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ABSTRACT 21 

Mitochondrial metabolism is entirely dependent on the biosynthesis of the [4Fe-4S] clusters, 22 

which are part of the subunits of the respiratory chain. The mitochondrial late ISC pathway 23 

mediates the formation of these clusters from simpler [2Fe-2S] molecules and transfers them 24 

to client proteins. Here, we characterized the late ISC pathway in one of the simplest 25 
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mitochondria, mitosomes, of the anaerobic protist Giardia intestinalis that lost the respiratory 26 

chain and other hallmarks of mitochondria. Identification of the late ISC interactome revealed 27 

unexpected involvement of the aerobic marker protein BolA and specific interaction of IscA 28 

with the outer mitosomal membrane. Although we confirmed that the synthesis of the Fe-S 29 

cluster remained the only metabolic role of mitosomes, we also showed that mitosomes lack 30 

client proteins that require the [4Fe-4S] cluster. Instead, by knocking out the bolA gene from 31 

the G. intestinalis genome, we showed that, unlike aerobic mitochondria, the late ISC 32 

mitosomal pathway is involved in the assembly of cytosolic [4Fe-4S] clusters. Thus, this 33 

work reveals an unexpected link between the formation of mitochondrial and cytosolic [4Fe-34 

4S] clusters. This may either be a consequence of mitochondrial adaptation to life without 35 

oxygen, or it represents a general metabolic coupling that has not been previously observed in 36 

the complex mitochondrial metabolism of aerobes. 37 

 38 

INTRODUCTION 39 

Giardia intestinalis is a microaerophilic parasitic protist that lives in the epithelium of 40 

the small intestine of mammals, where it causes giardiasis (1). It belongs to the Metamonada 41 

supergroup of eukaryotes that typically contain mitochondria-related organelles (MRO) that 42 

lack organellar genomes and cristae and that are adapted to life with little or no oxygen (2). 43 

The so-called mitosomes of G. intestinalis are one of the simplest MROs known among 44 

eukaryotes, as they contain only a single metabolic pathway for iron-sulfur (Fe-S) cluster 45 

synthesis (ISC) (3–5).  46 

Fe-S clusters function as cofactors of proteins (Fe-S proteins) in all living organism. In 47 

eukaryotes, they participate in essential biological processes in various compartments such as 48 

DNA maintenance in the nucleus, electron transport chains in mitochondria, and protein 49 
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translation in the cytoplasm (6–8). In humans, about 70 different Fe-S proteins have been 50 

identified (7). 51 

In aerobic eukaryotes, the formation of Fe-S clusters for all cellular proteins begins in 52 

mitochondria via the activity of the ISC pathway, which can be functionally divided into the 53 

early or late acting complex of proteins (9). In ‘classical’ mitochondria (Fig. 1A), the early 54 

ISC pathway produces [2Fe-2S] clusters on the scaffold protein IscU (10) via the activity of a 55 

complex consisting of cysteine desulfurase IscS (11), its accessory subunit Isd11 (12–14) and 56 

an acyl carrier protein (15–17). The actual transfer of sulfur to IscU is facilitated by frataxin 57 

(18) and the electrons for cluster formation are provided by reduced ferredoxin (Fdx), which 58 

itself is a [2Fe-2S] protein (19). However, the source of iron and the mechanism of iron 59 

transfer to the cluster remain elusive. Upon the formation of [2Fe-2S] cluster on IscU, a 60 

chaperone complex consisting of Hsp70 and HscB transfers the cluster to glutaredoxin 5 61 

(Grx5) apoprotein (20).  62 

Grx5 acts as the central dividing point between the early and late ISC pathway at 63 

which the assembled [2Fe-2S] cluster is either (i) transferred to the target mitochondrial [2Fe-64 

2S] apoproteins, (ii) exported to the cytosol as an enigmatic X-S compound or (iii) enters the 65 

late ISC machinery (9,21). The late ISC machinery starts with the transfer of two [2Fe-2S] 66 

clusters from Grx5 to a complex of IscA1, IscA2 and Iba57 (22) where the [4Fe-4S] cluster is 67 

formed (23). The newly created [4Fe-4S] clusters are delivered to apoproteins with the help of 68 

Nfu1 (24,25) and Ind1, the latter being specifically involved in [4Fe-4S] cluster-binding for 69 

the complex I assembly (26). Recently, two conserved factors BolA1 and BolA3 have been 70 

shown to participate in the transfer of [4Fe-4S] clusters to apoproteins in mitochondria (27). 71 

BolA1 and BolA3 have overlapping functions, but preferentially act on Grx5 and Nfu1, 72 
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respectively (25). Importantly, BolA function has previously been associated with aerobic 73 

metabolism, which was supported by its absence in anaerobic eukaryotes (28).  74 

 It is now generally accepted that the early ISC pathway is a converging evolutionary 75 

point of the MROs, i.e., no matter how much the mitochondrion has been modified during 76 

evolution, most MROs have retained early ISC components like IscU and IscS (29). 77 

Moreover, some of the MROs like mitosomes of G. intestinalis also contain components of 78 

the late ISC pathway. 79 

Therefore, here, we sought to experimentally examine the nature of the late ISC 80 

pathway in G. intestinalis. Using enzymatic tagging and series of affinity pulldowns, we have 81 

generated a robust interactome of the mitosomal late ISC pathway revealing that Grx5, Nfu1 82 

and herein discovered BolA orthologue are at the core of the pathway. On the other hand, 83 

mitosomal IscA appears to function in downstream steps of the pathway. The specific 84 

interaction between BolA and Grx5 could be confirmed by yeast two hybrid assays as well as 85 

by their strict co-occurrence in other MRO-carrying species. However, no endogenous 86 

mitosomal substrate for the late ISC pathway could be identified in the mitosomal proteome 87 

or in the bioinformatic search of the G. intestinalis genome. Hence, a complete bolA knockout 88 

strain was generated by CRISPR/Cas9 which showed a significantly decreased activity of 89 

cytosolic [4Fe-4S] pyruvate:ferredoxin oxidoreductase. These results indicate that mitosomal 90 

BolA, and thus the late ISC pathway, is required for the formation of cytosolic [4Fe-4S] 91 

clusters. Such functional connection is unknown for mitochondria and may represent unique 92 

of adaptation of MROs. 93 

 94 

RESULTS 95 

 96 

The late ISC pathway and the identification of BolA in G. intestinalis   97 
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Previous genomic and proteomic analyses of G. intestinalis revealed the presence of 98 

three late ISC pathway components; Nfu1, IscA and Grx5, hereafter referred to as GiNfu1, 99 

