

1 **Brief synaptic inhibition persistently interrupts firing of fast-spiking interneurons**

2  
3 Simon Chamberland<sup>1,\*</sup>, Erica R. Nebet<sup>1</sup>, Manuel Valero<sup>1</sup>, Monica Hanani<sup>1</sup>, Robert Egger<sup>2,3</sup>,  
4 Samantha B. Larsen<sup>1</sup>, Katherine W. Eyring<sup>1</sup>, György Buzsáki<sup>1,3,4</sup>, Richard W. Tsien<sup>1,3,\*</sup>

5  
6 <sup>1</sup>NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone  
7 Medical Center, New York, NY 10016, USA

8 <sup>2</sup>NYU Neuroscience Institute and Department of Otolaryngology, NYU Langone Medical Center,  
9 New York, NY 10016, USA

10 <sup>3</sup>Center for Neural Science, New York University, New York, NY, 10003, USA

11 <sup>4</sup>Department of Neurology, Langone Medical Center, New York University, New York, NY, USA

12 **\*Correspondence:** simon.chamberland@nyulangone.org (S.C.), richard.tsien@nyulangone.org  
13 (R.W.T.)

14  
15 **Running title:** Firing interruption of fast-spiking interneurons

16  
17 **Keywords:** inhibition, hippocampus, fast-spiking interneurons, persistent activity

18  
19 **Acknowledgements:** We thank Dr. Michael A. Long for valuable comments throughout the  
20 execution of this project, Dr. Guoling Tian for technical support and maintenance of animal  
21 colonies, and all Tsien lab members for comments and discussions. SC was supported by a  
22 senior biomedical postdoctoral fellowship from the Charles H. Revson Foundation, a  
23 postdoctoral fellowship from the Fonds de Recherche en Santé Québec and a K99/R00  
24 Pathway to Independence Award from NIMH (1K99MH126157-01). MV was supported by  
25 postdoctoral fellowships from the European Molecular Biology Organization (EMBO ALTF 1161-  
26 2017) and Human Frontiers Science Program (LT0000717/2018). RE was supported by a  
27 Research Fellowship from the Deutsche Forschungsgemeinschaft (EG 401/1-1). SBL was  
28 supported by postdoctoral fellowships from the NIA (1T32AG052909-01A1) and from the  
29 Alzheimer's Association (AARF-21-852397). Work in GB's lab was supported by the following  
30 grants: NIH MH107396, NS 090583, NSF PIRE (grant no. 1545858), U19 NS107616. RWT  
31 received grants from the NINDS (1U19NS107616-02), NIDA (R01 DA040484-04) and NIMH  
32 (R01 MH071739-15).

33  
34 **Author contribution:** SC and RWT conceived the project. SC performed *in vitro*  
35 electrophysiological experiments and analyzed the data. MV and GB designed, performed, and  
36 analyzed *in vivo* recordings. ERN and MH analyzed neuronal anatomy. MH and SBL performed  
37 immunohistochemistry experiments. KE performed pertussis toxin injections. RE and SC  
38 designed the single-compartment model, and SC ran simulations. SC and RWT wrote the  
39 manuscript with inputs from all authors.

40  
41 **Code availability.** All custom code for analysis of *in vivo* data is freely available on the Buzsáki  
42 Laboratory repository (<https://github.com/buzsakilab/buzcode>) and MV  
43 repository (<https://github.com/valegarman/HippoCookBook>).

44  
45 **Data availability.** The data from this study is available on request from SC or RWT. The *in vivo*  
46 electrophysiological data used in this study is publicly available on the Buzsaki Lab Databank,  
47 <https://buzsakilab.com/wp/public-data/>.

1    **Summary**

2    Neurons perform input-output operations that integrate synaptic inputs with intrinsic electrical  
3    properties, operations generally constrained by the brevity of synaptic events. Here we report  
4    that sustained firing of CA1 hippocampal fast-spiking parvalbumin-expressing interneurons (PV-  
5    INs) can be persistently interrupted for up to several hundred milliseconds following brief  
6    GABA<sub>A</sub>R-mediated inhibition *in vitro* and *in vivo*. A single presynaptic neuron could interrupt PV-  
7    INs firing, occasionally with a single action potential (AP), and reliably with AP bursts.  
8    Experiments and computational modeling revealed that the persistent interruption of firing  
9    maintains neurons in a depolarized, quiescent state through a cell-autonomous mechanism.  
10   Strikingly, interrupted PV-INs are highly responsive to Schaffer collateral inputs. The persistent  
11   interruption of firing provides a disinhibitory circuit mechanism favoring spike generation in CA1  
12   pyramidal cells. Overall, our results demonstrate that neuronal silencing can far outlast brief  
13   synaptic inhibition owing to well-tuned interplay between neurotransmitter release and  
14   postsynaptic membrane dynamics, a phenomenon impacting microcircuit function.

1 **Introduction**

2 Synaptic excitation and inhibition drive or prevent action potential (AP) firing to gate information  
3 transfer in neuronal circuits. In cortical networks, synaptic inhibition is mediated by functionally  
4 heterogeneous GABAergic interneurons (INs) (Freund and Buzsaki, 1996; Klausberger and  
5 Somogyi, 2008; Pelkey et al., 2017). Among these, fast-spiking parvalbumin (PV)-expressing  
6 INs (PV-INs) are recognized as powerful modulators of neuronal network activity (Cardin et al.,  
7 2009; Sohal et al., 2009; Stark et al., 2013) and behavior (Donato et al., 2013; Kuhlman et al.,  
8 2013; McKenna et al., 2020). Although PV-INs represent a minority of neurons in the  
9 hippocampus, the synaptic inhibition they provide contributes to network oscillations such as  
10 those associated with memory formation (Royer et al., 2012; Amilhon et al., 2015). This ability is  
11 thought to be supported by their extensive axonal arborization (Sik et al., 1995), the powerful  
12 inhibitory connections they form on their postsynaptic targets (Bartos et al., 2002; Hefft and  
13 Jonas, 2005), and their intrinsic biophysical properties. In response to depolarization, PV-INs  
14 generate non-accommodating bouts of high-frequency APs (Kawaguchi et al., 1987), a  
15 phenotype enabled by the combined activity of  $Na_v1.1$ ,  $Na_v1.6$ , and  $K_v3$ -family channels which  
16 rapidly depolarize and repolarize the membrane (Martina et al., 1998; Rudy and McBain, 2001;  
17 Lorincz and Nusser, 2008; Hu and Jonas, 2014). *In vivo*, this rapid AP discharge is phase-  
18 locked to ongoing network activity with bouts of firing interspersed with periods of relative  
19 silence (Klausberger et al., 2003; Klausberger et al., 2004; Klausberger and Somogyi, 2008).  
20 Therefore, PV-INs appear integral to the coordination of neuronal network activity.

21 Synaptic inhibition arising from other INs has been demonstrated as a powerful factor  
22 constraining the activity of GABAergic INs (Cobb et al., 1997; Gulyas et al., 1999; Chamberland  
23 and Topolnik, 2012; Tyan et al., 2014). This action of inhibitory neurons onto other GABAergic  
24 neurons leads to a net disinhibitory effect in the neuronal network, enabling the passage,  
25 processing, and storage of information. This idea is well-exemplified by findings showing that  
26 inhibition of PV-INs is involved in associative fear learning (Letzkus et al., 2011; Wolff et al.,  
27 2014). At the network level, it has long been suggested that interconnected populations of INs  
28 may entrain ensembles of pyramidal cells (Buzsaki et al., 1983; Lytton and Sejnowski, 1991).  
29 Reciprocal connectivity among PV-INs contributes to the emergence of network activity such as  
30 gamma oscillations (Wang and Buzsaki, 1996; Bartos et al., 2002; Bartos et al., 2007). In the  
31 CA1 hippocampus, subpopulations of vasoactive intestinal peptide (VIP)-expressing INs have  
32 long been recognized as disinhibitory neurons and somatostatin-expressing (SST-INs) are

1 known to synapse onto PV-INs (Acsady et al., 1996; Lovett-Barron et al., 2012). While key in  
2 understanding circuit function, the inhibitory synaptic wiring diagram to PV-INs is incomplete.  
3 Synaptic inhibition operates by either hyperpolarizing the membrane potential or shunting  
4 incoming excitatory inputs. The release properties of the presynaptic neuron and the  
5 postsynaptic receptor subtypes constrain the duration of inhibition. Considering that PV-INs are  
6 assembled in densely interconnected inhibitory networks (Sik et al., 1995; Gulyas et al., 1999;  
7 Acsady et al., 2000; Bartos et al., 2001) and have a resting membrane potential relatively  
8 depolarized compared to other interneuron types (Gentet et al., 2010; Tricoire et al., 2011; Yu et  
9 al., 2016), GABAergic synapses are poised to profoundly affect PV-INs. Although the classical  
10 view holds that neuronal input-output transformation happens on the timescale of synaptic  
11 activity, evidence from multiple brain regions shows that neuronal firing can be maintained or  
12 emerge following stimulus termination (Kiehn and Eken, 1998; Egorov et al., 2002; Shu et al.,  
13 2003a; Fransen et al., 2006; Sheffield et al., 2011; Cui and Strowbridge, 2019). The ability of  
14 neurons and neuronal networks to generate episodes of persistent activity may enable  
15 information to be retained for periods of time exceeding the original stimulus (Durstewitz et al.,  
16 2000; Egorov et al., 2002; Shu et al., 2003a) and thus provide a physiological substrate for  
17 operations such as working memory. Yet, whether and how synaptic inhibition can switch  
18 neurons between different firing states is largely unexplored.

19 Here, we discovered a mechanism based on the interplay between inhibitory synaptic  
20 transmission and intrinsic membrane properties that prolongs the silent period exhibited by PV-  
21 INs in response to minimal synaptic inhibition, a phenomenon we term persistent interruption of  
22 firing. Our analysis reveals that the persistent interruption of firing results from an interplay  
23 between a D-type  $K^+$  current and a  $Na^+$  current that work together to keep PV-INs quiescent yet  
24 hyperresponsive. The interruption of firing is a disinhibitory mechanism for AP firing in CA1  
25 pyramidal neurons.

1 **Results**

2 ***Synaptic inhibition interrupts firing of fast-spiking interneurons***

3 Synaptic inhibition hyperpolarizes the membrane potential relative to the AP threshold, silencing  
4 the neuron. The duration of postsynaptic neuron silencing is thought to result from the  
5 combination of presynaptic release properties and kinetics of postsynaptic receptor activation.  
6 PV-INs fire APs at high frequency upon depolarization. Yet, how other interneurons affect PV-IN  
7 activity remain generally obscure.

8 To understand how synaptic inhibition controls PV-INs activity, we performed experiments in  
9 acute hippocampal slices prepared from P17 – P30 animals. PV-INs were depolarized with  
10 suprathreshold current sufficient to evoke their characteristically fast and sustained firing (Fig.  
11 1A-B). Synaptic inhibition was elicited through optogenetic stimulation of somatostatin-  
12 expressing interneurons (SST-INs) by using *Sst*;Ai32 transgenic mice. We chose this approach  
13 because SST-INs form synaptic contacts on PV-INs, while SST- and PV-INs represent generally  
14 non-overlapping populations of INs (Freund and Buzsaki, 1996; Jinno and Kosaka, 2000; Harris  
15 et al., 2018; Udakis et al., 2020). Optogenetic stimulation of SST-INs afferent with a 20 ms light  
16 pulse during sustained PV-INs firing strongly suppressed subsequent firing (Fig. 1A-C), leaving  
17 the neuron in a non-firing depolarized state (average membrane potential of  $-36.4 \pm 1.1$  mV  
18 during the interruption compared to  $-66.6 \pm 0.6$  mV at rest,  $n = 29$ ;  $p < 0.001$ ). We termed this  
19 phenomenon a persistent interruption of firing (also referred to as an interruption for brevity), in  
20 contrast to the brief silencing expected for an IPSP. The same optogenetic inhibition applied  
21 when recording from depolarized CA1 pyramidal neurons (CA1-PYR) revealed no such  
22 persistent interruption (Fig. S1A-C). The likelihood of observing inhibitory currents in PV-INs and  
23 CA1-PYR upon optogenetic stimulation of SST-interneurons was not different and IPSCs  
24 displayed similar properties (Fig. S1D-E), resulting in similar IPSP amplitudes (PV-INs:  $3.82 \pm$   
25  $0.56$  mV,  $n = 29$ ; CA1-PYRs:  $5.57 \pm 1.32$  mV;  $n = 9$ ;  $p = 0.34$ , Mann-Whitney U test). These  
26 results show that persistent interruption of firing is a selective mechanism for powerfully  
27 controlling PV-IN activity.

28 Persistent interruption of firing was observed with a high reliability in response to optogenetic  
29 intervention ( $86.1 \pm 2.4\%$ ,  $n = 29$ ; Fig. 1C-D). In trials where the interruption of firing was not  
30 induced, PV-INs firing rapidly recovered (Fig. 1C, red trace) and the silence duration was similar  
31 to that observed in pyramidal cells (Fig. S1C). In interleaved trials, we observed that PV-INs  
32 maintained their firing in the absence of optogenetic intervention (Fig. 1C and Fig. S2A, B).

1 Additionally, most PV-INs (17/29 neurons) could resume normal firing, in which case the initial  
2 firing frequency was fully recovered (before interruption:  $76.3 \pm 4.2$  Hz; after interruption:  $72.3 \pm$   
3 4 Hz,  $n = 17$ ;  $p = 0.37$ , Mann-Whitney U test). Measuring the duration of the interruption  
4 revealed that the silencing lasted on average  $757 \pm 56$  ms ( $n = 29$ ), approximately 30-fold  
5 longer than the full duration of the IPSP ( $25.4 \pm 4.5$  ms,  $n = 29$ , Fig. 1E). There was no  
6 significant correlation across neurons between the initial firing rate and the likelihood of  
7 observing an interruption (Pearson correlation:  $r = 0.1$ ,  $p = 0.59$ ;  $n = 29$ ; Fig. S1F). The firing  
8 interruption was observed at all temperatures tested, with the baseline firing of PV-IN reaching  
9 an average of  $>300$  Hz at  $31.3 \pm 0.9^\circ\text{C}$  (Fig. S1G-I). On the other hand, increasing the  
10 depolarizing pulse amplitude by  $37.2 \pm 3.6\%$  of the suprathreshold current value (from  $301.9 \pm$   
11 46.9 pA to  $413.4 \pm 66.9$  pA,  $n = 3$  neurons) prevented the persistent interruption of firing,  
12 enabling the firing to resume right after the IPSP. Next, the duration of the optogenetic  
13 stimulation was decreased to explore the synaptic determinants generating the interruption (Fig.  
14 S2C-K). Brief light pulses (2 ms) generated fewer APs in SST-expressing INs (Fig. S2C-E) but  
15 still generated interruptions of similar durations, albeit with a lower likelihood (Fig. S2G-I). The  
16 briefer (2 ms) optogenetic stimulation evoked IPSPs of similar amplitude, but of shorter duration  
17 (Fig. S2J-K). Increasing the intracellular  $\text{Cl}^-$  concentration to shift  $E_{\text{Cl}}$  closer to physiological  
18 values reported in PV-INs (-52 mV and -64 mV) (Vida et al., 2006; Otsu et al., 2020) slightly  
19 decreased the likelihood of observing the persistent interruption of firing ( $E_{\text{Cl}} -52$  mV:  $73.3 \pm$   
20 8.3%,  $n = 7$ ;  $E_{\text{Cl}} -69$  mV:  $86.1 \pm 2.4\%$ ,  $n = 29$ ;  $p = 0.14$ , Mann-Whitney U test; Fig. S2L-M).  
21 Thus, like hyperpolarizing inhibition, even shunting inhibition (Vida et al., 2006) sufficed.

22 Post-hoc anatomical reconstructions of 23 PV-INs and cluster analysis based on axonal  
23 distribution allowed us to separate the recorded neurons into two groups; 1) perisomatic-  
24 targeting cells with an axon ramifying in *stratum pyramidale* (Fig. 1F and Fig. S3A) and, 2)  
25 dendrite-targeting cells with an axon innervating *strata oriens* and/or *radiatum* (Fig. 1F and Fig.  
26 S3B). All perisomatic-targeting (7/7) and dendrite-targeting (16/16) neurons demonstrated  
27 persistent firing interruptions, with similar likelihood (perisomatic-targeting:  $87.1 \pm 3.6\%$ ;  
28 dendrite-targeting:  $85.5 \pm 4.0\%$ ,  $p = 1.0$ , Mann-Whitney U test) and duration (perisomatic-  
29 targeting:  $888.6 \pm 39.9$  ms; dendrite-targeting:  $665.3 \pm 84.6$  ms,  $p = 0.18$ , Mann-Whitney U test).  
30 This indicates the robustness and the ubiquity of this phenomenon amongst different types of  
31 PV-INs. Therefore, the persistent interruption of firing is a novel mechanism greatly prolonging  
32 the inhibition interval generated by GABAergic input to two subtypes of PV-INs.

33 **A single action potential at a unitary connection suffices to interrupt firing**

1 Optogenetic experiments revealed that even small IPSPs can interrupt PV-IN firing for hundreds  
2 of milliseconds. PV-INs receive synaptic inhibition from multiple sources, including PV-INs  
3 themselves (Chamberland and Topolnik, 2012). However, which presynaptic neurons must be  
4 recruited and how many presynaptic APs are required to interrupt PV-INs firing remains unclear.  
5 Paired recordings were performed to determine the presynaptic activity required to interrupt PV-  
6 INs firing (Fig. 2A). We found that firing from a single presynaptic partner was sufficient to  
7 interrupt firing in most synaptically-connected pairs interrogated (14 out of 16 connected pairs,  
8 Fig. 2B-D). Furthermore, a single AP evoked by a single presynaptic partner was sufficient to  
9 interrupt PV-INs in a subset of connected pairs (5 out of 11 connected pairs), but with a low  
10 likelihood (Fig. 2B, D). Delivering a brief burst of 5 APs at 100 Hz, a physiological pattern of  
11 activity for interneurons (Klausberger et al., 2003; Klausberger et al., 2004), was considerably  
12 more efficient at interrupting the firing (1 AP:  $4.42 \pm 2.26\%$ ; 5APs:  $36.74 \pm 7\%$ ;  $n = 10$ ;  $p <$   
13 0.001, Mann-Whitney U test), with the interruption likelihood plateauing for yet more APs (10  
14 APs:  $41.61 \pm 7.62\%$ ; Fig. 2C-D). The firing interruption initiated by a single presynaptic partner,  
15 while of lower likelihood than in optogenetic experiments, demonstrated nearly identical duration  
16 (paired recordings:  $739 \pm 68$  ms,  $n = 12$ ; optogenetics:  $757 \pm 56$  ms,  $n = 29$ ;  $p = 0.67$ , Mann-  
17 Whitney U test). Neurolucida reconstructions revealed that in all cases, the postsynaptic  
18 neurons had anatomical features consistent with PV-INs (Fig. S3A-E). We observed that for  
19 presynaptic PV-INs, 6/10 neurons projected their axon in the dendritic layers, while 4/10  
20 neurons innervated the perisomatic region (Fig. 2A and S3D). When the presynaptic partner  
21 was an SST-IN, the axon was found in dendritic layers in 4/4 neurons.  
22 To better understand the mechanisms controlling the interruption, we next analyzed the  
23 underlying currents evoked at unitary synaptic connections. Single AP firing reliably generated  
24 large amplitude IPSCs in postsynaptic PV-INs (Fig. 2E), characteristics consistent with previous  
25 reports (Bartos and Elgueta, 2012). We then analyzed the short-term dynamics of IPSCs  
26 evoked by brief trains of presynaptic APs (5 APs at 100 Hz). We observed that bursts of IPSCs  
27 demonstrated significant short-term depression (1<sup>st</sup> IPSC:  $40.45 \pm 4.72$  pA; 5<sup>th</sup> IPSC:  $13 \pm 1.67$   
28 pA;  $p < 0.0001$ ,  $n = 13$ ; Fig. 2E-F) but summated efficiently, such that the absolute peak  
29 amplitude of the burst evoked IPSC was maintained for the first two APs and then declined (Fig.  
30 2E-F). Given the short-term depression, we next asked why train-evoked APs were more likely  
31 to interrupt firing. Analysis of the resulting IPSP waveform during subthreshold depolarization  
32 revealed that the peak amplitude was similar between 1 AP and 5 APs-bursts (1 AP:  $1.51 \pm 0.12$   
33 mV; 5 APs:  $1.69 \pm 0.22$  mV;  $p = 0.3$ ,  $n = 7$ ; Fig. 2G), while the decay kinetics were strikingly

1 slowed (1 AP:  $\tau = 13.18 \pm 1.33$  ms; 5 APs:  $\tau = 54.05 \pm 6.84$  ms,  $p < 0.01$ ,  $n = 7$ ; Fig. 2G),  
2 prolonging the return to the depolarized membrane potential. These results demonstrate that  
3 while a single AP from a unitary synaptic connection is sufficient to trigger persistent interruption  
4 of PV-IN firing, brief bursts of APs, generating extended inhibition, are significantly more  
5 efficient.

