

1 High-precision neural stimulation by a highly efficient candle soot fiber 2 optoacoustic emitter

3 **Guo Chen^{1,2†}, Linli Shi^{2,3†}, Lu Lan¹, Runyu Wang¹, Yueming Li^{2,4}, Zhiyi Du^{2,3}, Mackenzie Hyman^{2,5}, Ji-**

4 Xin Cheng^{1,5,*}, Chen Yang^{1,3,*}

5 ¹ Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.

6 ² Photonics Center, Boston University, Boston, MA, USA

7 ³ Department of Chemistry, Boston University, Boston, MA, USA

8 ⁴ Department of Mechanical Engineering, Boston University, Boston, MA, USA.

9 ⁵ Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.

10 [†] These authors have contributed equally to this work and share first authorship.

12 *** Correspondence:**

13 Ji-Xin Cheng

14 jxcheng@bu.edu

15 Chen Yang

16 cheyang@bu.edu

18 **Keywords: neuron stimulation, optoacoustic, photoacoustic, fiber, optoacoustic conversion efficiency.**

19 **Abstract**

20 Highly precise neuromodulation with a high efficacy poses great importance in neuroscience. Here, we
21 developed a candle soot fiber optoacoustic emitter (CSFOE), capable of generating a high pressure of over 10
22 MPa, enabling highly efficient neuromodulation in vitro. The design of the fiber optoacoustic emitter,
23 including the choice of the material and the thickness of the layered structure, was optimized in both
24 simulations and experiments. The optoacoustic conversion efficiency of the optimized CSFOE was found to
25 be ten times higher than the other carbon-based fiber optoacoustic emitters. Driven by a single laser, the
26 CSFOE can perform dual-site optoacoustic activation of neurons, confirmed by calcium (Ca) imaging. Our
27 work opens potential avenues for more complex and programmed control in neural circuits using a simple
28 design for multisite neuromodulation in vivo.

29 **1 Introduction**

30 Highly precise neural modulation is of great importance in neuroscience, as the firing of specific neuronal
31 populations in the brain could alter the behavior of animals which could serve as a novel tool for studying
32 neural pathways in disease and health. Sophisticated control of neuronal circuits and brain functions requires
33 stimulating multiple functional regions at high spatial resolution. For example, a previous study by Li, et al
34 used two ultrasound transducers to stimulate primary somatosensory cortex barrel field (S1BF) of a free
35 moving mouse and successfully controlled the head turning direction of the mouse by applying stimuli at
36 different position (Li et al., 2019). Among the current neuromodulation platforms, electrical neuron
37 stimulation has been proven to be efficient and allows for deep brain stimulation, while it provides a limited
38 spatial resolution of millimeters in vivo, due to electric current spread (Boon et al., 2007). Optogenetics neural
39 stimulation with single neuron resolution has been shown as a powerful tool in fundamental studies, but the
40 requirement of viral infection makes it challenging to apply to human brains (Boyden et al., 2005).
41 Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are capable of
42 non-invasive transcranial neuromodulation, while suffering from the resolution at the centimeter level (Rosa
43 and Lisanby, 2012; Davidson et al., 2020). Infrared neuron stimulation (INS) takes advantage of the near-
44 infrared absorption of water to generate heat for neuron stimulation. However, the thermal toxicity and

Highly efficient fiber optoacoustic emitter

45 potential tissue damage is a concern in real clinical scenarios (Cayce et al., 2014;Zhu et al., 2022). Focused
46 ultrasound is an emerging non-invasive modality with deep penetration depth in tissue (Beisteiner et al.,
47 2020;Bobola et al., 2020;Brinker et al., 2020). It has a spatial resolution limited by the acoustic wave's
48 diffraction, therefore it is challenging for low-frequency (< 1 MHz) ultrasound to reach submillimeter level.
49 New technologies and methods are still being sought for precise and non-genetic neural stimulation.

50 Recently, our team developed a miniaturized fiber-optoacoustic converter (FOC) converting pulsed laser into
51 ultrasound (Jiang et al., 2020). FOC succeeded in spatially confined neural stimulation of mouse brain and
52 modulation of motor activity in vivo. It was found that, for successful FOC based optoacoustic neural
53 stimulation, a pressure of around 0.5 MPa is needed (Jiang et al., 2020). Typical FOC generate a pressure of
54 0.48 MPa upon laser pulse energy of 14.5 μ J, with an estimated photoacoustic conversion efficiency of 1374
55 Pa m²/J. Considering the typical energy and repetition rate of nanosecond lasers, the low conversion efficiency
56 of FOC limits its application in multi-site stimulation. Thus, new fiber optoacoustic emitters with a higher
57 conversion efficiency are needed to enable multisite optoacoustic neuromodulation.

58 According to a simplified model of optoacoustic generation, the output optoacoustic pressure is related to the
59 laser fluence (F), the absorption coefficient (α) and the thermal expansion coefficient (β) (Xu and Wang,
60 2006). The pressure generated can be calculated following the equation below:

$$P = \Gamma(\beta)\alpha F$$

62 where the Grüneisen parameter (Γ) is a function of the thermal expansion coefficient β . To improve the
63 optoacoustic conversion efficiency, materials with greater light absorption and larger thermal expansion
64 coefficients will be preferable choices. Previously, many materials have been studied for efficient optoacoustic
65 conversion, including metal, carbon material, etc. Metals, in the form of gold nanoparticles (Wu et al.,
66 2011;Wu et al., 2012;Tian et al., 2013;Wu et al., 2013;Zou et al., 2014) and Cr and Ti films(Lee and Guo,
67 2017) were used due to their high absorption coefficient. However, the high light reflection by metal films and
68 scattering of metal nanoparticles limits the energy conversion efficiency. Different carbon materials have also
69 been studied, including carbon nanoparticle (CNP) (Biagi et al., 2001), carbon nanotube (CNT) (Won Baac et
70 al., 2010;Colchester et al., 2014;Baac et al., 2015;Alles et al., 2016;Noimark et al., 2016;Moon et al.,
71 2017;Poduval et al., 2017;Shi et al., 2020;Thompson et al., 2022), graphite (Jiang et al., 2020) and candle soot
72 films(CS) (Chang et al., 2015;Huang et al., 2016;Chang et al., 2018). Among these, candle soot stands out for
73 its high light absorption coefficient, low interfacial thermal resistance, and easy fabrication process. Direct
74 comparison of optoacoustic conversion efficiency among CS, CNT and CNP showed CS can generate a
75 pressure six times higher than that generated by the other two materials (Chang et al., 2018). The CS layer
76 deposited onto polydimethylsiloxane (PDMS), a material with high thermal expansion coefficient(Wolf et al.,
77 2018), forms a diffused mixture – an excellent choice for highly efficient optoacoustic generation.

78 In this work, we developed a candle soot-based fiber optoacoustic emitter (CSFOE) for the first time.
79 COMSOL simulation was used to simulate the optoacoustic generation process of a CSFOE. We optimized the
80 design of the CSFOE by identifying the optimal thickness of the CS layer through simulation. A CSFOE with
81 a CS layer of an optimal ~ 10 μ m thickness was found to achieve the highest peak-to-peak pressure.
82 Experimentally, we fabricated CSFOEs with controlled thickness of candle soot layers in the range of 1 μ m to
83 60 μ m. By comparing their optoacoustic performance, we confirmed that the optimal thickness of the CS layer
84 is 10 μ m, consistent with the simulation prediction. The maximum optoacoustic pressure reached ~10 MPa,
85 which is 9.6 times larger compared with that generated by FOC (Jiang et al., 2020;Shi et al., 2021). The
86 application of CSFOE to non-genetic optoacoustic neural stimulation was demonstrated in GCaMP labeled
87 neuron culture. Successful high precision activation of neurons confined in an area of 200 μ m was verified by
88 calcium imaging. Significantly, we demonstrated dual-site optoacoustic neuron stimulation driven by a single
89 laser utilizing the high optoacoustic conversion efficiency of CSFOE. The highly localized ultrasound field
90 generated by each CSFOE allows the two stimulated sites to be sub-millimeter apart. Our work opens up
91 potentials for complex and programmed control in neural circuits using a simple design for multisite
92 neuromodulation.

93

94 **2 Material and Methods**

95 **2.1 Simulation of the ultrasound field generated from CSFOE**

96 The ultrasound field generated by CSFOE was simulated by COMSOL Multiphysics 5.4. The CSFOE was
97 modeled by a 2D axisymmetric model with a double-layer structure, including an absorber layer of CS and
98 PDMS mixture and a pure PDMS layer. The backing material was set to be a fiber (SiO_2). Radiative Beam in
99 Absorbing Media module was used to simulate the absorption of the CSNP-PDMS mixture layer when being
100 applied a nanosecond pulsed laser. The Heat Transfer and Solid Mechanics modules were used to model the
101 thermal expansion caused by the photothermal effect. The Transient Pressure Acoustic module converted the
102 thermal expansion of the absorber into the acoustic signal and simulated the propagation of ultrasound in the
103 water medium. The absorption coefficient of the absorber layer used in the simulation was a measured value
104 by our experiment, and all the other material parameters were set according to COMSOL's material library
105 database.

