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Abstract 11 

Motivation 12 

Human traits are typically represented in both the biomedical literature and large population studies 13 
as descriptive text strings. Whilst a number of ontologies exist, none of these perfectly represent the 14 
entire human phenome and exposome. Mapping trait names across large datasets is therefore time-15 
consuming and challenging. Recent developments in language modelling have created new methods 16 
for semantic representation of words and phrases, and these methods offer new opportunities to 17 
map human trait names in the form of words and short phrases, both to ontologies and to each 18 
other. Here we present a comparison between a range of established and more recent language 19 
modelling approaches for the task of mapping trait names from UK Biobank to the Experimental 20 
Factor Ontology (EFO), and also explore how they compare to each other in direct trait-to-trait 21 
mapping. 22 

Results 23 

In our analyses of 1191 traits from UK Biobank with manual EFO mappings, the BioSentVec model 24 
performed best at predicting these, matching 40.3% of the manual mappings correctly. The 25 
BlueBERT-EFO model (finetuned on EFO) performed nearly as well (38.8% of traits matching the 26 
manual mapping). In contrast, Levenshtein edit distance only mapped 22% of traits correctly. 27 
Pairwise mapping of traits to each other demonstrated that many of the models can accurately 28 
group similar traits based on their semantic similarity. 29 

Availability and Implementation 30 

Our code is available at https://github.com/MRCIEU/vectology. 31 

 32 

 33 
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Introduction 35 

Population health and medical research are increasingly reliant on large population studies such as 36 
UK Biobank1, The Million Women Study2, Our Future Health3, The Million Veterans Program4, China 37 
Kadoorie Biobank5 and others to discover new predictive biomarkers and interventions. Such studies 38 
measure many thousands of phenotypic variables. Systematic analyses such as phenome-wide 39 
association studies (PheWAS)6–8 can describe relationships between thousands of variables, 40 
producing large datasets. However, many variables are inconsistently named across studies, and can 41 
prove difficult to map to each other or an existing ontology such as the Experimental Factor 42 
Ontology (EFO)9, Human Phenotype Ontology (HPO)10 or the Disease Ontology11. In parallel, the 43 
biomedical literature contains a wealth of data on human diseases, traits and risk factors described 44 
using free text (with some mappings to Medical Subject Headings; MeSH). Systematically integrating 45 
knowledge across these different datasets and domains would enable us to triangulate the 46 
evidence12 for different risk factor/disease combinations, but at the moment this is hindered by the 47 
inconsistencies in trait nomenclature. 48 

The complexity of variable names is illustrated by UK Biobank, an internationally important 49 
population study that has collected a wealth of data on half a million people1. Examples of text 50 
labels for variables in UK Biobank include easily recognizable traits such as “systolic blood pressure” 51 
and disease names such as “coronary heart disease”. However, the study also includes more 52 
complex variables, including those derived from questionnaire data, including “able to walk or cycle 53 
unaided for 10 minutes” and “cough on most days”. An array of other variables also exist, including 54 
International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD10) 55 
codes such as “anaemia due to enzyme disorders” (D55) and “syncope and collapse” (R55), the 56 
former mapping directly to the EFO (EFO:0009529), but the latter not. Direct mapping by text 57 
matching to ontology terms is therefore not realistic, and whilst manual mapping to ontologies is 58 
sometimes appropriate, this is time consuming, especially if mapping to multiple different ontologies 59 
(which cover different domains of the human phenome and exposome). 60 

Given this, there are four potential solutions to link two datasets based on their lists of trait 61 
(variable) names: 62 

