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Abstract

Sugar kelp (Saccharina latissima) has a biphasic life cycle, allowing selection on both the
diploid sporophytes (SPs) and haploid gametophytes (GPs). We trained a genomic
selection (GS) model from farm-tested SP phenotypic data and used a mixed-ploidy
additive relationship matrix to predict GP breeding values. Top-ranked GPs were used to
make crosses for further farm evaluation. The relationship matrix included 866
individuals: a) founder SPs sampled from the wild; b) progeny GPs from founders; c)
Farm-tested SPs crossed from b); and d) progeny GPs from farm-tested SPs. The
complete pedigree-based relationship matrix was estimated for all individuals. A subset
of founder SPs (n = 58) and GPs (n = 276) were genotyped with Diversity Array
Technology and whole genome sequencing, respectively. We evaluated GS prediction
accuracy via cross validation on farm-tested SPs in two years using a basic GBLUP
model. We also estimated the general combining ability (GCA) and specific combining
ability (SCA) variances of parental GPs. A total of 11 yield-related and morphology traits
were evaluated. The cross validation accuracies for dry weight per meter (» ranged from
0.16 to 0.35) and wet weight per meter (» ranged 0.19 to 0.35) were comparable to GS
accuracy for yield traits in terrestrial crops. For morphology traits, cross validation
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accuracy exceeded 0.18 in all scenarios except for blade thickness in the second year.
Accuracy in a third validation year for dry weight per meter over a confirmation set of 87
individuals was 0.31.
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Introduction

Sugar kelp, Saccharina latissima, is a brown seaweed and a winter crop that is
economically and ecologically important in the eastern North Pacific and the North
Atlantic Oceans (Augyte et al. 2017; Kim et al. 2017, 2019; Yarish et al. 2017; Mao et al.
2020; Umanzor ef al. 2021). Sugar kelp contains nutritional compounds, such as
antioxidants, minerals, and vitamins, and has been primarily grown for human
consumption. The demand for other uses, such as animal feed, cosmetics, alginates,
fertilizers, and biofuels, is increasing rapidly (Rey et al. 2019; Kirkholt ef al. 2019; Vijn
et al. 2020). As a future potential feedstock for generating biofuels, sugar kelp has
advantages over land-based crops due to its high polysaccharide content and its
cultivation that requires no land, fresh water, or fertilizer (Kerrison ef al. 2015; Marinho
et al. 2015; Liining and Mortensen 2015; Duran-Frontera 2017; Bruhn ez al. 2019; Deng
et al. 2020). The global demand for sugar kelp biomass is increasing and driving the
expansion of kelp farming and cultivation programs in the U.S., with similar programs
initiated in Europe (Kim et al. 2015, 2019; Marinho et al. 2015; Augyte et al. 2017;
Yarish et al. 2017). In the United States, kelp farming is emerging as a sustainable
mariculture activity providing new economic opportunities and revitalizing waterfronts.

Sugar kelp, like other kelp species, has a biphasic life cycle. Adult sporophytes
(SPs) produce sori that release meiospores which develop into female or male haploid
gametophytes (GPs). Once GPs reach fertility, they mate to form the next generation of
diploid juvenile SPs that further grow into mature SPs (Umanzor et al. 2021; Huang et al.
2022). This life cycle allows for selection on both GP and SP phases within one breeding
cycle (Peteiro et al. 2016; Huang et al. 2022). Genomic selection is a breeding tool that
builds a prediction model using a set of individuals (the training population, TP) with
known phenotypic data and genotypic data to predict the performance of individuals with
unknown phenotypic data (prediction population, PP) (Meuwissen et al. 2001). The
relatedness of individuals in TP and PP can be calculated using a common set of markers
or pedigree information. As genotyping technologies advance and their cost decreases
over time, GS could improve the selection gain per unit of time and cost compared to
conventional phenotypic selection in breeding programs (Jannink et al. 2010). However,
this tool has not been evaluated in any kelp breeding program, to the best of our
knowledge. The GS predictive approach can be especially useful for assisting the
selection of individuals that are difficult or near impossible to phenotype, like the GP
lifestage. Here we report the first GS prediction study in Saccharina latissima, for both
kelp yield and morphological traits.

Genomic selection has been evaluated as a breeding tool for more than a decade
in different terrestrial crops, such as in maize, soybean, wheat, rice, sorghum, and many
others (Zhao et al. 2012; Jarquin et al. 2014; Rutkoski et al. 2015; Huang et al. 2018,
2019; Fernandes et al. 2018). The accuracy of GS, defined as the correlation of
phenotypically estimated values and the genomic estimated breeding values determines
the usefulness of GS in a program (Rabier ef al. 2016). The GS accuracies for yield traits
in previous studies varied from essentially zero to 0.75 (Zhao et al. 2012; Dawson et al.
2013; Fernandes et al. 2018; Stewart-Brown et al. 2019). Several factors are known to
affect GS prediction accuracies, including the number of markers used (Zhong et al.
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2009; Asoro et al. 2011), the size of the TP (Asoro et al. 2011), the relatedness of
individuals between TP and PP (Clark et al. 2012; Sallam et al. 2015), and the extent of
linkage disequilibrium between the markers and causal loci (Zhong et al. 2009; Brito et
al. 2011). Aside from those factors, different statistical models give different prediction
accuracies (Heslot et al. 2012).

We are interested in evaluating the accuracy of GS in sugar kelp, and we
considered several model options. A basic genomic Best Linear Unbiased Prediction
(GBLUP) model often provides adequate accuracies when compared to other models
including Bayesian approaches (Heslot ef al. 2012; Sallam et al. 2015; Huang et al.
2016). These models can be extended to account for genotype by environment interaction
(GxE) effects which affect selection accuracy between environments for both GS and
phenotypic selection (Resende and Mufioz Del Valle 2011; Lado et al. 2016). Models
incorporating parental information with general combining ability (GCA) and specific
combining ability (SCA) effects account for non-additive gene action and have been
reported to be beneficial in millet breeding programs (Jarquin ef al. 2020).

Our objective was to evaluate the accuracy of GS in a sugar kelp breeding
program for both yield and morphological traits in the context of kelp's biphasic life
cycle. To obtain these accuracies, we modified standard genomic relationship matrices
used in GBLUP models to include both haploid and diploid individuals. Different GS
models were assessed, including the basic GBLUP model and a model with GCA and
SCA components. We evaluated accuracies within two training years using cross
validation and predicted a third validation year's data. The SPs evaluated in the third year
were made from crosses chosen based on haploid gametophyte breeding values.

Materials and Methods

Population

The complete study population was comprised of 866 unique individuals, which
included founder SPs sampled from the wild in 2018 (n = 104, Mao et al., 2020), GPs
derived from the founders (n = 439), SPs from experimental crossing of GPs, that were
evaluated on farm in 2019 and 2020 (n = 245), and GPs derived from the 2019
farm-tested SPs (n = 78). A total of 248 experimental and repeated reference crosses were
included across years: 124 in Yr2019 and 129 in Yr2020, with five experimental crosses
in common between Yr2019 and Yr2020. In addition, a confirmation population was
created in Fall 2020 by crossing GPs to produce SPs that were evaluated in Yr2021. The
confirmation population produced n = 87 plots with useful data.