106 **2.2 Fabrication of CSFOE**

107 A schematic of the CSFOE is shown in **Figure 1a**. A flame from a paraffin wax candle served as the source of
108 the candle soot. To fabricate the CSFOE, the tip of a polished multimode optical fiber (with a 200 μm
109 diameter (200EMT, Thorlabs)) was placed into the center of the flame for three to five seconds. This step was
110 repeated until the optical fiber was fully coated with flame synthesized candle soot. To prepare the PDMS, the
111 silicone elastomer (Sylgard 184, Dow Corning Corporation, USA) was carefully dispensed into a container to
112 minimize air entrapment. Then, the curing agent was added for a weight ratio of ten to one (silicone elastomer
113 to curing agent). A nanoinjector deposited the PDMS onto the tip of the candle-soot coated fiber. The position
114 of the fiber and the nanoinjector were both controlled by 3D manipulators for precise alignment, and the
115 PDMS coating process was monitored under a lab-made microscope in real time. The coated fiber was stored
116 overnight in a temperature-controlled environment, to allow the PDMS to cure and fully diffuse into the
117 porous structure of the candle soot.

118 **2.3 Characterization of absorption ability of CSNP**

119 The absorption of CS with different deposition thickness was measured with a photodiode (Thorlabs, USA).
120 Different thicknesses of CS were controlled by the deposition durations. The fiber was connected to a Q-
121 switched 1030-nm nanosecond laser (Bright Solution, Inc. Calgary Alberta, CA), and the transmission power
122 was detected by a laser diode.

123 **2.4 Characterization of optoacoustic signals**

124 The amplitude of the CSFOE-generated acoustic wave was measured using a needle hydrophone with a 40 μm
125 core sensor (Precision Acoustics, UK). A digital oscilloscope (DSO6014A, Agilent Technologies, CA, USA)
126 recorded the electrical signal from the hydrophone. A four-axis micro-manipulator (MC1000e controller with
127 MX7600R motorized manipulator, Siskiyou Corporation, OR, USA), with a resolution of 0.2 μm , controlled
128 the distance between the CSFOE tip and the hydrophone, which was incremented from 0 to 400 μm . The
129 distance was measured using a widefield microscope with a 10 \times objective. The CSFOE tip and the
130 hydrophone tip were both immersed in a drop of degassed water placed on a glass microscope slide. The
131 CSFOE was connected to a Q-switched 1030-nm nanosecond laser (Bright Solution, Inc. Calgary Alberta,
132 CA) with a laser pulse energy of 56 μJ . The setup of the measurement is shown in **Figure 2d**. The acoustic
133 pressure values were calculated based on the calibration curve obtained from the hydrophone manufacturer.
134 The frequency data were obtained through the Fast Fourier Transform (FFT) using MATLAB R2020a. For
135 visualizing the acoustic wavefront, a Q-switch Nd: YAG laser (Quantel Laser CFR ICE450) was used to
136 deliver 8 ns pulses to the CSFOE. The generated acoustic signal was capture by a 1 \times 128 linear transducer
137 array (L22-14, Verasonics Inc.) and processed by an ultrasound imaging system (Vantage128, Verasonics).

138 **2.5 Embryonic neuron culture**

139 Primary cortical neuron cultures were derived from Sprague-Dawley rats. Cortices were dissected from
140 embryonic day 18 (E18) rats of either sex and then digested in papain (0.5 mg/mL in Earle's balanced salt
141 solution) (Thermo Fisher Scientific Inc., MA). Dissociated cells were washed with and triturated in 10% heat-
142 inactivated fetal bovine serum (FBS, Atlanta Biologicals, GA, USA), 5% heat-inactivated horse serum (HS,
143 Atlanta Biologicals, GA, USA), 2mM Glutamine- Dulbecco's Modified Eagle Medium (DMEM, Thermo
144 Fisher Scientific Inc., MA, USA), and cultured in cell culture dishes (100 mm diameter) for 30 minutes at
145 37 °C to eliminate glial cells and fibroblasts. The supernatant containing neurons was collected and seeded on
146 poly-D- lysine coated cover glass and incubated in a humidified atmosphere containing 5% CO₂ at 37 °C with
147 10% FBS + 5% HS + 2 mM glutamine DMEM. After 16 hours, the medium was replaced with Neurobasal
148 medium (Thermo Fisher Scientific Inc., MA, USA) containing 2% B27 (Thermo Fisher Scientific Inc., MA,
149 USA), 1% N2 (Thermo Fisher Scientific Inc., MA, USA), and 2mM glutamine (Thermo Fisher Scientific Inc.,
150 MA, USA). On day five, cultures were treated with 5 µM FDU (5-fluoro-2'-deoxy- yuridine, Sigma-Aldrich,
151 MO, USA) to further reduce the number of glial cells. Additionally on day five, the
152 AAV9.Syn.Flex.GCaMP6f.WPRE.SV40 virus (Addgene, MA, USA) was added to the cultures at a final
153 concentration of 1 µl/mL for GCaMP6f expression. Half of the medium was replaced with fresh culture
154 medium every three to four days. Cells cultured in vitro for 10–13 days were used for CSFOE stimulation
155 experiment.

156 **2.6 In vitro neurostimulation**

157 In vitro neurostimulation experiments were performed using a Q-switched 1030-nm nanosecond laser (Bright
158 Solution, Inc. Calgary Alberta, CA). A 3-D micromanipulator (Thorlabs, Inc., NJ, USA) was used to position
159 the CSFOE in the cell culture dish. Calcium fluorescence imaging was performed on a lab-built wide-field
160 fluorescence microscope based on an Olympus IX71 microscope frame with a 20× air objective
161 (UPLSAPO20X, 0.75NA, Olympus, MA, USA), illuminated by a 470 nm LED (M470L2, Thorlabs, Inc., NJ,
162 USA) and a dichroic mirror (DMLP505R, Thorlabs, Inc., NJ, USA). Image sequences were acquired with a
163 scientific CMOS camera (Zyla 5.5, Andor) at 20 frames per second. Neurons expressing GCaMP6f at DIV
164 (day in vitro) 10–13 were used for the stimulation experiment. For the tetrodotoxin (TTX) control group,
165 tetrodotoxin citrate (ab120055, Abcam, MA, USA) was added to the culture to reach 3 µM final concentration
166 10 min before Calcium imaging. The fluorescence intensities, data analysis, and exponential curve fitting were
167 analyzed using ImageJ (Fiji) and MATLAB R2020a.

168 **2.7 Data analysis**

169 Calcium images were analyzed using ImageJ. The fluorescence intensity was measured by selecting the soma.
170 Calcium traces, acoustic waveform and temperature traces were analyzed using MATLAB R2020a. All
171 statistical analysis was done using MATLAB R2020a. Data shown are mean ± standard deviation.

172 **3 Results**

173 **3.1 Simulation of acoustic waveforms generated from CSFOE**

174 To identify the optimal condition towards maximized optoacoustic conversion efficiency, we used COMSOL
175 Multiphysics to simulate the generation and propagation of the optoacoustic signals. Taking advantage of
176 COMSOL multiple physics field simulations, we simulated the different steps of optoacoustic generation: laser
177 absorption, thermal expansion, and acoustic wave propagation. Since the candle soot has a very porous
178 structure, the PDMS diffuses into the candle soot layer, forming a uniformly mixed candle soot/PDMS
179 mixture layer(Chang et al., 2015). Therefore, we included a candle soot/PDMS mixture layer and a pure
180 PDMS layer in the 2D axisymmetric CSFOE model built in COMSOL Multiphysics 5.4 for simulation
181 (**Figure 1b**). A single 3 ns laser pulse was delivered through a multimode fiber (with a 200 µm core diameter)
182 to the double layer coating on the fiber tip. **Figure 1c** shows a representative wave front of the generated
183 ultrasound 400 ns after the onset of the laser, indicating a bipolar pressure signal generated by CSFOE (**Figure**

184 **1c**, red: positive pressure; blue: negative pressure). **Figure 1d** plots the time domain waveforms when the
185 thickness of the CS/PDMS layer varied from 1 μm to 40 μm . In **Figure 1e**, the normalized peak-to-peak
186 amplitude of the generated PA signal is plotted as a function of the thickness of the CS/PDMS mixture layer.
187 The optimal thickness of the CS/PDMS layer, which generates the largest amplitude PA signal, was found to
188 be $\sim 10 \mu\text{m}$. This result is consistent with the previous work, where an optimal thickness generating the
189 maximum pressure was also found (Chang et al., 2018).