6 It was clear that the interruption likelihood was lower in paired recordings than in optogenetic  
7 experiments (Fig. 2D compared to Fig. 1D). We compared the currents evoked by optogenetic  
8 stimulation and paired-recordings to estimate how many SST-INs contribute to the total  
9 inhibitory current required to reliably trigger firing interruptions. Voltage-clamp recordings in fast-  
10 spiking interneurons revealed that optogenetic stimulation of SST-INs evoked large IPSCs of  
11  $170.6 \pm 42.3$  pA ( $n = 6$  neurons; Fig. 2H-J). In contrast, the unitary IPSC amplitude observed in  
12 paired-recordings was  $36.9 \pm 6.2$  pA ( $n = 3$  synaptically connected pairs; Fig. 2I-J). By  
13 comparing the total synaptic drive in each case, we estimated that an average of 4 – 5 SST-INs  
14 innervate a single fast-spiking interneuron (Fig. 2K). Therefore, coordinated activity from  
15 multiple presynaptic interneurons raises efficiency of interrupting PV-INs.

16 ***Fast-spiking interneurons in vivo can remain silent for an extended duration following***  
17 ***brief synaptic inhibition***

18 Our results indicate that PV-INs can be silenced for long periods in response to brief  
19 optogenetic activation of inhibitory afferents in acute hippocampal slices. We next explored  
20 whether long silent periods indicative of persistent interruption of firing could be induced by  
21 synaptic inhibition in the intact brain.

22 For *in vivo* tests, we combined multisite silicon probe electrophysiological recordings with  
23 optogenetic stimulation in behaving *Sst<sup>-/-</sup>;Ai32* mice (Fig. 3A) (Valero et al., 2021). In addition to  
24 SST-INs, identified by their responsiveness to blue light, other neuronal types were categorized  
25 based on their AP waveform and discharge rate (Fig. 3B-D). For example, narrow-waveform  
26 interneurons (NW-INs), classified by brief spike duration and rapid rise time (Fig. 3C-D), were  
27 identified as putative PV-INs as previously documented (Henze et al., 2000). The optogenetic  
28 stimulation of SST-INs silenced PV-INs for intervals extending beyond the blue light stimulus in  
29 most trials (Fig. 3E, 9 typical NW-INs shown, each with 1500 trials). The duration of silencing  
30 varied across trials, but in all cells a subset of ranked trials reached the maximal duration  
31 sampled (0.6 s; Fig. 3E). By averaging trials in the lowest (0-10<sup>th</sup> percentile), middle deciles (45-  
32 55<sup>th</sup> percentile) and highest deciles (90-100<sup>th</sup> percentile) across cells, we confirmed that long-

1 lasting inhibition of PV-INs was a phenomenon consistent across all PV-INs sampled (Fig. 3F).  
2 On average, middle deciles trials demonstrated that the silent period consistently outlasted the  
3 optogenetic stimulation (Fig. 3F). Conversely, averaging trials in the lowest percentiles revealed  
4 that PV-INs can also recover their firing rapidly following an inhibitory event, in which case the  
5 silence duration was mostly limited to duration of the optogenetic stimulation (Fig. 3F). This  
6 finding is consistent with our *in vitro* observations: failure to induce the persistent interruption of  
7 firing resulted in only brief silences (Fig. 1C, red trace).

8 We next compared the effect of optogenetically-induced inhibition of PV-INs with that of  
9 pyramidal cells and wide-waveform interneurons (WW-INs). On average, the silence duration  
10 was significantly longer for PV-INs than for other cell types (Fig. 3G-H). This observation is  
11 counter-intuitive; given their generally high baseline firing rate *in vivo* (NW:  $6.14 \pm 3.89$  Hz, PYR:  
12  $1.02 \pm 0.64$  Hz, WW:  $5.21 \pm 4.53$  Hz (mean  $\pm$ SD); NW vs. PYR:  $p < 0.0001$ ; NW vs. WW:  $p =$   
13 0.4495; ANOVA followed by posthoc Tukey-Kramer), PV-INs would logically be expected to  
14 recover their firing faster after synaptic inhibition. Yet, PV-INs were silenced for a consistently  
15 longer period than all other neuronal subtypes for all optogenetic stimulus durations sampled  
16 (Fig. 3I). This difference was starker for the 100 ms light pulse duration, consistent with our *in*  
17 *vitro* optogenetic experiments (Fig. S2H-I) and paired recordings (Fig. 2D) showing that a train  
18 of stimuli are more likely to induce an interruption of firing and engender a longer silence. Thus,  
19 our *in vivo* observations that PV-INs can remain silent for extended periods following  
20 optogenetic activation of GABAergic afferents are consistent with our *in vitro* findings in  
21 demonstrating similar dependence on cell type and intensity of PV-IN inhibition.

22 ***GABA<sub>A</sub> receptor blockade prevents and postsynaptic membrane hyperpolarization***  
23 ***reproduces the interruption***

24 To understand why the duration of the interruption of firing is variable both *in vitro* and *in vivo*,  
25 and why the *in vivo* interruptions are generally briefer, we next set out to examine the underlying  
26 biophysical mechanisms controlling the interruption of firing. What are the pre- and postsynaptic  
27 events required to persistently interrupt PV-INs? Both optogenetic stimulation and unitary  
28 presynaptic neuron firing in paired recordings generated postsynaptic IPSPs, likely mediated by  
29 GABA<sub>A</sub> receptors. Alternatively, non-classical neurotransmission could contribute to the firing  
30 interruption through slow postsynaptic inhibition, shunting effects, or sustained release.

31 Accordingly, we proceeded to dissect the synaptic requirements of the persistent firing  
32 interruption, using the optogenetic approach in acute slices from *Sst<sup>-/-</sup>;Ai32* mice due to higher

1 throughput and efficiency. Blockade of GABA<sub>A</sub> receptors with bicuculline fully prevented the  
2 persistent interruption of firing in all neurons tested (control:  $92.7 \pm 4.5\%$  chance of firing  
3 interruption; bicuculline: 0 % chance of firing interruption,  $n = 6$ , Fig. 4A, C). This observation  
4 does not exclude the possibility of synergistic action of a slow-acting neurotransmitter signaling  
5 through G-protein coupled receptors. To address this, we confirmed the presence of persistent  
6 interruption of firing following 24 hours of pertussis-toxin treatment to prevent G<sub>i/o</sub> signaling ( $n =$   
7 3,  $85.5 \pm 6.7\%$  chance of firing interruption, Fig. S4A-C) (Eyring et al., 2020). To further test the  
8 sufficiency of GABA<sub>A</sub>R signaling, we directly blocked GABA<sub>B</sub> receptors. GABA<sub>B</sub>R inhibition (2  
9  $\mu\text{M}$  CGP-55845, denoted as CGP) had no effect on the interruption of firing, while subsequent  
10 application of bicuculline completely prevented the interruption in the same neurons ( $n = 8$ ; Fig.  
11 S4D-E). Together, these results indicate that presynaptic GABA release and activation of  
12 postsynaptic GABA<sub>AR</sub>s are key steps mediating the persistent interruption of firing.

13 Second, we addressed the postsynaptic factors downstream of GABA<sub>A</sub>R activation that mediate  
14 the firing interruption. This was a logical step because PV-INs maintained their stuttering firing  
15 pattern despite GABA<sub>A</sub>R and GABA<sub>B</sub>R blockade ( $n = 7/8$  neurons tested in presence of  
16 CGP+Bic, Fig. S4F). As GABA<sub>A</sub>R blockade abolished the interruption and GABA<sub>A</sub>R activation  
17 elicited clear membrane hyperpolarization in all recordings, we wondered whether mimicking an  
18 IPSP waveform with hyperpolarizing current injection might also interrupt PV-IN firing. The  
19 current waveform was reduced to two minimal parameters: 1) an instantaneous step to minimal  
20 current amplitude, and 2) a ramp recovery to the initial steady current (Fig. 4B). We found that  
21 injecting this ramp waveform caused a persistent interruption of firing, with a duration similar to  
22 the interruption of firing caused by optogenetic inhibition (ramp:  $766.1 \pm 109.5$  ms; optogenetic:  
23  $914.9 \pm 39.7$  ms;  $p = 0.23$ ;  $n = 5$ , paired t-test, Fig. 4B, C). This result supports the idea that  
24 membrane hyperpolarization is sufficient to interrupt firing and shows that the interruption of  
25 firing can be induced independently of synaptic transmission. We took advantage of this finding  
26 to dissect the key parameters involved in the interruption of firing, varying either the amplitude  
27 or the duration of the ramp re-depolarization. While there was no correlation between the  
28 interruption likelihood and the peak hyperpolarization amplitude (Pearson correlation:  $r = -0.15$ ,  
29  $p = 0.45$ ;  $n = 8$  neurons; Fig. 4D), there was a clear correlation between the interruption  
30 likelihood and the ramp duration (Pearson correlation:  $r = 0.68$ ,  $p < 0.0001$ ;  $n = 8$  neurons; Fig.  
31 4E). Thus, slower recovery from hyperpolarization engenders a higher likelihood of firing  
32 interruption with optogenetic stimulation, paired recordings and with hyperpolarizing ramp  
33 currents (Fig. S2H-K and Fig. 2G). In the most extreme case of rapid recovery from  
34 hyperpolarization, a square hyperpolarizing pulse almost never interrupted firing (optogenetics:

1 79.7 ± 5.3 % chance of firing interruption; square hyperpolarizing pulse: 2.7 ± 1.7 % chance of  
2 firing interruption; n = 10, Fig. 4F-G). Therefore, these results show that postsynaptic membrane  
3 hyperpolarization alone is sufficient to interrupt PV-IN firing, a phenomenon dependent on the  
4 speed of recovery from hyperpolarization.

5 These results suggested that PV-INs firing interruption can be mediated by any presynaptic  
6 interneuron subtype if the synaptic inhibition is sufficiently strong and slowly decaying.  
7 Vasoactive intestinal peptide-expressing interneurons (VIP-INs) have been shown to  
8 preferentially synapse on other INs in the CA1 region of the hippocampus and mediate  
9 disinhibition (Acsady et al., 1996; Chamberland et al., 2010; Chamberland and Topolnik, 2012;  
10 Tyan et al., 2014; Francavilla et al., 2018; Turi et al., 2019). Therefore, we next tested whether  
11 activation of VIP-INs could interrupt PV-INs firing in the *Vip*;;*Ai32* mouse model (Fig. S4G-I).  
12 Optogenetic activation of VIP-INs was generally insufficient to trigger the persistent interruption  
13 of firing (interruption likelihood: 2.79 ± 1.5%; n = 15; Fig. S4H-I). To validate these results, we  
14 investigated the connectivity of VIP-INs. Given that VIP-INs were shown in paired recordings to  
15 target mostly oriens-lacunosum moleculare (OLM) INs in the CA1 *stratum oriens* (Tyan et al.,  
16 2014; Francavilla et al., 2018) which are distinct from PV-INs studied here, we decided to use  
17 OLM-INs as a positive control. In sequential recordings of neighboring INs from the same slices,  
18 we recorded IPSCs from PV-INs and regular-spiking interneurons with  $I_h$  (classical  
19 electrophysiological properties associated with OLMs) in response to optogenetic activation of  
20 VIP-INs (Fig. S4J-L). Intriguingly, we found that optogenetic stimulation of VIP-INs produced  
21 consistently small IPSCs in PV-INs (19.4 ± 3.2 pA; n = 12) but more than 5-fold larger IPSCs in  
22 neighboring OLM-like INs (116.2 ± 16.4 pA; n = 12; p < 0.001; Fig. S4L). This confirms the  
23 preferential innervation of OLM-INs by VIP-INs and indicates that VIP-INs only weakly innervate  
24 PV-INs in the CA1 hippocampus, explaining their observed inability to impact sustained firing of  
25 PV-INs.

26 ***K<sub>v</sub>1* blockade prevents firing interruption**

27 The interruption of firing is initiated by membrane hyperpolarization followed by slow re-  
28 depolarization. During the interruption, PV-INs are maintained in a non-spiking but depolarized  
29 state. In principle, neurons can be silenced if their membrane potential is kept more  
30 hyperpolarized than the AP threshold, or if the membrane potential is depolarized to the point  
31 where sodium channels are inactivated, resulting in non-excitability.

1 Firing interruptions induced during optogenetic stimulation, paired recordings and direct  
2 postsynaptic current injection showed some consistent features revealing of the state of  
3 excitability: upon resumption of firing, the first AP had a more depolarized take-off potential (pre-  
4 int:  $-35.5 \pm 1.11$  mV, post-int:  $-32.19 \pm 1.17$  mV;  $p < 0.001$ ;  $n = 14$ ), a slower maximal  $dV/dt$  (pre-  
5 int:  $164.96 \pm 6.25$  mV/ms, post-int:  $119.31 \pm 8.78$  mV/ms;  $p < 0.001$ ;  $n = 14$ ), and a smaller  
6 amplitude (pre-int:  $63.43 \pm 1.89$  mV, post-int:  $51.89 \pm 2.89$  mV;  $p < 0.001$ ;  $n = 14$ ; Fig. 5A-C).  
7 The subsequent APs possessed identical characteristics to the last AP before the interruption  
8 (values for 2<sup>nd</sup> AP post-int: take-off potential:  $-36.43 \pm 1.19$  mV;  $p = 0.16$ ;  $n = 14$ ; maximal  $dV/dt$ :  
9  $158.22 \pm 7.97$ ;  $p = 0.15$ ;  $n = 14$ ; amplitude:  $63.47 \pm 2.83$  mV;  $p = 0.98$ ;  $n = 14$ ; Fig. 5A-C). These  
10 features are consistent with decreased sodium channel availability during the first spike but not  
11 later spikes following the depolarization. Together, these observations suggest that interrupted  
12 neurons are maintained in a depolarized quiescent state but not with complete depolarization  
13 block, as firing can ultimately resume.

14 To clarify the postsynaptic currents initiating and maintaining the quiescent state, we examined  
15 the membrane potential during the firing interruption. All recordings demonstrated a small, slow,  
16 and progressive membrane depolarization with a slope averaging  $1.71 \pm 0.32$  mV/s ( $n = 28$ )  
17 during the interrupted phase (Fig. 5D). Such gradual depolarization could result from a small net  
18 inward current arising from a persistent sodium current ( $I_{NaP}$ ), or the gradual inactivation of an  
19 outward current. D-type potassium currents ( $I_D$ ) mediated by the  $K_v1$  channel family conduct a  
20 gradually inactivating outward current. For molecular constraints, we analyzed published data  
21 on the expression of  $K_v1$  in PV-INs (Cembrowski et al., 2016), which showed relatively higher  
22 levels of *Kcna1* and *Kcna2* transcripts compared to moderate levels of *Kcna3* and *Kcna6*, while  
23 *Kcna4* and *Kcna5* were mostly undetected (summarized in Fig. S5A). Using  
24 immunohistochemistry, we found that hippocampal CA1 PV-INs in the vicinity of stratum  
25 pyramidale expressed  $K_v1.1$  (Fig. 5E). The  $K_v1.1$  immunoreactivity was prominent in the somatic  
26 region of PV-INs. We next tested the involvement of  $K_v1.1$  in the firing interruption through  
27 selective pharmacological blockade with dendrotoxin-I (DTX-I, 50 nM), which blocks  $K_v1.1$ ,  
28  $K_v1.2$  and  $K_v1.6$ , or dendrotoxin-K (DTX-K, 50 nM), which selectively blocks  $K_v1.1$ . Application of  
29 either DTX-I or DTX-K prevented the persistent interruption of firing, limiting the quiescent  
30 period to that observed in trials where the interruption failed to be induced (Fig. 5F-G, Fig. 1C).  
31 We observed that DTX application simultaneously caused a general increase in the AP firing  
32 rate in response to depolarization (control:  $77 \pm 6.2$  Hz; DTX-I/K:  $88.6 \pm 6.9$  Hz;  $n = 9$ ;  $p < 0.001$ ,  
33 Fig. S5B), driven in part by a significant hyperpolarizing shift of the AP take-off potential in DTX  
34 without changes in other parameters (Fig. S5C, see legend). To avoid potential confounding

1 effects of increased firing following DTX application, we re-adjusted the depolarizing step  
2 amplitude to keep the AP frequency similar to that observed in control condition (Fig. 5F-G).  
3 Even so, the likelihood of observing a persistent interruption of firing was strikingly reduced,  
4 from  $92.5 \pm 2.1\%$  to  $15.5 \pm 4.9\%$  in dendrotoxin ( $n = 9$ , including 3/9 neurons in which the  
5 interruption was fully abolished;  $p < 0.0001$ ). Consistent with a proposed role of  $I_D$  in maintaining  
6 the quiescent state during the interruption, the slow and sustained depolarization observed  
7 during a square subthreshold depolarizing pulse was virtually absent following DTX-I/K  
8 treatment (control:  $0.87 \pm 0.2$  mV/s; DTX-I/K:  $0.13 \pm 0.06$  mV/s;  $p < 0.05$ ;  $n = 5$ ; Fig. 5G, inset).  
9  $K_v1$  channels are formed as heteromultimers incorporating four pore-forming subunits that can  
10 include  $K_v1.2$  and  $K_v1.3$ . To approach the possible roles of  $K_v1.2$  and  $K_v1.3$ , we exposed  
11 neurons to K-Conotoxin RIIIK to block  $K_v1.2$ -containing channels and observed that this  
12 decreased the likelihood of firing interruption (control:  $100 \pm 0\%$ ; K-Conotoxin RIIIK:  $46.8 \pm$   
13  $15.1\%$ ,  $n = 5$ ;  $p < 0.05$ ; Mann-Whitney U test; Fig. S5D). On the other hand, bath application of  
14 Agitoxin-2, which selectively blocks  $K_v1.3$ , had no significant effect on the firing interruption  
15 likelihood (control:  $100 \pm 0\%$ ; Agitoxin-2:  $91.3 \pm 4.3\%$ ,  $n = 6$ ;  $p = 0.07$ ; Mann-Whitney U test;  
16 Fig. S5E). Overall, these results indicate that  $K_v1.1$ -containing channels are key mediators of  
17 the firing interruption and that some of these channels might also contain  $K_v1.2$  subunits.

### 18 ***$I_D$ and $I_{NaP}$ cooperate to create a stable point in membrane potential***

19 Our evidence for a crucial role for  $K_v1.1$  in the persistent interruption of firing fits with previous  
20 findings that inactivation of  $K_v1.1$  current powerfully influences AP timing in fast-spiking INs in  
21 neocortex (Goldberg et al., 2008). In order to understand how  $K_v1.1$ -mediated currents  
22 contribute to the interruption of firing, we next dissected the membrane currents evoked by  
23 membrane depolarization and interrogated the membrane dynamics during the interruption.

