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Abstract 

Generating reference maps of the interactome networks underlying most cellular functions can 

greatly illuminate genetic studies by providing a protein-centric approach to finding new components of 

existing pathways, complexes, and processes. Here, we applied state-of-the-art experimental and 

bioinformatics methods to identify high-confidence binary protein-protein interactions (PPIs) for Drosophila 

melanogaster. We performed four all-by-all yeast two-hybrid (Y2H) screens of >10,000 Drosophila 

proteins, resulting in the ‘FlyBi’ dataset of 8,723 PPIs among 2,939 proteins. As part of this effort, we tested 

subsets of our data and data from previous PPI datasets using an orthogonal assay, which allowed us to 

normalize data quality across datasets. Next, we integrated our FlyBi data with previous PPI data, resulting 

in an expanded, high-confidence binary Drosophila reference interaction network, DroRI, comprising 

17,232 interactions among 6,511 proteins. These data are accessible through the Molecular Interaction 

Search Tool (MIST) and other databases. To assess the utility of the PPI resource, we used novel 

interactions from the FlyBi dataset to generate an autophagy interaction network that we validated in vivo 

using two different autophagy-related assays. We found that deformed wings (dwg) encodes a protein that 

is both a regulator and a target of autophagy. Altogether, the resources generated in this project provide a 

strong foundation for building high-confidence new hypotheses regarding protein networks and function.  
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Main Text 
 
 Protein-protein interactions (PPIs) are central to cell biological processes, such as formation of 

multiprotein complexes and enzymes, receptor-ligand and kinase-substrate interactions, intracellular 

signal transduction, and regulation of transcription and translation. A number of complementary methods 

can be used to identify PPIs, including mass spectrometry-based methods for identification of protein 

complexes and two-component methods such as yeast two-hybrid (Y2H) analysis for identification of 

binary interactions1. Results from systematically screened and validated binary interactions contribute to 

the development of specific hypotheses regarding the functional in vivo relevance of individual PPIs. 

Moreover, when applied at large scale and integrated with other datasets, networks of binary interactions 

elucidate new components of known pathways. Particularly relevant to this study, since the release of the 

last binary PPI map for Drosophila melanogaster two decades ago2, methods for identification of binary 

interactions have improved and caveats to the approach are now well understood3. Innovations in 

experimental approach and analysis, as well as production of proteome-scale open reading frame (ORF) 

clone collections, made it possible to increase both the scale and the quality of binary interaction screens. 

Indeed, simply increasing the number of ORFs tested in Y2H assays contributes to new discoveries and 

brings protein-centric studies closer to the scale that can be accomplished with nucleic acid-based studies 

such as transcriptomics analyses. In recognition of the value of binary protein information to research 

study, binary interaction methods have been applied at an increasingly large scale for the discovery of PPI 

networks for several proteomes, including the human and yeast proteomes4,5.  

Drosophila melanogaster is an exemplary research system with a rich history of impactful 

contributions to our understanding of conserved biological processes and enduring relevance in biological 

and biomedical research6-8. The Drosophila research community has made significant investments in 

technology and resource development in addition to research studies, leading to a wealth of available 

genetic methods, fly stock reagents, large-scale datasets, and databases that can be used as research 

tools and mined for new hypothesis development, disease modeling, and experimental studies9. These 

include genome-wide genetic and RNAi screens10-12; extensive genomics studies13,14; large-scale 
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transcriptomics studies for many Drosophila cell lines, developmental stages, and tissues 15-17; large-scale 

studies of transcriptional regulation18; and single-cell RNAseq analysis19,20. 

 Protein-based resources and datasets provide an important complement to other ‘omics’ 

resources but are hindered in scale by technological challenges. Nevertheless, several efforts have 

generated physical and data resources relevant to Drosophila proteins. The first attempt at generating a 

binary protein interactome map for Drosophila at proteome-scale was released two decades ago2, followed 

by a few attempts at smaller scale21-23. In addition, the large-scale Drosophila Protein Interaction Map 

(DPiM) project, which used affinity purification followed by mass spectrometry (AP-MS), identified 

associations for ~5,000 fly bait proteins24, a project that was made possible by the systematic ORFeome 

cloning project of the Berkeley Drosophila Genome  Project (BDGP)25. Moreover, databases of known and 

predicted Drosophila PPIs have been established and updated, such as the Drosophila Interaction 

Database (DroID)26-28 and databases with multi-species coverage, including the Molecular Interaction 

Search Tool (MIST)29, BioGRID30, and IntAct31. Nevertheless, discovery of high-confidence binary 

interactions using ORF collections and up-to-date methods has remained limited in Drosophila.  

To address this unmet need, we applied to Drosophila the overall strategy for large-scale, high-

confidence detection of binary protein interactions and data integration that was recently reported for the 

human proteome4. Our approach involved two distinct configurations of the Y2H assay for a total of four 

all-by-all Y2H screens of 10,000 x 10,000 Drosophila proteins and resulted in a new Drosophila binary 

interaction dataset, the “FlyBi” dataset, of 8,723 binary interactions among 2,939 proteins. Subsequent 

reanalysis of previous datasets and integration of FlyBi data and literature-based binary interactions of 

comparable quality resulted in an expanded, high-confidence Drosophila reference interaction (DroRI) 

network of 17,232 binary interactions among 6,511 proteins. We tested the utility of the data to predict 

function by generating a putative autophagy interaction network that we validated in vivo using autophagy-

related assays. The ORF clone collection and data resources generated in this project, are available from 

multiple public sources, provide a foundation for additional proteomics studies and for the generation of 

new hypotheses regarding protein functions in Drosophila. 
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Expansion of the binary protein-protein interaction network for Drosophila 

 Performing Y2H screens with multiple, state-of-the-art versions of the assay can lead to increased 

high-quality coverage of binary interactions, as demonstrated by analyses that use existing knowledge as 

a benchmark for quality analysis (e.g., see4). We have demonstrated that both specificity and sensitivity of 

maps can be increased by improving any one of the four parameters of the ‘empirical framework’: i) 

completeness of the search space to be explored; ii) assay sensitivity; iii) sampling sensitivity; and iv) 

precision32-35. Since the Drosophila proteome contains ~13,900 confirmed or predicted protein-coding 

genes, the complete search space to be eventually explored is at least a 13,900 x 13,900 matrix of 1.9x108 

combinations. The first systematic attempt was performed by screening ~10,000 baits against two cDNA 

libraries and a pool of ~10,000 ORF clones2. A significant limitation of that study was that at the time it was 

not feasible to sequence the full collection, such that the identities of all bait-prey pairs tested are not 

known. In addition, which partial or full-length isoforms were tested is not known; only a single assay 

version was used; a limited number of replicate screens were performed; gene annotations were of poorer 

quality than they are now; and the precision of the assays was heterogenous, with a subset of 4,780 PPIs 

reported as reaching acceptable quality levels2.  

To improve our knowledge of the Drosophila binary interactome network, we chose to perform four 

large-scale Y2H screens with a set of ~10,000 Drosophila melanogaster proteins of known sequence (see 

https://www.fruitfly.org/DGC/index.html and 36):  two screens in each of two different configurations differing 

in the position of the Gal4 activation domain (AD) fusion, i.e. N- or C-terminus, and in the overall level of 

exogenous expression, i.e. using either centromeric or two-micron based expression vectors4. These four 

“all-by-all” screens represented 400 million combinations of protein pairs (Fig. 1A and Suppl. Fig. 1). First 

pass pairs (FiPPs) identified in the primary Y2H screens were systematically retested in pairwise tests, 

followed by sequence confirmation. The resulting list of sequence-confirmed putative binary interactors 

was supplemented by using a computational network-based approach to predict additional interaction pairs 

based on pairs in the assay version 1 screens followed by experimental validation (see Fig. 1A, Methods, 

and 37), altogether resulting in 332 experimentally predictions confirmed in the pairwise test.  
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As an initial test of the quality of the experimental and computational binary protein pairs, we 

established (i) a small, high-confidence positive reference set (PRS), (ii) a random reference set (RRS) of 

the same size (Suppl. Table 1), (iii) a larger list of literature-curated binary pairs for which multiple lines of 

evidence support the interaction (at the time of the analysis, i.e., Lit-BM-16, Suppl. Table 2, or the most 

recent available, i.e., Lit-BM-20, Suppl. Table 3), and (iv) a list of literature-curated binary pairs for which 

only one line of evidence supports the interaction (Lit-BS, Suppl. 4), similar to what was done for the 

human reference interaction (HuRI) network4,38. The pairwise testing rates from the computational 

predictions based on the first and second screen as an input (L3; see Methods) were 90±10% for the top 

100 predictions, 80±5% for the top 500 predictions, and 71±3% for the top 1000 predictions. These 

remarkable precision values indicate strong, highly non-random network patterns even in just one screen 

and open up the possibility of extending the experimentally obtained high-throughput interactome using 

computational predictions followed by pairwise tests. Pairs curated from the literature were recovered at 

lower rates (13±3% for Lit-BM-20 pairs).  

Altogether, we identified 1,726 interaction pairs in assay version 1, screen 1; 1,029 in assay version 

1, screen 2; 3908 in assay version 3, screen 1; and 3509 in assay version 3, screen 2; and we 

supplemented these with the 332 confirmed pairs based on computationally prediction, resulting in a total 

FlyBi dataset of 8,723 unique interaction pairs for 2,939 genes. The FlyBi dataset of interaction pairs is 

available as Suppl. Table 5 and the FlyBi project webpage (http://flybi.hms.harvard.edu/). In addition, 

these pairs have been integrated with other datasets at IntAct (https://www.ebi.ac.uk/intact/)39 and in MIST 

(https://fgrtools.hms.harvard.edu/MIST/)29.  

