison purposes. For analyzing results, we initially 

calculated the relative coverage for the entire variables space, i.e., models x samples x chains matrix 

(Figure 7A). This way, we got an insight into the model performance across all sample types and which 

enzymes facilitate the de novo sequencing of the HC and LC subunits. In addition, we examined the 

length distribution of the sequence matching peptides for all sample types (Figure 7B). These plots 

provide information about the decoding power of the models. It also shows the capacity of the 

different proteases to produce easily detectable peptides from the de novo MS sequencing 

perspective.
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Figure 7. Complete de novo sequencing of commercial monoclonal antibodies by deep learning 
models: A) coverage of all the light (top) and heavy (bottom) chains for all types of samples. B) length 
distribution for all matching peptides extracted from each type of sample C) 𝑪𝑺 values for the variable 
and constant domains of monoclonal antibodies.

Regarding the sample types, the data shows that working with the chymotrypsin and elastase 

proteases had many benefits related to good protein coverage (Figure 7A) and the extraction of a high 

amount of matching peptides (Figure 7B). Data shows that digesting the samples with these proteases 

yields better individual protein coverage, wherein in 75% of cases, the sequence relative coverage was 

at least 0.80 and 0.75 for chymotrypsin and elastase, respectively. Additionally, the total amount of 

peptides extracted was 2 to 8 times greater than the rest of the proteases (supporting information 

B). It is worth noting that these were the only enzymes where, for lengths between 6 and 9, all of the 

considered deep learning models identified more than 100 peptides. These observations suggest that 

working with the chymotrypsin and elastase proteases leads to high amounts of readily de 

novo MS sequenceable peptides. As expected, the gluc and aspn digested samples got the lowest 

matching peptide extraction values, yielding the worst individual protein coverages. These proteases 

produced long peptides with low b- and y-ion recalls, making them more difficult to de 

novo sequence. 

When comparing the performance of the deep learning models, the Giga and Giga+ MEM models were 

evident superior after considering the values of the protein coverages and the amount of matching 

extracted peptides parameters. For the Giga+ MEM model, the median value of protein coverage was 

0.96 after considering all mAbs and sample types. Moreover, it extracted 10367 unique and confirming 

peptides, an amount 2 – 2.8 times greater than the Kilo MEM and all SEM models (supporting 

information B). Interestingly, and based on the same parameters, the pepsin SEM model was among 

the five SEM models. These findings supported our previous statements about the necessary criteria 

for building generalizable models. It is worth noting that the Giga+ MEM model sequenced all light 

chains and 3 of 5 mAbs heavy subunits for the combined sample results, i.e., Herceptin, Silulite, and 

Xolair mAbs. The remaining proteins had coverage of at least 0.97. It is essential to consider that, in 

mAb, the HC subunit can bear glycans in their constant region [50,51]. In some cases, such as for 

Erbitux, glycans are also found in the HC variable region [52].

 

As the overlapping of peptides is necessary for the assembly of protein sequences, we also decided to 

go deeper into the analysis of MAbs de novo results and introduce the confident positional score (𝐶𝑆

). For a residue in the position 𝑖 of the protein sequence, is defined as 𝐶𝑖 = 𝑙𝑜𝑔2(𝑓𝑖 + 1). Here 𝑓𝒊 is the 
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positional frequency for position 𝑖, i.e., the number of de novo sequenced matching peptides for 

position 𝑖 in the protein sequence (Figure 7C). Higher consecutive 𝐶𝑆 values represent regions with 

more evidence in the de novo protein sequencing process, being especially important for MAbs HC 

and LC variable regions, for which the sequences are unknown. In contrast, sequence regions with no 

detected peptides have a zero positional frequency, ergo, a zero CS value. After combing all sample 

types, the Giga+ MEM model got a positional frequency greater than ten for 90.7% of the amino acids 

comprising the study mAbs. Moreover, this parameter value increased to 50 or more for 45.7% of said 

amino acids. Similarly, there were no confirming peptides for only 0.03% of residues. Furthermore, 

For the mAbs variable region, the median positional frequency was 45 and 51 for the HC and LC 

subunits, respectively (Supplementary Information C). For the five HC subunits, data show that CS 

values decreased up to 30% in the glycans' surrounding regions, likely because of a steric effect as 

these bulky species prevent efficient digestion.  In the case of the Erbitux mAb, the regions with zero 

CS values matched the glycans location for the HC constant and variable domains (Figure 8), 

suggesting that removing the glycans should be incorporated in the sample preparation to guarantee 

the complete MS sequencing of mAbs. Given the coverage and positional frequency results, the 

findings discussed here set a precedent for using multienzymatic deep learning models as an 

alternative for sequencing proteins from their multienzymatic digestion.  

