

PRMT5-mediated regulatory arginine methylation of RIPK3

Chanchal Chauhan¹, Ana Martinez Del Val², Rainer Niedenthal¹, Jesper Velgaard Olsen²
Alexey Kotlyarov¹, Simon Bekker-Jensen³, Matthias Gaestel^{1*}, Manoj B. Menon^{4*}

¹Institute of Cell Biochemistry, Hannover Medical School, Hannover, 30625, Germany.

²Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N, Denmark

³Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark

⁴Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.

*Correspondence to menon@bioschool.iitd.ac.in or gaestel.matthias@mh-hannover.de

1 Abstract

2 The TNF receptor-interacting protein kinases (RIPK)-1 and 3 are regulators of extrinsic cell
3 death response pathways, where RIPK1 makes the cell-survival or death decisions by
4 associating with distinct complexes mediating survival signaling, caspase activation or RIPK3-
5 dependent necroptotic cell death in a context dependent manner. Using a mass
6 spectrometry-based screen to find new components of the ripoptosome/necrosome, we
7 discovered the protein-arginine methyltransferase (PRMT)-5 as a direct interaction partner
8 of RIPK1. Interestingly, RIPK3 but not RIPK1 was then found a target of PRMT5-mediated
9 symmetric arginine dimethylation. A conserved arginine residue in RIPK3 (R486 in human,
10 R415 in mouse) was identified as the evolutionarily conserved target for PRMT5-mediated
11 symmetric dimethylation and the mutations R486A and R486K in human RIPK3 almost
12 completely abrogated its methylation. Rescue experiments using these non-methylatable
13 mutants of RIPK3 demonstrated PRMT5-mediated RIPK3 methylation to act as an efficient
14 mechanism of RIPK3-mediated feedback control on RIPK1 activity and function. Therefore,
15 this study reveals PRMT5-mediated RIPK3 methylation as a novel modulator of RIPK1-
16 dependent signaling.

17 Introduction

18 TNF receptor-interacting protein kinases (RIPK)-1 and -3 are the master regulators of
19 programmed cell death signaling. The concerted action of the RIP kinases downstream to the
20 death receptors, interferon-alpha receptor (IFN α R) and Toll like receptor (TLR) regulate cell
21 death/survival decisions during development and inflammation (Reviewed in (Humphries,
22 Yang et al., 2015)). In addition, viral infection and genotoxic stress also activate RIPK1 and
23 RIPK3. Recruitment to the receptor and subsequent ubiquitination of RIPK1 in the receptor
24 associated complex I is crucial for the activation of MAP kinases and NF κ B-dependent
25 transcription, independent of RIPK1 kinase activity (Jiao, Wachsmuth et al., 2020, Kist,

1 Komuves et al., 2021, Upton, Shubina et al., 2017, Zhang, Zhang et al., 2019). Activated
2 RIPK1 associates with CASP8 and FADD to assemble a cytosolic death-inducing complex
3 termed “rioptosome” (complex IIb) resulting in apoptotic cell death (Micheau & Tschopp,
4 2003, Wang, Du et al., 2008). In the absence of caspase activity, active RIPK1 can also
5 associate with RIPK3 via their RIP homotypic interaction motifs (RHIM) to form a functional
6 hetero-amyloidal structure called necrosome (Cho, Challa et al., 2009, Li, McQuade et al.,
7 2012). Subsequent RIPK3-mediated phosphorylation of MLKL leads to oligomerisation of
8 MLKL followed by its translocation to the plasma membrane causing loss of membrane
9 integrity and cell death defined as necroptosis. In addition to its canonical role as a pro-
10 necroptotic kinase, RIPK3 also serves as an adaptor that drives CASP8-mediated apoptosis
11 (Dondelinger, Aguilera et al., 2013, Mandal, Berger et al., 2014). Independent of the cell
12 death events, RIPK3 also manifests pro-survival functions by regulating transcriptional
13 responses (Moriwaki & Chan, 2017, Orozco, Daniels et al., 2019).

14 A whole lexicon of post-translational modifications regulates the pro-death and pro-survival
15 functions of RIP kinases (Annibaldi & Meier, 2018, Delanghe, Dondelinger et al., 2020, Meng,
16 Sandow et al., 2021). While RIPK1 phosphorylation by IKK1/2, MK2 and TBK1 were shown to
17 act as checkpoints preventing RIPK1 activation and autophosphorylation at residue S166,
18 mechanisms regulating the activity of RIPK3 are less understood (Dondelinger, Delanghe et
19 al., 2017, Jaco, Annibaldi et al., 2017, Menon, Gropengiesser et al., 2017) . Apart from being
20 a substrate of RIPK1, RIPK3 also undergo auto-phosphorylation at residues T182, S199 and
21 S227 (Choi, Park et al., 2018, McQuade, Cho et al., 2013, Sun, Wang et al., 2012). Members
22 of the casein kinase 1 family phosphorylate RIPK3 at serine 227 and regulate its ability to
23 recruit MLKL (Hanna-Addams, Liu et al., 2020). In addition, CHIP E3 ubiquitin ligase-mediated
24 K48 ubiquitylation of RIPK3 at residues K55, K89, K363, and K501 and PEL1-mediated K48
25 ubiquitylation at K363 enhances RIPK3 turnover via proteasomal and lysosomal dependent
26 degradation, respectively (Choi et al., 2018, Seo, Lee et al., 2016). Apart from this, O-GlcNAc
27 transferase targets RIPK3 for O-linked GlcNAcylation and hinders necroptotic signaling (Li,
28 Gong et al., 2019).

29 Protein methylation is known to influence various physiological processes including RNA
30 processing, transcriptional regulation, DNA damage response, and cell cycle progression
31 (Guccione & Richard, 2019, Martin & Zhang, 2005, Zhang, Wen et al., 2012). During the
32 methylation reaction, a methyl group from S-adenosyl-L-methionine (SAM) is transferred to
33 lysine or arginine residues in target proteins by highly specific methyltransferases. Protein
34 arginine methyltransferases (PRMT) catalyse transfer of one or two methyl groups to
35 arginine residues, giving rise to monomethyl-arginine, asymmetric dimethyl-arginine (aDMA)
36 or symmetric dimethylarginine (sDMA). The family of mammalian PRMTs consists of nine
37 members sorted into three groups: Type I methyltransferases (PRMT 1,3,4,6, and 8)
38 generate aDMA by adding two methyl groups to the same terminal nitrogen of the arginine
39 residue, Type II (PRMT5 and 9) mark each of the terminal nitrogen atoms of arginine with
40 one methyl group, hence generating sDMA and the type III member PRMT7 catalyses mono-
41 methylation of arginine residues (Reviewed in (Blanc & Richard, 2017)). Tight regulation of
42 PRMTs is a prerequisite for regulated protein arginine methylation as there is no conclusive
43 proof for the presence of specific arginine demethylases. PRMT activity is usually regulated
44 by association with regulatory proteins, post-translational modifications of PRMTs as well as
45 masking of their target sites by other modifications (Morales, Caceres et al., 2016).
46 Interestingly, association of PRMT5 with WDR77/MEP50 is a prerequisite for PRMT5 activity

1 in mammalian cells (Friesen, Wyce et al., 2002). Other interaction partners like RIOK1 and
2 pICLN/CLNS1A are shown to regulate the substrate specificity by docking the methylosome
3 complex to specific substrates (Guderian, Peter et al., 2011). PRMT5 activity and localisation
4 is also regulated by its phosphorylation and methylation. While AKT-mediated T634
5 phosphorylation modulates membrane localisation of PRMT5 (Espejo, Gao et al., 2017),
6 PKC ζ -mediated S15 phosphorylation is a positive regulator of IL1-induced PRMT5 activity and
7 NF κ B-activation (Hartley, Wang et al., 2020a). Moreover, CARM1/PRMT4-mediated
8 methylation of R505 residue is essential for the homodimerization and activation of PRMT5
9 (Nie, Wang et al., 2018).

10 Recent evidence indicate that the switch between pro-survival and pro-death functions of
11 RIPK1 is regulated by a panel of modifications including phosphorylation and ubiquitination
12 (Wang, Fan et al., 2021) and the presence of kinase checkpoints in RIPK1 activation revealed
13 the presence of multiple stages in the maturation of the complex IIb/rioptosome (Amin,
14 Florez et al., 2018). To understand the assembly and maturation of the rioposome into an
15 active death inducer, it is important to identify novel rioposome interactors. Through
16 SILAC-based mass spectrometry (MS) analysis, we identified PRMT5 as a RIPK1 interaction
17 partner. Subsequently, our studies reveal PRMT5-mediated symmetric di-methylation of
18 RIPK3 as a novel mechanism regulating necosome-mediated signaling.

19 **Results**

20 **A screen for rioposome interactors by MS analysis identified PRMT5 as a RIPK1
21 interaction partner**

22 To identify RIPK1 interactors during TNF-induced cell death, we first established a mouse-
23 embryonic fibroblast (MEF) model system of induced expression of epitope-tagged RIPK1.
24 *Ripk1*^{-/-} MEFs were rescued by the expression of doxycycline (dox)-inducible FLAG-tagged
25 RIPK1 and single clonal cell lines were isolated and stable labelled by isotopes. Dox-induced
26 expression of RIPK1 was detectable in both clones analysed and RIPK1 is efficiently enriched
27 by FLAG-tag based immune-precipitation. Immunoblots with anti-FLAG and anti-RIPK1
28 antibodies indicate that there is no detectable RIPK1 expression and enrichment in the non-
29 induced cells (Dox -, Figure 1A). Since previous studies have shown that caspase inhibition
30 can stabilize the complex IIb/rioposome (Tenev, Bianchi et al., 2011), we performed
31 rioposome enrichment of cells treated with human TNF α in the presence of smac-
32 mimetics (SM) and caspase inhibitor zVAD-fmk (zVAD). Efficient enrichment of rioposome-
33 like complexes was verified by the stimulus-induced association of CASP8 and its cleaved
34 form with FLAG-RIPK1 (Figure 1B). This enrichment is independent of RIPK1 phosphorylation
35 by MK2, since it is detectable in the presence and absence of the MK2 inhibitor PF364402
36 (Fig. 1B). Immunoblot analyses revealed that both clones of rescued cells lacked detectable
37 MLKL expression excluding the possibility of necrotic cell death in this model
38 (Supplementary Figure S1).