 

Quality analysis using the MAmmalian Protein-Protein Interaction Trap (MAPPIT) assay 

Verifying putative binary interactions with orthogonal assays provides a method for quality analysis 

that can be used to define cut-off values prior to integration of data from different sources. Thus, our next 

goal was to analyze the quality of the FlyBi pairs and of Lit-BM pairs (available at the time of the 

experiments; Lit-BM-16; see Suppl. Table 2), as well as binary pairs from the literature with only a single 

piece of evidence (Lit-BS), pairs identified in the previous large-scale Drosophila Y2H study (CuraGen 
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pairs)2, binary pairs identified in additional Y2H studies made available at DroID27,28, and interactions 

identified in the DPiM project24. We experimentally tested randomly selected subsets of pairs from the FlyBi 

and other datasets using the MAmmalian Protein-Protein Interaction Trap (MAPPIT) assay40. With the 

MAPPIT assay, binary interactions between two proteins expressed in mammalian cells activate signaling 

by an otherwise inactive cytokine receptor. The lists of 1,941 FlyBi, 209 Lit-BM-16, and 188 Lit-BS pairs 

tested in the MAPPIT assay are provided as Suppl. Table 6 and Suppl. Table 7, and the subset of 323 

pairs that were positive in the assay is provided as Suppl. Table 8. 

The results of this analysis made it possible for us to apply a cut-off value for CuraGen pairs that 

produced a list of pairs of equivalent high quality as compared with FlyBi pairs from assay version 1 (N-N 

terminal configuration) as judged by performance in this orthogonal MAPPIT assay. The Giot et al. study 

reports that 4,780 interactions among 4,679 proteins met the cut-off value of 0.5 for high-confidence as 

defined in that study2. We found that CuraGen pairs with a confidence score of 0.7 or higher as defined in 

2 have a similar recovery rate in the MAPPIT as compared with FlyBi pairs (Suppl. Figs. 2 and 3). Thus, 

a total of 2,232 protein pairs from the CuraGen dataset met the quality cut-off criteria for integration into 

our final reference map as described below. We note that pairs from the FlyBi assay ‘version 3’ screens 

(N-C terminal configuration) did not validate as well as the ‘version 1’ screen pairs (N-N terminal 

configuration) (Suppl. Fig. 3). Literature pairs also did not validate at the same rate when tested using the 

C-terminal version of MAPPIT. We attribute this to the fact that the MAPPIT assay has not been optimized 

for screens performed using C-terminally-fused ORFs. As expected due to significant differences in the 

assay formats, assay types, and other relevant factors, the positive rates with MAPPIT were lower for 

DPiM41 and for the group of previous smaller-scale Y2H studies available from DroID27,28 (Suppl. Fig. 3). 

These other studies contributed to defining the Lit-BM, e.g., as the source of additional evidence for some 

pairs, and notably, the Lit-BM performs significantly better than the Lit-BS (Suppl. Fig. 3). This provides 

one indicator among many that these other datasets have clear value as part of an effort to fully document 

PPIs in Drosophila.  

 

Comparison of FlyBi interactions with existing knowledge   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502359doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502359
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

We next compared FlyBi pairs with interaction data from a variety of data repositories that are 

integrated in MIST29 (Fig. 2). We generated 1,000 randomized versions of the FlyBi network by node 

shuffling. Interacting pairs in the FlyBi dataset show significant overlap with physical interaction data 

obtained from previous studies in Drosophila and physical interactions mapped from orthologous genes 

(‘interologs’) (Fig. 2A). We also observed some overlap between FlyBi binary interaction pairs and genetic 

interaction (GI) data for Drosophila and between orthologs of fly genes in the budding yeast 

Saccharomyces cerevisiae (Fig. 2A). To further analyze FlyBi interactions, we determined the count of 

literature citations for each gene in the Lit-BM-20 or FlyBi dataset. As expected, interactors in Lit-BM-20 

are biased towards well-studied genes (i.e., genes with larger numbers of literature citations). By contrast, 

we did not observe this bias for genes in the FlyBi dataset (Fig. 2B), consistent with the large-scale, all-

by-all approach we took to generate the data. We next compared gene ontology (GO) annotations for the 

two proteins in each pair in three categories—biological process, molecular function, and cellular 

component—as well as phenotype annotations from FlyBase. For both Lit-BM-20 and FlyBi pairs, we 

observe significant enrichment for genes with the same GO and/or phenotype annotations as their 

interacting partners. Moreover, the level of enrichment as compared with random controls is comparable 

for Lit-BM-20 and FlyBi pairs (Fig. 2C). We also compared binary interactions with protein complex-based 

interaction data, and with components of protein complexes as annotated in literature42, and observed 

enrichment in both the Lit-BM-20 and FlyBi sets (Fig. 2C). In addition, interacting proteins identified in our 

study are more likely to be found in the same organelle and in the same cell type, as well as reported in 

the same publications, compared to the random controls (Fig. 2D,E,F). 

Comparing the Lit-BM-20 and FlyBi sets to random networks reveals that FlyBi interaction pairs are 

of a quality that is comparable to the high-confidence published binary interactions that make up the Lit-

BM-20 and are less biased. As such, these sets can appropriately be combined to generate a high-quality 

Drosophila reference interaction (DroRI) network. We built a new, high-confidence DroRI network by 

integrating the FlyBi data, CuraGen data that meet the cut-off for data quality equivalent to the FlyBi data, 

and all other high-confidence binary interactions (i.e., literature-based interactions). The DroRI network is 

comprised of 17,232 interactions among the protein products of 6,511 genes and can be queried and 
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accessed at a dedicated page at MIST. To facilitate integrated data mining and hypothesis generation, we 

integrated tissue-specific bulk RNA-seq data generated by the modENCODE consortium43 into MIST. This 

makes it possible for users of MIST to project any of the tissue-specific transcriptomics datasets onto the 

DroRI network, and reveal the subset of network interactions predicted to occur in a given tissue (Suppl. 

Fig. 4). 

We also compared the DroRI network with interaction data from the mass spectrometry-based 

DPiM study, and with binary interaction maps from other species. Given the differences in coverage and 

approach, we expected the overlap between DroRI and these other datasets to be modest. Consistent 

with that expectation, we found that among the 17,232 binary interactions in the DroRI network, only 54 

pairs overlap with DPiM data and 2,661 pairs overlap with the complete set of interactions detected by 

mass spectrometry as annotated in MIST. With regards to other species, we find that comparison of the 

DroRI and HuRI networks reveals 714 of a total of 9,332 interactions for which both orthologs are present 

in both datasets are identified as binary interactors in both networks. The total set of DroRI binary 

interactions for which orthologs are detected as binary interactors in any of the species included in MIST 

(human, rat, mouse, zebrafish, X. laevis, X. tropicalis, C. elegans, S. cerevisiae, and S. pombe) is 1,355. 

The low level of overlap likely also reflects differences in what is discoverable using different types of 

assays, whether or not the correct isoform is being tested, other sources of false negative discovery, and 

meaningful biological differences.  

Ultimately, the value to the Drosophila research community of the DroRI network, and the new 

FlyBi dataset in particular, will be revealed by exploring its use, such as for the development of new 

hypotheses regarding protein function. We describe the results of one such exploration below.  

 

Generation of an autophagy network using FlyBi data 

To experimentally test the predictive value of interactions represented in the DroRI network and in 

particular, to test the predictive value of the new FlyBi binary interaction pairs with regards to shared gene 

function, we chose to focus on autophagy. Autophagy has been extensively studied in multiple species44; 

has been characterized using protein-centric approaches in human cells45; is a conserved process with 
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human health relevance46; and is easily studied in vivo in Drosophila using multiple well-established 

assays47,48. To identify new regulators of autophagy, we used FlyBi data to define a list of candidate 

autophagy-related proteins and a control set. To build a putative autophagy-related list, we first assembled 

a list of 19 known autophagy regulators (List 1 in Suppl. Table 9). Next, we mined the FlyBi data for 

interactors with these autophagy regulators and identified 48 candidate interactors (List 2 in Suppl. Table 

9). One of the 19 known regulators we included is Atg8a. There are five interactors with Atg8a in the FlyBi 

dataset. We note that two of these five were also identified in a recent Y2H screen for interactors with 

Atg8a49; i.e., Diabetes and obesity regulated (DOR), a known autophagy regulator, and CG12576, an 

uncharacterized protein. To expand the candidate list, we again mined the FlyBi data, and identified 103 

additional potential interactors of List 2 proteins (List 3 in Suppl. Table 9). By combining Lists 1, 2, and 3, 

we generated a putative PPI network related to autophagy that includes four core autophagy-related genes 

and 166 candidates (170 gene ‘autophagy set’) (Suppl. Table 10). As a control set, we chose at random 

106 genes from the FlyBi dataset (‘random set’) (Suppl. Table 10). 

