

1 ZmWRKY82-ZmSLG regulate seed development by modulating brassionsteroid
2 homeostasis in maize

3 **Hui Li^{a,b,§}, Yayun Wang^{a,§}, Li Luo^{a,§}, Yufeng Hu^a, Yangping Li^a, Junjie Zhang^{c,*}, and Yubi
4 Huang^{a,*}**

5 ^aState Key Laboratory of Crop Gene Exploration and Utilization In Southwest China, Sichuan
6 Agricultural University, Chengdu 611130, China; lihui8627@outlook.com (H.L.);
7 wangyayun3104@outlook.com (Y.W.); 18728520454@sohu.com (L.L.); 64148537@qq.com (Y.H.);
8 liyangping163@163.com (Y.L.)

9 ^bInstitute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural
10 Sciences, Chengdu, 611130, China

11 ^cCollege of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China

12 **§These authors contributed equally to the work.**

13 ***Correspondence :**

14 Dr. Yubi Huang:
15 yubihuang@sohu.com; +86 13908160283; Sichuan Agricultural University, 211 Huimin Road,
16 Wenjiang District, Chengdu City, Sichuan Province, 611130

17 Dr. Junjie:
18 Zhang.junjiezh@163.com; +86 13981600304; Agricultural University, 211 Huimin Road, Wenjiang
19 District, Chengdu City, Sichuan Province, 611130

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 **Highlight**

36 We conclude that *ZmWRKY82*-*ZmSLG1* is required for BR homeostasis and that
37 modification of *ZmSLG1* expression to an appropriate level may provide a way to
38 increase yield.

39 **Abstract**

40 Seed development is a crucial biological process affecting crop yield.
41 Brassionsteroids (BRs) plays essential role in seed development. Although part of
42 genes participated in BR regulate seed development have been cloned in maize, their
43 genetic and mechanisms are still unclear. In the previous experiment, we found that
44 exogenous spray BL promote seed development. Here, RNA-sequence analysis of BL
45 treated seeds revealed that 12 candidate function genes and 62 candidate transcription
46 factors among the differentially expressed genes (DEGs) were regulated by BL.
47 Combining with previous QTL and GWAS research results in maize and homologous
48 gene analysis, *ZmSLG1* was screened out from 12 candidate function genes for further
49 study. Overexpression of *ZmSLG1* displayed round seed and delayed embryo
50 development in maize. Moreover, overexpression of *ZmSLG1* decreased BR content
51 and increased expression of BR synthesis related genes in seed. To understand the
52 mechanism of BL regulating *ZmSLG1* expression, *ZmWRKY82* was identified from 62
53 candidate transcription factors and examined its function. Transient expression,
54 EMSA and ChIP analysis showed *ZmWRKY82* can directly bind to the *ZmSLG1*
55 promoter to regulate *ZmSLG1* expression. Collectively, exogenous BL regulate the
56 *ZmSLG1* gene expression through *ZmWRKY82* transcription factor, and *ZmSLG1*
57 negatively regulates the endogenous BR contents in seed.

58

59 Keywords: maize; seed; BR; homeostasis; *ZmWRKY82*; *ZmSLG1*

60 Abbreviations:

61 Brassionsteroids (BRs); Brassinolide (BL); Castasterone (CS); 6-deoxocastasterone (6-
62 deoc-oCS); days after pollination (DAP)

63 **Introduction**

64 Maize is a world's most important crops for food, industrial, and husbandry.
65 Improving maize yield remains a goal for maize breeding program. Seed size is an
66 important trait for crop yield and has been a main factor in breeding (Ikeda et al.
67 2013). In recent years, many seed development genes are proved to participate in
68 plant hormones biosynthesis and signaling(Ishimaru et al. 2013; Werner et al. 2021;
69 Cristian et al. 2010; Sun et al. 2021a). It is well known that BR play an important role
70 in seed development(Jiang and Lin 2013). For instance, the BR biosynthesis genes
71 such as *d11*, *d2*, and *d61* mutants display longer seed (Yamamuro et al. 2000; Hong
72 and Z. 2003; Tanabe et al. 2005; Sun et al. 2021b). Meanwhile, modulating BR
73 signaling pathway genes such as BZR1 and GSK genes also changed kernel size and
74 yield (Huang et al. 2013; Jiang et al. 2013). These results show that BR participate
75 seed development through signaling and biosynthesis pathways (Zhang et al. 2009;
76 Sun et al. 2021b; Sun et al. 2021a).

77 BRs are a group of steroidal phytohormones that involved in many aspects of plant
78 growth and development (Li et al. 2020; Jiang and Lin 2013; Park et al. 2010). The
79 bioactive BRs contain brassinolide (BL), castasterone (CS), and 6DCS, and BL was
80 the most active among BRs(Hayat and Ahmad 2011). Recently, more and more
81 studies focus on BR homeostasis through modulated mRNA levels of BR biosynthesis
82 and metabolic genes. It is crucial to maintain appropriate level of endogenous BRs for
83 plant growth and development. For instance, administration of excess bioactive BRs
84 leads to abnormal organ development, such as swelling of hypocotyls (Tanaka et al.
85 2003). BR-deficient of plant display dwarfism and short hypocotyls (Edward et al.
86 2005; Kiwamu and Okamoto 2005). In *Arabidopsis* and rice, BR-deficient or
87 insensitive mutants show the small and round seed, such as *det2*, *d11*, *SRS5*, and *dwf4*
88 (Sun et al. 2021b; Segami et al. 2017; Jiang et al. 2013). The abnormal plant growth
89 of BR-deficient mutant is due to the decrease of endogenous BRs level (Feng et al.
90 2016). As we all know, the BRs synthesis and functions are at same site cause BRs
91 could not long-distance transport (Symons and Reid 2004). BR are highest synthesis
92 in most young organs but low level in mature organs (Shimada et al. 2003). Therefore,

93 modulate the level of BR synthesis and metabolic to regulate the endogenous BRs
94 content is important to ensure plant normal growth and development (Zhu et al. 2013).
95 In recent years, it has been found that BAHD family genes play an important role in
96 regulating endogenous BR content (Feng 2016). Two BAHD acyltransferases BIA1
97 and BAT1 in *Arabidopsis* transform active BR into inactive acylated BR, thereby
98 regulating BR homeostasis (Roh et al. 2012; Choi et al. 2013). ABS1, another
99 member of the BAHD family in *Arabidopsis*, participates in the homeostasis of BR.
100 When the expression of ABS1 increases, it shows a typical BR deficient phenotype,
101 and exogenous BR addition can restore the phenotype (Wang 2012). Nevertheless, the
102 information of BAHD family members in regulating endogenous BR content in maize
103 is still very limited.
104 In previously study results show that exogenous BL spraying promote seed and
105 embryo development in maize (Fig. S1, S2). Meanwhile, we found that exogenous BR
106 could increase pericarp cells length and width, while endogenous BR only influence
107 pericarp cells length (Fig. S3). Although some BR biosynthetic genes were identified,
108 the mechanism of BR metabolism pathway in maize is still unclear (Sun et al. 2021b;
109 Tao et al. 2004; Liu et al. 2007).
110 In this study, we combined transcriptome sequencing data, qRT-PCR and previously
111 mapping results to identified a BR metabolic gene, *ZmSLG1*. Transgenic results
112 confirmed that overexpression of *ZmSLG1* significantly reduced the levels of
113 endogenous BRs compared to the wild type KN5585. In addition, overexpression of
114 *ZmSLG1* exhibited a decreased seed length and starch granule size. Furthermore,
115 *ZmWRKY82* was characterized to participate in BR regulating *ZmSLG1* expression,
116 which may be useful for maize yield improvement.

117 **Materials and methods**

118 **Plant materials**

119 Maize (*Zea mays* L.) inbred line Mo17 were obtained from the state key laboratory of
120 crop gene exploration and utilization in southwest China. The maize line was grown
121 in the field under standard crop management conditions in Chengdu, China. During
122 the pollination period, strict self-pollination was performed every afternoon. The roots,

123 stems, and leaves were collected when maize was in the initial jointing stage growth.
124 The pollen and filaments were collected after the tasseling period but before the
125 filaments had emerged from the husks. The pericarp, embryo, and endosperm were
126 collected from the seeds 15 days after pollination (DAP). All the samples were
127 collected in the afternoon and were immediately frozen in liquid nitrogen and stored
128 at -80°C until use for expression pattern analysis.

129 **RNA extraction and RNA sequencing**

130 Total RNA of samples were isolated using the RNA Extraction Kit (Tiangen, Beijing,
131 China). First-stand cDNA was reverse transcribed from 1.5 µg of total RNA using the
132 Prime Script reagent kit (Takara).

133 For RNA sequencing, 10 days after pollination (DAP) maize seeds were collected and
134 disinfected with 70% ethanol for three times. Then washed with sterile water. Finally,
135 1/2 MS liquid medium was used to moisten the seed surface, and added 10nm BL and
136 1 µM BL. Incubate in the dark at 28°C at 120 r/min on a shaking table, set up three
137 technical repetitions. Then three technical repetitions were combined into one group
138 for sequencing. The control group was added the corresponding volume of ethanol.
139 Three independent experimental groups were set up (BL1:10 nM BL-6h, BL2: 1 µM
140 BL-6h, and BL3:10 nM BL-12h).

141 **Multiple-sequence alignment and phylogenetic analysis**

142 To identify the homology genes of ZmSLG1 from Arabidopsis and rice, the full-
143 length amino acid sequences of ZmSLG1 protein as a query sequence in Gramene
144 (<http://www.gramene.org>) to search for candidate genes. The full-length amino acid
145 sequences of candidate genes were aligned using MUSCLE
146 (<http://www.ebi.ac.uk/Tools/msa/muscle/>) and saved in the ClustalW format. The
147 unrooted phylogenetic tree was constructed using the neighbor-joining method in
148 MEGA7 software with the bootstrap test replicated 1000 times. The amino acid
149 sequence information of phylogenetic analysis is shown in table S1.

150 **Cloning and overexpression of the *ZmSLG1* gene in maize**

151 The full-length cDNAs of *Zm00001d031893* was amplified by PCR using KOD
152 enzymes (Toyobo, Osaka, Japan) and cloned into the vector pCAMBIA3301 under

153 the control of the maize *Ubi* promoter to create p3301-Ubi-ZmWRKY82 construct.
154 Then the vector transformed into the maize inbred line KN5585 by the
155 *Agrobacterium*-mediated method.

156 **Cytological observation**

157 For light microscopy, the samples of seed were harvested 15 DAP and 20 DAP and
158 fixed with FAA solution, then dehydrated by a graded series of ethanol. After
159 dehydration, the samples were needed to infiltrate and embedded in paraffin
160 concentration according to the method described previously (Chen et al. 2021). Then,
161 the paraffin were sectioned, 8 μ m sections were dewaxed with xylene, rehydrated,
162 decolorized with ethanol, stained in saffron and fast green, and observed with a Leica
163 DM5000B microscope.