GiIscA, and GiGrx5, respectively (Fig. 1A). All three proteins possess highly conserved 100 

cysteine residues that are necessary for the coordination of the Fe-S cluster. GiGrx5 contains 101 

the CGFS motif of monothiol glutaredoxins (Fig. 1B, Supplementary Fig. 1A), the C-terminal 102 

domain of GiNfu1 carries a CxxC motif (Fig. 1B and Supplementary Fig. 1B) and GiIscA 103 

carries a CxnCxC signature motif (Fig. 1B, Supplementary Fig. 1C). Both GiNfu1 and GiIscA 104 

carry a short N-terminal pre-sequence that likely serves as the mitosomal targeting signal. 105 

GiGrx5 was previously shown to carry a long non-homologous N-terminal sequence, which is 106 

required for targeting but may possibly play an additional role in protein function (30). Of the 107 

two types of IscA proteins known for eukaryotes, only IscA2 was identified in G. intestinalis 108 

(4). 109 

 The presence of these three late ISC components in G. intestinalis prompted us to 110 

search for other factors that were identified within the late pathway. Specifically, the 111 

orthologues of BolA, Iba57 and Ind1 proteins were searched using hidden Markov model 112 

(HMM) profiles against the G. intestinalis genome. Interestingly, while the last two searches 113 

did not result in the identification of positive hits, a single BolA orthologue was identified in 114 

G. intestinalis (GiBolA) (Fig. 1B, 1C). The protein could be readily identified in the 115 

conceptual proteomes of all genotypes (assemblages) including new genome assembly of 116 

WBc6 (31) but was missing from the original reference genome, probably due to its small size 117 

(32). The amino acid sequence of GiBolA contains signature V/I/LHAL/I motif towards the 118 

C-terminus (33) but no putative N-terminal targeting sequence, as is common to most other 119 

BolA proteins (e.g., Fig. 1C). Structural prediction of GiBolA using AlphaFold 2 revealed an 120 

αβαβ topology that matches experimentally solved or predicted structures of BolA homologs 121 

from both eukaryotes and prokaryotes (Fig. 1D) (34,35). The only structural difference is a 122 
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short C- terminal -helix missing in GiBolA (Fig. 1D). Given the occurrence of three BolA 123 

proteins in eukaryotes, phylogenetic analysis was performed to determine which of three 124 

eukaryotic BolA paralogues, functioning in the cytosol (BolA2) (36) or mitochondria (BolA1 125 

and BolA3) (28,37) is present in G. intestinalis. The analysis showed that GiBolA and other 126 

BolA proteins that could be identified in the Metamonada supergroup emerge from within a 127 

clade of BolA1 proteins (Fig. 1E) suggesting that G. intestinalis contains an orthologue of 128 

mitochondrial BolA1, which would hence be expected to be localized in mitosomes. 129 

 130 

GiBolA is part of mitosomal late ISC pathway. 131 

To test whether GiBolA is indeed a mitosomal component, the protein was expressed with the 132 

C-terminal biotin acceptor peptide tag (BAP) tag. Immunodetection of the tag by fluorescence 133 

microscopy showed clear colocalization of GiBolA with the mitosomal marker 134 

GL50803_9296 (Fig. 2A). Western blot analysis of the cellular fractions revealed the specific 135 

presence of the protein in the high-speed pellet (HSP) fraction that is enriched for mitosomes 136 

(Fig. 2B). Except for GiGrx5 (30), the mitosomal localization of other late ISC components 137 

had not been previously experimentally confirmed. Therefore, analogously, all three proteins 138 

were expressed with the C-terminal BAP tag and their cellular localization was detected in the 139 

fixed cells (Fig.2A) and in the cell fractions (Fig. 2B). All proteins specifically localize in  the 140 

mitosomes. Furthermore, we tested whether BAP-tagged proteins are localized within the 141 

mitosomes or are accumulated on the surface of the organelle as a possible result of protein 142 

overexpression. To this end, a protease protection assay was performed on G. intestinalis 143 

expressing BAP-tagged proteins whereby HSPs were incubated with trypsin in presence or 144 

absence of a membrane-solubilizing detergent. Proteins encased by one or more membranes 145 

will be inaccessible to trypsin and will therefore be detected by standard immunoblotting in 146 

the absence but not presence of the detergent (Fig. 2C). Unlike the outer membrane marker 147 
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GiTom40, all late ISC components were resistant to protease treatment as the mitosomal 148 

matrix marker IscU. As a control, mitosomal membrane solubilization resulted in overall 149 

protein degradation. In summary, all four proteins were found specifically located within 150 

mitosomes, suggesting that the minimalist late ISC pathway occurs within the organelles.  151 

 152 

Mitosomal BolA specifically interacts with Grx5 and other mitosomal ISC components. 153 

Recent studies on human BolA proteins showed a specific interaction of mitochondrial 154 

BolA1 with Grx5 during the stabilization of [2Fe-2S] cluster on Grx5 (27). Using a yeast two 155 

hybrid (Y2H) assay, we tested whether mitosomal BolA also interacts with Grx5. Indeed, the 156 

assay was able to show the interaction between GiBolA and GiGrx5 (Fig. 2D). Previous 157 

studies in yeast identified the specific residues of BolA and Grx5 critical for interaction (27). 158 

Therefore, we tested whether the same molecular interaction can also be demonstrated for the 159 

Giardia proteins. Specifically, the cysteine residue (position 128) within the CGFS motif of 160 

GiGrx5 and a highly conserved histidine residue (position 82) of GiBolA, that were both 161 

shown to coordinate Fe-S cluster (38). In both cases, the introduced mutations abolished the 162 

positive interaction in Y2H (Fig. 2D). These results strongly suggest that the mechanism of 163 

interaction is conserved for the late ISC components in the G. intestinalis mitosomes. 164 

However, the analogous assay did not show any interaction between GiBolA and GiNfu1 165 

(data not shown), that would be expected if GiBolA represented a BolA3 homologue (25) 166 

 To reveal the complex in vivo interactions of GiBolA, we used a previously 167 

established method of enzymatic tagging in G. intestinalis that is based on co-expression of 168 

the biotin ligase (BirA) and protein of interest tagged by BAP (3). In the presence of ATP, 169 

BirA specifically biotinylates the lysine residue within the BAP tag. Therefore, a BAP-tagged 170 

GiBolA was introduced into G. intestinalis expressing cytosolic BirA. The mitosomes-171 

enriched HSP was incubated with the chemical crosslinker DSP and GiBolA-BAP was 172 
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purified on streptavidin-coupled magnetic beads (see Materials and Methods for more 173 

details). The purified crosslinked complexes were subjected to proteomic analysis and the 174 

resulting peptide mass spectra were searched against the predicted proteome of G. intestinalis 175 

(39). Data obtained from the biological and technical triplicates (Supplementary Table 1) 176 

were displayed in a volcano plot showing the fold change of protein abundance compared to 177 

the negative control (Fig. 2E).  In total, 26 significantly-enriched proteins were identified. 178 

GiGrx5 represented the most enriched interactor but other ISC components (NifU, IscA, Fdx, 179 

