

The Molecular Structure of Anterograde Intraflagellar transport trains

Samuel E. Lacey, Helen E. Foster, Gaia Pigino*

Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milan, Italy

*Corresponding author: gaia.pigino@fht.org

Abstract

8 Anterograde intraflagellar transport trains are essential for cilia assembly and maintenance.
9 These trains are formed of 22 IFTA and IFTB proteins that link structural and signalling cargoes
10 to microtubule motors for import into cilia. It remains unknown how the IFTA/B proteins are
11 arranged into complexes and how these complexes polymerise into functional trains. Here,
12 we use *in situ* cryo-electron tomography and Alphafold2 protein structure predictions to
13 generate the first molecular model of the entire anterograde train. We show how the
14 conformation of both IFTA and IFTB is dependent on lateral interactions with neighbouring
15 repeats, suggesting that polymerization is required to cooperatively stabilize the complexes.
16 The retrograde dynein motor binding site is a composite surface involving multiple IFTB
17 repeats, ensuring that dynein can only form a strong interaction with IFTB upon train
18 assembly. Finally, we reveal how IFTB extends two flexible tethers to maintain a connection
19 with IFTA that can withstand the mechanical stresses present in actively beating cilia. Overall,
20 our findings provide a framework for understanding the fundamental processes that are
21 involved in cilia assembly.

Introduction

24 Cilia are hair-like organelles that extend from a cell and beat back and forth to create motion
25 (motile cilia) or act as a hub for inter-cell signalling (primary cilia). At their core is a ring of nine
26 interconnected microtubule doublets (MTs) in a well-characterised structure known as the
27 axoneme (**Figure 1A**). A diffusion barrier exists at the base of the cilium, meaning that the
28 vast quantities of structural proteins required to build the axoneme need to be delivered by
29 microtubule motors in a process called intraflagellar transport (IFT). In primary cilia, IFT also
30 transports membrane-associated proteins into and out of the cilium to regulate key
31 developmental signalling pathways¹. Underlining the importance of IFT, the absence of many
32 IFT proteins is lethal, and mutations in IFT-related proteins can result in a group of congenital
33 diseases called “ciliopathies”, with diverse developmental phenotypes².

35 IFT is organized by the IFTA and IFTB protein complexes. Together these assemble into
36 ordered and repetitive IFT “trains” that link the microtubule motors to hundreds of different
37 IFT cargoes. The IFT process is initiated at the base of the cilium, where IFTB complexes start
38 to polymerise on their own³. This nascent train acts as a platform for IFTA polymerisation, and
39 recruits kinesin-2 motors (**Figure 1A**). Various structural and signalling cargoes then dock to
40 the train, as well as autoinhibited cytoplasmic dynein-2 motors. The kinesin carries the train
41 into the cilium, and the cargoes dissociate at the tip to be incorporated into the axoneme or
42 diffuse in the ciliary membrane^{4,5}. The IFTA/B components then remodel into a

43 conformationally distinct retrograde train, which rebinds to the now-active dynein-2 and
44 transports a new selection of cargoes back to the cell body⁶⁻⁸.

45

46 From our previous cryo-electron tomography (cryo-ET) study of in-situ *Chlamydomonas*
47 *reinhardtii* cilia, we know the overall appearance of anterograde trains to ~30Å resolution⁹.

48 IFTB, which contains 16 proteins (IFT172/88/81/80/74/70/57/56/54/52/46/38/27/25/22/20), forms a 6nm repeat with one

49 autoinhibited dynein-2 bound every third repeat (**Figure 1B**). IFTA, which contains 6 proteins
50 (IFT144/140/139/122/121/43), sits between IFTB and the membrane. It has an 11.5nm

51 repeat, creating a mismatch in periodicity between IFTA and IFTB polymers. However, due to
52 the limited resolution the molecular architecture of IFTA and IFTB remains unknown. Crystal

53 structures of some IFTB proteins have been solved¹⁰⁻¹⁵, but they are mostly of small fractions
54 of the overall proteins. Much of our knowledge therefore comes from biochemically mapped

55 interactions between isolated IFTB proteins^{10,11,16}. None of the six IFTA components have
56 been structurally characterised, and there are fewer verified interactions for this complex¹⁶⁻

57¹⁸.

58

59 As a result, we have a limited understanding of many fundamental mechanisms underlying
60 IFT. To address this, we generated significantly improved (10-18Å) subtomogram averages of
61 *Chlamydomonas* IFT trains, allowing us to build the first complete molecular model of the
62 anterograde train. Here, we present a tour of the IFTA and IFTB complexes within the context
63 of polymerised trains. Together, our results provide insights into the organisation and
64 assembly of IFT trains, how cargoes are bound to the train, and the conversion of anterograde
65 trains into retrograde trains.

66

67 **Creating a model of anterograde IFT trains**

68 To generate a molecular model of the anterograde IFT train, we collected 600 cryo-electron
69 tomograms of *Chlamydomonas* cilia. Anterograde IFT trains were readily identifiable for
70 manual picking as repeating filaments between the microtubule doublets and the membrane
71 (**Figure S1**). We picked and refined IFTB and IFTA repeats independently due to their
72 periodicity mismatch, and performed subtomogram averaging with the STOPGAP-Warp/M-
73 Relion3 processing pipeline (**Figure S2-4**). In IFTB, we identified two rigid bodies that flex
74 around a central hinge that correspond to the biochemically characterized IFTB1 and IFTB2
75 sub-complexes (**Figure S2A**). After masked refinements, we obtained structures at 9.9Å
76 resolution for IFTB1, 11.5Å for IFTB2, and 18.6Å for IFTA (**Figure 1C/D, Figure S3A-D,**
77 **Supplementary table 1**).

78

79 To understand how the IFT proteins are organised in their complexes, we built a molecular
80 model into our maps. As de novo model building is not possible at this resolution, we used a
81 hybrid approach by flexibly fitting high confidence Alphafold2 models of IFT proteins

83 **(Supplementary table 2).** This allowed us to build a molecular model of the complete
84 anterograde train (**Figure 1E**, **Figure S5B**, **Supplemental movie 1-3**).

85

86 **IFTB is organised around IFT52**

87 IFTB is central to the assembly of anterograde trains. It recruits active kinesin motors, and
88 carries both the IFTA complex and the retrograde motor dynein-2 to the tip¹⁹ (**Figure 1B**). IFTB
89 is also responsible for the recruitment of all characterized structural cargoes, as well as a
90 subset of membrane-bound cargoes, to anterograde trains. It is an elongated complex with
91 two distinct lobes corresponding to the IFTB1 and IFTB2 subcomplexes (**Figure 2A-D**). Our
92 structure reveals the crucial role that the IFTB1 component IFT52 has in the structural
93 integrity of the entire IFTB complex.

94

95 IFT52 consists of an N-terminal GIFT domain, a central disordered region, and a C-terminal
96 domain (CTD) that forms a heterodimer with IFT46¹¹ (**Figure 2E**, **S5A**). It spans the length of
97 IFTB1, with the GIFT domain on the MT-proximal surface at the center of the train, and the
98 IFT52-CTD:IFT46 heterodimer at the periphery (**Figure 2A/B**). IFT88 and IFT70, two
99 supercoiled TPR proteins, wrap around the central disordered domain of IFT52 by stacking
100 end-to-end to create a continuous central pore (**Figure 2E**, **Figure S6A/B/F**). IFT70 is known
101 to make a tight spiral with a hydrophobic core, and IFT52 is thought to be an integral part of
102 its internal structure¹¹. However, we see that IFT88 forms a more open spiral with charged
103 internal surfaces, suggesting that its interaction with IFT52 is reversible. The remainder of
104 IFTB1 is assembled around the IFT88/70/52 trimer, which binds to the coiled coil IFT81/74
105 subcomplex and IFT56, a third TPR spiral protein (**Figure S6D/E**). Therefore, the IFTB1
106 subcomplex is assembled around IFT52.

107

108 Additionally, IFT52 and IFT88 form the main interface between IFTB1 and IFTB2. This is
109 mediated through interactions with the IFT57/38 complex of IFTB2, consistent with
110 biochemical data¹⁰. IFT57/38 is a segmented coiled coil, with both proteins also containing an
111 N-terminal Calponin homology (CH) domain. IFT38-CH was previously shown to form a high
112 affinity interaction with the N-terminal WD domain of IFT80¹⁵. In our structure this interaction
113 anchors IFT57/38 in IFTB2 (**Figure S6G**), and the coiled coils then extend across the central
114 region to contact IFT88 from the neighbouring repeat (**Figure 2B**). Here, a conserved proline
115 residue in both IFT57 and IFT38 creates a right-angled kink (**Figure S6H**) which points the
116 subsequent coiled coil segment towards the IFT88 in the same repeat. The loose spiral of
117 IFT88 creates an open cleft which IFT58/37 and the IFT52 disordered region slots into,
118 creating multiple contacts between the IFTB1 and IFTB2 components (**Figure 2F**).

119

120 Taken together, we find that IFT52 is the cornerstone of the IFTB complex. This is consistent
121 with results from the *Chlamydomonas bld1* mutant, which lacks functional IFT52 and cannot
122 grow cilia or form IFTB complexes as a result^{20,21}. Furthermore, in humans a mutation in IFT52
123 at the interface with IFT57/38 (D259H, corresponding to D268 in *Chlamydomonas* (**Figure S6I**)

124 is associated with a developmental kidney ciliopathy²², which could be caused by
125 destabilization in the association of IFTB1 and B2.

126

127 **IFT81/74 is stabilized by neighbouring repeats**

128 Next, we wanted to understand how the individual IFTB1 complexes associate as polymers.
129 Part of the interaction is mediated by simple wall-to-wall contacts between adjacent
130 IFT88/70/52 trimers (**Figure 2B**). These contacts are supplemented by a more intricate
131 network of lateral interactions in the IFT81/74 dimer that sits on top of IFT88/70/52. IFT81/74
132 forms eight coiled coil segments (CC1-8), and is the binding site for IFT27, IFT25 and IFT22^{11,13}.
133 The loop between IFT81/74 CC1 and CC2 forms the main attachment to the IFTB1 core by
134 binding to the same cleft in IFT88 as IFT57/38 (**Figure 2F/G**). The first four coiled coil segments
135 then form two interactions with adjacent IFTB1 repeats, forcing them into a
136 folded/compressed conformation (**Figure 2H**). First, the N-terminal IFT81-CH domain is raised
137 above the IFT88/70/52 trimer through an interaction between IFT81/74-CC1 and IFT70 of the
138 neighbouring repeat. Then, IFT81-CH acts as a strut against which CC2/3 from the
139 neighbouring repeat leans in an upright position. Since the coiled coil segments are linked by
140 flexible loops, this suggests that a feature of IFTB polymerisation is the cooperative
141 stabilisation of IFT81/74 in a compressed conformation

142

143 **Binding sites for IFT27/25/22 are oriented towards the membrane**

144 To complete our understanding of IFTB1, we considered the position of the remaining IFT27,
145 IFT25 and IFT22 subunits. The binding sites for these proteins are on the CC5 to CC8 segments
146 of IFT81/74^{11,13}. However, only the first four segments are present in our density, indicating
147 that IFT27/25/22 are flexibly tethered to the IFTB1 polymer. The position of IFT81/74-CC4,
148 the last resolved segment, projects the flexible regions out towards the membrane (**Figure**
149 **2A/G**). This allows IFT27/25/22 to fulfill proposed roles in recruitment of membrane cargoes
150^{23,24}, and provides sufficient flexibility to maintain an interaction with proteins in the crowded
151 ciliary membrane.

152

153 **IFT80 forms the core of IFTB2**

154 The IFTB2 subcomplex forms the second lobe of IFTB (**Figure S7A-D, Supplementary movie**
155 **2**). It is made up of two pairs of coiled coil proteins (IFT57/38 and IFT54/20) and two large
156 proteins (IFT172 and IFT80) which each contain a pair of tandem WD domains followed by C-
157 terminal TPR motifs (**Figure S5A/B**). The second WD domain of both these proteins forms an
158 incomplete circle (**Figure 3A-C , Figure S7F**), particularly dramatically in the case of IFT172. A
159 search in the Dali protein structure comparison server showed that these WD domain
160 conformations are unique in solved or Alphafold-predicted human structure databases.

161

162 From our structure we see that IFT80 is at the center of the IFTB2 subcomplex, with much of
163 its surface covered by protein interactions (**Figure 3A/B**). The IFT80 WD domains are
164 sandwiched between the WD and TPR domains of two neighbouring copies of IFT172 (**Figure**

165 **3A/C).** Previous work suggested that IFT80 homodimerizes in the initial TPR region¹⁵, but it is
166 monomeric in our average. Instead, IFT80-TPR wraps around the N-terminal TPR motifs of
167 IFT172 from the neighbouring repeat. IFT172 contains an extended TPR domain that is not
168 reinforced through the formation of a superhelical twist like IFT88/70, meaning that it is likely
169 to be more conformationally flexible. The remaining IFT172-TPR region wraps around the
170 edge of IFTB2 and runs towards the center of the train, forming the roof of the complex
171 (**Figure 2A**). In summary, IFT80 organises both the core architecture of the IFTB2 complex as
172 well as forming an extended lateral interface capable of stabilizing flexible domains upon
173 polymerization.

174

175 **IFT57-CH prevents IFT172-WD1 from interacting with membranes**

176 The IFT172 WD domains were previously shown to bind to and remodel membranes in vitro,
177 suggesting that IFT172 may play a role in membrane trafficking given its structural homology
178 to COPI/II protein family members²⁵. However, membrane binding was mutually exclusive
179 with an interaction between IFT57-CH and IFT172-WD. We wanted to see if this interaction is
180 present in active anterograde trains. In our structure, IFT172-WD1 protrudes like a foot from
181 the periphery of IFTB2 and was resolved to lower resolution due to its flexibility. However,
182 masked refinement of this region shows a clear bulge in the density that can be explained by
183 IFT57-CH binding to IFT172-WD1 (**Figure S7E**). This interaction is made possible in our model
184 by the long unstructured linker between IFT57-CH and the C-terminal coiled coil region that
185 interacts with IFT38 (**Figure S5A**). This therefore suggests that IFT57-CH helps remove IFT172
186 from its putative membrane-trafficking phase and makes it available for incorporation into
187 assembling trains.

188

189 **The coiled coils in IFTB are in a compressed conformation**

190 Similar to IFT81/74 of IFTB1, a segmented coiled coil in IFTB2 formed by IFT57/38 is folded
191 into a compressed conformation through lateral interactions with neighbouring repeats.
192 IFT57/38 is anchored to IFTB2 through the IFT38-CH/IFT80 interaction (**Figure S6G**). This is
193 supplemented by the formation of a short four-helix bundle with IFT54/20, which is a single
194 continuous coiled coil that bridges the gap in IFT80-WD2 and runs down to the center of the
195 train (**Figure 3A, S7F**). The helical bundle forms lateral interactions with IFT57/38 in the
196 neighbouring repeat, stabilizing a kink between segments to point it towards the IFTB1
197 subcomplex (**Figure 3D**). This is a second right angle corner between IFT57/38 segments
198 stabilized by the neighbouring repeat, after the contact with IFT88 in IFTB1 (**Figure S6H**). We
199 previously showed that retrograde trains have a much longer repeat than anterograde trains
200 (~45nm vs. 11.5/6nm), despite being made of the same constituents⁹. We hypothesize that
201 the compressed coiled coils in anterograde trains can be utilised during remodelling by
202 extending into elongated conformations while maintaining intra-complex interactions.