24 To assess the full current-voltage relationship over a wide range of membrane potentials, PV-  
25 INs held under voltage-clamp were gradually depolarized with a slow ramp from  $-60$  mV to  $0$  mV  
26 over  $2$  s (Fig. 6A). Exposure to TTX, aimed at pharmacological blockade of  $Na^+$  currents, was  
27 followed by application of DTX-K, directed toward blockade of  $K_v1.1$  and the corresponding  
28 traces were then subtracted to reveal the TTX-sensitive (mostly  $Na^+$ , referred to as ' $I_{TTX-s}$ ' for  
29 brevity) and DTX-K-sensitive currents (mostly  $K_v1.1$ , referred to as ' $I_{DTX-s}$ ' for brevity) (Fig. 6B).  
30 We next plotted the I-V relationships of the inward  $I_{TTX-s}$  and outward  $I_{DTX-s}$  (Fig. 6C) to focus on  
31 current components with strongly non-linear properties. The summation of  $I_{TTX-s}$  and  $I_{DTX-s}$  (blue  
32 trace, Fig. 6C) suggested the possibility of a stable point in membrane potential where both  $I_{TTX-s}$

1 and  $I_{DTX-s}$  exhibit sizable amplitudes, but the net current crosses the zero-current axis with  
2 positive slope. There are two logical predictions that can be validated experimentally: first, the  
3 membrane conductance should be elevated during the interruption; second, small perturbations  
4 to the membrane potential should be followed by a rebound back to the previous level. To  
5 determine if these predictions held true, we injected small (50 pA) hyperpolarizing current  
6 pulses during the interrupted phase and 2 s later, after recovery of the resting membrane  
7 potential (Fig. 6D). Indeed, the input resistance was decreased during the interruption relative to  
8 its basal value, consistent with the predicted elevation in membrane conductance (Fig. 6E-F).  
9 Furthermore, cessation of the current injection was followed by rebound depolarization (or  
10 rebound hyperpolarization, not shown) back to the original quiescent level, indicative of an  
11 underlying stable point (Fig. 6E). These results show that the persistent interruption of firing is a  
12 shunted quiescent state, corresponding to a stable point in membrane potential, as would be  
13 expected for interplay between elevated  $I_{DTX-s}$  and  $I_{TTX-s}$  as dominant components, acting in  
14 opposition.

15 The involvement of inactivating  $K^+$  conductance harkens back to regulation of rhythmic AP firing  
16 (Connor and Stevens, 1971; Turrigiano et al., 1996; Goldberg et al., 2008; Khaliq and Bean,  
17 2008). For example,  $I_A$  is de-inactivated by the afterhyperpolarization phase of an AP and slows  
18 down subsequent pacemaker depolarization in gastropod neurons (Connor and Stevens, 1971)  
19 and VTA dopaminergic neurons (Khaliq and Bean, 2008). Similarly,  $I_D$  temporally delays or  
20 negates firing in response to depolarizing current in cortical PV-INs (Goldberg et al., 2008;  
21 Campanac et al., 2013). In the present case, an inactivating  $K^+$  conductance ( $I_D$ ) also exerts a  
22 key braking action, but the initiating event is a synaptic input, and the outcome is a sustained  
23 cessation of ongoing firing rather than a graded delay in time-to-next-spike.

24 ***The firing interruption maintains fast-spiking interneurons in a hyperresponsive state***

25 Fast-spiking interneurons are known to be highly responsive to synaptic recruitment, more so  
26 than other elements of feedforward circuits (Fricker and Miles, 2000). This makes it interesting  
27 to determine how the interruption will alter PV-INs responsiveness to incoming synaptic inputs.  
28 The outcome is uncertain because opposing factors are at play in the PV-INs: on one hand, the  
29 elevation of intrinsic membrane conductance in the quiescent state and the lowered driving  
30 force for glutamate-induced current should dampen synaptic responsiveness. On the other  
31 hand, sodium channel activation should be enhanced at the depolarized membrane potential of  
32 the interruption, possibly promoting excitability.

1 EPSPs were evoked by electrical stimulation of Schaffer collateral inputs (Fig. 6G-I). The  
2 average EPSP evoked at resting membrane potential (-66.9 mV) had an amplitude of  $6.53 \pm$   
3 0.78 mV ( $n = 5$ ), roughly 3-fold greater than a unitary EPSP of 2 mV (Miles, 1990; Fricker and  
4 Miles, 2000), as if the excitatory drive came from approximately 3 CA3 pyramidal cells. These  
5 EPSPs demonstrated a fast rise time ( $2.52 \pm 0.4$  ms,  $n = 5$ ), consistent with previous findings  
6 (Fricker and Miles, 2000). The stimulation strength was adjusted to obtain mostly subthreshold  
7 EPSPs at resting membrane potential and spikes only rarely (AP probability =  $4.67 \pm 4.67$  %,  $n$   
8 = 5, Fig. 6H, I). We found that the same synaptic input from Schaffer collateral, evoked by a  
9 single electrical shock of fixed intensity (Fig. 6H, I), was much more likely to evoke an AP during  
10 the firing interruption ( $82.45 \pm 10.75$  %,  $n = 5$ ;  $p < 0.01$ ; Mann-Whitney U test; Fig. 6J). Thus, the  
11 firing interruption rendered the PV-IN super-responsive to incoming excitatory synaptic inputs.

12 ***A minimal PV-IN model captures the interruption of firing and associated elevation in***  
13 ***responsiveness***

14 Interrupted neurons are in a shunted quiescent state but also hyperresponsive. Biophysical  
15 modeling of the experimental observations could add mechanistic insight into the interruption  
16 and possibly explain the hyperresponsiveness as well. As a first approximation, we used a  
17 model of the perisomatic region of the neuron to determine whether an interruption of firing  
18 could in principle arise from an interplay between intrinsic conductances and an IPSP-like  
19 hyperpolarization.

20 We assembled a minimal single-compartment model of a fast-spiking interneuron, incorporating  
21 transient  $\text{Na}^+$  current ( $I_{\text{Na}}$ ), delayed-rectifier  $\text{K}^+$  current ( $I_{\text{KDR}}$ ) and a small leak current ( $I_L$ ), based  
22 on Golomb et al. (2007) but supplemented by an inactivating  $\text{K}^+$  conductance ( $I_D$ ) previously  
23 described in CA1 hippocampal interneurons by Lien et al. (2002). With this combination of  
24 current components, the model reliably generated trains of APs in response to current injection  
25 (Fig. 7A). We then challenged the model with an incremental hyperpolarizing step with ramp  
26 recovery (triangular waveform, Fig. 7A1), identical to that in our experiments (Fig. 4B).  
27 Consistent with experimental observations, the model neuron's firing was interrupted by such a  
28 protocol (Fig. 7A1). On the other hand, eliminating  $I_D$  from the model prevented the firing  
29 interruption (Fig. 7A2), an effect that persisted when depolarizing current amplitude was  
30 reduced to maintain the same evoked firing rate (Fig. 7A3). Moreover, the model replicated a  
31 telling aspect of the firing interruption: upon subsequent resumption of firing, the first AP was of  
32 smaller amplitude, consistent with the idea that sodium channels are partially inactivated (Fig.  
33 7A1, inset). In addition, a rectangular hyperpolarizing pulse of varying duration (20 – 400 ms)

1 failed to cause persistent interruption of the model neuron (Fig. 7A4), in line with experiment  
2 (Fig. 4F,G).

3 Next, we aimed to explore the range of parameters allowing IPSPs to interrupt firing. An  
4 inhibitory conductance with an exponential decay was included in the model, and the  
5 conductance amplitude and decay time constant were systematically varied to determine pairs  
6 of parameters sufficient to interrupt firing (Fig. 7B). We observed that IPSPs over a broad range  
7 of amplitude could interrupt firing, but that smaller IPSPs required a longer decay time for the  
8 interruption to occur. Reassuringly, the IPSP parameters leading to a firing interruption in the  
9 model were generally similar to those measured in experiments (Fig. 7B). Also consistent with  
10 our experimental results (Fig. S2L-M), varying the  $E_{Cl}$  value in the model showed that  
11 hyperpolarizing and shunting inhibition (Vida et al., 2006) sufficed to interrupt firing, whereas  
12 depolarizing inhibition did not (Fig. S6A-B).

13 Our experimental findings indicate that interrupted neurons are in a quiescent but  
14 hyperresponsive state (Fig. 6). We next aimed to reconstruct this hyperresponsiveness. A  
15 compound EPSP-IPSP conductance sequence, simulating the experimentally observed  
16 outcome of Schaffer collaterals stimulation, was introduced at either resting membrane potential  
17 or during the interrupted state (Fig. 7C). Consistent with our experimental results, a  
18 subthreshold excitatory conductance at resting membrane potential became suprathreshold  
19 when imposed during the interrupted phase (Fig. 7D); this switch in excitability was seen over a  
20 broad range of amplitudes (Fig. 7E). Removing the IPSP conductance from the simulation,  
21 leaving only the EPSP, triggered the return of non-accommodating firing, indicating that the  
22 IPSP component had caused a renewal of the persistent interruption (Fig. S6C).

23 We took advantage of the model to look at the dynamic fluctuations in  $I_D$  and  $I_{Na}$  during the ramp  
24 decay and subsequent interruption (Fig. 7F1-F3 and Fig. S6D-E). Our results indicate that  
25 during the ramp decay (induction phase),  $I_D$  activates to hyperpolarize the neuron and therefore  
26 limits the speed of membrane potential re-depolarization, preventing AP firing (Fig. 7F2). During  
27 the maintenance phase,  $I_D$  inactivates gradually while  $I_{Na}$  gradually increases, resulting in a slow  
28 but steady membrane depolarization (Fig. 7F2). The gradual depolarization is paralleled by  
29 progressive  $Na^+$  channel inactivation (decreasing  $h$ ), explaining why interrupted neurons are  
30 maintained in a non-firing condition (Fig. 7F3). Therefore, these results indicate that the  
31 interplay between  $I_D$  and  $I_{Na}$  not only initiates but also helps maintain the interruption of firing by  
32 first forcing accommodation and then by keeping the neuron in a depolarized yet quiescent  
33 state.

1 The above findings suggest that the pre-interruption state of  $I_D$  might influence the duration of  
2 the interruption. If  $I_D$  is more available when the interruption is initiated, the interruption may last  
3 longer. This could help reconcile the results from *in vivo* and *in vitro* experiments: interruptions  
4 are consistently longer *in vitro*, where longer and controlled depolarizing pulses are imposed. In  
5 both modelling and experiments, increasing the duration of pre-induction firing resulted in a  
6 progressive prolongation of the interruption (Fig. S7A-C). Examination of the underlying currents  
7 revealed that AP-evoked  $I_D$  gradually increased during firing episodes because of continuous  $I_D$   
8 de-inactivation (Fig. S7B).  $I_D$  de-inactivation was driven by the large afterhyperpolarization  
9 (AHP) observed following every AP, and its build-up was attributable to slow  $I_D$  inactivation  
10 kinetics and the high firing frequency of PV-INS. In experiments, we observed that the AHP  
11 consistently hyperpolarized the membrane potential after allowing for an ohmic voltage drop  
12 across the series resistance during current injection (see Fig. S7 legends for details). The peak  
13 afterhyperpolarization in pooled data ranged from  $-84.2 \pm 0.9$  mV (1<sup>st</sup> AP) to  $-76.8 \pm 1.1$  mV (20<sup>th</sup>  
14 AP), consistently negative to resting levels ( $-65.6 \pm 0.6$  mV;  $n = 27$ ;  $p < 0.0001$  for both  
15 comparisons). Thus, modeling and experiment converge to indicate that the duration of the firing  
16 interruption is influenced by  $I_D$  availability at the moment of incoming inhibition. This provides a  
17 mechanistic explanation for the lengthening of interruptions following increasingly prolonged  
18 firing. In both modelling and experiments, the interruption duration plateaued as pre-induction  
19 firing was prolonged (Fig. S7C). This can be attributed to a saturating degree of removal of  $I_D$   
20 inactivation for longer firing episodes, evident in the model. The interruption duration varies with  
21 the extent of prior fast-spiking activity because such firing primes the neuron through  $I_D$  de-  
22 inactivation.

23 How is firing resumed following the interruption? We addressed this question by deconstructing  
24 two cases: rapid depolarization-induced firing and spontaneous firing resumption, both observed  
25 experimentally and in the model. First, an abrupt re-depolarization causes AP firing in  
26 experimental recording and modeling alike (Fig. 4F and Fig. 7A). We aimed to understand what  
27 interactions between  $I_D$  and  $I_{Na}$  support this firing recovery by voltage-clamping the model  
28 neuron (Fig. 7G) and applying changes in membrane potential known to trigger firing (offset of  
29 rectangular hyperpolarizing current pulse) or to interrupt the firing (IPSP-like ramp) (Fig. 7G).  
30 We observed that a stepwise removal of hyperpolarization generated a large and fast  $I_{Na}$ , a  
31 current which was not elicited by the ramp. The model predicts that a fast depolarization  
32 generates a  $Na^+$  current sufficiently fast and large to surmount the stable point in membrane  
33 potential, thus explaining the quiescent yet excitable state. This prediction was tested in  
34 experiments (Fig. S8A-D) by pharmacologically dissecting the currents during voltage changes

1 identical to those observed during the firing interruption. Consistently, an abrupt depolarization  
2 generated a rapid and large  $I_{Na}$  which was not observed during an IPSP-like ramp. Altogether,  
3 these recordings confirm that the generation of a  $I_{Na}$  sufficiently large to escape the interruption  
4 of firing depends on the abruptness of the depolarizing stimulus. Second, we made further  
5 comparison between experiment and model for the case of spontaneous firing resumption. This  
6 was always preceded by membrane oscillations, gradually increasing in amplitude (17/17  
7 neurons; Fig. S8E-G). Analyzing  $I_D$  and  $I_{Na}$  during a 35 ms oscillatory period right before firing  
8 resumption revealed that membrane potential-dependent oscillations emerged from a mismatch  
9 between the faster activation and inactivation kinetics of  $I_{Na}$  compared to  $I_D$ , creating an  
10 instability in membrane potential, seen as a limit cycle in a phase plane plot (Fig. S8G).

11 ***PV-IN interruption during elevated firing episodes powerfully disinhibits CA1 pyramidal  
12 cells***

13 Our findings revealed that extended PV-INs firing episodes are highly prone to long-lasting  
14 interruptions. Extended PV-INs firing might occur physiologically under neuromodulatory  
15 influence because several neuromodulators, including oxytocin, can directly depolarize the  
16 membrane potential to drive rapid PV-INs firing (Owen et al., 2013; Tirko et al., 2018). This  
17 could render the cell susceptible to long-lasting interruptions, but on the other hand might also  
18 elevate firing probability leading to early termination of the silent period. At the level of  
19 downstream CA1 pyramidal cells, the consequences of such activity remain unknown but are  
20 particularly important given that pyramidal cell activity can be heavily influenced by the firing of  
21 even a single PV-IN (Cobb et al., 1995). We therefore aimed to understand the conditions  
22 favoring the occurrence of persistent firing interruptions and the direct consequences on CA1  
23 pyramidal cell activity.

24 Application of the selective oxytocin receptor agonist (Thr<sup>4</sup>,Gly<sup>7</sup>)-oxytocin (TGOT) during  
25 generally subthreshold depolarization increased PV-IN firing rate tenfold ( $3.5 \pm 1.79$  Hz to  $38.69 \pm 12.24$  Hz,  $n = 5$ ,  $p < 0.05$ ; Mann Whitney U test; Fig. 8A-B). In presence of TGOT, optogenetic  
26 stimulation interrupted firing with a high likelihood ( $97.66 \pm 2.03\%$ ,  $n = 4$ ), and silenced PV-INs  
27 persistently ( $821.8 \pm 97.2$  ms,  $n = 4$ ; Fig. 8A-C). In presence of TGOT, PV-IN firing was  
28 resumed in subsets of trials (Fig. 8C), likely through the mechanisms described above. These  
29 results indicate that neuromodulatory enhancement of PV-IN activity can produce sustained  
30 firing episodes that are amenable to long-lasting firing interruptions. More generally, the  
31 interplay between local synaptic inhibition and neuromodulatory tone could provide a basis for  
32 abrupt switching of spiking in PV-INs.

1 The observation that prolonged PV-IN silence periods could be observed during  
2 neuromodulator-driven firing episodes prompted us to investigate the consequence of PV-IN  
3 firing interruption and firing resumption on CA1 pyramidal cells. We aimed to determine how the  
4 interruption of firing in a single PV-IN directly impacts the activity of a downstream CA1-PYR  
5 target. Paired recordings were performed between PV-INs and deep CA1-PYR (Fig. 8D). We  
6 found that out of 65 attempts, 20 presynaptic PV-INs were synaptically connected to deep CA1  
7 pyramidal cells as assessed by generation of IPSP in CA1-PYR by brief firing of PV-INs (30.8%  
8 connectivity rate). To assess the impact of the interruption, the CA1-PYR was slightly  
9 depolarized with current injection ( $30.5 \pm 3.4$  pA;  $n = 6$ ) to allow tonic firing at 1 – 2 Hz (Fig. 8E),  
10 typical of CA1-PYR basal firing (Wiener et al., 1989; Czurko et al., 1999; Hirase et al., 1999).  
11 Meanwhile, the synaptically connected PV-IN was depolarized with steady current injection to  
12 drive firing and then suddenly interrupted with a mock IPSP. We observed that CA1-PYR firing  
13 was drastically decreased during bouts of PV-IN firing but returned to basal levels as soon as  
14 the PV-IN was silenced by a firing interruption (Fig. 8F). Indeed, pyramidal cell firing was  
15 elevated 3-fold during the interruption of firing ( $1.35 \pm 0.24$  Hz;  $n = 6$ ) compared to that during  
16 PV-IN firing ( $0.45 \pm 0.2$  Hz;  $n = 6$ ;  $p < 0.01$ ; Fig. 8F,G). Remarkably, in trials where PV-INs firing  
17 subsequently recovered (interruption ceased), the CA1-PYR firing was decreased to similar  
18 levels as observed during initial PV-IN firing ( $0.54 \pm 0.26$  Hz;  $n = 4$ ;  $p = 0.77$ ; Fig. 8G) and was  
19 significantly lower than during the interrupted state ( $n = 4$ ;  $p < 0.01$ ). Thus, our results show  
20 directly that the firing interruption is a powerful disinhibitory mechanism for gating information  
21 flow. Interruption of firing in even a single presynaptic PV-IN suffices to elevate the firing activity  
22 of a downstream CA1-PYR.

1 **Discussion**

2 Our experiments revealed that the apparently robust non-accommodating fast-spiking  
3 phenotype of hippocampal PV-INs is in fact a delicate state that can be toggled off by minimal  
4 synaptic inhibition, leading PV-INs to operate in a temporarily depolarized yet silent state. Once  
5 initiated, the persistent interruption of firing is a cell-autonomous condition that renders PV-INs  
6 quiescent yet hyperresponsive. In a circuit context, the persistent interruption of PV-INs firing  
7 not only removes their basal inhibition of CA1 pyramidal neurons, but also potentiates their  
8 responses to subsequent synaptic inputs, thus heightening feedforward inhibition-on-demand.

9 Our *in vivo* recordings displayed persistent silencing of PV-INs following optogenetically-induced  
10 synaptic inhibition that may share underpinnings with the persistent interruption of firing of PV-  
11 INs we studied *in vitro*. Insights into mechanism may help explain why the silences *in vivo* were  
12 generally briefer than persistent interruptions in acute slices. One factor is that interruption  
13 duration depends on recent firing history—briefer firing epochs preceding inhibition result in  
14 shorter interruptions afterwards—and the uncontrolled periods of PV-INs firing *in vivo* were  
15 greatly outlasted by the long high-frequency bursts we imposed for biophysical analysis *in vitro*.  
16 A second factor is that “interrupted” PV-INs would be hypersensitive; extrapolating to silenced  
17 PV-INs in freely moving animals, continual bombardment by synaptic inputs *in vivo* would often  
18 trigger early termination of the interrupted state. With these considerations in mind, our *in vivo*  
19 observations align with our highly controlled studies *in vitro* and *in silico*.