Genotyping

The founder SPs samples were genotyped for single nucleotide polymorphisms
(SNPs) using the DArTSeq platform by Diversity Array Technology LLC, as described in
Mao et al. ((Mao et al. 2020)). A subset of 4,906 markers was retained based on minor
allele frequency greater than 5% and fewer than 5% missing values (Mao ef al. 2020). A
total of 58 genotyped founder SPs contributed to downstream members of the population.
Gametophyte DNA was extracted using the Macherey-Nagel NucleoSpin Plant II Maxi
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Kit (Macherey-Nagel, Diiren, Germany) with a modified protocol. In brief, 24 mg (fresh
weight) of gametophyte culture was transferred from Erlenmeyer flasks into 1.5 mL
centrifuge tubes. The tubes were centrifuged at 21,000 rcf for 2 min using an Eppendorf
centrifuge 5424. The supernatant was removed. The tubes containing the gametophytic
biomass were capped and submerged in liquid nitrogen for 20 seconds. The frozen
samples were then ground up manually for 30 seconds using a plastic pestle. Once
samples were ground, the CTAB extraction buffer with repeated wash steps protocol was
followed. The DNA was whole-genome sequenced at the HudsonAlpha Institute. Kelp
DNA was cleaned using a DNAeasy PowerClean Pro Cleanup kit (Qiagen) and amplified
[llumina libraries were generated in 96 well format using an [llumina TruSeq nano HT
library kit using standard protocols. Sequencing was performed on a Illumina NovaSeq
6000 instrument at 2x150 base pair read length. Raw reads are available at the NCBI
Short Read Archive, Accession ZY Xnnnnnnnn. Sequence reads from 278 GPs (all
generated from 2018 founder SPs) were aligned to a reference genome (A publication
describing this genome is in preparation) using BWA (Li and Durbin 2010). The average
read depth across GPs ranged from 4 to 37. Downstream sequence data formatting, SNP
variant calling and filtering were done using SAMtools (Li et al. 2009), Picard tools in
java (http://broadinstitute.github.io/picard/), BCFtools (Li 2011) and VCFtools (Danecek
et al. 2011). A total of 909,747 bi-allelic SNP markers with good quality were retained by
removing markers with more than 20% missing values and minor allele frequency less
than 5%. These markers were used to evaluate the population structure among GPs via
Principal Component Analysis (PCA).

Mixed-ploidy additive relationship matrix

We recorded the full pedigree connecting all individuals (n = 866), both SPs and
GPs. Using this pedigree we calculated a coefficient of coancestry matrix (CCM) across
all individuals. This CCM tracks haplotypes so that each SP is represented by two rows
and two columns in the matrix, and each GP is represented by one row and one column.
A simple tabular method is used (Emik and Terrill 1949). All diagonal elements of the
matrix are equal to 1, because each haplotype has a probability of 1 of being IBD with
itself. For founder SPs all off-diagonal values are set to zero, reflecting the assumption
that founder SPs were non-inbred and unrelated to each other. The two rows of a diploid
SP, offspring of two haploid GPs, are copies of these parental GP rows, because each GP
contributes its exact genome as half of the diploid SP genotype. The row of a haploid GP,
offspring of a diploid SP, is the mean of the two rows representing its parent SP, because
random Mendelian segregation suggests that each GP has a one-half probability of
inheriting one or the other of the SP haplotypes. In our case, these rules led to a CCM that
had 1215 rows and columns (2x104 founder SPs + 439 first generation GPs + 2x245 first
generation SPs + 78 second generation GPs = 1215).

The rules for converting the CCM of identical by descent probabilities into an
additive relationship matrix are straightforward to derive. Consider the additive effect of
GP1, Agp1, carrying allele 7, the allele substitution effect of which is «:. Then,

Agp1 = ;. The additive relationship between GP1 and GP2, which carries allele 7' is
cov(Agp1, Agps) = cov(a;, ay) = cri X pIBD(i,i')
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where 7% is the variance of allele substitution effects and PIBD (i7 i,) is the probability
that alleles i and 7' are identical by descent, as given by the CCM. Similarly, the additive
relationship between GP1 and SP1, which carries alleles ' and ;' is

cov(Agp1, Asp1) = cov(ay, o + ay) = (Ti X [pIBD(i, z"') + pIBD(i,j’)]

Finally, the additive relationship between two SPs is the sum of the four pairwise IBD
probabilities between their respective alleles. Consequently, the CCM can be
"condensed" into a mixed-ploidy additive relationship matrix as follows. Relationships
between pairs of GPs are represented by single cells and are unchanged. Relationships
between a GP and an SP are represented by two cells which are summed to obtain the
single additive relationship between them. Relationships between two SPs are
represented by four cells which are also summed to obtain the single additive relationship
between them. Note that in standard diploid quantitative genetics, the constant of
proportionality commonly used to relate the additive relationship matrix to the additive
covariance matrix among individuals is the additive genetic variance, which is two times

the variance of allele substitution effects as defined above (& i). Given that we had both

haploid and diploid individuals, we found it easier to work with @ ~ as the constant of
proportionality. A consequence of this choice is that the diploid narrow-sense heritability

2
20%

. 2 2 2. .
is calculated as 294 1 0% | where . is the error variance on farm-tested SPs.

Mixed-ploidy combined pedigree and marker relationship matrix

For historical reasons, two marker systems were used: one on the founder SPs
(DArTSeq) and one on derived GPs (whole-genome sequencing). Markers were imputed
within the genotyped SP founders and within the GP subset using the EM algorithm in
the rrBLUP package in R (R Core Team, 2022). Marker-based additive relationships
between haploid GPs were calculated using the same formula as the A.mat() function in
the rTBLUP package (Eq. 15, (Endelman and Jannink 2012)) except that the marker
dosage matrix has dosages of 0 and 1 prior to centering, and the coefficient of 2 is
removed from the denominator. Marker-based additive relationships between founder SPs
were calculated using the A.mat() function of the rrBLUP package (Endelman 2011). For
this matrix to be appropriately scaled relative to the GP matrix, it was multiplied by 2
(equivalent to removing the coefficient of 2 from the denominator of the GP matrix).

Following these calculations, three matrices were available: 1) a pedigree-based
matrix including all individuals, 2) a marker-based matrix for the founder SPs, and 3) a
marker-based matrix for derived GPs. These three relationship matrices were combined
using the CovCombR package (Akdemir et al. 2020), with marker-based matrices
weighted twice as heavily as the pedigree-based matrix. The Wishart EM-algorithm was
used to estimate the combined relationship matrix from partial samples (Akdemir et al.
2020). We denote this relationship matrix G below.

Phenotyping
The Yr2019 trial had a shorter growing season relative to the Yr2020 and Y12021
trials. For Yr2019, outplanting occured Jan. 26th, 2019 and harvest May 28th, 2019
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(Umanzor et al. 2021). For Yr2020 and Yr2021, outplanting occurred respectively on
Dec. 6th, 2019 and Dec. 9th 2020, and harvest on June 8th 2020 and June 7th 2021 (Li et
al. 2022). We measured eleven traits: Wet Weight per Meter (WWpM, kg), percent Dry
Weight (pDW, %), Dry Weight per Meter (DWpM, kg), Ash-Free Dry Weight per Meter
(AshFDWpM, kg), percent Ash content (Ash, %), and Blade Density (BD, number of
blades/m), Blade Length (BL, cm), Blade maximum Width (BmWid, cm), Blade
Thickness (BTh, mm), Stipe Length (SL, cm), and Stipe Diameter (SDia, mm). Percent
Dry weight at the plot level was derived from subsample measurements. Detailed
experimental design and trait measurements were reported in Umanzor et al. ((Umanzor
et al. 2021)) and Li et al. (2022). Briefly, an augmented block design was used where
farmed lines with sequential plots were laid out in parallel, and plots were grouped in
blocks across lines. Different GPs were used as reference check SPs on the farm in
Year2019 and Year2020 due to limitations in obtaining sufficient biomass of the same
GPs for making reference checks in the second year. Due to differential survival of the
SPs, we observed heterogeneity of rope coverage within plots. To minimize the impact of
this heterogeneity, we removed data from plots where < 10% of the plot rope was covered
by the SP. All phenotypic data were natural log transformed to normalize the data and
stabilize error variances for all analyses.