203

204 **IFTB cargo binding regions are found on the exterior of the complex**

205 The main role of anterograde IFT is to deliver structural and signalling cargoes from the cell
206 body to the cilium. Biochemical studies have identified several interactions between these
207 cargoes and individual IFT proteins, which we are now able to pinpoint to specific locations of
208 the train. The axonemal outer and inner dynein arms are linked through their specific
209 adaptors to IFT46 and IFT56 respectively^{4,26,27,28,29}. These large structural cargoes will
210 therefore be docked on the peripheral surface of IFTB1 (**Figure S8A**). Furthermore, the N-
211 terminus of IFT70 is located on the same patch of IFTB1, and is thought to recruit a variety of
212 membrane proteins in humans and *Chlamydomonas*^{30,31}. This region of the train, on the
213 opposite side to the dynein-2 binding site, presents the largest open surface of IFTB and was
214 observed to contain heterogeneous extra densities in raw electron tomograms⁹. Therefore,
215 we would anticipate that other large structural cargoes (e.g. radial spokes, dynein-nexin
216 regulatory complex) would be engaged in similar interactions with the same IFT proteins.

217

218 Soluble tubulin is an IFT cargo thought to be recruited by a tubulin-binding module composed
219 of IFT81-CH and the basic N-terminus of IFT74^{14,32}. In our structure, the residues in IFT81-CH
220 important for tubulin binding lie in a narrow gap between coils that prevents an interaction
221 (**Figure S8B**). Alternatively, IFT81-CH could bind to tubulin in the same way as the highly
222 structurally conserved CH domain of kinetochore protein Ndc80³³ (**Figure S8C**). However, this
223 would lead to strong steric clashes with IFT81/74 in neighbouring repeats (**Figure S8D**). This
224 leaves the possibility that the IFT81/74 module binds to the acidic and unstructured C-termini
225 of tubulin, although this would be an unusual way for a CH domain to bind tubulin.

226

227 **The cytoplasmic dynein-2 binding sites are only formed upon IFTB polymerisation**

228 The retrograde IFT motor dynein-2 is also transported as a cargo of anterograde trains to the
229 tip of cilia, where it is used to transport retrograde trains back to the cell body. Previously, we
230 showed that autoinhibited dynein-2 complexes dock onto IFTB in a regular repeat, on the
231 edge of what we now determine to be IFTB2⁹. We wanted to understand the molecular basis
232 for this recruitment, however the dynein density was averaged out of our initial structure
233 since its repeat is three times that of IFTB. To address this, we used unsupervised 3D
234 classification to identify a sub-class of particles where all the dyneins are in the same register.
235 We then performed local refinements on this sub-class to obtain an improved 16.6Å final map
236 of dynein-2, and flexibly fit the single particle structure of human dynein-2³⁴ into it (**Figure 3E**,
237 **S7G-I**).

238

239 The dynein dimer consists of two heavy chains (DHC-A/B) that are split into an N-terminal tail
240 domain and a C-terminal AAA+ motor domain³⁴. The tail is used for dimerization and
241 recruitment of accessory chains, and the motor domain generates force and binds to
242 microtubules through a microtubule-binding domain (MTBD). The dynein-2 structure
243 underwent few changes during flexible fitting, except for a shift in the C-terminus of the DHC-
244 A into the density (**Figure S7J**). This left an extra density linking the tail of DHC-A to the motor

245 of DHC-B, which we assign to be the Tctex1 dimer that was weakly resolved in the single
246 particle structure^{34,35}. The formation of the Tctex1 bridge could help stabilize the
247 autoinhibited form of dynein in the train.

248

249 Dynein-2 binds to IFTB2 at five contact points (**Figure 3F-H**). The first is a composite surface
250 between two IFTB2 complexes that is only formed upon polymerisation. Here, the MTBD of
251 DHC-A sits in a trench formed between the TPR domains of two neighbouring IFT172 subunits,
252 with IFT80-WD2 and IFT54/20 forming the base. This interaction could be mediated by a
253 negatively charged patch on the side of IFT80-WD2, mimicking the interaction between the
254 MTBD and the negatively charged surface of microtubules (**Figure L/M**). Two more contacts
255 are made by the motor domain of DHC-B bridging the same two IFT172 subunits through the
256 AAA5 and AAA6 domains. The other side of the DHC-B AAA6 domain makes an additional
257 contact with the C-terminal TPR motifs of IFT80 (**Figure 3F-H**). Finally, the tail of DHC-B from
258 the adjacent dynein repeat contacts the same region of the IFT80 TPRs. These contacts could
259 be supplemented by additional, unstructured contacts, like the reported interaction between
260 the disordered N-terminus of IFT54 and dynein³⁶.

261

262 Therefore, we find that dynein-2 is only able to bind to IFTB2 in the context of an assembled
263 anterograde train. Its binding site includes the TPR domain of IFT172, which is stabilized in
264 trains but is likely to be flexible in solution based on the Alphafold2 ensemble confidence
265 predictions. This, combined with the MTBD binding site that sits on the boundary between
266 IFTB repeats, means that dynein will only be able to form weak interactions with
267 unpolymerized IFTB. This provides a level of regulation to prevent dynein-2 binding to
268 individual IFTB components before train assembly. Furthermore, it supports the theory that
269 dynein-2 adopts the open conformation ready for retrograde transport directly upon
270 anterograde train disassembly, as a result of the loss of binding sites that stabilise the
271 autoinhibited conformation³⁴.

272

273 **The IFTA polymer is continuously interconnected**

274 The IFTA complex sits between the IFTB complex and the membrane (**Figure 1B**). In
275 anterograde trains it is responsible for transport of some membrane cargoes. In retrograde
276 trains, IFTA is the complex that binds to active dynein-2, bringing IFTB and retrograde specific
277 cargo back to the cell body. IFTA is made up of five structural proteins
278 (IFT144/140/139/122/121) and one disordered protein (IFT43). IFT144, IFT140, IFT122 and
279 IFT121 all have tandem N-terminal WD domains followed by extended TPR domains (**Figure**
280 **S5A**). IFT139 consists solely of TPR repeats, which were predicted by Alphafold2 to form a
281 superhelical spiral. However, how these proteins are organised into the IFTA complex, and
282 how the complexes assemble into polymers could not be resolved in previous studies.

283

284 The resolution of our IFTA reconstruction was limited to 18.6Å, potentially making subunit
285 placement difficult. However, the Alphafold2 models of each of the four WD-containing IFTA

286 proteins showed unique combinations of angles between the two WD domains and the
287 position of the first TPR repeat (**Figure S9A-D**). This allowed us to unambiguously place the
288 WD domains in our map, and fit the C-terminal TPR domains into the connected continuous
289 tubular densities. Finally, we identified a spiral density corresponding to IFT139 to complete
290 our model (**Figure S9E/F, Supplemental movie 3**). We also see an extra density at lower
291 thresholds bridging the gap between the WD domains of IFT144 and IFT140 (**Figure S9G**).
292 IFT43, which is predicted to be mostly unstructured, is the only IFTA protein that we do not
293 include in our model. However, since IFT43 is thought to interact with two proteins (IFT121
294 and IFT139^{16,18}) that we show are at the other end of the complex, it is unlikely that this
295 density corresponds to IFT43. Therefore, the density belongs to another, unidentified protein.
296

297 Our model demonstrates that IFTA is an intricately interconnected complex. IFT144-WD
298 defines one end of the IFTA complex (**Figure 4A-C**), and projects out towards the membrane.
299 The IFT140-WD domains are nearby, and the N-terminal TPR motifs of IFT144 and IFT140 have
300 a long interface running along the edge of the complex (**Figure 4B**). Surprisingly, the end of
301 IFT140-TPR runs into the neighbouring repeat, where it interacts with the TPR domain of the
302 adjacent copy of IFT144 (**Figure S9H/I**). This interaction supports the end of IFT144-TPR, which
303 acts as the base on which IFT140-WD and IFT121-WD sit.
304

305 IFT122, IFT121 and IFT139 form three pillars at the other end of IFTA. The IFT122 and IFT121
306 WD domains are stacked together directly below the membrane. IFT121-TPR runs through
307 this region to form a platform for IFT122-WD binding and slots into the IFT139 superhelix.
308 (**Figure 4A**). Finally, IFT122-TPR projects out of the columns towards the adjacent repeat,
309 where it interacts with for IFT144-WD (**Figure S9J/K**). This unusual arrangement means that
310 IFT140 and IFT122 are responsible for both lateral interactions, and the fundamental
311 structural organisation of the neighbouring repeat. Thus, the most striking feature of IFTA is
312 the interconnectivity between adjacent repeats.
313

314 **IFTA mutations are clustered around interfaces**

315 There are over 100 point mutations in IFTA proteins associated with ciliopathy phenotypes in
316 the Human Gene Mutation Database³⁷. To understand how these mutations disrupt normal
317 function, we mapped their positions to the homologous residues in *Chlamydomonas* (**Figure**
318 **4D/E, Supplementary data 1**). Many of the mutations can be mapped to the outer surfaces
319 of the WD domains. Since these regions all directly face the membrane, mutations here could
320 have a deleterious effect on membrane recognition or cargo binding. In IFT144 and IFT140,
321 many of the WD domain mutations correspond to the regions that interact with the
322 unidentified extra density (**Figure S9G**). This suggests that this extra density could be an IFTA
323 cargo or cargo adaptor.
324

325 In the TPR domains, almost all the mutations are found at the interfaces with other IFTA
326 proteins (**Figure 4D/E**). This includes interactions between IFT144 and IFT140 belonging to

327 neighbouring repeats (**Figure 4E**). These mutations are therefore likely to result in
328 destabilization of the complex, due to disruption of complex formation or polymerization.
329 IFT139 is an exception because it contains mutations throughout its structure. It forms an
330 external surface of the complex, meaning mutations are likely to disrupt interactions with
331 cargo or IFTB (discussed below) rather than complex formation.

332

333 **IFTA and IFTB are flexibly tethered**

334 A major remaining question is how IFTA and IFTB can stably bind to each other given their
335 periodicity mismatch. In our overall IFTA and IFTB averages, the mismatch meant that one
336 complex was blurred out in the average of the other (**Figure 5A-C**). By using masked 3D
337 classification of the region corresponding to IFTA in our IFTB averages, we obtained classes
338 where IFTA is resolved in different registers relative to the IFTB (**Figure S10A**). In these classes,
339 we see two new densities bridging IFTA and IFTB (**Figure 5D/E**).

340

341 The first bridge is between IFT139 in IFTA and IFT81/74 in IFTB1 (**Figure 5D**). Each IFTB1 repeat
342 projects a tubular density corresponding in length and location to the unmodelled fifth coiled
343 coil segment of IFT81/74. Two copies of IFT81/74 bind to one IFT139, although there are
344 transition zones where the periodicity mismatch means two adjacent repeats are competing
345 for the same IFT139 binding site (**Figure 5E**). Here, there is a switch in register in the
346 subsequent repeats, made possible by the conformational flexibility between IFT81/74 coiled
347 coil segments. IFT139 has a strongly negatively charged surface and IFT81/74-CC5 is positively
348 charged, making a favourable ionic interaction possible (**Figure S10B/C**). This interaction is
349 also consistent with the mutations in IFT139 we find in this region (**Figure 4D**), which could
350 affect IFT81/74 binding.

351

352 The second IFTA/IFTB bridge is visible in classes obtained from our IFTB2 average. We see an
353 extension of the IFT172 density running along the roof of IFTB2 in alternate repeats (**Figure**
354 **5F/G**). This density reaches up to the IFTA complex and docks between the C-terminus of
355 IFT144 and the inner face of IFT139. We assign this density to be the C-terminal TPR domain
356 of IFT172, which is also unmodelled in our overall model. Like IFT81/74-CC5, this domain is
357 linked to the modelled region by a flexible linker, allowing it to interact with IFTA in a range
358 of registers. The C-terminus of IFT172 contains a strongly acidic patch capable of binding to a
359 basic patch on IFT144 (**Figure 5H/I**). We only see the extra density extending from alternate
360 IFTB repeats, reflecting the fact that this binding site is only present once per IFTA repeat.

361

362 Together, we show that anterograde trains overcome the periodicity mismatch between IFTA
363 and IFTB using flexible tethers from IFTB that are in a stoichiometric excess to IFTA. This mode
364 of interaction provides several advantages for the function of anterograde trains. Firstly, it
365 suggests that IFTA is recruited in a search-and-capture mechanism, where nascent IFTB
366 polymers can sample a large space through these tentacle-like tethers (**Figure 5K**). This then
367 aids IFTA polymerization by creating a higher local concentration of IFTA to promote their

368 lateral interaction into polymers. In principle, this could mean IFTA could only polymerise with
369 the help of IFTB, thus preventing IFTA multimerisation away from the basal body. Finally, a
370 flexible interaction allows IFTA and IFTB to maintain their connection while withstanding the
371 mechanical stresses present in actively beating cilia

372

373 **Discussion**

374 The key outstanding question is how the structure we show here remodels into the
375 conformationally distinct retrograde train. We recently showed that anterograde to
376 retrograde train conversion in *Chlamydomonas* can be induced by mechanical blockage of IFT
377 at arbitrary positions along the length of the cilium³⁸. This indicates that anterograde to
378 retrograde remodelling does not require specialized machineries of the ciliary tip. In
379 *Chlamydomonas*, the constituents from one anterograde train appear to split into two or
380 three retrograde trains, with IFTA and IFTB complexes remaining associated during
381 anterograde to retrograde conversion³⁹. Together, this supports a model in which conversion
382 occurs through conformational changes pre-built into the anterograde train. This could be
383 through the compressed or spring-like coiled coils such as IFT81/74 or IFT57/38. Alternatively,
384 TPR and other alpha-solenoid domain proteins have previously been shown to behave as
385 molecular springs⁴⁰⁻⁴². Many of the TPR domains in our structure underwent curved-to-
386 straight conformation changes to fit the relaxed Alphafold2 predictions into our density
387 (**Figure S5B**), indicating that they could be a source of molecular strain. This strain could then
388 be released at the tip, potentially triggered by the loss of tethering to the microtubule,
389 resulting in a relaxation into the retrograde conformation.

390

391 Consistent with this model, retrograde trains that are mechanically blocked in the cilium
392 never convert back into anterograde trains³⁸. This suggests that the compressed structures
393 that we see in anterograde trains require an external packaging mechanism during train
394 assembly. Interestingly, in subtomogram averages of anterograde trains assembling at the
395 basal body, an unknown extra density is observed beneath IFTB1 that is absent in the mature
396 train³. This unknown component could therefore be what loads the molecular springs in the
397 anterograde train. However, to fully understand how this, and how train conversion occurs,
398 more structural information of the retrograde train is required.

399

400 **Methods**

401 **Cell culture**

402 *C. reinhardtii* wild-type (CC625) cells and CC625 cells with glycocalyx proteins FMG1A and
403 FMG1B deleted by CRISPR (produced for and described in a manuscript in preparation) were
404 cultured in aerated Tris-acetate-phosphate (TAP) media at 24°C with a 12/12 hour night/dark
405 cycle for at least two days before use.