20 ***Synaptic and intrinsic mechanisms controlling the interruption of firing***

21 Neurons are endowed with intrinsic conductances that shape the impact of synaptic inputs in  
22 both duration and amplitude (Gulledge et al., 2005; Carter et al., 2012). The persistent  
23 interruption of firing is an extreme case of such amplification, wherein a brief IPSP de-  
24 inactivates  $I_D$ , slows membrane re-depolarization, thereby partially inactivating  $I_{Na}$ , and thus  
25 initiates the quiescent state.

26 Both pre- and postsynaptic dynamics contribute to the persistent interruption of PV-IN firing. Our  
27 paired recordings showed that GABA release evoked by a single AP from a PV- or SST-  
28 presynaptic partner can occasionally interrupt PV-IN firing, whereas brief bursts of inhibitory  
29 input trigger the interruption more reliably. At these synapses, the high release probability, large  
30 unitary currents and mild short-term depression during brief bursts of spikes (Bartos et al., 2001;  
31 Bartos et al., 2002; Hefft and Jonas, 2005; Bartos and Elgueta, 2012) are well-suited to interrupt  
32 PV-INs. This combination of features shapes a slow re-depolarizing ramp that is optimal to

1 interrupt PV-INs as shown by direct current injection. Our observations indicate that any form of  
2 inhibition can interrupt PV-IN firing if it generates a hyperpolarization that is sufficiently large and  
3 slowly decaying.

4 After GABA<sub>A</sub>R conductance has decayed, the interruption of PV-IN firing is continued solely by  
5 intrinsic mechanisms. The non-accommodating fast-spiking pattern of PV-INs is supported by  
6 Na<sub>V</sub>1.1, Na<sub>V</sub>1.6 and K<sub>V</sub>3-family channels that enable rapid membrane depolarization and  
7 repolarization (Martina et al., 1998; Rudy and McBain, 2001; Lorincz and Nusser, 2008; Hu and  
8 Jonas, 2014). Although these currents are huge, the fast-spiking pattern they generate is prone  
9 to perturbation by the relatively modest currents provided by brief GABAergic input. The  
10 disparity sparks interest in the underlying biophysical mechanisms. Our reconstruction of the  
11 interruption splits it into two phases (Fig. 7F2). In the first (“induction”) phase, progressive I<sub>D</sub>  
12 activation slows down the re-depolarization, partially inactivating I<sub>Na</sub> and thus forestalling  
13 spiking. During the second (“maintenance”) phase, I<sub>D</sub> inactivates to support a shallow but  
14 progressive depolarization, a delicate state of quiescence.

15 Both experiments and modelling converge in support of this scenario. Involvement of I<sub>D</sub> was  
16 demonstrated with selective pharmacology and by corresponding omission of I<sub>D</sub> in our  
17 computational model. In PV-INs, I<sub>D</sub> was mediated by K<sub>V</sub>1.1- and K<sub>V</sub>1.2-containing channels  
18 which by themselves demonstrate little inactivation, therefore suggesting that beta subunits are  
19 incorporated and help shape the conductance dynamics. Given that K<sub>V</sub>1.1 is developmentally  
20 regulated in the hippocampus, the interruption of firing could be age-dependent (Pruss et al.,  
21 2010). The slow membrane re-depolarization progressively promotes I<sub>Na</sub> inactivation, preventing  
22 a rebound spike. The maintenance phase is sustained by I<sub>D</sub> inactivation and gradual I<sub>Na</sub>  
23 activation, pitted against increasing outward current via I<sub>KDR</sub> (Fig. S6D-E). This combination of  
24 current changes buffers the net current at a tiny inward value, driving a depolarization slow  
25 enough to keep the neuron quiescent.

26 The full impact of I<sub>D</sub> on membrane trajectory depends on I<sub>D</sub>’s interplay with I<sub>Na</sub>, and I<sub>KDR</sub>.  
27 Together, these currents govern the interrupted state, elevating the membrane’s slope  
28 conductance compared to rest, yet rendering it hyperresponsive to depolarizing currents or  
29 excitatory synaptic inputs because of heightened Na<sup>+</sup> channel activation. The elevated  
30 excitability is also manifested by emerging subthreshold membrane oscillations (Bracci et al.,  
31 2003; Golomb et al., 2007) whose growth gives way to the resumption of spontaneous firing,  
32 marking the end of the persistent interruption.

1 ***Impact of persistent interruption of PV-INs firing on the CA1 hippocampal circuit***

2 Intermittent silences would provide fast-spiking neurons more time to recover from the high  
3 metabolic demands they face (Cohen et al., 2018; Hu et al., 2018). Interruption of firing would  
4 also favor replenishment of presynaptic vesicle pools depleted by rapid firing (Kraushaar and  
5 Jonas, 2000; Park et al., 2021). Intermittency would give cell biological benefit to fast-spiking  
6 neurons whether they switched from fast firing to silent individually or collectively. Further  
7 advantages for network function might arise from concerted silencing of multiple PV-INs by an  
8 anatomically divergent presynaptic director. Ensemble silencing would engage a subset of PV-  
9 INs as a functional unit. Indeed, multiple place cells in CA1 can undergo coordination by  
10 concerted firing of their inhibitory afferents (Geiller et al., 2022). The monosynaptic inhibitory  
11 output from PV-INs provides further divergence, fanning out to contact >1500 pyramidal cells  
12 (Sik et al., 1995). Thus, mechanisms regulating the activity of PV-INs will be amplified  
13 anatomically, just as prolongation of GABA-triggered silencing of PV-INs from tens to hundreds  
14 of milliseconds would widen any impact of disinhibition.

15 Our paired recordings of PV-INs and CA1 pyramidal cells explored the consequences of the  
16 firing interruption on information processing in the CA1 circuit. Under conditions mimicking CA1-  
17 PYR resting state firing, synaptic inhibition by a single PV-IN decreased CA1-PYR firing rate by  
18 ~3-fold. In turn, we demonstrated directly that shutting off this inhibition by an interruption of  
19 firing caused a rapid, powerful and consistent disinhibition of the local pyramidal neuron activity,  
20 an effect fully reversed by resumption of PV-INs firing. In parallel, we also showed that the  
21 interrupted state rendered PV-INs super-responsive to incoming inputs from the CA3 region,  
22 accentuating their potency as feedforward inhibitory elements (Buzsaki and Eidelberg, 1982;  
23 Fricker and Miles, 2000; Pouille and Scanziani, 2001), and possibly feedback inhibitory  
24 elements as well. Thus, feedforward inhibition is sensitized, dampening the net excitatory effect  
25 of input pathways. Altogether, the CA1 circuit will switch toward local information processing  
26 while veering away from receiving external inputs (Mizuseki et al., 2009; Mizuseki et al., 2012).

27 PV-INs strongly regulate CA1 population activity (Stark et al., 2013; Schlingloff et al., 2014),  
28 extending their influence in microcircuits. PV-INs, but not axo-axonic cells, are active during  
29 sharp wave-ripples (SPW-Rs), high-frequency oscillations associated with memory formation  
30 (Ylinen et al., 1995; Csicsvari et al., 1999; Klausberger et al., 2003; Klausberger and Somogyi,  
31 2008; Viney et al., 2013). We speculate that regulating PV-INs firing by mechanisms like those  
32 found here could help control SPW-R duration, consistent with computational modeling of  
33 disinhibitory interactions during SPW-Rs (Evangelista et al., 2020). In turn, the duration of CA1

1 SPW-Rs strongly affects performance in hippocampally-based learning and memory tasks  
2 (Fernandez-Ruiz et al., 2019).

3 **Possible implications for disinhibition and pattern-switching in neocortical systems**

4 In neocortex, *in vivo* studies have shown that PV-INs can experience intermittent bouts in a  
5 depolarized yet silent state close to AP threshold (Gentet et al., 2010; Yu et al., 2016). This  
6 raises the possibility that the persistent interruption of firing occurs outside the hippocampus  
7 and contributes more generally to *in vivo* regulation of PV-INs. In cortical areas, PV-INs are  
8 crucial in controlling neuronal network activity (Cardin et al., 2009; Sohal et al., 2009; Royer et  
9 al., 2012; Stark et al., 2013; Amilhon et al., 2015) and in regulating animal behavior (Donato et  
10 al., 2013; Kuhlman et al., 2013; McKenna et al., 2020). Disinhibition likely provides a permissive  
11 signal that allows input-selective integration by principal neurons (Lee et al., 2013; Karnani et  
12 al., 2016; Munoz et al., 2017; Turi et al., 2019). Inhibition of PV-INs is known to support learning  
13 and memory via downstream disinhibition of principal neurons (Letzkus et al., 2011; Wolff et al.,  
14 2014). Thus, more broadly beyond hippocampal CA1, the interruption of PV-IN firing and its net  
15 disinhibitory effect could participate in essential functions such as associative learning and  
16 spatially guided reward learning (Letzkus et al., 2011; Turi et al., 2019).

17 The persistent interruption of firing can be compared with forms of persistent network activity  
18 invoked to explain higher-order phenomena such as working memory and memory formation  
19 (Durstewitz et al., 2000; Egorov et al., 2002; Shu et al., 2003b). Networks have been found  
20 capable of maintaining an active condition in the absence of further external stimulation. The  
21 initiation of persistent activity can be cell-autonomous (Heyward et al., 2001; Egorov et al.,  
22 2002; Fuentealba et al., 2005; Loewenstein et al., 2005; Fransen et al., 2006; Tahvildari et al.,  
23 2007), sometimes reflecting integration of previous activity (Egorov et al., 2002; Loewenstein et  
24 al., 2005). In other cases, the maintenance of persistent activity requires continual  
25 neuromodulatory input (Egorov et al., 2002; Fransen et al., 2006; Tahvildari et al., 2007),  
26 engagement of other circuit elements (Shu et al., 2003b; Shu et al., 2003a), or participation of  
27 nearby astrocytes (Deemyad et al., 2018). In contrast, the persistent interruption of firing in PV-  
28 INs, while induced in a circuit context, is demonstrably sustained in a cell-autonomous manner.  
29 It is the first demonstration of switch-like changes in persistent firing activity initiated by a single  
30 presynaptic partner. Nonetheless, this simple flip-flopping between full-throated spiking or no  
31 firing could be an interactive building block of more complex circuit phenomena, incorporating  
32 neuromodulation, competing groups of neurons, non-neuronal partners and switching following  
33 integration of seconds-long trains of activity (Egorov et al., 2002; Fransen et al., 2006).

1    ***Cooperation between persistent interruption of firing and slow neuromodulation***

2    The interruption mechanism throws a new light on slowly acting neuromodulation. Oxytocin  
3    exemplifies agents that alter the intrinsic properties of PV-INs and drive them to fire rapidly and  
4    steadily. In this neuromodulatory setting, the firing interruption can relieve principal neurons  
5    from inhibition within milliseconds (Fig. 8D-G). The sharp transition would provide the kind of  
6    rapid disinhibitory switch invoked by Shen *et al.* to impose winner-take-all dynamics in a  
7    decision-making circuit (Shen et al., 2022). This disinhibitory scenario complements a distinct  
8    mechanism wherein spontaneous firing of PV-INs acts over many seconds to fatigue  
9    GABAergic synapses and thus weaken feedforward inhibition (Owen et al., 2013; Marlin et al.,  
10   2015). The common feature is an interplay between slow neuromodulators and fast GABAergic  
11    transmission that causes a net disinhibition of principal neurons. Such disinhibition could enable  
12    CA1 pyramidal cells to generate dendritic plateaus and potentially favor synaptic plasticity and  
13    place field formation (Magee and Grienberger, 2020).

1 **Material and Methods**

2 **Animals**

3 All experiments involving animals were approved by the Institutional Animal Care and Use  
4 Committee (IACUC) at New York University Langone Medical Center. For in vitro experiments,  
5 wild-type (C57BL/6) and transgenic mice (P17 – P30) of either sex were used indiscriminately in  
6 this study. For interneuron recordings in slices, homozygous Pv-Cre (Jackson Labs; Stock No.  
7 008069) or Sst-IRES-Cre (Jackson Labs; Stock No. 013044) mice were crossed with  
8 homozygous Ai9 mice (Jackson Labs; Stock No. 007909) to generate *Pv*;Ai9 and *Sst*;Ai9  
9 animals which demonstrated strong Td-Tomato expression in PV- or SST-expressing  
10 interneurons. For optogenetic stimulation of SST-expressing interneurons, homozygous Sst-  
11 IRES-Cre animals were crossed with homozygous Ai32 mice (Jackson Labs; Stock No.  
12 024109). This cross resulted in offspring with channelrhodopsin-2(H134R) (abbreviated as  
13 ChR2 in figures) expression in SST-expressing interneurons (*Sst*;Ai32).

14

15 **Acute hippocampal slice preparation**

16 Acute hippocampal slices (300  $\mu$ m) were prepared by deeply anesthetizing animals with  
17 isoflurane. The brain was rapidly extracted and placed in ice-cold slicing solution, containing (in  
18 mM): 185 sucrose, 25 NaHCO<sub>3</sub>, 2.5 KCl, 25 glucose, 1.25 NaH<sub>2</sub>PO<sub>4</sub>, 10 MgCl<sub>2</sub>, 0.5 CaCl<sub>2</sub>; pH  
19 7.4, 330 mOsm. This solution was continuously oxygenated with a 95% O<sub>2</sub> and 5% CO<sub>2</sub>  
20 mixture. The brain was dissected, and slices were cut on a Leica VT1000 S Vibrating blade  
21 microtome. Slices were transferred to heated (32°C) slicing solution for 30 minutes, after which  
22 slices were transferred to oxygenated artificial cerebrospinal fluid (ACSF), containing (in mM):  
23 125 NaCl, 25 NaHCO<sub>3</sub>, 2.5 KCl, 10 glucose, 2 CaCl<sub>2</sub>, 2 MgCl<sub>2</sub>; pH 7.4, 300 mOsm. Slices were  
24 left in this solution at room temperature for the duration of the experiment.

25

26 ***In vitro* electrophysiological recordings**

27 Acute slices were transferred to a recording chamber and held under a nylon mesh. The  
28 preparation was continuously perfused with oxygenated ACSF (2 ml/min) at room temperature  
29 (20  $\pm$  2°C, mean  $\pm$  SD), unless otherwise indicated (Fig. S1H-I: 31.3  $\pm$  0.9°C, mean  $\pm$  SD).  
30 Recording electrodes were prepared from borosilicate filaments (TW150-4, World Precision  
31 Instruments) on a P-97 Sutter Instrument micropipette puller and had a resistance of 3 – 6 M $\Omega$ .

1 For paired recordings, experiments were performed under an upright microscope (BX50WI,  
2 Olympus) equipped with a 40X objective. Whole-cell recordings were sequentially obtained by  
3 first bringing both recording electrodes (MP-285 micromanipulators, Sutter Instrument) close to  
4 targeted neurons and then forming giga-seals. For paired whole-cell electrophysiological  
5 recordings presented in Figs. 2 and 8, experiments were performed with a MultiClamp 700B  
6 amplifier and digitized at 10 kHz with a Digidata 1322A. Data was sent to a PC and acquired  
7 with the Clampex 9.2 software. All other electrophysiological recordings were performed with an  
8 upright microscope (BX61WI, Olympus) equipped with a 40X objective. The electrophysiological  
9 signal was amplified with an Axopatch 200B, digitized at 10 kHz (Digidata 1322A) and recorded  
10 on a PC equipped with the Clampex 8.2 software. The intracellular solution contained (in mM):  
11 130 K-gluconate, 10 HEPES, 2 MgCl<sub>2</sub>.6H<sub>2</sub>O, 2 Mg<sub>2</sub>ATP, 0.3 NaGTP, 7 Na<sub>2</sub>-Phosphocreatine,  
12 0.6 EGTA, 5 KCl; pH 7.2 and 295 mOsm. Under these conditions, the total intracellular [Cl<sup>-</sup>] was  
13 9 mM and the theoretical Cl<sup>-</sup> reversal potential was -69 mV. In experiments with elevated  
14 intracellular [Cl<sup>-</sup>] reported in Fig. S2L-M, the intracellular solution contained (in mM): 121.5 K-  
15 gluconate, 10 HEPES, 2 MgCl<sub>2</sub>.6H<sub>2</sub>O, 2 Mg<sub>2</sub>ATP, 0.3 NaGTP, 7 Na<sub>2</sub>-Phosphocreatine, 0.6  
16 EGTA, 13.5 KCl; pH 7.2 and 295 mOsm. Under these conditions, the total intracellular [Cl<sup>-</sup>] was  
17 17.5 mM and the theoretical Cl<sup>-</sup> reversal potential was -52 mV. Only cells with a series  
18 resistance below 25.7 MΩ were included. Series resistance was 18.12 ± 0.72 MΩ for current-  
19 clamp recordings presented in Fig. 1. Series resistance in the voltage-clamp recordings  
20 presented in Fig. 6A-C was 19.71 ± 1.68 MΩ (n = 8) and was not compensated. Schaffer  
21 collaterals were stimulated by positioning a tungsten electrode connected to a stimulus isolator  
22 (A360, World Precision Instruments) in the stratum radiatum of the CA3 region.  
23 Photostimulation of SST-INs was performed with 470 nm light from a light-emitting diode (LED)  
24 delivered to the slice with an optical fiber. A TTL signal was sent from the digitizer to an LED  
25 controller for precisely timed stimulation (WT&T inc.). For voltage-clamp recordings, neurons  
26 were held at the indicated potential in the figures. The liquid junction potential was not  
27 corrected. The following pharmacological reagents were used in this study: tetrodotoxin (1 μM,  
28 Sigma), bicuculline (10 μM, Sigma), CGP-55845 (2 μM, Tocris) dendrotoxin-K (50 nM,  
29 Alomone), dendrotoxin-I (50 nM, Alomone), K-Conotoxin RIIIK (200 nM, Alomone), Agitoxin-2  
30 (10 nM, Alomone), TGOT ((Thr<sup>1</sup>,Gly<sup>2</sup>)-oxytocin, 400 nM, Bachem).

31

32 ***In vivo* electrophysiological recordings and optogenetic stimulation**

1 All experiments were approved by the Institutional Animal Care and Use Committee (IACUC) at  
2 New York University Medical Center. *Sst*;;*Ai32* mice (n = 2; 28-35 gr, 4-6 months old; from  
3 *Ssttm2.1(cre)Zjh/J*, Jax stock number: 013044 and *B6.Cg-Gt(ROSA)26Sortm32(CAG-*  
4 *COP4\*H134R/EYFP)Hze/J*, Jax stock number: 024109) were implanted with 64-site silicon  
5 probes (NeuroNexus A5x12-16-Buz-lin-5mm-100-200-160-177) in dorsal CA1 (AP 2.0 mm, ML  
6 1.6 mm, DL 1.1 mm). Ground and reference wires were implanted in the skull above the  
7 cerebellum, and a grounded copper mesh hat was constructed shielding the probes. Probes  
8 were mounted on microdrives that were advanced to pyramidal layer over the course of 5-8  
9 days after surgery. A 100  $\mu$ m fiber optic was attached to the silicon probe (Valero et al., 2021).  
10 The back end of the fiber was coupled to a laser diode (450 nm blue, Osram Inc.). Animals were  
11 allowed to recover for at least one-week prior to recording. Mice were housed under standard  
12 conditions in the animal facility and kept on a 12 h reverse light/dark cycle. Electrophysiological  
13 data were acquired using an Intan RHD2000 system (Intan Technologies LLC) digitized with 30  
14 kHz rate. For optogenetic tagging of *Sst*-expressing neurons, blue laser light (450 nm, Osram  
15 Inc) pulses were delivered. The maximum light power at the tip of the optic fiber was 1 to 4 mW.  
16 20, 50 and 100 ms light pulses were delivered (n = 500 - 1000 times at each duration at 400  $\pm$   
17 200 ms random intervals).

18

## 19 **Biocytin revelation, neuronal tracing, and anatomical classification**

20 Neurons were passively filled with biocytin in the whole-cell configuration. Following recordings,  
21 the pipette was carefully retracted, and the acute slice was placed in a petri dish between filter  
22 papers. Slices were fixed overnight with 4% PFA in PBS. Biocytin was revealed by treating the  
23 slices with Triton (1%) and incubating overnight in an Alexa-633 conjugated streptavidin (1:200,  
24 ThermoFisher Scientific). The following day, slices were mounted on microscope slides with  
25 ProLong Gold (ThermoFisher Scientific). Images were acquired on a Zeiss confocal system  
26 (Axo Imager.Z2). Anatomical tracings were performed in Neurolucida 360 (2.70.1, MBF  
27 Bioscience) on a personal computer.