164 **Scanning electron microscopy (SEM)**

165 For SEM, the seeds of 20 DAP were harvested and fixed in 2.5% (v/v) glutaraldehyde
166 at 4 $^{\circ}$ C until time for processing. When the biopsies were submitted for processing, the
167 samples were post-fixed in 2% (w/v) OsO₄ for 2h, dehydrated in graded ethanol
168 series (70% to 80% to 95% to 100%), and embedded in butylmethyl methacrylate.
169 Then, the samples need dried strictly. Finally, the samples sputter coated with
170 platinum and observed with JEM-1400 scanning electron microscope.

171 **Measuring endogenous BRs contents**

172 BR contents were analyzed using gas chromatography-mass spectrometry (GC-MS).
173 The seed of 20-day-old pollination of the WT and SLG1-OE were harvested.
174 Deuterium-labeled 6-deoxocastasterone (6-deoc-oCS), castasterone (CS), and BL
175 were added as internal standards for quantitative analysis of the extracts.

176 **Prediction of cis-acting elements of *ZmSLG* gene promoter**

177 The *ZmSLG* promoter sequence was retrieved from the Gramene Database. The
178 sequences were submitted to PlantCARE for the prediction of *cis*-elements.

179 **Detection of promoter activity**

180 The transient expression experiment was used to detect promoter activity and
181 performed according to the protocol described previously (Hu et al. 2012). Maize
182 kernels at 10 DAP were surface-sterilized with 75% (v/v) ethanol and the endosperms

183 were isolated from the kernels under aseptic conditions. Then the endosperms were
184 cultivated on MS medium containing 8.5% agar and 12% sucrose for 4h prior to
185 bombardment using a helium biolistic gun transformation system. For analysis of the
186 promoter activity in the endosperm, the ratio of test vector and internal control
187 plasmid was 2:1. The bombarded endosperms were cultivated for 24h. After that, the
188 bombarded endosperms were grinds and lysed under 4 °C. Then the highspeed
189 centrifugation at 4 °C, the supernatant was used to measure the activity. The β -
190 glucuronidase activities were measured using 4-Methylumbelliferyl beta-D-
191 glucuronide (MUG) as substrate at 37 °C to test 0h and 4h activities. The Luciferase
192 activities were measured using Luminoskan Ascent luminimeter (Thermo Fisher
193 Scientific, Waltham, MA, USA). The excitation wavelength used was 365 nm and the
194 emission wavelength was 455 nm. The internal control was used to normalize the
195 transformation efficiency. The Luciferase/ β -glucuronidase [LUC/GUS(4h-0h)] ratio
196 was used to determine the significance test. The data of averages and difference
197 significance were analyze using a one-sided paired *t*-test (**P*<0.05, ***P*<0.01).
198 The Gus staining buffer (1 mL) contained 750 μ L of 0.1 M phosphate buffer, 10 μ L of
199 5 mM $K_3[Fe(CN)_6]$, 10 μ L of 5 mM $K_4[Fe(CN)_6]$, 20 μ L of 0.5 mM EDTA, 200 μ L of
200 methanol, 1 μ L of Triton-X-100, and 10 μ L of 0.1mg/ μ L X-Glu.

201 **Expression pattern analysis**

202 The expression of ZmSLG1 and ZmWRKY82 in different tissues was analyzed by
203 semiquantitative RT-PCR and the expression of ZmSLG1 and ZmWRKY82 in
204 different stages of seed was analyzed by semi-quantitative RT-PCR. ZmTXN was
205 used as the internal control.

206 To measure the BL induction of ZmWRKY82, the 10 DAP seeds of Mo17 was soaked
207 in 10nM BL, followed by 3h, 6h, 12h, 24h, and 48h under dark conditions. Then, the
208 ZmWRKY82 expression was detected by qRT-PCR. At least two independent
209 experiments employing biological replicates and three technical replicates were
210 performed. ZmTXN was used as the internal control.

211 **Analysis of the functional properties of ZmWRKY82**

212 The transactivation assay of ZmWRKY82 was using Yeast two-hybrid system
213 according to Zhang *et al.*(Zhang et al. 2016). The transformants were screened on
214 SD/-Trp plates and grown for 2-3 days in the dark at 28 $^{\circ}$ C. Then, the colonies
215 harboring the ZmWRKY82 were screened on SD/-Trp-His-Ura plates with X- α -gal
216 under the same condition.

217 To examine the subcellular localization of ZmWRKY82, the coding sequence of
218 ZmWRKY82 without the stop codon was cloned between the *Kpn*I and *Xba*I sites of
219 pCAMBIA2300-35S-eGFP. The p2300-ZmWRKY82-GFP was transiently into maize
220 protoplasts and onion epidermal cells according to the method described previously
221 (Chen et al. 2016). The samples were observed under BX61 fluorescent microscopy.
222 The samples were observed under BX61 fluorescent microscopy.

223 **Promoter binding analysis by EMSA and DAP-qRT-PCR**

224 The promoter of ZmSLG1 region containing the WLE-box were synthesized by
225 Songon (Shanghai, China) with 3'biotin label. EMSA was performed according to
226 previous research(Chen et al. 2016). After induced expression of the His-tagged
227 protein, the fusion protein His-ZmWRKY82 was purified using a protein purification
228 kit (Beyotime, Jiangsu, China). A Chemiluminescent EMSA Kit (Beyotime, Jiangsu,
229 China) was used for visualization.

230 The DAP-qRT-PCR was performed according to previous research (Li et al. 2021).
231 The total DNA of Mo17 and fusion protein His-ZmWRKY82 were used for DAP-
232 qPCR. The total DNA was broken into 300-500 bp fragments using an ultrasonic
233 crusher. His-ZmWRKY82 and DNA fragments were co-incubated for 12h in
234 incubation buffer. Then, 100 μ l of 5M NaCl was add to the bead solution and
235 incubated for 2h to relieve the crosslinking of Nickle-IDA agarose beads and DNA
236 fragments. The phenol-chloroform method was used to extract the DNA fragments.
237 An empty His protein was used as negative control. Finally, qPCR was used to
238 analysis the enrichment in control and ZmWRKY82 group.

239 **Results**

240 **RNA sequencing and data analysis**

241 To analyses global gene expression in maize seed in response to BR signaling, maize

242 seeds were collected 10 DAP and treated with BL. The libraries were constructed
243 from total RNA extracted and analyzed sequence on the Illumia HiSeqTM2000. The
244 generated reads were then aligned to the maize reference gene set based on B73
245 genome. Sample data from the four libraries were summarized in Table S1. The exotic
246 reads were normalized using cufflinks and reported as fragments Transcripts per
247 kilobase of exon model per million mapped reads (TPM). To identify genes displaying
248 significant expression changes during BR treatment, DEGs (FDR<0.01, |log2 Ratio| \geq
249 1) were analyzed by comparing the treatment library with the control library. In the
250 BL1 treated group compared to the control, there were 2575 genes that were
251 significantly differentially expressed, with 1357 up-regulated and 1218 down-
252 regulated genes. In the BL2 treated group, there were 2732 significantly differentially
253 expressed genes, including 1417 up-regulated and 1315 down-regulated genes. In the
254 BL3 treated group, 2363 genes that were significantly differential expressed, with
255 1264 up-regulated and 1099 down-regulated genes (Fig. 1).

256 **Identification of candidate function genes induced by BL and involved in seed
257 development**

258 According to the genes that may be involved in BR regulation of seed development
259 that have been reported in rice and Arabidopsis (Table 1), combined with the
260 expression of these genes in this transcriptome sequencing data, 12 candidate
261 functional genes that may be involved in BR regulation of seed development in maize
262 were preliminarily screened (Fig. 2A).

263 Then, further quantitative analysis of these 12 genes showed that they were basically
264 consistent with the transcriptome data, among these genes, the *ZmSLG1* show the
265 highest degree of up-regulation no matter in transcriptome data and qRT-PCR(Fig. 2B,
266 C). Meanwhile, it is reported that *ZmSLG1* is significantly associated with kernel
267 width (Liu, et al. 2017). Thus, the *ZmSLG1* gene is the important candidate gene
268 involved in BR regulate seed development.

269 **Phylogenetic analysis of *ZmSLG1***

270 The amino acid sequences encoded by *ZmSLG1* homology genes in maize,
271 Arabidopsis and rice were used to construct a phylogenetic tree. The results show that

272 the ZmSLG1 is closely related to OsSLG1 and AtSLG1 (Fig. 3A). BlastP analysis
273 using ZmSLG1 amino acid sequences revealed that it is a putative member of the
274 maize BAHD family of acyltransferases (Fig. 3B). In addition, the multiple sequence
275 alignment was conducted to verify that the two characteristic conserved domains
276 (HXXXD and DFGWG) was presence in the BAHD family genes (Molina and
277 Kosma 2015) (Fig. 3C).

278 **Analysis of the expression profile of *ZmSLG1* gene in maize inbred line Mo17**

279 The RNA-Seq of maize seed different tissues data shown that ZmSLG1 is express in
280 seed, endosperm, and embryo, and ZmSLG1 is mainly expressed in the early and
281 middle stage of seed (Fig. 4A) (Chen et al. 2014). Meanwhile, the MaizeGDB data
282 and LCM-Seq data shown that *ZmSLG1* is mainly expressed in embryo and pericarp
283 (Fig. 4B) (Zhan, 2015). In addition, the semi-quantitative RT-PCR results showed
284 that *ZmSLG1* is expressed in stem, leaf, anther, seed, embryo, endosperm, and
285 pericarp (Fig. 4C). Moreover, the quantitative RT-PCR results showed that *ZmSLG1* is
286 highly expressed during early seed development and after 18d reach their final size
287 (Fig. 4D).

288 **Overexpression of *ZmSLG1* decrease kernel length and hundred kernel weight**

289 To explore the function of ZmSLG1, the Ubi-ZmSLG1 vector was constructed and
290 introduced into maize inbred line KN5585. A total 33 independent transgenic plants
291 were obtained, and homozygous transgenic progenies (T3 generations) were selected
292 through GUS stain and PCR analysis (Fig. 5A, C). *ZmSLG1* expression levels in
293 transgenic lines were examined by quantitative RT-PCR analysis (Fig. 5D). The
294 representative *ZmSLG1* overexpression transgenic lines *OES1*, *OES14* and *OES21*,
295 with different expression levels of *ZmSLG1*, were selected for the further experiments.
296 Overall, the overexpression ZmSLG1 cob is short than the WT(Fig. 5B). Meanwhile,
297 the seed size of OES14 is small and round (Fig. 5E). Furthermore, the kernel length,
298 kernel width, length/width, hundred-kernel weight, and kernel area of OES14 is
299 significantly reduced (Fig. 5F-J). These seed phenotype are similar to the BR-
300 deficient mutants, such as *det2*, and *dwf4* (Jiang et al. 2013).