39 To identify rioposome interactors by a non-biased screen, we applied SILAC-based MS
40 analysis. After the enrichment of FLAG-RIPK1 associated proteins from differentially SILAC-
41 labelled control and TNF+SM+zVAD (Figure 1C) treated cells, the beads were pooled and
42 eluted with FLAG peptides. The eluted proteins were digested and analyzed by LC-MS/MS in
43 technical duplicates. The proteins which were identified in duplicate and consistent between
44

1 the two independent clonal lines were considered as interactors (Figure 1C). In general, after
2 normalization to enriched RIPK1 levels, clone B showed better enrichment for most
3 identified proteins, but clone A also displayed significant enrichment. One of the consistent
4 factors enriched was PRMT5, a type II methyl transferase. Interestingly, the PRMT5
5 methylosome consists of a hetero-octameric complex consisting of a central PRMT5
6 tetramer decorated with four WDR77 molecules. Remarkably, also WDR77 was amongst the
7 most enriched proteins in our screen (Figure 1C) indicating enrichment of the entire PRTM5
8 methylosome. To verify the identified interaction between PRMT5 and RIPK1, we performed
9 GST-pulldown experiments in HEK 293T cells transfected with FLAG-PRMT5 and GST-tagged
10 mouse RIPK1 and mutants thereof. The results clearly showed strong enrichment of PRMT5
11 with GST-tagged full length mRIPK1 (1-656 aa) as well as C-terminal truncations of RIPK1
12 lacking the death domain (Δ DD, mRIPK1-1-588 aa) or both death domain and RHIM motif
13 (Δ DD/ Δ RHIM, mRIPK1-1- 500 aa) (Figure 1D). Similar results were obtained also when a
14 dimerization deficient mutant of RIPK1 was used (Δ DD, RHIMmut).

15 **RIPK3 is a target of PRMT5-mediated symmetric arginine dimethylation**

16

17 Since the RIPK1 interactors included the core methylosome components PRMT5 and WDR77,
18 which induces symmetric dimethylation of arginine residues, we monitored arginine
19 methylation of RIPK1 after co-expression of PRMT5 by using a symmetric di-methyl arginine
20 motif (SdmArg) antibody. Despite clear association of RIPK1 and PRMT5, there was no
21 symmetric dimethylation detectable for GST-RIPK1 enriched using glutathione beads (Figure
22 2A). We then performed this analysis with RIPK3 and identified strong signals for symmetric
23 dimethylation of RIPK3, which was enhanced upon PRMT5 co-expression in HEK 293T cells
24 (Figure 2B). A strong interaction between RIPK3 and PRMT5 was also evident as GST-RIPK3
25 clearly co-purified co-expressed PRMT5 (Figure 2B). To verify that RIPK3 methylation is
26 mediated by PRMT5, we monitored methylation in the presence and absence of the small
27 molecule PRMT5 inhibitors GSK591 and LLY283. These PRMT5 inhibitors completely
28 abrogated the methylation signals detectable by enrichment of GST-RIPK3 followed by
29 immunoblotting with symmetric dimethylation specific antibodies (Figure 2C). Moreover,
30 while the co-expression of wild-type PRMT5 enhanced the methylation of RIPK3, a catalytic
31 deficient mutant of PRMT5 (PRMT5-R368A) failed to show any effect (Figure 2D). As a
32 conclusive proof for PRMT5-mediated dimethylation of RIPK3, we performed siRNA
33 experiments targeting endogenous PRMT5. Consistent with the previous findings, siRNA
34 mediated depletion of PRMT5 completely inhibited the symmetric dimethylation of RIPK3
35 (Figure 2E). These findings support a model where RIPK1 and RIPK3 both interact with
36 PRMT5, while only RIPK3 acts as a methylation target of PRMT5 (Figure 2F).

37

38 **RIPK3 is methylated at a conserved arginine residue in the C-terminal tail**

39

40 Despite the conservation of the cell death signaling pathways across species and high
41 sequence similarity between human and mouse RIPK1, RIPK3 show more divergence
42 between human and mouse (Figure 3A) with only 59% sequence identity (NP_006862.2 and
43 NP_064339.2, respectively). Accordingly, RIPK3 and MLKL interactions display species
44 specific preferences (Chen, Zhou et al., 2013) and major differences in the structural
45 determinants of RIPK3-MLKL interaction and regulation between human and mouse proteins
46 exist (Meng, Davies et al., 2021). To test whether human RIPK3 is also a target of PRMT5 and
47 whether this modification is conserved across species, we monitored symmetric

1 demethylation of hRIPK3 in the presence and absence of the two PRMT5-specific inhibitors
2 GSK591 and LLY283. Human RIPK3 underwent strong arginine dimethylation in HEK 293T
3 cells, which was completely lost upon PRMT5 inhibitor treatment (Figure 3B) or PRMT5
4 knockdown (Supplementary Figure S2). After demonstrating that the PRMT5-RIPK3 axis is
5 conserved in humans, we looked at large-scale proteomic datasets for evidence for RIPK3
6 methylation. The PhosphoSite database (<http://www.phosphosite.org>) documents the
7 existence of arginine methylation sites in both human and mouse RIPK3 outside the kinase
8 domain (cf. Figure 3A). While the residues R264, R332, R413 and R415 are targets of
9 methylation in mRIPK3, R422 and R486 are methylation sites on hRIPK3. Interestingly, R486
10 (R415 in mRIPK3) is the only conserved arginine methylation site between human and
11 mouse RIPK3 (Figure 3C). We mutated this conserved arginine residue in human RIPK3 to
12 alanine (R486A) or lysine (R486K) and monitored dimethylation of the mutants. Both
13 mutations almost completely abrogated the symmetric dimethylation of RIPK3, establishing
14 R486 as the predominant methylation site on RIPK3 (Figure 3D).

15 **RIPK3 R486 modification provides feedback to RIPK1-RIPK3 signaling**

16

17 To monitor RIPK3 functions and to investigate the significance of RIPK3 methylation, we
18 established a rescue model of RIPK3 activity using the PANC1 human pancreatic cancer cell
19 line. PANC1 cells do not express endogenous RIPK3 and, hence, cannot undergo necroptosis
20 (Sun et al., 2012). We introduced RIPK3 into the PANC1 cells by lentiviral transduction and
21 monitored necroptotic signaling (Figure 4A). RIPK3 expression was detected only in cells
22 exogenously expressing RIPK3, while MLKL expression was visible in both cell lines. Upon
23 treatment with the necroptotic stimuli (TNF+SM+zVAD), significant necroptosis-associated
24 MLKL phosphorylation and strong downstream ERK1/2 activation were visible only in the
25 RIPK3-rescued cells. Interestingly, RIPK1 autophosphorylation as indicated by the pS166
26 antibody signal was significantly suppressed only in the cells expressing RIPK3, indicating a
27 RIPK3-mediated feedback control of RIPK1 autophosphorylation. A pre-treatment of the cells
28 with the RIPK3 inhibitor GSK872 rescued RIPK1 autophosphorylation and suppressed
29 necroptotic signaling, suggesting that the RIPK3-mediated feedback control on RIPK1
30 activation requires RIPK3 kinase activity. Moreover, inhibitors of oligomerization of both
31 RIPK3 (PP2) and MLKL (NSA) also inhibited necroptotic signaling as well as RIPK3-mediated
32 suppression of RIPK1-S166 phosphorylation (Figure 4A).

33 To further investigate the role of PRMT5-mediated methylation of RIPK3 at residue R486, we
34 generated PANC1 cells rescued with wild-type (WT) and methylation-deficient mutants
35 (R486K or R486A) of RIPK3. After transduction and selection of cell lines for uniform
36 transduction, the selected empty vector and RIPK3 expression lines showed similar
37 expression levels of GFP expressed from the bidirectional promotor demonstrating uniform
38 transduction and similar expression levels of WT and mutant RIPK3 expression
39 (Supplementary Figure S3). When necroptotic signaling was compared between the four cell
40 lines, we observed clear suppression of RIPK1 autophosphorylation by WT-RIPK3 again,
41 however, the R486A and R486K mutant cell lines consistently displayed a stronger signal for
42 pS166-RIPK1 similar to those observed in RIPK3-deficient empty vector transduced cells
43 (Figure 4B). The necroptotic downstream signaling indicated by MLKL phosphorylation and
44 ERK1/2 activation was enhanced in the cells expressing the K486 mutated RIPK3, indicating
45 that methylation acts as negative effector of overall necroptotic signaling. However,

1 phosphorylation of Akt/PKB in response to necroptotic stimulus was enhanced in RIPK3 or
2 mutant expressing cells, obviously independent of RIPK3 methylation (Figure 4B). In contrast
3 to the negative effect of RIPK3 on necroptotic RIPK1 autophosphorylation, S166
4 phosphorylation of RIPK1 in response to a pro-apoptotic stimulus (TNF+SM) was not
5 suppressed by RIPK3 expression. Interestingly, in this case a dose dependent increase of
6 S166 phosphorylation was observed (Supplementary Figure S4).