Heritability estimation and same trait genetic correlation between years

The relationship matrix G was used to estimate the additive genetic variance.
Similar to Atanda et al. (Atanda et al. 2021), we fit a univariate heterogeneous variance
model using the ASReml-R package to fit genotype within environment (environment
being year in our case) effects (Butler ef al. 2017), with an unstructured
variance-covariance matrix, G, across two years. The diagonal elements of G, are the

additive genetic variance Ok within the &” year, and off diagonal elements are the
genetic covariance between years:

2
o 0412
1 g

2
Og12 Ugl

The analysis was done for each trait. For simplicity in constructing the design
matrix, the line, block and year effects were treated as fixed, whereas genotypes were
treated as random. The formula was:

y = 1nu +X1b1+X2b2 +X3b3+X4b4+Zlu1+ e (1)

where y is the vector of phenotypes with length n, and 7 is the total number of
observations across two years; 1n is the vector of 1s and p is the overall mean; b ) is the

fixed effects of experimental versus check crosses; b 5 is the fixed effects the two years,
b3 is the fixed effects of growth lines nested within year, b4 is the fixed effects of blocks
nested within year, and X (o X, are the incidence matrices for fixed effects. Vector u, is

the random effects of genotype within year, and Z ) is the incidence matrix for u b finally


https://paperpile.com/c/c1iFVT/USAq
https://paperpile.com/c/c1iFVT/USAq
https://paperpile.com/c/c1iFVT/USAq
https://paperpile.com/c/c1iFVT/gZ7z
https://paperpile.com/c/c1iFVT/SVjf
https://doi.org/10.1101/2022.08.01.502376
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502376; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

€ is the error term. The random effect is distributed as U~ N[0, (Gy®G)], where &) is

the Kronecker product, and G,and G are as described above.
The error was distributed as € ~ N(0, R):

R— lalenl 0 ]
0 O'zQIng

2 2 s ) . .

where Pe1 and 9e2 are within-year error variances and /,, and 7, are identity
matrices of the size of the number of observations within years. The narrow sense
heritability was estimated within the k" year as:

5 Zozk
= —tk (2)

202 +02
gk ek
The output from model (1) were GBLUPs estimated for each year. These

GBLUPs are breeding values (BVs). We also obtained combined BV across years by
averaging the Yr2019 and Yr2020 GBLUPs. The genetic correlation for the same trait
across Yr2019 and Yr2020 was computed using the variance-covariance components
estimated from this model (Table 1). The correlation coefficients among BVs for all traits
using BLUPs averaged across years were calculated. A histogram of the combined BVs
for SP plots from Yr2019 and Yr2020 was plotted (Supp. Fig. 1).

Genetic correlation between dry weight per meter and morphology traits

The genetic correlation among traits was estimated within each year due to the
large GXE for most traits. We used a multivariate model in the ASReml-R package
(Butler et al. 2017). Due to model convergence issues, traits were analyzed in pairs and
only for dry weight per meter and five individual morphological traits. An unstructured
variance-covariance matrix across all traits was assumed in this model (Jia and Jannink
2012; Fernandes et al. 2018):

Y = u+g +lL+b+r +e (3)
Where Y _is the vector of phenotypic observations for the i genotype: Yl_ =

L
. th . _ . .
[Yil Yi2 Yl,p ], and p is the p” trait, p = [”1 My e b ], where is W is the mean for the

p™ trait, and li, bi and T are the line, block and year effects for the i individual,
respectively. The g, and e, terms are the genetic effects and residual effects for the i”"
individual, with g, = [gl_l gy gip] and e, = [ei1 €y €y ] Across all individuals,
the vectorized genetic effects were distributed as 8 ™ Ninp(0,Go ® G), where G, is the
among-trait genetic variance-covariance matrix and G is the additive relationship matrix.
Similarly, € ~ V. (0, Ro ® I), where R, is the among-trait residual variance-covariance

matrix and I is an identity matrix showing our assumption that residuals are uncorrelated
across plots (Fernandes et al. 2018).

Genomic prediction between diploid and haploid life stages
The breeding values for all 866 SPs from Yr2019 and Yr2020, and their parental
GPs were obtained from the GBLUP model. Haploid GPs were selected to make crosses
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to create the confirmation population of diploid SPs grown in Yr2021. These GPs were
used for crossing based on their available biomass (which determines the number of
crosses to which they can contribute) and the following crossing design criteria: first, the
GPs were ranked based on their dry weight per meter GEBVs. Parental GPs’ were then
selected if their BV's were top ranked (n = 42), bottom ranked (n = 3), and randomly
ranked (n = 25). In addition, we included GPs whose parental SPs were sampled from
otherwise unrepresented locations (n = 5). Finally, we generated crosses that were repeats
from the previous year (n = 12).

The GEBVs of Yr2021 diploid SPs were obtained as the sum of GEBVs from
their parental female and male GPs, as estimated from equation (1), and their phenotypic
observations were estimated using the Best Linear Unbiased Estimator (BLUES), as
explained below.

We assessed GS prediction accuracies as the correlation between BVs and BLUEs
for all Y2021 SPs (Table 3), for SPs within the category of parental GPs being top
ranked, for SPs in the randomly selected category, and for SPs that were repeats from
previous year (Supplemental Table 1). For the 12 common SPs between Yr2020 and
Y2021, we also estimated the phenotypic correlations between their within-year BLUESs.
The analysis was done for each trait and prediction accuracy for all available traits that
were recorded, even though selection of the Yr2021 population was only based on dry
weight per meter.

Within-year cross validation genomic prediction accuracy

For modeling simplicity, GS model prediction accuracy comparisons were done
with a two-step approach using the Yr2019 and Yr2020 data. The experimental block and
line effects were statistically controlled for within each year to obtain BLUEs of SPs in
ASReml-R. These BLUEs were then used as the response values to evaluate prediction
accuracy under four different GS models using the BGLR package in R. The BLUEs
were first estimated using the following model:

Yl,jlb = u+ Gl_ + Cj + Lz + Bb + €itb (4)

where Y is the ijIb" observation, u is the overall mean, G _is the i genotype, C.

ijlb l )

is the /" check group that distinguishes between experimental and check crosses, L l is the
™ line, and B , is the b" block, and ey, is the error associated with the ijlb” observation.

The BLUES for Yr2021 were estimated using the same model, but without a group effect
C; because none of the reference check plots generated high quality data.