190 **3.2 Fabrication and characterization of CSFOE**

191 To fabricate the optimal CSFOE, as guided by the simulations, we developed a two-step fabrication procedure
192 to precisely control the CS layer thickness (**Figure 2a**). A polished multimode fiber with a 200 μm core
193 diameter (Thorlabs) was inserted into a fiber ferrule. The fiber tip was positioned so that it was flush with the
194 distal end of the ferrule. Then, the distal tips of both the ferrule and fiber were placed into the flame core of a
195 paraffin wax candle, where they were fully coated with flame synthesized candle soot (**Figure 2a**, left). The
196 key parameter to control the thickness of the CS was the coating time, which ranged between 1 to 20 s. Then, a
197 nanoinjector was used to deposit a controlled amount of PDMS ($\sim 0.01 \mu\text{m}^3$) onto the tip of the fiber coated
198 with candle soot (**Figure 2a**, middle). The transmission images of the CS-coated fiber before and after PDMS
199 coating are also shown in **Figure 2a** (right). When varying the CS coating time, the thickness of the CS
200 coating was measured from the transmission images of samples before PDMS coating. **Figure 2b** plots the
201 thickness of the CS layer measured as a function of deposition time. The CS layer thickness was linearly
202 proportional to the deposition time, with an estimated deposition rate of 3.04 $\mu\text{m}/\text{s}$, similar to previous
203 reports (Chang et al., 2018). Such a linear relation enables us to precisely control the thickness of the CS layer
204 to study the PA conversion as a function of the layer thickness. Transmission of CS layers with different
205 thicknesses were also measured (**Figure 2c**). The normalized transmission of the coating exponentially
206 decreased as a function of the thickness. An absorption depth, the thickness when the transmission decreased
207 to 1/e of initial transmission at the zero thickness was obtained as 6.6 μm . This measured ultrathin absorption
208 depth indicated strong absorption of CS in NIR, enabling efficient ultrasound generation.

209 The characterization of the CSFOE with various CS/PDMS layer thicknesses was performed with a 40 μm
210 needle hydrophone. A 1030 nm nanosecond pulsed laser, with a 46 μJ pulse energy was delivered to the
211 CSFOE to generate optoacoustic signals. The acoustic signals were measured for CSFOEs where the thickness
212 of the CS-PDMS mixture layer ranged from 1 μm to 57 μm (**Figure 2d**). The peak-to-peak pressure is plotted
213 as a function of the CS layer thickness in **Figure 2f**. An optimal thickness of $\sim 10 \mu\text{m}$ was found to generate
214 the highest peak-to-peak pressure of 9 MPa. Notably, the experimentally measured optimal thickness and the
215 trend between the thickness and the peak-to-peak pressure are consistent with the simulation results.
216 Importantly, the 10 μm optimal thickness was also found to be close to the 6.6 μm absorption depth of CS-
217 PDMS layer obtained from the absorption shown in **Figure 2c**. The greatest optoacoustic conversion
218 efficiency occurred when the absorption layer thickness equaled the material absorption depth. In the thickness
219 range $< 10 \mu\text{m}$, when increasing the absorption layer thickness first, the thickness at the absorption depth
220 allowed complete optical absorption. Further increasing the thickness beyond the absorption depth ($> 10 \mu\text{m}$)
221 led to acoustic attenuation, as demonstrated in previous works (Chang et al., 2018).

222 Frequency characterization of the generated optoacoustic signal is shown in **Figure 2g**. The frequency
223 spectrum of the measured acoustic waveforms after Fast Fourier Transform (FFT) exhibited a peak acoustic
224 frequency of 12.8 MHz. This frequency was similar to previous studies on candle-soot-based optoacoustic
225 films (Chang et al., 2018), in which a central frequency of $\sim 10 \text{ MHz}$ was detected for $\sim 2 \mu\text{m}$ CS coating
226 thickness. To map the propagation of the optoacoustic wave generated by the CSFOE, the pressure was
227 measured at different distances away from the CSFOE using a 40 μm needle hydrophone as shown in **Figure**
228 **2h**. The peak-to-peak pressure of the generated ultrasound is plotted as a function of distance in **Figure 2i**. The
229 measurements were repeated for three times and the average values were plotted. The confinement of the
230 generated acoustic field, defined by the distance where the pressure decreases to 1/e of the initial pressure at 0
231 μm , was found to be $\sim 300 \mu\text{m}$, approximately equal to the size of the fiber core. Such decay of optoacoustic
232 pressure over the distance away from the CSFOE tip enables a sub-millimeter localized neuron stimulation. In

233 addition, **Figure 2i** shows that the dependence on distance is different from the previous $1/r^2$ relation obtained
234 in FOC. The difference is due to the fact that the ultrasound field emitted by CSFOE is at a higher frequency,
235 therefore propagates more directionally, compared with more omnidirectional propagation of the lower
236 frequency FOCs(Jiang et al., 2020).

237 The propagation of generated ultrasound can be directly visualized using an optoacoustic tomography system
238 (**Figure 2j**). The acoustic signal was detected by a 1×128 linear transducer array (L22-14, Verasonics Inc.)
239 and processed by an ultrasound imaging system (Vantage128, Verasonics). The emitted ultrasound waveform
240 (red) obtained with a time interval of $0.5 \mu\text{s}$ and the image of the tip of the CSFOE (yellow) are overlaid in
241 **Figure 2j**. Through the photoacoustic waveform shown in **Figure 2j**, the emission angle of CSFOE was
242 measured to be 25.3 degrees. For FOC reported previously (Jiang et al., 2020), the emission angle was
243 measured to be 55.1 degrees which is around twice as large. This observation also supports the more
244 directional propagation for the CSFOE generated ultrasound field(Jiang et al., 2020).

245 Different laser energy inputs also resulted in varied output pressures. Using different fiber attenuators to
246 control the laser energy input, the waveform of generated acoustic signal was measured by the needle
247 hydrophone (**Figure. 2k**), and the peak-to-peak pressure is plotted as a function of input energy in **Figure 2l**,
248 showing a fitting curve of $P = 0.226 * E$ ($R^2 = 0.93$, fitting coefficient of determination) and confirming the
249 linear dependence of the pressure on the input laser energy.

250 Through controlling the distance away from the CFOE tip and laser energy, we can have a complete control of
251 the generated pressure in a large range under 15 MPa for various applications. By rationale fabrication of the
252 layered structure of CSFOE and control of PA pressure generated, CSFOE can serve as a robust device for
253 repeatable neuromodulation and allows us to study neuron responses under different conditions.

254 3.3 CSFOE Stimulation of neurons *in vitro*

255 To confirm the stimulation function of the CSFOE, GCaMP6f-labeled primary neurons (DIV 12–14) were
256 cultured on a glass bottom dish, and calcium imaging was performed to monitor neuronal activities. A 3 ns
257 pulsed laser at 1030 nm with a repetition rate of 1.7 kHz was delivered to the CSFOE. The laser pulse train,
258 with a duration of 3 ms (corresponding to 5 pulses) and pulse energy of $65 \mu\text{J}$, was used for CSFOE
259 optoacoustic *in vitro* neural stimulation. The CSFOE was precisely controlled by a 4D micromanipulator to
260 approach the target neurons. The distance between the neurons and the CSFOE tip was monitored to make
261 sure neurons were within the sub-millimeter confinement area.

262 Representative fluorescence images of the neuron before and after stimulation are shown in **Figure 3a** and **b**.
263 Maximum change of the fluorescence intensity is highlighted in **Figure 3c**. The dashed circles indicate the
264 location of the CSFOE. Increase in fluorescence intensity reaching $\Delta F/F_0 > 10\%$ upon stimulation confirms the
265 successful activation. This map of fluorescence changes in **Figure 3c** also indicates that neurons within the
266 stimulation area were successfully activated. The activation outside the stimulation area is due to networking
267 effect (more details discussed later). To further investigate whether the CSFOE can activate neurons reliably
268 and repeatedly, we stimulated the same area of neuron three times in four minutes (**Figure 3d**). Repeatable
269 stimulations were successfully observed after the laser onset at $t = 5 \text{ s}$, 90 s and 180 s , and all show
270 $\Delta F/F_0 > 10\%$. This result clearly shows that there is no damage caused by CSFOE after stimulation and
271 demonstrates the repeatability and safety of CSFOE stimulation.