7 **Discussion**

8 The rioposome/complex IIb formed during death receptor-dependent and -independent
9 cell death consists of the core components RIPK1, FADD and CASP8. Inhibition of CASP8
10 activity leads to the association of RIPK3 with this complex, leading to the formation of a
11 RIPK1-RIPK3 containing necosome capable of phosphorylating MLKL and inducing
12 necroptosis. In the last years, many interaction partners and posttranscriptional
13 modifications of RIPK1 and RIPK3 were identified as modulators of these cell death
14 pathways. In the present study, we provide the first proof for an arginine dimethylation of
15 RIPK3 as such a modulatory mechanism. Using mass spectrometry approaches, we have
16 identified the protein arginine methyl transferase PRMT5 as a RIPK1 interactor which
17 mediates a symmetric arginine dimethylation of RIPK3 C-terminus. Using a RIPK3 rescue
18 model in a RIPK3-deficient pancreatic cancer cell line which normally cannot undergo
19 necroptosis, we demonstrate that the evolutionary conserved dimethylated arginine residue
20 R486 is important for RIPK3-mediated feedback control on RIPK1 autophosphorylation.
21 Hence, we established a link between PRMT5 and the necroptosis regulator RIPK3. A recent
22 study also corroborates our finding by showing that PRMT5 exhibits anti-tumor effects via
23 regulation of necroptosis (Otani, Sur et al., 2021). PRMT5-depletion was shown to sensitise
24 glioblastoma cells to the antitumor effects of the protein phosphatase 2A inhibitor LB100 by
25 facilitating necroptosis.

26 Interestingly, the rioposome interactome detected in our MS screen included several
27 methylosome components including RIOK1 and WDR77 in addition to PRMT5 (Fig. 1 and
28 Supplementary Table 1). This indicates a potentially more general role for protein arginine
29 methylation in the regulation and/or maturation of the rioposome. It is important to note
30 that one of the earliest reports on PRMT5 function was its interaction with death receptors
31 and consequential inhibition of apoptosis by promoting NF κ B activation (Tanaka, Hoshikawa
32 et al., 2009). This study also revealed that while PRMT5 interacted with the TRAIL receptors,
33 there was no association with the TNFR1 and PRMT5 regulated TRAIL sensitivity in cancer
34 cells. However, more recent evidence indicates a role for PRMT5 downstream to TNF
35 receptors in mounting an NF κ B-dependent inflammatory response. PRMT5 has been shown
36 to enhance NF κ B activation by methyating R30 and R174 residues on NF κ B p65 subunit
37 (Harris, Chandrasekharan et al., 2016, Wei, Wang et al., 2013). PRMT5-mediated YBX1-R205
38 methylation was also shown to affect NF κ B-dependent gene expression promoting colon
39 cancer cell proliferation and anchorage-independent growth (Hartley, Wang et al., 2020b).
40 CARM1/PRMT4-mediated methylation of PRMT5 was shown to be essential for its
41 homodimerisation and activation leading to histone methylation and suppression of gene
42 expression (Nie et al., 2018), while S15 phosphorylation of PRMT5 by PKC ζ acts as a positive
43 modulator of PRMT5 activity and PRMT5-dependent NF κ B activation (Hartley et al., 2020a).
44 Interestingly, PRMT4 is known to regulate a subset of NF κ B-target genes by CBP300
45 methylation downstream to TNF and TLR4 signaling (Covic, Hassa et al., 2005). CFLAR (CASP8

1 and FADD-like apoptosis regulator), also known as c-FLIP is another TNF receptor
2 downstream molecule which is a target of arginine methylation (Li, An et al., 2019). A role
3 for PRMTs including PRMT5 in inflammatory gene expression is gaining prominence and
4 incidentally we also observed a role for PRMT5-mediated RIPK3 methylation in necosome
5 downstream MAPK activation. The methylation-deficient mutants consistently gave
6 enhanced RIPK3-dependent ERK1/2 phosphorylation signals in response to necroptotic
7 stimulus (Figure 4). RIPK1 and RIPK3 mediated inflammatory response if mediated by ERK1/2
8 kinases, independent of the cell death (Najjar, Saleh et al., 2016).

9 We also observed a detectable increase in the methylation-deficient RIPK3 mutant protein
10 levels compared to the wild-type RIPK3 in the rescued PANC1 cells. The reason for such an
11 effect is not clear. However, despite moderately elevated levels, RIPK3 mutants were not
12 effective in providing the feedback suppression on RIPK1 autophosphorylation.
13 Ubiquitination and subsequent lysosomal degradation of RIPK3 by the CHIP-E3 ubiquitin
14 ligase was shown as a mechanism of necroptosis suppression (Seo et al., 2016).
15 Interestingly, PRMT5 is also a proven substrate of CHIP mediated ubiquitination and
16 proteasomal degradation (Zhang, Zeng et al., 2016). In lung cancer patients, an expression
17 signature with low CHIP expression and high RIPK3 expression is associated with bad
18 prognosis (Kim, Chung et al., 2020). Regulation of RIPK3 levels could indeed be a mechanism
19 relevant to inflammation and cancer.

20 The mutual regulation of RIPK1 and RIPK3 is still poorly understood. RIPK1 is the upstream
21 activator of RIPK3. However, it is also known as a factor preventing spontaneous RIPK3
22 oligomerisation and activation (Orozco, Yatim et al., 2014). While RIPK1-mediated
23 necroptosis, but not CASP8-dependent apoptosis, requires RIPK3 and MLKL, artificial
24 oligomerization of RIPK3 can result in both apoptosis and necroptosis. In the absence of
25 RIPK1, oligomerised RIPK3 predominantly induces MLKL-dependent necroptosis, but also
26 apoptosis in MLKL-deficient cells (Cook, Moujalled et al., 2014). Studies using genetic models
27 of RIPK1-deficiency has shown a kinase activity-independent scaffolding role for RIPK1 in
28 preventing epithelial cell apoptosis and necroptosis (Dannappel, Vlantis et al., 2014). Cells
29 from the RIPK3-RHIM mutant mice were protected from necroptosis as well as apoptosis
30 further confirming the complex signaling interplay of these protein kinases in the regulation
31 of different pathways of cell death (Zhang, Wu et al., 2020). This study also revealed the
32 presence of enhanced RIPK1 autophosphorylation and RIPK1-dependent lymphoproliferative
33 disease in the RIPK3-RHIM mutant mouse in a *Fadd*^{+/−} background suggesting a role for
34 RIPK3-mediated feedback on RIPK1 mediated inflammatory response. PRMT5-mediated
35 methylation of RIPK3 may participate in the modulation of this feedback. Further studies
36 using genetic mouse models will be necessary to reveal the complex interplay of PRMT5 and
37 RIPK3 in inflammation and to identify additional substrates of PRMT5-mediated methylation
38 in the RIPK1/3 RHIM interactome.

39

1 Materials and Methods

2 **Cell Culture:** 3T3-immortalised *Ripk1*-/- MEFs were kindly provided by Prof. K. Ruckdeschel,
3 (Universitätsklinikum Hamburg-Eppendorf, Germany). *Ripk1*-/- MEFs, HEK293T cells and
4 PANC-1 cells were cultured in DMEM supplemented with 10% heat-inactivated fetal calf
5 serum (FCS) and 1% Penicillin/Streptomycin. The cell lines were maintained at 37°C and
6 with 5% CO₂ in a humidified atmosphere.

7 **Antibodies and Reagents:** MLKL (#14993), αSdmArg (#13222), RIP3 (#13526), Caspase-8
8 (#4927), pS166-RIPK1 (#65746), pS358-MLKL (#91689), pS345-MLKL (#37333), phospho-p38
9 MAPK (Thr180/Tyr182) (#9211), phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (#4370)
10 and pS473-Akt (#4060) antibodies were from Cell Signaling Technology (CST). Further
11 antibodies used were against GST (sc-138, Santa Cruz Biotechnology), RIPK1 (#610459, BD
12 Biosciences), GAPDH (#MAB374, Millipore), EF2 (sc-166415, Santa Cruz Biotechnology), FLAG
13 (#F3165, Sigma-Aldrich) and GFP (sc-9996, Santa Cruz Biotechnology). The secondary
14 antibodies used were anti-rabbit IgG-HRP (Conformation Specific) (#5127, CST), mouse
15 TrueBlot® ULTRA (#18-8817-33, Rockland Immunochemicals), goat anti-mouse IgG (H+L)-
16 HRP (#115-035-003, Dianova) and goat anti-rabbit IgG (H+L)-HRP (111-035-003, Dianova).

17 The following reagents at given concentrations were used for cell treatments: Doxycycline
18 (D9891, Sigma, 1μg/ml), recombinant human TNFα (rHuTNF, #50435.50, Biomol, 10μg/ml),
19 Birinapant/Smac Mimetics (HY-16591, MedChem Express, 1μM), pan-caspase inhibitor
20 zVAD-fmk (4026865.0005, Bachem, 25μM), PF3644022 (4279, Tocris, 5μM), GSK591
21 (Cay18354-1, Cayman, 10μM), LLY-283 (HY-107777, MedChem Express, 10μM), Nec-1 (BML-
22 AP309-0020, Enzo Life Sciences, 50μM), PP2 (HY-13805, MedChem Express, 10μM), NSA
23 (5025, Tocris, 10μM), GSK872 (HY-101872, MedChem Express, 5μM).