1. Manual mapping to an ontology to find shared terms between datasets 63 
2. Using automated tools to map each variable to an ontology to find shared terms between 64 

datasets 65 
3. Direct mapping of variables using a generalisable text embedding model to identify 66 

semantically similar terms 67 
4. Direct mapping of variables using a bespoke model trained on the particular datasets to 68 

identify semantically similar terms 69 

Each of these options has different strengths and weaknesses. Option 1 can only really be used in 70 
cases where the numbers of variables is low, or the requirement of human assigned ontological 71 
terms is essential. Option 2 relies on existing tools, such as OnToma13, Zooma14 or MetaMap Lite15 72 
for common ontologies such as EFO9 and UMLS16. These rule-based tools can work well, but the 73 
mapping to ontology may identify a more generic parent term in the ontology losing valuable 74 
information in the process. Options 3 and 4 may offer benefits in mapping variables between 75 
datasets by avoiding the intermediate step of an ontology term (Figure 1). 76 

Figure 1: Example of potential benefits of using text embeddings to connect two biomedical strings 77 
compared to using a shared ontology 78 
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 79 

 80 

The development of methods based on text embeddings such as Word2Vec17, Sent2Vec18 and 81 
Doc2Vec19 have opened up the potential to map terms based on semantic similarity. These methods 82 
have been applied to data from the biomedical domain e.g. BioWordVec20 and BioSentVec21 and 83 
have been applied to real world problems22–27. 84 

Further development to shallow / non-contextual text embeddings gives rise to contextualized 85 
methods such as the transformer model architecture28 and its implementation in language modelling 86 
(e.g. BERT29) applied in a range of contexts (e.g. GLUE30, BLUE31 and BLURB32). These models can be 87 
finetuned to tackle specific problems with great effect33–37. However, despite their merits, 88 
transformer models are slower and more resource intensive compared to the Word2Vec 89 
architecture. 90 

Here we apply a range of text embedding methods and BERT language models (including one trained 91 
on EFO) to the problem of mapping biomedical variables (from UK Biobank) to an ontology (EFO) and 92 
compare their performance, strengths and weaknesses. We also illustrate the use of these models 93 
on a direct trait-to-trait mapping problem. 94 

System and Methods 95 

The EFO dataset 96 

The Experimental Factor Ontology (EFO)9 contains parts of several biological ontologies as well as 97 
variables from many large scale databases. Whilst many other ontologies exist, this particular 98 
ontology is widely used for human traits and is well documented, so was considered a good choice 99 
for this evaluation. A version of the EFO data set was downloaded from the EBI RDF platform37 in 100 
March 2021 containing 25,390 terms. This was used for all subsequent analysis and is available in 101 
the supplementary material (supplementary files S1 and S2). 102 

Ontology distance metric 103 

To understand the relative distance between any two EFO terms and enable us to measure how well 104 
a trait was mapped we used the nxontology Python library38. By creating a parent child network of 105 
EFO terms we could compute a similarity measure between any pair of EFO terms and use this to 106 
create a measure of how close two terms are within the EFO hierarchy. For this analysis we used the 107 
Batet (parameter “batet" in the library) measure39 as this was developed using biomedical taxonomy 108 
data and produced good correlation results to manual biomedical concept comparisons. The 109 
measure ([0, 1]) is a ratio calculated from the shared and non-shared information between a pair of 110 
concepts, where the lower the score the less shared ancestry between the two ontology concepts 111 
have . From here on we will refer to this metric as the EFO-Batet score. 112 

To create a nxontology instance, we provided the parent/child EFO edge data to the NXOntology 113 
class (supplementary code block S1). 114 
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Trait-to-trait mapping distance score 115 

The different models use different approaches for measuring distance between text terms 116 
(supplementary table S2). For simplicity we refer to these metrics (edit distance, cosine similarity, 117 
semantic distance) as “trait similarity score” throughout. 118 

Mapping methods 119 

We used a range of existing string comparison language models representing different approaches 120 
to language representation and different pre-training datasets to enable us to evaluate the impact of 121 
these differences on mapping performance. 122 

String comparison methods 123 

Levenshtein edit distance ratio40 was used to understand how well a basic string comparison 124 
performs. Using the ratio() function we obtained a measure of similarity between two strings. 125 

Zooma41 is an established tool to map text to ontologies using a combination of curated mapping to 126 
existing data sets and standard text matching (the exact method is undocumented). For this analysis 127 
we utilised the Zooma API setting the “required” parameter set to “None” and “ontologies” 128 
parameter set to “efo” (supplementary code block S2) to avoid circularity. 129 