Figure 8. 3D segmented worm representation of the mAbs with the highest (Herceptin) and lowest 
(Erbitux) de novo MS sequencing CS values. The thickness and color of the protein chains are 
proportional to their CS values.
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In future studies, it may be interesting to explore using the multienzyme de novo sequencing protocol 

in conjunction with other complementary MS techniques like Top-down to sequence mixtures of 

mAbs. 

Conclusions

We proposed the use of MEM models to improve the de novo sequencing of peptides and proteins 

from DDA-MS data. Toward that aim, the effects of the properties of the training and test sets on the 

de novo sequencing process were explored. On the one hand, the data suggest that variability at both 

terminals, among the peptides which make up the training set, affects eventual generalizability. 

Consequently, the use of multiple proteases is recommended to generate more robust models. In the 

same vein, since DeepNovoV2 learns characteristics of spectra and sequences, an increase in the 

number of data points also improves the resultant model performance. These claims are supported 

by the peptide recall results for the test sets and the number of peptides extracted from the samples 

produced by multienzymatic digestion of commercial antibodies. On the other hand, it was discovered 

that the models' de novo sequencing capacity is limited by the identity of the peptides and 

experimental conditions, which have direct consequences on their ability to produce ionic fragments 

of interest. This result explains why peptide recall fell with an increase in length of peptides, as well 

as the differences found among the samples from trypsin, chymotrypsin, elastase, and gluc. Finally, 

the findings described here will assist in other areas of peptidomics, the creation of Data-Independent-

Acquisition libraries, and the sequencing of complex mixtures of monoclonal antibodies.

Material and methods

Sample preparation for mass spectrometry 

Commercial antibodies

For sample preparation for mass spectrometry of commercial antibodies, 10 µg of each (Xolair, 

Novartis; Herceptin, Roche; SiLuLite, Sigma MSQC4 Universal Antibody Standard; Prolia, Amgen; and 

Erbitux, Merck) was denatured with 8M urea - 100 mM ammonium bicarbonate, the disulphide bonds 

reduced with 5 mM Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) for 60 min at 37C, 800 rpm, 

and alkylated with 10 mM iodoacetamide for 30 min in the dark at room temperature. The samples 

were diluted to a urea concentration <1.5 M with 100 mM ammonium bicarbonate. The antibodies 

were digested separately with 1 µg of trypsin, Promega; chymotrypsin, Promega; LysC/trypsin, 

Promega; elastase, Promega; GluC, Promega; or AspN, Promega for 18h at 37C, 800 rpm. The 

digested samples were acidified with 10% formic acid to a pH of 3.0. The peptides were purified and 
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desalted using SOLAµ reverse phase extraction plates (Thermo Scientific) according to the 

manufacturer's instructions. Peptides were dried in a speedvac and reconstituted in 2% acetonitrile, 

0.2% formic acid prior to mass spectrometric analyses.

Detroit 562 cell line 

Briefly, ca.5 million cultured mammalian epithelial cells (Detroit 562 cell line) were kindly provided by 

Sounak Chowdhury. Suspension cells were first centrifuged at 5000g rcf, 4℃ for 10 mins, followed by 

aspiration of supernatant and one time cold 1X PBS wash. Remained cell pellets were then added with 

1 ml lysis working solution, composed of 1X RIPA lysis and extraction buffer, ThermoFisher, and 1X 

protease/phosphatase inhibitor cocktail, ThermoFisher. After 15 min incubation on ice, the cell lysates 

were precipitated by trichloroacetic acid (TCA), washed with 3X acetone, and dried in a speedvac. 

Completely dried protein extracts were reconstituted in 100 mM ammonium bicarbonate buffer and 

measured for protein concentration by BCA assays, ThermoFisher. 10 ug of cell lysate proteins were 

aliquoted for each reaction, 10 experimental replicates for each enzyme, 5 enzymes in total. Sample 

preparation of reduction, alkylation, enzyme digestion, acidification was described as above. 