406

407 **Grid preparation**

408 Quantifoil R3.5/1 Au200 grids were plasma cleaned for 10s with a 80:20 oxygen:hydrogen mix
409 (Solarus II Model 955, Gatan). 4uL cells were added to grid, followed by 1uL 10nm colloidal

410 gold fiducial solution (in PBS, BBI Solutions). Following 30s incubation at 22°C at 95% humidity,
411 the grid was back-blotted and immediately plunge frozen in liquid ethane at -182°C (Leica
412 Automatic Plunge Freezer EM GP2).

413

414 **Cryo-electron Tomography data acquisition**

415 Cryo-ET data were acquired on a Thermo Scientific Titan Krios G4 transmission electron
416 microscope operated at 300 kV using SerialEM⁴³. Raw movie frames were recorded on a
417 Thermo Scientific Falcon 4 direct electron detector using the post-column Thermo Scientific
418 Selectris-X energy filter. Movies were acquired in EER format⁴⁴, with a pixel size of 3.03Å/px,
419 an exposure of 3s and a dose rate of 2.6e⁻/Å²/s. Tilt series were collected in 3° increments
420 using a dose-symmetric scheme with two tilts per reversal up to 30°, and then bidirectionally
421 to 60°. For a full tilt series this resulted in an accumulated dose of 104e⁻/Å². Tilt series were
422 acquired between -2.5 and -4.5um defocus.

423

424 **Tomogram reconstruction**

425 Tilt series reconstruction was performed using a developmental update of the TOMOMAN
426 pipeline⁴⁵, which organises tomographic data while feeding it into different pre-processing
427 programs. Motion correction was performed using the MotionCor2 implementation in
428 Relion3.1⁴⁶, with EER data split into 40 fractions. Bad tilts were then removed after manual
429 inspection, followed by dose weighting (Imod⁴⁷) and CTF estimation (CTFFIND4⁴⁸). Manual
430 fiducial alignment and CTF-corrected tomogram reconstruction at bin4 was then performed
431 in Etomo⁴⁷. The bin4 tomograms were then deconvolved for visualisation with the
432 tom_deconv filter⁴⁹.

433

434 **Particle Picking**

435 Anterograde IFT trains were identified in deconvolved bin4 tomograms according to features
436 identified previously⁹. Picking was performed using the 3DMOD slicer⁴⁷, with IFTB and IFTA
437 picked separately. For each IFTB and IFTA filament, a open contour model was picked along
438 the length. Points were picked along this contour at 4/2nm distances for IFTA/B respectively
439 (representing a ~3x oversampling in each case) using Tom Toolbox scripts⁵⁰.

440

441 **Subtomogram averaging**

442 We used STOPGAP⁵¹ to find initial orientations before transferring data to Relion for high
443 resolution refinements. However, we found that because IFTB looks similar with 180° rotation
444 around the long axis (phi angle in STOPGAP) the initial angles were split roughly 50/50 with
445 the right and wrong phi angle. We therefore analysed each train individually and determined
446 a rough phi angle manually. In STOPGAP, we extracted particles from the unfiltered bin4
447 tomograms (70/50px box sizes for IFTB/IFTA) and performed alignments using a cone search
448 with 32° phi search in 8° increments.

449

450 The particles and orientations from STOPGAP were converted to Relion star format, and
451 subtomograms and 3D CTF particles were extracted in Warp⁵².

452

453 For IFTB, six different collection sessions were incrementally added to the average (**Figure S2**).
454 Each group was refined separately in STOPGAP, with the STOPGAP average of the first group
455 used as the initial reference for 3D refinement in Relion 3.1⁴⁶. Initial refinements used a
456 solvent mask consisting of the entire IFTB complex for four repeats. We performed a local 3D

457 refinement with 3.7° initial angular sampling/step, and 4/1 pixels search/step. The resulting
458 refinement was used as the input for a round of image warp grid refinement in M⁵³. The
459 refined subtomograms were re-extracted and the 3D refinement was repeated, resulting in a
460 significantly improved average. This refinement was then used as the input for 3D
461 classification into two classes, using the same solvent mask and keeping the alignments fixed.
462 The particles from the good class were then used for separate masked refinements of IFTB1
463 and IFTB2, which proceeded independently but with the same input particles. For IFTB1 we
464 found that reducing the length of the mask to 2 repeats resulted in the best averages, but
465 IFTB2 was best at 4 repeats. Both subcomplexes reached Nyquist resolution, so IFTB1 was
466 reextracted eventually to bin 1 (3.03Å/pix) and IFTB2 to bin 1.5 (4.04Å/pix). We obtained the
467 highest resolution reconstructions after performing image warp and ctf refinement on the
468 IFTB1 reconstruction in M. We used the resulting parameters to reextract both IFTB1 and
469 IFTB2 particles for a final round of 3D refinement (1.7°, 3/1). Resolution was determined with
470 the 0.143 threshold (**Figure S3A/B**). Masked refinement of the ends of IFTB1 and IFTB2
471 resolved these regions more clearly, although still at lower overall resolution compared to the
472 core masks (**Figure S2C**). To obtain an average of dynein, we created a solvent mask based on
473 our previous low-resolution IFTB/dynein average and rescaled it to 4.04Å/px (**Figure S2D**). We
474 performed 3D classification on our IFTB2 average into 6 classes without refinement (**Figure**
475 **S2A**), finding three classes with dynein in three registers. We selected one class and
476 performed local refinement.

477
478 For IFTA, the six collection session groups were combined directly after STOPGAP into a local
479 refinement in Relion using a mask with three repeats (**Figure S4**). We did not perform image
480 warp refinement in M for IFTA, as it resulted in a worse average compared to when the
481 refinements from IFTB1 were used. However, we found that after the first refinement in
482 Relion, we saw a strong improvement by applying the median Phi angle for each train to every
483 particle in the same train (coordinate smoothing). This pulls particles that have strayed back
484 to the consensus angle for the train. The smoothed coordinates were then locally refined in
485 Relion again, and this refinement was used for masked 3D classification without alignments.
486 The good class reextracted at bin2 (6.06Å/px) and locally refined with a selection of masks
487 (one repeat, three repeats, left side and right side (**Figure S4B-E**)) to generate maps that best
488 show individual features within the complex and also connections between adjacent
489 complexes.

490

491 **Model building**

492 A number of crystal structures were available for IFTB components, but we used Alphafold2
493 structural predictions for all components because the crystal structures were either from
494 different species or only contained fragments of the protein. Structure predictions were run
495 as monomers or multimers using a local install of Alphafold version 2.1.1⁵⁴. Alphafold2
496 predictions had no major differences to the solved crystal structures. All IFTA proteins were
497 folded as monomers. For IFTB, IFT172 and IFT56 were the only proteins folded as monomers.
498 In IFTB1, the complexes folded as multimers were IFT88-52-70, IFT70-52-46¹¹ and IFT81-74¹³.
499 For IFT70, the best fit of the density was achieved by splitting the model in two, with the
500 IFT88-52-70 prediction contributing the C-terminus and the IFT70-52-46 contributing the C-
501 terminus. IFT52 was split at the same place as IFT70. In IFTB2, we folded IFT80-57-38 and
502 IFT54-20 as multimers^{10,15}.

503

504 Once we had these starting models, the position of most of the IFTB proteins in the density
505 was straightforward. IFT172, IFT88/70/52, IFT81/74, IFT80 all contained strong structural
506 motifs that us to position the original Alphafold2 models unambiguously. This left the two
507 coiled coil densities in IFTB2 to fill. Based on the known interaction between IFT80 and IFT38-
508 CH, we pinpointed the IFT38-CH domain to the density bound to the face of IFT80-WD1. From
509 here, the length of the three IFT57/38 coiled coil segments exactly matched the coiled coil
510 density that reaches across from IFTB2 to IFTB1. Finally, the length of IFT54/20 matched the
511 coiled coil density running down the side of IFT80, consistent with the unstructured IFT54 N-
512 terminus interacting with cytoplasmic dynein-2.

513
514 For IFTA, the four proteins with WD domains each contain unique conformations regarding
515 the angle between the tandem WD domains, and between the second WD domain and the
516 start of the TPR. This allowed us to place each of the four WD domains into the density
517 unambiguously. We recognized that the proteins could not adopt reasonable conformations
518 to fit into one repeat as defined in our previous cryo-ET structure. However, we could identify
519 continuous density between adjacent repeats in the average of three consecutive IFTA
520 repeats. The IFT139 TPR superhelix was obviously identifiable at the edge of the complex, but
521 was split into two rigid bodies at a loop in the middle of the protein to best fit the density.

522
523 Once we had positioned the models in the density, we manually edited them to best fit the
524 density. In IFTB1, in regions where individual alpha helices were resolved (IFT88, IFT70,
525 IFT81/74, IFT57/38) this involved conventional secondary structural real-space refinement in
526 Coot⁵⁵. In IFTB2, the IFT54/20 coiled coil needed to be curved slightly to fit into the density.
527 The C-terminal TPR domains of IFT172 curved out of the density. To counter this, we split the
528 region into rigid bodies defined by loops where the Alphafold2 prediction had lower
529 confidence. We then fit the rigid bodies up to the point where the density became too weak,
530 leaving roughly one third of IFT172 unmodelled (Figure S5A). We used the same approach for
531 the TPR domains in IFTA. For IFT140, IFT122 and IFT121 we did not model the flexible TPR
532 regions at the very C-termini. This is because they were predicted to be only loosely tethered
533 to the remaining TPR regions, but in each case there is empty density left in the average for
534 them to occupy.

535
536 Once we had manually assembled the models into the density, we used NAMDinator⁵⁶, an
537 automated molecular dynamics flexible fitting (MDFF) pipeline, to refine the models into our
538 density. We used default parameters, and started with the individual assemblies described
539 above. Different models were then combined to form the IFTB1/2 and IFTA complexes and
540 refined, and then combined again to create lateral repeats to ensure lateral did not clash.
541 Map and model visualization was performed in ChimeraX⁵⁷. Human point mutations were
542 obtained from the Human Gene Mutation database³⁷.

543

544 **References**

- 545 1. Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B. & Christensen, S. T. Cellular
546 signalling by primary cilia in development, organ function and disease. *Nat. Rev. Nephrol.*
547 **15**, 199–219 (2019).
- 548 2. Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies.
549 *Nat. Rev. Mol. Cell Biol.* **18**, 533–547 (2017).
- 550 3. van den Hoek, H. *et al.* In situ architecture of the ciliary base reveals the stepwise
551 assembly of intraflagellar transport trains. *Science* **377**, 543–548 (2022).
- 552 4. Dai, J., Barbieri, F., Mitchell, D. R. & Lechtreck, K. F. In vivo analysis of outer arm dynein
553 transport reveals cargo-specific intraflagellar transport properties. *Mol. Biol. Cell* **29**,
554 2553–2565 (2018).
- 555 5. Liu, P. & Lechtreck, K. F. The Bardet–Biedl syndrome protein complex is an adapter
556 expanding the cargo range of intraflagellar transport trains for ciliary export. *Proc. Natl.*
557 *Acad. Sci.* **115**, E934–E943 (2018).
- 558 6. Pigino, G. *et al.* Electron-tomographic analysis of intraflagellar transport particle trains in
559 situ. *J. Cell Biol.* **187**, 135–148 (2009).
- 560 7. Qin, H., Diener, D. R., Geimer, S., Cole, D. G. & Rosenbaum, J. L. Intraflagellar transport
561 (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the
562 cell body. *J. Cell Biol.* **164**, 255–266 (2004).
- 563 8. Lechtreck, K.-F. *et al.* The *Chlamydomonas reinhardtii* BBSome is an IFT cargo required
564 for export of specific signaling proteins from flagella. *J. Cell Biol.* **187**, 1117–1132 (2009).
- 565 9. Jordan, M. A., Diener, D. R., Stepanek, L. & Pigino, G. The cryo-EM structure of
566 intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional
567 anterograde movement in cilia. *Nat. Cell Biol.* **20**, 1250 (2018).
- 568 10. Taschner, M. *et al.* Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a
569 stable tubulin-binding IFT-B2 complex. *EMBO J.* **35**, 773–790 (2016).
- 570 11. Taschner, M., Kotsis, F., Braeuer, P., Kuehn, E. W. & Lorentzen, E. Crystal structures of
571 IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex
572 assembly. *J. Cell Biol.* **207**, 269–282 (2014).
- 573 12. Bhogaraju, S., Taschner, M., Morawetz, M., Basquin, C. & Lorentzen, E. Crystal structure
574 of the intraflagellar transport complex 25/27. *EMBO J.* **30**, 1907–1918 (2011).
- 575 13. Wachter, S. *et al.* Binding of IFT22 to the intraflagellar transport complex is essential for
576 flagellum assembly. *EMBO J.* **38**, e101251 (2019).
- 577 14. Bhogaraju, S. *et al.* Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and
578 IFT81. *Science* **341**, 1009–1012 (2013).
- 579 15. Taschner, M. *et al.* Crystal structure of intraflagellar transport protein 80 reveals a
580 homo-dimer required for ciliogenesis. *eLife* **7**, e33067 (2018).
- 581 16. Taschner, M. & Lorentzen, E. The Intraflagellar Transport Machinery. *Cold Spring Harb.*
582 *Perspect. Biol.* **8**, a028092 (2016).
- 583 17. McCafferty, C. L. *et al.* Integrative modeling reveals the molecular architecture of the
584 Intraflagellar Transport A (IFT-A) complex. *bioRxiv* 2022.07.05.498886 (2022)
585 doi:10.1101/2022.07.05.498886.
- 586 18. Behal, R. H. *et al.* Subunit Interactions and Organization of the *Chlamydomonas*
587 *reinhardtii* Intraflagellar Transport Complex A Proteins. *J. Biol. Chem.* **287**, 11689–11703
588 (2012).
- 589 19. Jordan, M. A. & Pigino, G. The structural basis of intraflagellar transport at a glance. *J.*
590 *Cell Sci.* **134**, jcs247163 (2021).

591 20. Brazelton, W. J., Amundsen, C. D., Silflow, C. D. & Lefebvre, P. A. The bld1 mutation
592 identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly.
593 *Curr. Biol.* **11**, 1591–1594 (2001).

594 21. Richey, E. A. & Qin, H. Dissecting the Sequential Assembly and Localization of
595 Intraflagellar Transport Particle Complex B in Chlamydomonas. *PLOS ONE* **7**, e43118
596 (2012).

597 22. Dupont, M. A. *et al.* Human IFT52 mutations uncover a novel role for the protein in
598 microtubule dynamics and centrosome cohesion. *Hum. Mol. Genet.* **28**, 2720–2737
599 (2019).

600 23. Zhou, Z. *et al.* Impaired cooperation between IFT74/BBS22–IFT81 and IFT25–
601 IFT27/BBS19 causes Bardet-Biedl syndrome. *Hum. Mol. Genet.* **31**, 1681–1693 (2022).

602 24. Dong, B. *et al.* Chlamydomonas IFT25 is dispensable for flagellar assembly but required
603 to export the BBSome from flagella. *Biol. Open* **6**, 1680–1691 (2017).