301 **Overexpression of *ZmSLG1* delay embryo development**

302 To explore the embryo change in overexpression of *ZmSLG1*, the paraffin section was
303 used to compare the embryo lengths and widths in OES14 and WT. The results
304 showed that the embryo length and width were significantly less in OES14 than in
305 WT whether in 15DAP and 20DAP (Fig. 6). Meanwhile, OES14 embryos had not yet
306 differentiated, while WT embryos had differentiated into hypocotyl and radicle in 20
307 DAP. Taken together, these results indicate that *ZmSLG1* affect embryo development .

308 ***ZmSLG1* regulates seed development by affecting pericarp cells size**

309 The paraffin section was used to compare the cell lengths and widths of the pericarp
310 cells in OES14 and WT (Fig. 7A). The cell length of the pericarp cells was decrease
311 36.28%, 18%, 31.59%, and 18.83% at 8d, 10d, 16d, and 18d respectively in OES14
312 than in WT (Fig. 7B-E), but the cell width of pericarp cells was increase 283%, 684%,
313 47.19%, and 99.5% at 8d, 10d, 16d, and 18d respectively in OES14 than in WT (Fig.
314 7F-I). Taken together, these results indicate that *ZmSLG1* regulate pericarp
315 development.

316 **Overexpression of *ZmSLG1* decreased starch content and granule size**

317 Overexpression of *ZmSLG1* decrease total starch content but increase the amylose
318 content (Fig. 8A, B). To further explore the effect of *ZmSLG1* on starch granule, SEM
319 was used to analysis the size and number of starch granule. As show in Fig. 8C,
320 OES14 plants produced dramatically smaller starch granule than the WT plants (Fig.
321 8C). We found that OES14 transgenic plants showed a dramatically decrease in area
322 of starch granule compared to the WT (-57.9%) (Fig. 8D), but there was substantial
323 increase in number of starch granule (+42.5%) (Fig. 8E). These results suggest that
324 *ZmSLG1* regulates starch size, number and structure.

325 **Overexpression of *ZmSLG1* reduced endogenous levels of BRs content**

326 In the OES14 plants, levels of CS and 6DCS were reduced by various amounts (Fig.
327 9A, B). Those results suggested a role for *SLG1* in regulating BR levels.
328 One feature of BR-deficient mutants is the feedback upregulation of BR biosynthesis
329 genes (Wang et al. 2012; Song et al. 2009). It is known that endogenous BRs defect
330 up-regulated the BR-related genes, but down-regulated BZR1 as a feedback
331 mechanism (Feng et al. 2016). The expression level of *CPD1*, *CPD2*, *CYP85A2*,

332 *DET2*, *DWF1*, *DWF4*, and *BZR1* genes in OES14 were analyzed by qRT-PCR. Three
333 genes (*CPD2*, *CYP85A2* and *DWF11*) showed elevated expression and *BZR1* was
334 significantly decreased expression in OES14 compared with the wild type, while other
335 genes expression was no significant alteration (Fig. 9C). Those results confirm that
336 BR contents decreases in OES14.

337 **Identification of candidate transcription factors induced by BR**

338 Transcriptome data and quantitative PCR results showed that BR can significantly
339 promote the *ZmSLG1* expression. How does BR regulate *ZmSLG1* gene expression
340 and which transcription factors participate in this pathway? Among the three pairwise
341 comparisons (Control-vs-BL1, Control-vs-BL2 and Control-vs-BL3), total of 62 TFs
342 belonging to 27 TF families were identified to be involved in the downstream signal
343 pathway of BR (Table 2). Among the 27 TF families, the WRKY and AP2-EREBP
344 family were highly induced.

345 **WLE-box identified in *pZmSLG1* is closely related to the promoter activity**

346 It has been reported that transcription factor plays an important roles in the regulation
347 of BR related genes (Tong et al. 2010). Here, a series of vectors contain different
348 *pZmSLG1* fragments and point mutations were constructed for the identification of the
349 active site of the promoter (Fig. 10A, B). Firstly, the 1811bp fragment was divided
350 into seven segments and the transient expression results showed that the activity was
351 significantly decreased from -651 to -429 bp segment. Then, the -651 to -429 bp
352 fragments were divided into six fragments and the transient expression results showed
353 that the fragment of -496 to -429 bp was important to the activity of the promoter. To
354 further analysis of this fragment, two cis-elements were found in the region from -
355 496 to -429 bp, including the CCGTCC-box and the WLE-box (Fig. 10C). The
356 transient expression of point mutation promoter fragments results indicated that the
357 WLE-box was very important for the activity of *ZmSLG1* (Fig. 10D). The presence of
358 WLE-box, a typical WRKY transcription factor binding site, indicates that WRKY
359 transcription factor may participate in the regulation of *ZmSLG1*.

360 **Seven WRKY transcription factor selected as candidate genes**

361 Based on the identified transcription factors regulated by BR, we screened seven

362 genes as the candidate WRKY transcription factors. The accession numbers for these
363 seven genes are ZmWRKY15 (Zm00001d023615), ZmWRKY93 (Zm00001d039245),
364 ZmWRKY32 (Zm00001d028962), ZmWRKY62 (Zm00001d035323), ZmWRKY121
365 (Zm00001d020137), ZmWRKY83 (Zm00001d038023), ZmWRKY82
366 (Zm00001d038843). According to the results of MaizeGDB public data, it was found
367 that only *ZmWRKY121* was not expressed in seed (Fig. 11B). These seven WRKY
368 transcription factors were further screened via transient expression assay. The results
369 showed that ZmWRKY82 had the highest promoting effect on the activity of
370 *pZmSLG1* (Fig. 11 C). All of the results suggested that the ZmWRKY82 may play an
371 important role in regulating *ZmSLG1* gene expression.

372 **Analysis of the expression profile of ZmWRKY82**

373 The expression pattern of ZmWRKY82 was detected in the inbred line Mo17 through
374 semi-quantitative RT-PCR and quantitative RT-PCR. The different organs of
375 ZmWRKY82 expression was examined by semi-quantitative PCR. *ZmWRKY82* was
376 expressed in all tissues except anther (Fig. 12A). The different stages in seed
377 development of ZmWRKY82 expression was detected by quantitative RT-PCR. the
378 ZmWRKY82 expression exhibited two peaks at 3DAP and 24DAP during the stage of
379 seed development (Fig. 12B).

380 In addition, quantitative RT-PCR was used to test the response of ZmWRKY82 to BL
381 hormone. As shown in Fig. 12C, ZmWRKY82 expression was upregulated more than
382 two fold after 2h and reached highest at 48h with 10 nM BL treatment. Overall, these
383 data indicated that ZmWRKY82 expressed in seed and could induced in BL,
384 suggesting that ZmWRKY82 may be play an important role in BR regulated seed
385 development.

386 **ZmWRKY82 localizes in the nucleus and shows transcriptional activation**

387 The typical transcription factor contain specific domain, nuclear localization signals,
388 activation domain, DNA-binding domain, and oligomerization sites (Xiao et al. 2017).
389 Nuclear localization assay is to make clear the function site of the transcription factor.
390 We assessed the subcellular localization of ZmWRKY82 in onion epidermal cells and
391 leaf protoplasts. All the results showed that the localization of ZmWRKY82-eGFP

392 was distributed in the nucleus (Fig. 13B, C). The activation domain determines the
393 activity of the transcription factor. The yeast two-hybrid system was used to detected
394 ZmWRKY82 protein transcriptional activation activity. The results of this experiment
395 are shown in Fig. 13E. The positive group, pGBT7-GAL4 construct, could degrade
396 the X-a-gal substrate and turn to color blue after 3days. The different fragment of the
397 ZmWRKY82 gene transformants were used to confirm the activity region of
398 ZmWRKY82. In Fig. 13E, the fragment of 133-221aa, 93-221aa, and 63-221aa
399 transformants could not growth on SD/-Trp/-Ade/-His plates, while the 12-221aa, 1-
400 54aa, 1-84aa, 1-115aa could growth on the SD/-Trp/-Ade/-His plates and the color
401 turn to blue (Fig. 13E). All of these results confirm that the activity region of
402 ZmWRKY82 is 12-54aa.

403 **ZmWRKY82 is important for promoting the activity of pZmSLG1 through the
404 WLE-box**

405 To investigate whether ZmWRKY82 function in binding and regulating the ZmSLG1
406 gene promoter, we first use the transient expression assay in maize endosperm
407 experiment. The Ubi-Gus, Ubi-ZmWRKY82, and promoter-Luc were cotransformed
408 in the maize endosperm and the activities of β -glucuronidase and luciferase were
409 determined. As shown in Fig. 14B, the ZmWRKY82 could significantly promote the
410 activity of -1811 to -496 bp fragment, whereas the activity of -429 to -84 bp did not
411 have obvious effects with ZmWRKY82. Meanwhile, the mutant promoter with
412 ZmWRKY82 shows that ZmWRKY82 could not promote the WLE-box (TGAC)
413 mutant promoter activity (Fig. 14C). Next, EMSA experiment results show that the
414 ZmWRKY82 could direct bind to the WLE-box and the promoter of ZmSLG1 (Fig.
415 14D, E). Finally, the DAP-qPCR was used to analysis the binding effect of
416 ZmWRKY82 protein with ZmSLG1 promoter in vitro (Fig. 14F). The quantity of F1
417 and F2 in the control and experimental group and found the fragment including WLE-
418 box will enrich in experiment compared with control. Those results confirmed the
419 ZmWRKY82 could directly bind to the WLE-box of *ZmSLG1* promoter and regulated
420 the activity of *ZmSLG1* promoter.

421 **Discussion**

422 **BR increase yield and seed development**

423 There are many studies relating the effects of brassinosteroid application on plant
424 development, such as photosynthetic pigments, stem diameter, root length, and yield
425 (Altoe et al. 2008; Kartal et al. 2009). Recently studies in rice and maize showed that
426 exogenous BL spraying increased the yield, but the effect of exogenous BL spraying
427 on the development of maize grains and different grain tissues is still unclear (Gao et
428 al. 2017; Krishnan et al. 1999). In previous study, the results showed that exogenous
429 BL spraying maize could increase hundred kernel weight and seed size (Fig. S1).
430 Moreover, the results also showed that the pericarp cell length was increased and the
431 embryo development was advanced in BL treatment, while the results were opposite
432 in Brz treatment (Fig. S2-S3, 1). These findings are not found before.

433 **Roles of *ZmSLG1* in BR regulating Maize Kernel Development**

434 As we all know, BR play an important role in seed development, including seed size
435 and weight (Jiang and Lin 2013). The organ size is determined by cell number and
436 cell expansion (Sugimoto and Roberts 2003). Here, we found that *ZmSLG1* is
437 essential for cell expansion in maize pericarp. We examined the cell length and cell
438 width of pericarp between overexpression *ZmSLG1* and WT and found the cell length
439 is significantly decrease. Meanwhile, the starch makes up 70% of the seed weight
440 (Xiao et al. 2017). Our results showed that *ZmSLG1* is required for starch size and
441 number in endosperm. Furthermore, embryo is also important for seed development
442 (Costa et al. 2014). Here, we show that embryo development is delay in
443 overexpression *ZmSLG1* plant compared with WT. These results suggest that enhance
444 the expression level of *ZmSLG1* can create a small seed with delay embryo
445 development and small starch granule in endosperm.