24 **Plasmids, cloning and mutagenesis:** Dox-inducible pSERS retroviral vector as described
25 previously (Menon, Sawada et al., 2014) was converted to a Gateway Destination vector and
26 a FLAG-tagged mRIPK1 cDNA (Menon et al., 2017) was shuttled in to create doxycycline-
27 inducible retroviral expression system for low level RIPK1 expression. The human and mouse
28 RIPK3 coding region (NM_006871.4 and NM_019955.2, respectively) PCR-amplified from
29 HeLa cell and MEF cell cDNA, respectively, were cloned into the pENTR-D-TOPO directional
30 cloning vector. L-R clonase II mediated shuttling was used to generate N-terminally tagged
31 expression vectors. 3xFLAG-PRMT5 and 3xFLAG-PRMT5- R368A mutant expression vectors
32 were described previously (Bruns, Grothe et al., 2009). The expression vector pCR3.V62-Met-
33 FLAG-RIP3 was reported earlier (Menon et al., 2017). Site-directed mutagenesis was
34 performed using the QuikChange mutagenesis kit (Agilent) to generate FLAG-RIP3-486A and
35 FLAG-RIP3-486K methylation site mutants. pLBID-MCS-GFP-P2A-Puro was gifted by Dr. A.
36 Schambach (MHH, Germany). pLBID-FLAG-hRIPK3 were generated by subcloning PCR
37 products from the pCR3.V62-Met vector into the AgeI/Xhol sites. All other plasmids were
38 described previously (Menon et al., 2017). All cloning and mutagenesis primer sequences
39 used are listed in Supplementary Table S2.

40 **Transient transfection:** HEK293T cells were transfected using polyethylenimine (PEI; Sigma-
41 Aldrich). Transfected cells were maintained in antibiotic free DMEM media supplemented
42 with 10% FCS for 12–16 hours followed by providing with complete DMEM media.
43 Transfected cells were analysed between 20 and 36 hours post transfection.

1 **Retroviral transduction:** Ripk1^{-/-} MEFs were stably rescued with Doxycycline inducible
2 retroviral vectors expressing mouse RIPK1. For preparation of viral supernatants, 7.5 million
3 Ecopack-HEK293T cells were seeded in 10 cm plates and transfected overnight with 5 µg
4 each of pCL-Eco and pSERS11 based retroviral vectors using PEI, in antibiotic free medium
5 with 10% FCS. Medium was changed to fresh complete media supplemented with 1X non-
6 essential amino acids (NEAA). Virus containing supernatants were harvested five times from
7 transfected Ecopack-HEK293 cells (Clontech/Takara), over a period of three days post-
8 transfection and filtered with 0.45 µm filters. 1.2x 10⁵ Ripk1^{-/-} MEF cells were seeded per
9 well in a 6 well plate and were cultured for 4 days with viral supernatants in the presence of
10 8µg/ml polybrene. RIPK1 expression was monitored by intracellular staining and flow
11 cytometry analysis using an Accuri-C6 cytometer (BD Biosciences).

12
13 **Lentiviral transduction:** To generate a rescue model for RIPK3, PANC-1 cells (RIPK3-deficient)
14 were transduced with lentiviral vectors expressing wt/mutant human RIPK3 or pLBID-MCS-
15 GFP-P2A-Puro empty vector. ViraPower Lentiviral Expression System (Invitrogen) was used
16 to package pLBID lentiviral vectors expressing FLAG-hRIPK3 or methylation site mutants or
17 empty vector. Viral supernatants were collected 48 h post transfection and filtered through
18 0,45µm filters as described previously (Menon et al., 2017). PANC-1 cells were transduced
19 twice with the supernatant containing lentivirus and 8µg/ml polybrene followed by positive
20 selection of transduced cells in presence of 1-2µg/ml puromycin. Flow cytometry analysis of
21 GFP was used to monitor comparable transduction efficiency between the cell lines.

22
23 **Intracellular Flow cytometry staining of RIPK1:** Cells were suspended in PBS at a
24 concentration of 10⁷ cells/ml and were fixed with 3-volumes of 4% PFA. After 30 minutes at
25 room temperature, fixed cells were washed and permeabilized for 30 minutes with ice-cold
26 90% methanol. After 2x washes with PBS, cells were blocked with 4% BSA on ice for 30
27 minutes. After 1h at RT with anti-RIPK1 antibody (BD Biosciences # 610459, 1:100 diluted in
28 1% BSA-PBS) cells were incubated with 1:700 diluted secondary antibodies (anti-mouse
29 Alexa Fluor-488, Invitrogen) for 30 minutes. Samples were washed with PBS and analysed
30 with Flow cytometry using an Accuri-C6 cytometer (BD Biosciences).

31
32 **SILAC-based Mass Spectrometry analysis of RIPK1 interactome:** Post transduction and
33 sorting, two clonal cell lines were generated from dox-inducible FLAG-RIPK1 rescued *Ripk1*^{-/-}
34 MEFs. These clones were metabolically labelled with light (Lys0, Arg 0) and medium (Lys4,
35 Arg 6) non-radioactive isotope amino acids. SILAC Protein Quantitation Kit (Trypsin), DMEM
36 (A33972, ThermoFisher Scientific) was used for generating light labelled cell lines and for
37 generation of medium labelled cell lines, L-Lysine-2HCL,4,4,5,5-D4 (ThermoFisher Scientific)
38 and 13C-labelled L-Arginine HCl (201203902, Silantes) were individually purchased. Cells
39 were cultured in respective medium supplemented with 200 µg/ml of L-Proline for at least
40 10 passages for achieving incorporation of each respective labels. Cells were seeded at a
41 density of 3x10⁶ cells in 10 cm plates and were treated the next day with doxycycline
42 (1µg/ml) for 4 h, followed by treatment of light labelled cells with only DMSO control and of
43 medium labelled cells with TNF+SM+zVAD for 2hours. FLAG-RIPK1 bound complexes were
44 enriched from 1.5mg of protein lysate per sample. Pre-cleared lysates were incubated with
45 40µl of 50% ANTI-FLAG® M2 affinity gel (#A2220, Sigma) on a rotor for 3 hours at 4°C. After
46 immunoprecipitation, Anti-FLAG beads were pooled from the two differentially treated light
47 and medium labelled samples for each clonal cell line. Proteins were eluted from pooled
48 beads with 0.5mg/ml FLAG peptide (#F3290, Millipore Sigma) by shaking at 1000 rpm for 1

1 hour at 4°C. Samples were separated on a 10% SDS-PAGE gel and in-gel digested overnight
2 with Trypsin/Lys-C protease mix and resulting peptides were desalted using C18-stage tip.
3 The purified peptides from each sample were analysed by mass spectrometry in technical
4 duplicates. Samples were analyzed on the EVOsep One system using an in-house packed 15
5 cm, 150 µm i.d. capillary column with 1.9 µm ReproSil-Pur C18 beads (Dr. Maisch,
6 Ammerbuch, Germany) using the pre-programmed gradients for 60 samples per day (SPD).
7 The column temperature was maintained at 60°C using an integrated column oven (PRSO-
8 V1, Sonation, Biberach, Germany) and interfaced online with the Orbitrap Exploris 480 MS.
9 Spray voltage was set to 2.0 kV, funnel RF level at 40, and heated capillary temperature at
10 275°C. Full MS resolutions were set to 60,000 at m/z 200 and full MS AGC target was 300
11 with an IT of 22 ms. Mass range was set to 350–1400. Full MS scan was followed by top 10
12 DDA scans, using 1.3m/z isolation window, 45,000 resolution, 86 ms injection time, AGC
13 target of 200 and normalized collision energy was set at 30%. All data were acquired in
14 profile mode using positive polarity and peptide match was set to off, and isotope exclusion
15 was on. The intensity of each peptide was normalised with intensity of RIPK1 in respective
16 light and medium labelled samples. SILAC ratios were then calculated by comparing
17 intensities of medium labelled peptides to intensities of light labelled peptides
18 (Supplementary Table S1). Proteins with SILAC ratios more than 1 were considered and
19 compared for consistency between technical replicates and clonal cell lines.

20
21 **siRNA mediated knockdown of PRMT5:** Two siRNAs targeting human PRMT5 (FlexiTube
22 siRNA Hs_PRMT5_1, cat#SI04216492 and Hs_PRMT5_2, cat# SI04248951, Qiagen) were used
23 for knockdown experiments in HEK 293T cells. The siRNA sequences are provided in the
24 Supplementary Table S2. 5×10^5 cells were seeded in 6 cm plates and transfected with siRNAs
25 using Lipofectamine™ RNAiMAX Transfection Reagent (#13778030, Invitrogen) as per
26 manufacturer protocol. Transfected cells were cultured for 48 hours. Cells were then re-
27 transfected overnight with mRIPK3 and hRIPK3 expression vectors. The next day, fresh
28 media was provided to the transfected cells and plates were washed and frozen 24h post
29 transfection.

30
31 **Western Blotting:** Cells were lysed directly in cell culture plates with 2x SDS sample buffer
32 containing 10% SDS, 1.5M TRIS pH 8.8, 5% Glycerol, 2.5% 2-Mercaptoethanol, and
33 Bromophenol Blue. The samples were then boiled for 5 minutes at 95°C. Denatured protein
34 lysates were run on SDS-PAGE (7.5–16% gradient) gels and immunoblotted to Nitrocellulose
35 blotting membrane (#10600001, Amersham Biosciences). Western blots were blocked with
36 5% powdered skim milk in PBS with 0.1% Tween 20 for 1h at room temperature. After three
37 washes with PBS containing 0.1% Tween 20, membranes were incubated overnight with the
38 primary antibody at 4 °C followed by 1 hour incubation with horseradish peroxidase-
39 conjugated secondary antibodies at room temperature. Blots were developed with an ECL
40 detection kit, WESTAR NOVA 2.0 (#XLS07105007, 7Biosciences), and the digital
41 chemiluminescence images were taken by a Luminescent Image Analyser LAS-3000
42 (Fujifilm). Bands were quantified using ImageJ software.