Four GS models were run with a 10-fold cross validation scheme within each
year. Each randomization scheme was repeated 20 times. The four models were:

A) General combining ability (GCA) and specific combining ability (SCA) using
combined pedigree and marker relationship matrix

The mixed-ploidy combined pedigree and marker relationship matrix was used.
General combining ability (GCA) and specific combining ability (SCA) components for
the GP parents were included in the model with a formula adapted from Jarquin et al.
((Jarquin et al. 2020)):
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(5)
where Y, is the BLUE of the i” individual, 9p; and 9p,,; are the genetic effects of parent
GP1 and parent GP2. And 9 pixpai

residual effect. The GCA and SCA account for the genetic main effects and the
interaction effects, respectively, where the SCA variance-covariance matrix is the
cell-wise product of the elements in variance-covariance matrix from parent 1 and from
parent 2 (Jarquin et al. 2020).

For the purpose of estimating variance components and their 95% credible
intervals (Cls), model (5) was also analyzed without cross validation (all data were used
to predict BVs of all individuals). Variance components estimated were for female parent
GCA (GCA_FQG), male parent GCA (GCA_MGQG), SCA and error (varE). This model was
run within each year and each running process was repeated 20 times. The lower- and
upper- bound values of the 95% CI were averaged across the 20 replicates (Table 2b).

Vi = Wt G0 9o T Ipripn T 6

is the interaction effect of two parents, e, is the

B) GCA+SCA model using only pedigree based relationship matrix

The same GCA +SCA model as formula (5) was used, except that the additive
relationship matrix was estimated based only on pedigree. The GS 10-fold cross
validation accuracies were obtained as in 4.

C) Genomic Best Linear Unbiased Predictor (GBLUP) model using combined pedigree
and markers relationship matrix
A basic GBLUP mixed model was used:
y = XB+ Zu + ¢ (6)
where X and Z is the design matrix for fixed effects  and for random effects u,
respectively. € is the error and u ~N(0, G O'i), and G is the relationship matrix using

combined pedigree and markers relationship matrix as estimated above. The 10-fold cross
validation scheme being used was the same as the other models.

D) GBLUP model using only pedigree based relationship matrix
The same model as in formula (6) was used except that the G matrix was replaced
by a relationship matrix estimated using pedigree information only.

Results

Population structure of GPs

Two clear subpopulations were revealed, separating GPs from GOM and SNE
locations (Figure 1a). This subpopulation structure is consistent with the founder SP
subpopulation structure (Mao et al. 2020). No strong subpopulation structure was
observed within the GOM region (Figure 1b).

Heritability and genetic correlation between years

Trait heritabilities using two years’ data with the heterogeneous error model
ranged from 0.06 to 0.86 (Table 1). Among six plot level (yield-related) traits, the highest
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heritability was for wet weight per meter in (0.50 in Yr2019), and lowest was for percent
dry weight (0.06 in Yr2019). Among five morphology traits within each year, the highest
heritability was for stipe length (0.86 in Yr2020), and the lowest was for blade length
(0.22 in Yr2019, Table 1). All morphology traits had higher heritability in Y2020
compared to Yr2019. In Yr2020, the heritabilities for morphology traits, measured at the
individual blade level, were higher than plot-level yield-related traits (Table 1). The
genetic correlation for all traits between the two years ranged from negative (ash related
traits, percent dry weight and blade density) to strongly positive, with the highest being
dry weight per meter (0.89 + 0.51, Table 1). The heritability of ash free dry weight per
meter was low one year (0.08, Yr2019), but higher the next year (0.39, Yr2020) while the
between-year genetic correlation was nominally negative (-0.16 £ 1.7). The standard
errors associated with between-year genetic correlation estimates were large, especially
for traits with negative correlations, including percent dry weight (-0.15 £ 2.6) and blade
density (-0.84 + 0.92). None of the genetic correlations with nominally negative values
were significantly different from zero. Lack of genotype by environment interaction
results in a genetic correlation of 1 (Cooper and DeLacy 1994). Even though the genetic
correlations with negative nominal estimates were not significantly different from zero,
they indicated large genotype by year interactions.

In the multivariate analysis to estimate genetic correlations between traits, we
only included the results between dry weight per meter and the morphological traits due
to model convergence problems. Given the genotype by environment interaction effects,
the genetic correlation analysis was done within years. Dry weight per meter had higher
genetic correlation with morphological traits in Y2020 than in Yr2019. It was not
genetically correlated with blade maximum width in either year (» =—0.40 in Yr2019 and
r=0.15 in Yr2020, Table 2). For individually measured morphological traits, blade
length and blade thickness were strongly correlated in both years (» = 0.90 in Y2019 and
r=10.69 in Yr2020, Table 2). Stipe length and stipe diameter had the highest consistent
correlations in both years (» = 0.84 in Yr2019 and » = 0.95 in Yr2020, Table 2).
Among-trait correlations of breeding values (BVs) averaged across two years showed
that dry weight per meter was moderately correlated with most morphology traits (r =
0.47 for Blade Thickness to » = 0.58 Blade Length), though it was uncorrelated with
blade maximum width (» =—0.11, Figure 2). The correlation of Blade density BV was
relatively strongly correlated with Wet and Dry weight per meter (» = 0.55 and » = 0.54,
respectively, Figure 2).

Within-year cross validation genomic prediction accuracies

Genomic prediction accuracy with the GCA+SCA model using both pedigree and
markers for all traits via 10-fold cross validation ranged from negative for percent dry
weight, blade thickness to 0.48 for stipe length and stipe diameter (Table 3). For yield
traits, the maximum prediction accuracy was for both wet weight and dry weight per
meter (0.32 to 0.35, Table 3). Averaged across traits, prediction accuracy within Yr2020
was slightly lower numerically than within Yr2019 (Table 3). This lower accuracy also
occurred across morphological traits despite their higher heritability in Y2020 than
Yr2019.
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The GS cross validation accuracies from the GCA+SCA model using both
pedigree and markers across all traits in two years was slightly higher (» = 0.27, averaged
first two rows in Table 3) than that from the model of GCA+SCA with pedigree only (» =
0.22) and the base GBLUP model with pedigree and markers (» = 0.23) or GBLUP model
with pedigree only (» = 0.20). While these differences were not significant for any single
trait comparison, there was only one case (Blade thickness in Yr2020) when prediction
accuracy was higher without than with marker information (Table 3). The trend for GS
within-year prediction accuracy was similar to that for heritability values across traits in
that morphological traits tended to have higher GS prediction accuracy (and higher
heritability) than yield-related traits (Table 1 and Table 3).

We compared the variance within each year due to female parents (GCA_FG)
with those due to male parents (GCA_MG) using the MCMC-derived samples from the
posterior distributions of these parameters. Across all yield-related and morphology traits,
GCA_FG was greater than GCA MG in 15 out of 22 trait-year combinations (Table 4).
However, GCA_FG was significantly greater than GCA MG only for stipe diameter in
Y12020, as determined by the fact that GCA FG was greater than GCA MG in over
97.5% of posterior samples (Table 4). Variance component results also explain the
relative superiority of the GCA+SCA model over the base GBLUP model: in 17 out of 22
trait-year combinations the SCA variance component was greater than the average of the
female and male GCA variance components (Table 4).