To test for autophagy-related functions, we performed loss-of-function experiments using RNAi 

(Fig 3A) combined with overexpression of Atg1, which encodes a protein kinase essential for autophagy 

(Fig. 3A). Overexpression of Atg1 in the Drosophila eye induces a high level of autophagy, leading to a 

rough eye phenotype (Fig. 3A, compare A’ and A’’)50,51. To test the roles of the ‘autophagy set’ genes, we 

determined if RNAi knockdown of these candidates modified the Atg1-induced rough eye phenotype. A 

total of 477 RNAi lines targeting 166 genes were tested in a GMR-Gal4>UAS-Atg1 background. We found 

that 234 lines, corresponding to 137 genes, modified the severity of the GMR-Gal4>UAS-Atg1 phenotype 

(Fig. 3B and Suppl. Table 10). To address whether the data from FlyBi used to generate the autophagy 

network helped enrich for potential autophagy components, we randomly selected 106 genes from FlyBi 

as a control list of comparable size (‘random set’) (Fig. 3B) and tested these genes in the GMR-Gal4>UAS-

Atg1 assay. Altogether, 26 of the lines tested (24%) modified the severity of GMR-Gal4>UAS-Atg1 

phenotype (Suppl. Table 10). We tested multiple lines per gene in the autophagy set and only a single 

line per gene in the control set. Thus, to appropriately compare the percentage of modifiers between the 
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autophagy set and the control set, we randomly selected one RNAi stock per gene from the autophagy set 

five times, generating five independent data sub-sets (see Methods) (Suppl. Table 10). RNAi lines tested 

in the autophagy sub-set modified the GMR-Gal4>UAS-Atg1 phenotype in 50%, 52%, 47%, 51%, 55% of 

cases (average = 51%), compared to 24% in the random set (Fig. 3C). Altogether, these results indicate 

that the targeted candidate gene screen approach is more efficient at identifying new potential modifiers 

of autophagy-related functions. 

 We next tested putative autophagy regulators identified in the GMR-Atg1 screen using a different 

assay performed at a different lifecycle stage and in a different tissue (Fig. 3D). This assay interrogated 

autophagy-related processes in the larval fat body, a nutrient storage organ analogous to the human liver 

in which autophagy is quickly induced by starvation52. Under fed conditions, expression of the 

autophagosomal marker mCherry-ATG8a shows diffuse localization throughout the cells. Upon starvation, 

mCherry-ATG8a redistributes to form punctate structures (autophagosomes) in the cytoplasm. Of the 234 

RNAi lines identified in the GMR-Gal4>UAS-Atg1 eye screen, 60 (26%) increased fat body Atg8a puncta 

under fed conditions, while 41 lines (18%) inhibited fat body Atg8a puncta formation upon starvation 

(Suppl. Table 10). As an example of a negative autophagy regulator, depletion of dwg in GFP-labeled flip-

out clones induced Atg8a punctate formation under nutrient rich conditions (Fig. 3D, top panels). In 

addition, as an example of a positive regulator of autophagy, depletion of MED15 suppressed starvation-

induced Atg8a puncta formation (Fig. 3D, bottom panels). Altogether, our candidate gene approach 

allowed us to quickly and efficiently identify new genes that are likely to be regulators of autophagy.   

In total, 101 RNAi lines corresponding to 66 genes from the ‘autophagy set’ list were able to modify 

Atg1-induced eye defects and alter Atg8 puncta. Of the 66 genes, we chose 39 genes for which there are 

at least two RNAi lines available and results with both lines had consistent effects in both the fat body and 

the eye phenotype screens. We tested whether components of the autophagy network can physically 

interact in Drosophila cells by co-immunoprecipitation (Co-IP). We expressed Flag- and GFP-tagged 

proteins together in Drosophila S2R+ cells, pulled down GFP-tagged proteins, and determined whether 

they were associated with Flag-tagged proteins (Suppl. Fig. 5, Suppl. Fig. 6, Suppl. Table 11). Of the 39 
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genes, one of the GFP-tagged proteins, CG10209, was expressed at very low levels. To overcome this 

issue, we designed a smaller Flag-tagged form of CG10209 and enriched it using Flag-beads (Suppl. Fig. 

6). Of 29 pairs we tested, an interaction was detected using co-IP for 16 (55%), providing support for the 

high quality of the FlyBi dataset Fig. 3E.  

 

Dwg suppresses autophagy by binding to insulator elements near ATG genes 

One of our candidates, deformed wings (dwg; also known as Zw5), encodes a Drosophila insulator 

protein responsible for enhancer blocking and support of distant interactions, contributing to the 

organization of chromosome architecture53. Our genetic test showed that dwg is a putative negative 

regulator of autophagy. Consistent with this, whole larval lysate of dwg mutants showed a higher level of 

autophagy, indicated by increased lipidated Atg8a (Atg8a-II) compared to lysate from control (Fig. 4A).  

We hypothesized that as an insulator, the Dwg protein might regulate autophagy through binding 

to insulator elements on chromatin and blocking enhancer functions. We therefore performed chromatin-

immunoprecipitation followed by next-generation sequencing (ChIP-seq) to identify Dwg downstream 

targets. Gene group enrichment analysis revealed that the chromatin regions of autophagy-related genes 

and genes related to mitochondria, major signaling pathways, and ribosomes are targeted by Dwg (Fig. 

4B). Interestingly, the Dwg-binding regions verified by ChIP-qPCR are located at or near insulator elements 

in four core ATG genes, Atg1, Atg3, Atg13, and Atg17 (Fig. 4C,D)54. Dwg can suppress enhancer 

functions, thus leading to inhibition of transcription55. Consistent with this, we also observed that dwg 

mutants showed higher mRNA expression of ATG genes (Suppl. Fig. 7). Taken together, these results 

suggest that Dwg binds to the insulator elements present in the ATG genes, presumably suppressing their 

transcription. 

 

Dwg is subjected to autophagy-lysosomal degradation  

Autophagy is considered a highly selective pathway that targets specific substrates for degradation 

and selectivity is thought to rely mainly on the interaction between LC3/ATG8 family proteins and 

cargo/adaptor proteins56. Interestingly, our co-IP results suggest that Dwg physically interacts with Atg8a 
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(Suppl. Fig. 8) and FlyBi data further suggest that the interaction is direct. These results suggest that Dwg 

is a substrate for autophagy. To test this hypothesis, we expressed Dwg in S2R+ cells and treated cells 

with an autophagy inducer (Rapamycin) or a lysosomal inhibitor (Bafilomycin A1; BafA1). Immunoblots 

revealed that Dwg protein levels were reduced following Rapamycin treatment, whereas the Rapamycin-

induced reduction of Dwg protein can be reversed by cotreatment with Bafilomycin A1 (Fig. 4E), indicating 

that Dwg is degraded by autophagy.  

The mammalian ortholog of Atg8a, LC3, interacts with LIR (LC3-interacting region) motifs, W/F/Y-

x-x-L/I/V, on substrates for autophagic degradation56. There are four potential LIR motifs predicted in Dwg 

(Suppl. Fig. 8)57. To characterize which LIR motifs are responsible for interactions with Atg8a, we 

generated four Dwg deletion mutants, Dwg-F1-F4. Each one of them contains an individual LIR motif 

(Suppl. Fig. 8). Our co-IP results showed that Atg8a interacts with Dwg-F1 and Dwg-F4 (Suppl. Fig. 8), 

suggesting that it is the first and fourth LIR motifs that bind to Atg8a. Consistent with this result, Dwg with 

mutant LIR motifs (DwgY129A-I132A, Dwg F401A-L404A, and DwgY129A-I132A-F401A-L404A (4A)) had dramatically reduced 

interactions with Atg8a, demonstrating that these two LIR motifs are Atg8a binding sites (Fig. 4F). 

 

Atg8a delivers Dwg from nucleus to autophagosomes for degradation 

To elucidate the physiological role of the Dwg-Atg8 interaction, we expressed wild-type Dwg or 

Dwg with mutations in the two LIR motifs (Dwg4A) and examined their localization and effects in S2R+ cells 

and larval fat body. As expected, Dwg is localized in the nucleus (Fig. 4G and Suppl. Fig. 9). Inhibition of 

autophagosome degradation by Baf-A1 resulted in an increase of detectable Dwg in the cytoplasm and 

co-localization of Dwg with Atg8a punctae in S2R+ cells (Suppl. Fig. 9). Similarly, in the fat body, starvation 

induces translocation of Dwg to the cytoplasm, where it significantly colocalizes with autophagosomes 

(Fig. 4G). These results further support that Dwg is a substrate of autophagy. Importantly, expression of 

Dwg with LIR motif mutations was restricted to the nucleus and strongly inhibited autophagy in both S2R+ 

cells and fat bodies, suggesting that Atg8a is able to interact with and deliver Dwg to autophagosome for 

degradation (Fig. 4 G and Suppl. Fig. 9). Altogether, our results suggest that disruption of the Dwg-Atg8a 
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interaction not only stabilizes Dwg protein, but also allows Dwg to bind to insulator elements which 

suppress transcription of Atg genes, leading to autophagy inhibition (Suppl. Fig. 10).  

 

 
Discussion 

 In this work, we applied state-of-the-art experimental approaches to binary interaction mapping, 

together with experimental and bioinformatics-based quality analyses, to generate a next-generation 

reference binary interactome for Drosophila. The outcomes of our large-scale efforts include (i) a collection 

of ~10,000 Drosophila ORFs in a Gateway-system entry vector; (ii) a new high-confidence Y2H dataset, 

the FlyBi dataset, which is comprised of 8,723 binary interactions among 2,939 proteins; and (iii) an 

integrated Drosophila reference interactome, DroRI, which is comprised of 8,723 binary interactions among 

2,939 proteins. Features that distinguish the FlyBi project from past efforts include the quality and coverage 

of the ORF collection on which we based our Y2H screens25; use of improved versions of the Y2H system4; 

prediction of new interactors using a computational approach37; use of an orthogonal approach to define 

cut-off values for confidence for FlyBi Y2H data, computational predictions, and previously reported data40; 

and integration and comparison of FlyBi data with existing PPI and other datasets to generate the DroRI 

resource that can be navigated using MIST29.  