IscU, IscS, Hsp70, Jac1) also appeared among the most significant enriched proteins (Fig. 180 

2E).  The remaining proteins represented mitosomal proteins involved in protein import and 181 

folding, and mitosomal proteins of unknown function. At least one probable non-mitosomal 182 

protein (PSMC1, Proteasome 26S Subunit, ATPase 1 homologue) was identified among the 183 

significantly enriched proteins (Fig. 2E, Supplementary Table 1) suggesting minimal 184 

contamination from non-mitosomal proteins in this proximity tagging method. The dominant 185 

presence of mitosomal matrix proteins in the presented interactome strongly suggests that 186 

GiBolA is localized in the mitosomal matrix. This represents the first report of a BolA protein 187 

and putative late ISC pathway in an anaerobic mitochondrial organelle. 188 

Co-occurrence of mitochondrial BolA and Grx5 and a uniform pattern of late ISC 189 

components in metamonads 190 

All known eukaryotic organisms belonging to the Metamonada supergroup of 191 

eukaryotes carry MROs adapted to life without oxygen. According to genomic and 192 

transcriptomic analyses, the degree of metabolic reduction of these MROs varies across the 193 

Metamonada (40,41). Some MROs participate in ATP generation and some, such as G. 194 

intestinalis mitosomes, are involved only in the synthesis of Fe-S clusters. The identification 195 

of GiBolA prompted us to search the available data for the homologues of BolA and other 196 

ISC components in Metamonada. 197 
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A BolA homologue was detected in genomes of the parasitic Giardia muris and two 198 

Retortamonas species, and in free-living Dysnectes brevis, Kipferlia bialata and Aduncisulcus 199 

paluaster (Fig. 2F, Supplementary Table 2). Similarly to G. intestinalis, the vast majority of 200 

Metamonada have been found to lack Iba57 and IscA1. The absence of the former correlates 201 

with the absence of complex I in these eukaryotes, but both Iba57 and IscA1 are supposed to 202 

constitute a complex together with IscA2, on which the [4Fe-4S] cluster is formed (42) This 203 

raises the general question whether IscA2, unlike the whole IscA1-IscA2-Iba57 complex, has 204 

an indispensable role for anaerobic eukaryotes. Analogously, we could not detect the early 205 

ISC components Isd11 and ferredoxin reductase (Arh1) in preaxostylids and fornicates (Fig. 206 

2F). These components were only detected in the less reduced MROs of parabasalids (e.g., 207 

Trichomonas vaginalis) and in anaeramoebids. Of course, additional components can be 208 

identified in the species with incomplete genomic data, yet these results likely demonstrate 209 

the ancestral adaptation of the late ISC pathway in Metamonada that involved the loss of 210 

Iba57 and IscA proteins.  211 

 212 

Interactome of late ISC components reveals a downstream role of IscA 213 

Characterization of late ISC pathway in mitochondria has relied largely on genetic and 214 

biochemical approaches e.g., (25–27,43–45). Here, we chose to continue with the affinity-215 

purification proteomics, which to our knowledge has not yet been used in this context, to 216 

characterize the pathway in G. intestinalis mitosomes. The combination of protein specific 217 

interactomes as the one obtained above for GiBolA can yield a spatial reconstruction of the 218 

pathway (46). In addition, it can also identify putative mitosomal client apoprotein(s) that 219 

receive the synthesized [4Fe-4S] clusters as it was done for its mitochondrial counterparts 220 

(25,47). To this aim, proteins co-purified in complexes chemically crosslinked to GiGrx5, 221 

GiNfu1, and GiIscA were identified by mass spectrometry. The returned datasets contained 222 
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47, 30, and 22 statistically significant proteins of three independent sets of experiments, 223 

respectively (Fig. 3A-C, Supplementary Table 1).   224 

The final combined dataset which also included the GiBolA purification data was 225 

plotted in a heat map using log2 transformed fold difference values (Fig. 3D). Hierarchical 226 

clustering showed a close relationship between the GiBolA-, GiNfu1- and GiGrx5-specific 227 

protein profiles, while the GiIscA-specific dataset remained the most distinct. The 228 

interactomes of the first three proteins converged over the ISC components, chaperones and 229 

the mitosomal processing peptidase (GPP) that corresponds to the ‘core’ of the mitosomal 230 

metabolism (dashed line in Fig 3D). Several low abundance proteins of unknown function 231 

(GL50803_21201, GL50803_16424 and ABC transporter GL50803_87446) were also found 232 

in the cluster. Interestingly, a thioredoxin reductase (TrxR) homolog (GL50803_9287) was 233 

found among several proteins unique to the GiGrx5 dataset (Fig. 3B). The protein was 234 

previously characterized in G. intestinalis as cytosolic protein, yet without any interacting 235 

thioredoxin (48). Our data suggested that TrxR thus could also act in the mitosomes and 236 

reduce GiGrx5 to act as a missing reductase system. GiBolA was found among enriched 237 

proteins in GiGrx5 and GiNfu1 datasets (Fig. 3A, 3B) yet it was not a significant hit due to 238 

the incomplete coverage in some of the technical triplicates within biological triplicates. This 239 

indicates lower expression levels of GiBolA when compared to other late ISC components.  240 

In contrast, the GiIscA dataset showed enrichment of the outer mitosomal membrane 241 

proteins MOMP35 and GL50803_17276 (3,49). Additionally, Tom40, a central component of 242 

the outer membrane translocase, was identified among the significantly enriched proteins 243 

(Supplementary table 1). Unlike the interactomes of the other ISC components, many of the 244 

'core’ mitosomal matrix proteins were not significantly enriched in the GiIscA interactome. 245 

The affinity of GiIscA to the outer membrane proteins suggested the possibility that the 246 

protein is not localized, at least not completely, in the mitosomal matrix but in the 247 
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intermembrane space (IMS) or it is associated with the outer mitosomal membrane. The latter 248 

could be rejected due to the lack of any transmembrane domains and due to the full protection 249 

of GiIscA against the externally added protease (Fig. 2C). Therefore, the presence of the 250 

protein in the IMS was tested. We took advantage of differential sensitivity of the outer and 251 

inner mitosomal membranes to digitonin lysis (3,50).  252 

The mitosome-enriched fraction was isolated from cells co-expressing GiIscA and the matrix 253 

marker GiIscU and incubated with the increasing concentration of digitonin. The release of 254 

the proteins from the organelles was monitored via Western blot (Fig. 3E). Interestingly, 255 

GiIscA showed a greater proportion of protein released into the supernatant fraction than 256 