446 In many cases, the phytohormones metabolism and homeostasis are important
447 mechanism of regulation signals in plant (Kiwamu and Okamoto 2005). For example:
448 BEN1 (Tong et al. 2007), CYP72B1 (Turk et al. 2004), and CYP72C1 (Masanobu et
449 al. 2005) are participate in light signal by affecting endogenous BR levels; UGT73C5
450 and UGT73C6 are UDP-glycosyltransferases and has functions in BR homeostasis

451 (Poppenberger et al. 2005; Meena et al. 2021). Here, we found that *ZmSLG1* encodes
452 a putative acyltransferase, which belongs to BAHD gene family and plays important
453 role in plant development. The BAHD family contain two key motifs: HXXXD and
454 DFGWG that encode acyltransferases and classified into five clades. *ZmSLG1*
455 belongs to the clade V, which is clustered with TAX, flavonoid, and
456 hydroxycinnamyl/benzoyl CoA acyltransferases (Niggeweg et al. 2004; Hong et al.
457 2005; Kaffarnik et al. 2010). Previous studies of BAHD family members gave shown
458 that their tissue-specific expression pattern indicated their diversity functions. In
459 *Arabidopsis*, CHAT is main expression in leaf and product inactivity BR. In addition,
460 SCT is required for spermidine synthesis in seeds (Jie et al. 2009) and ASFT for
461 product suberin in roots and seeds (Jin et al. 2009). Furthermore, BIA1 and BAT1 are
462 two BAHD acyltransferases that involved in BR homeostasis and overexpression of
463 BIA1 and BAT1 display BR-deficient phenotype in root, cotyledons, and leaves (Choi
464 et al. 2013; Roh et al. 2012). BIA2, another BAHD acyltransferase in *Arabidopsis*,
465 display reduced level of activity BRs and overexpression BIA2 shown typical BR-
466 deficient phenotype (Zhang and Xu 2018). In our study, overexpression of *ZmSLG1*
467 induced decreased levels of endogenous BR, such as CS and 6DCS. These results are
468 similar with *Arabidopsis* but difference with rice that implies BAHD acyltransferase
469 in BR homeostasis is complex and differentiated (Feng et al. 2016). Meanwhile, these
470 results shown that not only cytochrome P450 protein family, but also BAHD
471 acyltransferase could modified BR homeostasis in maize. Therefore, *ZmSLG1* likely
472 play an important role in regulation endogenous BRs level. But further studies are
473 necessary for analysis the mechanism how the *ZmSLG1* modified BR homeostasis.
474 The BR homeostasis is believed to be crucial for seed development. It is quite clear
475 that BR biosynthesis genes can be up-regulated in a feedback manner to increase the
476 endogenous BRs level when bioactive BR are deficient in plant. In BR deficient
477 mutant, the BR biosynthesis genes were up-regulate and BR signal pathway genes
478 were down-regulated (Roh et al. 2012). Here, we observed three BR biosynthesis
479 genes, CPD1, CYP85A2, and DWF4 were up-regulation in overexpression *ZmSLG1*
480 plants (Fig. 9). Meanwhile, the expression level of *ZmBZR1* was down-regulated in

481 overexpression *ZmSLG1* plants (Fig. 9). The expression pattern of BR related genes
482 is consistent with results of Tanaka et al. (2005). These results suggest that feedback
483 mechanism of BR content not only involved in BR biosynthesis, but also in BR
484 metabolism.

485 **Roles of *ZmWRKY82* in BL regulating *ZmSLG1* expression**

486 The gene expression is usually regulated by transcription factor. Most of the WRKY
487 family transcription factors are involved in stress response and organ development
488 (Chen et al. 2017b; Wang et al. 2018; Gulzar et al. 2021). Meanwhile, BR exhibit core
489 function in stress response and plant growth (Martinez et al. 2010; Huang et al. 2013).
490 But the relationship of BR and WRKY transcription factor are need to further study.
491 In recently, some of WRKY transcription factor are proved to participate in BR
492 signaling. For example, AtWRKY46, AtWRKY54, and AtWRKY70 are involved in
493 BR regulated plant growth and drought responses (Chen et al. 2017a). In addition,
494 OsWRKY53 interacts with OsMAPK6 to positively regulates BR signaling in rice
495 (Tian et al. 2017). In this study, we confirmed that modified the expression of
496 *ZmSLG1* can affect the endogenous BRs in maize, and *ZmSLG1* is induced in BL
497 treatment. Promoter activity analysis results showed that WLE-box is an important
498 element. Then, seven WRKY family transcription factor were selected from
499 transcriptome data. Furthermore, we proved that *ZmWRKY82* can directly regulate
500 *ZmSLG1* expression. In addition, the other six WRKY family transcription factor are
501 also induced by BL and regulate *ZmSLG1* expression. But the mechanisms of these
502 six WRKY transcription factor in BL regulating *ZmSLG1* expression are unclear. The
503 prediction results of cis acting elements of the promoter showed that there were many
504 W-boxes in the *ZmSLG1* promoter, and these transcription factors may bind to these
505 sites.

506 **Molecular mechanism of *ZmSLG1* in maize seed development**

507 Phytohormone feedback mechanism is a complex biology process by multiple
508 pathway, such as biosynthesis and metabolism (Masanobu et al. 2005; Zhang and Xu
509 2018). However, the feedback regulation genes of BR in Maize is still unclear. In this
510 study, we found that BR could regulate the expression of *ZmSLG1* gene through

511 ZmWRKY82 transcription factor, and ZmSLG1 negatively regulated the endogenous
512 BR content in seeds, then the BR content reached a steady-state balance during seed
513 development. Therefore, the BR-ZmWRKY82-ZmSLG1 hypothesis is a key pathway
514 in BR feedback mechanism to regulate seed development (Fig. 15).

515 **Author Contributions:** All authors contributed to the study conception and design.
516 Material preparation, data collection, and analyses were performed by H.L., L.L., and
517 Y.W. The first draft of the manuscript was written by H.L., and all authors commented
518 on previous versions of the manuscript. All authors read and approved the final
519 manuscript.

520 **Conflict of interest:** The authors have no relevant financial or non-financial interests
521 to disclose.

522 **Author Contributions:** All authors contributed to the study conception and design.
523 Material preparation, data collection, and analyses were performed by H.L.,
524 L.L., Y.H., Y.L. and Y.W. The first draft of the manuscript was written by H.L., and all
525 authors commented on previous versions of the manuscript. All authors read and
526 approved the final manuscript.

527 **Funding:** This work was supported by National Natural Science Foundation of China
528 (Nos. 31771702 and 31571682).

Reference

Chen J, Nolan T, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y.

2017a. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors
Are Involved in Brassinosteroid-Regulated Plant Growth and Drought
Responses. *The Plant Cell* 29, 1425-1439.

Chen J, Yi Q, Cao Y, Wei B, Zheng L, Xiao Q, Xie Y, Gu Y, Li Y, Huang H, et al.

2016. ZmbZIP91 regulates expression of starch synthesis-related genes by
binding to ACTCAT elements in their promoters. *Journal of Experimental
Botany* 67,1327-1338.

Chen L, Xiang S, Chen Y, Li D, Yu D. 2017b. Arabidopsis WRKY45 Interacts with
the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf
Senescence. *Molecular Plant* 10,1174-1189.

Choi S, Cho YH, Kim K, Matsui M, Son SH, Kim SK, Fujioka S, Hwang I. 2013.
BAT1, a putative acyltransferase, modulates brassinosteroid levels in
Arabidopsis. *The Plant Journal* 73, 380-391.

Costa LM, Marshall E, Tesfaye M, Silverstein KAT, Mori M, Umetsu Y,

Otterbach SL, Papareddy R, Dickinson HG, Boutiller K. 2014. Central Cell-Derived Peptides Regulate Early Embryo Patterning in Flowering Plants. *Science* 344, 168-172.

Cristian F, Silvia M, Serena V. 2010. ZmPIN1-Mediated Auxin Transport Is Related to Cellular Differentiation during Maize Embryogenesis and Endosperm Development. *Plant Physiology* 152, 1373-1390

Edward, M, Turk S, Fujioka H, Seto Y, Shimada S. 2005. BAS1 and SOB7 act redundantly to modulate *Arabidopsis* photomorphogenesis via unique brassinosteroid inactivation mechanisms. *The Plant Journal* 41, 23-34.

Feng Z, Wu C, Wang C, Roh J, Zhang L, Chen J, Zhang S, Zhang H, Yang C, Hu J, et al. 2016. SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. *Journal of Experimental Botany* 67, 4241-4253.

Gulzar F, Fu J, Zhu C, Yan J, Li X, Meraj TA, Shen Q, Hassan B, Wang Q. (2021) Maize WRKY Transcription Factor ZmWRKY79 Positively Regulates Drought Tolerance through Elevating ABA Biosynthesis. *International Journal of Molecular Sciences* 22, 10080.

Hayat S, Ahmad A. 2011. *Brassinosteroids: A Class of Plant Hormone*. Springer Science & Business Media.

Hong Z. 2003. A Rice Brassinosteroid-Deficient Mutant, ebisu dwarf (d2), Is Caused by a Loss of Function of a New Member of Cytochrome P450. *The Plant Cell* 15, 2900-2910.

Hong Z, Ueguchi M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. 2005. The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of *Arabidopsis* DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. *The Plant Cell* 17, 2243-2254.

Huang HY, Jiang WB, Hu YW, Wu P, Zhu JY, Liang WQ, Wang ZY, Lin WH. 2013. BR signal influences *Arabidopsis* ovule and seed number through regulating related genes expression by BZR1. *Molecular Plant* 6, 456-469.

Ikeda M, Miura K, Aya K, Kitano H, Matsuoka M. 2013. Genes offering the potential for designing yield-related traits in rice. *Current Opinion In Plant Biology* 16, 213-220.

Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu BI, Onishi A. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. *Nature Genetics* 45, 707-711.

Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH. 2013. Brassinosteroid regulates seed size and shape in *Arabidopsis*. *Plant Physiology*. 162, 1965-1977.

Jiang WB, Lin WH. 2013. Brassinosteroid functions in *Arabidopsis* seed development. *Plant Signaling & Behavior* 8, e25928.

Jie L, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Michael MAJ. 2009. A Novel Polyamine Acyltransferase Responsible for the Accumulation of Spermidine Conjugates in *Arabidopsis* Seed. *The Plant Cell* 21, 318-333.