Genomic prediction in both diploids and haploids

Due to the large genotype by environmental interactions and the differences in
error variance observed between Yr2019 and Yr2020, we verified the ability of
phenotypes from these years to predict performance in Yr2021. Our main interest was the
BV for dry weight per meter (DWpM) trait for which we selected GPs to make crosses.
GS prediction accuracy for Yr2021 SPs was defined as the correlation coefficient
between trait BLUEs observed in 2021 and their predicted BVs, which were calculated as
the sum of their parental FG and MG BVs. For the DWpM trait, GS accuracy for the 87
crosses in Yr2021 was » = 0.30 (using Yr2019 BVs) and » = 0.31 (using Yr2020 or
combined BVs, Table 5). Over all other traits, GS accuracy ranged from negative (ash
related traits, percent dry weight and blade density) to 0.80 (stipe length with Yr2019
GEBVs, Table 5). When heritability was high for a trait within a year, the prediction
accuracy using that year’s data to predict Yr2021 also tended to be high (Tables 1 and 5).
Breeding values for Founder SPs, GPs generated from founders, and SP progenies from
those GPs all centered on zero (Fig. 3). In contrast, GPs generated from SPs that were
evaluated and selected on farms and SP progenies from those selected GPs deviated
markedly from zero (Fig. 3).

Discussion
Heritability, Genetic Correlation, and Environmental Variation

At this early stage in the development of technologies to phenotype diverse SP
genotypes of sugar kelp in farm-like conditions, the heritabilities of yield-related traits
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are moderate to low (Table 1). The differences we observed in estimated heritability for
the yield-related traits between years (Table 1) was likely due to changes in
environmental conditions from one year to the next. The Yr2019 trial was planted later
and harvested earlier than the Yr2020 trial, reducing total growth potential. Possibly as a
result of these differing conditions, we found a negative genetic correlation between the
two years for percent dry weight, ash related traits, and blade density, revealing high GxE
and large year-to-year effects for these traits. Differences between years can also result
from differences in nutrient availability which, in many nearshore sites, depends on
runoff caused by rainfall events that vary annually (Grebe ef al. 2021).

Phenotyping sugar kelp traits is challenging (Umanzor et al. 2021). Due to
phenotyping limitations and labor constraints (all measurements made on hundreds of
crosses within 48 hours of harvest), we relied on subsampled data for blade density and
percent dry weight to approximate whole plot traits. In theory each plot consists of
uni-clonal individuals such that subsamples should be uniform. Yet due to environmental
and possible blade density effects, we observed non-uniform growth across the plot. Lack
of uniformity among subsamples contributed to the error variance. To minimize the
impact of this heterogeneity, we filtered data based on a visual score of plot uniformity
(see Methods). We modified the measurement of dry weight related traits from Yr2019 to
Y12020. In Yr2019, percent dry weight was measured by a single value per plot where
subsamples were combined and weighed together. In Y2020, we measured the percent
dry weight for the 10 largest blades out of the subsamples separately. Neither approach
gave a good heritability. This low heritability is in contrast to land crops where percent
dry weight generally has high heritability (e.g., (Rabbi et al. 2020) for root dry weight in
cassava), though comparisons to traits in other domesticated species are perhaps
unwarranted given the divergence, approximately 1,600 million years ago, of kelps from
other eukaryotes (Hedges et al. 2004).

Because of the longer growing season in 2020 compared to 2019, dry weight per
meter and ash measurements collected in 2020 were markedly higher than those in 2019.
To normalize the data, we log transformed the raw data in all analyses leading to a
stabilized error variance. However, because connectivity between years came primarily
from evaluating related SPs rather than from repeating evaluation of the same SPs across
years, the genetic effects could also be partially confounded by year effects in the model.

Morphology traits were directly measured at the individual blade level, and we
randomly measured 15 blades/plot in Yr2019. We modified the sampling procedure in
Yr2020 by measuring only the largest ten blades from 3 subsamples within each plot.
This modification ensured individual samples were more uniform within the same plot in
Y12020, likely reducing the error variance and leading to higher heritabilities for
morphology traits in Yr2020 (Table 1). Blade length heritability more than doubled in the
second year, and all other morphology traits also had increased heritability in Yr2020. In
general, when traits had good heritability in both years, the genetic correlation values
between years were also reasonable.

Multi-trait genetic correlation results among dry weight per meter and
morphology traits indicate genes underlying some of the morphology traits could play a
role in contributing to kelp yield. The improved phenotyping protocol in Yr2020 could
have contributed to a higher genetic correlation than those in Yr2019. Interestingly, stipe
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length and diameter were strongly correlated with each other in both years, indicating that
they were controlled by the same group of genes across different environments (Egan et
al. 1990).

Correlations from estimated BVs combined across two years on all plots revealed
that dry weight per meter was correlated to other weight related traits except for percent
dry weight (Fig 2). If a plot generates larger wet weight, it will also have a larger dry
weight per meter and ash free dry weight per meter values (Fig 2). There was a clear
correlation between plot level weights and blade density (7 of 0.54 and 0.55 with dry and
wet weight per meter, respectively, Fig 2). High blade density comes from the ability of
the juvenile SP to attach to seed-string in the nursery and survive. This trait was not
under selection in the wild, so it is not surprising that variation for this trait exists (Paaby
and Rockman 2014). Thus, blade density appears to be an important domestication trait.

The BVs of dry weight per meter were correlated to morphology traits, except
blade maximum width (Fig 2). A similar pattern of positive genetic correlation was also
observed in the multivariate analysis (Table 2). Previous studies reported that the
multivariate model is favored as it allows borrowing information between traits and
individuals across environments (Atanda et al. 2021). The multivariate genetic
correlation results indicate that our selection for dry weight per meter could lead to
morphologically longer and thicker blades, longer and larger stipes. The fact that wider
blades were not particularly favored indicates that “skinny” individuals (designated
Saccharina angustissima), originating from Casco Bay may have good adaptation to
farms (Augyte et al. 2018). Indeed, Li et al (2022) showed that SPs with skinny kelp
ancestry out-yielded SPs that had no skinny kelp ancestry. In our experiment, among the
42 Yr2021 top ranked SPs, 14 of them (33%) had a skinny kelp derived GP as a parent or
grandparent. For comparison, of the 493 cross attempts made for Yr2019 and Yr2020
combined, 123 (25%) had a skinny kelp derived GP as a parent. A chi-square test showed
these proportions were not significantly different.

Genomic prediction within years via cross validation

In previous studies, the GBLUP GS model produced similar accuracies across
various traits compared to other GS models such as Bayesian approaches (Heslot et al.
2012; Sallam et al. 2015). Similarly, we did not observe significant differences between
the model prediction accuracy of GBLUP (whether using pedigree alone, or using
pedigree plus marker information) and GCA+SCA (whether using pedigree alone or
using pedigree and marker information together). Nevertheless, for both GBLUP and
GCA+SCA, addition of marker data improved prediction accuracy over pedigree
information alone (Table 4). To our knowledge, we are the first to use the algorithm
implemented in the CovCombR package (Akdemir et al. 2020) for an actual selection
experiment. This approach allows the combination of data from different genotyping
platforms without cross-platform imputation, therefore potentially simplifying the
process. Our successful use of the method provides it with some validation.