Several indicators point to the value and high quality of FlyBi interaction pairs. For example, 

proteins in FlyBi pairs are less biased towards well-understood proteins as judged by the number of 

publications per gene as compared to existing pairs (Fig. 2B), such that they provide an important 

supplement to existing interaction datasets. Moreover, FlyBi pairs also performed as expected for a dataset 

enriched in biologically meaningful associations (Fig. 2C-F). Nevertheless, the pairs defined in this work 

have little overlap with interactors as defined using mass spectrometry-based approaches (e.g., the DPiM 

dataset) or with binary interactors observed in other species, observations that likely reflect both 

experimental and biological differences. Ultimately, the value of identification of large-scale binary datasets 

for biological and biomedical research lies in the ability to use individual identified putative PPIs and/or 

integrated networks to build new hypotheses that lead to efficient detection of new functional findings with 
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in vivo relevance. To test this, we explored potential new interactors of proteins previously identified as 

relevant to autophagy in Drosophila. We chose to focus on autophagy because this process is well-studied 

in multiple species and has human health relevance, and because well-established in vivo Drosophila 

assays related to autophagy were available. 

Our approach was to start with known proteins of the autophagy pathway, identify potential PPIs 

based on the FlyBi data, and test these candidates for autophagy-related phenotypes in Drosophila using 

two different in vivo assays. We performed a focused RNAi screen for putative genetic modifiers of the 

mild phenotype associated with over-expression in the eye of Autophagy-related 1 (Atg1)50,51. Using the 

positive hits from the Atg1 modifier screen we determined the distribution of fluorescent protein-tagged 

Atg8a in the Drosophila fat body under fed and starved conditions58. Following this approach, we identified 

a high-confidence sub-network of putative autophagy regulators (Fig. 3) and found that Dwg both regulates 

and is regulated by autophagy, providing the first evidence of reciprocal regulation between autophagy 

and chromatin regulators. Importantly, these findings show that using our interaction network constructed 

with FlyBi data, allowed us to enrich for genes relevant to the process of autophagy. The ability to use 

binary interaction data to reduce the full set of Drosophila genes to a subset of high-confidence candidates 

prior to in vivo phenotypic analyses, which can be both time- and resource-intensive, will unquestionably 

accelerate future studies. 
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Materials and Methods 

 

Generation of a large-scale ORF clone resource 

The entry clone collection was generated from 11,687 BDGP cDNA gold clones 36 (see 

https://www.fruitfly.org/EST/gold_collection.shtml) using attB-tailed PCR. See below for detailed 

descriptions of primer design and PCR amplification. The PCR products were quality controlled by 

detection and sizing on agarose gels as follows. PCR products were loaded into 1% (w/v) agarose gels (3 

g Agarose, 300 mL 1xTAE) and run in 1xTAE buffer with New England Biolabs 1 kb ladder. Gels were 

imaged using a BioRad GelDoc XR system. Band sizes were calculated using BioRad Quantity One 

software (version 4.6.9). High-quality PCR products were cloned into the pDONR223 expression and 

cloning vector using BP Clonase. See below for a detailed description of the cloning protocol. Clones were 

stored as glycerol stocks prior to their use to generate yeast expression clones. 

 Primer Design: PCR primers were designed using a custom Perl script and Primer3 release 0.9 

59. The parameters applied were as follows: PRIMER_OPT_SIZE, 22; PRIMER_MIN_SIZE, 18; 

PRIMER_MAX_SIZE, 30; PRIMER_OPT_TM, 60; PRIMER_MIN_TM, 40; PRIMER_MAX_TM, 95; 

PRIMER_OPT_GC_PERCENT, 50; PRIMER_MIN_GC, 0; PRIMER_MAX_GC, 100; 

PRIMER_EXPLAIN_FLAG, 1; PRIMER_MAX_POLY_X, 18; PRIMER_SELF_ANY, 30; 

PRIMER_SELF_END, 30. For most cases, the Perl script was invoked as follows: 

./generateBOBSPrimers.pl -method open -primer_min_size 15 -primer_max_size 17 -vector pDONR223 -

order <source_cdna_clone_id>. When that failed, the script was run as follows: generateBOBSPrimers.pl 

-method open -primer_min_size 15 -nomaxprimerlen -vector pDONR223 -order <source_cdna_clone_id>. 

For dicistronic cDNAs, the script was run as follows: 

./generateBOBSPrimers.pl -method open -primer_min_size 15 (-primer_max_size 17 | -nomaxprimerlen) 

-vector pDONR223 -target <nucleotide sequence of CDS> -identification <gene name> -order 

<source_cdna_clone_id>. For dicistronic cDNAs, the CDS to which primers were designed was chosen 

manually and somewhat arbitrarily based on function and size, with preference given to the longer CDS. 
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PCR amplification of ORFs: Templates were inoculated from the Berkeley Drosophila Genome 

Project (BDGP) Gold Collection into 1.2 mL 2x YT medium with appropriate antibiotic (Chloramphenicol at 

100 µg/ml final conc., or Carbenicillin at a final concentration of 100 µg/ml). Cultures were grown overnight 

(16-18 hr) at 37°C at 300 rpm. The overnight culture was diluted 1:10 with sterile water. PCR primers were 

purchased desalted and resuspended in Tris-EDTA (TE) buffer at 20 µM concentration from Invitrogen. 

Pairs of primers were combined and diluted with Milli-Q water to a concentration of 1.25 µM (each primer). 

PCR reactions were performed using 5 µL Phusion HF Buffer (5X concentration), 0.5 µL dNTP (10mM 

each, New England Biolabs), 5 µL primer pair mix (1.25 µM each primer), 3 µL template (1:10 cell dilution), 

0.25 µL Phusion DNA Polymerase (New England Biolabs), and 11.25 µL sterile Milli-Q water, for a total 

reaction volume of 25 µL. Touchdown PCR 60 was performed with the following cycling parameters: 98°C 

for 1 minute; 5 cycles of (98°C for 10 seconds; 56°C to 46°C, decrease by 2°C each cycle; 72°C for 7.5 

minutes); 15 cycles of (98°C for 10 seconds; 72°C for 7.5 minutes); 72°C for 10 minutes; 4°C hold. 

BP Clonase reactions: BP Clonase reactions were performed in a total volume of 5µL, consisting 

of 1 µL 5X BP Reaction Buffer, 1 µl pDONR223 vector (75 ng/µL, uncut), 1 µL BP Clonase, and 2 µL of 

attB-tailed PCR product.  BP reactions were incubated at 25°C for 18 hr. Immediately following incubation, 

2 µL of the BP reaction was transformed into 10 µL of chemically competent E. coli DH5-alpha cells 

(prepared in-house). The mixture was incubated for 30 min on wet ice, heat shocked for 40 sec at 42°C, 

and incubated for 2 min on wet ice. Finally, 90 µl of SOC medium was added and the transformations were 

incubated for 1 hr, 225 RPM, 37°C in an orbital shaking incubator. The entire transformation reaction was 

inoculated into 1mL LB/spectinomycin (100 µg/mL) and incubated 16-18 hr at 37°C, 300 rpm. Reactions 

and transformations were performed in 96-well format in standard thermal cycler plates. Glycerol frozen 

stocks (15% glycerol) were made by mixing 50 µL glycerol (30%) with 50 µL overnight culture. 

 

Amplification of ORFs for transfer to expression vectors and sequence analysis 

We used PCR to amplify the ORFs from the large-scale ORF collection to generate a product that 

was used for cloning into the yeast expression vectors (see below) and useful for sequence analysis. PCR 

was performed using individually indexed 96-well M13 forward primers (Life Technologies) and a non-
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indexed M13 reverse primer (5’-GTAACATCAGAGATTTTGAGACAC-3’). The same amount of each 

amplicon from each plate was pooled as a single sample. Samples from each entry plate were sequenced 

using the Illumina platform. Sequencing reads were deconvoluted to the individual well level based on a 

combination of the 96-well index and the Illumina sample index, and by alignment to ORF sequences. A 

clone was deemed ‘sequence confirmed’ if a majority of the reads from the well (> 10 reads) aligned to the 

expected ORF sequence. Only entry clones that were sequence confirmed were re-arrayed and used for 

further processing. 

 

Preparation of Y2H expression clones from the large-scale ORF clone resource 

Using the M13 PCR product from the entry ORFs, we performed a LR reaction into pDEST-DB, 

pDEST-AD-CYH2 (assay version 1) and pDEST-AD-AR68 (assay version 3) using Gateway Technology 

(Invitrogen). Attributes of these plasmids are summarized in Suppl. Table 12. The DNA was isolated using 

a liquid handling robot (Qiagen 96-well Miniprep). DB ORF fusions were transformed into yeast strain 

Y8930 and AD ORF fusions into yeast strain Y8800. 

 

Y2H auto-activator identification and removal 

Prior to the screen, haploid DB ORFs were spotted on SC-Leu-His media to test for auto-activation 

of the GAL1::HIS3 reporter gene in the absence of an AD-ORF plasmid. DB ORFs that grew on SC-Leu-

His were removed from the collection.  

 

Y2H Screening 

Large-scale Y2H screens were performed using two assay formats4. For the first two screens 

(assay version 1), pools of 1,000 ORFs as preys in pDEST-AD-CYH2 were screened against single 

pDEST-DB ORF baits. Both AD and DB are fused to the N-terminus of the ORF and expressed from yeast 

centromeric plasmids (Fig. 1A, center panel, “v1”). For screens 3 and 4 (assay version 3), we used preys 

in pDEST-AD-AR68, in which the AD is fused to the C-terminus of the ORF and plasmid copy number 

reflects use of a 2-micron origin instead of the yeast centromeric chromosome. We used  assay version 1 
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prey constructs and tested these against same baits (Fig. 1A, center panel, “v3”). A detailed workflow is 

provided in Suppl. Fig. 1B and follows what was reported for4. Briefly, following inoculation of DB and AD 

ORFs in selective media and overnight culture, 10 ul of each DB was mated against 5 ul of a pool of 1,000 

AD’s (kilopool). After an overnight incubation at 30ºC in liquid rich medium (YEPD), 10 ul of the culture 

was transferred into synthetic complete media (SC) without leucine or tryptophan (SC-Leu-Trp) to select 

for diploids. The following day, the culture was spotted on SC-Leu-Trp-His+3AT solid media to select for 

diploids in which the GAL1::HIS3 reporter gene was activated. In parallel, diploid yeast cells were 

transferred onto SC-Leu-His+3AT solid media supplemented with 1 mg/l cycloheximide (CHX) for assay 

version 1 or 10 mg/l CHX for assay version 3. After 72 hr incubation at 30ºC and one additional day at 

room temperature, we picked colonies that grew well on 3AT plates and did not grow on CHX plates.  