43
44 **Immunoprecipitation of FLAG-tagged proteins and GST-pulldowns:** GST pulldowns and
45 FLAG-IPs were performed as described previously (Menon et al., 2017, Ronkina, Lafera et al.,
46 2016). Cells were lysed in lysis buffer containing 20mM Tris-acetate pH 7.0, 0.1mM EDTA,
47 1mM EGTA, 1mM Na₃VO₄, 10mM b-glycerophosphate, 50mM Sodium Fluoride, 5mM Na-
48 pyrophosphate, 1% Triton X-100, 1mM benzamidine, 2µg/ml leupeptin, 0.1% 2-

1 Mercaptoethanol, 0.27M Sucrose, 0.2mM PMSF, 1µg/ml Pepstatin A, 1X Protease Inhibitor
2 Cocktail (B14002, Bimake), Phosphatase Inhibitor Cocktail (B15001, Bimake). Lysates were
3 then cleared by centrifugation and the beads were blocked with 1% BSA to avoid non-
4 specific binding of PRMT5 to Glutathione beads. For the enrichment of the fusion proteins,
5 pre-cleared lysates were incubated with Monoclonal ANTI-FLAG® M2 affinity gel (A2220,
6 Sigma) or Protino Glutathione Agarose 4B (745500.10, Macherey-Nagel) for 16 hours at 4°C.
7 The beads were then washed 4X with immunoprecipitation wash buffer containing 1X TBS,
8 50mM Sodium fluoride, 1% Triton X-100, 1mM Na₃VO₄. The beads were boiled in 2x SDS
9 sample buffer for 5 minutes at 95°C and the eluted protein complexes were analysed by
10 Western blotting.

11 **Statistics and Reproducibility:** All Immunoblot results presented are representative results
12 from at least three independent experiments.

13 **Acknowledgements**

14 We thank Dr. Klaus Ruckdeschel (UKE-Hamburg) for the gift of RIPK1 KO Mouse-embryonic
15 fibroblasts, Dr. Peter Claus (Hannover Medical School, Germany) for the gift of PRMT5
16 expression vectors, Dr. Axel Schambach (Hannover Medical School, Germany) for sharing the
17 pLBid lentiviral expression vector and Dr. Sven Diederichs (DKFZ-Heidelberg) for providing
18 PANC1 cells. This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
19 grants ME4319/3-1 and GA453/16-1. Work at The Novo Nordisk Foundation Center for
20 Protein Research (CPR) is funded in part by a generous donation from the Novo Nordisk
21 Foundation (Grant number NNF14CC0001). MS-based proteomics work was also funded by
22 grant EPIC-XS-823839.

23

24

25

26

27

28

29

30

31

32

33

34

1

2 **References**

3 Amin P, Florez M, Najafov A, Pan H, Geng J, Ofengeim D, Dziedzic SA, Wang H, Barrett VJ, Ito
4 Y, LaVoie MJ, Yuan J (2018) Regulation of a distinct activated RIPK1 intermediate bridging
5 complex I and complex II in TNFalpha-mediated apoptosis. *Proc Natl Acad Sci U S A* 115:
6 E5944-E5953

7 Annibaldi A, Meier P (2018) Checkpoints in TNF-Induced Cell Death: Implications in
8 Inflammation and Cancer. *Trends in molecular medicine* 24: 49-65

9 Blanc RS, Richard S (2017) Arginine Methylation: The Coming of Age. *Molecular cell* 65: 8-24

10 Bruns AF, Grothe C, Claus P (2009) Fibroblast growth factor 2 (FGF-2) is a novel substrate for
11 arginine methylation by PRMT5. *Biol Chem* 390: 59-65

12 Chen W, Zhou Z, Li L, Zhong CQ, Zheng X, Wu X, Zhang Y, Ma H, Huang D, Li W, Xia Z, Han J
13 (2013) Diverse sequence determinants control human and mouse receptor interacting
14 protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic
15 signaling. *J Biol Chem* 288: 16247-16261

16 Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-
17 driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced
18 inflammation. *Cell* 137: 1112-23

19 Choi SW, Park HH, Kim S, Chung JM, Noh HJ, Kim SK, Song HK, Lee CW, Morgan MJ, Kang HC,
20 Kim YS (2018) PEL1 Selectively Targets Kinase-Active RIP3 for Ubiquitylation-Dependent
21 Proteasomal Degradation. *Molecular cell* 70: 920-935 e7

22 Cook WD, Moujalled DM, Ralph TJ, Lock P, Young SN, Murphy JM, Vaux DL (2014) RIPK1- and
23 RIPK3-induced cell death mode is determined by target availability. *Cell death and
24 differentiation* 21: 1600-12

25 Covic M, Hassa PO, Saccani S, Buerki C, Meier NI, Lombardi C, Imhof R, Bedford MT, Natoli G,
26 Hottiger MO (2005) Arginine methyltransferase CARM1 is a promoter-specific regulator of
27 NF-kappaB-dependent gene expression. *EMBO J* 24: 85-96

28 Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona
29 T, Hermance N, Zelic M, Kirsch P, Basic M, Bleich A, Kelliher M, Pasparakis M (2014) RIPK1
30 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. *Nature* 513: 90-4

31 Delanghe T, Dondelinger Y, Bertrand MJM (2020) RIPK1 Kinase-Dependent Death: A
32 Symphony of Phosphorylation Events. *Trends in cell biology* 30: 189-200

33 Dondelinger Y, Aguilera MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E,
34 Vandenabeele P, Bertrand MJ (2013) RIPK3 contributes to TNFR1-mediated RIPK1 kinase-
35 dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. *Cell death
36 and differentiation* 20: 1381-92

37 Dondelinger Y, Delanghe T, Rojas-Rivera D, Priem D, Delvaeye T, Bruggeman I, Van
38 Herreweghe F, Vandenabeele P, Bertrand MJM (2017) MK2 phosphorylation of RIPK1
39 regulates TNF-mediated cell death. *Nat Cell Biol* 19: 1237-1247

40 Espejo AB, Gao G, Black K, Gayatri S, Veland N, Kim J, Chen T, Sudol M, Walker C, Bedford MT
41 (2017) PRMT5 C-terminal Phosphorylation Modulates a 14-3-3/PDZ Interaction Switch. *J Biol
42 Chem* 292: 2255-2265

43 Friesen WJ, Wyce A, Paushkin S, Abel L, Rappaport J, Mann M, Dreyfuss G (2002) A novel WD
44 repeat protein component of the methylosome binds Sm proteins. *J Biol Chem* 277: 8243-7

45 Guccione E, Richard S (2019) The regulation, functions and clinical relevance of arginine
46 methylation. *Nature reviews Molecular cell biology* 20: 642-657

1 Guderian G, Peter C, Wiesner J, Sickmann A, Schulze-Osthoff K, Fischer U, Grimmeler M (2011)
2 RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with
3 pICln for binding and modulates PRMT5 complex composition and substrate specificity. *J Biol*
4 *Chem* 286: 1976-86

5 Hanna-Addams S, Liu S, Liu H, Chen S, Wang Z (2020) CK1alpha, CK1delta, and CK1epsilon are
6 necrosome components which phosphorylate serine 227 of human RIPK3 to activate
7 necroptosis. *Proc Natl Acad Sci U S A* 117: 1962-1970

8 Harris DP, Chandrasekharan UM, Bandyopadhyay S, Willard B, DiCorleto PE (2016) PRMT5-
9 Mediated Methylation of NF-kappaB p65 at Arg174 Is Required for Endothelial CXCL11 Gene
10 Induction in Response to TNF-alpha and IFN-gamma Costimulation. *PLoS One* 11: e0148905

11 Hartley AV, Wang B, Jiang G, Wei H, Sun M, Prabhu L, Martin M, Safa A, Sun S, Liu Y, Lu T
12 (2020a) Regulation of a PRMT5/NF-kappaB Axis by Phosphorylation of PRMT5 at Serine 15 in
13 Colorectal Cancer. *Int J Mol Sci* 21

14 Hartley AV, Wang B, Mundade R, Jiang G, Sun M, Wei H, Sun S, Liu Y, Lu T (2020b) PRMT5-
15 mediated methylation of YBX1 regulates NF-kappaB activity in colorectal cancer. *Sci Rep* 10:
16 15934

17 Humphries F, Yang S, Wang B, Moynagh PN (2015) RIP kinases: key decision makers in cell
18 death and innate immunity. *Cell Death & Differentiation* 22: 225-236

19 Jaco I, Annibaldi A, Lalaoui N, Wilson R, Tenev T, Laurien L, Kim C, Jamal K, Wicky John S,
20 Liccardi G, Chau D, Murphy JM, Brumatti G, Feltham R, Pasparakis M, Silke J, Meier P (2017)
21 MK2 Phosphorylates RIPK1 to Prevent TNF-Induced Cell Death. *Molecular cell* 66: 698-710 e5

22 Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J, Eren RO, Fisher A, Lane R, Young GR,
23 Kassiotis G, Kaiser WJ, Pasparakis M (2020) Z-nucleic-acid sensing triggers ZBP1-dependent
24 necroptosis and inflammation. *Nature* 580: 391-395

25 Kim J, Chung JY, Park YS, Jang SJ, Kim HR, Choi CM, Song JS (2020) Prognostic Significance of
26 CHIP and RIPK3 in Non-Small Cell Lung Cancer. *Cancers (Basel)* 12

27 Kist M, Komuves LG, Goncharov T, Dugger DL, Yu C, Roose-Girma M, Newton K, Webster JD,
28 Vucic D (2021) Impaired RIPK1 ubiquitination sensitizes mice to TNF toxicity and
29 inflammatory cell death. *Cell death and differentiation* 28: 985-1000