While the prediction accuracy for GCA+SCA with pedigree and marker
information was not significantly different from the other three models, it was
numerically superior. There are two biological reasons why this model might be superior.
First, we show suggestive evidence that the female contribution to trait expression is
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moderately more important than the male contribution. Prior studies have lacked
sufficient numbers of crosses to assess this issue (Umanzor et al. 2021). Relevant
mechanisms could be genomic imprinting (Reik and Walter 2001; Yang et al. 2021) or
simply the fact that the female GP plays a more important role in controlling kelp holdfast
and stipe traits and, thus, attachment to the seed string substrate (Garbary and South 2011).
Using the GCA+SCA with pedigree and marker model, we could distinguish between
GCA variation contributed from the female versus male side. Across 22 comparisons (11
traits in each of two years, Table 4) the female contribution was significantly greater than
the male contribution in only one case (Stipe Diameter in Yr2020, Table 4). However, the
female contribution was numerically superior to the male contribution in 15 out of 22
cases when they were different (Table 4). A two-sided binomial test would give a
probability of 0.06 of that many cases occurring, though we note that the assumption of
independence of the 22 cases is probably violated. While the GCA+SCA model allows
the importance of parental contributions to differ, the standard GBLUP model forces
them to be equal. Second, we also show evidence that the specific combining ability
between the parental genomes is often important (Table 4): in 17 out of 22 cases, the
SCA variance was greater than the mean of the two GCA variances. Again, given the
lack of independence of these cases, we do not have a statistical test to conclusively show
that SCA is greater than the GCAs, but this result does suggest it is biologically
important. The SCA is caused by non-additive modes of gene action that the GBLUP
model does not capture (Lynch and Walsh 1998), therefore providing another mechanism
making the GCA+SCA model superior to the GBLUP model.

GS accuracy estimates from cross validation are usually higher than estimates
from independent datasets (Crossa et al. 2010; Michel et al. 2016; Huang et al. 2018).
The yield-related prediction accuracies via cross validation (» ranged from close to zero
for ash free dry weight in the absence of marker data to 0.35 for wet weight with marker
data, Table 3) fell within the range of those in previous studies in terrestrial crops (Zhao
et al. 2012; Dawson et al. 2013; Michel et al. 2016; Stewart-Brown et al. 2019). We
confirmed that GS prediction accuracy was related to trait heritability (Dawson ef al.
2013; Lenz et al. 2020): in general traits with high heritability gave good prediction
accuracy, with an unexplained exception for blade thickness in Yr2020.

Genomic prediction between diploids and haploids

One of the biggest merits of applying genomic selection is that it can shorten the
time per breeding cycle by directly predicting the breeding values of non-phenotyped
individuals. In the case of sugar kelp breeding, the breeding germplasm is maintained in
the form of GPs in culture. Because SP yield and composition traits cannot be obtained
from GPs directly, genomic prediction is the only option for direct selection on those
traits. The historical SP data from Yr2019 and Y12020 was used to predict BVs of GPs,
which were then used as parents for next generation SPs in Yr2021. The GS accuracy (»
~ 0.30) for dry weight per meter on the confirmation population was similar to the reports
in other studies for grain yield (Zhao ef al. 2012; Stewart-Brown ef al. 2019). This
reasonable prediction accuracy validated our method for calculating the pedigree-based
mixed-ploidy relationship matrix and integrating it with marker-based genomic
relationship matrices at the different ploidy levels. Simulation has shown that selection
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during both GP and SP phases of the kelp life cycle will generate the greatest breeding
gain per unit time (Huang ef al. 2022). This empirical research is the first to report that
genomic prediction of haploid breeding values works. The use of GS in biphasic
organisms, such as sugar kelp, can help breeders achieve higher efficiency in its breeding.

The Yr2021 season was more similar to Yr2020 than Yr 2019 in terms of the
overall length of the season and growth of the kelp plots. We were therefore somewhat
surprised that Yr2019 and Yr2020 training data gave equal prediction accuracy of the
Yr2021 validation data (Table 5). We show that, as for land crops (de Leon et al. 2016),
genotype by year interaction is an important source of phenotypic variation (Table 1).
Large GxE effects require a larger number of environments with repeated plots in order to
properly evaluate genotype performance. Previous studies have confirmed that when
more information is shared between environments or when sets of genotypes are
observed across environments, the prediction accuracy can be increased (Jarquin ef al.
2014; Lado et al. 2016; Jarquin et al. 2020). Future kelp breeding efforts need to take this
source of variation into account.

Breeding value changes over generations of breeding cycles

The previous results show some success in genomic prediction. Our empirical
evaluations also show success in genomic selection: GPs derived from SPs that were
evaluated on farm in Y2019 (GP_Frm, Fig 3) were superior to GPs derived from
founders (GP_Fnd, Fig 3) and, in turn, SPs derived from those GPs (SP21 Frm) were
superior to SPs derived from founder GPs (SP19 Fnd, SP20 Fnd, and SP21 Fnd, Fig. 3).
We note that the superiority of farm-derived GPs occurred despite minimal selection
pressure on the SP parents of those GPs (Supp. Fig. 1). Improvements in our
experimental procedures meant that we collected twice as many SPs that had successful
spore release in Y2020 (Supp. Fig. 1, green dashed lines) than in Yr2019 (red dashed
lines). This improvement was mainly due to the fact that more plots in Yr2020 than
Yr2019 were mature (longer growing season) and hence more plots produced sorus
tissue. The Yr2020 plots also had a larger proportion of SPs that were top ranked
compared to Yr2019 (Supp. Fig. 1). Greater success in collection of SPs with spore
release will lead to higher selection intensity in both the SP and GP phases (Huang et al.
2022). The response of GPs despite low selection pressure in Yr2019 (Fig. 3) suggests
that, in addition to artificial selection, some amount of natural selection is also taking
place within our breeding program as we shift kelp adapted to attaching to rock substrates
to being adapted to the seed string and rope substrates. Continued selection in this way
may lead to appreciably "domesticated" kelp in the sense that our germplasm may be
better adapted to the off-shore farm environment than to the natural rocky intertidal
habitat.

Future research areas

The use of a pedigree and marker estimated relationship matrix between
lab-grown GP cultures and the field-grown SPs enabled us to predict breeding values of
the GPs and to select the top ranking ones to make new crosses. Our results indicate that
progress can be made in sugar kelp breeding by genomic selection, especially for dry
weight per meter. To the best of our knowledge, our study is the first to evaluate the use
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of GS in kelp breeding, including a mixed-ploidy relationship matrix and the integration
of separate genomic relationship matrices at the two ploidy levels. Our results
specifically show that wet weight and dry weight per meter can be effectively selected via
GS. However, continued efforts in improving nursery/planting and phenotyping methods,
as well as increasing the number of plots to be evaluated on farms will be critical for us to
continuously improve prediction accuracy. The GS model should also be updated and
retrained as we move forward using data from related individuals. The low across-year
genetic correlations we observed were concerning (Table 1). These findings need to be
backed up with further experimentation, including the addition of common individuals
across environments. Finally, our results with the GCA+SCA model suggest that it may
be superior to the standard GBLUP model for kelp genomic predictions, but validation of
that hypothesis will require more experimental data.

Data Availability

R Scripts and data sets are available on Github:
https://github.com/MaoHuang2020/SugarKelpBreeding/tree/2 YrData/TraitAnalyses2010
03

Raw phenotypic and genotypic data are available on sugarkelpbase.org.

Farm evaluation phenotypic data are at:

https://sugarkelpbase.org/breeders/trial/392

https://sugarkelpbase.org/breeders/trial/391
https://sugarkelpbase.org/breeders/trial/388

Genotypic data on the founder SPs are at:
https://sugarkelpbase.org/breeders_toolbox/protocol/4
Genotypic data from whole genome sequencing GPs are at:
https://sugarkelpbase.org/breeders_toolbox/protocol/5
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Tables and Figure legends

Table 1

Heritability across two years and genetic correlation between years for ten different traits. Values in parenthesis are approximate standard

errors for variance components obtained in ASReml-R.