Specifically, C18 spin columns were used for purification and desalting after the digestion. Except for 

the pepsin-digested group, LysC/Trypsin was introduced for a 1 hr pre-digestion prior to a 1 hr pepsin 

digestion. 

Liquid chromatography tandem mass spectrometry 

The peptides of the digested commercial antibodies were analyzed on Q Exactive HF-X mass 

spectrometer (Thermo Scientific) connected to an EASY-nLC 1200 ultra-high-performance liquid 

chromatography system (Thermo Scientific). The peptides were loaded onto an Acclaim PepMap 100 

(75µm x 2 cm) C18 (3 µm, 100 Å) pre-column and separated on an EASY-Spray column (Thermo 

Scientific; ID 75µm x 50 cm, column temperature 45°C) operated at a constant pressure of 800 bar. A 

linear gradient from 3 to 38% of 80% acetonitrile in aqueous 0.1% formic acid was run for 120 min at 

a flow rate of 350 nl min-1. One full MS scan (resolution 120 000 @ 200 m/z; mass range 350 – 1650 

m/z) was followed by MS/MS scans (resolution 15000 @ 200 m/z) of the 15 most abundant ion signals. 

The isolation width window for the precursor ions was 1.3 m/z, they were fragmented using higher-

energy collisional-induced dissociation (HCD) at a normalized collision energy of 28. Charge state 

screening was enabled, and precursor ions with unknown charge states and a charge state of 1, and 

over 6 were rejected. Data was additionally collected for non-tryptic digestions as above, but including 

peptides with a charge state of 1. The dynamic exclusion window was 10 s. The automatic gain control 
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was set to 3e6 and 1e5 for MS and MS/MS with ion accumulation times of 45 ms and 30 ms, 

respectively. 

Computational analyses

Spectra annotation

A snakemake[53] was created for the DDA search. All DDA raw files were initially converted to Mascot 

generic format (MGF) by ThermoRawFileParser software (Hulstaert et al., 2020). Ursgal 

package[54,55] was used as an interface for searching the spectra against data's Uniprot reference 

proteome using five search engines, namely MSGFPlus[56] (version 2019.07.03), MS Amanda[57] 

(version 2.0.0.17442), Comet[58–60] (version 2019.01.rev5), X! Tandem[60] (version alanine), and 

OMSSA[61] (version 2.1.9). Optional Met Oxidation (UniMod: 35), along with the fixed Cys 

carbamidomethylation (UniMod: 4) modifications, were considered in this study. Individual engine 

results were validated by percolator[62] (version 3.4.0), while the Combine FDR algorithm was 

implemented for combining results from all search engines[63]. Moreover, a threshold of 1% peptide 

FDR was set for decisive candidate inclusion.

De novo model generation and evaluation

The process of creating a model involves 3 steps, namely: 1) establishing the training, validation, and 

test sets; 2) creation of the input files for DeepNovoV2[42]; and 3) model training. For each one of the 

5 DDA search results over the DetroitDetroit 562 data set digested with one specific protease, a total 

of 21492 annotated scans were selected. These were then randomly divided into training, validation, 

and test sets in proportions of 90%, 5%, and 5%, respectively. For the second step, a snakemake 

workflow was created for the extraction of the selected spectra and generation of the features and 

MGF files. Finally, model training was done in 20 epochs[27,42]. Maximum peptide length and mass 

were adjusted to 4000 Da and 30, respectively. These models were called SEM models.

The evaluation of the initial models was accomplished through full cross-validation. This was done 

with the aim of obtaining a perspective on the performance of each test set, as well as overall. The 

same modifications employed in database search were considered for all of the de novo searches in 

this research. Additionally, the maximum deviation of the precursor mass was adjusted to 15ppm. 

Peptide recall was used as a measure of the quality of the models.  

Structural modeling
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The Fc and Fab domains of each antibody were de-novo modeled separately by AlphaFold2[64,65], 

considering MMseqs2[66] to generate the multiple sequence alignment and homo-oligomer state of 

1:1. For each selected model, the sidechains and the disulfide bridges were adjusted and relaxed using 

Rosetta relax protocol[67]. The loops in the hinge region were then re-modeled and characterized 

using DaReUS-Loop web server[68]. Finally, the full-length structure was relaxed, and all disulfide 

bridges (specifically in the hinge region) were adjusted using the Rosetta relax protocol. Visualization 

of the monoclonal antibodies was done through USCF Chimera software[69].
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