30 Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz
31 T, McDermott A, Chan FK, Wu H (2012) The RIP1/RIP3 necrosome forms a functional amyloid
32 signaling complex required for programmed necrosis. *Cell* 150: 339-50

33 Li M, An W, Xu L, Lin Y, Su L, Liu X (2019) The arginine methyltransferase PRMT5 and PRMT1
34 distinctly regulate the degradation of anti-apoptotic protein CFLARL in human lung cancer
35 cells. *Journal of Experimental & Clinical Cancer Research* 38: 64

36 Li X, Gong W, Wang H, Li T, Attri KS, Lewis RE, Kalil AC, Bhinderwala F, Powers R, Yin G,
37 Herring LE, Asara JM, Lei YL, Yang X, Rodriguez DA, Yang M, Green DR, Singh PK, Wen H
38 (2019) O-GlcNAc Transferase Suppresses Inflammation and Necroptosis by Targeting
39 Receptor-Interacting Serine/Threonine-Protein Kinase 3. *Immunity* 50: 576-590 e6

40 Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V,
41 Votta B, Ouellette M, King BW, Wisnoski D, Lakdawala AS, DeMartino MP, Casillas LN, Haile
42 PA, Sehon CA, Marquis RW, Upton J et al. (2014) RIP3 induces apoptosis independent of
43 pronecrotic kinase activity. *Molecular cell* 56: 481-95

44 Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. *Nature reviews*
45 *Molecular cell biology* 6: 838-49

46 McQuade T, Cho Y, Chan FK (2013) Positive and negative phosphorylation regulates RIP1-
47 and RIP3-induced programmed necrosis. *Biochem J* 456: 409-15

1 Meng Y, Davies KA, Fitzgibbon C, Young SN, Garnish SE, Horne CR, Luo C, Garnier JM, Liang
2 LY, Cowan AD, Samson AL, Lessene G, Sandow JJ, Czabotar PE, Murphy JM (2021) Human
3 RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. *Nat
4 Commun* 12: 6783

5 Meng Y, Sandow JJ, Czabotar PE, Murphy JM (2021) The regulation of necroptosis by post-
6 translational modifications. *Cell death and differentiation* 28: 861-883

7 Menon MB, Gropengiesser J, Fischer J, Novikova L, Deuretzbacher A, Lafera J, Schimmeck H,
8 Czymmek N, Ronkina N, Kotlyarov A, Aepfelbacher M, Gaestel M, Ruckdeschel K (2017)
9 p38(MAPK)/MK2-dependent phosphorylation controls cytotoxic RIPK1 signaling in
10 inflammation and infection. *Nat Cell Biol* 19: 1248-1259

11 Menon MB, Sawada A, Chaturvedi A, Mishra P, Schuster-Gossler K, Galla M, Schambach A,
12 Gossler A, Forster R, Heuser M, Kotlyarov A, Kinoshita M, Gaestel M (2014) Genetic deletion
13 of SEPT7 reveals a cell type-specific role of septins in microtubule destabilization for the
14 completion of cytokinesis. *PLoS Genet* 10: e1004558

15 Micheau O, Tschoopp J (2003) Induction of TNF receptor I-mediated apoptosis via two
16 sequential signaling complexes. *Cell* 114: 181-90

17 Morales Y, Caceres T, May K, Hevel JM (2016) Biochemistry and regulation of the protein
18 arginine methyltransferases (PRMTs). *Arch Biochem Biophys* 590: 138-152

19 Moriwaki K, Chan FK (2017) The Inflammatory Signal Adaptor RIPK3: Functions Beyond
20 Necroptosis. *International review of cell and molecular biology* 328: 253-275

21 Najjar M, Saleh D, Zelic M, Nogusa S, Shah S, Tai A, Finger JN, Polykratis A, Gough PJ, Bertin J,
22 Whalen M, Pasparakis M, Balachandran S, Kelliher M, Poltorak A, Degterev A (2016) RIPK1
23 and RIPK3 Kinases Promote Cell-Death-Independent Inflammation by Toll-like Receptor 4.
24 *Immunity* 45: 46-59

25 Nie M, Wang Y, Guo C, Li X, Wang Y, Deng Y, Yao B, Gui T, Ma C, Liu M, Wang P, Wang R, Tan
26 R, Fang M, Chen B, He Y, Huang DCS, Ju J, Zhao Q (2018) CARM1-mediated methylation of
27 protein arginine methyltransferase 5 represses human gamma-globin gene expression in
28 erythroleukemia cells. *J Biol Chem* 293: 17454-17463

29 Orozco S, Yatim N, Werner MR, Tran H, Gunja SY, Tait SW, Albert ML, Green DR, Oberst A
30 (2014) RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis.
31 *Cell death and differentiation* 21: 1511-21

32 Orozco SL, Daniels BP, Yatim N, Messmer MN, Quarato G, Chen-Harris H, Cullen SP, Snyder
33 AG, Ralli-Jain P, Frase S, Tait SWG, Green DR, Albert ML, Oberst A (2019) RIPK3 Activation
34 Leads to Cytokine Synthesis that Continues after Loss of Cell Membrane Integrity. *Cell Rep*
35 28: 2275-2287 e5

36 Otani Y, Sur HP, Rachaiah G, Namagiri S, Chowdhury A, Lewis CT, Shimizu T, Gangaplara A,
37 Wang X, Vezina A, Maric D, Jackson S, Yan Y, Zhengping Z, Ray-Chaudhury A, Kumar S,
38 Ballester LY, Chittiboina P, Yoo JY, Heiss J et al. (2021) Inhibiting protein phosphatase 2A
39 increases the antitumor effect of protein arginine methyltransferase 5 inhibition in models
40 of glioblastoma. *Neuro Oncol* 23: 1481-1493

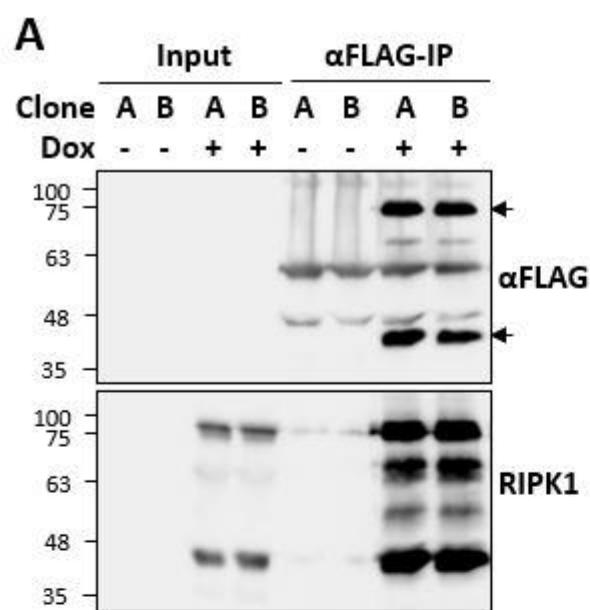
41 Ronkina N, Lafera J, Kotlyarov A, Gaestel M (2016) Stress-dependent phosphorylation of
42 myocardin-related transcription factor A (MRTF-A) by the p38(MAPK)/MK2 axis. *Sci Rep* 6:
43 31219

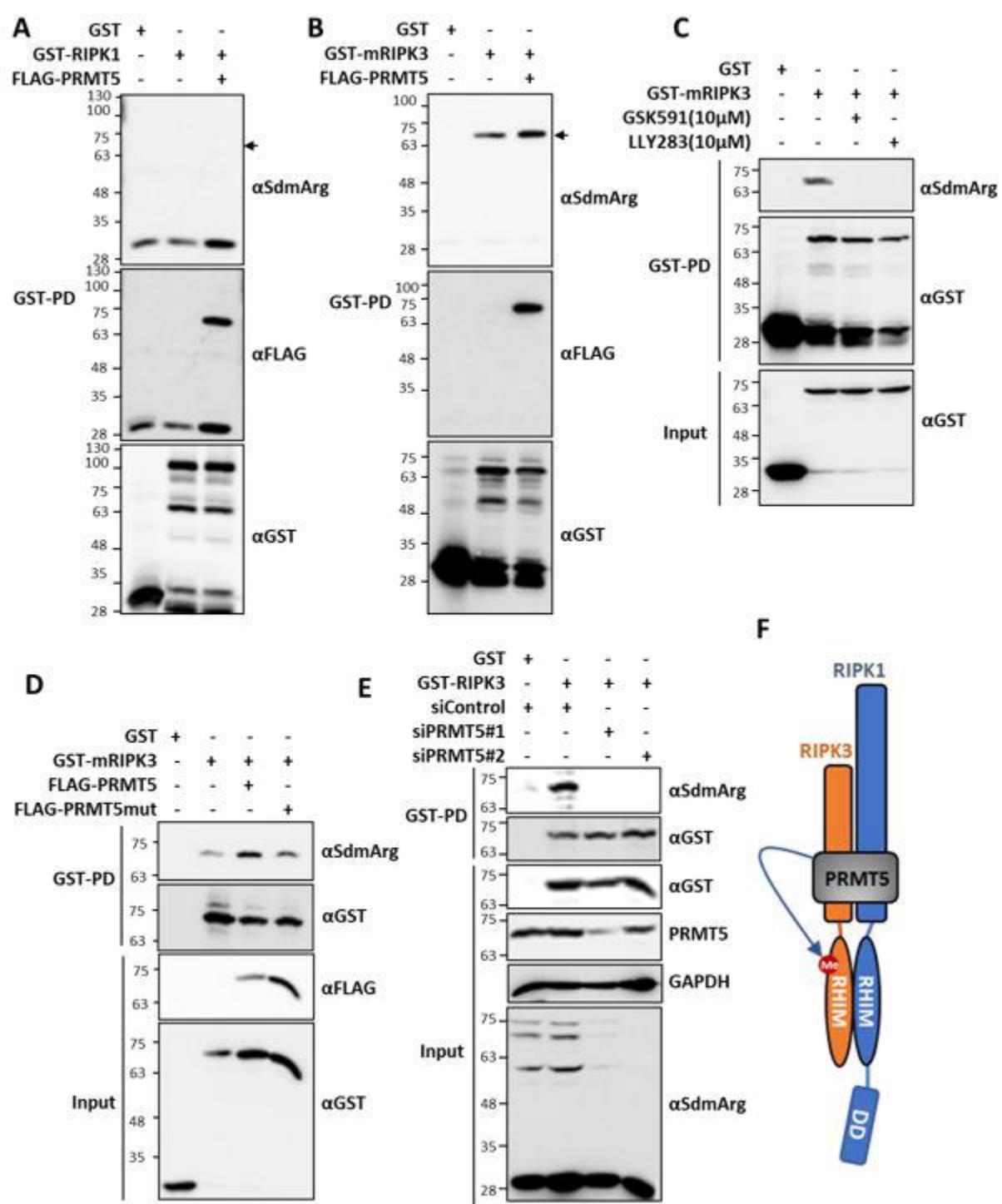
44 Seo J, Lee EW, Sung H, Seong D, Dondelinger Y, Shin J, Jeong M, Lee HK, Kim JH, Han SY, Lee
45 C, Seong JK, Vandenebeele P, Song J (2016) CHIP controls necroptosis through
46 ubiquitylation- and lysosome-dependent degradation of RIPK3. *Nature cell biology* 18: 291-
47 302