28 For anatomical classification, the axonal length in the dendritic layers (strata oriens and  
29 radiatum) and in the somatic layer (stratum pyramidale) were quantified in Neurolucida. For  
30 each cell, axonal length was measured using Neurolucida 360. The axonal length in the somatic  
31 or dendritic layers were then normalized to the total axonal length for each cell. Using this  
32 dataset, K-means clustering analysis in Python was used to cluster interneurons in two groups.

1 **Stereotaxic injections**

2 For stereotaxic surgeries, mice were anesthetized with isofluorane (2%–5%) and secured in a  
3 stereotaxic apparatus (Kopf). Glass pipettes (Drummond Scientific) were formed using a P-2000  
4 puller (Sutter Instrument) and were characterized by a long taper and 10-20  $\mu\text{m}$  diameter tips.  
5 Pipettes were back-filled with mineral oil (Fisher Scientific) before being loaded with pertussis  
6 toxin (Sigma P7208) and positioned over the lateral ventricle (coordinates relative to bregma, in  
7 mm: 0.25 lateral, 0.3 anterior, -3 ventral). A small drill hole was made in the skull to allow for  
8 pipette insertion. 1 – 2  $\mu\text{L}$  of 0.1 g/L pertussis toxin were injected unilaterally into the ventricle.  
9 Experiments were performed 24 – 72 hours following injection. Throughout the surgery, body  
10 temperature, breathing and heart rate were monitored. Saline was administered subcutaneously  
11 (s.c) to maintain hydration and the animal was monitored post-operationally for signs of distress  
12 and discomfort. Buprenorphine (0.1 mg/kg, s.c) was given for analgesia. No major adverse  
13 effects of the surgery or pertussis toxin injection were observed.

14

15 **Immunohistochemistry**

16 For localization of  $\text{K}_v1.1$  in PV-IN, 20  $\mu\text{m}$  thick hippocampal slices from Pv-Ai9 animals were  
17 prepared on a cryostat (CM3050 S, Leica). Slices were treated with a  $\text{K}_v1.1$  recombinant rabbit  
18 monoclonal antibody (SN66-06, ThermoFisher Scientific) overnight and with an Alexa-488  
19 conjugated secondary antibody for two hours on the following day. Images were acquired on a  
20 Zeiss confocal system (Axo Imager.Z2). Pv-Ai9-expressing interneurons were considered  
21 positive for  $\text{K}_v1.1$  if the Alexa-488 fluorescence intensity at the soma was two standard  
22 deviations above the surrounding background.

23

24 **Computational modeling**

25 A conductance-based fast-firing interneuron model was conceived from previously published  
26 data obtained in ModelDB ([senselab.med.yale.edu/modeldb/](http://senselab.med.yale.edu/modeldb/)) (Golomb et al., 2007). The model  
27 was implemented in NEURON (version 7.7). The model consisted of a single cylindrical  
28 compartment with a diameter of 10  $\mu\text{m}$  and a length of 10  $\mu\text{m}$ . Axial resistance was set to 100  
29  $\Omega\text{cm}$ , membrane capacitance was set to 1  $\mu\text{F}/\text{cm}^2$  and the leak conductance was set to  $g_{\text{pas}} =$   
30 0.0001  $\text{S}/\text{cm}^2$  with a reversal potential of -65 mV. The model contained a  $\text{Na}^+$  conductance ( $\text{Na}_t$ ;  
31 reversal potential: 50 mV;  $g_{\text{Na}} = 0.1125 \text{ S}/\text{cm}^2$ ) and a delayed-rectifying  $\text{K}^+$  conductance ( $\text{K}_{\text{dr}}$ ;

1 reversal potential: -90 mV;  $g_{K_{dr}} = 0.225 \text{ S/cm}^2$ ) (Golomb et al., 2007) as well as an inactivating  
2  $K^+$  conductance ( $K_D$ ) (Lien et al., 2002). These conductances were modeled using the Hodgkin-  
3 Huxley formalism. Parameters of  $Na_t$  and  $K_{dr}$  were left unchanged. The maximum conductance  
4  $G_D$  of the inactivating  $K^+$  conductance was empirically determined based on the firing frequency  
5 measured experimentally before (77 Hz) and after DTX treatment (90 Hz) and set to 0.01  $\text{S/cm}^2$ .  
6 Temperature during simulations was set to 24°C. Excitatory and inhibitory synaptic  
7 conductances were modeled with a double-exponential time course of onset and decay.  
8 Excitatory currents had rise and decay times of 0.2 ms and 2 ms, a maximum conductance of  
9 0.3 nS, and a reversal potential of 0 mV. Inhibitory currents had rise and decay times of 1 ms  
10 and 50 ms, a maximum conductance of 0.6 nS, and a reversal potential of -65 mV. Decay time  
11 and maximum conductance of inhibitory synapses were systematically varied to generate Fig.  
12 7B. Simulations were performed with a step size of 0.025 ms. Simulations were performed on a  
13 personal computer in the NEURON interface controlled by Python and simulated traces were  
14 analyzed in Igor Pro 6.37 (Wavemetrics).

15

## 16 **Electrophysiological data analysis**

17 *In vitro* electrophysiological data was analyzed in Clampfit 10.3 (Molecular Devices) and in Igor  
18 Pro 6.37 (Wavemetrics). The likelihood of observing a firing interruption was obtained by  
19 dividing the number of sweeps showing a successful interruption by the total number of  
20 acquired sweeps. An interruption was deemed successful if the silence period exceeded the  
21 IPSP duration. The IPSP duration was measured from its initiation to 95% recovery. The  
22 interruption duration was measured as the time from the IPSP onset to time of the first AP after  
23 firing resumption. For graphs representing the AP frequency as a function of time, the timing of  
24 the AP was determined at its peak amplitude and the data was binned in 20 ms width.

25 For *in vivo* electrophysiological data analysis, spike sorting was performed semi-automatically  
26 with KiloSort 47 (<https://github.com/cortex-lab/KiloSort>), using our own pipeline KilosortWrapper  
27 (a wrapper for KiloSort, DOI: <https://github.com/brendonw1/KilosortWrapper>). This was followed  
28 by manual adjustment of the waveform clusters using the software Phy2  
29 (<https://github.com/kwikteam/phy>) and plugins for Phy designed in the laboratory  
30 (<https://github.com/petersenpeter/phy-plugins>). The following parameters were used for the  
31 Kilosort clustering: ops.Nfilt: 6 \* numberChannels; ops.nt0: 64; ops.whitening: 'full';  
32 ops.nSkipCov: 1; ops.whiteningRange: 64; ops.criterionNoiseChannels: 0.00001; ops.Nrank: 3;

1 ops.nfullpasses: 6; ops.maxFR: 20000; ops.fshigh: 300; ops.ntbuff: 64; ops.scaleproc: 200;  
2 ops.Th: [4 10 10]; ops.lam: [5 20 20]; ops.nannealpasses: 4; ops.momentum: 1./[20 800];  
3 ops.shuffle\_clusters: 1.

4 Unit clustering generated three separable groups (Fig. 3B) based on their autocorrelograms,  
5 waveform characteristics and firing rate. Putative pyramidal cells, narrow-waveform  
6 interneurons and wide-waveform interneurons were tentatively separated based by these three  
7 clusters (Valero et al., 2022). Definitive cell identity was assigned after inspection of all features,  
8 assisted by monosynaptic excitatory and inhibitory interactions between simultaneously  
9 recorded, well-isolated units and optogenetic responses. Units were defined as optically tagged  
10 using a p value cutoff of  $10^{-3}$  (Valero et al., 2021).

11

## 12 **Statistical Treatment**

13 For *in vitro* electrophysiological data, Shapiro-Wilk test was performed to test for normality of  
14 data distribution. For normally distributed data, a paired or unpaired Student's t-test was  
15 performed to evaluate statistical significance. For non-normally distributed data, a Mann-  
16 Whitney U test was used where indicated. Pearson rank correlation was used to evaluate  
17 correlation between parameters in Figs. S1F and 4D-E. A two-way ANOVA was used to  
18 evaluate statistical significance in Fig. S7C. Experimental groups were deemed significantly  
19 different if  $p < 0.05$ . Statistical tests were performed in Clampfit 10.3 (Molecular Devices) and in  
20 Python. Statistical significance is reported on figures as follows: \*  $p < 0.05$ , \*\*  $p < 0.01$ , \*\*\*  $p <$   
21 0.001.

22 Statistical analyses for *in vivo* electrophysiological data were performed blinded or did not  
23 require manual scoring and were performed with standard MATLAB functions. No specific  
24 analysis was used to estimate minimal population sample and the number of animals, trials, and  
25 recorded cells were similar to those employed in previous works (Valero et al., 2021; Valero et  
26 al., 2022). Unless otherwise noted, for all tests, non-parametric two-tailed Wilcoxon's paired  
27 signed-rank test and Kruskal-Wallis one-way analysis of variance were used. When parametric  
28 tests were used, the data satisfied the criteria for normality (Kolmogorov-Smirnov test) and  
29 equality of variance (Bartlett's test for equal variance). For multiple comparisons, Tukey's  
30 honesty post hoc test was employed and the corrected \* $p < 0.05$ , \*\* $p < 0.01$ , \*\*\* $p < 0.001$  are  
31 indicated, two-sided. Boxplots represent median and 25th/75th percentiles and their whiskers  
32 the data range. In some of the plots, outlier values are not shown for clarity of presentation, but

- 1 all data points and animal were always included in the statistical analysis. The exact number of
- 2 replications for each experiment is detailed in the text and figures.

1 **Figure Legends**

2 **Figure 1: Synaptic inhibition persistently interrupts firing of PV-INs**

3 **A**, Scheme showing the recording configuration. **B**, PV-INs were depolarized with a square  
4 current injection to elicit firing. In absence of optogenetic stimulation, PV-INs demonstrate a  
5 classical fast and non-adapting spiking phenotype. Brief optogenetic stimulation generated an  
6 IPSP followed by an interruption of firing. **C**, Summary data of AP firing frequency as a function  
7 of time for experiments shown in B, in absence (light gray) or presence of optogenetic  
8 stimulation (black). The red trace shows the average of traces when no firing interruption was  
9 induced, and the orange traces show individual trials as examples. **D**, Likelihood of observing a  
10 firing interruption for all PV-INs sampled. **E**, Duration in seconds of the IPSP compared to the  
11 silence period imposed by the firing interruption. The dashed line represents the duration of the  
12 depolarizing step, therefore capping the possible interruption duration value at 1 s. **F**,  
13 Neurolucida anatomical reconstructions of PV-INs recorded and filled with biocytin. The  
14 dendrites are shown in black and the axon is shown in red.

15

16 **Figure 2: A single presynaptic interneuron can interrupt PV-INs firing**

17 **A**, Recording configuration and post hoc Neurolucida reconstruction of a synaptically-connected  
18 pair of interneurons. The dendrites of the presynaptic interneuron are shown in black and its  
19 axon is shown in red. The dendrites of the postsynaptic neurons are shown in purple and the  
20 axon is in blue. **B**, Current-clamp recordings in a pair of synaptically-connected interneurons. A  
21 single AP evoked by current injection in the presynaptic cell is sufficient to interrupt post-  
22 synaptic firing. Four consecutive epochs are shown for the postsynaptic interneurons. **C**, Same  
23 pair as in B, with five APs evoked at 100 Hz in the presynaptic cell. Insets scale bar for B and C:  
24 40 mV vertical, 5 ms horizontal. **D**, Summary graph showing the firing interruption likelihood as  
25 a function of the number of presynaptic APs. The five and ten AP bursts were delivered at 100  
26 Hz. The amplitude of the depolarizing current injection in the postsynaptic PV-INs was  $255 \pm$   
27  $22.55$  pA ( $n = 11$ ). Presynaptic PV- and SST-INs had similar likelihood to interrupt firing when  
28 five APs were evoked ( $n = 7$  and  $n = 4$ , respectively;  $p = 0.11$ ). **E**, Voltage-clamp recordings  
29 performed at 0 mV in the postsynaptic neurons reveal large IPSCs for single and five APs-  
30 evoked bursts. Black traces are the average of 50 consecutive sweeps shown in gray. **F**, top,  
31 Normalized IPSC amplitude as a function of stimulus number showing short-term depression.  
32 IPSC amplitude was measured from the trough to the peak. bottom, Absolute peak amplitude of

1 the IPSC burst measured from baseline for all AP-evoked IPSC reveals a relatively efficient  
2 summation, with the amplitude declining gradually due to the short-term depression. **G**, Current-  
3 clamp recordings of single- and five APs-evoked IPSP. Black and red traces are the average of  
4 3 consecutive sweeps. The maximal peak amplitude of the five APs-evoked IPSP is similar to a  
5 single AP-evoked IPSP, however the decay kinetics are greatly increased by five APs bursts.  
6 IPSCs measured in optogenetic experiments (**H**), in paired-recordings (**I**) and summary graph of  
7 IPSC amplitudes (**J**). **K**, Estimation of the number of SST-INs synapsing onto a single PV-IN.

8

9 **Figure 3: PV-INs silencing persists following optogenetic stimulation *in vivo***

10 **A**, Schematic of the recording configuration showing combined multisite silicon probe and  
11 optical fiber in the CA1 hippocampus of an *Sst<sup>-/-</sup>;Ai32* mouse. Animals from the same strains  
12 were used for *in vivo* and *in vitro* experiments. **B**, Burst index as a function of spike duration for  
13 all neurons sampled (n = 130 units) reveals distinct neuron populations identified as narrow-  
14 waveform interneurons (red), pyramidal cells (blue), wide-waveform interneurons (teal) and  
15 somatostatin-positive light-sensitive interneurons (black, n = 9 cells). **C**, Average spike  
16 waveform for neural population identified in B (left), including all somatostatin-positive light-  
17 sensitive interneurons (middle), and through-to-peak spike duration (right). **D**, Same as in C for  
18 firing auto-correlograms and rise time to peak. **E**, AP raster plots of 9 narrow-waveform INs  
19 during 1500 optogenetic stimulation trials for each cell. Trials are ranked by silencing duration  
20 induced by 50 ms optogenetic stimulation. **F**, Summary graph for delay to recovery of spiking for  
21 all narrow-waveform INs sampled, showing the averages of trials for the lowest, middle, and  
22 highest percentiles across neurons. **G**, **H**, Optogenetic stimulation for 20 ms (G) or 100 ms (H)  
23 in other cell types (pyramidal, wide-waveform INs and Sst-expressing INs) results in briefer  
24 silencing duration than in narrow-waveform INs. Warmer colors correspond to higher firing  
25 rates. **I**, Delay to recovery of spiking as a function of the optogenetic stimulation duration for all  
26 cell types. Narrow-waveform INs are silenced by optogenetic stimulation of SST-INs for longer  
27 on average of all trials than other cell types. \* p < 0.05; \*\* p < 0.01; \*\*\* p < 0.001 for all statistical  
28 tests on the data presented.

29

30 **Figure 4: Postsynaptic membrane hyperpolarization through GABA<sub>A</sub> receptor activation**  
31 **or current injections interrupts PV-INs firing**

1 **A**, Application of the GABA<sub>A</sub> antagonist bicuculline (10  $\mu$ M) abolishes the optogenetically-  
2 induced interruption of firing. **B**, Hyperpolarizing current injection in PV-INs reliably interrupts  
3 their firing. **C**, Summary graph showing the AP frequency as a function of time for  
4 optogenetically-evoked stimulation before (black) and after bicuculline application (red). Data is  
5 also shown for hyperpolarization-induced interruption, revealing no difference between  
6 interruptions evoked by optogenetic stimulation or current injection. **D**, Interruption likelihood as  
7 a function of the hyperpolarizing ramp amplitude reveals no significant correlation. **E**,  
8 Interruption likelihood plotted as a function of the ramp duration reveals that a slower membrane  
9 re-depolarization is more likely to interrupt firing. **F**, A square hyperpolarizing pulse of 20 or 400  
10 ms with a fast membrane re-depolarization fails to interrupt firing. **G**, Interruption likelihood for  
11 paired experiments performed with optogenetic stimulation or square hyperpolarizing pulses.

12

13 **Figure 5:  $K_v1.1$  is required to interrupt firing**

14 **A**, Current-clamp recording from a PV-IN showing membrane potential dynamics upon firing  
15 resumption. **B**, Zoomed-in data from A, showing the APs indicated by arrows. The first AP  
16 demonstrates a more depolarized take-off potential and a smaller amplitude. **C**, Phase plot for  
17 the three APs shown in B. **D**, During the firing interruption, the membrane potential  
18 demonstrates subthreshold oscillations and is gradually depolarized. **E**, Immunohistochemistry  
19 experiments reveal that  $K_v1.1$  is expressed in PV-expressing CA1 interneurons in the regions  
20 bordering pyramidal cell layer. White arrows indicate four PV-INs with strong  $K_v1.1$  correlation  
21 at the somatic level. **F**, Optogenetically-induced firing interruption before (black) and after  
22 (purple) DTX-K bath application (three consecutive epochs are shown for both control and DTX-  
23 K). **G**, AP frequency as a function of time for experiments performed in control and in presence  
24 of DTX-K or DTX-I. Inset shows that DTX-K mostly prevents the gradual membrane  
25 depolarization upon depolarizing current injection.

26

27 **Figure 6: The interplay between  $K_v1.1$ -current and  $Na^+$ -current generates a stable point in  
28 membrane potential which results in a hyper responsive state**

29 **A**, Voltage-clamp recordings from a PV-IN during ramp depolarization protocols. Data is shown  
30 in control (black), in presence of TTX (gold) and with both TTX and DTX-K present (purple). **B**,  
31 Arithmetic subtraction reveals the DTX-sensitive and the TTX-sensitive currents during the ramp

1 depolarization protocol. **C**, Current plotted as a function of voltage for experiments presented in  
2 A and B.  $I_{DTX-s}$  and  $I_{TTX-s}$  were measured in the same neurons and shaded areas represent the  
3 standard error. **D**, Membrane potential dynamics during the firing interruption. Neurons were  
4 interrupted optogenetically, and brief hyperpolarizing current pulses of identical amplitude were  
5 applied during the interruption or at resting membrane potential. **E**, Membrane potential as a  
6 function of time for hyperpolarizing current injections delivered during the interruption (top) or at  
7 resting membrane potential (bottom) reveals drastically different dynamics. **F**, Input resistance  
8 measured at baseline and during the interruption from the same sweeps. **G**, Scheme showing  
9 the experimental design. Whole-cell current-clamp recordings were performed from PV-INs and  
10 neurons were optogenetically-interrupted. Schaffer collaterals stimulation was delivered during  
11 the interruption or at resting membrane potential by a stimulation electrode placed in CA3. **H**,  
12 Three consecutive sweeps showing that subthreshold EPSPs at rest become suprathreshold  
13 during the firing interruption. **I**, Changes in membrane potential evoked by Schaffer collaterals  
14 stimulation at resting membrane potential (top) or during the interruption (bottom). **J**, AP  
15 probability for stimuli delivered at resting membrane potential or during the interruption.