Plot level Traits Morphology Traits

WWpM ' pDW DWpM Ash AshFDWpM BDns | BLen BMax BThk SLen SDia
Heritability | 0.50 0.06 0.43 B 0.08 0.22 0.41 0.39 0.49 0.38
Y2019 (£0.12) (£0.12) (£0.12) (£0.33) (£0.04) (£0.04) (£0.05) (£0.05) (£0.05)
Heritability | 0.38 0.07 0.34 0.18 0.39 0.57 0.51 0.69 0.86 0.82
Y12020 (£0.16) (£0.16) (x0.16) (+0.17)  (x0.16) (£0.04) (£0.04) (£0.04) (£0.02) (£0.02)
Genetic 0.83 -0.15  0.89 B -0.16 0.67 0.83 0.58 0.55 0.73
Correlation | (£0.45) (£2.6) (£0.51) (£1.69) (£0.19)  (£0.12) (£0.21) (£0.17) (£0.13)

T Trait abbreviations: WWpM: Wet Weight per Meter; pDW: percent Dry Weight; DWpM: Dry Weight per Meter; Ash: Ash content;
AshFDWpM: Ash-Free Dry Weight per Meter; BDns: Blade Density per plot; BLen: Blade length; BMax: Blade maximum Width; BThk:
Blade Thickness; SLen: Stipe Length; SDia: Stipe Diameter. All traits data were log transformed to normalize and stabilize error. Ash data

in Yr2019 had too few data points to get an estimate.

¥ Heritability estimated for Yr2019 and Yr2020. Genetic correlation of the same trait between two years.
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Table 2
Genetic correlation among traits using a multi-trait model in ASReml-R. Analysis was done within years. The genetic correlation values
for Yr2019 are in the upper diagonal and for Yr2020 are in the lower diagonal.

Yr2019
DWpM'  BLen BMax BThk SLen  SDia
Yr2020

DWpM - 0.45 -0.40 073 053  0.34
BLen 0.88 - 0.02 090 008  0.11
BMax 0.15 -0.39 -- -090  0.05 049
BThk 0.82 0.69 0.23 -- 022  0.10
SLen 0.77 0.64 0.68 0.58 -- 0.84

SDia 0.78 0.65 0.77 0.69  0.95 -

" For trait abbreviations refer to Table 1.
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Table 3

Genomic prediction accuracy from 10-fold cross validation within each year. Each analysis was run with 20 replicates.

Model TP* PP WVZP M pDW DWpM  Ash é;};i}[) BDns BLen BMax  BThk SLen SDia
Y2019 | Y2019 | 035  -001 035 028 0.0 0.24 0.38 0.48 0.29 0.48 0.35
GCA+SCA
(Pedigree | Yr2020 | Yr2020| 034 002 032 008 031 0.12 0.32 031  -019 038 0.47
& Markers)
Y2019 | Y2019 | 031 -006 032 023 0.3 0.24 031 0.45 0.23 0.43 0.28
GCA+SCA
(Pedigree | yr2020 | yr2020| 028 000 025 006 025 0.10 0.23 030  -0.18 033 0.44
only)
Y2019 | Yr2019 | 034  -002 033 023  0.12 0.17 0.42 0.55 0.20 0.50 0.36
GBLUP
(Pedigree | Yr2020 | Yr2020 | 022 004 022 004 026 0.09 0.33 028  -023 030 0.34
& Markers)
GBLUP | Yr2019 | Yr2019| 032 -004 033 0.15 002 0.19 0.32 0.51 0.18 0.44 0.29
(ngﬁ;ee Y2020 | Yr2020| 019 004 016 000 020 0.10 0.26 026  -0.18 025 0.30

"TP: Training Population; PP: Prediction Population.
¥ For trait abbreviations refer to Table 1.
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Table 4

The 95% credible interval of posterior distribution for variance components estimates: variance due to GCA components from Female GPs

(GCA_FQ) and from Male GPs (GCA_MG), SCA component, and Error Variance (varE) based on the Variance component estimates.

Model used within year BLUESs as input and the marker and pedigree based combined relationship matrix in BGLR.

Yr2019 Y2020
GCA_FG GCA_MG SCA varE GCA _FG GCA_MG SCA varE

WWP? 0.01t00.08 0.01t00.06 0.02to0.11 0.05t00.15 | 0.05t00.32  0.03t00.14 0.05t0 0.31 0.14 to 0.44
pDW 0.00t0 0.01 0.00t0 0.01 0.01t00.03 0.01t00.04 [ 0.00t00.02  0.00 to 0.02 0.01 to 0.04 0.03 to 0.07
DWpM 0.00 t0 0.003  0.00t0 0.03 0.00t0 0.05 0.00t0 0.0 | 0.01t00.04 0.00 to 0.02 0.01 to 0.05 0.02 to 0.07
Ash 0.00t0 0.005 0.00t0 0.02 0.00t00.01 0.00t00.01 | 0.00to0.01  0.00 to 0.04 0.00 to 0.01 0.00 to 0.01
AshFDWpM | 0.00 to 0.003  0.00 to 0.00 0.00to 0.03  0.00 to 0.002 | 0.00t0 0.02  0.00 to 0.01 0.00 to 0.02 0.01 to 0.03
BDns 0.04t00.36 0.03t00.15 0.07t00.45 0.22t00.66 | 0.03t00.21  0.03 to 0.20 0.06 to 0.38 0.17 to 0.53
BLen 0.01t00.04 0.01t00.07 0.01t00.08 0.04t00.11 | 0.02t00.11  0.01 to 0.07 0.02t0 0.13 0.07 to 0.20
BMax 0.01t00.06 0.01t00.05 0.01t00.05 0.02t00.07 [ 0.01t00.04 0.01to0.07 0.01 to 0.06 0.03t0 0.10
BThk 0.00 t0 0.002  0.00t0 0.03 0.00t0 0.01  0.00to 0.0 | 0.00to 0.04  0.00 to 0.04 0.00 to 0.01 0.00 to 0.01
SLen 0.02t00.10 0.01t00.09 0.02t00.13  0.06t0 0.17 | 0.06 t0o 0.34  0.03 to 0.13 0.05 to 0.27 0.12t0 0.38
SDia 0.00 t0 0.02  0.00 t0 0.01 0.00 t0 0.03  0.01 t0 0.03 [ 0.02 to 0.08"  0.01 to 0.03 0.01 to 0.06 0.02 to 0.07

" For trait abbreviations refer to Table 1.
" Bolded: For over 97.5% of posterior samples GCA_FG > GCA_MG
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Table 5

Genomic prediction accuracy using heterogeneous error variance model, the same model as used in Table 1a. The training set was Yr2019
and Yr2020 SP data and BVs for haploid GPs were predicted. For the Yr2019+Yr2020 combination set, the BVs for haploid GPs were the

mean of their BVs estimated from Yr2019 and Yr2020. The prediction set derived from Yr2021 SPs.