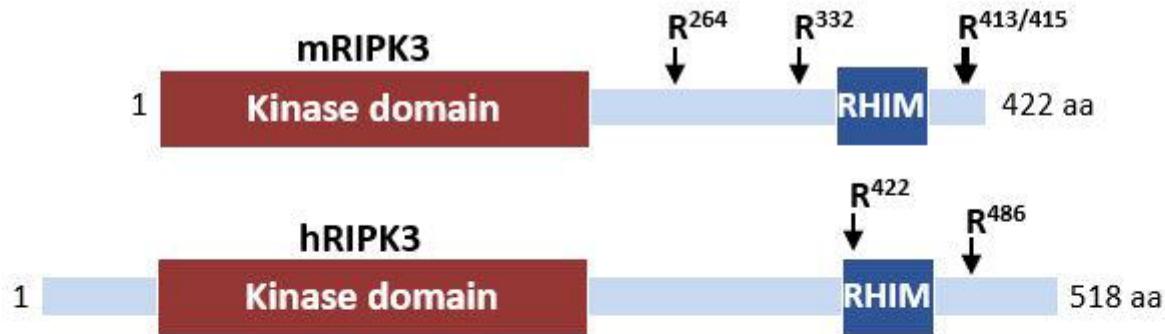
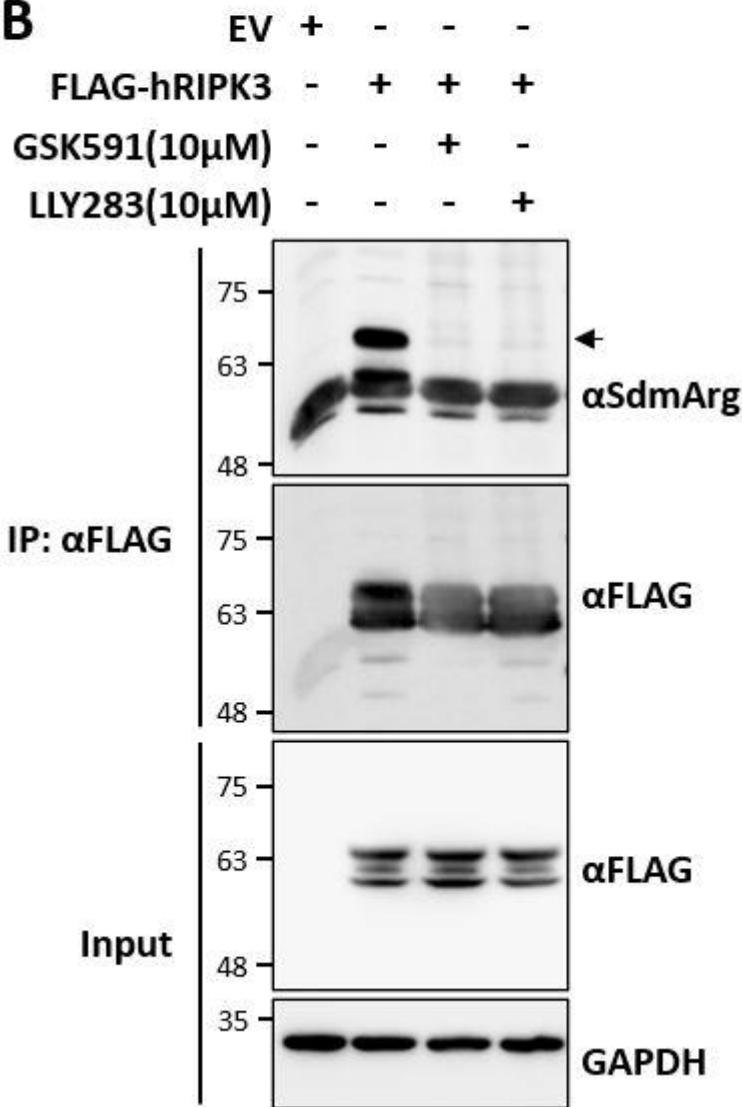
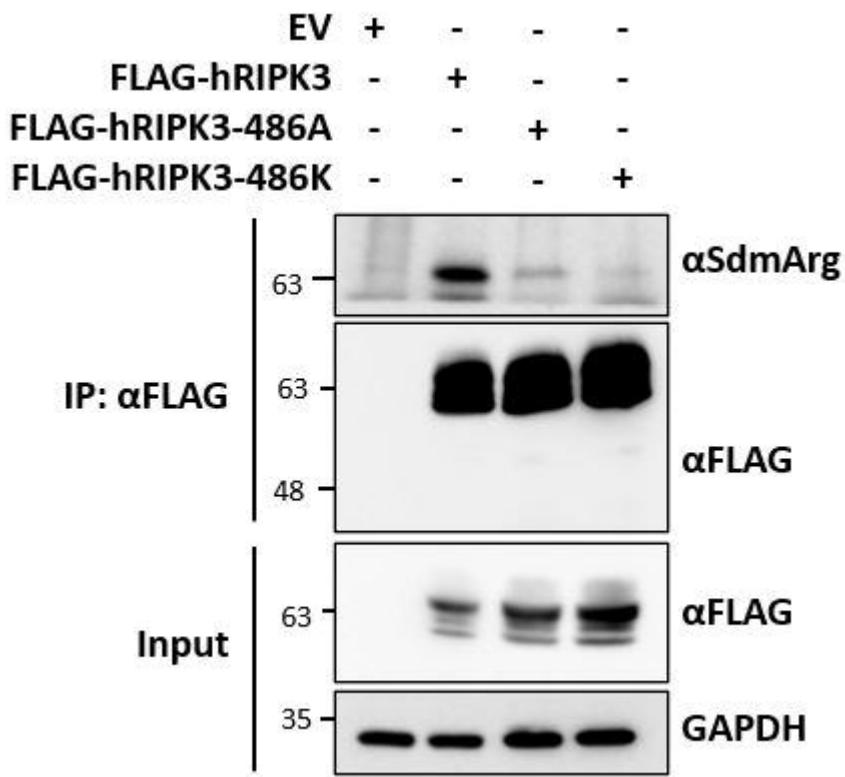
1 Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012)
2 Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3
3 kinase. *Cell* 148: 213-27
4 Tanaka H, Hoshikawa Y, Oh-hara T, Koike S, Naito M, Noda T, Arai H, Tsuruo T, Fujita N
5 (2009) PRMT5, a novel TRAIL receptor-binding protein, inhibits TRAIL-induced apoptosis via
6 nuclear factor-kappaB activation. *Mol Cancer Res* 7: 557-69
7 Tenev T, Bianchi K, Dardignac M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J,
8 MacFarlane M, Cain K, Meier P (2011) The Ripoptosome, a signaling platform that assembles
9 in response to genotoxic stress and loss of IAPs. *Molecular cell* 43: 432-48
10 Upton JW, Shubina M, Balachandran S (2017) RIPK3-driven cell death during virus infections.
11 *Immunological reviews* 277: 90-101
12 Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways.
13 *Cell* 133: 693-703
14 Wang Q, Fan D, Xia Y, Ye Q, Xi X, Zhang G, Xiao C (2021) The latest information on the RIPK1
15 post-translational modifications and functions. *Biomedicine & pharmacotherapy =*
16 *Biomedecine & pharmacotherapie* 142: 112082
17 Wei H, Wang B, Miyagi M, She Y, Gopalan B, Huang DB, Ghosh G, Stark GR, Lu T (2013)
18 PRMT5 dimethylates R30 of the p65 subunit to activate NF-kappaB. *Proc Natl Acad Sci U S A*
19 110: 13516-21
20 Zhang H, Wu X, Li X, Li M, Li F, Wang L, Zhang X, Zhang Y, Luo Y, Wang H, Jiang Y, Zhang H
21 (2020) Crucial Roles of the RIP Homotypic Interaction Motifs of RIPK3 in RIPK1-Dependent
22 Cell Death and Lymphoproliferative Disease. *Cell Rep* 31: 107650
23 Zhang HT, Zeng LF, He QY, Tao WA, Zha ZG, Hu CD (2016) The E3 ubiquitin ligase CHIP
24 mediates ubiquitination and proteasomal degradation of PRMT5. *Biochim Biophys Acta*
25 1863: 335-46
26 Zhang X, Wen H, Shi X (2012) Lysine methylation: beyond histones. *Acta biochimica et*
27 *biophysica Sinica* 44: 14-27
28 Zhang X, Zhang H, Xu C, Li X, Li M, Wu X, Pu W, Zhou B, Wang H, Li D, Ding Q, Ying H, Wang H,
29 Zhang H (2019) Ubiquitination of RIPK1 suppresses programmed cell death by regulating
30 RIPK1 kinase activation during embryogenesis. *Nat Commun* 10: 4158