16

17 **Figure 7: A single-compartment conductance-based model reproduces the core features**  
18 **of the firing interruption**

19 **A**, Examples of firing returned by the model tested under different conditions. A hyperpolarizing  
20 pulse with a slow re-depolarization interrupts the model neuron in presence but not in absence  
21 of  $I_D$ . Decreasing the depolarization to match the baseline firing frequency in presence of  $I_D$   
22 could not rescue the interruption. In addition, a square hyperpolarizing pulse failed to interrupt  
23 firing (lower right). Inset in A shows the first two APs upon firing resumption. **B**, An inhibitory  
24 conductance in the model reliably interrupted firing. The model IPSP parameters required to  
25 interrupt firing were comparable to the properties of experimentally-measured IPSP sufficient to  
26 reliably generate the interruption (blue cross). In this comparison, the pre-interruption firing  
27 duration was kept constant (1 s) across experimental and modelling conditions. **C-E**, The model  
28 is hypersensitive to excitatory inputs during the firing interruption. An excitatory conductance  
29 (arrowhead) was inserted at resting membrane potential (gray) or during the interruption of firing  
30 (black). **D**, At resting membrane potential, the excitatory conductance is subthreshold while the  
31 same stimulus generates an AP during the interrupted state. **E**, Quantification of the excitatory  
32 strength required to generate an AP at resting membrane potential compared to that needed  
33 during the firing interruption. **F1**, Membrane potential as a function of time during the firing

1 interruption. Note the slow and gradual depolarization observed during the interruption. **F2**,  $I_D$   
2 and  $I_{Na}$  dynamics during the interruption. **F3**,  $Na^+$  channel inactivation variable ( $h$ -gate) as a  
3 function of time during the interruption segment reveals that PV-INs are increasingly  
4 accommodated. **G-H**, Interrogating the model in voltage-clamp with membrane potential  
5 dynamics known to interrupt neurons experimentally (hyperpolarizing step followed by a slow  
6 ramp re-depolarization, full line) or to cause resumption of their firing (square hyperpolarizing  
7 pulse, dotted line) simulates a firing resumption that is associated with a fast  $Na^+$  current.

8

9 **Figure 8: The firing interruption disinhibits CA1 pyramidal neurons**

10 **A**, Current-clamp recording from a PV-IN at baseline (top) and following application of TGOT  
11 (bottom) to drive oxytocin receptor (OXTR) activation. At baseline, optogenetic activation of  
12 SST-INs (blue tick) causes only a brief GABAergic inhibitory response; after TGOT application  
13 drives AP firing, the same optogenetic activation of SST-INs causes persistent interruption of  
14 PV-IN firing. Thus, OXTR neuromodulation provides a platform for the interruption mechanism.  
15 10 traces are shown overlayed for baseline and TGOT. **B**, Graph showing the pooled effect of  
16 TGOT and optogenetic activation of SST-INs on overall PV-IN firing ( $n = 5$ ). **C**, Summary graph  
17 ( $n = 4$ ) showing that optogenetically-evoked synaptic inhibition consistently and abruptly  
18 interrupts PV-INs driven to fire by OXTR activation. **D, E**, Paired whole-cell current-clamp  
19 recording from a PV-IN (black) synaptically connected to a CA1-PYR (red); 3 consecutive  
20 sweeps during the firing interruption induced by current injection as in F. **F**, Time course of  
21 average AP firing frequency in PV-INs (black) and CA1-PYRs for  $n = 6$  neuron pairs.  
22 Interruption induced by IPSP-like hyperpolarization (top trace). Shaded areas correspond to the  
23 standard error. **G**, Summary graph showing the AP frequency recorded in the pyramidal cell for  
24 500 ms windows measured during PV-IN firing, at the firing interruption onset ( $n = 6$ ; \*\*  $p < 0.01$ )  
25 and following PV-IN firing resumption ( $n = 4$ ; \*\*  $p < 0.01$ ; 2 CA1-PYRs excluded because  
26 resumption of PV-IN firing was too rare to allow reliable assessment of pyramidal firing rate).

1 **References**

2 Acsady L, Gorcs TJ, Freund TF (1996) Different populations of vasoactive intestinal  
3 polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or  
4 interneurons in the hippocampus. *Neuroscience* 73:317-334.

5 Acsady L, Katona I, Martinez-Guijarro FJ, Buzsaki G, Freund TF (2000) Unusual target  
6 selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. *J  
7 Neurosci* 20:6907-6919.

8 Amilhon B, Huh CY, Manseau F, Ducharme G, Nichol H, Adamantidis A, Williams S (2015)  
9 Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta Frequency.  
10 *Neuron* 86:1277-1289.

11 Bartos M, Elgueta C (2012) Functional characteristics of parvalbumin- and cholecystokinin-  
12 expressing basket cells. *J Physiol* 590:669-681.

13 Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in  
14 inhibitory interneuron networks. *Nat Rev Neurosci* 8:45-56.

15 Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses  
16 in a dentate gyrus interneuron network. *J Neurosci* 21:2687-2698.

17 Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JR, Jonas P (2002) Fast synaptic  
18 inhibition promotes synchronized gamma oscillations in hippocampal interneuron  
19 networks. *Proc Natl Acad Sci U S A* 99:13222-13227.

20 Bracci E, Centonze D, Bernardi G, Calabresi P (2003) Voltage-dependent membrane potential  
21 oscillations of rat striatal fast-spiking interneurons. *J Physiol* 549:121-130.

22 Buzsaki G, Eidelberg E (1982) Direct afferent excitation and long-term potentiation of  
23 hippocampal interneurons. *J Neurophysiol* 48:597-607.

24 Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the  
25 behaving rat. *Brain Res* 287:139-171.

26 Campanac E, Gasselin C, Baude A, Rama S, Ankri N, Debanne D (2013) Enhanced intrinsic  
27 excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits.  
28 *Neuron* 77:712-722.

29 Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009)  
30 Driving fast-spiking cells induces gamma rhythm and controls sensory responses.  
31 *Nature* 459:663-667.

32 Carter BC, Giessel AJ, Sabatini BL, Bean BP (2012) Transient sodium current at subthreshold  
33 voltages: activation by EPSP waveforms. *Neuron* 75:1081-1093.

34 Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N (2016) Hipposeq: a  
35 comprehensive RNA-seq database of gene expression in hippocampal principal  
36 neurons. *Elife* 5:e14997.

37 Chamberland S, Topolnik L (2012) Inhibitory control of hippocampal inhibitory neurons. *Front  
38 Neurosci* 6:165.

39 Chamberland S, Salesse C, Topolnik D, Topolnik L (2010) Synapse-specific inhibitory control of  
40 hippocampal feedback inhibitory circuit. *Front Cell Neurosci* 4:130.

41 Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal  
42 activity in hippocampus by individual GABAergic interneurons. *Nature* 378:75-78.

43 Cobb SR, Halasy K, Vida I, Nyiri G, Tamas G, Buhl EH, Somogyi P (1997) Synaptic effects of  
44 identified interneurons innervating both interneurons and pyramidal cells in the rat  
45 hippocampus. *Neuroscience* 79:629-648.

46 Cohen SM, Suutari B, He X, Wang Y, Sanchez S, Tirko NN, Mandelberg NJ, Mullins C, Zhou G,  
47 Wang S, Kats I, Salah A, Tsien RW, Ma H (2018) Calmodulin shuttling mediates  
48 cytonuclear signaling to trigger experience-dependent transcription and memory. *Nat  
49 Commun* 9:2451.

1 Connor JA, Stevens CF (1971) Prediction of repetitive firing behaviour from voltage clamp data  
2 on an isolated neurone soma. *J Physiol* 213:31-53.

3 Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsaki G (1999) Oscillatory coupling of  
4 hippocampal pyramidal cells and interneurons in the behaving Rat. *J Neurosci* 19:274-  
5 287.

6 Cui ED, Strowbridge BW (2019) Selective attenuation of Ether-a-go-go related K(+) currents by  
7 endogenous acetylcholine reduces spike-frequency adaptation and network correlation.  
8 *Elife* 8.

9 Czurko A, Hirase H, Csicsvari J, Buzsaki G (1999) Sustained activation of hippocampal  
10 pyramidal cells by 'space clamping' in a running wheel. *Eur J Neurosci* 11:344-352.

11 Deemyad T, Luthi J, Spruston N (2018) Astrocytes integrate and drive action potential firing in  
12 inhibitory subnetworks. *Nat Commun* 9:4336.

13 Donato F, Rompani SB, Caroni P (2013) Parvalbumin-expressing basket-cell network plasticity  
14 induced by experience regulates adult learning. *Nature* 504:272-276.

15 Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neurocomputational models of working  
16 memory. *Nat Neurosci* 3 Suppl:1184-1191.

17 Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA (2002) Graded persistent activity  
18 in entorhinal cortex neurons. *Nature* 420:173-178.

19 Evangelista R, Cano G, Cooper C, Schmitz D, Maier N, Kempter R (2020) Generation of sharp  
20 wave-ripple events by disinhibition. *J Neurosci*.

21 Eyring KW, Liu J, König GM, Hidema S, Nishimori K, Kostenis E, Tsien RW (2020) Oxytocin  
22 signals via Gi and Gq to drive persistent CA2 pyramidal cell firing and strengthen CA3-  
23 CA1 neurotransmission. *bioRxiv*:2020.2005.2007.082727.

24 Fernandez-Ruiz A, Oliva A, Fermino de Oliveira E, Rocha-Almeida F, Tingley D, Buzsaki G  
25 (2019) Long-duration hippocampal sharp wave ripples improve memory. *Science*  
26 364:1082-1086.

27 Francavilla R, Villette V, Luo X, Chamberland S, Munoz-Pino E, Camire O, Wagner K, Kis V,  
28 Somogyi P, Topolnik L (2018) Connectivity and network state-dependent recruitment of  
29 long-range VIP-GABAergic neurons in the mouse hippocampus. *Nat Commun* 9:5043.

30 Fransen E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA (2006) Mechanism of graded  
31 persistent cellular activity of entorhinal cortex layer v neurons. *Neuron* 49:735-746.

32 Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. *Hippocampus* 6:347-470.

33 Fricker D, Miles R (2000) EPSP amplification and the precision of spike timing in hippocampal  
34 neurons. *Neuron* 28:559-569.

35 Fuentealba P, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M (2005) Membrane bistability  
36 in thalamic reticular neurons during spindle oscillations. *J Neurophysiol* 93:294-304.

37 Geiller T, Sadeh S, Rolotti SV, Blockus H, Vancura B, Negrean A, Murray AJ, Rozsa B, Polleux  
38 F, Clopath C, Losonczy A (2022) Local circuit amplification of spatial selectivity in the  
39 hippocampus. *Nature* 601:105-109.

40 Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CC (2010) Membrane potential  
41 dynamics of GABAergic neurons in the barrel cortex of behaving mice. *Neuron* 65:422-  
42 435.

43 Goldberg EM, Clark BD, Zagha E, Nahmani M, Erisir A, Rudy B (2008) K<sup>+</sup> channels at the axon  
44 initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic  
45 interneurons. *Neuron* 58:387-400.

46 Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D (2007) Mechanisms of firing  
47 patterns in fast-spiking cortical interneurons. *PLoS Comput Biol* 3:e156.

48 Gullidge AT, Kampa BM, Stuart GJ (2005) Synaptic integration in dendritic trees. *J Neurobiol*  
49 64:75-90.

1 Gulyas AI, Megias M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and  
2 inhibitory synapses converging onto single interneurons of different types in the CA1  
3 area of the rat hippocampus. *J Neurosci* 19:10082-10097.

4 Harris KD, Hochgerner H, Skene NG, Magno L, Katona L, Bengtsson Gonzales C, Somogyi P,  
5 Kessaris N, Linnarsson S, Hjerling-Leffler J (2018) Classes and continua of hippocampal  
6 CA1 inhibitory neurons revealed by single-cell transcriptomics. *PLoS Biol* 16:e2006387.

7 Hefft S, Jonas P (2005) Asynchronous GABA release generates long-lasting inhibition at a  
8 hippocampal interneuron-principal neuron synapse. *Nat Neurosci* 8:1319-1328.

9 Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsaki G (2000) Intracellular  
10 features predicted by extracellular recordings in the hippocampus *in vivo*. *J Neurophysiol*  
11 84:390-400.

12 Heyward P, Ennis M, Keller A, Shipley MT (2001) Membrane bistability in olfactory bulb mitral  
13 cells. *J Neurosci* 21:5311-5320.

14 Hirase H, Czurko A, Csicsvari J, Buzsaki G (1999) Firing rate and theta-phase coding by  
15 hippocampal pyramidal neurons during 'space clamping'. *Eur J Neurosci* 11:4373-4380.

16 Hu H, Jonas P (2014) A supercritical density of Na(+) channels ensures fast signaling in  
17 GABAergic interneuron axons. *Nat Neurosci* 17:686-693.

18 Hu H, Roth FC, Vanda D, Jonas P (2018) Complementary Tuning of Na(+) and K(+) Channel  
19 Gating Underlies Fast and Energy-Efficient Action Potentials in GABAergic Interneuron  
20 Axons. *Neuron* 98:156-165 e156.

21 Jinno S, Kosaka T (2000) Colocalization of parvalbumin and somatostatin-like immunoreactivity  
22 in the mouse hippocampus: quantitative analysis with optical disector. *J Comp Neurol*  
23 428:377-388.

24 Karnani MM, Jackson J, Ayzenshtat I, Hamzehei Sichani A, Manoocheri K, Kim S, Yuste R  
25 (2016) Opening Holes in the Blanket of Inhibition: Localized Lateral Disinhibition by VIP  
26 Interneurons. *J Neurosci* 36:3471-3480.

27 Kawaguchi Y, Katsumaru H, Kosaka T, Heizmann CW, Hama K (1987) Fast spiking cells in rat  
28 hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. *Brain Res*  
29 416:369-374.

30 Khaliq ZM, Bean BP (2008) Dynamic, nonlinear feedback regulation of slow pacemaking by A-  
31 type potassium current in ventral tegmental area neurons. *J Neurosci* 28:10905-10917.

32 Kiehn O, Eken T (1998) Functional role of plateau potentials in vertebrate motor neurons. *Curr  
33 Opin Neurobiol* 8:746-752.

34 Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of  
35 hippocampal circuit operations. *Science* 321:53-57.

36 Klausberger T, Marton LF, Baude A, Roberts JD, Magill PJ, Somogyi P (2004) Spike timing of  
37 dendrite-targeting bistratified cells during hippocampal network oscillations *in vivo*. *Nat  
38 Neurosci* 7:41-47.

39 Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P (2003)  
40 Brain-state- and cell-type-specific firing of hippocampal interneurons *in vivo*. *Nature*  
41 421:844-848.

42 Kraushaar U, Jonas P (2000) Efficacy and stability of quantal GABA release at a hippocampal  
43 interneuron-principal neuron synapse. *J Neurosci* 20:5594-5607.

44 Kuhlman SJ, Olivas ND, Tring E, Ikrar T, Xu X, Trachtenberg JT (2013) A disinhibitory  
45 microcircuit initiates critical-period plasticity in the visual cortex. *Nature* 501:543-546.

46 Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B (2013) A disinhibitory circuit mediates motor  
47 integration in the somatosensory cortex. *Nat Neurosci* 16:1662-1670.

48 Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Luthi A (2011) A disinhibitory  
49 microcircuit for associative fear learning in the auditory cortex. *Nature* 480:331-335.

1 Lien CC, Martina M, Schultz JH, Ehmke H, Jonas P (2002) Gating, modulation and subunit  
2 composition of voltage-gated K(+) channels in dendritic inhibitory interneurones of rat  
3 hippocampus. *J Physiol* 538:405-419.

4 Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H, Yarom Y, Häusser M  
5 (2005) Bistability of cerebellar Purkinje cells modulated by sensory stimulation. *Nat  
6 Neurosci* 8:202-211.

7 Lorincz A, Nusser Z (2008) Cell-type-dependent molecular composition of the axon initial  
8 segment. *J Neurosci* 28:14329-14340.

9 Lovett-Barron M, Turi GF, Kaifosh P, Lee PH, Bolze F, Sun XH, Nicoud JF, Zemelman BV,  
10 Sternson SM, Losonczy A (2012) Regulation of neuronal input transformations by  
11 tunable dendritic inhibition. *Nat Neurosci* 15:423-430, S421-423.

12 Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by  
13 inhibitory interneurons. *J Neurophysiol* 66:1059-1079.

14 Magee JC, Grienberger C (2020) Synaptic Plasticity Forms and Functions. *Annu Rev Neurosci*  
15 43:95-117.

16 Marlin BJ, Mitre M, D'Amour J A, Chao MV, Froemke RC (2015) Oxytocin enables maternal  
17 behaviour by balancing cortical inhibition. *Nature* 520:499-504.

18 Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular  
19 differences between voltage-gated K<sup>+</sup> channels of fast-spiking interneurons and  
20 pyramidal neurons of rat hippocampus. *J Neurosci* 18:8111-8125.

21 McKenna JT, Thankachan S, Uygun DS, Shukla C, McNally JM, Schiffino FL, Cordeira J,  
22 Katsuki F, Zant JC, Gamble MC, Deisseroth K, McCarley RW, Brown RE, Strecker RE,  
23 Basheer R (2020) Basal Forebrain Parvalbumin Neurons Mediate Arousal from Sleep  
24 Induced by Hypercarbia or Auditory Stimuli. *Curr Biol* 30:2379-2385 e2374.

25 Miles R (1990) Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells  
26 of the guinea-pig *in vitro*. *J Physiol* 428:61-77.

27 Mizuseki K, Sirota A, Pastalkova E, Buzsaki G (2009) Theta oscillations provide temporal  
28 windows for local circuit computation in the entorhinal-hippocampal loop. *Neuron*  
29 64:267-280.

30 Mizuseki K, Royer S, Diba K, Buzsaki G (2012) Activity dynamics and behavioral correlates of  
31 CA3 and CA1 hippocampal pyramidal neurons. *Hippocampus* 22:1659-1680.

32 Munoz W, Tremblay R, Levenstein D, Rudy B (2017) Layer-specific modulation of neocortical  
33 dendritic inhibition during active wakefulness. *Science* 355:954-959.

34 Otsu Y, Donneger F, Schwartz EJ, Poncer JC (2020) Cation-chloride cotransporters and the  
35 polarity of GABA signalling in mouse hippocampal parvalbumin interneurons. *J Physiol*  
36 598:1865-1880.

37 Owen SF, Tuncdemir SN, Bader PL, Tirko NN, Fishell G, Tsien RW (2013) Oxytocin enhances  
38 hippocampal spike transmission by modulating fast-spiking interneurons. *Nature*  
39 500:458-462.

40 Park C, Chen X, Tian CL, Park GN, Chenouard N, Lee H, Yeo XY, Jung S, Tsien RW, Bi GQ,  
41 Park H (2021) Unique dynamics and exocytosis properties of GABAergic synaptic  
42 vesicles revealed by three-dimensional single vesicle tracking. *Proc Natl Acad Sci U S A*  
43 118.

44 Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ (2017) Hippocampal  
45 GABAergic Inhibitory Interneurons. *Physiological reviews* 97:1619-1747.

46 Pouille F, Scanziani M (2001) Enforcement of temporal fidelity in pyramidal cells by somatic  
47 feed-forward inhibition. *Science* 293:1159-1163.

48 Pruss H, Grosse G, Brunk I, Veh RW, Ahnert-Hilger G (2010) Age-dependent axonal expression  
49 of potassium channel proteins during development in mouse hippocampus. *Histochem  
50 Cell Biol* 133:301-312.

1 Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsaki G (2012) Control of  
2 timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition.  
3 *Nat Neurosci* 15:769-775.

4 Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K<sup>+</sup> channels designed for high-  
5 frequency repetitive firing. *Trends Neurosci* 24:517-526.

6 Schlingloff D, Kali S, Freund TF, Hajos N, Gulyas AI (2014) Mechanisms of sharp wave initiation  
7 and ripple generation. *J Neurosci* 34:11385-11398.

8 Sheffield ME, Best TK, Mensh BD, Kath WL, Spruston N (2011) Slow integration leads to  
9 persistent action potential firing in distal axons of coupled interneurons. *Nat Neurosci*  
10 14:200-207.

11 Shen B, Louie K, Glimcher P (2022) Flexible control of representational dynamics in a  
12 disinhibition-based model of decision making. *bioRxiv*:2022.2004.2018.488670.

13 Shu Y, Hasenstaub A, McCormick DA (2003a) Turning on and off recurrent balanced cortical  
14 activity. *Nature* 423:288-293.

15 Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA (2003b) Barrages of synaptic activity  
16 control the gain and sensitivity of cortical neurons. *J Neurosci* 23:10388-10401.

17 Sik A, Penttonen M, Ylinen A, Buzsaki G (1995) Hippocampal CA1 interneurons: an in vivo  
18 intracellular labeling study. *J Neurosci* 15:6651-6665.