604 25. Wang, Q. *et al.* Membrane association and remodeling by intraflagellar transport
605 protein IFT172. *Nat. Commun.* **9**, 4684 (2018).

606 26. Hou, Y. & Witman, G. B. The N-terminus of IFT46 mediates intraflagellar transport of
607 outer arm dynein and its cargo-adaptor ODA16. *Mol. Biol. Cell* **28**, 2420–2433 (2017).

608 27. Taschner, M., Mourão, A., Awasthi, M., Basquin, J. & Lorentzen, E. Structural basis of
609 outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and
610 the intraflagellar transport protein IFT46. *J. Biol. Chem.* **292**, 7462–7473 (2017).

611 28. Hunter, E. L. *et al.* The IDA3 adapter, required for intraflagellar transport of I1 dynein, is
612 regulated by ciliary length. *Mol. Biol. Cell* **29**, 886–896 (2018).

613 29. Ishikawa, H. *et al.* TTC26/DYF13 is an intraflagellar transport protein required for
614 transport of motility-related proteins into flagella. *eLife* **3**, e01566 (2014).

615 30. Boldt, K. *et al.* An organelle-specific protein landscape identifies novel diseases and
616 molecular mechanisms. *Nat. Commun.* **7**, 11491 (2016).

617 31. Zhao, Q., Li, S., Shao, S., Wang, Z. & Pan, J. FLS2 is a CDK-like kinase that directly binds
618 IFT70 and is required for proper ciliary disassembly in Chlamydomonas. *PLOS Genet.* **16**,
619 e1008561 (2020).

620 32. Kubo, T. *et al.* Together, the IFT81 and IFT74 N-termini form the main module for
621 intraflagellar transport of tubulin. *J. Cell Sci.* **129**, 2106–2119 (2016).

622 33. Alushin, G. M. *et al.* The Ndc80 kinetochore complex forms oligomeric arrays along
623 microtubules. *Nature* **467**, 805–810 (2010).

624 34. Toropova, K. *et al.* Structure of the dynein-2 complex and its assembly with intraflagellar
625 transport trains. *Nat. Struct. Mol. Biol.* 1–7 (2019) doi:10.1038/s41594-019-0286-y.

626 35. Wu, H., Maciejewski, M. W., Takebe, S. & King, S. M. Solution Structure of the Tctex1
627 Dimer Reveals a Mechanism for Dynein-Cargo Interactions. *Structure* **13**, 213–223
628 (2005).

629 36. Zhu, X., Wang, J., Li, S., Lechtreck, K. & Pan, J. IFT54 directly interacts with kinesin-II and
630 IFT dynein to regulate anterograde intraflagellar transport. *EMBO J.* **40**, e105781 (2021).

631 37. Stenson, P. D. *et al.* The Human Gene Mutation Database (HGMD®): optimizing its use in
632 a clinical diagnostic or research setting. *Hum. Genet.* **139**, 1197–1207 (2020).

633 38. Nievergelt, A. P. *et al.* Intraflagellar transport trains can turn around without the ciliary
634 tip complex. *bioRxiv* 2021.03.19.436138 (2021) doi:10.1101/2021.03.19.436138.

635 39. Wingfield, J. L. *et al.* In vivo imaging shows continued association of several IFT-A, IFT-B
636 and dynein complexes while IFT trains U-turn at the tip. *J. Cell Sci.* **134**, jcs259010
637 (2021).

638 40. Kobe, B. & Kajava, A. V. When protein folding is simplified to protein coiling: the
639 continuum of solenoid protein structures. *Trends Biochem. Sci.* **25**, 509–515 (2000).

640 41. Han, L. *et al.* Cryo-EM structure of an active central apparatus. *Nat. Struct. Mol. Biol.* **29**,
641 472–482 (2022).

642 42. Llabrés, S., Tsenkov, M. I., MacGowan, S. A., Barton, G. J. & Zachariae, U. Disease related
643 single point mutations alter the global dynamics of a tetratricopeptide (TPR) α -solenoid
644 domain. *J. Struct. Biol.* **209**, 107405 (2020).

645 43. Mastronarde, D. N. Automated electron microscope tomography using robust prediction
646 of specimen movements. *J. Struct. Biol.* **152**, 36–51 (2005).

647 44. Guo, H. *et al.* Electron-event representation data enable efficient cryoEM file storage
648 with full preservation of spatial and temporal resolution. *IUCrJ* **7**, 860–869 (2020).

649 45. GitHub - sagarbiophysics/TOMOMAN: TOMOgram MANager, popularly known as
650 TOMOMAN (Ze/hir/zir). <https://github.com/sagarbiophysics/TOMOMAN>.

651 46. Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure
652 determination in RELION-3. *eLife* **7**, (2018).

653 47. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer Visualization of Three-
654 Dimensional Image Data Using IMOD. *J. Struct. Biol.* **116**, 71–76 (1996).

655 48. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron
656 micrographs. *J. Struct. Biol.* **192**, 216–221 (2015).

657 49. Tegunov, D. *dtegunov/tom_deconv*. (2022).

658 50. Tom Toolbox. at https://www.biochem.mpg.de/6348566/tom_e.

659 51. Wan, W. *williamnwan/STOPGAP*: STOPGAP 0.7.1. (Zenodo, 2020).
660 doi:10.5281/zenodo.3973664.

661 52. Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with
662 Warp. *Nat. Methods* **16**, 1146–1152 (2019).

663 53. Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM
664 refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. *Nat. Methods*
665 **18**, 186–193 (2021).

666 54. Evans, R. *et al.* Protein complex prediction with AlphaFold-Multimer. *bioRxiv*
667 2021.10.04.463034 (2022) doi:10.1101/2021.10.04.463034.

668 55. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta
669 Crystallogr. D Biol. Crystallogr.* **60**, 2126–2132 (2004).

670 56. Kidmose, R. T. *et al.* Namdinator - automatic molecular dynamics flexible fitting of
671 structural models into cryo-EM and crystallography experimental maps. *IUCrJ* **6**, 526–
672 531 (2019).

673 57. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators,
674 and developers. *Protein Sci. Publ. Protein Soc.* **30**, 70–82 (2021).

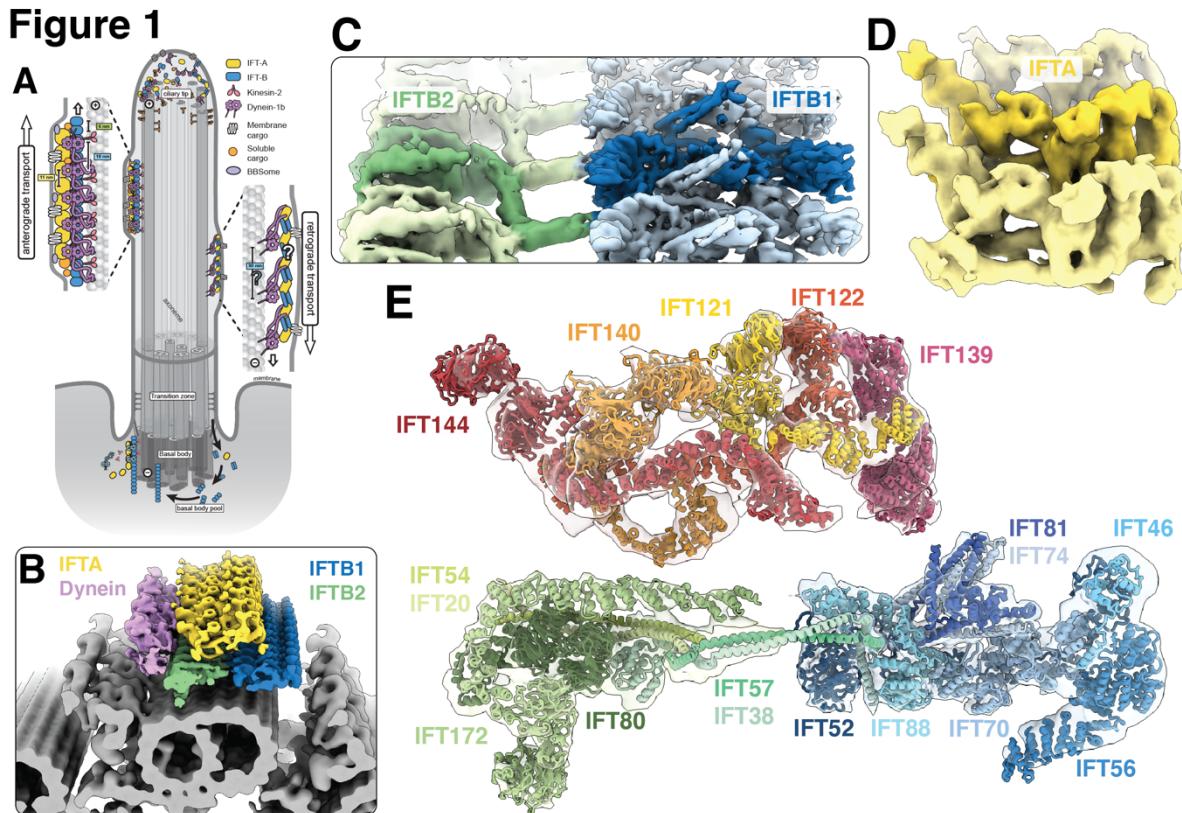
675

676

677 ***Acknowledgements***

678 We would like to thank P. Swuec and S. Sorrentino from the Human Technopole electron
679 microscopy facility, and C. Fernandez and P. Margara for IT and HPC support; P. Erdmann
680 and S. Khavnekar for providing the TOMOMAN and STOPGAP implementations; D. Diener, A.
681 Vanninni, F. Coscia for comments on the manuscript; A. Nievergelt for CRISPR modified cell
682 lines.

683


684 ***Author contributions***

685 S.E.L. prepared the samples, acquired cryo-ET data, performed image processing, refined
686 and analysed the data and wrote the manuscript. H.E.F. performed AlphaFold2 structural
687 predictions. G.P. designed the experiments, analysed the data and wrote the manuscript.

688

689

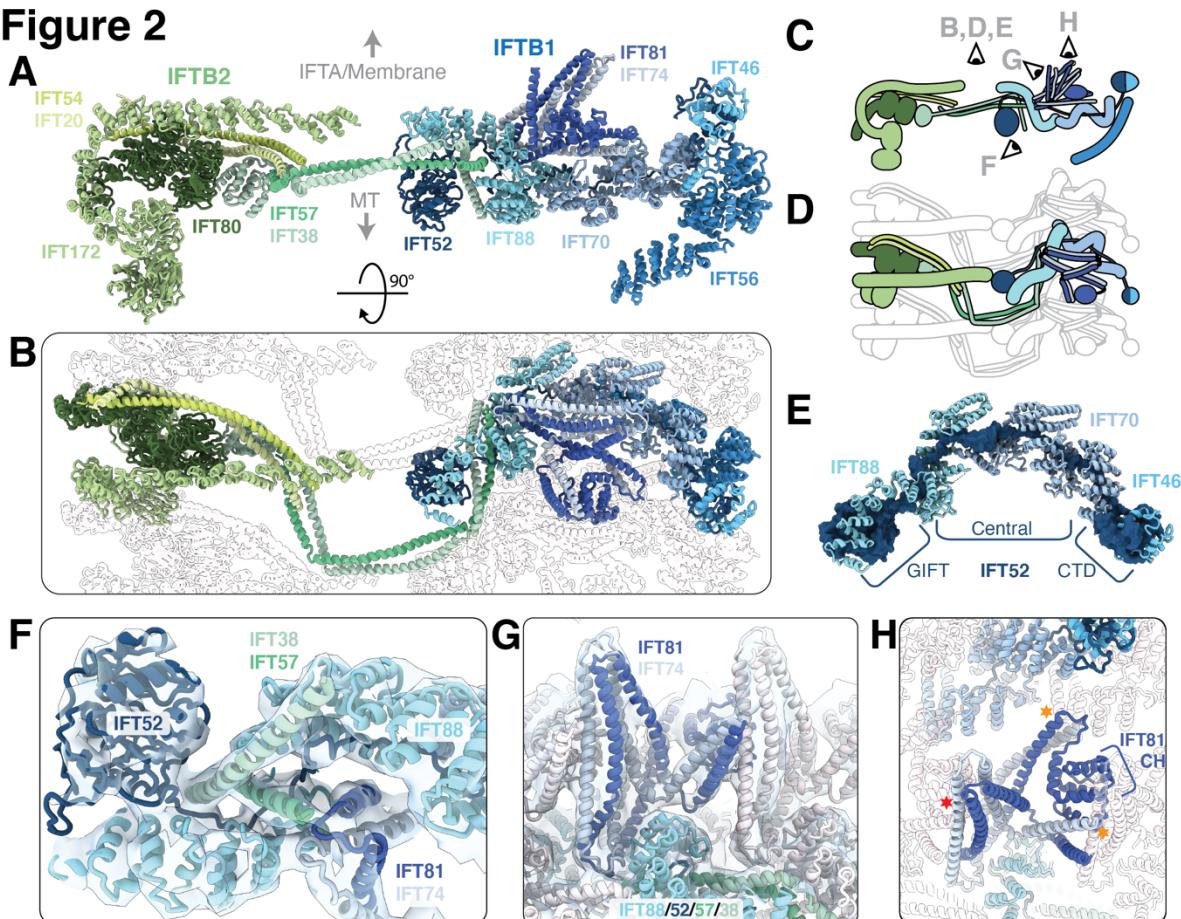
Figure 1

690
691

An overview of the anterograde IFT train structure

692 A – Cartoon model of IFT within the cilium. Anterograde trains form at the base of the cilium (basal body)
693 and carry cargo through the diffusion barrier (transition zone) and to the tip. Here, they remodel into
694 retrograde trains that carry their cargoes back to the basal body for recycling.

695 B – The new subtomogram averages lowpass filtered and coloured by complex (IFTA yellow, IFTB1
696 blue, IFTB2 green, dynein purple), docked onto a cryo-ET average of the microtubule doublets found
697 in motile cilia. One repeating unit is highlighted in each complex with darker shading


698 C – The new subtomogram averages for IFTB1 (blue) and IFTB2 (green) displayed together as a
699 composite. One repeating unit is highlighted with darker shading

700 D – The new subtomogram average of IFTA.

701 E – Following flexible fitting we obtain a molecular model for the entire anterograde IFT train, shown
702 here as if looking down the train. Density for four maps is shown; IFTB2 and IFTA, with the main IFTB1
703 average combined with a masked refinement of the region containing IFT56 (IFTB1 tail, Figure S2A)
704 since this region is more flexible relative to the core.