Text embedding methods 130 

BioSentVec is an established model created using sent2vec18, pre-trained on over 28 million titles 131 
and abstracts from PubMed42 and 2 million clinical notes from MIMIC III43. The BioSentVec21 model 132 
was downloaded from the project GitHub repository (https://github.com/ncbi-nlp/BioSentVec) and 133 
installed following the examples in the tutorial (https://github.com/ncbi-134 
nlp/BioSentVec/blob/master/BioSentVec_tutorial.ipynb) (supplementary code block 3).  135 

Google Universal Sentence Encoder v4 (GUSE) is a generalised text embedding model trained and 136 
optimised for sentence level tasks44. The model was trained on Wikipedia and other generalised 137 
texts with no focus on biomedical information. The model was downloaded from the project home 138 
page (https://tfhub.dev/google/universal-sentence-encoder/4) and implemented as described in the 139 
documented example (supplementary code block S4). 140 

spaCy is a natural language processing platform which provides various tools, methods and 141 
pipelines, one of which is word embeddings45. The en_core_web_lg model was downloaded and 142 
installed as described in the documentation (https://spacy.io/usage/linguistic-features#vectors-143 
similarity) (supplementary code block S5). 144 

ScispaCy is built on spaCy and provides models for processing biomedical, scientific or clinical text46. 145 
The en_core_sci_lg model was downloaded and installed as described in the documentation 146 
(https://allenai.github.io/scispacy). The model is accessed via the same spaCy methods as above. 147 

BlueBERT31 (NCBI_BERT_pubmed_mimic_uncased_L-12_H-768_A-12) and BioBERT47 148 
(biobert_v1.1_pubmed) are biomedical language model implementations based on the original BERT 149 
pretrained weights, with further language model training with biomedical corpora to improve 150 
language understanding tasks in the biomedical domain. For transformer models, the vector 151 
representation of the entity is computed as the average of the hidden state tensor of the 𝑁 − 1 152 
layer as a fixed representation of the tokenised sequence (i.e. the default strategy in48). These 153 
models were obtained from their respective model repositories, then served via the bert-as-service48 154 
API (see supplementary code block S6 for example usage and code repository for detailed set up). 155 

Bespoke ontology classifier 156 

In addition to established language models we also explored the effect of tailoring a transformer 157 
model to the EFO using transfer learning.  158 
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BlueBERT-EFO was developed by finetuning BlueBERT with an ontology entity alignment training 159 
process designed as a sequence classification task (for details see supplementary text S1). To create 160 
a similarity matrix of the entities, for each pair of terms the model produces a score representing the 161 
inferred ontology distance, where the lower number of steps between two entities as predicted by 162 
the model, the closer they are represented in an ontology graph. The model can be used for 163 
inference using the Huggingface Transformers49 package (see supplementary code block S7 for 164 
example usage and code repository for detailed set up). 165 

Supplementary table S2 shows a summary of the models and methods. 166 

Mapping to ontology (EFO) 167 

To assess how the models perform when mapping biomedical variables to an existing ontology, we 168 
utilised the EBI UK Biobank EFO dataset50. This is a list of around 1,500 UK Biobank variables that 169 
have been manually mapped to EFO terms. In addition, each mapping has been assigned a mapping 170 
type (Exact, Broad, Narrow, Other). The original data set was modified in the following ways: first, 171 
any query that had been assigned multiple EFO terms was dropped. Second, exact matches were 172 
excluded as uninformative (i.e.  the query term is identical to the EFO label). Third, due to our use of 173 
an EFO hierarchy distance method (EFO-Batet) we only included those rows containing an EFO term 174 
present in our parent/child EFO data set. Fourth, all EFO and variable terms were lower-cased. 175 
Lastly, duplicates were removed. These filtering steps created a data set with 1,191 entries 176 
(supplementary file S3). Supplementary table S1 displays the numbers of each by mapping type and 177 
a brief description of each mapping type as described in the original data set. 178 