Gou JY, Yu XH, Liu CJ. 2009. A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in *Arabidopsis*. *Proceedings of the National Academy of Sciences of the United States of America* 106, 18855-18860.

Kaffarnik F, Heller W, Hertkorn N, Sandermann H. 2010. Flavonol 3-O-glycoside hydroxycinnamoyltransferases from Scots pine (*Pinus sylvestris* L.). *FEBS Journal*. 272, 1415-1424.

Kiwamu TTA, Shigeo Y, Yasushi N, Tomoaki M, Okamoto S. 2005. Brassinosteroid Homeostasis in *Arabidopsis* Is Ensured by Feedback Expressions of Multiple Genes Involved in Its Metabolism. *Plant Physiology*. 138, 1117-1125.

Li H, Wang Y, Xiao Q, Luo L, Zhang C, Mao C, Du J, Long T, Cao Y, Yi Q, et al. 2021. Transcription factor ZmPLATZ2 positively regulate the starch synthesis in maize. *Plant Growth Regulation* 93, 291-302.

Li JG, Fan M, Hua W, Tian Y, Chen LG, Sun Y, Bai MY. 2020. Brassinosteroid and Hydrogen Peroxide Interdependently Induce Stomatal Opening by

Promoting Guard Cell Starch Degradation. *The Plant Cell* 32, 984-999.

Liu C, Qiao X, Li Q, Zeng W, Wei S, Wang X, Chen Y, Wu X, Wu J, Yin H, et al. 2020. Genome-wide comparative analysis of the BAHD superfamily in seven Rosaceae species and expression analysis in pear (*Pyrus bretschneideri*). *BMC Plant Biology* 20, 14.

Liu T, Zhang J, Wang M, Wang Z, Li G, Wang QG. 2007. Expression and functional analysis of ZmDWF4, an ortholog of *Arabidopsis* DWF4 from maize (*Zea mays* L.). *Plant Cell Reports* 26, 2091-2099.

Martinez BM, Bastías E, Zhu C, Schäffner A, Carvajal M. 2010. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H⁺-ATPase, in relation to water and nutrient uptake. *Physiologia Plantarum* 132, 479-490.

Masanobu N, Tatsuro S, Shin IT, Nobuyoshi M, Takao Y, Akira N. 2005. Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. *Journal of Experimental Botany*. 56, 833-840.

Meena SK, Heidecker M, Engelmann S, Jaber A, Gago ZS. 2021. Expression levels of long noncoding natural antisense transcripts overlapping the UGT73C6 gene affect rosette size of *Arabidopsis thaliana*. bioRxiv doi: 10.1101/2021.03.01.433436.

Molina I, Kosma D. 2015. Role of HXXXD-motif/BAHD acyltransferases in the biosynthesis of extracellular lipids. *Plant Cell Reports* 34, 587-601.

Niggeweg R, Michael AJ, Martin C. 2004. Engineering plants with increased levels of the antioxidant chlorogenic acid. *Nature Biotechnology* 22, 746.

Park CH, Kim TW, Son SH, Hwang JY, Lee SC, Chang SC, Kim SH, Kim SW, Kim SK. 2010. Brassinosteroids control AtEXPA5 gene expression in *Arabidopsis thaliana*. *Phytochemistry* 71, 380-387.

Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S. 2005. From the Cover: The UGT73C5 of *Arabidopsis thaliana* glucosylates brassinosteroids. *Proceedings of the National Academy of Sciences of the United States of America* 102, 15253-

15258.

Roh H, Jeong CW, Fujioka S, Kim YK, Lee S, Ahn JH, Choi YD, Lee JS. 2012. Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in *Arabidopsis*. *Plant Physiology* 159, 696-709.

Segami S, Takehara K, Yamamoto T, Kido S, Kondo S, Iwasaki Y, Miura K. 2017. Overexpression of SRS5 improves grain size of brassinosteroid-related dwarf mutants in rice (*Oryza sativa* L.). *Breeding Science* 67, 393-397.

Shimada Y, Goda H, Nakamura A, Takatsuto S, Yoshida FS. 2003. Organ-Specific Expression of Brassinosteroid-Biosynthetic Genes and Distribution of Endogenous Brassinosteroids in *Arabidopsis*. *Plant Physiology* 131, 287-297.

Song L, Zhou XY, Li L, Xue LJ, Xi Y, Xue HW. 2009. Genome-Wide Analysis Revealed the Complex Regulatory Network of Brassinosteroid Effects in Photomorphogenesis. *Molecular Plant* 2, 755-772.

Sugimoto SK, Roberts K. 2003. "Big it up": endoreduplication and cell-size control in plants. *Current Opinion In Plant Biology* 6, 544-553.

Sun F, Ding L, Feng W, Cao Y, Lu F, Yang Q, Li W, Lu Y, Shabek N, Fu F, et al. 2021a. Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. *Journal Of Experimental Botany* 72, 1714-1726.

Sun H, Xu H, Li B, Shang Y, Wei M, Zhang S, Zhao C, Qin R, Cui F, Wu Y. 2021b. The brassinosteroid biosynthesis gene, ZmD11, increases seed size and quality in rice and maize. *Plant Physiology and Biochemistry* 160, 281-293.

Symons GM, Reid JB. 2004. Brassinosteroids Do Not Undergo Long-Distance Transport in Pea. Implications for the Regulation of Endogenous Brassinosteroid Levels. *Plant Physiology* 135, 2196-2206.

Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y. 2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. *The Plant Cell* 17, 776-790.

Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S. 2003. Physiological roles of brassinosteroids in early growth of *Arabidopsis*:

brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. *Plant Growth Regulation* 22, 259-271.

Tao Y, Zheng J, Xu Z, Zhang X, Zhang K, Wang G. 2004. Functional analysis of ZmDWF1, a maize homolog of the *Arabidopsis* brassinosteroids biosynthetic DWF1/DIM gene. *Plant Science* 167, 743-751.

Tian X, Li X, Zhou W, Ren Y, Wang Z, Liu Z, Tang J, Tong H, Fang J, Bu Q. 2017. Transcription Factor OsWRKY53 Positively Regulates Brassinosteroid Signaling and Plant Architecture. *Plant Physiology* 175, 1337-1349.

Tong H, Yun J, Liu W, Feng L, Chu C. 2010. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. *Plant Journal* 58, 803-816.

Tong Y, Fujioka S, Takatsuto S, Matsumoto S, Gou X, Kai H, Russell SD, Jia L. 2007. BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in *Arabidopsis thaliana*. *Plant Journal* 51, 220-233.

Turk EM, Fujioka S, Seto H, Shimada Y, Neff MM. 2004. CYP72B1 Inactivates Brassinosteroid Hormones: An Intersection between Photomorphogenesis and Plant Steroid Signal Transduction. *Plant physiology* 133, 1643-1653.

Wang CT, Ru JN, Liu YW, Li M, Zhao D, Yang JF, Fu JD, Xu ZS. 2018. Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants. *International Journal of Molecular Sciences* 19, 3046.

Wang M, Liu X, Wang R, Li W, Rodermel S, Yu F. 2012. Overexpression of a putative *Arabidopsis* BAHD acyltransferase causes dwarfism that can be rescued by brassinosteroid. *Journal of Experimental Botany* 63, 5787-5801.

Werner S, Bartrina I, Novák O, Strnad M, Werner T, Schmülling T. 2021. The cytokinin status of the epidermis regulates aspects of vegetative and reproductive development in *Arabidopsis thaliana*. *Frontiers in Plant Science* 12, 613488.

Xiao Q, Wang Y, Du J, Li H, Wei B, Wang Y, Li Y, Yu G, Liu H, Zhang J, et al.

2017. ZmMYB14 is an important transcription factor involved in the regulation of the activity of the ZmBT1 promoter in starch biosynthesis in maize. *FEBS Journal* 284, 3079-3099.

Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M,

Matsuoka KM. 2000. Loss of Function of a Rice brassinosteroid insensitive1 Homolog Prevents Internode Elongation and Bending of the Lamina Joint. *The Plant Cell* 12, 1591-1605.

Hu YF, Li YP, Zhang JJ, Liu HM, Tian ML, Huang YB. 2012. Binding of ABI4 to a CACCG motif mediates the ABA-induced expression of the ZmSSI gene in maize (*Zea mays* L.) endosperm. *Journal of Experimental Botany* 63, 5979-5989.

Zhan J, Thakare D, Ma C, Lloyd A, Nixon NM, Arakaki AM, Burnett WJ, Logan KO, Wang D, Wang X, et al. 2015. RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. *The Plant Cell* 27, 513-531.

Zhang J, Zhang S, Hui L, Du H, Huang H, Li Y, Hu Y, Liu H, Liu Y, Yu G, et al. 2016. Identification of Transcription Factors ZmMYB111 and ZmMYB148 Involved in Phenylpropanoid Metabolism. *Frontiers in Plant Science* 7, 148.

Zhang LY, Bai MY, Wu J, Zhu JY, Wang H, Zhang Z, Wang W, Sun Y, Zhao J, Sun X. 2009. Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis. *The Plant Cell* 21, 3767-3780.

Zhang Z, Xu L. 2018. Arabidopsis BRASSINOSTEROID INACTIVATOR2 is a typical BAHD acyltransferase involved in brassinosteroid homeostasis. *Journal Of Experimental Botany* 69, 3787-3787.

Zhu W, Wang H, Fujioka S, Tao Z, Tian H, Tian W, Wang X. 2013. Homeostasis of Brassinosteroids Regulated by DRL1, a Putative Acyltransferase in Arabidopsis. *Molecular Plant* 6, 546-558.

Fig. 1 Number of up- or down-regulated DEGs in each treatment. (A) The number of DEGs. (B) The heatmap of DEGs. BL1:10 nM BL-6h; BL2: 1 μ M BL-6h; BL3:10 nM BL-12h.