705

Figure 2

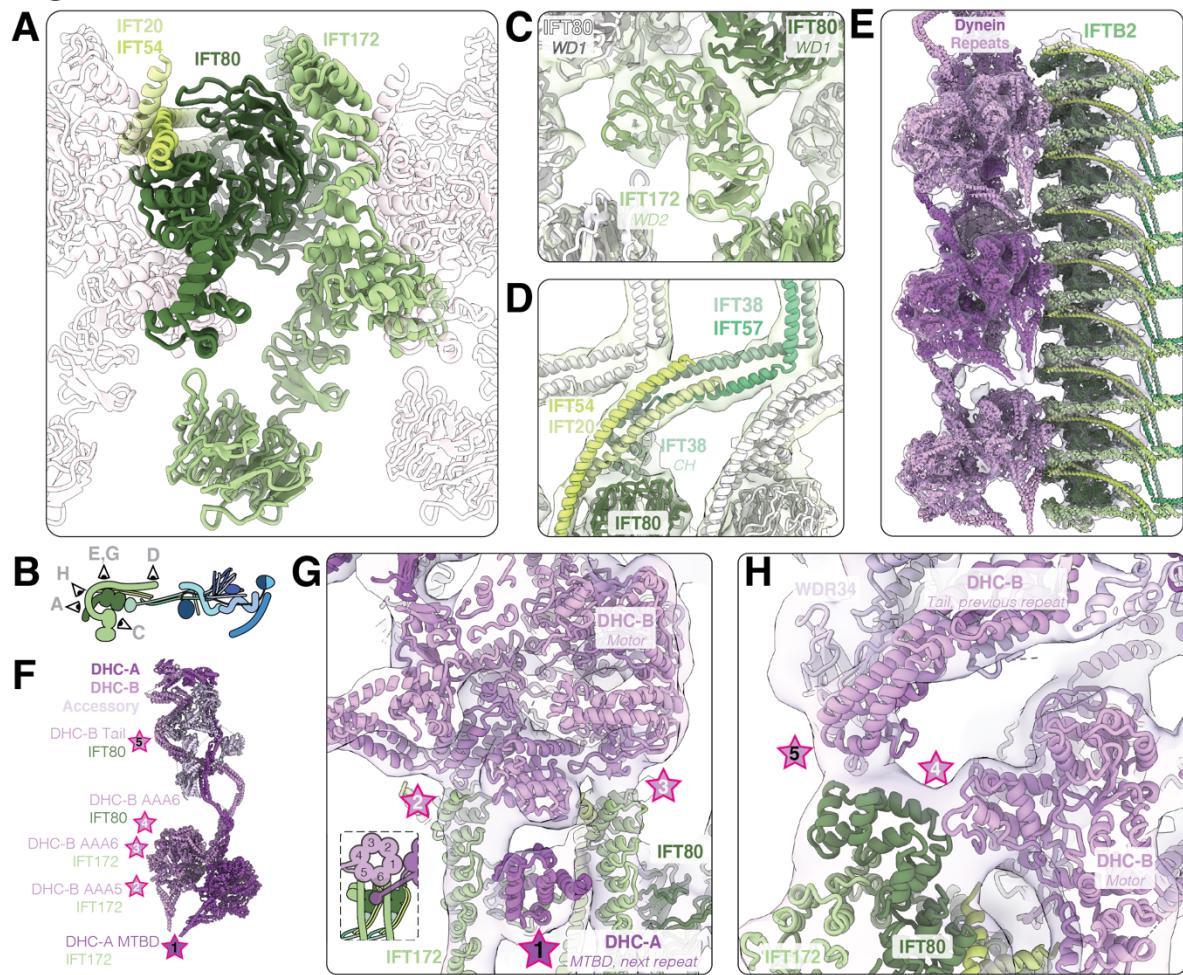
706
707 **IFT52 is central to the overall IFTB complex**
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

A – One repeat of the IFTB complex viewed in profile, looking down the train.

B – Top view of the IFTB polymer, as if looking down from the membrane/IFTA. A single repeat is shown in colour, with adjacent repeats shown in silhouette. Colouring as in A.

C – Cartoon representation of A, showing the viewing positions of other panels in the figure

D – Cartoon representation of B.

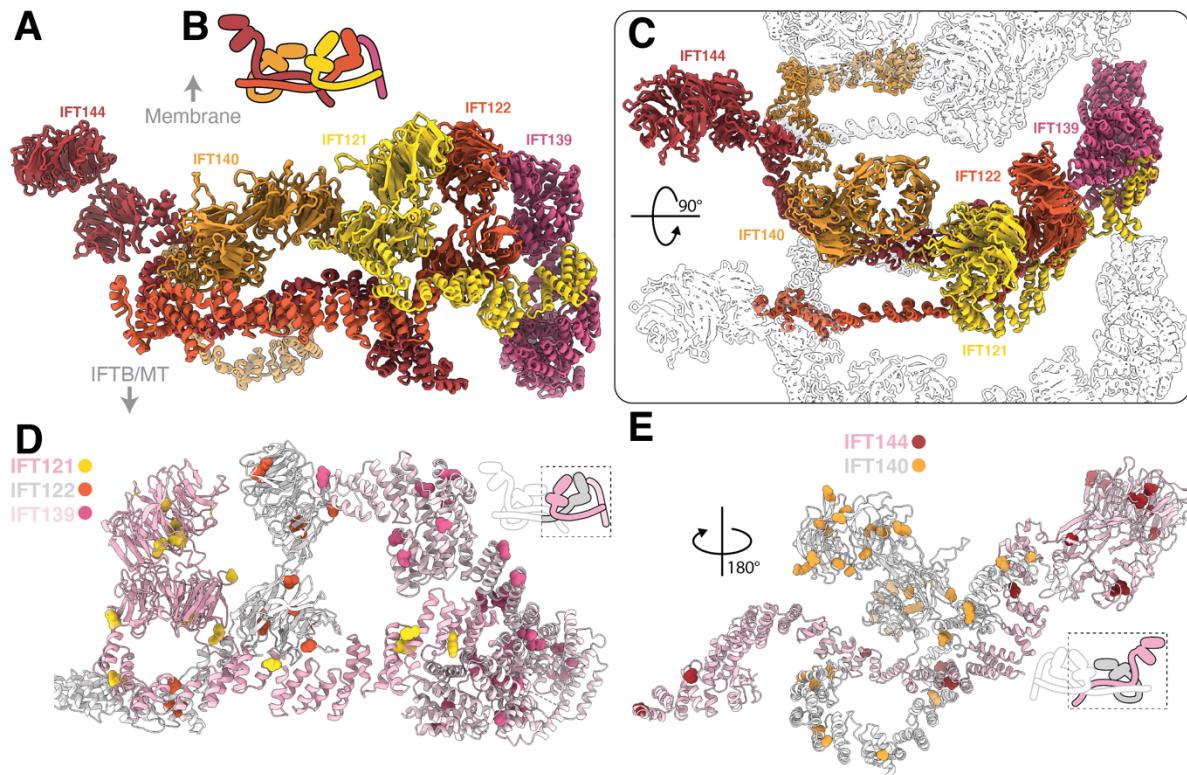

E – IFT52 (dark blue), shown as a molecular surface, forms the core of the IFTB1 complex, with the central unstructured domain threading through the TPR superhelices of IFT88 (cyan) and IFT70 (steel blue).

F – IFT57/38 (dark/light green) from IFTB2 interact with IFTB1 by fitting into a cleft in the TPR superhelix of IFT88 (cyan) along with the unstructured IFT52 central domain (dark blue).

G – IFT81/74 (navy blue/grey) sit on top of IFT88, and form a compressed segmented coiled coil repeating along the IFT train.

H – Top view of G. Lateral interactions to IFT81/74 in adjacent repeats is highlighted with stars (red star to IFT81-CH on N-1 repeat, orange star to IFT81/74-CC and IFT70 of N+1 repeat).

Figure 3

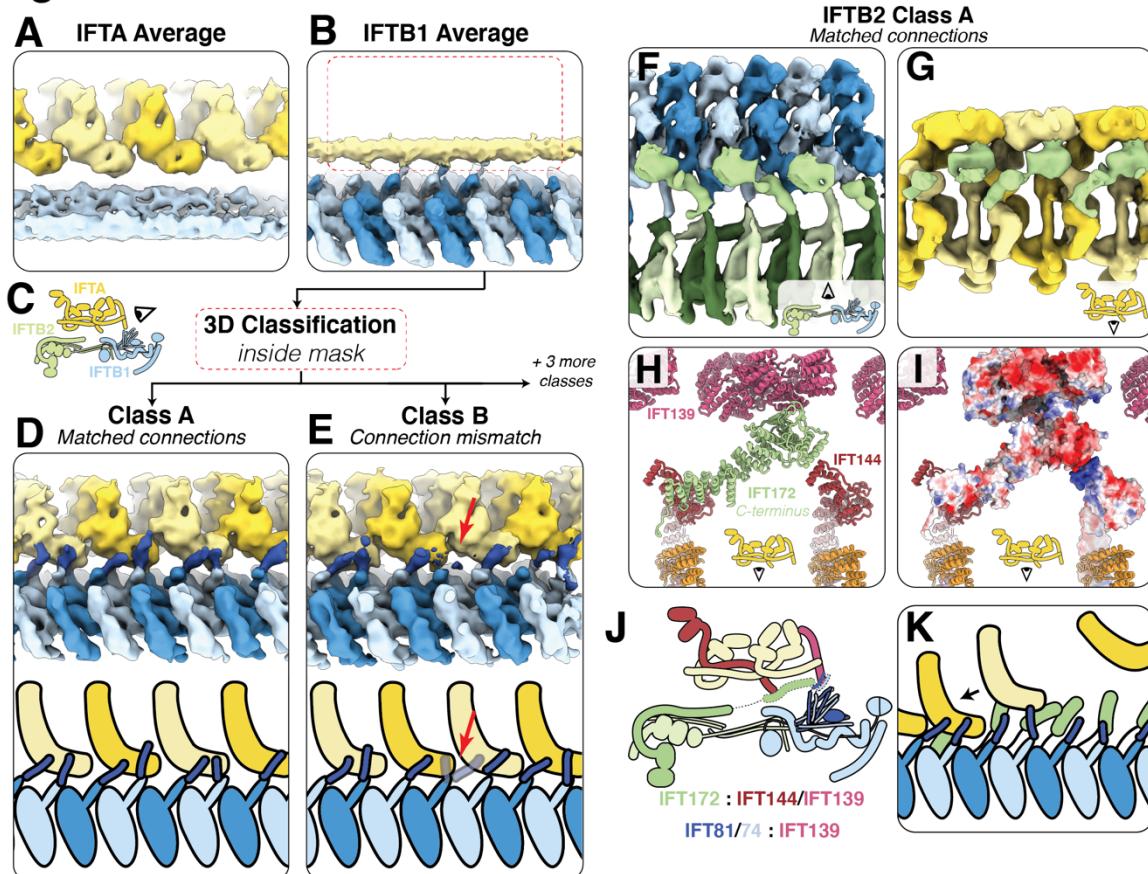


724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

The interaction between IFTB2 and dynein-2

A – IFT80 (dark green) forms the core of the IFTB2 complex. It is surrounded by IFT172 (olive green) and the IFT54/20 (lime green, pale green) coiled-coil. Adjacent repeats shown in silhouette
 B – Cartoon representation of IFTB depicting the position of the views in the other panels
 C – The second WD domain of IFT172 (olive green) does not close into a ring, and bridges two IFT80 subunits (dark green from the same complex, white in the neighbour).
 D – In the center of the complex, IFT54/20 (lime/pale green) and IFT57/38 (turquoise/mint green) coiled coils stack on top of each other, stabilizing a kink in IFT57/38 to point the subsequent coiled coils towards IFTB1
 E – The flexibly refined dynein models (purple, pink) docked into the 16 Å dynein density, along with the IFTB2 model.
 F – Cartoon representation of cytoplasmic dynein-2 refined into our density, with the points that contact IFTB2, and the protein they interact with, highlighted with stars.
 G – Top view of the train, showing the first three contact points between dynein and IFTB2.
 H – The two remaining contact points between dynein and the edge of IFTB2, at the C-terminus of IFT80.

Figure 4

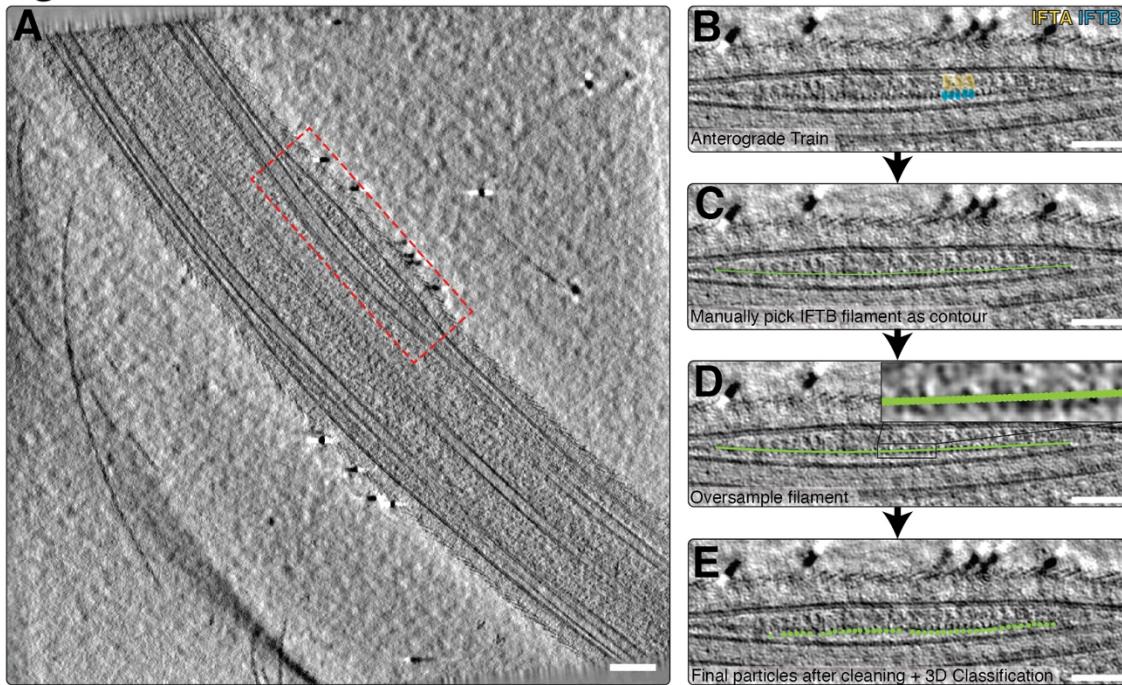


742
743
744
745
746
747
748
749
750
751
752
753

IFTA presents its four WD domains to the membrane

A – The IFTA model viewed in profile, as if looking down the train
B – Cartoon representation of IFTA shown with a side view as in A
C – Top view of the IFTA model, with neighbouring repeats shown as silhouettes. IFT140 (orange) and IFT122 (light red) both form part of the adjacent complex.
D – We mapped human point mutations in IFTA proteins that are linked to ciliopathies to conserved residues in *C. reinhardtii*. Here, IFT121, IFT122 and IFT139 are shown, with most point mutations (shown as sphere representation) mapping to the WD domains or to interfaces between TPR domains.
E – A second view, showing the point mutations present in IFT144 and IFT140