Using this dataset, we applied the models described above to conduct pairwise comparison between 179 
the UK Biobank variables and the EFO terms to measure their semantic similarity and ontology 180 
distance. Specifically, a UK Biobank variable 𝐴 is associated with a manually mapped EFO term 𝑎 in 181 
the source dataset, then for an EFO term 𝑏, we calculated the similarity score between 𝐴 and 𝑏 as 182 
well as the EFO-Batet distance score between 𝑎 and 𝑏. Therefore for the variable of interest	𝐴, the 183 
results dataset gives us a measure of how close the top ranking (by a specific similarity score metric) 184 
EFO term predictions 𝑏!…𝑏"	are to the variable’s equivalent EFO representation 𝑎 in the ontology 185 
space (by the EFO-Batet score). 186 

Direct trait-to-trait mapping 187 

In some scenarios mapping trait names between two datasets directly (without using an ontology) 188 
might be preferable. To compare how the different methods perform when predicting the similarity 189 
between two biomedical variables we again used the EBI UK Biobank EFO dataset50. This time, we 190 
limited the entries to those labelled as “Exact” on the assumption that these would provide a better 191 
dataset for assessing pairwise distances, both semantically and using the same ontology based 192 
method38. Additional filtering steps were taken to create a dataset with one query per predicted EFO 193 
term, resulting in 530 entries (supplementary file S4). For the purposes of visualisation, we then 194 
manually selected a subset of 43 traits that represented a broad spectrum of variables, covering 195 
measurements, questionnaire data and disease (supplementary file S5). For each of the pre-trained 196 
models, pairwise cosine distances were generated for each query text. For Levenshtein, the 197 
similarity ratio was calculated as before. For BlueBERT-EFO, we generate the inferred ontology 198 
distance for each pair of terms. Whilst we were not mapping trait terms to an ontology, we also 199 
compared how close these pairs of traits are in the EFO for comparison using the EFO-Batet score for 200 
each pair of terms. 201 

 202 
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Implementation 203 

Comparison to other approaches for automated mapping to ontology 204 

Top ranking results 205 

We first explored how well the top prediction of each method compared to the manual annotation 206 
(Figure 2). For results that exactly agree with the manual annotation (Figure 2A), the best 207 
performing methods were BioSentVec (40.3%), BlueBERT-EFO (38.8%), Zooma (37.2%) and ScispaCy 208 
(36.5%), the results of which were notably higher than those of the methods included in the analysis. 209 
Pairwise proportions Z-test results (supplementary Table S4) between each of the mapped 210 
proportions confirm that there is a notable difference between results of the best performing group 211 
and the those of the other methods, but the differences are minimal within the group (largest 212 
difference is between BioSentVec and ScispaCy, P-Value = 0.058).  213 

Whilst none of the methods exceeded 40.3% exact mapping, it is important to consider three key 214 
points: (1) some of the manual predictions are likely to be incorrect; (2) the methods and models 215 
used here to automate this approach are quick and easy to use, and would scale to a task size that 216 
would be impractical for manual annotation; (3) even the most sophisticated natural language 217 
processing models will struggle to predict the same result as a human, particularly in cases where 218 
the query string contains two un-linked entities, or even a negated term, e.g. “enduring personality 219 
changes not attributable to brain damage and disease”. 220 

In some situations (e.g. a recommender of similar concepts), an exact match may not be required, 221 
and if the top prediction from a model is sufficiently close to the manual annotation, this may be a 222 
suitable result. We then examine how well the top predictions from a method align with the manual 223 
annotation in terms of their EFO-Batet score distance to the manual EFO terms. Figure 2B shows the 224 
aggregate results for the subset (see supplementary Figure S9 for full results) of methods over 225 
different range of EFO-Batet score threshold for top predictions to be included, from total number of 226 
top predictions that are strictly identical to manual annotation (threshold == 1, i.e. Figure 2B), to 227 
those that are sufficiently close to the manual annotation in the ontology space (e.g. threshold >= 228 
0.9), and then to results with a greater ontology distance tolerance (e.g. threshold >= 0.6). 229 
Supplementary Figures S1-S3 show the detailed distributions for thresholds of 0.9, 0.8, and 0.7 230 
respectively. 231 