GiIscU, supporting the hypothesis that GiIscA and GiIscU are not in the same mitosomal 257 

subcompartment. 258 

Mitosomes likely lack the [4Fe-4S] client for the late ISC pathway 259 

The late-acting ISC machinery is responsible for the formation of [4Fe-4S] cluster and its 260 

delivery to the client apoproteins within the mitochondrion of model eukaryotes. These 261 

include many mitochondrial proteins functioning in the electron transport chain, the TCA 262 

cycle, and cofactor biosynthesis (51–54).  However, all these proteins are absent in the highly 263 

reduced G. intestinalis mitosomes.  264 

To identify possible mitosomal clients of the late ISC pathway, we first investigated the 265 

interactome of GiNfu1 with the premise that the apoproteins that receive their [4Fe-4S] 266 

cluster from the late ISC pathway can be co-purified with Nfu1 (25,47,55). The search in the 267 

dataset for [4Fe-4S] cluster motifs (56) did not return any positive hits, therefore an unbiased 268 

search for Fe-S proteins within the entire conceptual G. intestinalis cellular proteome was 269 

performed by MetalPredator (57). Upon manual checking with available literature and 270 

structural information, 40 proteins were identified that bind [4Fe-4S] clusters (Fig. 4A, 271 

Supplementary Table 3). Of these, 19 were predicted to function in the cytosol in energy, 272 
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redox, amino acid, and nitrogen metabolism, as well as cofactor biosynthesis and protein 273 

translation. There were 11 nuclear proteins identified, participating either in DNA or RNA 274 

metabolism. The remaining components corresponded to the transient cluster carriers of the 275 

mitosomal ISC machinery and cytosolic iron–sulfur assembly (CIA) pathway (58). The only 276 

mitosomal protein with stably associated Fe-S cluster is [2Fe-2S] ferredoxin, which is itself 277 

directly involved in the ISC pathway as an electron carrier. Of course, we cannot rule out the 278 

presence of a previously unknown protein with a unique cluster binding domain/motif in 279 

mitosomes, but the present data suggest that mitosomes lack any client [4Fe-4S] protein for 280 

their late ISC pathway. 281 

 282 

 283 

Knockout of bolA gene is manifested by a decrease in the activity of the cytosolic [4Fe-284 

4S] containing PFOR. 285 

BolA was previously thought to be restricted to aerobic eukaryotes (28), thereby all functional 286 

analyses have been performed on aerobic model organisms (59). Having established the 287 

integration of GiBolA within the mitosomal late ISC pathway, we next examined the role of 288 

BolA in the formation of Fe-S clusters. To this aim, using the recently established 289 

CRISPR/Cas9-mediated gene knockout approach (60) and a G. intestinalis cell line lacking 290 

bolA gene (bolA) was generated (Fig. 4B, 4C). The gene knockout was verified by PCR on 291 

the gDNA for the absence of bolA gene and the presence of homologous recombination 292 

cassette (HRC) (Fig. 4B). Furthermore, no bolA mRNA was detected in cDNA prepared from 293 

the cells (Fig. 4C). Finally, the proteomic analysis of mitosomes-enriched HSP fraction 294 

showed the absence of BolA when compared to the control (Supplementary Table 4). 295 

The bolA cell line exhibited slowed growth when compared to the parental cells (Cas9) and 296 

the wild-type control (WBc6) (Fig. 4D) but the overall number and morphology of the 297 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.502261doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502261
http://creativecommons.org/licenses/by/4.0/


 13 

mitosomes remained unchanged (Fig. 4E, Supplementary Fig. 2). This indicated that 298 

disruption of the function of late ISC pathway can perturb growth rate but not mitosomal 299 

morphology or number in G. intestinalis. Given the apparent absence of the client proteins in 300 

the mitosomes, the formation of [4Fe-4S] clusters was monitored indirectly via the activity of 301 

cytosolic enzyme pyruvate-ferredoxin oxidoreductase (PFOR). PFOR catalyses oxidative 302 

decarboxylation of pyruvate and produces acetyl-CoA and CO2 with concomitant reduction of 303 

cytosolic ferredoxin (another [4Fe-4S]-containing protein), hence acting as cytosolic 304 

alternative of pyruvate dehydrogenase complex in mitochondria of aerobes (61). Indeed, the 305 

specific activity of PFOR was more than three times lower in bolA cells when compared to 306 

the control (Fig. 4F). The expression of two pfor genes present in G. intestinalis genome was 307 

measured by qPCR and found almost unchanged in the bolA cells (Fig. 4G). Taken together, 308 

these data strongly suggested that the absence of mitosomal BolA impacts the formation of 309 

[4Fe-4S] clusters in G. intestinalis cytosol. 310 

 311 

DISCUSSION 312 

This study presents the characterization of late ISC pathway in anaerobic protist G. 313 

intestinalis. While it shows an unexpected presence of BolA in its mitosomes, it also 314 

demonstrates the involvement of the mitosomes in the formation of Fe-S clusters for cytosolic 315 

proteins. Thus, this is the first study supporting the long-proposed hypothesis of MROs as 316 

evolutionarily conserved compartments dedicated to control Fe-S cluster biogenesis. 317 

Moreover, it shows that, unlike in mitochondria, the defect in the late ISC pathway of G. 318 

intestinalis mitosomes affects the activity of Fe-S proteins outside the organelle.    319 

The independent evolution of mitochondria in various anaerobic lineages of 320 

eukaryotes resulted into remarkably uniform metabolic adaptations. Comparative studies on 321 

mitochondria and various MROs have suggested that the mitochondrial formation of Fe-S 322 
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clusters was the main selection pressure for retaining the organelles even in the anoxic 323 

environments (5,62–66).  Mitochondria initiate the biosynthesis of cellular Fe-S clusters via 324 

the action of early ISC components that results into the formation of [2Fe-2S] cluster bound 325 

by glutaredoxin (Grx5) dimer. From here, the cluster is either distributed to mitochondrial 326 

clients, combined via late ISC components to [4Fe-4S] clusters or exported as an unknown 327 

sulfur-containing factor to the cytosol (63). Most of mitochondrial Fe-S client proteins 328 

contain [4Fe-4S] clusters and thus the late ISC pathway is vital for the function of the 329 

respiratory chain, the TCA cycle as well as the synthesis of prosthetic groups such as heme, 330 

lipoic acid or molybdenum cofactor (63). Number of late ISC components are dedicated to 331 

serve these multiple clients in mitochondria and some of them could be also identified in G. 332 

intestinalis.  333 

In this study, we show that despite the loss of all mitochondrial pathways that require 334 

the presence of [4Fe-4S] clusters, mitosomes of G. intestinalis contain four late ISC 335 

components; Grx5, IscA, Nfu1 and the newly identified BolA homologue. In classical 336 

experimental models of yeast and mammalian mitochondria, defective late ISC pathway is 337 

often lethal for the cell or at least lead to severe diseases in humans due to multifactorial 338 

deficiencies caused in the mitochondrial metabolism (67,68). In this context, mitosomes 339 

represent a unique biological model to study the non-mitochondrial role of the ISC pathway 340 

without the interference with mitochondrial metabolism. 341 

Eukaryotes have three BolA proteins that function together with glutaredoxins in 342 

chaperoning the Fe-S cluster both in cytosol and mitochondria  (25,27,69). Yet, the previous 343 

absence of BolA proteins in the anaerobic eukaryotes that carry MROs suggested that BolA 344 

proteins are involved in the aerobic metabolism by controlling thiol redox potential (28). 345 