19 Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms  
20 enhance cortical circuit performance. *Nature* 459:698-702.

21 Stark E, Eichler R, Roux L, Fujisawa S, Rotstein HG, Buzsaki G (2013) Inhibition-induced theta  
22 resonance in cortical circuits. *Neuron* 80:1263-1276.

23 Tahvildari B, Fransen E, Alonso AA, Hasselmo ME (2007) Switching between "On" and "Off"  
24 states of persistent activity in lateral entorhinal layer III neurons. *Hippocampus* 17:257-  
25 263.

26 Tirko NN, Eyring KW, Carcea I, Mitre M, Chao MV, Froemke RC, Tsien RW (2018) Oxytocin  
27 Transforms Firing Mode of CA2 Hippocampal Neurons. *Neuron* 100:593-608 e593.

28 Tricoire L, Pelkey KA, Erkkila BE, Jeffries BW, Yuan X, McBain CJ (2011) A blueprint for the  
29 spatiotemporal origins of mouse hippocampal interneuron diversity. *J Neurosci*  
30 31:10948-10970.

31 Turi GF, Li WK, Chavlis S, Pandi I, O'Hare J, Priestley JB, Grosmark AD, Liao Z, Ladow M,  
32 Zhang JF, Zemelman BV, Poirazi P, Losonczy A (2019) Vasoactive Intestinal  
33 Polypeptide-Expressing Interneurons in the Hippocampus Support Goal-Oriented Spatial  
34 Learning. *Neuron* 101:1150-1165 e1158.

35 Turrigiano GG, Marder E, Abbott LF (1996) Cellular short-term memory from a slow potassium  
36 conductance. *J Neurophysiol* 75:963-966.

37 Tyan L, Chamberland S, Magnin E, Camire O, Francavilla R, David LS, Deisseroth K, Topolnik  
38 L (2014) Dendritic inhibition provided by interneuron-specific cells controls the firing rate  
39 and timing of the hippocampal feedback inhibitory circuitry. *J Neurosci* 34:4534-4547.

40 Udakis M, Pedrosa V, Chamberlain SEL, Clopath C, Mellor JR (2020) Interneuron-specific  
41 plasticity at parvalbumin and somatostatin inhibitory synapses onto CA1 pyramidal  
42 neurons shapes hippocampal output. *Nat Commun* 11:4395.

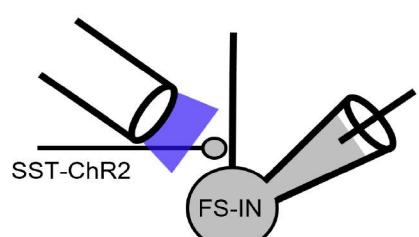
43 Valero M, Zutshi I, Yoon E, Buzsaki G (2022) Probing subthreshold dynamics of hippocampal  
44 neurons by pulsed optogenetics. *Science* 375:570-574.

45 Valero M, Viney TJ, Machold R, Mederos S, Zutshi I, Schuman B, Senzai Y, Rudy B, Buzsaki G  
46 (2021) Sleep down state-active ID2/Nkx2.1 interneurons in the neocortex. *Nat Neurosci*  
47 24:401-411.

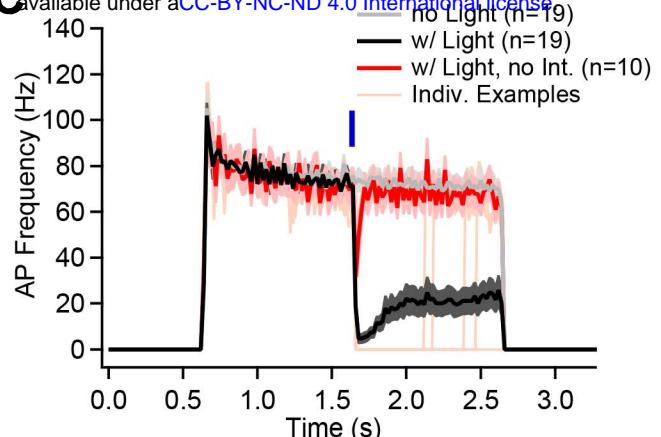
48 Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations  
49 in hippocampal interneuron networks by homogenizing firing rates. *Neuron* 49:107-117.

1 Viney TJ, Lasztoczi B, Katona L, Crump MG, Tukker JJ, Klausberger T, Somogyi P (2013)  
2 Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in  
3 vivo. *Nat Neurosci* 16:1802-1811.

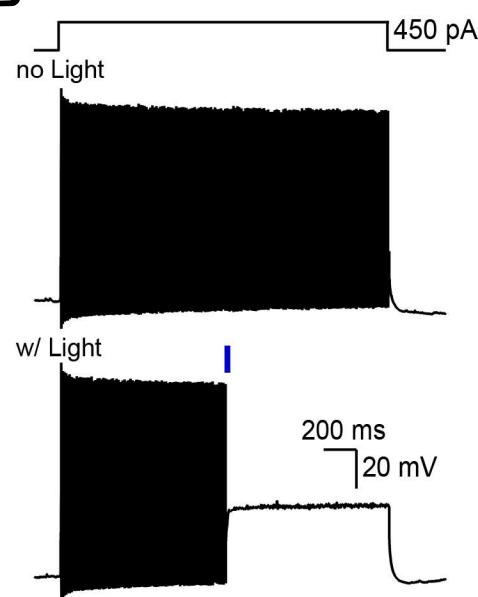
4 Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal  
5 interneuronal network model. *J Neurosci* 16:6402-6413.


6 Wiener SI, Paul CA, Eichenbaum H (1989) Spatial and behavioral correlates of hippocampal  
7 neuronal activity. *J Neurosci* 9:2737-2763.

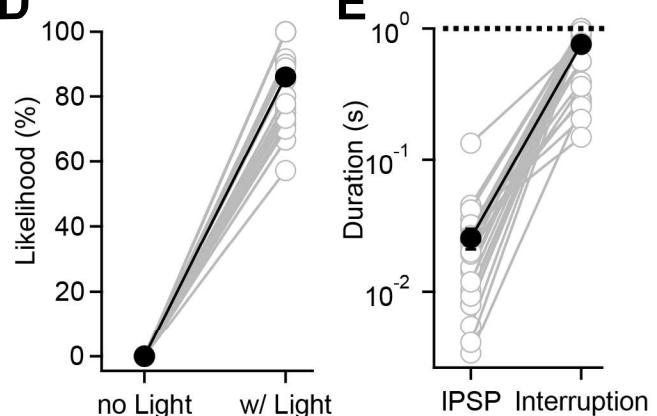
8 Wolff SB, Grundemann J, Tovote P, Krabbe S, Jacobson GA, Muller C, Herry C, Ehrlich I,  
9 Friedrich RW, Letzkus JJ, Luthi A (2014) Amygdala interneuron subtypes control fear  
10 learning through disinhibition. *Nature* 509:453-458.


11 Ylinen A, Bragin A, Nadasdy Z, Jando G, Szabo I, Sik A, Buzsaki G (1995) Sharp wave-  
12 associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and  
13 intracellular mechanisms. *J Neurosci* 15:30-46.

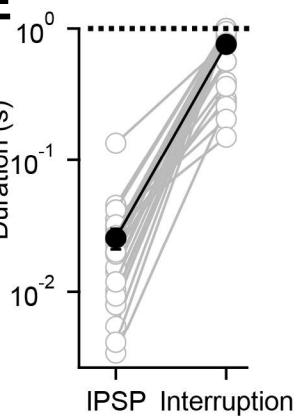
14 Yu J, Gutnisky DA, Hires SA, Svoboda K (2016) Layer 4 fast-spiking interneurons filter  
15 thalamocortical signals during active somatosensation. *Nat Neurosci* 19:1647-1657.