 

Yeast colony sequencing 

To identify both bait and prey proteins for thousands of positive colonies, we used a method called 

SWIM-seq (Shared-Well Interaction Mapping by sequencing) as described4. Briefly, DB and AD-ORFs 

were simultaneously amplified from 3μl yeast lysate, using well-specific primers (see table below). After 

PCR amplification, barcoded PCR products from an entire 96 well plate were pooled together and purified 

and sequenced with Illumina Solexa technology allowing for identification of interacting first pass pairs of 

proteins (FiPPs). To identify likely true AD/DB pairs, we developed a “SWIM score”4 S that takes into 

account the AD and DB reads in each well, total reads returned from the sequencing run, and other factors.  

  
where x and y are read counts of an AD-ORF and DB-ORF in a given well respectively, a and d are total 

read counts of all aligned AD-ORF and DB-ORF in that well, and M and N are pseudo-counts for AD and 

DB respectively, which were constant for each sequencing batch but varied for different batches. We 

selected FiPPs for pairwise testing using a cutoff that balances the risk of testing too many false positives 

FiPPs versus not testing too many true positive FiPPs. The cutoff varied for different screens and 
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sequencing runs to adjust for slight variations in the screening and sequencing protocol. Primers used for 

SWIM-seq are shown in Suppl. Table 13. 

 

Pairwise test of FiPPs 

Each FiPP was subjected to a pairwise retest 4. Briefly, ADs and DBs were picked from the yeast 

ORF expression collection, mated in individual quadruplicates, and diploid yeast were spotted on selection 

media: SC-Leu-Trp-His+3AT and SC-Leu-His+3AT+CHX. Positive pairs were picked into SC-Leu-Trp and 

a SWIM-PCR was performed on the diploid yeast lysates to confirm the identity of ORFs. We used 

computational analysis as described in 4 to generate a list of binary interactors identified in the screens. If 

a DB acted as a de novo auto-activator, it was retested in a final pairwise experiment, where in parallel to 

mating the protein pairs, each DB was also mated against an “AD-null” plasmid without any ORF in the 

cloning site. Genes corresponding to mated yeast that grew on selective media when mated against AD-

null yeast were removed from the final FlyBi dataset. 

 

Computation-based prediction of positive pairs and quality analysis 

 Computational prediction of positive pairs, based on the assay version 1 results (i.e., screens 1 and 

2) was performed as described in 37. We used network-based link prediction to rank candidate interacting 

pairs based on the normalized number of length three network paths linking them (L3). As the input, we 

used a list of 2,195 PPIs from screens 1 and 2 and obtained the top 10,000 predictions. To quality-analyze 

these predictions and screen 2 data, we experimentally tested the top 1,000 predictions from the L3 

computational analysis, a set of 135 positive interactions from screen 2 (positive benchmarks), 263 

proteins from the RRS (negative benchmarks), and binary interaction pairs from the following sources or 

lists: Lit-BM-16 (see main text), and DPiM41. Altogether, we pairwise tested 3,399 non-redundant pairs in 

two orientations, allowing us to classify each pair as either positive, negative, or undetermined, following 

the experimental protocol described above and outlined in Suppl. Fig. 1B. 

 

MAPPIT validation 
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MAPPIT analysis was performed as previously reported61. Entry clones for bait and prey proteins 

were first cloned into MAPPIT vectors via Gateway LR reaction. Miniprep DNA was used to transfect 

HEK293T cells by standard calcium precipitation in quadruplicate.  For each tested pair, two wells were 

left untreated and two were stimulated with the cytokine erythropoietin (Epo), which can induce JAK-STAT 

pathway signaling in cells in which there is a bait-prey interaction, resulting in activation of a STAT-

responsive firefly luciferase reporter61. MAPPIT validation assays were only deemed valid if both bait and 

prey were successfully cloned into expression vectors and bait expression was detected. Fold-induction 

values (i.e., the signal from stimulated cells / signal from unstimulated cells) were calculated for each pair 

and two negative controls (i.e., no bait with prey and bait with no prey). Each tested pair was assigned a 

quantitative score comprising the fold-induction value of the pair divided by the maximum fold-induction 

value of the two negative controls.  The validation was done in several batches, and the same ~200 pairs 

of Lit-BM-16 (positive controls) and ~200 RRS pairs (random controls) were included in each batch. 

Altogether, we validated 963 screen pairs, as well as 193 CuraGen high confidence pairs, 187 CuraGen 

low confidence pairs2, 216 pairs reported in41, 291 pairs in the “Finley Yeast Two-Hybrid Data” list that can 

be downloaded from the DroID online resource27, and 188 Lit-BS pairs.  

Pairs were scored positive or negative based on thresholds set at the 99th percentile of the RRS 

scores (equivalent to a 1% false discovery rate). Each experimental batch was scored separately and used 

the quantile function in the Python library. Pairs without valid quantitative scores were dropped, and 

recovery rates were calculated as the number of positive pairs over the sum of the positive and negative 

pairs. The error bars on the recovery rates were standard errors of the portions. 

 

Bioinformatic analyses 

SAFE analysis. For SAFE analysis, we used the SAFE software62 v1.5 to determine and visualize 

significant functional modules in various networks. The network layouts were generated with Cytoscape63 

v3.4.0 using the edge-weighted spring embedded layout. SAFE analysis was run using the default options 

with the exception that “layoutAlgorithm” was set to “none” (using the layout as generated by Cytoscape) 

and the “neighborhoodRadius” was set to “2.”  
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Gene set enrichment. Gene set enrichment analysis of genes covered by the FlyBi network was 

done using an in-house program written based on a hypergeometric distribution test. Gene sets were built 

based on the Gene List Annotation for Drosophila (GLAD) database64. A negative control of 1000 random 

networks was generated by shuffling FlyBi gene nodes 1000 times.  

Identification of Lit-BM-20. Lit-BM-20 was built by selecting Drosophila physical interactions from 

MIST for which either the interaction was identified using one detection method for direct physical 

interaction as reported in multiple publications or the interaction was identified using multiple methods for 

detection of direct interactions (or both). The list of the detection methods for direct interaction were 

annotated based on the same criteria used for building the HuRI network4,38. Annotations of detection 

methods for interactions included in MIST were based on the European Bioinformatics Institute (EBI) 

molecular interaction (MI) controlled vocabulary system (https://www.ebi.ac.uk/ols/ontologies/mi), for 

example, MI:0800 for two hybrid.  

Comparisons to interologs. The FlyBi dataset was compared with PPIs and genetic interactions 

detected in Drosophila and interologs as assembled by MIST. In addition, the FlyBi dataset was compared 

with Drosophila orthologous gene pairs mapped using DIOPT 65 from yeast gene pairs with similar genetic 

interactors66. 

Adjacency matrix. An adjacency matrix for binary interactions was built using FlyBi interactions 

and Lit-BM-20 interactions to visualize how frequently interacting proteins are reported in literature. The 

interacting proteins were binned and ordered along both axes based on the number of corresponding 

publications. The color intensity of each square reflects the total number of interactions between proteins 

in the corresponding bins. 

Gene Ontology (GO) analysis. Analysis of the biological relevance for interacting proteins was 

done by evaluating commonality in the GO annotation, phenotype annotation, and complex memberships 

of the interacting proteins from FlyBi and Lit-BM-20 data as compared with protein pairs from the random 

networks. To do this, gene2go and gene2phenotype annotations were obtained from FlyBase67, and GO 

terms with more than 30 associated genes were removed prior to enrichment analysis.  
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Protein complex-based analysis. Complex-based interaction data for Drosophila were obtained 

from MIST29. Protein complex annotations were obtained from COMPLEAT42. COMPLEAT includes 

annotated complexes from the literature and complexes predicted based on the connectivity of protein-

protein network; however, only literature-based complexes were used for enrichment analysis.  

Co-localization analysis. Co-localization analysis was done based on organelle prediction by 

PSORT68,69 and DeepLoc70. Co-citation analysis was done based on associated literature for each 

interacting protein. Genome-scale studies were removed and only publications with fewer than 100 

associated genes were considered. Co-expression analysis was done by mining a single-cell RNA-seq 

dataset for the Drosophila midgut71 to identify cell types in which each interacting protein is expressed. 

The results were visualized by plotting the fraction of interacting pairs that share the same organelle 

annotation, the number of interacting pairs cited in the same publication(s), or the average number of co-

expressed cell types of the interacting pairs, in each case as compared to results with the 1,000 

randomized networks.    

 

Autophagy-related assays 

Drosophila strains and genetic assays: Flies were raised at 25°C following standard procedures 

unless otherwise noted. The following Drosophila strains were used: UAS-Atg1 (BDSC51655), dwg8 

(BDSC4094), r4-mCherry-Atg8a Act>CD2>GAL4 UAS-GFP-nls58, UAS-Luc-RNAi (BDSC31603). Additional 

Drosophila strains used for the genetic screen are listed in Suppl. Table 10. 