Mitochondrial BolA1 and BolA3 were proposed to function as [4Fe-4S] assembly cluster 346 

factors via the interaction with Grx5 and Nfu1, respectively (25,27,70). While the BolA3-347 
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Nfu1 interaction is required for the final [4Fe-4S] cluster transfer to the apoprotein (Melber et 348 

al. 2016), the exact role of BolA1-Grx5 in the preceding steps remains rather unknown. 349 

GiBolA specifically interacts with GiGrx5 as demonstrated by Y2H assay and the pulldown 350 

experiment.  The interaction of GiBolA with GiNfu1 was not supported by Y2H assay, yet the 351 

GiNfu1 was among the most enriched proteins co-purified with GiBolA. These data indirectly 352 

support the results of the phylogenetic reconstructions assigning GiBolA to BolA1 proteins. 353 

Interestingly, the search in other anaerobic organisms with MROs revealed co- occurrence of 354 

BolA and Grx5 homologues, supporting their mutual interaction in the pathway. However, for 355 

yet unknown reason the pair is expendable in some Metamonada species, some of which carry 356 

metabolically versatile ATP-producing MROs, e.g., the parabasalids and anaeramoebids.  357 

Based on this data and the existence of BolA deficient yeast cell lines that exhibited 358 

relatively mild phenotype (27), the gene was selected for the targeted removal from G. 359 

intestinalis genome by CRISPR/Cas9. The assumption was that the gene would not be 360 

essential for G. intestinalis either. In addition, such a viable mutant could also reveal a general 361 

function of mitosomes in Fe-S cluster formation. Indeed, removal of the gene encoding 362 

GiBolA by CRISPR/Cas9 showed that this protein is not essential for G. intestinalis 363 

maintained under laboratory conditions. The bolA cell line showed a growth defect that was 364 

not associated with reduced mitosomal biogenesis, consistent with the previous observation 365 

that G. intestinalis does not respond to metabolic perturbations by altering mitosomal 366 

dynamics (71). In yeast and patient-derived cell lines,  BolA deficiency is manifested by a 367 

decrease in the activity of the [4Fe-4S] cluster containing protein succinate dehydrogenase, 368 

but also of pyruvate and 2-ketoglutarate dehydrogenases due to impaired lipoylation by [4Fe-369 

4S] lipoate synthase (27,37). Since Giardia does not encode any of these proteins or any other 370 

obvious mitosomal [4Fe-4S] protein, we explored whether BolA deficiency could be 371 

manifested in the activity of cytosolic [4Fe-4S] proteins. We found that the cytosolic [4Fe-4S] 372 
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PFOR had significantly reduced enzymatic activity in cells lacking BolA compared to the 373 

control cell line. Transcription of the two pfor genes was nearly identical in the bolA cell 374 

line, strongly suggesting that the lack of mature [4Fe-4S] cluster in the protein is responsible 375 

for the reduced enzymatic activity. These data demonstrate, for the first time, that mitosomes 376 

are needed for cytosolic Fe-S cluster biogenesis in G. intestinalis. As GiBolA is the first ISC 377 

component removed from G. intestinalis, it is difficult to assess whether the reduced PFOR 378 

activity is a direct consequence of GiBolA deficiency or a broader downstream outcome of a 379 

defect in Fe-S cluster formation.  380 

In model aerobic eukaryotes, there is an additional cytosolic acting BolA protein 381 

(BolA2) and glutaredoxin (Grx??? Is this known?) that act as chaperones for cytosolic Fe-S 382 

clusters. It is thus possible that the single BolA protein of G. intestinalis also effects cytosolic 383 

Fe-S clusters. However, further studies are needed to understand the actual connection 384 

between the mitosomal late ISC pathway and Fe-S proteins in other cellular compartments. 385 

However, it is tempting to speculate that similar connection may exist in the aerobes but has 386 

remained unrecognized due the crucial role of the ISC pathway for the mitochondria 387 

themselves.  388 

In mitochondria, the Atm1 transporter in the inner membrane was shown to link the 389 

early ISC pathway with the cytosolic iron–sulphur assembly (CIA) via the transport of an 390 

unknown sulphur-containing molecule (72). Atm1 homologue is missing in G. intestinalis and 391 

so are any other metabolic transporters or carriers. Thus, surprisingly, GiIscA might have a 392 

compensatory role as a candidate for the connection between the cytosolic CIA (58) and 393 

mitosomal ISC machinery. The specific interaction of GiIscA with the proteins in the outer 394 

mitosomal membrane and the sensitivity to the outer membrane solubilization indicated that it 395 

may in fact reside, at least partially, in the IMS of the mitosomes. Although such localization 396 

would represent a unique adaptation of G. intestinalis mitosomes, it would also correspond to 397 
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the loss of client proteins in these organelles. Of course, further experiments are needed to 398 

describe the place of action of GiIscA but the obvious complication is the size of the 399 

mitosomes and the lack of any IMS markers.  400 

To conclude, this work shows how late ISC pathway has undergone specific functional 401 

adaptations in a eukaryote inhabiting anoxic environments. It shows for the first time that the 402 

formation of Fe-S clusters within these highly reduced mitochondria has remained 403 

functionally important for the cytosolic Fe-S proteins as known for the ‘classical’ aerobic 404 

mitochondria.  405 

 406 

MATERIALS AND METHODS 407 

Bioinformatics 408 

The structural models of human and G. intestinalis BolA were computed using the Google 409 

Colab interface of AlphaFold2 410 

(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_a411 

dvanced.ipynb) (73). The multiple sequence alignment was generated with the jackhmmer 412 

option. The best scoring structure according to the plDDT score was subsequently refined 413 

with the Amber-Relax option. The [Fe-S] proteins were predicted by Metalpredator (74) using 414 

the conceptual proteome of G. intestinalis WBc6 strain (giardiadb.org).  415 

 416 

Phylogenetic dataset construction and inferences 417 

Human BolA proteins (NP_001307954.1, NP_001307536.2, NP_997717.2) and Giardia 418 

intestinailis BolA-like protein were used as a query against NCBI non-redundant (nr) database 419 

to retrieve sequences from select Opishthokonta (Danio renio, Mus musculus, Caenorhabditis 420 

elegans Schizosaccharomyces pombe Saccharomyces cerevisiae), select Viridiplantae 421 