**A**




**C**



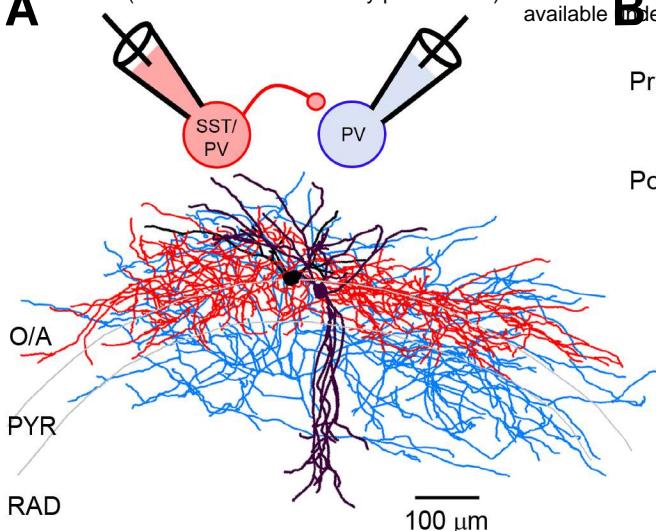

**B**



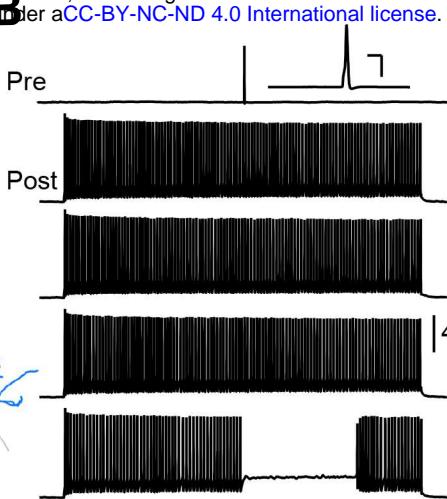
**D**



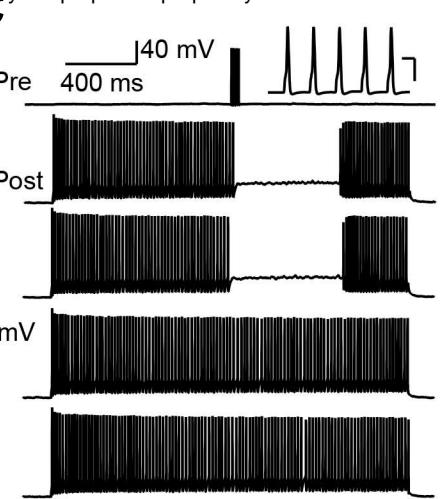
**E**



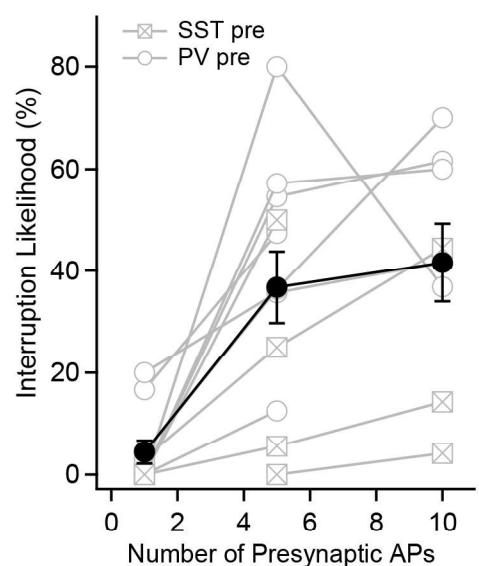

**F**



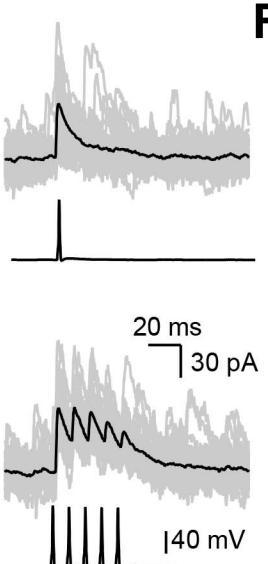

**Figure 1**


**A**

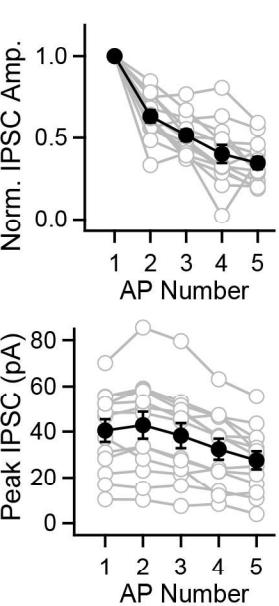



**B**

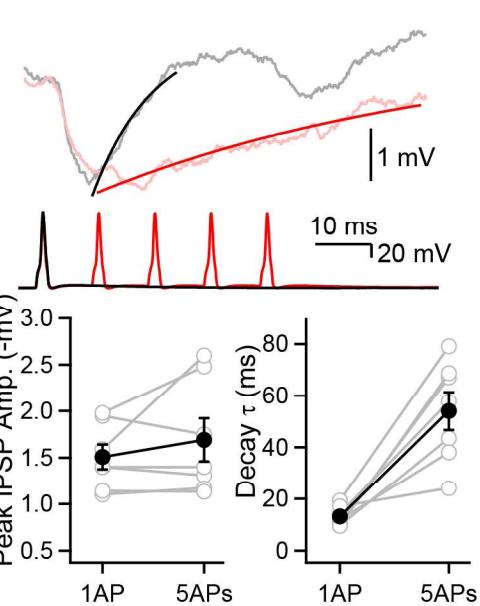



**C**

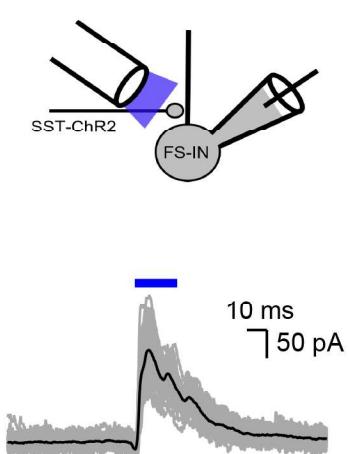



**D**

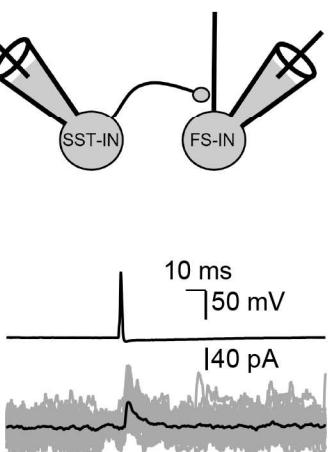



**E**

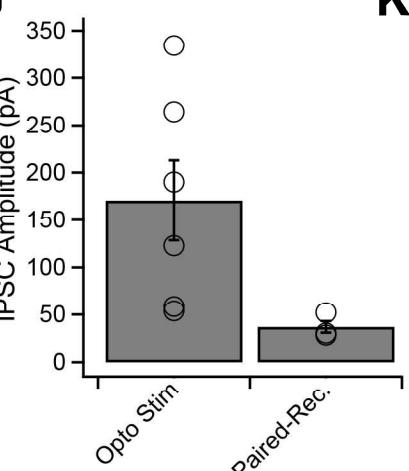



**F**

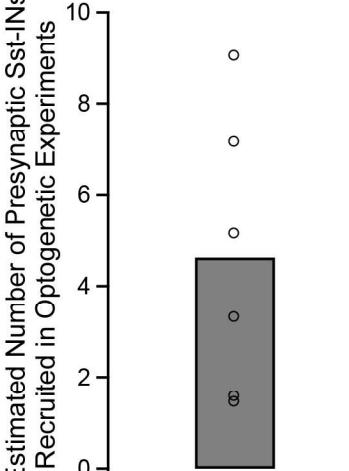



**G**

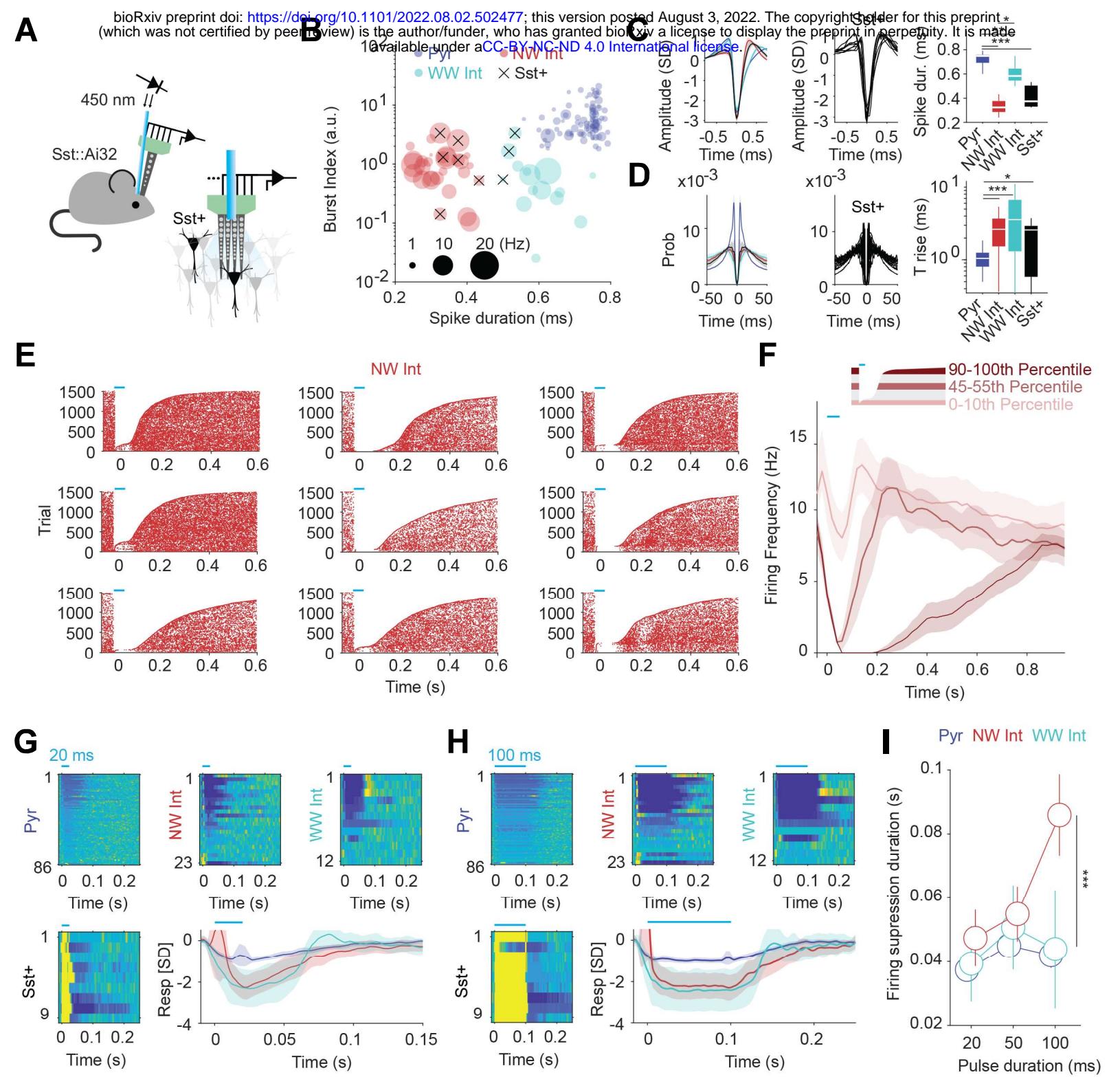



**H**



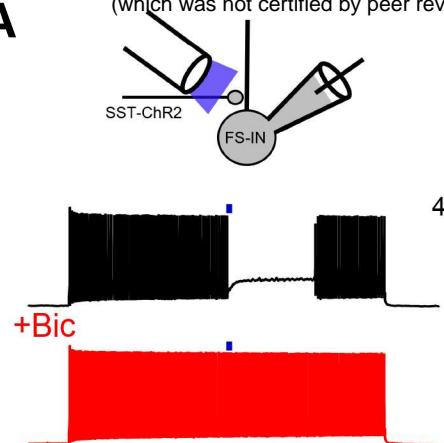

**I**



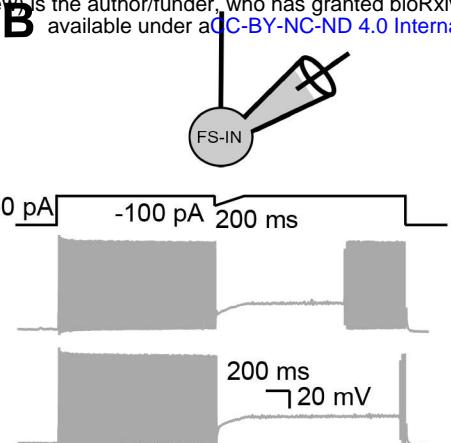

**J**



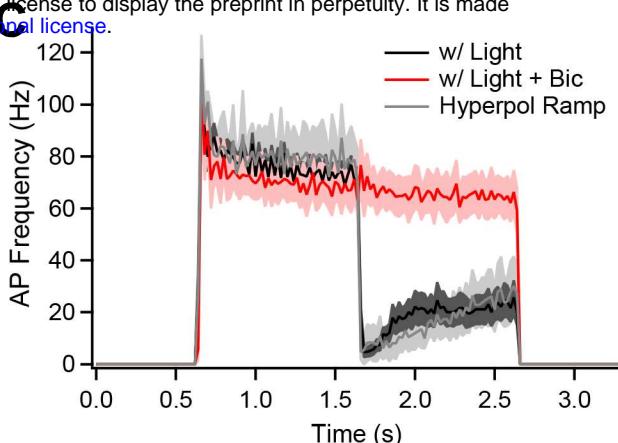
**K**



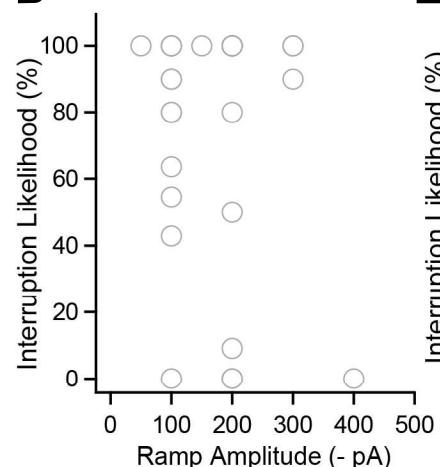

**Figure 2**



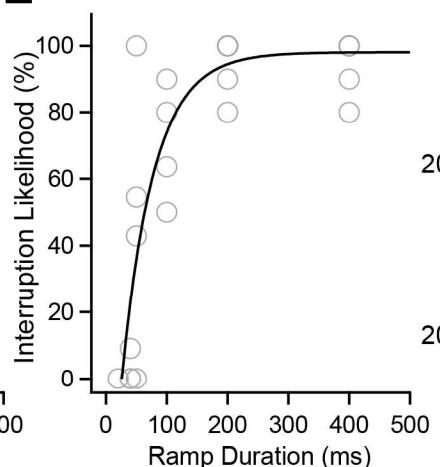

**Figure 3**


**A**

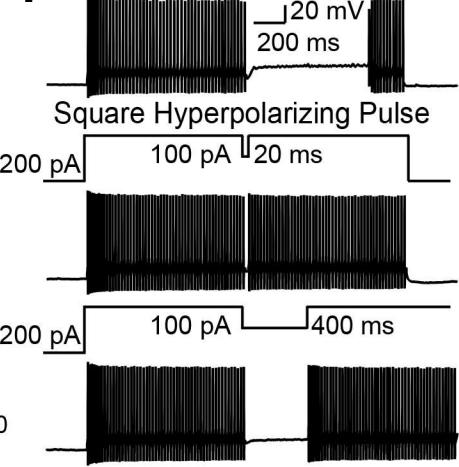



**B**

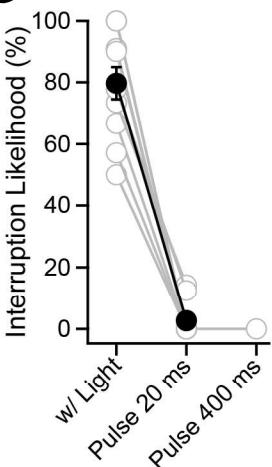



**C**




**D**




**E**



**F**



**G**



**Figure 4**

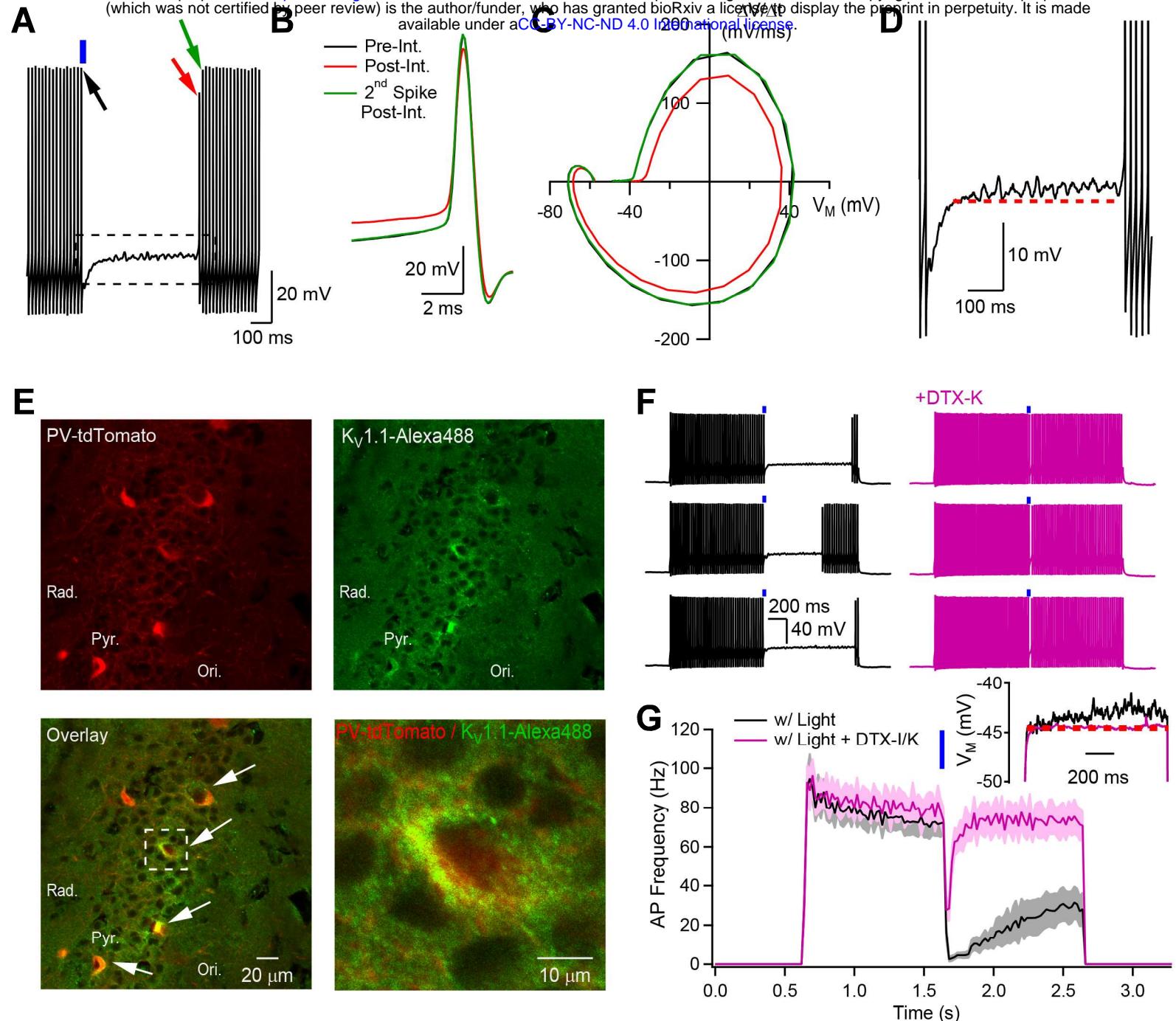



Figure 5

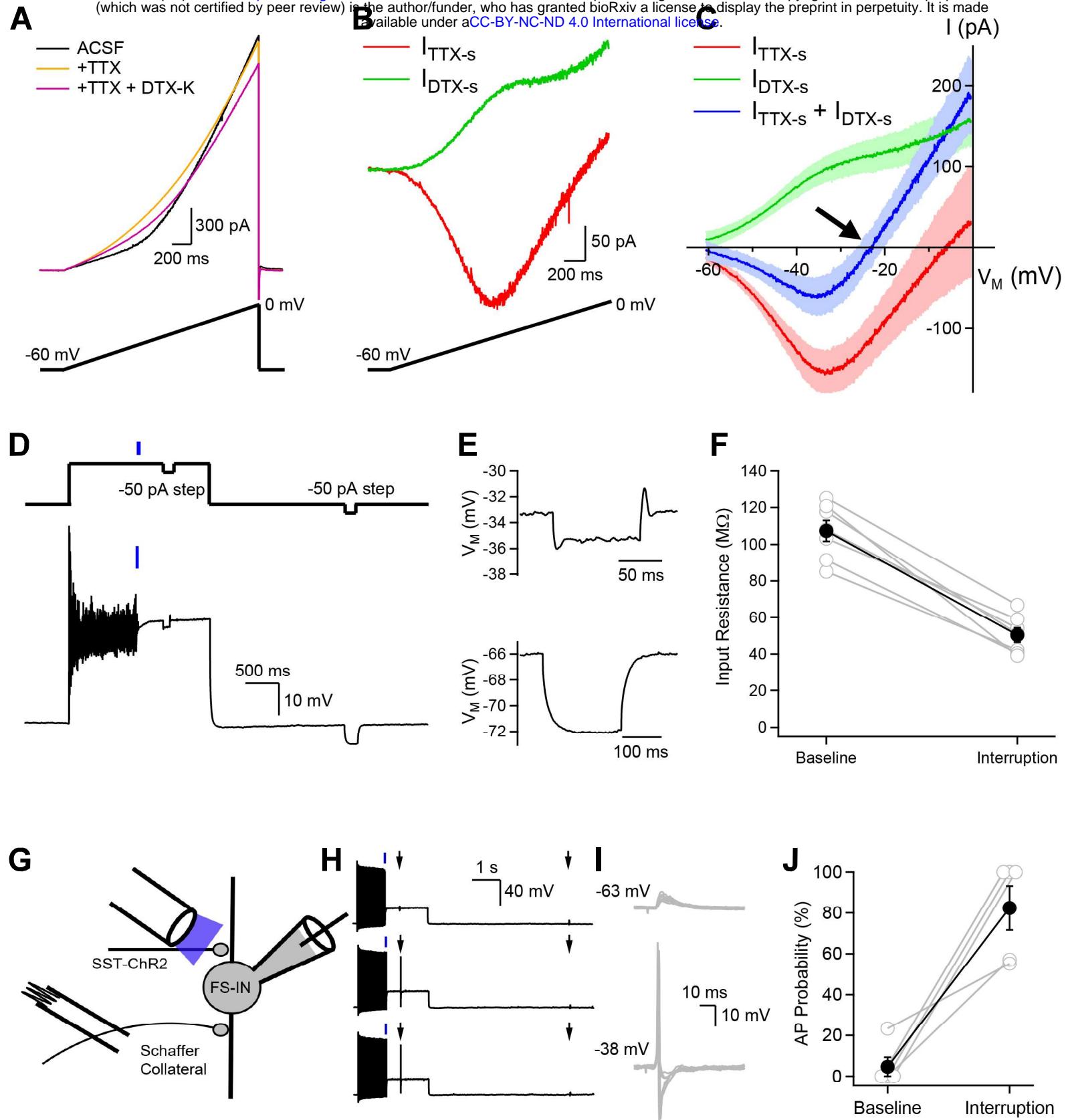
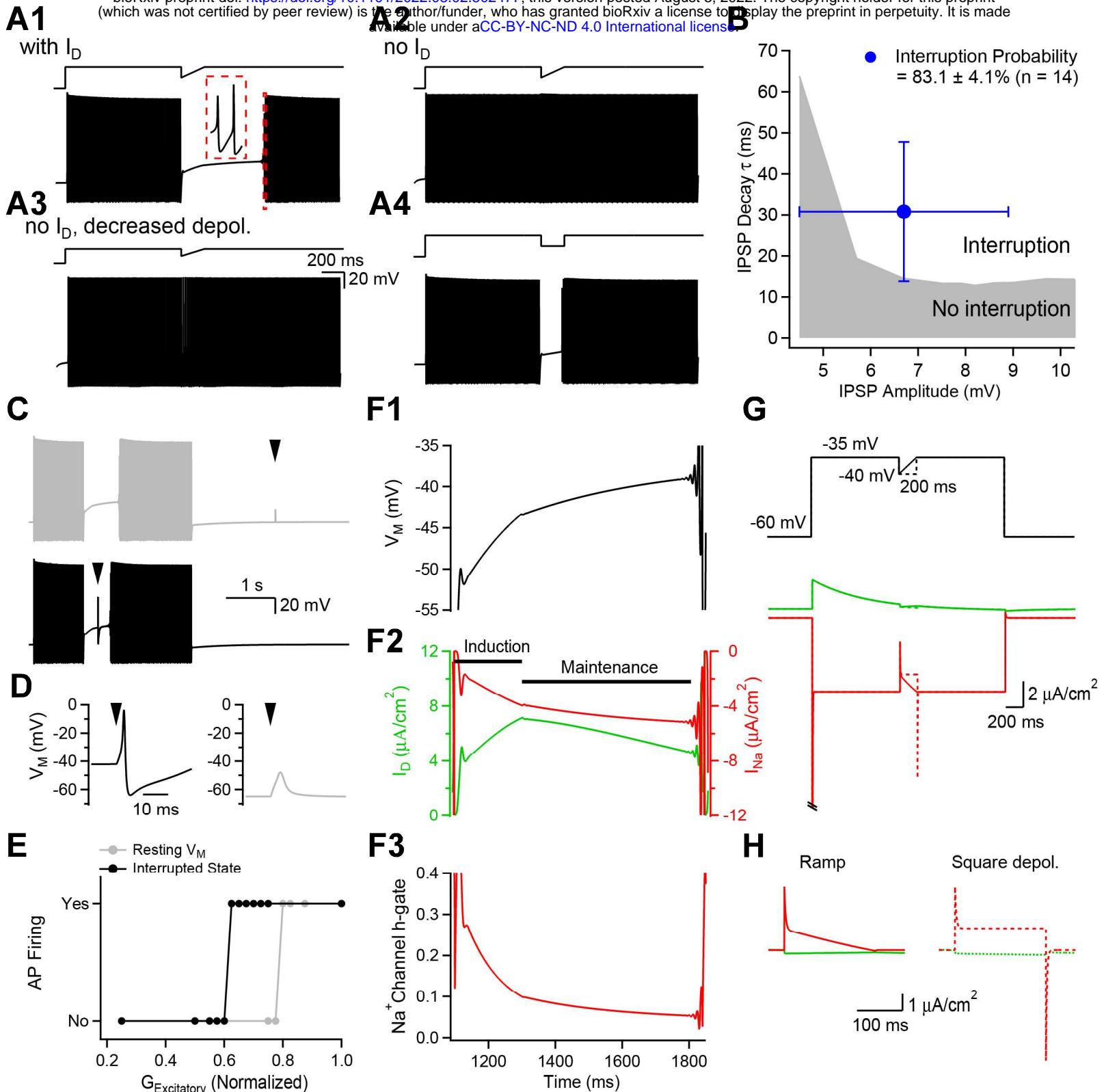
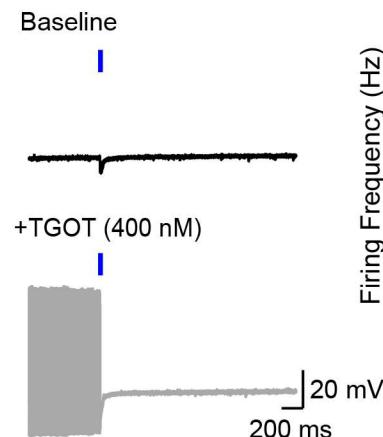
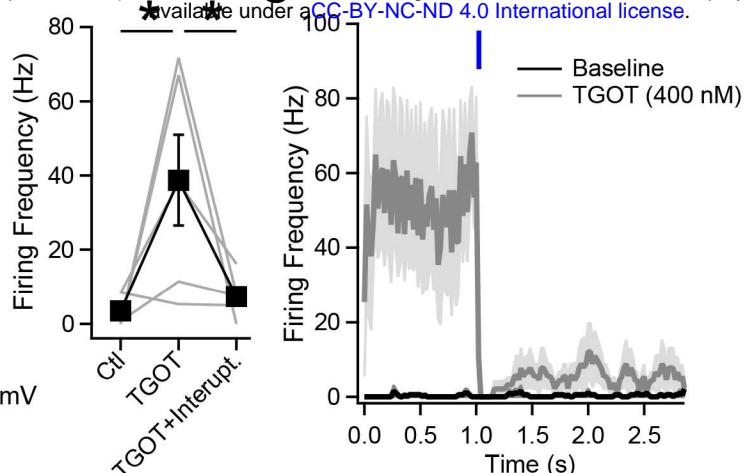




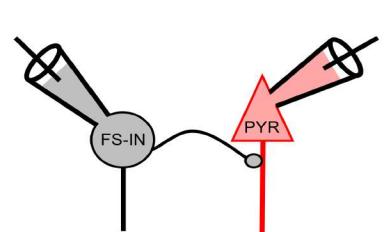

Figure 6



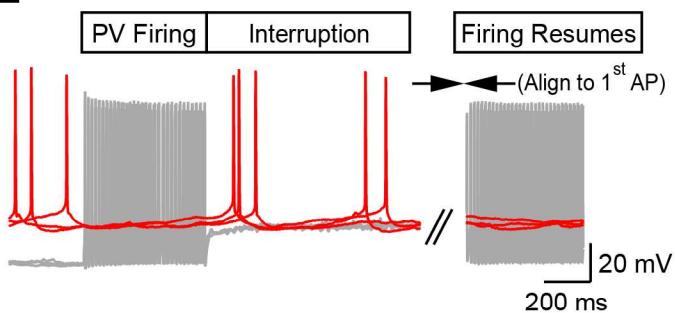

**Figure 7**

**A**

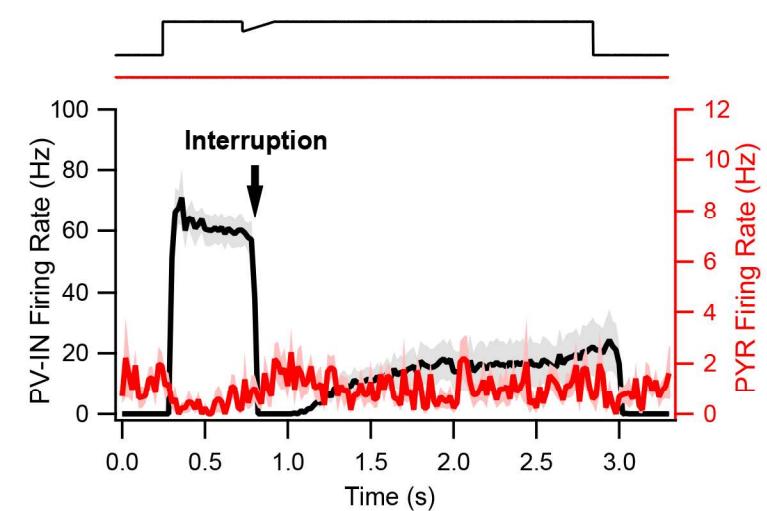



**B**

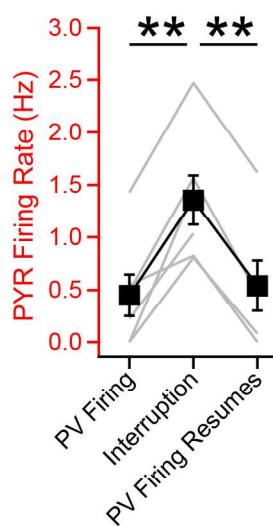



**C**




**D**




**E**



**F**



**G**



**Figure 8**