For inexact mapping results, BlueBERT-EFO and BioSentVec retrieved similar number of concepts 232 
that are close (e.g. under an EFO-Batet threshold of 0.9 or 0.8) to manual annotation, where notably 233 
greater number of predictions by BlueBERT-EFO have more ontology similarity to their manual 234 
annotation counterparts then the rest of the methods. In other words, BlueBERT-EFO as a finetuned 235 
model on BlueBERT with EFO structural information, is able to enhance the performance of the 236 
foundational BlueBERT to be on par with BioSentVec, and able to incorporate EFO knowledge on 237 
candidate retrieval. 238 

 239 

Figure 2: Distribution of top matching predictions. (A) Number of top matching predictions by 240 
MAPPING_TYPE. The Total bar contains all manual mappings, subdivided into Exact, Broad (parent 241 
term), Narrow (child term) and Other. Each other bar represents the number of traits exactly 242 
matched by the named method to the manual mapping for that trait, with the same subdivisions. (B) 243 
Total number of top matching predictions that are equal or above an EFO-Batet threshold, i.e. if a 244 
method produces greater number of matched predictions with a threshold closer to 1, greater 245 
number of predictions exhibit close ontology relationship to the manual mapping results. Points at 246 
EFO-Batet thresholds 1.0, 0.9, 0.8, 0.7 are equivalent to the Total values for each method in Figures 247 
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2A, S1-S3. Full results for all methods can be found in Supplementary Figure S9. 248 
 249 

 250 

Overall results for top N predictions 251 

With methods that produce a distance or score, there may still be significant value in a set of top 252 
predictions (which we would expect to be enriched for related terms, and potentially contain the 253 
correct mapping term). We then investigated the distribution of EFO-Batet scores for both the top 254 
prediction (Figure 3A) and the top 10 predictions (weighted average EFO-Batet scores, Figure 3B), 255 
and the aggregate results of generalised top ranges, to determine which models prioritize the most 256 
relevant set of traits. As shown in Figure 3A, for top predictions BlueBERT-EFO is able to retrieve 257 
higher number of candidates that have high ontology relevance to the manual annotation (greater 258 
mass in the upper tail) and lower number of candidates that have low relevance (lower mass in the 259 
lower tail), which is also confirmed by the pairwise Kolmogorov-Smirnov two sample tests 260 
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(supplementary table S4) on the statistical difference of its distribution to those of other methods 261 
(𝑃 − 𝑉𝑎𝑙𝑢𝑒	 ≤ 	3.3𝐸 − 09). 262 

Figure 3: Distribution of predicted EFO-Batet scores by method. (A) Distribution of EFO-Batet score 263 
for the highest-ranking (top 1) match for each query term; (B) Distribution of weighted average EFO-264 
Batet score for the top 10 matches for each query term. (C) Averaged sum of the top N weighted 265 
averaged EFO-Batet score of the predicted EFO candidates for a query term, for subset methods of 266 
BlueBERT-EFO, BlueBERT, and BioSentVec (full results are available in Supplementary Figure S10). 267 