272 Next, we investigated the effect of laser pulse energy on CFOE stimulation. Each pulse train was fixed to be 3
273 ms long. Three laser pulse energies, 65 , 56 , and $46 \mu\text{J}$, were applied to the CSFOE to modulate neural
274 activities. Responses from neurons at each pulse energy are plotted as heatmaps in **Figure 3e-g**.
275 Representative calcium traces are plotted in **Figure 3h**. The averages of maximum fluorescence change
276 obtained from these three groups are compared in **Figure 3i**. With the laser pulse energy of 65 and $56 \mu\text{J}$,
277 neurons showed an average maximum fluorescence change ($\Delta F/F_0$) of $99.8 \pm 23.3\%$ and $47.4 \pm 33.9\%$, while
278 with laser energy of $46 \mu\text{J}$, the induced fluorescence change is negligible ($1.2 \pm 1.0\%$). These results indicate

279 that at the laser pulse train with the repetition rate of 1.7 kHz and 3 ms duration, the activation threshold is
280 between 46 μ J and 56 μ J, corresponding to a pressure of \sim 8 MPa.

281 To confirm that the observed activation was due to optoacoustic stimulation, we performed a laser-only
282 control and compared it to the calcium traces of CSFOE-stimulated neurons. The laser-only control group used
283 the same optical fiber without any coatings on the tip with the same repetition rate of 1.7 kHz, 3 ms duration
284 and laser pulse energy of 56 μ J. No significant fluorescence response was observed in the laser only group
285 (**Figure 3j** and **k**). Optical excitation alone triggered negligible activities. Additionally, to investigate whether
286 the activations observed were caused by action potential, we performed a control experiment with addition of
287 3 mM tetrodotoxin (TTX), a blocker of voltage-gated sodium channels. No significant fluorescence response
288 was observed in the TTX group (**Figure 3j**), indicating that the observed calcium transients under CSFOE
289 stimulation were induced by the firing of action potentials. These results are also consistent with previous
290 studies of optoacoustic stimulation (Jiang et al., 2021).

291 To investigate how synaptic inputs affects the stimulation outcomes, we applied a cocktail of synaptic blockers
292 (10 mM NBQX, 10 mM gabazine, and 50 mM DL-AP5). As shown in **Figure 3l** (and **Figure 3c**), when there
293 was no synaptic blocker added, due to the network effect, many neurons outside the stimulation area were
294 activated. With synaptic blocker added (**Figure 3m**), most of the stimulation effects were confined within the
295 sub-millimeter area centered around the CSFOE. Averaged traces of stimulated neurons with and without
296 synaptic blockers in both conditions are plotted in **Figure 3n**. Two types of neuron responses were observed: a
297 transient response under synaptic blocking (blue) and a prolonged response without synaptic blocking
298 (orange). The decay portion of the response curves can be fitted exponentially and a time constant for the
299 decay can be defined at the time when the fluorescence intensity decreased by a factor of 1/e from the peak
300 fluorescence intensity. The time constant decreased significantly from 12 s without synaptic blocking to 4 s
301 with synaptic blocking. These results demonstrate that transient stimulation is likely the result of direct
302 CSFOE optoacoustic stimulation, while the network effect through synaptic transmission results in prolonged
303 stimulations (Jiang et al., 2021).

304 3.4 Comparison between CSFOE and FOC

305 To evaluate the performance improvement of CSFOE from the previous FOC fabricated using graphite and
306 epoxy, we first compared the design of CSFOE and FOC. As shown in **Figure 4a**, both CSFOE and FOC have
307 two-layer structures. Compared with FOC, several improvements were made on the CSFOE regarding the
308 choice of material and structure design. Instead of using a graphite-epoxy system, a CS/PDMS mixture was
309 used in CSFOE as the optoacoustic material. Compared to the previous design, CS has stronger absorption
310 while PDMS is well known for its huge expansion coefficient of $310 \mu\text{m m}^{-1} \text{C}^{-1}$. The thickness of the CS layer
311 in the CSFOE was optimized to obtain the largest pressure.

312 To directly compare the performance, we compared the pressure generated by CSFOE and FOC under the
313 same laser condition. A transducer with greater sensitivity compared with the hydrophone was used to
314 measure the generated pressure. As shown in **Figure 4b**, under the same laser condition of 1030 nm, 3 ns, 1.7
315 kHz, 48 mW, CSFOE generated a 9.6 times higher signal than that generated by FOC. In addition, the
316 temperature rise associated with the optoacoustic conversion was measured for both fiber emitters using a
317 thermal coupler placed on the surface the fiber tips. According to **Figure 4c**, the average temperature increases
318 were 0.79°C for the CSFOE and 0.77°C for the FOC. Similar temperature increases suggest that while the
319 CSFOE significantly increased the output pressure, the thermal effect remained minimal. Notably, both
320 temperature increase was less than 1°C , which is far below the threshold for photothermal neuron
321 stimulation (Zhu et al., 2022). Such a small temperature increase also minimizes the risk of thermal damage for
322 the neural system.

323 To compare their performance in neuron modulation, CSFOE and FOC were tested in GCaMP labelled neuron
324 culture. Under the the laser condition of 3 ms pulse train, 56 μ J pulse energy, 1030 nm, 1.7 kHz repetition rate,
325 successful activation was observed when CSFOE was applied to neurons. The average maximum $\Delta F/F_0$

326 reached over 20%. When FOC was applied under the same laser condition, no obvious activation occurred
327 (Figure 4d). Notably, previous work showed Ca imaging signals indicating successful activation by FOC has
328 been confirmed in Oregon Green labelled neuron culture. GCaMP and Oregon Green, as calcium sensors, have
329 different sensitivity upon stimulation. It has been reported that for a single action potential, Oregon Green can
330 generate ~50% fluorescence change, while GCaMP6f can only generate ~10%(Palmer et al., 2014;Dana et al.,
331 2019). Collectively, our result clearly shows that CSFOE has a significantly higher stimulation efficacy and
332 can be more widely used for recording based on different kinds of calcium sensors.

333

334 **3.5 Dual-site neuron stimulation by CSFOE**

335 To illustrate the advantage of the high optoacoustic conversion efficiency of CSFOE, we used CSFOE for
336 dual-site neuron stimulation in vitro. A 1×2 fiber splitter was used for splitting the laser energy into two
337 identical paths. The laser pulse energy of each path was 56 μJ (Figure 5a). As shown in Figure 5b, the map of
338 maximum fluorescence changes $\text{Max } \Delta F/F_0$ clearly shows two groups of neurons, with each centered around a
339 CSFOE, being successfully activated by two CSFOEs with fluorescence increase of around 10% at each site.
340 Each group is confined within an area of $\sim 200 \mu\text{m}$ associated with the corresponding CSFOE. The highly
341 localized feature of CSFOE stimulation makes it possible to distinguish different sites of stimulation under the
342 same field of view.

343 Ca traces from two groups at these two sites are plotted in a heatmap shown in Figure 5c. Representative
344 traces of different sites are plotted in Figure 5d. Neurons in both sites showed significant change in
345 fluorescence after the laser onset at $t = 2 \text{ s}$. The fluorescence changes at each site all reached over 10%, which
346 shows that both sites are successfully stimulated (Figure 5c). The high optoacoustic conversion efficiency and
347 the highly localized stimulation area open up potentials for multi-site neuron stimulation.

348 **4 Conclusion**

349 In this study, we developed a new fiber optoacoustic emitter based on CS for the first time with high
350 optoacoustic conversion efficiency and demonstrated CSFOE neuromodulation with an improved efficacy
351 compared to FOC. Based on these improvements, we demonstrated dual-site neuromodulation through two
352 CFOE driven by a single laser source.

353 To obtain the highest optoacoustic pressure, we chose candle soot as the material of the absorber, which is
354 considered as one of the best materials for optoacoustic generation owing to its high optical absorption. In
355 addition, we optimized the layered design of the CSFOE through both simulation and experiment. The
356 optimized CSFOE was able to generate over 15 MPa peak-to-peak pressure. A more detailed comparison of
357 photoacoustic conversion efficiency between CSFOE and other two fiber optoacoustic emitters used in
358 neuromodulation is shown in Table 1 below.

	CSFOE (This work)	TFOE (Shi et al., 2021)	FOC (Jiang et al., 2020)
Energy conversion efficiency (%)	1.5E-3	2.28E-6	3.14E-5
Optoacoustic conversion efficiency in pressure (Pa m ² /J)	15600	130	1374

359 **Table 1:** optoacoustic conversion efficiency comparison of different fiber based optoacoustic emitters for
360 neuromodulation.

361 Through the direct comparison, CSFOE is ~ 100 times more efficient than TFOE. Besides, CSFOE shows ~10
362 times higher conversion efficiency compared with FOC, which is also evident in the results shown in **Figure**
363 **4b.**

364 Detailed optoacoustic characterization for CSFOE has also been performed, including power-pressure
365 dependence and distance-pressure dependence. The output optoacoustic peak to peak pressure is linearly
366 proportional to the input pulse energy as $P = 0.226 * E$. The distance-pressure dependence confirmed a highly
367 localized ultrasound field of around 300 μm . Based on the results of optoacoustic characterization, we can
368 precisely control the ultrasound intensity to be delivered to neurons by controlling the energy of the laser as
369 well as the distance between CSFOE and neurons.