(Glycine_max Arabidopsis_thaliana Chlamydomonas_reinhardtii Chlorella_variabilis) and 422 
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non-opisthokonts and non-Viridiplantae (by restricting the database to non-opisthokonts and 423 

non-Viridiplantae) with an e-value threshold of 1e-3. We also examined the predicted 424 

proteomes of metamonads available on EukProt 425 

(https://www.biorxiv.org/content/10.1101/2020.06.30.180687v2.abstract) and various 426 

sequencing intiatives (40,75,76). The resulting queries were clustered based on sequence 427 

identity whereby using cd-hit (77) with a cut-off value of 0.9.  Sequences were aligned using 428 

mafft (--auto) (78) and ambiguously aligned positions were removed using trimal with ‘-gt 429 

0.5’(79). Phylogenetic inference was performed using IQTREE2 to generate 1000 ultrafast 430 

bootstraps (-bb 1000) (80) under the LG+C60+G model of evolution (computed using -mset 431 

LG+C20,LG+C10,LG+C60,LG+C30,LG+C40,LG+C50,LG). Trees were visualized using 432 

FigTree v1.4 and stylized in Adobe Illustrator. Alignments and tree files are available at 433 

figshare (https://figshare.com/s/8fbd1368814dbd11192c reserved 434 

DOI:10.6084/m9.figshare.19772155).  435 

 436 

Cloning and protein expression 437 

For the expression of BAP-tagged proteins in G. intestinalis, the genes were amplified from 438 

genomic DNA and inserted into to pONDRA plasmid encoding the C-terminal BAP tag (81). 439 

All the primers and the restriction enzymes used in this study are listed in Supplementary 440 

Table 5. Transfection was done as previously described  (82) For the in vivo biotinylation, the 441 

cells expressing BAP-tagged proteins were transfected  with a pTG plasmid encoding 442 

cytosolic BirA gene from E. coli (3). For Y2H assay, genes were amplified from gDNA and 443 

subcloned to both pGADT7 and pGBKT7 plasmids. Mutated versions of genes for Y2H assay 444 

were commercially synthesized (Genscript). 445 

For CRISPR/Cas9-mediated knockout of bolA gene, gRNA sequence 446 

ATCAGCTCTCCCGACTTCAA was inserted into gRNA cassette of pTGuide vector using  447 
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(60) two annealed oligonucleotides (see Supplementary Table 5 for primers and restriction 448 

enzymes used). The 999 bp of 5´ and  940 bp 3´ homologous arms surrounding bolA gene 449 

were inserted into pTGuide vector as the homologous arms for the recombination  of the 450 

resistance cassette (Supplementary Table 5). 451 

 452 

Real-time PCR 453 

Total RNA from ΔbolA and control cell line was isolated independently six times using 454 

NucleoSpinTM RNA isolation kit (Macherey-Nagel) according to manufacturer’s protocol. 455 

cDNA prepared from these RNA isolations by KAPA SYBR® FAST One-Step kit (Roche) 456 

was analyzed directly by qPCR in Real-time PCR cycler RotorGene 3000 (Qiagen) using 457 

Rotor-Gene 6.0 software. qPCRs for each gene were performed in technical triplicates in each 458 

RNA isolation for both strains and the mean for each gene from individual RNA isolations 459 

was used for further calculations. NADH oxidase-encoding gene, GL50803_33769, was used 460 

as a housekeeping gene for normalization. 461 

 462 

Cell culture, fractionation and immunoblot analysis. 463 

Trophozoites of G. intestinalis strain WB (ATCC 30957) were grown in TYI-S-33 medium 464 

(83) supplemented with 10% heat-inactivated bovine serum (PAA laboratories), 0,1% bovine 465 

bile and antibiotics. Cells were harvested and fractionated as previously described (3). Cells 466 

expressing BAP-tagged GiBolA, GiGrx5, GiNfu1, and GiIscA were harvested and 467 

fractionated as previously described (3) Briefly, the cells were harvested in ice cold phosphate 468 

buffered saline (PBS, pH 7.4) by centrifugation at 1,000 × g, 4 °C for 10 min, washed in SM 469 

buffer (20 mM MOPS, 250 mM sucrose, pH 7.4), and collected by centrifugation. Cell pellets 470 

were resuspended in SM buffer supplemented with protease inhibitors (Roche). Cells were 471 

lysed on ice by sonication for 2 min (1 s pulses, 40 % amplitude). The lysate was centrifuged 472 
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at 2,680 × g, for 20 min at 4 °C to sediment the nuclei, cytoskeleton, and remaining unbroken 473 

cells. The supernatant was centrifuged at 180,000 × g, for 30 min at 4 °C. The resulting 474 

supernatant corresponded to the cytosolic fraction, and the high-speed pellet (HSP) contained 475 

organelles including the mitosomes and the endoplasmic reticulum.  The GiNfu1, GiIscA, 476 

GiGrx5 and GiBolA proteins were detected by a rabbit anti-BAP polyclonal antibody 477 

(GenScript). Mitosomal GiTom40 and GiIscU were detected with a specific polyclonal 478 

antibody raised in rabbits (84). The primary antibodies were recognized by secondary 479 

antibodies conjugated with horseradish peroxidase. The signals were visualized by 480 

chemiluminescence using an Amersham Imager 600.  481 

 482 

Immunofluorescence microscopy 483 

G. intestinalis trophozoites were fixed and immunolabeled as previously described 484 

(71,85). The C-terminal BAP tag of localized mitosomal proteins was detected by a rabbit 485 

anti-BAP polyclonal antibody (GenScript). Mitosomal marker GL50803_9296 was detected 486 

by a rabbit anti- GL50803_9296 polyclonal antibody (3). The primary antibodies were 487 

detected by secondary antibodies included: Alexa Fluor 594 donkey anti-rabbit IgG 488 

(Invitrogen), Alexa Fluor 488 donkey anti-mouse IgG (Invitrogen). Slides were mounted in 489 

Vectashield containing DAPI (Vector Laboratories). 490 

Static images were acquired on Leica SP8 FLIM inverted confocal microscope 491 

equipped with 405 nm and white light (470-670 nm) lasers and FOV SP8 scanner using HC 492 

PL APO CS2 63x/1.4 NA oil-immersion objective. Laser wavelengths and intensities were 493 

controlled by a combination of AOTF (Acousto-Optical Tunable Filter)  and AOBS (Acousto-494 

Optical Beam Splitter) separately for each channel. Emitting fluorescence was captured by 495 

internal spectrally-tunable HyD detectors. Imaging was controlled by the Leica LAS-X 496 

software. Images were deconvolved using SVI Huygens software with the CMLE algorithm. 497 
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Maximum intensity projections and brightness/contrast corrections were performed in FIJI 498 

ImageJ software (86). 499 

 500 

Cross-linking, protein isolation, mass spectrometry (MS) 501 

The HSP (10 mg) isolated from each cell line was collected by centrifugation (30 000 502 

x g, 4°C, 10 min) and resuspend in 1 x PBS supplemented with protease inhibitors (Roche) to 503 

protein concentration 1.5 mg/ml. The cross-linker DSP (dithiobis(succinimidyl propionate), 504 