 268 
We then extended the analysis to consider a set of top results. Figure 3B shows the distribution of 269 
the weighted average EFO-Batet scores for the top 10 EFO predictions for each method (see 270 
Supplementary Figure S4 for violin plot and Supplementary Table S3 for descriptive statistics on the 271 
same data). For top 10 predicted EFO terms, we computed the EFO-Batet score vis-a-vis the manual 272 
annotation counterpart, then averaged with the ranking weights (i.e. top prediction getting a 273 
weighting of 10, second 9 and so on) to show the aggregate ontology relevance of the retrieved 274 
candidates. Figure 3C shows the averaged sum of the weighted average scores for each top N level 275 
to provide an overall measure on the general ontology relevance of the candidate retrieval for a 276 
subset of methods (see supplementary figure S10 for full results). The results suggest that BlueBERT-277 
EFO will generally return a set of traits that are more closely associated with the correct part of the 278 
EFO ontology compared to other methods, and corroborates with earlier analysis findings that the 279 
finetuning of the BlueBERT language model with EFO structure information will notably improve EFO 280 
candidate retrieval. 281 
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We also investigated on the performance of a hybrid method (BioSentVec-X-BlueBERT-EFO) where 282 
BioSentVec is applied in the first stage to select the top X (e.g. 30) candidates, then BlueBERT-EFO is 283 
applied in the second stage to select the top N (e.g. 5) candidates, with the aim to improve inference 284 
efficiency as transformer models are more computationally expensive than simpler model 285 
architectures such as BioSentVec. Supplementary figures S5-S7 show the weighted average score 286 
distribution for top 1, 5, and 10 matches, and supplementary figure S8 show the averaged sum of 287 
weighted average scores for generalised top N levels. These results suggest that top matching results 288 
produced by the second stage BlueBERT-EFO in the hybrid methods retain the overall behaviour of 289 
BlueBERT-EFO, and is robust to the first stage filtering via BioSentVec. 290 

To try and understand why certain traits are challenging to map, and why others are not, we 291 
extracted the top UK Biobank queries which were most and least variable in EFO-Batet score 292 
between methods. Details of this can be found in supplementary text S2. 293 

 294 

Comparison to other approaches for trait-to-trait mapping 295 

Our final set of analyses explores the differences in direct trait-to-trait mapping of the different 296 
models. For each model we estimated trait similarity scores between each trait (n=530, see System 297 
and Methods) and all others (excluding itself). Figure 4 shows the results of a Spearman rank 298 
correlation analysis comparing the matrices of these pairwise trait-mapping scores between each 299 
pair of models. The results broadly indicate three clusters of models. One contains the EFO-Batet 300 
(manual mapping) and BlueBERT-EFO scores, suggesting again that the BlueBERT-EFO model, as 301 
expected, is predicting distances most similar to that which we find in the EFO hierarchy. A second 302 
group contains the other BERT models (BioBERT and BlueBERT) highlighting the similarity between 303 
those two transformer models. A third group contains the spaCy, ScispaCy and BioSentVec models, 304 
which may represent their shared underlying methodology, (i.e. variations of word2vec). Whilst this 305 
analysis can’t tell us which method performs “best” at trait-to-trait mapping, it highlights that these 306 
models do perform differently at this task, which should be taken into account in the development 307 
of future automated trait-to-trait mapping methods. 308 

 309 

Figure 4: Pairwise plot of spearman correlations between methods based on a matrix of cosine 310 
similarity (or equivalent) scores for all pairwise combines of traits (excluding self). 311 

 312 
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 313 
 314 

 315 

Finally, we present visualizations of the trait similarity scores for all pairwise trait-to-trait mappings 316 
for a selected set of 43 traits (representing a mixture of disease, continuous traits and medications) 317 
to illustrate how these models perform at this task. Supplementary Figure S11 is provided as a 318 
reference and shows a clustered dendrogram of EFO-Batet scores for the distance between traits in 319 
the EFO hierarchy. The clusters represent the relationships between EFO terms as determined by the 320 
EFO hierarchy and batet scores. We observe a sharp separation between measurement based 321 
quantitative traits and disease traits. This reflects the structure of the EFO, with quantitative traits 322 
falling into the “information entity” and disease traits into the “material property” top-level 323 
branches of EFO (https://www.ebi.ac.uk/ols/ontologies/efo). 324 

Using the same 43 traits, we then produced a matrix of trait-to-trait distance scores for each model, 325 
but this time based on cosine distances (or equivalent – see System and Methods). These matrices 326 
were compared to each other using the Mantel test51, a method to compute correlation distances 327 
between matrices (supplementary Figure 12). Here we see a similar pattern, with the BlueBERT-EFO 328 
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and EFO-Batet (i.e. position in the EFO hierarchy) scores clustered together. This similarity is obvious 329 
in the BlueBERT-EFO clustermap (supplementary Figure 13) where there are some clear differences, 330 
but the major distinction between quantitative traits and disease is present, with almost exactly the 331 
same traits clustering into the same two groups. This likely reflect the finetuning of this model to 332 
EFO. 333 