370 Successful CSFOE neuron activation has been demonstrated using Calcium imaging. It was found that under
371 the pulse energy of 56 μJ and 65 μJ , at the repetition rate of 1.7 kHz, over a 3 ms duration, the maximum
372 fluorescence change of the stimulated neurons were $47.4 \pm 33.9\%$ to $99.8 \pm 23.3\%$, respectively. These laser
373 conditions correspond to optoacoustic pressure of 8.8 MPa and 12.4 MPa at the peak of frequency of 12.8 MHz
374 for CSFOE.

375 Taking advantage of its high energy conversion efficiency, we performed the dual-site neuron stimulation
376 using two CSFOEs driven by a single laser, which is not feasible by previous fiber based optoacoustic
377 emitters. Dual-site stimulation has lots of potential applications in animal behavior studies, since complex
378 animal behavior is normally controlled by multiple functional area in the brain. CSFOE, offering a superior
379 sub-millimeter spatial resolution and high-pressure conversion efficiency, has the potential to modulate more
380 complex animal behavior by controlling multiple target sites in the circuitry.

381 In summary, this robust and highly efficient optoacoustic converter, with an easy and repeatable fabrication
382 process, offers a new tool for effective neuron stimulation. With an improved efficiency and the ability to
383 perform multi-site stimulation, CSFOE opens up a great potential for complex animal behaviors that needs
384 multiple stimuli at different locations in a programmable manner.

385 **Data Availability Statement**

386 The original contributions presented in this study are included in the article, further inquiries can be directed to
387 the corresponding author/s.

388 **Ethics Statement**

389 All experimental procedures have complied with all relevant guidelines and ethical regulations for animal
390 testing and research established and approved by the Institutional Animal Care and Use Committee of Boston
391 University (PROTO201800534).

392 **Author Contributions**

393 GC, LS, JXC and CY: drafting and refining the manuscript. GC: conducting of the simulation. GC and LS:
394 conducting of the experiments. LL, JXC and CY: critical guidance of the project. RW, YL, ZD, MH: help with
395 experiments. LL, YL and MH: critical reading of the manuscript. All authors have read and approved the
396 manuscript.

397 **Funding**

398 This work is supported by Brain Initiative R01 NS109794 to J.-X.C. and C.Y. by National Institute of Health,
399 United States. We also thank Y. Tian for help with the neuronal cultures.

400 **Conflict of Interest**

401 The authors declare that the research was conducted in the absence of any commercial or financial
402 relationships that could be construed as a potential conflict of interest.

403 **Publisher's Note**

404 All claims expressed in this article are solely those of the authors and do not necessarily represent those of
405 their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be
406 evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the
407 publisher.

408

409 **References**

410 Alles, E.J., Noimark, S., Zhang, E., Beard, P.C., and Desjardins, A.E. (2016). Pencil beam all-optical
411 ultrasound imaging. *Biomed Opt Express* 7, 3696-3704.

412 Baac, H.W., Ok, J.G., Lee, T., and Guo, L.J. (2015). Nano-structural characteristics of carbon nanotube-
413 polymer composite films for high-amplitude optoacoustic generation. *Nanoscale* 7, 14460-14468.

414 Beisteiner, R., Matt, E., Fan, C., Baldysiak, H., Schonfeld, M., Philippi Novak, T., Amini, A., Aslan, T.,
415 Reinecke, R., Lehrner, J., Weber, A., Reime, U., Goldenstedt, C., Marlinghaus, E., Hallett, M., and
416 Lohse-Busch, H. (2020). Transcranial Pulse Stimulation with Ultrasound in Alzheimer's Disease-A
417 New Navigated Focal Brain Therapy. *Adv Sci (Weinh)* 7, 1902583.

418 Biagi, E., Margheri, F., and Menichelli, D. (2001). Efficient laser-ultrasound generation by using heavily
419 absorbing films as targets. *Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control* 48,
420 1669-1680.

421 Bobola, M.S., Chen, L., Ezeokeke, C.K., Olmstead, T.A., Nguyen, C., Sahota, A., Williams, R.G., and
422 Mourad, P.D. (2020). Transcranial focused ultrasound, pulsed at 40 Hz, activates microglia acutely
423 and reduces Abeta load chronically, as demonstrated in vivo. *Brain Stimul* 13, 1014-1023.

424 Boon, P., Vonck, K., De Herdt, V., Van Dycke, A., Goethals, M., Goossens, L., Van Zandijcke, M., De Smedt,
425 T., Dewaele, I., Achten, R., Wadman, W., Dewaele, F., Caemaert, J., and Van Roost, D. (2007). Deep
426 brain stimulation in patients with refractory temporal lobe epilepsy. *Epilepsia* 48, 1551-1560.

427 Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005). Millisecond-timescale,
428 genetically targeted optical control of neural activity. *Nat Neurosci* 8, 1263-1268.

429 Brinker, S.T., Preiswerk, F., White, P.J., Mariano, T.Y., Mcdannold, N.J., and Bubrick, E.J. (2020). Focused
430 Ultrasound Platform for Investigating Therapeutic Neuromodulation Across the Human Hippocampus.
431 *Ultrasound Med Biol* 46, 1270-1274.

432 Cayce, J.M., Friedman, R.M., Chen, G., Jansen, E.D., Mahadevan-Jansen, A., and Roe, A.W. (2014). Infrared
433 neural stimulation of primary visual cortex in non-human primates. *Neuroimage* 84, 181-190.

434 Chang, W.Y., Huang, W.B., Kim, J., Li, S.B., and Jiang, X.N. (2015). Candle soot nanoparticles-
435 polydimethylsiloxane composites for laser ultrasound transducers. *Applied Physics Letters* 107.

436 Chang, W.Y., Zhang, X.A., Kim, J., Huang, W.B., Bagal, A., Chang, C.H., Fang, T.G., Wu, H.F., and Jiang,
437 X.N. (2018). Evaluation of Photoacoustic Transduction Efficiency of Candle Soot Nanocomposite
438 Transmitters. *Ieee Transactions on Nanotechnology* 17, 985-993.

439 Colchester, R.J., Mosse, C.A., Bhachu, D.S., Bear, J.C., Carmalt, C.J., Parkin, I.P., Treeby, B.E.,
440 Papakonstantinou, I., and Desjardins, A.E. (2014). Laser-generated ultrasound with optical fibres
441 using functionalised carbon nanotube composite coatings. *Applied Physics Letters* 104.

442 Dana, H., Sun, Y., Mohar, B., Hulse, B.K., Kerlin, A.M., Hasseman, J.P., Tsegaye, G., Tsang, A., Wong, A.,
443 Patel, R., Macklin, J.J., Chen, Y., Konnerth, A., Jayaraman, V., Looger, L.L., Schreiter, E.R.,

444 Svoboda, K., and Kim, D.S. (2019). High-performance calcium sensors for imaging activity in
445 neuronal populations and microcompartments. *Nat Methods* 16, 649-657.

446 Davidson, B., Hamani, C., Huang, Y., Jones, R.M., Meng, Y., Giacobbe, P., and Lipsman, N. (2020).
447 Magnetic Resonance-Guided Focused Ultrasound Capsulotomy for Treatment-Resistant Psychiatric
448 Disorders. *Oper Neurosurg (Hagerstown)* 19, 741-749.

449 Huang, W., Chang, W.-Y., Kim, J., Li, S., Huang, S., and Jiang, X. (2016). A Novel Laser Ultrasound
450 Transducer Using Candle Soot Carbon Nanoparticles. *IEEE Transactions on Nanotechnology* 15, 395-
451 401.

452 Jiang, Y., Huang, Y.M., Luo, X.Y., Wu, J.Y.Z., Zong, H.N., Shi, L.L., Cheng, R., Zhu, Y.F., Jiang, S., Lan,
453 L., Jia, X.T., Mei, J.G., Man, H.Y., Cheng, J.X., and Yang, C. (2021). Neural Stimulation In Vitro and
454 In Vivo by Photoacoustic Nanotransducers. *Matter* 4.

455 Jiang, Y., Lee, H.J., Lan, L., Tseng, H.A., Yang, C., Man, H.Y., Han, X., and Cheng, J.X. (2020).
456 Optoacoustic brain stimulation at submillimeter spatial precision. *Nat Commun* 11, 881.

457 Lee, T., and Guo, L.J. (2017). Highly Efficient Photoacoustic Conversion by Facilitated Heat Transfer in
458 Ultrathin Metal Film Sandwiched by Polymer Layers. *Advanced Optical Materials* 5.