Figure 5



754

IFTA and IFTB are connected at two points

755 A – The 21Å IFTA average covering three repeats, unmasked to show that IFTB (light blue) is
 756 averaged out with respect to IFTA (alternating yellow) due to peridocity mismatch
 757 B – The IFTB1 average filtered to 12Å and unmasked, to show that IFTA (yellow) is averaged out with
 758 respect to IFTB1 (alternating blue) due to periodicity mismatch. Red box indicates the location of the
 759 mask used for subclassification to generate the classes in D/E
 760 C – Cartoon depicting the view in A, B, D and E
 761 D – After classification of the IFTA region in the IFTB1 average, we find classes where IFTA
 762 (alternating yellow) and IFTB (alternating blue) are in sync. We see a new density (dark blue) linking
 763 IFTB to IFTA, which we designate as CC5 of IFT81/74. Bottom, cartoon representation of the density.
 764 E – A second class shows how the IFT81/74 connections (dark blue) adapt to the periodicity
 765 mismatch between IFTA (alternating yellow) and IFTB (alternating blue), by switching register with
 766 respect to IFTA at the red arrow. Bottom, cartoon representation of the density.
 767 F – A top view of Class A from classification of the IFTA region in the IFTB2 average (cartoon view
 768 shown inset). IFTB1 (alternating light/dark blue) and IFTB2 (alternating light/dark green) are joined
 769 by a new, unmodelled density corresponding to the C-terminus of IFT172 (lime green).
 770 G – The same class as F, rotated 180° to view the same IFT172 density (lime green) interacting with
 771 IFTA (alternating yellow). Cartoon view inset.
 772 H – The same view as G, showing the Alphafold2 IFT172 C-terminus model (lime green) docked into
 773 the density along with our IFTA model. IFT172 bridges the gap between IFT144 and IFT139.
 774 I – The same view as H, with IFT172, IFT144 and IFT139 shown with surface charge depiction. The
 775 negatively charged IFT172 C-terminus can make favourable ionic interactions with the positively
 776 charged IFT144 C-terminus
 777 J – Cartoon representation of the overall anterograde train structure, showing the two points of
 778 connection (dotted outlines).
 779

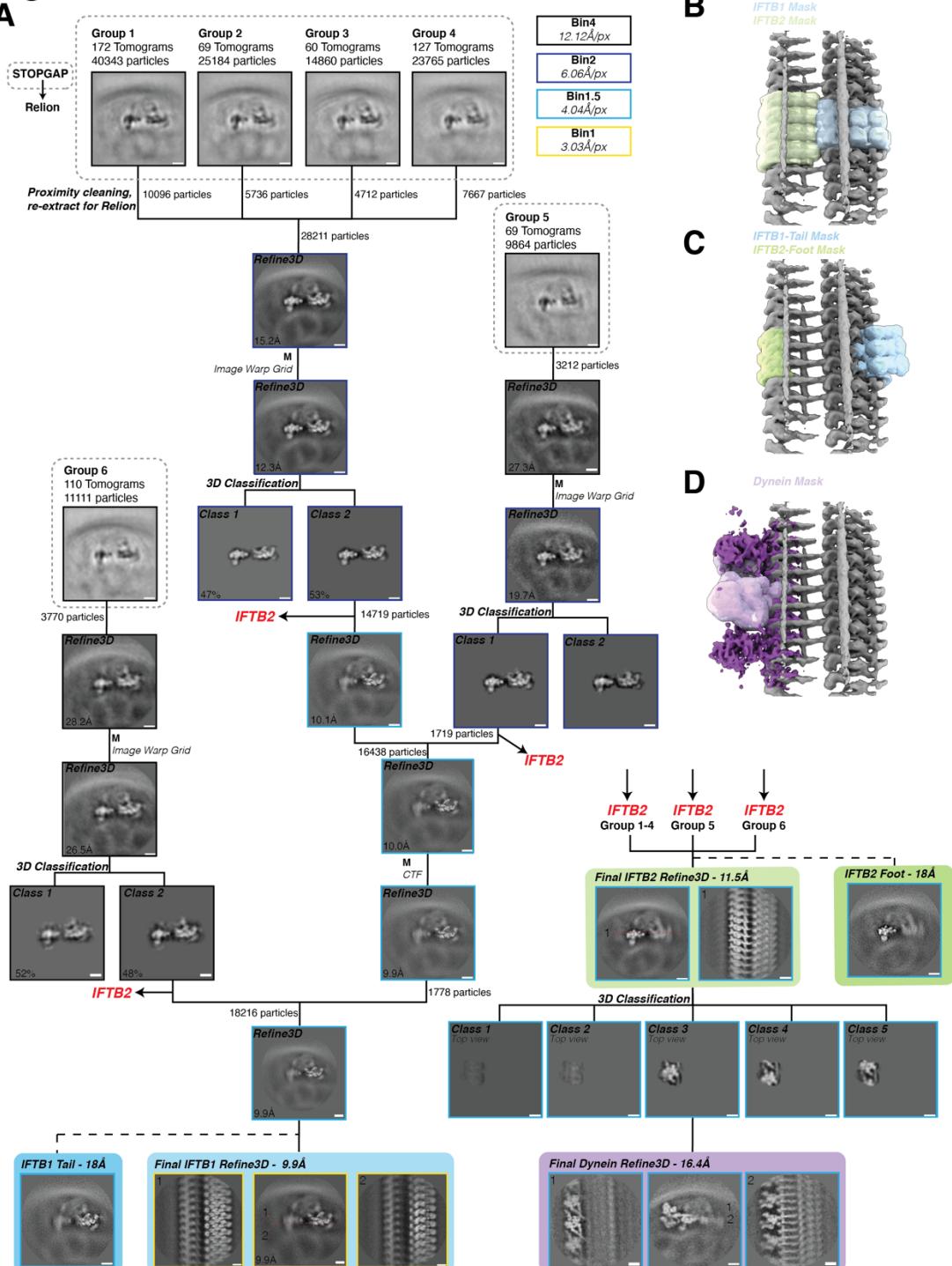
Figure S1

780

781 Identification of anterograde IFT trains in cryo-electron tomograms

782 A – A slice through a tomogram of a *C. reinhardtii* cilium, showing a bulge in the membrane in the
783 middle corresponding to an anterograde IFT train (red box). Scale bar=100nm

784 B – Close up view of the train in A, with IFTA (yellow) and IFTB (blue) repeats annotated. Scale
785 bar=50nm


786 C – After identification, we manually picked trains in IMOD as a contour running through the center
787 of the complex. IFTB picking is shown here, and IFTA, visible above the IFTB contour, was picked in a
788 separate model. Scale bar=50nm

789 D – The contour was converted into subtomogram coordinates with oversampling to ensure no
790 particles were missed. Scale bar=50nm

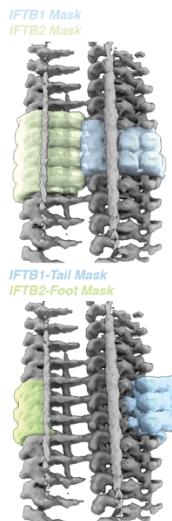
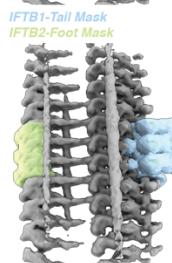
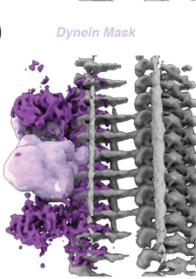

791 E – Here, the final refined coordinates are shown on the train. The particles have undergone
792 proximity cleaning compared to the oversampling in D, as well as 3D classification to remove bad
793 particles. Scale bar=50nm

Figure S2


A


B

C

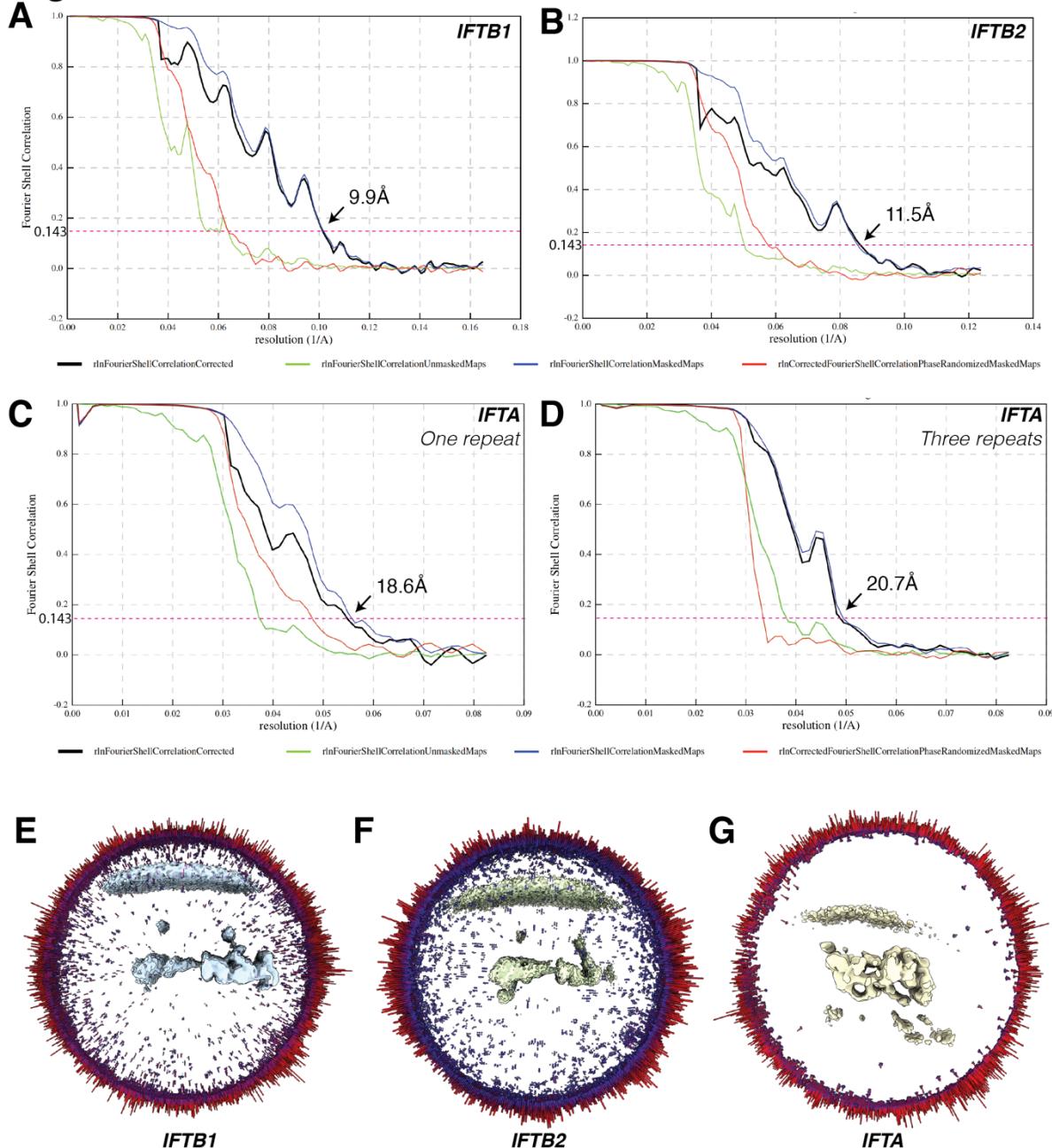
D

794

795 **Processing diagram for IFTB subtomogram averaging.**

796 **A** – Workflow depicting the steps involved in averaging the IFTB1 and IFTB2 complexes. Processing
797 started in STOPGAP (areas in dotted black line) before proceeding to Relion. The level of binning at
798 each stage is indicated by the outline of the box (colour code top right). All scale bars=10nm

799 **B** – The solvent masks used to refine IFTB1 (blue) and IFTB2 (green) separately from each other


800 **C** – The solvent masks used to refine the extremities of the IFTB1 and IFTB2 complexes, which are
801 poorly resolved when using the masks in B

802 **D** – The solvent mask used to classify and refine dynein from IFTB2.

803

804

Figure S3

805

806 Descriptions of IFTB and IFTA map quality

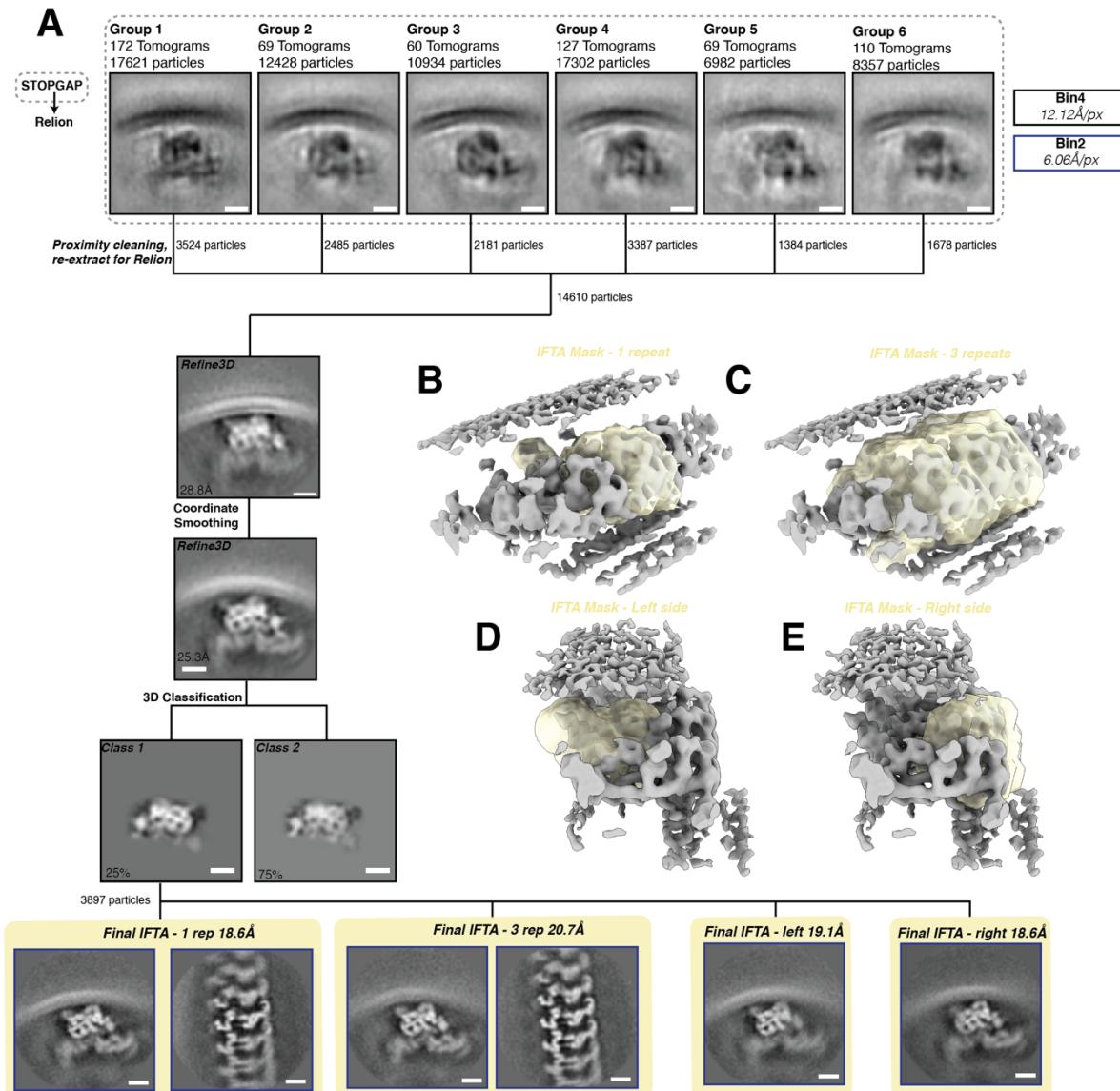
807 A – Fourier Shell Coefficient (FSC) curve of the IFTB1 average, as a measure of map resolution