 334 

Discussion 335 

A number of approaches exist for text matching and semantic representation of text. We set out to 336 
investigate the use of these approaches for the automated mapping of human trait names to 337 
ontologies (using the specific example of EFO) and explore how they perform at direct trait-to-trait 338 
mapping.  339 

Comparison of approaches for automated mapping to ontology 340 

Our analyses illustrate that using text embeddings to map biomedical variables to EFO has a fairly 341 
high error rate, but is at least comparable to existing approaches (e.g. Zooma14). Given the ease of 342 
use and scalability of some of the models, we recommend this approach when tackling problems 343 
that involve many thousands of variables and manual annotation is not feasible. When attempting 344 
an exact match (i.e. top match) BioSentVec21 appears to perform best in terms of speed, precision 345 
and accuracy. However, if it is more important that the top N predictions are close to the truth, then 346 
BlueBERT-EFO consistently out-performed all other models. 347 

It is important to note that several of the models had similar performance at finding a top match, 348 
with the group including BioSentVec, BLUEBERT-EFO, Zooma and ScispaCy46 showing little statistical 349 
evidence of a difference. It is important to note that the standard Zooma tool also brings the benefit 350 
of continually updated manually curated mappings14. 351 

Embedding methods appear to perform well when the query string describes a single event or 352 
entity, e.g. “whooping cough / pertussis”. They perform poorly when the query string describes 353 
multiple entities, e.g. “hiv disease resulting in malignant neoplasms”. This is perhaps not surprising, 354 
as the embedding of this phrase is unlikely to be close to either HIV or cancer terms. Addressing such 355 
traits therefore remains a complex challenge, i.e. properly identifying mentioned concepts via 356 
named entity recognition (NER) and then incorporating pretrained concept embeddings from the 357 
knowledge base to the document embeddings 52,53. In other words, a complex processing system 358 
which includes major components of NER, document level embeddings, and concept embeddings is 359 
required to approach mapping of complex traits in a generalised and robust manner, though we are 360 
keen to explore this aspect in future research. 361 

We compared our models to a manually mapped set of trait names, but it is important to recognise 362 
this may itself contain errors. Supplementary file S7 lists examples where no models predicted an 363 
EFO term with an EFO-Batet score >0.95. Here, for example the query term “malignant neoplasm of 364 
colon” was manually mapped to “colon carcinoma”. However, six of the models predicted the EFO 365 
term “malignant colon neoplasm” which has an EFO-Batet score of 0.86 and is therefore a better fit. 366 
(It is possible these differences reflect changes in the EFO since the initial mapping rather than a 367 
mapping error). 368 
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Comparison of approaches for trait-to-trait mapping 369 

Mapping traits directly between two datasets has potential value, but in the absence of a 370 
benchmark it is hard to validate. We therefore focused on variables that had been mapped to a 371 
single EFO term, and then refined that further for closer inspection. The use of clustering methods 372 
enabled us to manually inspect groups of traits and describe events that agree with standard 373 
biomedical knowledge. Our analyses show that by including topological information from a well 374 
established ontology like the EFO, the BlueBERT-EFO model can create sensible pairwise distances 375 
between variables, without actually mapping to ontology.  376 

When focusing on a specific set of traits, we see that whilst the finetuning of BlueBERT-EFO has 377 
produced a model which reflects major patterns in the EFO hierarchy, there are some differences. 378 
One example is the loss of the “angina”, “worrier / anxious feeling” cluster (present in EFO, 379 
Supplementary Figure S11), with “angina” joining the larger disease cluster next to “atrial fibrilation 380 
and flutter” and “worrier / anxious feeling” moving next to “neuroticism score” (Supplementary 381 
Figure S13). The manual EFO term assigned to “angina” was “EFO_0003913” (angina pectoris, 382 
http://www.ebi.ac.uk/efo/EFO_0003913) which can be found within the “material phenotype” EFO 383 
group as it is listed as a “Phenotype abnormality” and not a disease. Even though the BLUEBERT-EFO 384 
model has been finetuned on the EFO hierarchy, the biomedical literature underpinning the model 385 
has created distances placing “angina” with other diseases rather than measurements. This 386 
highlights the subtle balance of information contained within this model. 387 