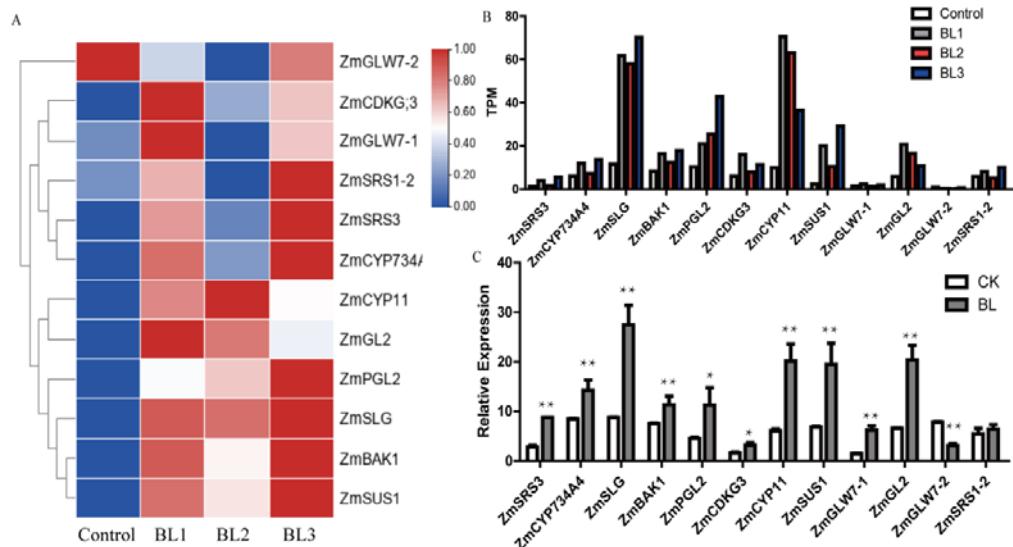


Fig. 2 Analysis of genes related to BR regulating grain development. (A) Heat-map of the seed development related genes after BR treatment based on the RNA-seq data. BL1:10 nM BL-6h; BL2: 1 μ M BL-6h; BL3:10 nM BL-12h (B) The TPM of seed development genes based on the RNA-seq data. (C) The qRT-PCR analysis of seed development related genes after BR treatment. * indicate significant different (t-test, $*P < 0.05$; $**P < 0.01$).

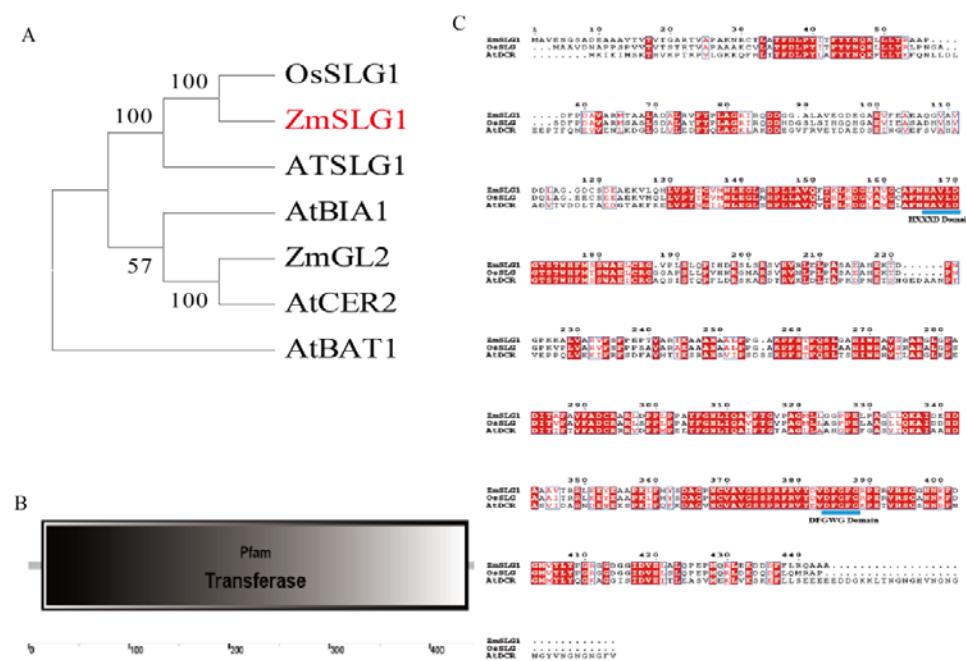


Fig. 3 Sequence analysis of ZmSLG1 gene. (A) Phylogenetic analysis of SLG1. (B) Conserve domain analysis of ZmSLG1. (C) Comparison of SLG1 sequences in Arabidopsis, rice and maize.

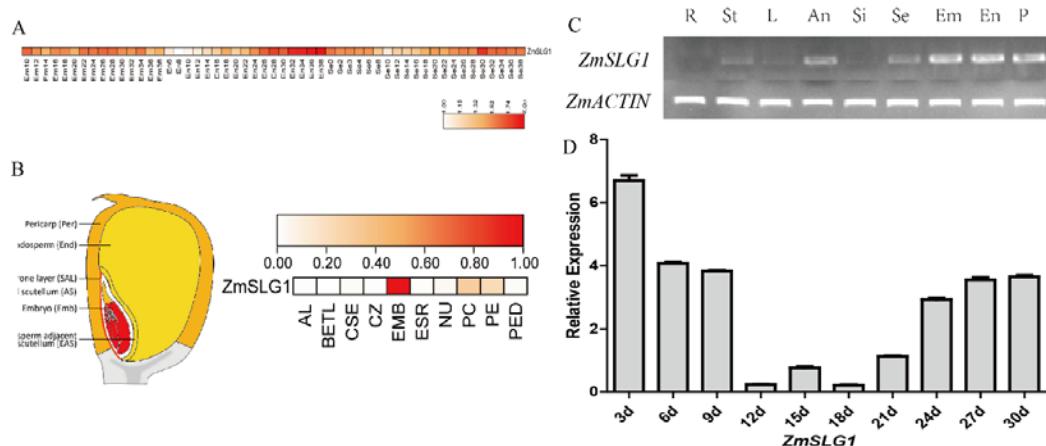


Fig. 4 The expression analysis of ZmSLG1 gene. (A-B) The expression analysis of ZmSLG1 gene in MaizeGDB database and transcriptome data. (C) Semi-quantitative RT-PCR analysis of the expression patterns of ZmSLG1 gene in different maize tissues. R, root; St, stem; L, leaf; An, anthers; Si, silk; Se, seed; Em, embryo; En, endosperm; P, pericarp. (D) RT-PCR analysis of ZmSLG1 gene in the different development maize seed. The data are given as the means \pm SE of at least 3.

replicates. Data based on LCM RNA-seq data (Zhan et al. 2015).

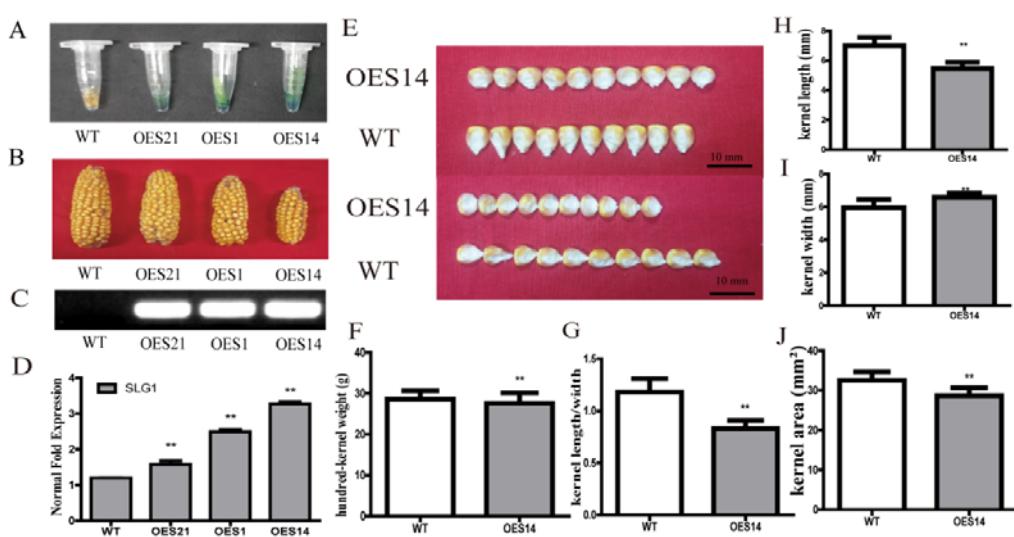


Fig. 5 Phenotype identification of *ZmSLG1* transgenic material. (A) Gus stain of transgenic lines. (B) Cob morphologies analysis of transgenic lines. (C) PCR analysis of transgenic lines. (D) The over-expression degree analysis of various lines. (E) Kernel morphologies. (F-J) Quantitative compare of the hundred-kernel weight (F), kernel/length (G), kernel length (H), kernel width (I), and kernel area (J) of the WT and OES14. * indicate significant different (t-test, *P < 0.05; **P < 0.01).

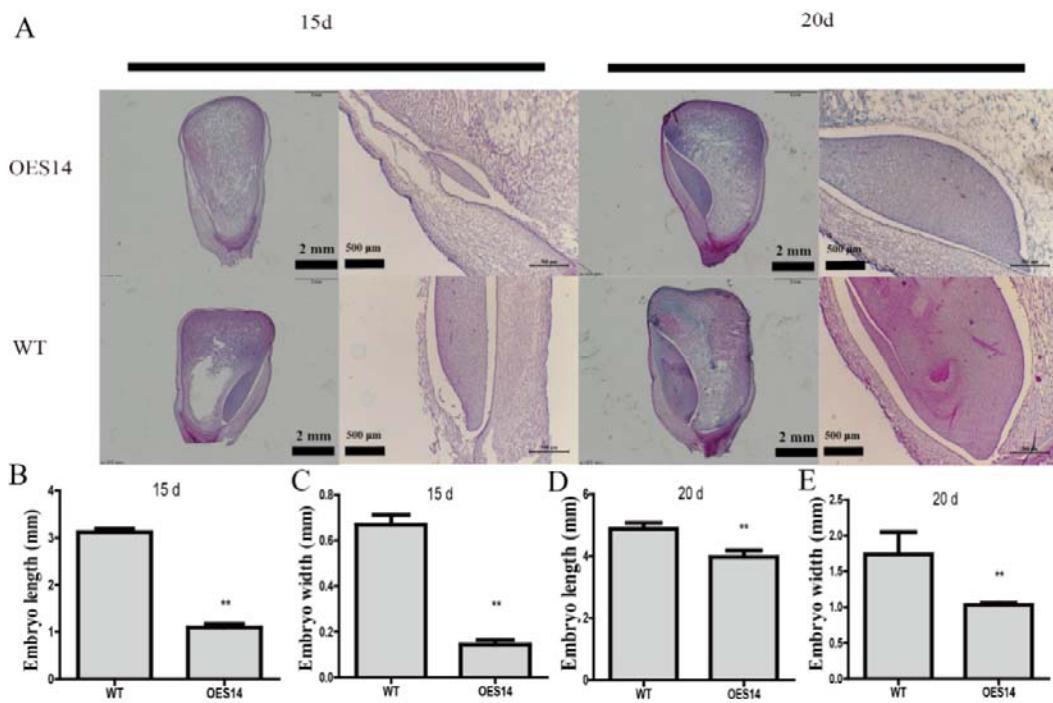


Fig. 6 ZmSLG1 inhibits embryo growth and development. (A) The paraffin section observes of OES14 and WT. (B-E) Quantitative compare the Embryo length of 15d (B), embryo width of 15d (C), embryo length of 20d (D), and embryo width of 20d (E) between OES14 and WT. * indicate significant different (t-test, *P < 0.05; **P < 0.01).