In vivo autophagy assay in adults and comparison of autophagy and random sets: To 

compare datasets of comparable size, 106 nodes from a randomly generated network were selected as a 

control gene set and one stock per gene was screened for the modifier of Atg1 overexpression-induced 

eye phenotypes. To compare the autophagy set covered by multiple stocks per gene with the random set 

where only one stock per gene was used, we randomly selected one stock per gene for the autophagy set 

and compared it with the result from the random set. We repeated this comparison process five 

independent times. 
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In vivo autophagy assay in larvae: Second instar larvae were collected 72-96 hr after egg laying 

and cultured in fresh fly media with yeast paste (fed) or in vials containing 20% sucrose (starved) for 4 hrs. 

Autophagy level is indicated by autophagosome numbers labeled by mCherry-ATG8a. GFP-marked clones 

expressing RNAi or protein in the larval fat body were generated through heat shock-independent induction 

as previously described52. 

Immunofluorescence assays: Dissected fat bodies were fixed in a solution of 4% PFA/PBS for 40 

minutes. After permeabilization with 0.3% Triton/PBS, fat bodies were washed, and incubated overnight with 

anti-HA antibodies, and visualized using anti-mouse Alexa-633 (Invitrogen). S2R+ cells expressing Flag-

dwg were fixed with 4% paraformaldehyde, permeabilized with 0.1% triton, and processed for 

immunostaining. DAPI (1 μg/ml) was used to stain nuclei. Samples were examined using a Zeiss LSM 780 

confocal laser scanning microscope (Carl Zeiss Inc.) with a 63x Plan-Apochromat (NA1.4) objective lens.  

 

Co-Immunoprecipitation analysis in Drosophila cells 

Plasmids: Full-length ORFs of CG11486 (GEO01712), CG9667 (GEO12785), Deaf1 (GEO12259), 

RfC4 (GEO04321), CG7006 (GEO04456), Larp (GEO13890), CG4813 (GEO05615), lwr (GEO03784), DOR 

(GEO05909), dwg (GEO06061), wash (GEO08420), mri (GEO13088), me31B (GEO01853), MED15 

(GEO05444), Nup54 (GEO04647), sm (GEO09592), smB (GEO05072), CG10209 (GEO04957), MED4 

(GEO04489), Odj (GEO06447), Dpy-30L2 (GEO12106), MED19 (GEO06036), Chro (GEO02531), Atg8b 

(GEO01803), Atg8a (GEO03266), CG5446 (GEO09660), CG4813 (GEO05615), kin17 (GEO12682), 

CG7484 (GEO09148), sala (GEO07724), and CG9667 (GEO12785), from the FlyBi ORF clone collection 

reported in this work. ORFs were transferred into the Drosophila gateway vectors pAWF, pAGW or pAWG. 

The GFP ORF was cloned into pAWM as a control. To generate the Dwg deletion mutant proteins, DNA 

sequences corresponding to amino acids 1-150, 134-215, 215-393, and 385-592 of dwg were PCR amplified 

and subcloned into the pAWF vector. Using PCR mutagenesis, we generated dwgY129A-I132A, dwgF401A-L404A, 

and dwgY129A-I132A-F401A-L404A mutants by replacing tyrosine 129, isoleucine 132, phenylalanine 401, or leucine 

404 with alanine, followed by cloning into pAWF or pTWH. Mutant ORF sequences were verified by Sanger 

DNA sequencing. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502359doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502359
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Antibodies: Antibodies used for the study were as follows: anti-GFP (Molecular Probes, A6455), 

anti-Atg8 (Abcam, ab109364), anti-Flag (Sigma, F3165), and anti-GAPDH (GeneTex, GTX100118).  

Cell culture: Drosophila cells were cultured in Schneider's medium supplemented with 10% fetal 

bovine serum (FBS) at 25°C. For Rapamycin (LC Laboratories, R-5000) or Bafilomycin (Sigma, B1793) 

treatment, S2R+ cells were treated with 20 nM Rapamycin or 100 nM Bafilomycin-A1 (Baf-A1) for 24 hrs. 

Immunoprecipitation and immunoblotting: DNA was transfected into S2R+ cells in a 10cm plate 

with Effectene transfection reagent (Qiagen) following manufacturer's protocol. After 3 days of incubation, 

cells were lysed using lysis buffer (Pierce) with protease inhibitor (Thermo Fisher Scientific) and 

phosphatase inhibitor (Sigma). Lysate was incubated with GFP-Trap agarose beads (Bulldog Bio) or anti-

Flag M2 magnetic beads (Sigma) for 2 hr at 4°C to precipitate the protein complexes. Beads were washed 

3-4 times with 1 ml lysis buffer. SDS-sample buffer was added, and the samples were boiled at 95 °C for 

10 min. Boiled samples were run on polyacrylamide gel (Bio-Rad) and transferred to Immobilon-P 

polyvinylidene fluoride (PVDF) membrane (Millipore). The blot was probed with primary antibody, followed 

by HRP-conjugated secondary antibody, and signal was detected by enhanced chemiluminescence (ECL; 

Amersham). 

Quantification of mRNA expression: Total RNA was extracted from control or dwg8 mutants using 

TRIzol® reagent (Invitrogen). We synthesized the first strand cDNA with 1 µg of total RNA using iScriptTM 

Reverse Transcription Supermix (BIO-RAD) followed by quantitative PCR with CFX96 Real-Time System 

(BIO-RAD) using iQTM SYBR Green Supermix (BIO-RAD). All expression values were normalized to RpL32 

(also known as rp49). All assays were performed in triplicate. The primer sequences used for PCR are as 

follows:  

Rp49: ATCGGTTACGGATCGAACAA, GACAATCTCCTTGCGCTTCT 

Atg1: CTAAAGCCGTCGTCCAATGT, GAACAGCATGCTCCGGTATT 

Atg17: GAAGCTGCACAACATCCCG, GCTGAGTAGCACGACACTTGG 

Atg3: CCAAGACAAAACCCTACCTACC, GCCGACGTATTCCATCTGCT 

Atg13: GAACCTAAAGACAGGAGAGAGCA, ACCCTCAGTCGTTTTCAGGGA 
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Chromatin immunoprecipitation (ChIP)  

S2R+ cells expressing Flag-dwg were subjected to ChIP assays using SimpleChIP Plus Enzymatic 

Chromatin IP Kit (Cell Signaling Technology) according to the manufacturer’s protocol. DNA co-

immunoprecipitation with either anti-Flag antibody or IgG control antibody was analyzed by deep DNA-

sequencing or quantified by ChIP-qPCR using primers shown below. 

Atg1: CACTTGCAGGATCGATGGCA, TTACGCTGATCGTCCGTGTG 

Atg17 promoter: CACATGCTCGGCCTGCTATT, CAGACTGTCGCTGGTGCTTT 

Atg17 intron: TGCCCGCATCGTGTAAATGG, CTGCTGCTGCTGTGAGTGTT 

Atg3: AGCTGCGAAGTGCAAGTCAA, GCGTCAGATATTCGGCCACA 

Atg13: AATCGCAGTGAAAGGGCGTT, AGTTCGCTGTCTGCGTTTGT 

For ChIP-seq data analysis, low-quality reads and adaptor primer sequences were trimmed using Trim 

Galore 0.6.4 (https://github.com/FelixKrueger/TrimGalore), and trimmed reads were mapped against fly 

genome dm6 by bowtie2 2.3.5.1 with the additional argument "-q --local"72. Samtools 1.6 were used to sort, 

filter unique reads, and convert file format to bam files73. Peak calling was performed with MACS2 2.2.6 

using the additional parameter "-B --SPMR -f BAMPE -g dm"74. Peaks were annotated with HOMER 4.1175. 

DeepTools 3.4.0 were used for normalizing read counts to CPM and convert bam files to bigWig format76. 

 

Plasmid, data, and code availability 

Plasmid clones and sequence data: Plasmid clones are available from both the Drosophila 

Genomics Resource Center (University of Indiana, Bloomington, IN) and the DNASU plasmid repository 

(Arizona State University, Phoenix, AZ). The ORF in the Gateway donor vector were end-read sequenced 

(see “Generation of a large-scale ORF clone resource”). For a subset of 954 ORFs, the end-reads 

sequence spanned the full ORF. For this subset, we submitted the sequence data to the NCBI GEO 

database. 

FlyBi data: FlyBi binary interaction data are available downloadable data file at the FlyBi project 

webpage <http://flybi.hms.harvard.edu/>. In addition, these pairs have been integrated with other datasets 

at IntAct <https://www.ebi.ac.uk/intact/>39 and in the Molecular Interaction Search Tool (MIST) 
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<https://fgrtools.hms.harvard.edu/MIST/>29. MAPPIT data as well as interaction and RNAi data for the 

autophagy-related network are available in Suppl. Tables 6, 7, 8 and 10.  

Code availability: The L3 prediction code, together with example datasets, input data files and 

predictions, is available at <https://doi.org/10.5281/zenodo.2008592>.  
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Figures & Figure Legends 

 
Fig. 1  
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Figure 1: Large-scale, all-by-all binary interaction screens of 10,000 Drosophila proteins. A. 

Schematic of the systematic screening pipeline. Left, the search space covered and the Y2H assay 

versions used. Center, assay versions used in the Y2H screen. Right, MAPPIT validation assay. B. 

Fraction of pairs positive in the MAPPIT validation assay for the following sets: random reference set (RRS; 

red), literature-curated binary pairs with multiple evidence (at the time of the assay; Lit-BM-16; blue), FlyBi 

pairs, and CuraGen pairs at high (H) and low (L) cutoff values as defined by Giot, Bader et al. 2003 (purple) 

C. Total number of binary interactions in literature and systematic interactome maps over the past 20 

years. Blue line, the total number of binary interactions accumulated in the literature (Lit-BM), as curated 

in FlyBase and displayed based on date of publication. Purple line, the number of interactions from 

systematic interactome mapping effort based on the date of public release of systematic binary datasets. 