ThermoScientific) was added to final 100 µM concentration. The sample was incubated 1 h 505 

on ice. Crosslinking was stopped by the addition of 50 mM Tris (pH 8.0) followed by 15 min 506 

incubation at RT. The sample was collected by centrifugation (30 000 x g, 10 min, RT) and 507 

then resuspended in boiling buffer (50 mM Tris, 1mM EDTA, 1% SDS, pH 7.4) 508 

supplemented with protease inhibitors. The sample was then incubated at 80 °C for 10 min, 509 

collected by centrifugation and the supernatant was diluted 1/10 in the incubation buffer (50 510 

mM Tris, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, pH 7.4) supplemented with 511 

protease inhibitors. Streptavidin-coupled magnetic beads (50 µL of Dynabeads MyOne 512 

Streptavidin C1, Invitrogen) were washed three times in 1 ml of the incubation buffer for 5 513 

min and added to the sample, mixed and incubated for 1 h at room temperature and then 514 

incubated overnight with gentle rotation at 4°C. The beads with bound protein were washed 515 

three times in the incubation buffer (5 ml) supplemented with 0.1% SDS for 5 min, washed in 516 

boiling buffer for 5 min and then washed in the washing buffer (60 mM Tris, 2% SDS, 10% 517 

glycerol, 0.1% SDC) for 5 min. Finally, the sample was washed twice in 100 mM TEAB 518 

(Triethylammonium bicarbonate, Thermofisher) with 0,1% SDC for 5 min.  One tenth of the 519 

sample was mixed with SDS-PAGE sample buffer supplemented with 20 mM biotin and 520 

incubated in 95°C for 5 min. Experimental controls were tested by immunoblotting and then 521 

the sample (dry frozen beads with proteins) was analyzed by mass spectrometry. Control 522 
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sample was processed in the same way. Each sample was done in triplicate. Beads with bound 523 

proteins were submitted to tandem mass spectrometry (MS/MS) analysis as previously 524 

described except without the detergent washing steps (82). In brief, captured samples were 525 

released from beads by trypsin cleavage. Peptides were separated by reverse phase liquid 526 

chromatography and eluted peptides were converted to gas-phase ions by electrospray and 527 

analyzed using an Orbitrap (Thermo Scientific, Waltham, MA) followed by Tandem MS to 528 

fragment the peptides through a quadropole for final mass detection. Data was analyzed using 529 

MaxQuant (version 1.6.3.4) (87) with a false discovery rate (FDR) of 1% for both proteins 530 

and peptides and a minimum peptide length of seven amino acids. The Andromeda search 531 

engine (88) was used for the MS/MS spectra search against the latest version of the G. 532 

intestinalis database from EuPathDb (http:// eupathdb.org/eupathdb/) and a common 533 

contaminant database. Modifications were set as follows: Cystein (unimod nr: 39) as static, 534 

and methionoine oxidation (unimod: 1384) and protein N terminus acetylation (unimod: 1) as 535 

variable. Data analyses were performed using Perseus 1.6.1.3 (89) and visualized as a volcano 536 

plot using the online tool VolcaNoseR (fold change 1,significance threshold 2)  (90) and as a 537 

heatmap using the online tool ClustVis (91).  538 

 539 

Protease protection and digitonin solubilization assays 540 

For protease protection assay, cells expressing BAP-tagged GiBolA, GiGrx5, GiNfu1, 541 

and GiIscA were harvested and fractionated as described above. The HSP fraction (150 g) 542 

was resuspended in 20 l of SM buffer and supplemented with protease inhibitors, or 20 543 

g/ml of trypsin or  20 g/ml of trypsin and 0.1% Triton X-100. The samples were incubated 544 

30 min at 25 °C and then processed for SDS-PAGE.   545 

For digitonin solubilization assay, 100 µg of HSP fractions isolated from cells co-546 

expressing HA-tagged GiIscU and BAP-tagged GiIscA were incubated for 30 min on ice with 547 
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0.01 %, 0.05 %, 0.1 %, digitonin, and without digitonin as a control. The samples were 548 

diluted by PBS to 800 µl total volume and collected by centrifugation (30 mins, 180,000 × g, 549 

at 4 ° C). The resulting pellets were processed for SDS-PAGE and the supernatants were 550 

precipitated by 15 % TCA for 30 min on ice and collected by centrifugation for 30 min at 551 

180,000 × g and 4 ° C, the pellets were washed once with 500 µl of ice-cold acetone, 552 

centrifuged as before. The samples were resolved by SDS-PAGE, transferred to nitrocellulose 553 

membrane and the protein tags were detected by rabbit anti-BAP antibody (Genscript) and rat 554 

anti-HA antibody (Roche). The release to mitosomal proteins was quantified by ImageJ (86). 555 

 556 

Y2H assay 557 

The yeast two-hybrid assay (Y2H) was performed as previously described (92). S. 558 

cerevisiae cells (strain AH109) were co-transformed with two plasmids (pGADT7, pGBKT7) 559 

with the following combinations of genes: GiBolA + GiGrx5, GiBolA + GimGrx5 (C128A-560 

mutated Grx5), GiGrx5 + GimBolA (H90A-mutated GiBolA). The empty plasmids were used 561 

as negative controls. Co-transformants were selected on double dropout plates SD -Leu/-Trp 562 

and triple dropout plates SD -Leu/-Trp/-His. The colonies were grown for four days at 30°C. 563 

The positive colonies from triple dropout medium were grown overnight at 30 °C, 200 RPM 564 

and then the serial dilution test was performed on double and triple dropout plates.  565 
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 854 

Figure 1. Components of late ISC pathway in G. intestinalis.  855 

(A) Schematic representation of mitosomal ISC pathway. The mitochondrial components that 856 

are missing in Giardia mitosomes are shown in grey. Early and late ISC pathway is 857 

distinguished by the background colour, [2Fe-2S] cluster on Grx5 dimer can be (I.) 858 

transferred to the target mitochondrial apoproteins (II.) exported to the cytosol or (III.) enters 859 

the late ISC machinery. 860 
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 (B) Domain structure of GiGrx5, GiIscA, GiNfu1, and GiBolA. The respective sequence 861 

motifs and Pfam accession numbers are shown. (C) Protein sequence alignment of the 862 

identified GiBolA with the homologues from, Saccharomyces cerevisiae (Q3E793), Homo 863 

sapiens (Q9Y3E2), Plasmodium falciparum (Q8I3V0), Naegleria gruberi (D2V472) and 864 

Trypanosoma brucei (Q57YM0). BolA signature V/I/LHAL/I  motif is highlighted. (D) 865 

Structure of GiBolA as predicted by AlphaFold2 (73), predicted structure of human BolA1 866 