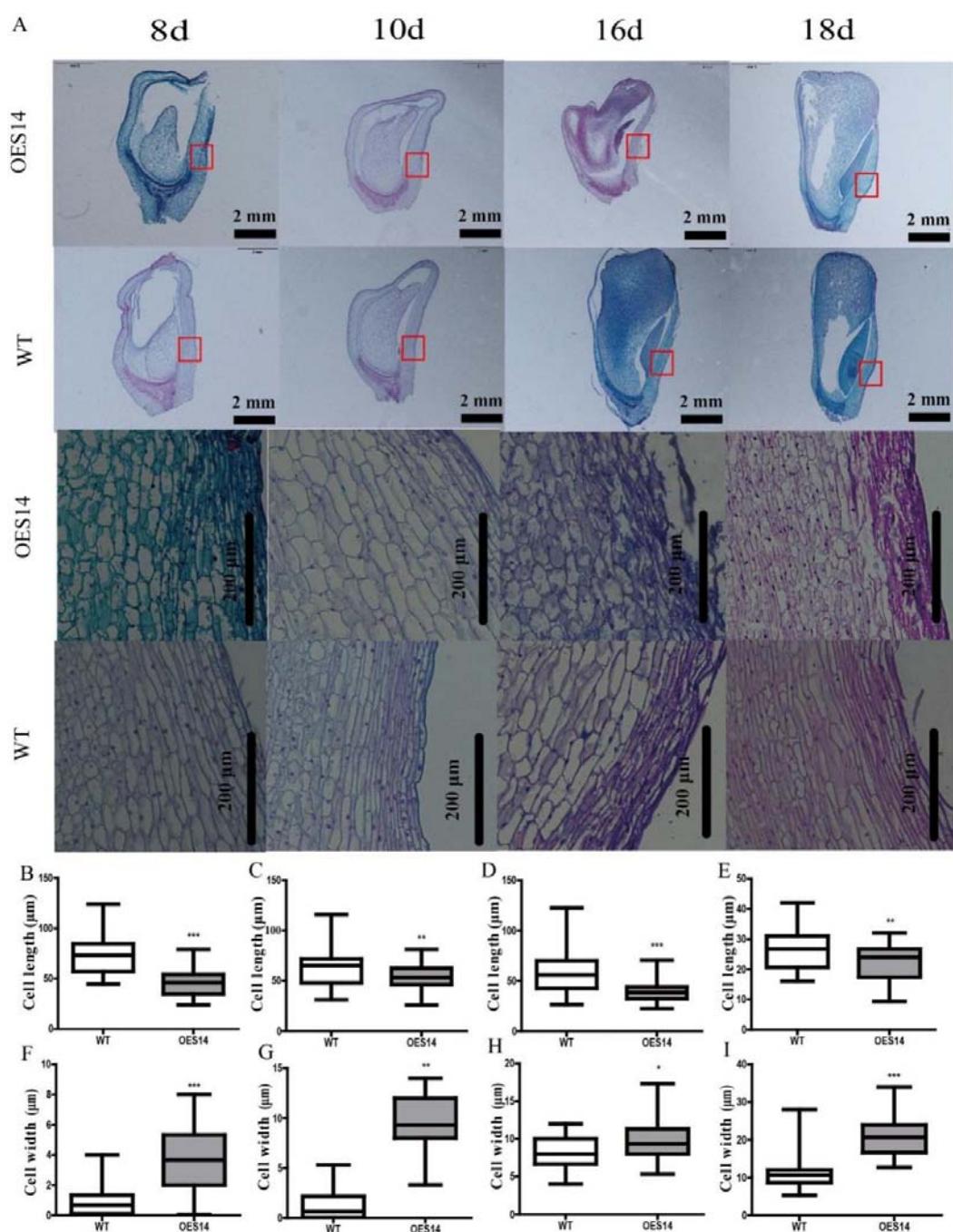


Fig. 7 ZmSLG1 decreased the pericarp cells length and increased pericarp cells width
 (A) The paraffin section of OES14 and WT. (B-E) Quantitative compare of pericarp cells length of 8 (B), 10 (C), 16 (D), and 18 (E) DAP kernel. (F-I) Quantitative compare of pericarp cells width of 8 (F), 10 (G), 16 (H), and 18 (I) DAP kernel. * indicate significant different (t-test, *P < 0.05; **P < 0.01; ***P < 0.001).

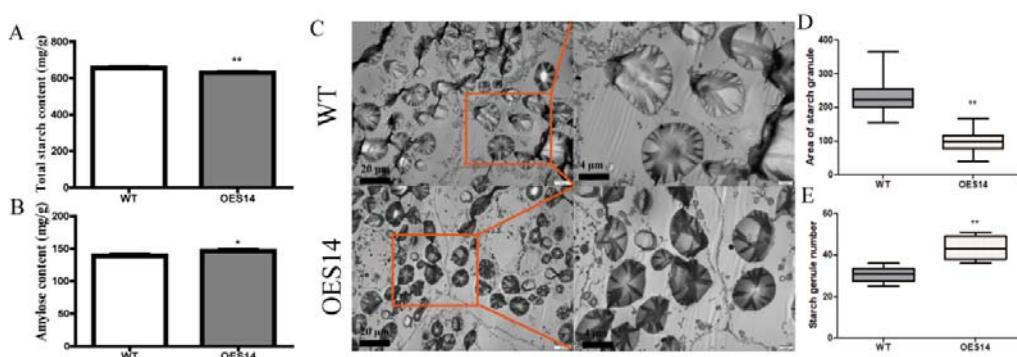


Fig. 8 ZmSLG1 regulates the size and quantity of starch granule. (A-B) Comparison of total starch content and amylose content between WT and OES14. (C) Starch granule morphologies (D-E) Quantitative compare of starch granule area (D) and starch granule number (E) between WT and OES14. * indicate significant different (t-test, *P < 0.05; **P < 0.01).

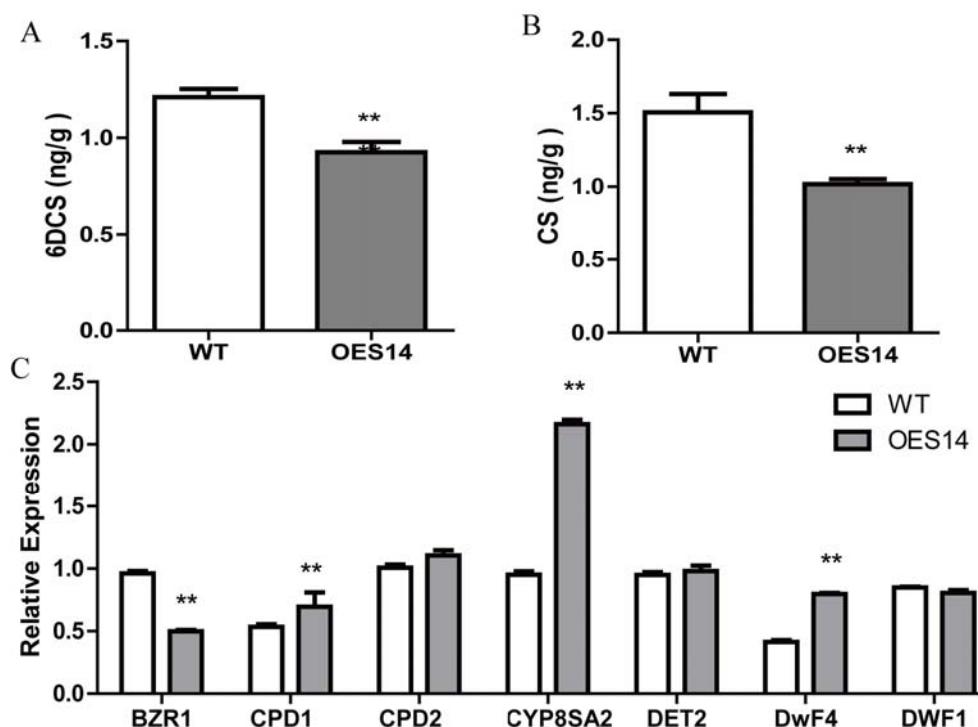


Fig. 9 ZmSLG1 is involved in regulating genes expression of BR pathway and endogenous BR levels. (A) Endogenous 6DCS content in OES14 and WT grains. (B) Endogenous CS content in OES14 and WT grains. (C) Quantitative RT-PCR analysis of BR-related genes in OES14 and the WT. Asterisk indicate significant different (*t*-test, *P < 0.05; **P < 0.01; ***P < 0.001).

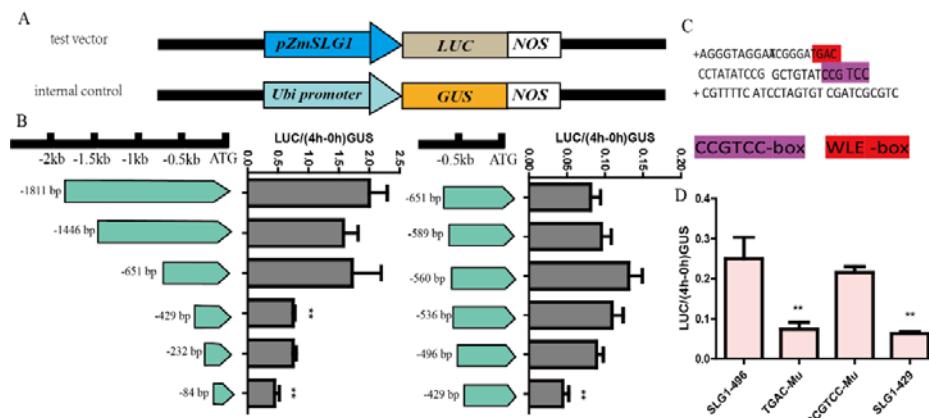


Fig. 10 Analysis of the important active fragments of ZmSLG1 gene promoter and identification of the functional sites. (A) The construction of vector for transient expression assay. (B) Analysis of promoter fragment activity of ZmSLG1 gene. (C) The prediction result of *ZmSLG1* promoter from -496bp to -429bp fragment. (D) Point mutation activity analysis in the -496bp to -429bp fragment of ZmSLG1 gene promoter.