GPs BVs AshF
Model | predicted | WWpM' pDW DWpM Ash DWpM BDns BlLen BMax  BThk SLen  SDia
from
GBLUP | Yr2019 0.29 0.10 0.30 -- -0.10 -0.21 0.26 0.34 0.17 0.52 0.38
(Pedigree | Yr2020 0.30 0.02 0.31 0.04 0.19 0.22 0.29 0.36 0.11 0.44 0.30
& Yr2019+
Markers) [ Yr2020 0.30 0.08 0.31 -- 0.19 -0.04 0.29 0.35 0.14 0.49 0.33

" For trait abbreviations refer to Table 1. For Ash, the within Yr2019 training sample size was small (n=45) and results
were not included.
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Figure legends

Figure 1. a) Principal Component Analysis (PCA) for 276 GPs using 909,749 SNPs. Red symbols: Gulf of Maine (GOM),
black symbols: Southern New England (SNE). b) PCA for GPs within the GOM region. Gametophyte parent SPs were
collected from these locations: CB: Casco bay farm, CC: Cape Cod, Check: gametophytes came from checks crosses, JS:
Fort Stark, LD: Lubec Dock, LL: Lubec Light, NC: Newcastle, NL: Nubble Light, OD: Outer Dock, OI: Orr’s Island, and
SF: Sullivan Falls.

Figure 2. Correlation plot of SP Breeding values estimated using both Yr2019 and Yr2020 data with the heterogeneous error variance
GBLUP model. The combined BVs are the mean of estimates for Yr2019 and Yr2020.

Figure 3. Box plots of estimated breeding values of DWpM (Dry Weight per Meter, log transformed) for 517 GPs and 436 SPs. The SPs
included these subcategories: Founder SPs without progeny (these SPs were collected from the wild but did not produce GP progeny,
denoted FndSP-), Founder SPs with progeny (FndSP+), SP19_Fnd (SPs tested on farm in Yr2019 generated using GPs from Founders),
SP20 Fnd (SPs tested in Yr2020), SP21 Fnd (SPs tested in Yr2021), and SP21 Frm (SPs tested in Yr2021, generated using GPs collected
from SPs tested on farm in Yr2019). The GPs included GPs collected from Founders (GP_Fnd) and GPs collected from SPs tested on
farm in Yr2019 (GP_Frm).

Supplemental Figure legends

Supplemental Figure 1. Histogram of estimated breeding values for Dry Weight per Meter, log transformed (DWpM, kg/m) for SPs from
Yr2019 and Yr2020. Red dashed lines indicate the Yr2019 plots that had a successful meiospore release leading to isolation of viable GPs
which were used for making the 2020-2021 crosses. The green dashed lines indicate Yr2020 plots that had a successful meiospore release.
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Supplemental Tables

Supplemental Table 1. Genomic prediction accuracy using heterogeneous error variance structure model to predict performance of
Y12021. The model was a GBLUP model using both pedigree and markers combined relationship matrix, the same model as used in Table
3. The training set was Yr2019 and Yr2020 diploid SPs data, and BVs for haploid GPs were predicted. For the Yr2019+Y12020
combination set, the BVs for haploid GPs were the mean of their BVs estimated from Yr2019 and Yr2020. The prediction set was Yr2021
SPs, which their estimated BVs were the sum of parental GPs BVs. The GS prediction accuracy is the correlation of assembled BVs for
Y12021 SPs and their BLUEs.

BVs WWoM oD AshF
Category | predicted P %v DWpM Ash DWp  BD Blen  BmWid BTh SL SDia
from M
. Y2019 020 014 024 -0.02 -004 -0.18 0.28 037 024 041 0.40
op Y2020 017 -0.04 025 002 027  0.16 0.26 040  0.14 033 0.25
Ranked Y019
=43 I i} i}
(r=43) | U0 | 018 006 025 001 027 0.19 0.28 039 019 038 0.30
Rand Y2019 005 023 007 004 -028  0.06 0.07 055 015 057 0.24
ancom 112020 011 044 010 000 027  -0.06 0.20 059  0.05 0.63 0.19
Ranked /—3 P09
n=25 r
(=25) | U0, | 009 049 009 007 027 005 0.17 058 0.0 0.3 021
- Y2019 045 042 043 -048 0.3  -0.50 0.20 0.33 021 0.80 0.53
‘gﬁf?son Y12020 051 -044 045 047 -032 051 037 0.38 0.42 0.57 0.51
B Y2019
~12 ] ) _
(=12) | o000 | 049 039 045 048 032 0.3 031 036 038  0.67 0.52
Common Phenotypic
plots Comlaﬁgn 025 -0.10 012 011 -061 038 0.03 0.41 ~ 0.64 0.51
(n=12)

T For trait abbreviations refer to Table 1a. For phenotypic correlation, blade thickness was not reported as Y2020 only had 2 data points.


https://doi.org/10.1101/2022.08.01.502376
http://creativecommons.org/licenses/by-nc/4.0/

PC2 (3.49%)

500 4 °
“" °
° . %
°
L4 )
e o )
°
° ° . °
° * [
oo . . . Region
[ ] ) L4
. ° K ° ®e ° COM
. o . o ® SNE
° ® e o
° °
L] ¢ [} ° ) .:..!‘. :~~. ¢
° ...“. : ¢ * ¢ o..° ¢
0+ .. .‘ .0‘ e ....
o & ° o0 °
. ‘.‘" '3
[ ] O.ﬁ. ‘..
*? L/
O.J o{::. °
a8 °°
N % I ®
oo ’a..:. L
°
0 500

PC1 (7.71%)


https://doi.org/10.1101/2022.08.01.502376
http://creativecommons.org/licenses/by-nc/4.0/

PC2 (3.82%)

600 -

400 - < o x x
X
& x*
X
X <>>< X
X
x
X
®
®
200 ®
®
¢ e ® ® o
$%? & ® A X
& ® o
®
o %% o e © o
B % @ $
o ¢ Pe & P &
o V oo
0+ o
o0 0
+ A = ® =
A TR = R
v
* Vi W_i_ * v T ®
+ BV
* =
* %% VE = = m]
B¥ = u]
~200 - = 5
I o
B x o
o
u]
u]
=400 +
-400 =200 0 200 400 600

PC1 (4.8%)

Location

B 4 ¢ x + D

© ¥

CB
CcC
Check
JS
LD
LL
NC
NL
oD
Ol
SF


https://doi.org/10.1101/2022.08.01.502376
http://creativecommons.org/licenses/by-nc/4.0/

AshOnly

AshFDwPM

BDns

0.8

0.6

0.4

- —0.2

2000

0.67 | 0.54  owpu ‘. ‘ ‘ ‘
POW ‘
0.66 055 0.96 wp ‘ ‘ ‘ ’
0.56 0.58 0.59 | sten ‘ ‘ O
~0.36 0.37 e ‘

0.36 0.47 0.50 | 0.58 ik ‘ O
0.52 0.50 0.52| 0.41| 0.49| 0.48| sve .
0.56 0.53 056 | 0.33 026 0.88 sten



https://doi.org/10.1101/2022.08.01.502376
http://creativecommons.org/licenses/by-nc/4.0/

I

0.2-

Be
1
T

1
1_ 4
o o

sonjeA buipaaig WdMAa

X
X
UM|

0

_0.1-

-wi4 TZdS

-pu4 TZdS

-pu4 02dS

-pu4 6TdS

-Wwi4 d9

-pud d9

-+dSpu-

-—dspu4


https://doi.org/10.1101/2022.08.01.502376
http://creativecommons.org/licenses/by-nc/4.0/

15-

1
o
—

uNo9 10|d

0.2

0.1

DwPM


https://doi.org/10.1101/2022.08.01.502376
http://creativecommons.org/licenses/by-nc/4.0/