(HsBolA1) (27) is shown for comparison. (E) Maximum likelihood phylogenetic tree of 70 867 

eukaryotic BolA1 paralogues shows that GiBolA and metamonad BolA homologues emerge 868 

from within a clade of mitochondrial BolA1 proteins. Summary of bipartition support values 869 

(1000 ultrafast bootstraps) greater than 80 or 95 are shown in open and closed circles, 870 

respectively.  871 
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 885 

Figure 2. GiBolA is a mitosomal protein that specifically interacts with GiGrx5 and 886 

other ISC components. (A) BAP-tagged GiBolA, GiGrx5, GiNfu1 and GiIscA were 887 

expressed in G. intestinalis and the proteins were detected by anti-BAP antibody (green). The 888 
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co-colocalization with mitosomal marker GL50803_9296 (magenta) is shown. The DIC 889 

image of the cell is shown in the inlet, the scale bar represents 5 m. (B) Detection of BAP-890 

tagged GiBolA, GiGrx5, GiNfu1 and GiIscA in cellular fractions, lys – cell lysate, cyt - 891 

cytosol, HSP – high speed pellet fraction. (C) Protease protection assay of late ISC 892 

components and the markers of the outer mitosomal membrane (GiTom40) and the mitosomal 893 

matrix (GiIscU). High-speed pellets isolated from G. intestinalis expressing BAP-tagged 894 

GiBolA, GiGrx5 GiIscA and GiNfu1 were incubated with 20 μg/ml trypsin and 0.1% Triton 895 

X-100.  The samples were immunolabeled with antibodies against the BAP tag, GiTom40 and 896 

GiIscU. (D) Serial dilutions of Y2H assay testing the protein interactions between GiBolA 897 

and GiGrx5. The introduction of specific mutations of conserved residues (H90A GiBolA and 898 

C128A GiGrx5) abolished the interaction, double and triple dropout medium was used to test 899 

the presence of the plasmids and the interaction of the encoded proteins, respectively. (E) 900 

Affinity purification of the in vivo biotinylated GiBolA with the DSP-crosslinked interacting 901 

partners. (top right) Scheme of the in vivo biotinylation of the C-terminal BAP-tag of GiBolA 902 

by cytosolic BirA. (left) Volcano plot of the statistically significant hits obtained from the 903 

protein purification on streptavidin coupled Dynabeads. Components involved in ISC 904 

pathway are shown in bold letters. (F) The presence/absence of the ISC components in 905 

Metamonada supergroup. 906 

 907 

  908 

 909 

 910 

 911 

 912 
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 916 

 Figure 3. Proteomic analysis of late ISC pathway. BAP-tagged GiGrx5, GiNfu1 and 917 

GiIscA  918 
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were in vivo biotinylated by cytosolic BirA and purified on streptavidin-coupled Dynabeads 919 

upon crosslinking by DSP. (A-C) Volcano plots depict the significantly enriched proteins that 920 

co-purified with (A) GiNfu1, (B) GiGrx5 and (C) GiIscA.  (D) Heatmap of combined 921 

significantly enriched proteins for all four late ISC components, (E) Digitonin solubilization 922 

of the mitosomes shows differential release of IscA over IscU, P -pellet fraction (retained 923 

protein), S – supernatant (released protein). Exemplary western blot of four independent 924 

experiments is shown, the error bars show standard deviation. 925 
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 943 

Figure 4. Mitosomal GiBolA is involved in the formation of cytosolic Fe-S proteins. (A) 944 

The list of predicted 40 Fe-S proteins in G. intestinalis includes only one mitosomal protein, 945 

[2Fe-2S] ferredoxin, that itself participates in the ISC pathway.  All putative clients that 946 

require [4Fe-4S] clusters are localized in the cytosol or in the nucleus (Supplementary Table 947 

3). (B) The bolA cell line was tested for the presence of bolA gene and the integration of 948 

homologous recombination cassette (HRC) by PCR on gDNA, (C) the expression of bolA 949 
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gene in bolA cell line was tested by PCR on the cDNA, β-giardin was used as a control 950 

gene. (D) The slowed growth phenotype of bolA cell line in comparison to parental Cas9-951 

expressing cell line and wildtype WBc6 strain, error bars represent standard deviation. (E) 952 

The number of mitosomes per cells in Cas9-expressing (n=64) and bolA cells (n=107), the 953 

error bars of the box plot depict min to max values.  954 

(F) Decreased activity of cytosolic PFOR in bolA cell line when compared to the parental 955 

Cas9-expressing cell line, the error bars depict standard deviation. 956 

(F) Real-time PCR results show relative expression of two PFOR-encoding genes, 957 

GL50803_17063 and GL50803_114609, in ΔbolA cell line. Expression levels are depicted 958 

relative to the control cell line. Calculated results from six independent RNA isolations are 959 

shown for each gene. The expression of both genes was normalized to NADH oxidase-960 

encoding gene, GL50803_33796. Cas9-expressing cell line was used as a control, the error 961 

bars depict standard deviation.  962 
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SUPPLEMENTARY DATA 975 

Supplementary Figure 1 976 

 977 

 978 

 979 
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 984 
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 990 

 991 

 992 

Supplementary Figure 1. Protein sequence alignments of late ISC components of Giardia 993 

intestinalis. (A) Grx5, the diagram shows the domain structure of GiGrx5, mitochondrial 994 

targeting sequence (MTS) is shown in red, monothiol glutaredoxin domain (PF00462) in 995 

purple, the CGFS motif is also highlighted. (B) GiIscA shares the Fe-S_biosyn domain 996 

(PF01521) with the conserved cysteine residues involved in cluster binding. (C) GiNfu1 997 
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contains conserved N- and C- domains, the latter of is recognized as NifU domain (PF01106) 998 

and carries conserved cysteine motif. 999 
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Supplementary Figure 2 1023 

Supplementary Figure 2. Full blots of cellular fractions and protease protection assay 1024 

experiments. 1025 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.01.502261doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502261
http://creativecommons.org/licenses/by/4.0/


 50 

Supplementary Figure 3 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

Supplementary Figure 3. Mitosomal morphology and number is not affected by the 1040 

removal of bolA gene. The exemplary image of mitosomes visualized by 1041 

immunofluorescence microscopy in the bolA and control (Cas9) cell lines. Mitosomes were 1042 

detected by rabbit polyclonal antibody raised against GL50803_9296, the nuclei were stained 1043 

with DAPI. 1044 
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Supplementary Table 1. Proteomic analysis of GiBolA, GiGrx5, GiNfu1 and GiIscA 1050 

pulldowns. For all proteins, statistical analysis based upon the biological and technical 1051 

triplicates are shown.   1052 

Supplementary Table 2. ISC components of Metamonada 1053 

Supplementary Table 3. Fe-S proteins of G. intestinalis. 1054 

Supplementary Table 4. Proteomic analysis of bolA cell line. 1055 

Supplementary Table 5. Primers used in the study. 1056 
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