459 Li, G., Qiu, W., Zhang, Z., Jiang, Q., Su, M., Cai, R., Li, Y., Cai, F., Deng, Z., Xu, D., Zhang, H., and Zheng,
460 H. (2019). Noninvasive Ultrasonic Neuromodulation in Freely Moving Mice. *IEEE Trans Biomed Eng*
461 66, 217-224.

462 Moon, C., Fan, X., Ha, K., and Kim, D. (2017). Generation of planar blast waves using carbon nanotubes-
463 poly-dimethylsiloxane optoacoustic transducer. *Aip Advances* 7.

464 Noimark, S., Colchester, R.J., Blackburn, B.J., Zhang, E.Z., Alles, E.J., Ourselin, S., Beard, P.C.,
465 Papakonstantinou, I., Parkin, I.P., and Desjardins, A.E. (2016). Carbon-Nanotube-PDMS Composite
466 Coatings on Optical Fibers for All-Optical Ultrasound Imaging. *Advanced Functional Materials* 26,
467 8390-8396.

468 Palmer, L.M., Shai, A.S., Reeve, J.E., Anderson, H.L., Paulsen, O., and Larkum, M.E. (2014). NMDA spikes
469 enhance action potential generation during sensory input. *Nat Neurosci* 17, 383-390.

470 Poduval, R.K., Noimark, S., Colchester, R.J., Macdonald, T.J., Parkin, I.P., Desjardins, A.E., and
471 Papakonstantinou, I. (2017). Optical fiber ultrasound transmitter with electrospun carbon nanotube-
472 polymer composite. *Appl Phys Lett* 110, 223701.

473 Rosa, M.A., and Lisanby, S.H. (2012). Somatic treatments for mood disorders. *Neuropsychopharmacology* 37,
474 102-116.

475 Shi, L., Jiang, Y., Fernandez, F.R., Chen, G., Lan, L., Man, H.Y., White, J.A., Cheng, J.X., and Yang, C.
476 (2021). Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic
477 emitter. *Light Sci Appl* 10, 143.

478 Shi, L.L., Jiang, Y., Lan, L., Huang, Y.M., Cheng, J.X., and Yang, C. (2020). A fiber optoacoustic
479 emitter with controlled ultrasound frequency for cell membrane sonoporation at submillimeter spatial
480 resolution. *Photoacoustics* 20.

481 Thompson, D., Nagel, J.R., Gasteau, D.B., and Manohar, S. (2022). Laser-induced ultrasound transmitters for
482 large-volume ultrasound tomography. *Photoacoustics* 25, 100312.

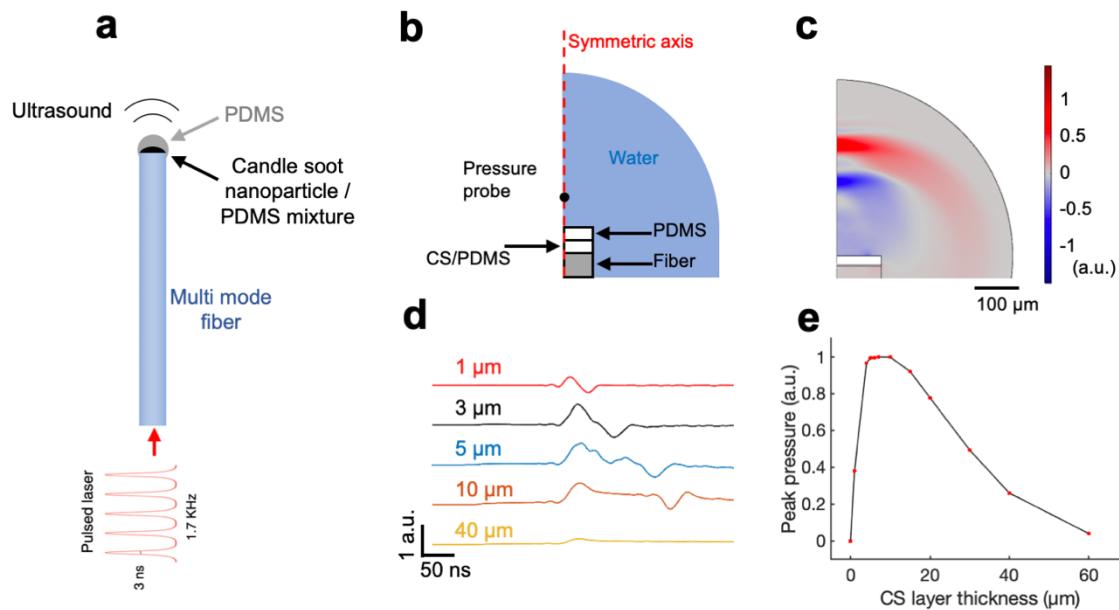
483 Tian, Y., Wu, N., Zou, X.T., Felemban, H., Cao, C.Y., and Wang, X.W. (2013). Fiber-optic ultrasound
484 generator using periodic gold nanopores fabricated by a focused ion beam. *Optical Engineering* 52.

485 Wolf, M.P., Salieb-Beugelaar, G.B., and Hunziker, P. (2018). PDMS with designer functionalities-Properties,
486 modifications strategies, and applications. *Progress in Polymer Science* 83, 97-134.

Highly efficient fiber optoacoustic emitter

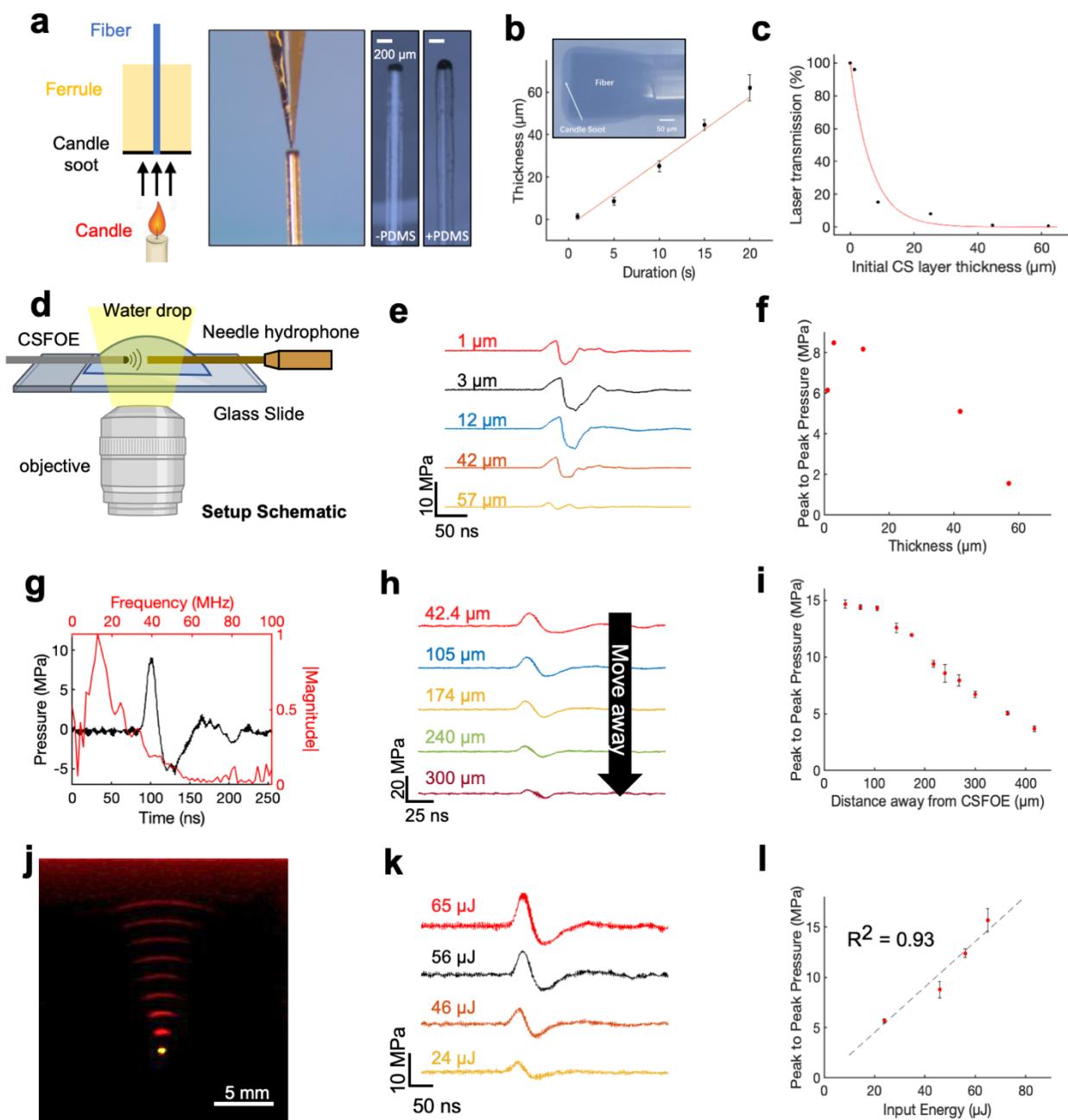
487 Won Baac, H., Ok, J.G., Park, H.J., Ling, T., Chen, S.L., Hart, A.J., and Guo, L.J. (2010). Carbon nanotube
488 composite optoacoustic transmitters for strong and high frequency ultrasound generation. *Appl Phys*
489 *Lett* 97, 234104.