Interestingly, the BlueBERT-EFO model fails to group together the neurological illnesses 388 
(“parkinson’s disease”, “alzheimer’s disease” and “secondary parkinsonism”). Looking at the other 389 
models, several also fail to do this, often grouping traits with the word “disease” together 390 
(Supplementary Figures S14-20). However, BioSentVec, BlueBERT and BioBERT appear to group 391 
these appropriately. This highlights one of the key challenges that the developers of these models 392 
face: how to distinguish between informative words and ignore the generic (e.g. “disease”). This 393 
point is again present in the BioBERT cluster map (Supplementary Figure S19), with “weight” an 394 
outlier to all other traits, suggesting this term was not sufficiently similar to anthropometric traits. 395 

It is worth noting, that the alternative methods to using language models for this type of distance 396 
analysis appear to perform less well (e.g. Levenshtein edit distance, Supplementary Figure S14). 397 
Other established methods, such as Zooma, are just not possible to use when comparing data in this 398 
way. 399 

At the moment there is no practical alternative automated approach to trait to trait mapping, so our 400 
results using language models are promising. However, they are far from perfect with many cases of 401 
traits not grouping together as we might expect, and the models often focusing on generic words 402 
such as disease over and above other more defining terms. This approach therefore requires further 403 
development before it can be of practical use. 404 

Use cases of these models 405 

The models are imperfect but are still successful in mapping 40% of trait names in the dataset we 406 
used. One obvious use case would be a semi-automated mapping tool which would provide a 407 
suggestion for the user to approve or edit. As highlighted above, many simple trait names map well, 408 
and it is the more complex traits (e.g. combinations of entities) that would need manual 409 
intervention. 410 
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Another scenario in which an imperfect one-to-many mapping tool like those presented here may be 411 
useful is in a “trait name recommender”. One example of this is our OpenGWAS54 recommender, 412 
which provides recommended trait matches from amongst thousands of GWAS datasets to enable a 413 
user to see other relevant GWAS traits they may be interested in. The OpenGWAS recommender 414 
uses a combination of ScispaCy and BlueBERT-EFO to search for the top matching GWAS traits in the 415 
semantic embedding vector space and optionally predict the ontology relationships between the 416 
query term and the match candidates55. 417 

In a follow-up study56 we applied ScispaCy and BlueBERT-EFO as an ontology mapper in a hybrid 418 
architecture, where a first stage model is used to efficiently filter EFO ontology candidates 419 
associated with the query ULMS terms, and in the second stage BlueBERT-EFO is then used to 420 
predict the ranking of the top N results (similar to results in supplementary figures S5-S8 where 421 
BioSentVec was applied as the first stage model). The retrieval results have shown to be sensible for 422 
the systematic analysis on medRxiv submission abstracts, without sacrificing inference performance 423 
due to the computationally expensive nature of transformer models whilst retaining relevancy in 424 
candidate retrieval. 425 

 426 

Conclusions 427 

We have shown that current text matching and embedding approaches offer some promise in the 428 
task of mapping traits to ontologies and to each other. However, the mapping is imperfect and 429 
unsuitable for fully automated mapping. Models trained on the biomedical literature perform better 430 
than more generalised models. Some trait names present in population health datasets such as UK 431 
Biobank are complex and their embeddings are unlikely to be very representative; future work 432 
should focus on how to handle such trait names. 433 

 434 

Availability 435 

Code is available at https://github.com/MRCIEU/vectology. This contains general methods, examples 436 
and the code used to perform the analyses discussed here. 437 
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