31

32

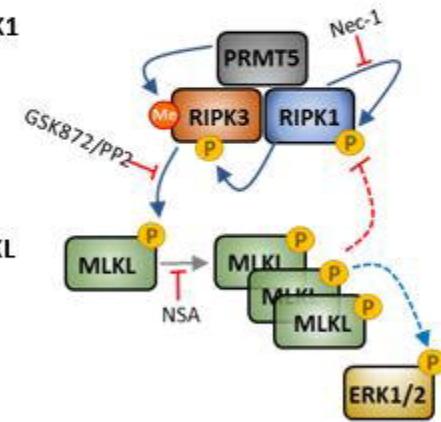
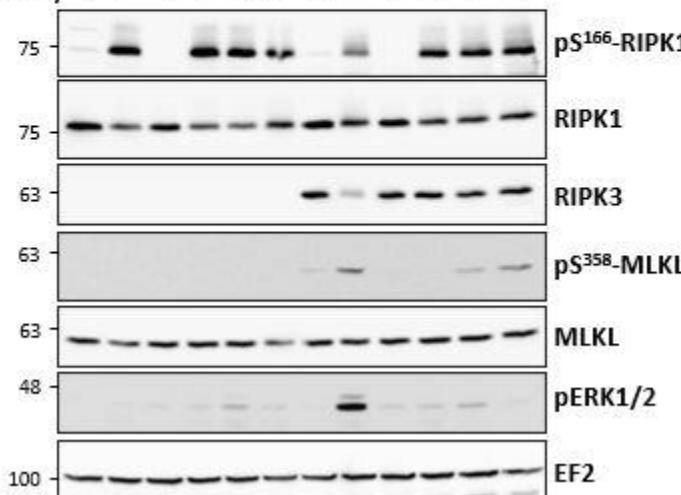

1 Figure Legends

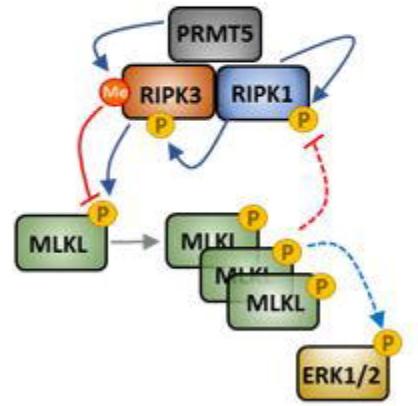
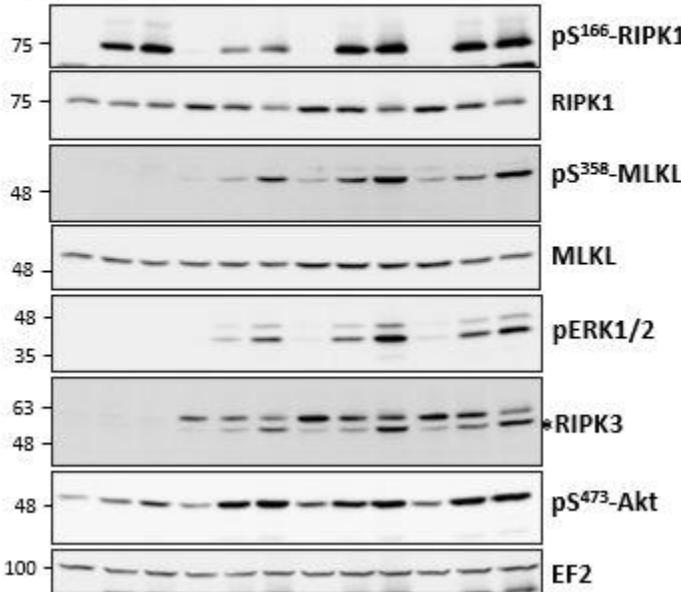

2 **Figure 1. A screen for ripoptosome interactors identified PRMT5 as an interaction partner of RIPK1.**
3 A. Two clonal cell lines generated by retroviral transduction and single cell cloning of RIPK1-deficient
4 fibroblasts with doxycycline (dox) inducible FLAG-tagged mRIPK1 expression vector were left
5 untreated or treated with dox for 9 h. RIPK1 was enriched by FLAG-immunoprecipitation and
6 detected in immunoblots with antibodies against FLAG tag and RIPK1. B. The cells were treated as
7 indicated and subjected to FLAG-IPs as in panel A. Blots were probed with CASP8 antibodies to
8 monitor assembly of the ripoptosome. C. Consistent RIPK1 interaction partners identified in both
9 clonal lines by the mass spectrometry screen are represented with the fold enrichment between
10 TNF+SM+zVAD treated and untreated conditions. D. GST-pulldown assays shows specific interaction
11 of RIPK1 with PRMT5, independent of death domain (DD) and RHIM motif of RIPK1.
12




13 **Figure 2. RIPK3 is a target of PRMT5-mediated symmetric arginine dimethylation. A & B.** GST-
14 enrichment and probing with antibodies against symmetric dimethyl arginine (α SdmArg) to monitor
15 PRMT5-mediated dimethylation of mRIPK1 (A) and mRIPK3 (B). C. Effect of PRMT5 inhibitors GSK591
16 and LLY283 on RIPK3 methylation monitored by GST-enrichment and immunoblotting. D. FLAG-
17 tagged wild-type PRMT5 but not the catalytic-deficient PRMT5 mutant (PRMT5mut, R368A) is
18 capable of enhancing RIPK3 arginine methylation. E. siRNA mediated depletion of PRMT5 suppresses
19 symmetric dimethylation of mRIPK3 in HEK293T cells. Efficient depletion of PRMT5 is shown by
20 PRMT5 immunoblots and detection of methylated proteins in the total cell lysates F. While both
21 RIPK1 and RIPK3 interacts with PRMT5, only RIPK3 is a substrate of symmetric arginine
22 dimethylation.
23

24 **Figure 3. Identification of conserved arginine methylation sites on RIPK3.** A. Schematic
25 representation of human and mouse RIPK3 proteins with domain organisation and arginine (R)
26 methylation sites. B. Human RIPK3 is a substrate of PRMT5-mediated symmetric arginine
27 methylation. C. Alignment of mRIPK3 and hRIPK3 sequences reveal R486 in hRIPK3 (R415 in mRIPK3)
28 as the only evolutionarily conserved methylation site. K/A denote mutagenesis of the site to lysine
29 (K) and alanine (A) residues to generate methylation-deficient mutants. D. Mutagenesis of R486
30 residue (R486K or R486A) abrogates symmetric arginine dimethylation of hRIPK3 as shown by FLAG-
31 IP enrichment and analysis with SdmArg antibodies.
32

33 **Figure 4. RIPK3 mediated feedback control on RIPK1 activity is dependent on RIPK3 methylation.** A.
34 The necroptosis-incompetent PANC1 cell line, which lacks RIPK3, was rescued by lentiviral
35 transduction of FLAG-tagged wt-RIPK or empty vector. Necroptotic signaling was monitored by
36 stimulating cells with TNF α , Smac-mimetics (SM) and zVAD-fmk for 90 minutes in the absence or
37 presence of indicated kinase inhibitors (Nec-1, GSK872) or PP2 (RIPK3 oligomerisation inhibitor) or
38 necrosulfonamide (NSA), an inhibitor of human MLKL oligomerisation. The right panel shows the
39 schematic summary of the observations. RIPK3 expression facilitates necroptotic signaling in PANC1
40 cells (MLKL and ERK1/2 phosphorylation) but suppresses RIPK1 autophosphorylation (RIPK1-S166).
41 The feedback control of RIPK3 on RIPK1 was abrogated by RIPK3 and MLKL inhibitors. B. PANC1
42 rescue model as in panel A comparing the necroptotic signaling in cells transduced with WT and
43 methylation site mutants (R486K and R486A) of FLAG-tagged RIPK3. The corresponding panel to the
44 right summarises the conclusions from the immunoblots. Top right panel depicts the signaling effects
45 and the processes targeted by the inhibitors used. RIPK3 activation by RIPK1 leads to MLKL
46 phosphorylation and oligomerisation, with downstream ERK1/2 signaling. The oligomerisation of
47 MLKL also seems necessary for suppressing pS166-RIPK1 phosphorylation. The lower panel scheme
48 depicts the possible effect of RIPK3 methylation in the same system. RIPK3-mediated suppression of
49 RIPK1-S166 is lost upon methylation site mutation. In addition, the necroptotic signaling is also
50 enhanced in the absence of R486 methylation. This indicates an inhibitory role for RIPK3-methylation
51 in RIPK3 downstream signaling including the feedback control of RIPK1 activity.



A**B****C****D**

A

A	vector						RIPK3-WT					
TNF+SM+zVAD	-	+	+	+	+	+	-	+	+	+	+	+
Nec-1 (RIPK1i)	-	-	+	-	-	-	-	-	+	-	-	-
GSK872(RIPK3i)	-	-	-	+	-	-	-	-	-	+	-	-
PP2 (RIPK3i)	-	-	-	-	+	-	-	-	-	-	+	-
NSA (MLKLi)	-	-	-	-	-	+	-	-	-	-	-	+

B