490 Wu, N., Sun, K., and Wang, X.W. (2011). Fiber optics photoacoustic generation using gold nanoparticles as
491 target. *Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems*
492 2011 7981.


493 Wu, N., Tian, Y., Zou, X.T., Silva, V., Chery, A., and Wang, X.W. (2012). High-efficiency optical ultrasound
494 generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite. *Journal*
495 *of the Optical Society of America B-Optical Physics* 29, 2016-2020.

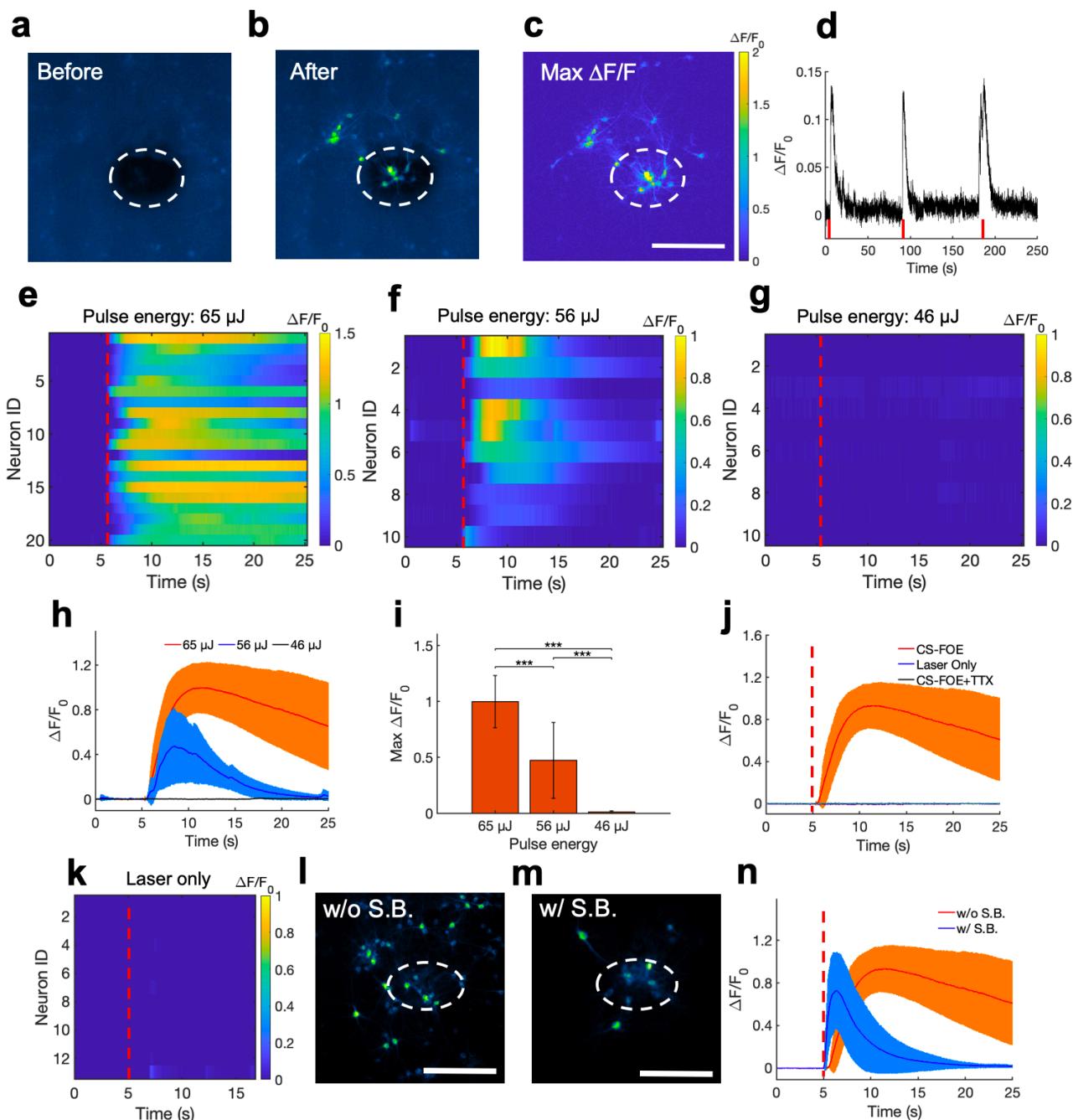
496 Wu, N., Tian, Y., Zou, X.T., and Wang, X.W. (2013). Fiber optic photoacoustic ultrasound generator based on
497 gold nanocomposite. *Nondestructive Characterization for Composite Materials, Aerospace*
498 *Engineering, Civil Infrastructure, and Homeland Security* 2013 8694.

499 Xu, M., and Wang, L.V. (2006). Photoacoustic imaging in biomedicine. *Review of Scientific Instruments* 77.


500 Zhu, X., Lin, J.W., Turnali, A., and Sander, M.Y. (2022). Single infrared light pulses induce excitatory and
501 inhibitory neuromodulation. *Biomed Opt Express* 13, 374-388.

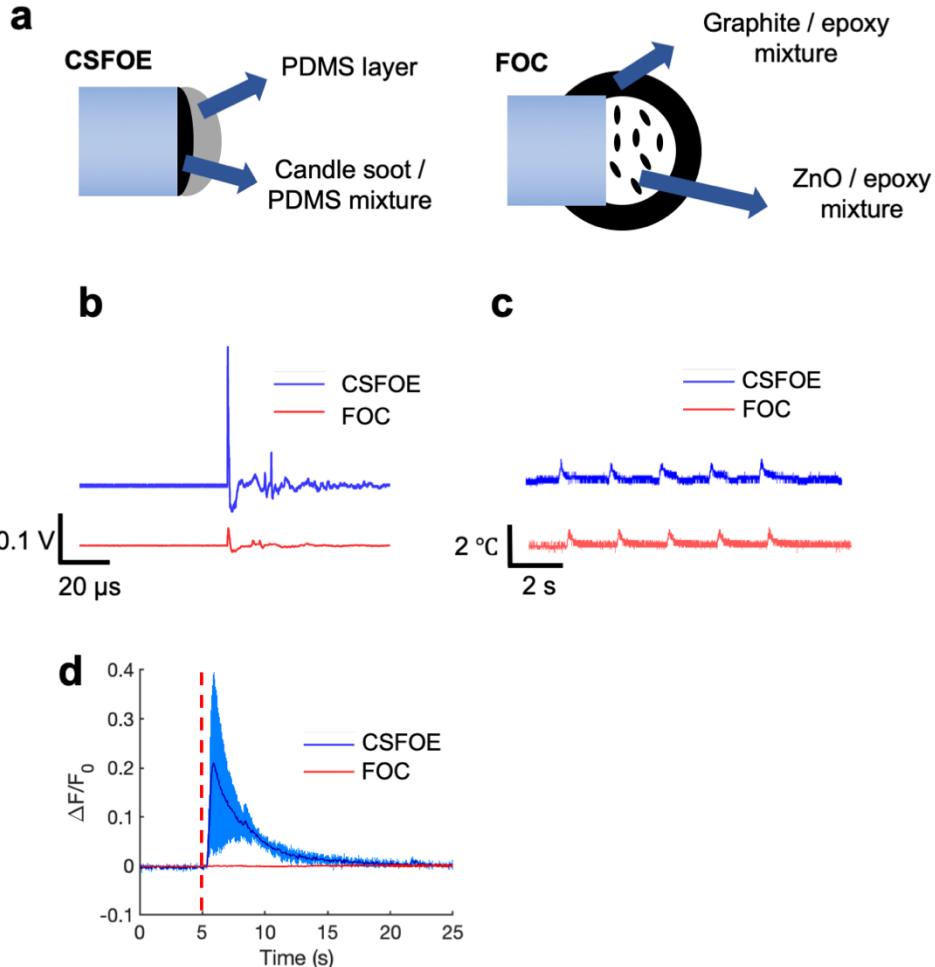
502 Zou, X., Wu, N., Tian, Y., and Wang, X. (2014). Broadband miniature fiber optic ultrasound generator. *Opt*
503 *Express* 22, 18119-18127.