D. Network-based spatial enrichment analysis (SAFE) results for the FlyBi dataset. Clusters of genes 

enriched for gene ontology (GO) terms are highlighted.  
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Fig. 2 
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Figure 2: Bioinformatics analysis of the FlyBi Y2H dataset. A. Comparison on FlyBi with protein-protein 

and genetic interactions (PPIs and GIs) as annotated in the MIST database. The fraction of FlyBi pairs that 

overlap with published Drosophila PPIs or interologs (i.e. putative PPIs mapped based on orthologous 

genes in other major model organisms) were analyzed by comparison to 1,000 random networks 

generated by shuffling the nodes. The FlyBi dataset shows significant enrichment for published PPIs. 

Overlap with Drosophila GIs and with gene pairs with similar genetic interactors in yeast were also 

analyzed. B. Adjacency matrix for binary interactions reported in the literature with multiple lines of 

evidence (Lit-BM) and FlyBi interactions blue and red, respectively. For the visualization, proteins were 

binned and ordered along both axes based on the number of corresponding publications. The color 

intensity of each square reflects the total number of interactions between proteins in the corresponding 

bins. C-F: Biological significance analyses. Red, FlyBi; blue, Lit-BM. C. Enrichment of binary interactome 

maps for functional relationships and co-complex memberships. BP, biological process; MF, molecular 

function; CC, cellular component; Phenotype, shared phenotypes in Drosophila as annotated by FlyBase; 

MIST complex all, all annotated indirect interactions in MIST (might or might not be supported by direct 

evidence); MIST complex only indirect, all interactions annotated as supported only by indirect evidence 

in MIST; COMPLEATDB, complex annotations (only literature-based complexes were selected). The 

dashed white line provides a visual reference point for comparison of bar heights. For D,E and F, the single 

bar on the right shows the result for FlyBi data (purple) or Lit-BM (blue), and the multiple bars to the left 

show results for 1,000 randomized networks. D. Co-localization analysis. Shown, the fraction of the 

interacting partners that share the same organelle annotation, as compared with results for 1,000 

randomized networks. Organelle annotations as predicted by PSORT and DeepLoc. E. Co-citation 

analysis. Shown are the numbers of interacting partners that are cited in the same publication(s), as 

compared with results for 1,000 randomized networks. Only publications associated with fewer than 100 

genes were considered. F. Co-expression analysis. Shown is the average number of co-expressed cell 

types defined by cluster analysis of a single-cell RNAseq dataset for the Drosophila midgut, as compared 

to results with 1,000 randomized networks. 
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Fig. 3 
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Figure 3: Identification of an autophagy regulatory network using the FlyBi dataset. A. Genetic cross 

and example phenotypes for RNAi knockdown in the presence of Atg1 over-expression. Two sets were 

compared: an experimental set defined based on predicted interaction in the FlyBi dataset with known 

autophagy components or their interactions (Suppl. Table 9) and a randomly selected set. A’-A’’’’. 

Representative adult Drosophila eye phenotypes from control and experimental assays for modification of 

the Atg1 overexpression phenotype. A’, Gal4-only control. A’’, Ectopic expression of Atg1 using the eye-

specific GMR-GAL4 driver results in a rough eye and reduced eye size. The effect is reduced in the 

presence of SalaRNAi (A’’’) and more severe in the presence of dwgRNAi (A’’’’). B. Visualization of the in 

vivo functional validation of autophagy-related interactors described in A. Pink indicates putative 

enhancers. Green, putative suppressors. Yellow, inconsistent results with multiple RNAi lines. Grey, no 

effect on the Atg1 over-expression phenotype. Red edge, overlap with published datasets. Grey edge, 

novel interactions. C. Percentage of RNAi lines that behaved as putative genetic modifiers of Atg1 over-

expression. D. Distribution of mCherry-ATG8a in the larval fat body (fed or starved conditions). Clonal 

expression of dwgRNAi in GFP-labeled cells induced the formation of mCherry-ATG8a puncta under fed 

condition while MED15RNAi abrogated starvation-induced Atg8a puncta. E. Putative autophagy regulator 

network based on knockdown, FlyBi data, and co-immunoprecipitation (co-IP) data (see Suppl. Fig. 5 and 

Suppl. Fig. 6). Green, putative suppressors of autophagy; red, putative inducers of autophagy. Grey 

edges, direct interactions as reported in the FlyBi dataset. Blue edges, interactions reported in FlyBi and 

confirmed by co-IP. Of the genes In the network, 6 (30% of total) computed relatively unstudied genes 

(‘CGs’) were added to the network by our studies.  
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Fig. 4 
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Figure 4: Dwg is both a negative regulator and a substrate of autophagy. A. Flies homozygous mutant 

for a loss of function allele of dwg exhibit increased levels of autophagy. Control (dwg8/+) and dwg mutant 

(dwg8/dwg8) larva were subjected to immunoblotting with antibodies as indicated. Measurements shown are 

mean ± SEM of triplicate experiments. Significance was determined by t-test. *p<0.05. B. Gene group 

enrichment analysis of analyzed ChIPseq data. Bar length, fold change in enrichment. Colors, strength of 

significance (p-value of -log10 for each term). C-D, Dwg binds to insulator regions of Atg genes. Example 

browser images for Atg1, Atg3, Atg13, and Atg17 from ChIP-seq experiments in S2R+ cells expressing Flag-

Dwg. Aggregate data from two independent ChIP-seq experiments are shown. Insulator binding regions are 

indicated with blue triangles. C. Dwg occupancy at or near insulator regions of Atg genes as revealed by 

ChIP-qPCR. D. One-Way ANOVA followed by Tukey’s multiple comparison test was performed to identify 

significant differences; data shown as means ± SEM of three independent experiments; ***P<0.001, 

*P<0.05. E. Autophagic activity regulates Dwg protein levels. S2R+ cells transfected with Flag-dwg or -

dwg4A(Y129A-I132A-F401A-L404)) were treated with Rapamycin, an autophagy inducer, or Bafilomycin A1 (Baf-A1), 

a lysosomal inhibitor. Dwg and GAPDH protein levels were analyzed by immunoblotting (IB) with antibodies 

as indicated and quantified. One-Way ANOVA followed by Tukey’s multiple comparison test was performed 

to identify significant differences; data shown as means ± SEM of three independent experiments; **P<0.01. 

F. Mapping Dwg-Atg8a interaction sites. Schematic presentation of domain structures and LIR (LC3-

interacting region) motifs of Dwg. S2R+ cells transfected with GFP-Atg8a, Flag-tagged dwg, or Flag-tagged 

dwg with different mutations in LIR motif (dwgY129A-I132A, dwgF401A-L404A, or dwg4A(Y129A-I132A-F401A-L404)) for 48 hr 

followed by immunoprecipitations with anti-GFP nanobody. The immunoprecipitated proteins and total cell 

lysates were analyzed by immunoblotting with antibodies as indicated. G. Disruption of the Dwg-Atg8a 

interaction inhibits autophagy. Clonally expressed HA-tagged Dwg is located in the nucleus under fed 

conditions. Upon starvation, it is detected in the cytoplasm and co-localizes with autophagosomes as labeled 

by mCherry-Atg8a. Versions of Dwg with mutations in Atg8a-binding sites (dwg4A), however, remains in the 

nucleus and inhibits autophagy. Fat body cells were stained with DAPI.  
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Supplemental Fig. 1 

 

 
Supplemental Figure 1: FlyBi project workflow and experimental yeast two-hybrid (Y2H) approach. 

A. Overall project workflow. Pre-existing physical resources or datasets are shown in white. New 

experiments or analyses are shown in blue. Newly generated physical or data resources, or their locations, 

are shown in yellow. The project resulted in a new experimentally determined Y2H dataset (FlyBi) and a 

new Drosophila reference interactome (DroRI). B. Detailed Y2H screen workflow. Left, generation of the 

ORF collection. ORFs were amplified with M13 SWIM primers and successfully sequenced ORFs were 

transferred into yeast expression vectors via Gateway cloning and transformed into yeast (pDEST-DB into 

Y8930, pDEST-AD-CYH2 and pDEST-AD-AR68 into Y8800). ORFs in pDEST-DB were tested for auto-

activation by spotting on Synthetic Complete media lacking Leucine and Histidine (SC-Leu-His) plates. 

Strong auto-activators (AA) were removed and the yeast ORFs were re-arrayed into groups of 1,000. 
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Center, screening pipeline. AD and DB ORFs were inoculated in corresponding selection media and 

incubated at 30˚C overnight. The next day, 1,000 AD-ORFs were pooled to obtain a kilo-pool and mated 

against a single DB in YPD (yeast extract peptone dextrose) media. After overnight incubation at 30˚C, 10 

µl of the mated yeast culture was transferred into Synthetic Complete media lacking Leucine and 

Tryptophan (SC-Leu-Trp media) to select for diploid yeast cells. The following day, diploid yeast cells were 

spotted on SC-Leu-Trp-His+1mM 3AT selection media and SC-Leu-His+1mM 3AT+CHX. Colonies 

growing on SC-Leu-Trp-His+1mM 3AT plates but not on SC-Leu-His+1mM 3AT+CHX plates, were picked 

up to 3 times from each spot. Lysates, SWIM PCR and sequencing were performed to identify interacting 

pairs. Right, pairwise testing. Interacting pairs were arrayed into 96-well plates for AD and DB respectively, 

inoculated into selection media and after incubation overnight at 30˚C mated in quadruplicates. The next 

day, diploid selection was performed by transferring 10 µl mated yeast culture into SC-Leu-Trp. After 

growth overnight at 30˚C, diploid yeast cells were spotted on selection media. For positive interactions 

growing on 3AT plates only and not on selection plates containing CHX, one out of four replicates was 

picked, SWIM PCR performed and sequence confirmed. A final pairwise test was performed for pairs that 

scored as de novo auto-activators or NAs (not applicable due to invalid scores) in the pairwise test. For 

those pairs, each DB-ORF was separately mated with an “AD-null” plasmid (no ORF in the cloning site) in 

parallel with the AD interactor. If a yeast colony grew more strongly when mated to the corresponding AD-