808 B – FSC curve of the IFTB2 average

809 C – FSC curve of the IFTA average, refined using a mask containing one repeat

810 D – FSC curve of the IFTA average, refined using a mask containing three repeats

811 E – Angular distribution of particles contributing to the IFTB1 average


812 F – Angular distribution of particles contributing to the IFTB2 average

813 G – Angular distribution of particles contributing to the IFTA average (one repeat)

814

815

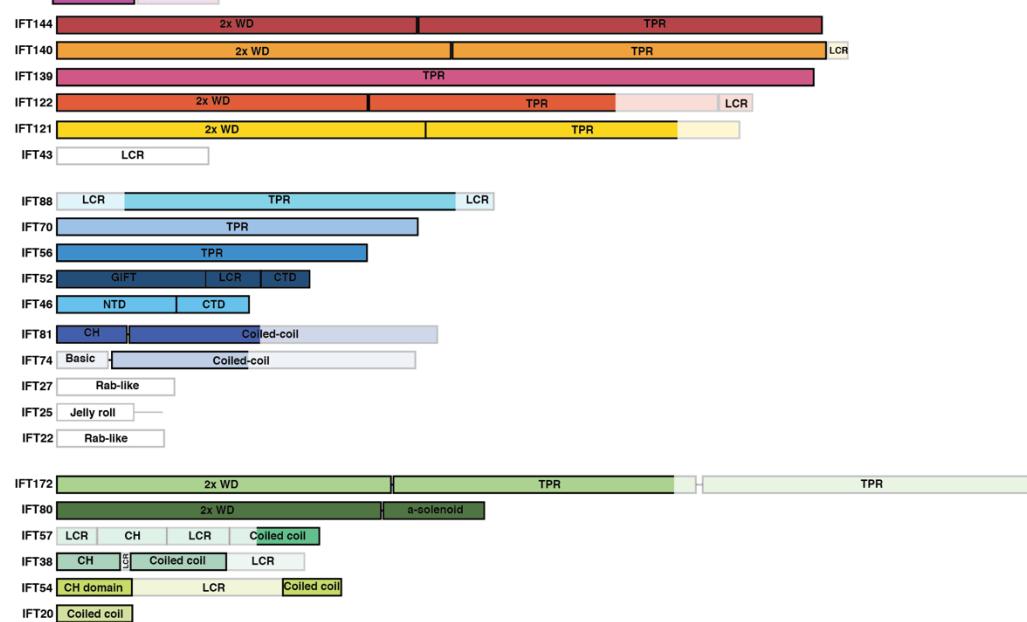
Figure S4

816
817
818
819
820
821
822
823
824
825
826

Processing diagram for IFTA subtomogram averaging.

A – Workflow depicting the steps involved in averaging the IFTA complex. Processing started in STOPGAP (areas in dotted black line) before proceeding to Relion. The level of binning at each stage is indicated by the outline of the box (colour code top right). All scale bars=10nm

B – The solvent mask used to refine IFTA, containing one repeat


C – The solvent mask used to refine IFTA, containing three repeats

D – The solvent mask used to refine IFTA, consisting of the left side of one repeat of the complex

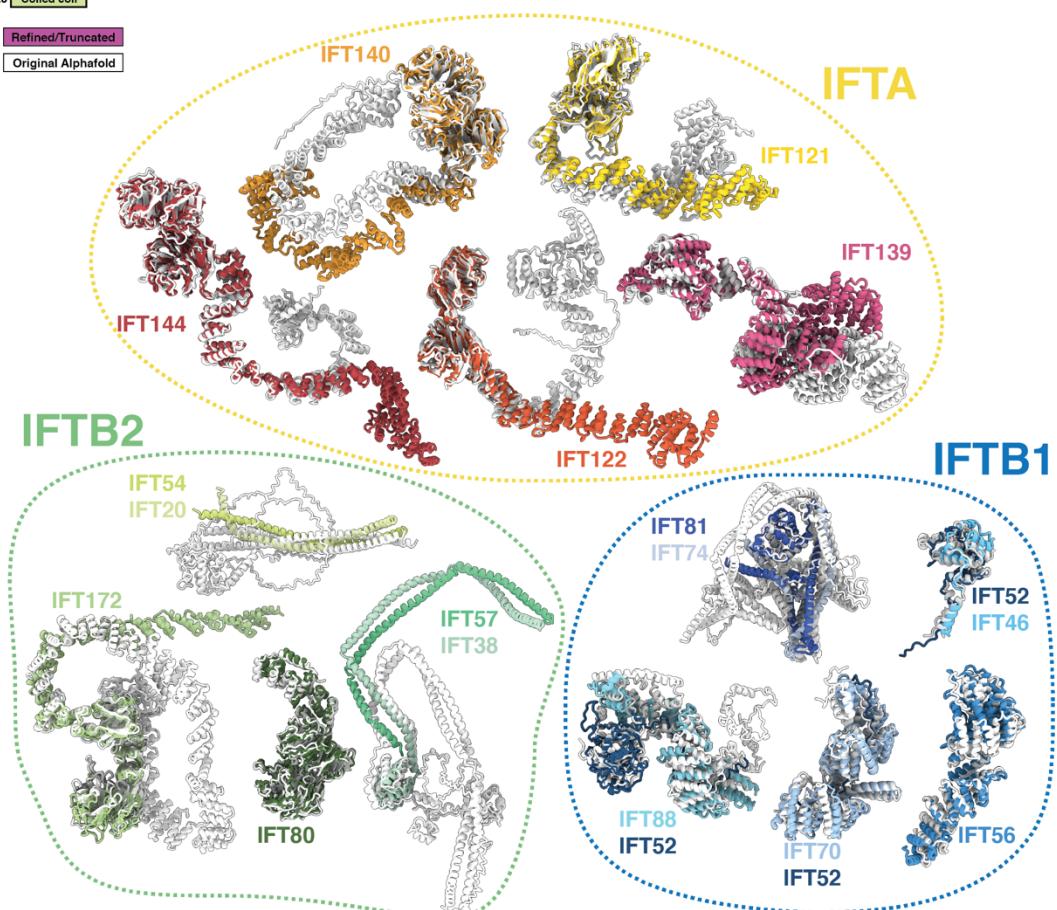
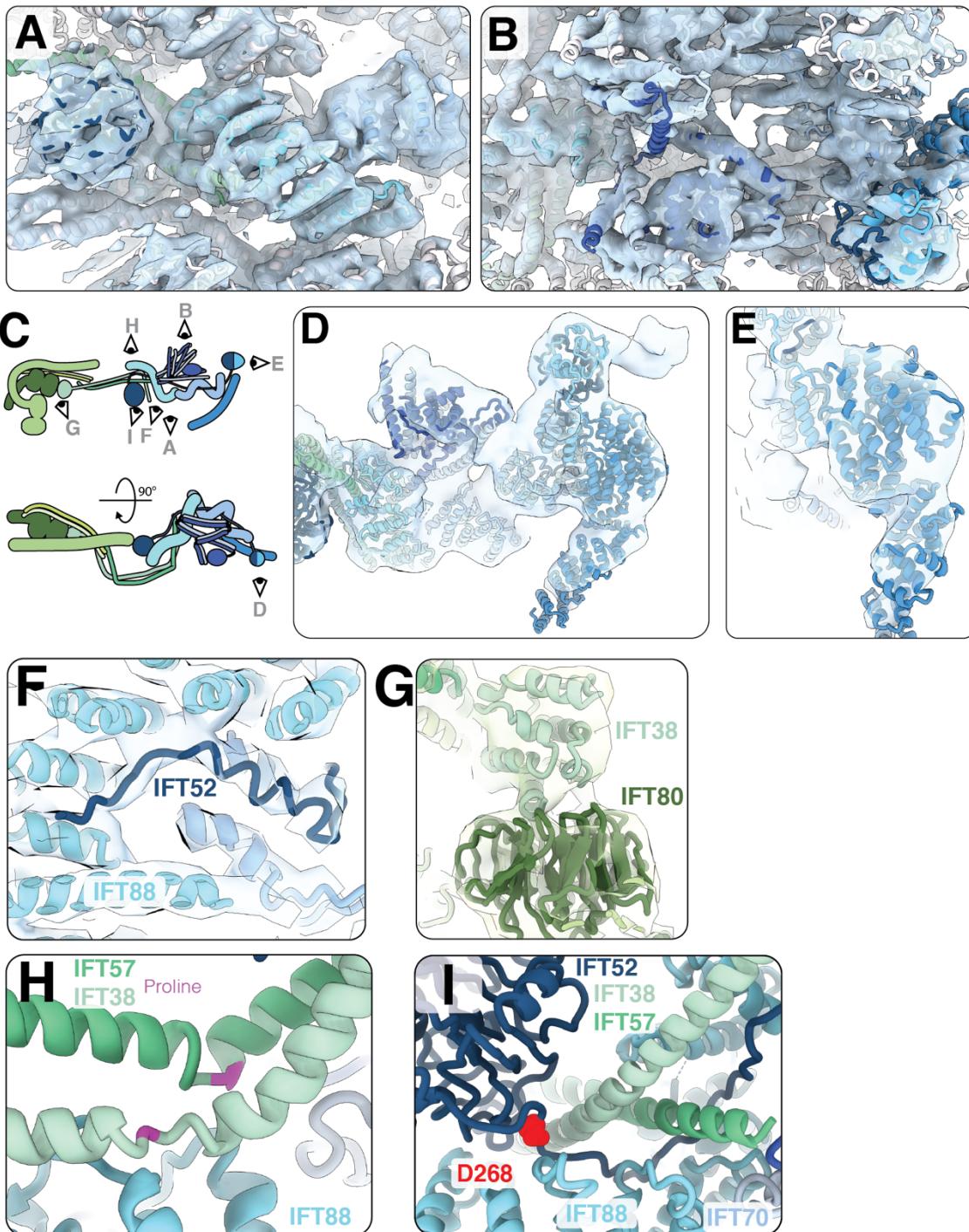

E – The solvent mask used to refine IFTA, consisting of the right side of one repeat of the complex

Figure S5

A Modelled Unmodelled

B Refined/Truncated
Original AlphaFold


827

828 **Building a model of IFT using AlphaFold2 predictions**

829 **A** – Domain organization of all IFT constituents. Lighter shading indicates regions that were flexible
830 and unmodelled in our structure. WD = WD40 repeat domain, TPR = Tetratricopeptide repeat domain,
831 CH = Calponin homology domain, LCR = low-complexity (disordered) region.

832 **B** – The original, unmodified alphafold structures (white) overlaid with the final refined models in our
833 new structure (colours). Refined models have had flexible regions deleted.

Figure S6

834

Building a model of IFTB1

835

A – A view of the IFTB1 model docked into its density from the bottom (see E)

836

B – A view of the IFTB1 model docked into its density from the top (see E)

837

C – Cartoon representation of IFTB showing the views in A-D.

838


D – A side view of the “tail” of IFTB1 docked into the masked tail refinement (Figure S2A) map lowpass filtered to 18Å. The region containing IFT56 was more flexible in the high-resolution average shown in A/B, but is more clearly resolved here.

839

E – A close up view of IFT56 in the masked tail refinement map, showing that the twist in the TPR helix is visible

844 **F** – Density for the central unstructured domain of IFT52 (dark blue) is visible in the central pore of
845 IFT88 (cyan), showing that the Alphafold2 prediction agrees with our experimental data.
846 **G** – The N-terminal CH domain of IFT37 (light green) docks to the exterior face of the first WD domain
847 of IFT80 (dark green) in IFTB2.
848 **H** – A proline residue (magenta) creates a kink in each of the IFT57/38 (dark/light green) helices near
849 the contact to the first IFT88.
850 **I** – The position of D268 in IFT52 highlighted in red, at the interface between IFTB1 and IFTB2. D268 in
851 *C. reinhardtii* corresponds to the D259H mutation in humans ²².
852

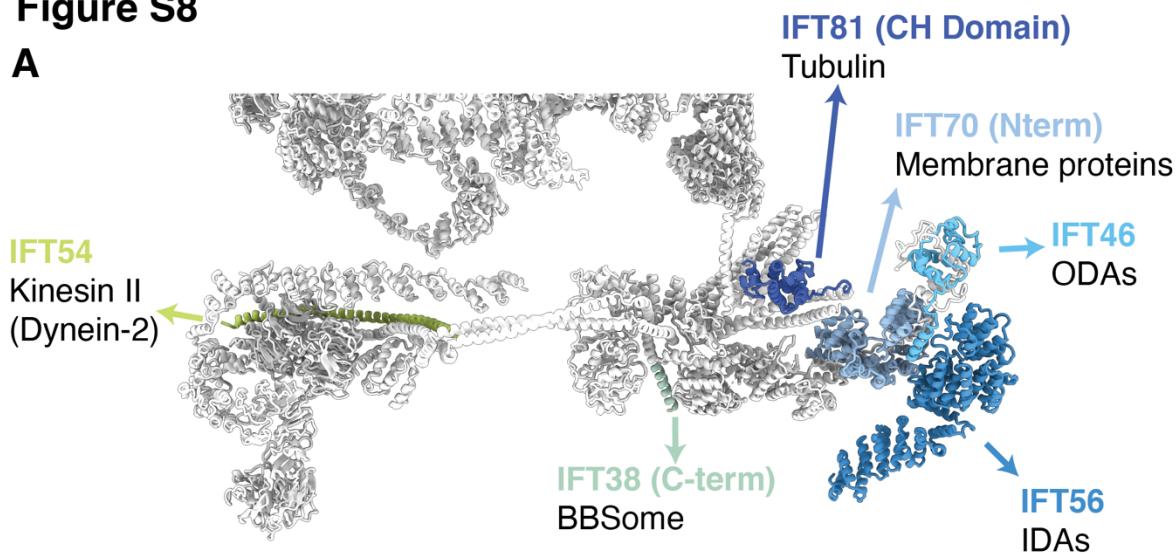
Figure S7

853

854 **Building a model of the IFTB2 complex and its interaction partner dynein-2**

855 **A** – A top view of the IFTB2 subtomogram average density with the IFTB2 model docked in.

856 **B** – A view of the end of the IFTB2 subtomogram average density with the IFTB2 model docked in.


857 **C** – The same view as B, but at a lower threshold to demonstrate that IFT172-WD1 is represented in the density but at lower resolution than the rest of the complex due to flexibility.