504
505 **Figure 1.** COMSOL simulation of CSFOE performance. (a) Schematic of CSFOE. (b) Illustration of the CSFOE model
506 used in simulation. Not to scale. (c) Representative ultrasound waveform, simulated at $t=400$ ns under an input of a 3 ns
507 pulsed laser. (d) Acoustic waveforms simulated at different thicknesses of the CS layer. (e) Peak-to-peak acoustic
508 pressure plotted as a function of candle soot layer thickness.

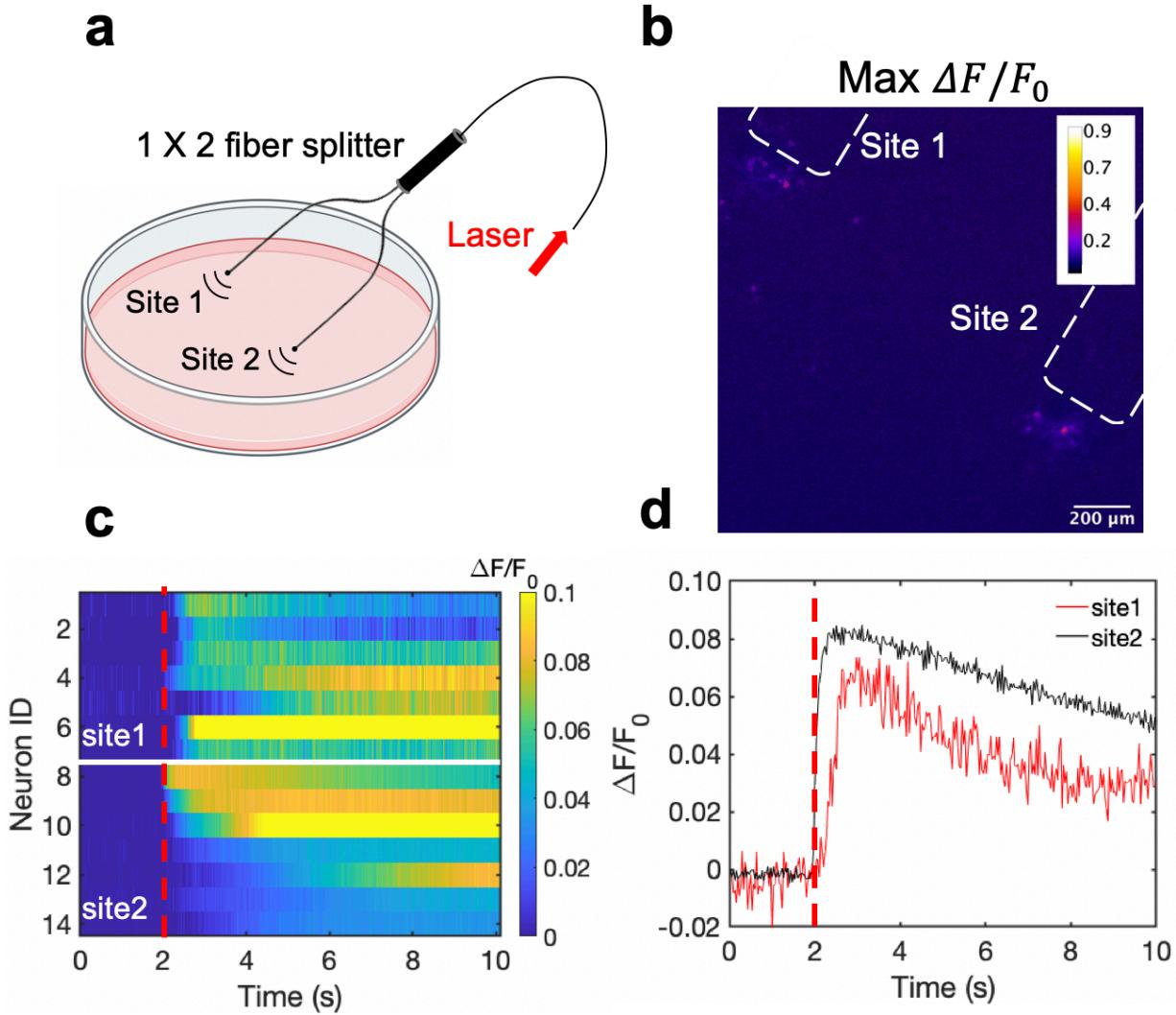

Highly efficient fiber optoacoustic emitter

509
510
511
512
513
514
515
516
517
518
519
520
521
522

Figure 2. Fabrication and characterization of CSFOE. (a) Key steps of CSFOE fabrication. (left) Candle soot deposition on an optical fiber tip. (middle) PDMS coating on the surface of the CS layer using a nanoinjector. (Right) Images of samples after CS deposition and PDMS coating, respectively. Scale bars: 200 μm. (b) Thickness of CS layer obtained as a function of deposition duration. Inset: representative image of a fiber coated with candle soot. (c) Transmission ratio plotted as a function of the thickness of CS layer. (d) Schematic of experimental configuration of photoacoustic signal measurement using a 40 μm needle hydrophone. (e) Acoustic signal of CSFOE as a function of the candle soot layer thickness detected by the hydrophone. Laser condition: 1030nm, 1.7 kHz repetition rate, 56 μJ per pulse. (f) Peak to peak pressure plotted as a function of the thickness of CS under the same laser condition as (e). (g) Representative photoacoustic waveform (black) detected by the hydrophone and its FFT frequency spectrum (red). (h, i) Acoustic signal and peak-to-peak pressure generated by CSFOE detected at different distances from the CSFOE tip. Each data point was an average of three trials. (j) Photoacoustic signal propagation in the medium detected by a linear transducer array. Fiber tip (yellow), PA waveform (red). (k, l) Photoacoustic waveforms and peak-to-peak pressures measured at different laser pulse input. Each data point was an average of three trials.


Highly efficient fiber optoacoustic emitter

523


524 **Figure. 3** Activation of GCaMP6f-expressing cortical neurons by CSFOE stimulation. (a, b) representative fluorescence
 525 of neurons stimulated by CSFOE before stimulation (a) and after stimulation (b). (c) Map of the maximum fluorescence
 526 change $\Delta F/F_0$ induced by the CSFOE stimulation. Laser condition: 3 ms duration, pulse energy 65 μ J. Scale bar: 200 μ m.
 527 (d) Calcium trace shows repeatable activation of the same neuron. Laser condition: 3 ms duration, pulse energy 56 μ J. (e-
 528 g) Colormaps of fluorescence change in neurons stimulated by CSFOE with a laser pulse energy of 65 μ J (e), 56 μ J (f),
 529 and 46 μ J (g). (h) Average calcium traces of neurons obtained from (e, f, g) with the pulse energy of 65 μ J (red), 56
 530 μ J (blue) and 46 μ J (black), respectively. The shaded region corresponds to one standard deviation. Laser turns on at $t = 5$
 531 s (red dashed lines). The duration of each stimulation was fixed at 3 ms. (i) Average of maximum fluorescence intensity
 532 changes shown in (e)-(g). Error bars represent standard deviation. (j) Average calcium traces of neurons of CSFOE
 533 stimulation, laser only control group, and TTX control group. (k) Colormaps of fluorescence change in neurons of a laser
 534 only control group. (l, m) Contrast calcium imaging of GCaMP6f transfected neurons without synaptic blocker (l) and
 535 with synaptic blocker (m). Scale bar: 200 μ m. (n) Average calcium traces without (red) and with (blue) synaptic blocker.
 536 Laser turns on at $t = 5$ s.

Highly efficient fiber optoacoustic emitter

537
538
539
540
541
542

Figure. 4 Comparison of CSFOE and FOC. (a) Schematics of the CSFOE and FOC. (b) Photoacoustic signal of CSFOE and FOC, measured by a 5 MHz transducer under the same laser condition: 1030 nm, 3 ns, 1.7 kHz, 48 mW. (c) Temperature rise measured by a thermal probe placed at the surface of CSFOE and FOC, respectively. (d) Representative calcium traces of GCaMP6f transfected neurons stimulated by CSFOE (Blue) and FOC (Red) under the same laser energy input of 52 μ J.

543
544
545
546
547

Figure. 5 Dual site neuron stimulation by CSFOE. (a) Schematic of dual site stimulation using two CSFOEs with a fiber splitter. (b) Map of the max $\Delta F/F$ image of two sites of neurons stimulated by two CSFOE. (c) Colormaps of fluorescence changes in neurons at two sites stimulated by CSFOE. (d) Representative calcium traces of neurons at site 1 (red) and site 2 (black).

548