ORF than the AD-null strain, the PPI was considered valid and added to the dataset after sequence 

confirmation. Abbreviations: SWIM PCR Shared-Well Interaction Mapping by sequencing; AA Auto-

Activator; SC-Leu-Trp-His+1mM 3AT Synthetic Complete-Leucine-Tryptophan-Histidine+ 3-amino-1,2,4-

triazole; SC-Leu-His+1mM 3AT+CHX Synthetic Complete-Leucine-Histidine+ 3-amino-1,2,4-triazole+ 

Cycloheximide; SC-Leu-Trp, Synthetic Complete-Leucine-Tryptophan. 
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Supplemental Fig. 2 

 

 

 

  

Supplemental Figure 2: Experiment evaluation of CuraGen pairs at different CuraGen confidence 

score cutoffs in MAPPIT assay. Blue curve, the declining number of pairs left in the dataset at the 

indicated CuraGen stringency cutoffs are applied across all pairs. Dashed line, the recovery rates of FlyBi 

screens 1 and 2 (i.e., the FlyBi screens performed in the most comparable screen version). 
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Suppl. Figure 3 

 

 

 
Supplemental Figure 3: Experimental validation of pairs from FlyBi and other datasets in the 

MAPPIT assay. The MAPPIT configurations were N-N (top and middle) or N-C (bottom), in accordance 

with configurations of version 1 (N-N) and version 3 (N-C) in the FlyBi Y2H screens. Clouds around the 

solid lines indicate the standard of error. Left panels, titration plots showing the recovery rates at different 

thresholds. Right panels, bar plots showing the recovery rate at a cutoff value for which the random 

reference set (RRS) scores at a rate of 1%. Error bars indicate the standard of error.   
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Suppl. Fig. 4 

 

 

Supplemental Figure 4: Integration of DroRI network and transcriptomics data at MIST. Interactions 

in the DroRI master network can be queried from a dedicated tab at MIST (top left, red arrow). Users have 

the option to project expression levels as reported by modENCODE tissue-specific RNA-seq datasets onto 

the network (bottom right, red arrow). The search input is either a gene or a list of genes. An example 

results page for a query with escargot (esg) and CG15356 is shown. Solid edges, binary interactions 

identified in the FlyBi screens; dotted edge, binary interactions curated from the literature. Node colors 

reflect expression levels for the selected dataset. In this example, the network is overlayed with 

modENCODE RNA-seq data for the digestive system of 4-day adults. 
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Suppl. Fig. 5 

 

Supplemental Figure 5: Experimental validation of interactions between putative autophagy-related 

proteins by co-immunoprecipitation. Open reading frames (ORFs) were fused in-frame with epitope 

tags or GFP, co-expressed in Drosophila cells, and subjected to co-IP followed by detection with antibodies 

as indicated. See also summary of results in Suppl. Table 11 and network visualization in Fig. 4B. 
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Suppl. Fig. 6 

 

Supplemental Figure 6: Experimental validation of interactions between CG10209 and other 

putative autophagy-related proteins by co-immunoprecipitation (co-IP). As GFP-tagged CG10209 is 

undetectable (Supplemental Figure COIP-1), we designed a smaller Flag-tagged form of CG10209 and 

enriched it using Flag-beads for immunoprecipitation. Open reading frames (ORFs) were fused in-frame 

with epitope tags or GFP, co-expressed in Drosophila cells, and subjected to co-IP followed by detection 

with antibodies as indicated. See also summary of results in Suppl. Table 11 and network visualization in 

Fig. 4B.  
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Suppl. Fig. 7 

 

 

Supplemental Figure 7: Increased expression of Atg transcripts in dwg mutants. Relative mRNA 

expression of Atg1, Atg17, Atg3, and Atg13 genes in control (dwg8/+) and dwg mutants (dwg8/dwg8). 

Measurements shown are mean ± SEM. One-Way ANOVA followed by Tukey’s multiple comparisons test 

was performed to identify significant differences; Data is expressed as means ± SEM of three independent 

experiments; ***P<0.001, *P<0.05. 
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Suppl. Fig. 8 

 

 

Supplemental Figure 8: Mapping the Dwg-Atg8a interaction regions. (A) Schematic representation of 

the domain structures and LIR (LC3-interacting region) motifs, and deletion mutants of dwg. (B) Atg8a 

interacts with the first and fourth LIR motifs of dwg. S2R+ cells transfected with GFP-Atg8a and Flag-dwg-

F1-4 for 48 hr followed by immunoprecipitation with anti-GFP nanobody. The immunoprecipitated proteins 

and total cell lysates were analyzed by immunoblotting with antibodies as indicated. 
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Suppl. Fig. 9 

 

Supplemental Figure 9: Disruption of the interaction between Dwg and Atg8a inhibits autophagy. 

In untreated S2R+ cells, Dwg is localized to the nucleus. Bafilomycin A1 (Baf-A1) treatment inhibits 

autophagosome degradation and increases detectable Dwg in the cytoplasm and co-localization of Dwg 

with Atg8a punctae. A Dwg variant with LIR motif mutations (Dwg4A) is restricted to the nucleus and strongly 

suppresses autophagy. 
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Supplemental Figure 10 

 

 

Suppl. Fig. 10: Working model of regulation of Dwg by Atg8a/autophagy. Under normal conditions, 

Dwg binds to insulator elements and inhibits transcription of ATG genes. Following a stimulus such as 

starvation, autophagy is induced, and Atg8a associates with and transports Dwg from the nucleus to 

autophagosomes for degradation.  
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Supplemental Tables 

Suppl. Tables 1-10 are included as separate files  
 
Supplemental Table 11: Results of co-immunoprecipitation in Drosophila cells of Flag- and GFP-

tagged proteins from the putative autophagy network. 

 

Flag-tagged protein (size1) GFP-tagged protein (size1) Interaction Detected by CoIP 

CG11486 (100) Me31B (91) yes 

CG11486  MED15 (120) no 

CG11486 Nup54 (104) yes 

CG11486 Sm (92) yes 

CG11486 SmB (61) yes 

CG9667 (45) CG10209 (96) no 

CG9667 MED4 (68) yes 

CG9667 Odj (90) no 

Deaf1 (76) Dpy-30L2 (50) no 

Deaf1 MED19 (75) yes 

Deaf1 SmB (61) yes 

RfC4 (52) MED4 (68) yes 

CG7006 (36) MED19 (75) no 

Larp (121) MED4 (68) yes 

CG4813 (59) Chro (141) yes 

Lwr (33) Sm (92) no 

DOR (60) Atg8b (54) yes 

DOR Atg8a (54) yes 

Dwg2 (100) Atg8a (54) yes 

Wash (68) CG5446 (49) no 

Mri (63) CG4813 (84) yes 

Mri Dpy-30L2 (50) no 

CG10209 (75) Kin17 (95) yes 

CG10209 Dpy-30L2 (50) no 



48 
 

CG10209 CG7484 (60) no 

CG10209 MED15 (120) no 

CG10209 MED19 (75) no 

CG10209 Sala (54) yes 

CG10209 CG9667 (70) no 

1 Observed size of the fusion protein with tag, in kDa. 

2 Expected size, 81 kDa. The observed size of our Dwg fusion protein (100 kDa) is consistent with a report by 55, who similarly 

observed that Dwg migrates at a higher molecular weight than expected. 

 

 
 
Supplemental Table 12: Attributes of the yeast expression vectors used in this study. 

Plasmid Vector pDEST-DB pDEST-AD-CHY2 pDEST-AD-AR68 

Fusion Gal4-DB 

(aa 1-147) 

Gal4-AD 

(aa 768-881) 

Gal4-AD 

(aa 768-881) 

Fusion location N-term N-term C-term 

Promoter Truncated ADH1 promoter 

(-701 to +1) 

Truncated ADH1 promoter (-701 

to +1) 

Truncated ADH1 promoter (-410 

to +1) 

Yeast replication origin CEN CEN 2 micron 

Linker SRSNQ GGSNQ VDGTA 

Terminator ADH1 Term ADH1 Term ADH1 Term 

Selection marker AmpR AmpR AmpR 

DB, DNA binding domain; AD, activation domain; N-term, amino-terminal fusion; C-term, carboxy-terminal 

fusion; CEN, centromere; ADH1 Term, ADH1 terminator sequence; AmpR, ampicillin resistance. 
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Suppl. Table 13: Primers used for SWIM-seq. 

 AD DB 

 SWIM Universal SWIM Universal 

Forward 5'-

AGACGTGTGCTCTT

CCGATCT 

NNNNNNNNNNNNN

CGATGATGAA 

GATACCCCACCA-3’ 

5'-

CGCGTTTGGAA

TCACTACAGGG-

3’ 

 

5'-

AGACGTGTGCTCTTCC

GATCT 

NNNNNNNNNNNNNGG

TCAAAGACA 

GTTGACTGTATCGT-3’ 

5'-

GGCTTCAGT

GGAGACTGA

TATGCCTC-3’ 

Reverse  5'-

GGAGACTTGACCAA

ACCTCTGGCG-3’ 

5'-

GGAGACTTGAC

CAAACCTCTGG

CG-3’ 

5'-

GGAGACTTGACCAAAC

CTCTGGCG-3’ 

5'-

GGAGACTTG

ACCAAACCT

CTGGCG-3’ 

Note: “N”s denote the 13-mer well index. 
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