858 **D** – Cartoon depicting the views of IFTB in the other panels

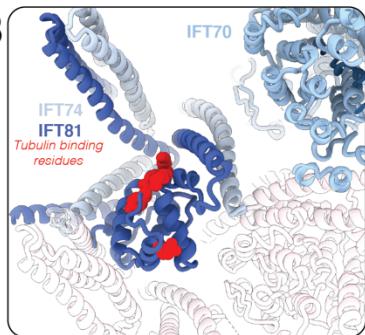
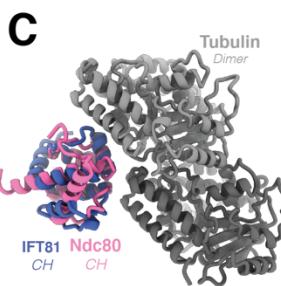
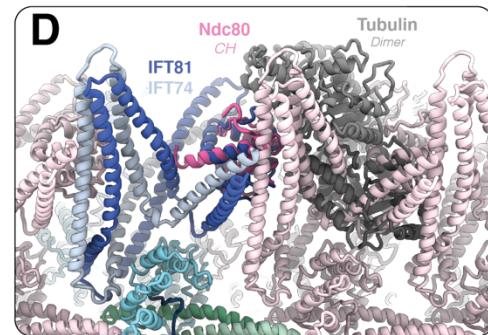

860 **E** – The IFT172-WD1 domain folded as a multimer with the CH domain of IFT57 forming a complex that
861 is represented in the density of the IFT172 masked refinement map.
862 **F** – The IFT54/20 (lime/pale green) bridge the gap in the IFT80-WD2 ring.
863 **G** – Coloured density of Figure 3D, showing our newly refined dynein average. Dynein repeats are
864 alternating pink/purple, IFTB2 is green
865 **H** – Side view of F
866 **I** – Same view as G, with density made translucent and the models docked in.
867 **J** – The density in our new dynein average cropped out around the original dynein model (white) shows
868 that the heavy chain undergoes a rearrangement in our newly refined model (purple), leaving an
869 unmodelled density (inset).
870 **K** – The unmodelled density likely corresponds to a Tctex1 dimer (green), linking the motor domains
871 to the tail.
872 **L** – A view of the top surface of IFTB2, corresponding to the site where the dynein MTBD binds.
873 **M** – The same view with surface charge representations shown, highlighting a positively charged patch
874 where dynein binds.
875

Figure S8


A


B

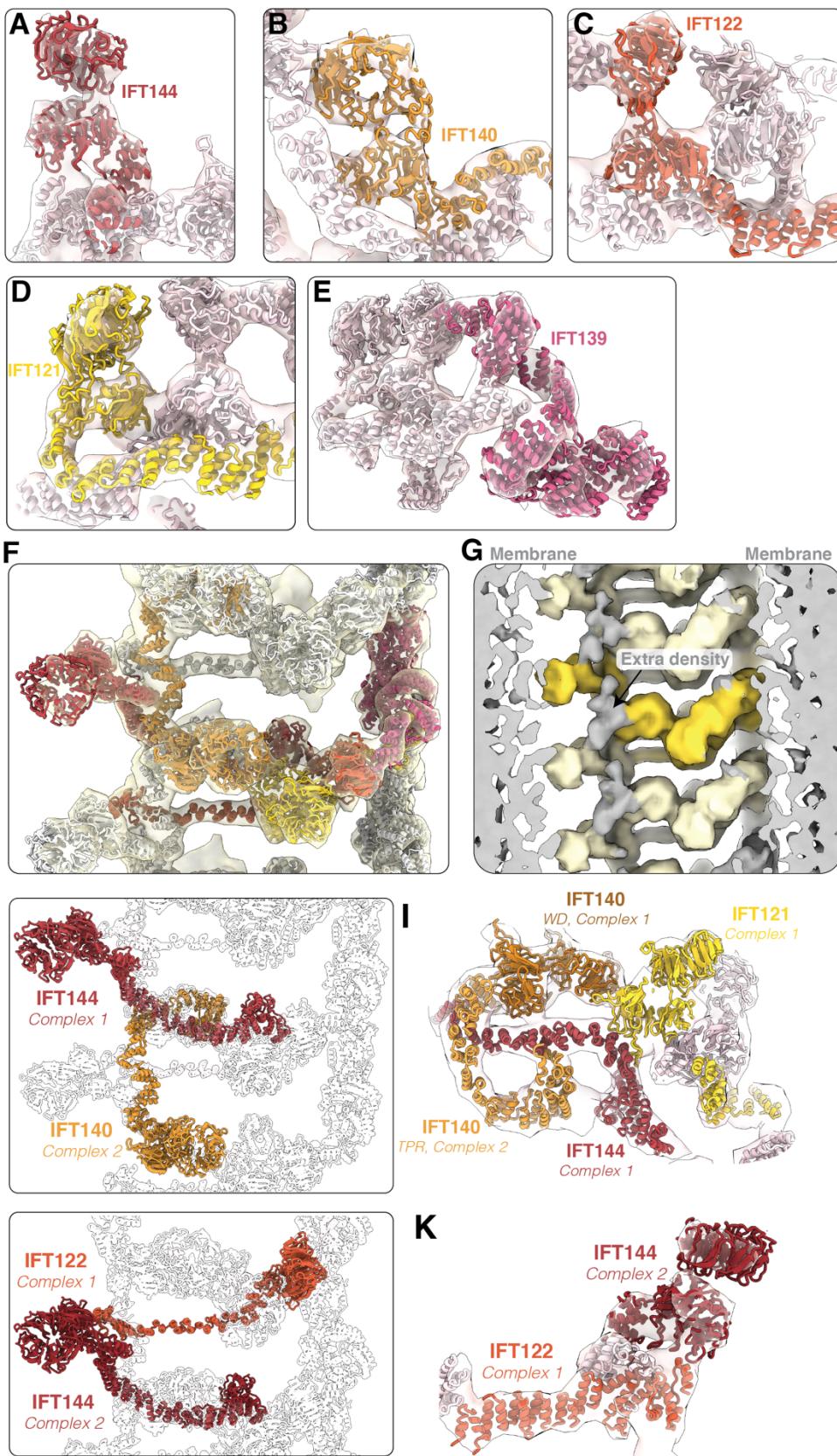
C

D

876

877 Cargo interactions in anterograde IFT trains

878 A – The IFTA and IFTB models are displayed in grey, with regions of IFTB previously linked
879 biochemically to cargo transport labelled coloured. The large structural cargo interactions mostly
880 occur at the edge of IFTB1. IFT54 is thought to recruit kinesin II to anterograde trains, but this is not
881 visible in our structure, probably due to flexibility.


882 B – The CH domain of IFT81 (navy blue), with positive residues thought to be important for tubulin
883 binding shown in red. Only a narrow space exists between the coiled coil domains of IFT81/74 nearby.

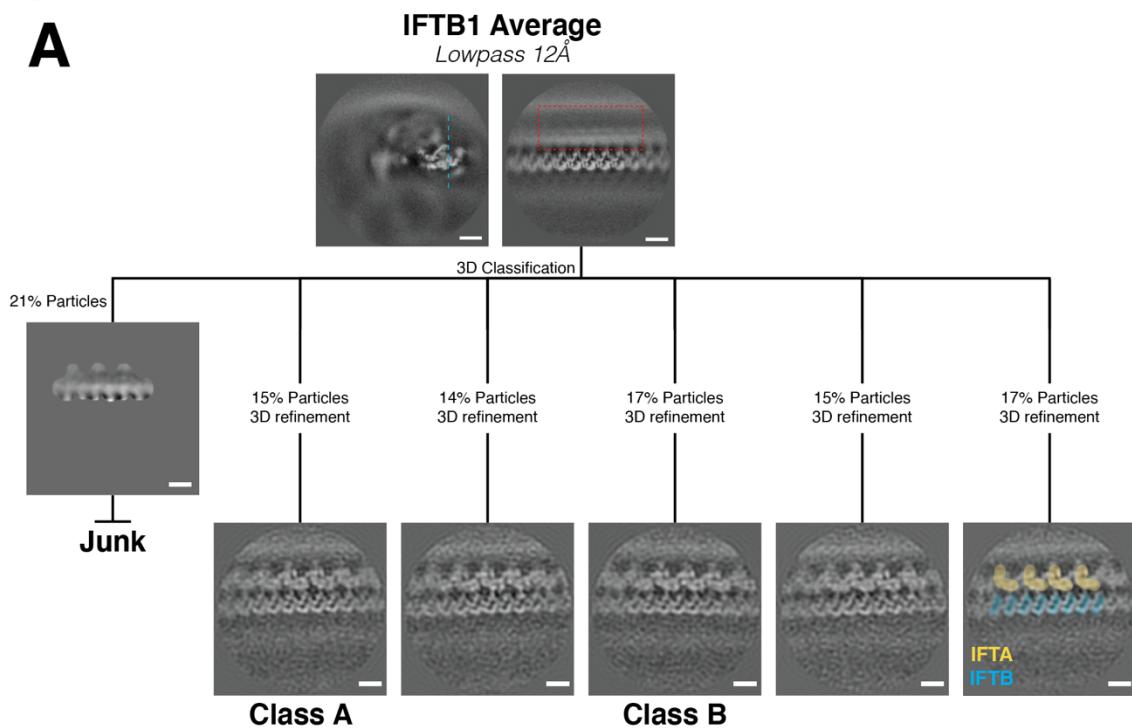
884 C – Comparison between IFT81 CH domain (navy blue) and the CH domain of Ndc80 (pink) bound to
885 microtubules (grey, PDB 3IZO), indicating strong structural homology between the two CH domains.

886 D – The Ndc80:MT complex structure docked with the Ndc80-CH domain aligned to the IFT81-CH
887 domain, simulating a potential interaction with tubulin cargo. Strong steric clashes occur between
888 tubulin and IFT81/74 in the neighbouring repeat.

889

Figure S9

890
891


The IFTA polymer is built around four tandem WD domain proteins.

892 A – During model building, we located the IFTA subunits based on the conformation of their WD
893 domains. Here, we see the WD domain of IFT144 in the “left masked” IFTA average (Figure S4A).

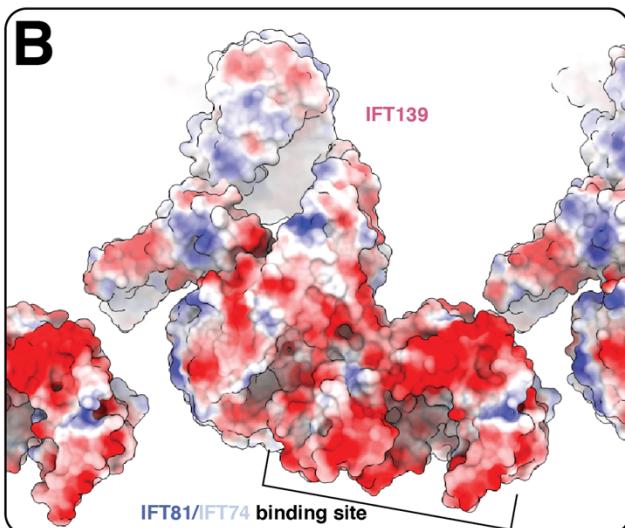
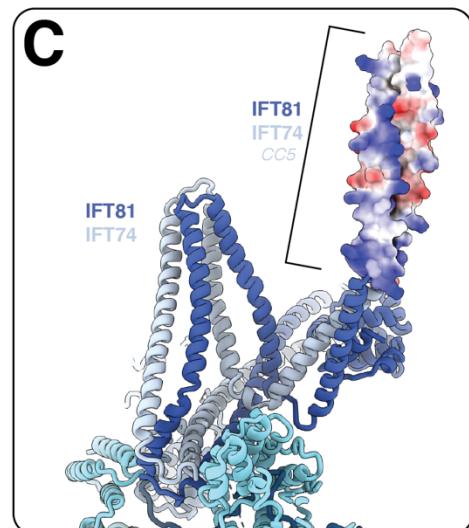

894 **B** – The WD domains of IFT140 flexibly fit into the “left masked” IFTA average
895 **C** – The WD domains of IFT122 flexibly fit into the “right masked” IFTA average (Figure S4A)
896 **D** – The WD domains of IFT121 flexibly fit into the “right masked” IFTA average
897 **E** – The model for IFT139 flexibly fit into the “right masked” IFTA average
898 **F** – Multiple repeats of the overall IFTA model docked into the “3 repeat” IFTA average (Figure S4A) to
899 show the overall fit of the model into the density.
900 **G** – We lowpass filtered our IFTA 3-repeat average, with regions containing part of our model coloured
901 in yellow (dark yellow highlighting a single repeat). We see an extra density (grey) forming a bridge
902 between the WD domains of IFT144 and IFT140 that is not formed by a protein in our model.
903 **H** – Long distance interconnectivity between IFT144 and IFT140 from neighbouring complexes. The
904 TPR domain of IFT140 (orange) reaches into the neighbouring complex and stabilize its copy of IFT144-
905 TPR (dark red).
906 **I** – Side view of H, with some extra subunits coloured and density shown. The TPR domain of IFT140
907 from the adjacent repeat (complex 2) stabilizes the conformation of IFT144 (complex 1). The WD
908 domain of IFT140 (dark orange) sits on top of IFT144-TPR (both complex-1), meaning IFT140-TPR from
909 complex 2 determining the conformation of its neighbour. This stabilizes the binding site for IFT121-
910 WD (yellow, complex 1)
911 **J** – Long distance interconnectivity between IFT122 and IFT144 from neighbouring complexes. IFT122-
912 TPR from complex 1 reaches across to form a platform that IFT144-WD from complex 2 sits upon.
913 **K** – Side view of J with density shown.
914
915

Figure S10


A

B

C

916
917
918
919
920
921
922
923
924

Classification of synchronous IFTA and IFTB averages

A – Processing workflow of the classification of the IFTB average to generate the classes in **Figure 5** that show synchronous IFTA and IFTB. Scale bars=10nm

B – Surface charge representation of IFT139 shows that the IFT81/74 binding site is strongly negatively charged

C – Surface charge representation of IFT81/74 CC5 shows that it is positively charged, facilitating its interaction with IFT139.

Data Collection

Microscope	Titan Krios G4
Voltage (kV)	300
Energy filter	10-20eV
Detector	Falcon 4
Recording mode	EER
Pixel size	3.03Å/px
Defocus range (um)	2.5-4.5
Increments	3°
Tilt range	±60°
Acquisition scheme	Dose-symmetric
Accumulated dose (e-/A2)	100eV
Number of tomograms	600

925
926
927
928
929
930

Supplementary table 1

Cryo electron tomography data collection parameters

Subtomogram averaging	IFTA	IFTB1	IFTB2
Number of trains	741		
Number of subtomograms	3897	18216	
Final pixel size (Å/px)	6.06	3.03	4.04
Resolution (Å, 0.143 cutoff)	18.6	9.9	11.5
Sharpening b-factor (Å)	-2100	-600	-700
Validation			
Clashscore	12.05	9.88	10.6
Molprobity score	2.11	2.02	2.12
Ramachandran favoured (%)	91.2	91.4	88.9
Ramachandran outliers (%)	0.03	0.24	0
Rotamer outliers (%)	0	0.04	0

931
932

Supplementary table 2

A summary of subtomogram averaging a model refinement validation statistics

934

Supplementary Movie 1

An overview of the IFTB1 complex, showing the fit of the refined model into the density

937

Supplementary Movie 2

An overview of the IFTB2 complex, showing the fit of the refined model into the density

940

Supplementary Movie 3

An overview of the IFTA complex, showing the fit of the refined model into the density

943

Supplementary Data 1

A list of human mutations to IFTA proteins found in the Human Gene Mutation Database, and their corresponding conserved residues in *Chlamydomonas* proteins.