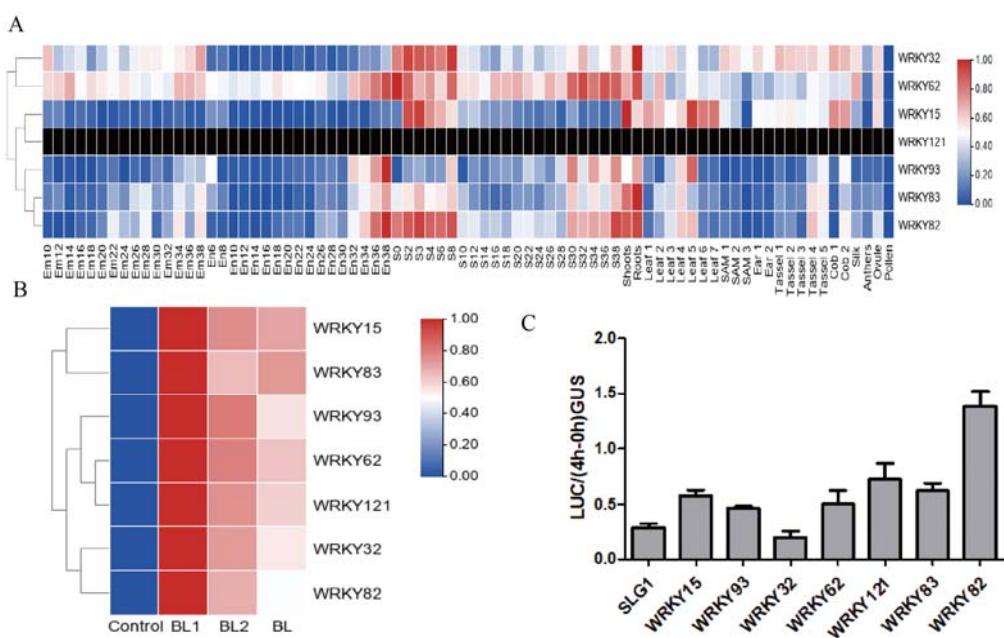


Fig. 11 The screen of WRKY transcription factor. (A) The expression profiles of 7 WRKY transcription factor in MaizeGDB. (B) The expression profiles of 7 WRKY transcription factor in sequencing data. (C) The effect analysis of 7 WRKY transcription factor on the activity of *ZmSLG1* promoter in transient over-expression in maize endosperm.

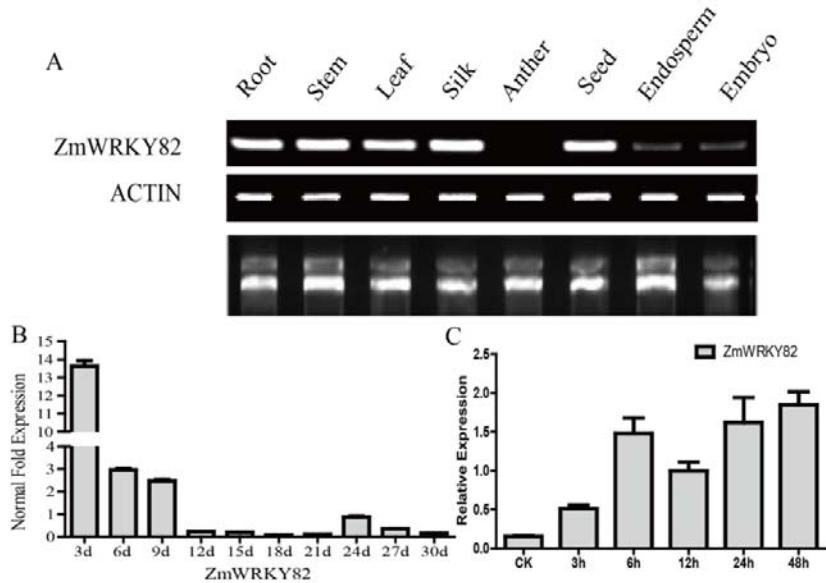


Fig. 12 The expression pattern analysis of ZmWRKY82. (A) Semi-quantitative analysis of the expression of ZmWRKY82 in different maize tissues. (B) qRT-PCR analysis of ZmWRKY82 expression over time. (C) Bar chart showing relative expression of ZmWRKY82 over time.

analysis the expression of *ZmWRKY82* gene during grain development. (C) qRT-PCR analysis the expression of *ZmWRKY82* gene after BL treatment. Data are given as the means \pm SE of at least three biological replicates.

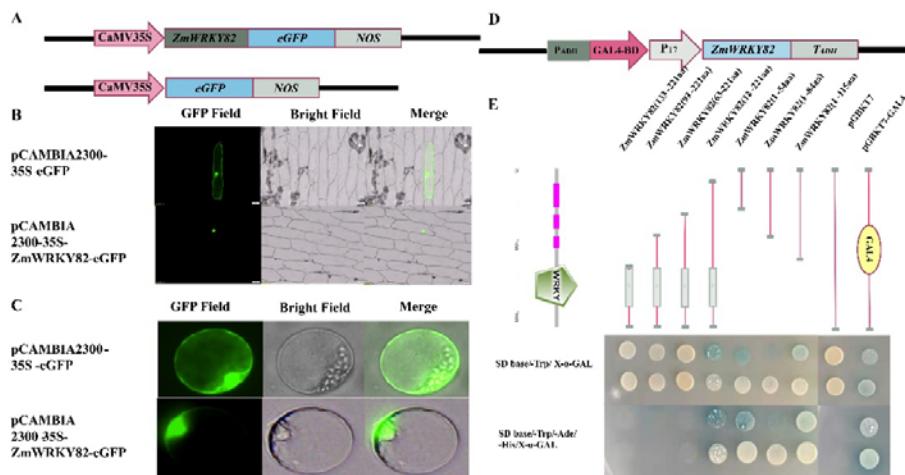


Fig. 13 Subcellular localization and transcription activation analysis of *ZmWRKY82*.
 (A) The schematic diagram of subcellular localization (B) The onion epidermal cell
 (C) The maize leaf protoplasmic (D) The schematic diagram of transcriptional activation activity plasmid (E) Transcriptional activation activity and active domain analysis of *ZmWRKY82*.

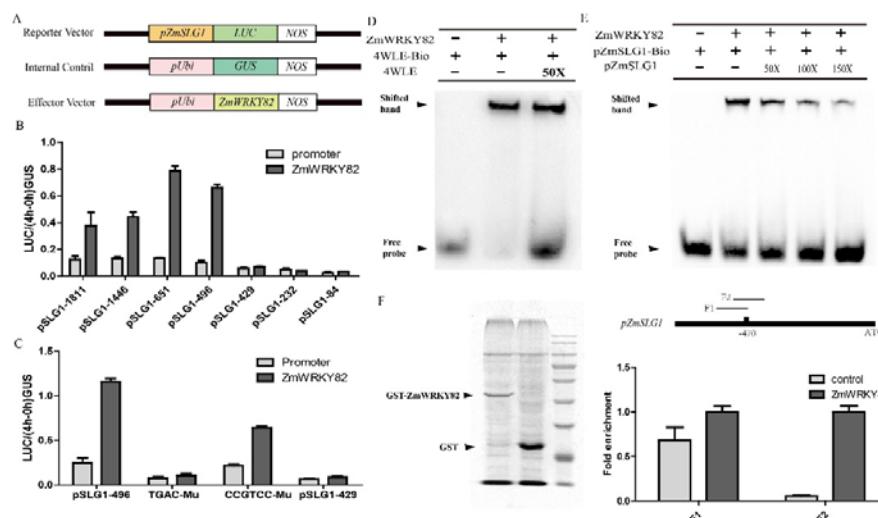


Fig. 14 The relationship of *ZmWRKY82* with the promoter *ZmSLG1*. (A) The schematic diagram of plant expression vector in transient over-expression in maize endosperm. (B) Transient overexpression of *ZmWRKY82* in endosperm showed effect on promoter activity of *ZmSLG1* gene. (C) Activity analysis between

ZmWRKY82 and ZmSLG1 promoter of mutation sites. (D-F) The ZmWRKY82 directly bind to the promoter of ZmSLG1 by EMSA and DAP methods.

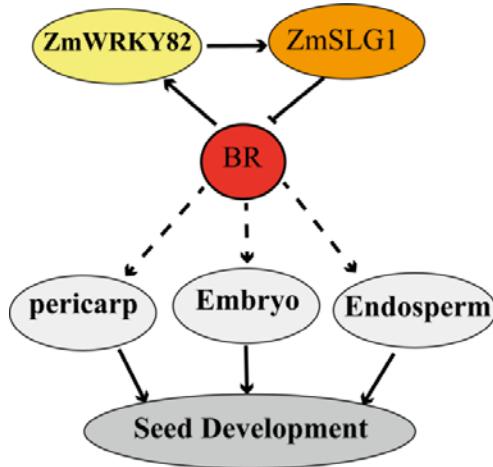


Fig. 15 Molecular mechanism hypothesis of ZmSLG1 regulating seed development.

Table 1 Genes related to seed development regulated by BR

Gene name	Phenotype	Reference	Species
SMG11	Seed size	Fang et al.2016	rice, <i>Arabidopsis</i>
CYP734A4	Seed length	Qian et al.2017	rice, <i>Arabidopsis</i>
CYP724B1	Seed length	Sumiyo et al. 2005	rice, <i>Arabidopsis</i>
CYP78A13	Seed length	Xu et al. 2015	rice, <i>Arabidopsis</i>
SLG	Seed length	Feng et al.2016	rice, <i>Arabidopsis</i>
CPB1	Seed size	Wu et al. 2016	rice, <i>Arabidopsis</i>
SG1	Seed length	Nakagawa et al. 2012	rice
DSG1	Seed length	Wang et al. 2017	rice
BAK1	Seed filling	Khew et al. 2015	rice
SRS3	Seed length	Kanako et al. 2010	rice
RAV6	Seed size	Zhang et al.2015	rice
BU1	Seed length	Heang et al.2012	<i>Arabidopsis</i>
BRI1	Endosperm and pericarp development	Antonella et al. 2014	<i>Arabidopsis</i>
BIN2	Endosperm and pericarp development	Antonella et al. 2014	<i>Arabidopsis</i>
BZR1	Endosperm development	Antonella et al. 2014	<i>Arabidopsis</i>
BZR1	Seed size	Zhang et al.2020	maize
BZR1-5	Seed size	Sun et al.2020	maize
SK2	Embryo development	Wang et al. 2022	maize
CYP11	Seed length	Sun et al.2021	maize
PGL2	Seed length	Heang and Sassa 2012	rice
GLW7-1	Seed length	wang et al. 2015	rice
GLW7-2	Seed length	wang et al. 2015	rice
SUS1	Seed size	Fu et al. 2017	rice
SRS1-2	Seed length	Abe et al. 2010	rice
CYP734A1/BA S1	Seed size	Youn et al 2016	<i>Arabidopsis</i>
CDKG;3	Seed size	Chevalier et al. 2008	<i>Arabidopsis</i>
GL2	Seed length	Che et al. 2015	rice
WRKY53	Seed size	Tian et al. 2017	<i>Arabidopsis</i>
WRKY9	Seed size	Zheng et al. 2017	apple

Table 2. Transcription factor statistics in differential expression genes

TF-type	number	TF-type	number
ABI3	1	LIM	1
ALF2	1	MADS	2
AP2-EREBP	6	MYB	4
ARF	5	NAC	3
bHLH	2	NLP	1
bZIP	3	OFP	2
C3H	1	PHD	5
DOF	1	PLATZ	1
FAR	1	SBP	3
G2-Like	1	TUB	2
GATA	2	WRKY	7
HSF	3	ZF-HD	1
JMJ	1	ZIM	1
JUM	1		