
1 
 

Characterization, Comparison, and Optimization of Lattice Light Sheets 

 

Gaoxiang Liu1* , Xiongtao Ruan1*, Daniel E. Milkie2, Frederik Görlitz1, Matthew Mueller1, Wilmene 

Hercule1, Alison Kililea1, Eric Betzig1†, Srigokul Upadhyayula1† 

1Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. 
2Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20417, USA 
3Department of Physics, Howard Hughes Medical Institute, Helen Wills Neuroscience Institute, University 

of California, Berkeley, Berkeley, CA 94720, USA 
4Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 

Berkeley, CA 94720, USA 
5Chan Zuckerberg Biohub, San Francisco, CA, USA 

 

*These authors contributed equally; names are listed alphabetically 
†Corresponding authors; names are listed alphabetically 

 

To whom correspondence may be addressed. 

Eric Betzig 

Email: betzige@janelia.hhmi.org 

 

Srigokul Upadhyayula 

Email: sup@berkeley.edu 

 

Author Contributions: E.B., S.U. designed research; G.L., X.R., D.E.M., F.G., M.M., W.H., A.K., E.B., 

S.U. performed research; X.R., D.E.M., M.M, E.B., S.U., contributed new reagents or analytic tools; G.L., 

X.R., M.M., E.B., S.U. analyzed data; E.B. developed the simulation code and performed all light sheet 

simulations; E.B. wrote the paper with input from all authors. 

Competing Interest Statement: Portions of the technology described herein are covered by: U.S. Patent 

7,894,136 issued to E.B., assigned to Lattice Light LLC of Berkeley CA, and licensed to Carl Zeiss 

Microscopy; U.S. Patents 8,711,211 and 9,477,074 issued to E.B., assigned to HHMI and licensed to Carl 

Zeiss Microscopy; U.S. Patent application 13/844,405 filed by E.B. and assigned to HHMI; and U.S. 

Patent 9,500,846 issued to E.B. and assigned to HHMI.  

Classification: major classification: physics; minor classification: cell biology 

Keywords: Light sheet, microscopy, live cell imaging 

This PDF file includes: 

Main Text 

Figures 1 to 11  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2022. ; https://doi.org/10.1101/2022.07.30.502108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.30.502108
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Table of Contents 

Abstract ........................................................................................................................................... 4 

Significance Statement ................................................................................................................... 4 

1.  Introduction ................................................................................................................................ 4 

2.  General Theoretical Considerations ........................................................................................... 5 

A. Swept beam light sheet microscopy ................................................................................................. 6 

B. Confocal light sheet microscopy ....................................................................................................... 7 

C. Incoherent structured illumination light sheet microscopy ............................................................. 8 

D. Coherent structured illumination light sheet microscopy ................................................................ 9 

E. Theoretical resolution limits ........................................................................................................... 11 

3.  General Experimental Considerations ...................................................................................... 13 

A. Spatial resolution ............................................................................................................................ 13 

B. Fidelity of image reconstruction ..................................................................................................... 14 

C. Light sheet propagation characteristics .......................................................................................... 15 

D. Axial extent of excitation ................................................................................................................ 16 

E. Light sheet generation .................................................................................................................... 16 

F. Deconvolution ................................................................................................................................. 17 

4.  Gaussian Beam Light Sheet Microscopy .................................................................................. 17 

5.  Sinc Beam Light Sheet Microscopy ........................................................................................... 19 

6.  Bessel Beam Light Sheet Microscopy ....................................................................................... 21 

A. Swept Bessel beam light sheet microscopy .................................................................................... 22 

B. Coherent multi-Bessel light sheet microscopy ............................................................................... 22 

7.  Lattice Light Sheet Microscopy ................................................................................................ 24 

A. Considerations in choosing a lattice of a given symmetry .............................................................. 24 

i.  1D axial standing wave .................................................................................................................................... 25 

ii.  2D maximally symmetric square lattice ......................................................................................................... 26 

iii.  2D maximally symmetric hexagonal lattice ................................................................................................... 26 

iv.  2D hexagonal-rectangular aperiodic pattern ................................................................................................ 28 

B. Multi-Bessel lattice light sheet microscopy .................................................................................... 28 

i.  multi-Bessel square LLSM ............................................................................................................................... 31 

ii.  multi-Bessel hexagonal LLSM ......................................................................................................................... 32 

C. Axially confined lattice light sheet microscopy ............................................................................... 33 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2022. ; https://doi.org/10.1101/2022.07.30.502108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.30.502108
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

i.  axially confined standing wave (SW) LSM ....................................................................................................... 34 

ii.  axially confined square LLSM ......................................................................................................................... 35 

iii.  axially confined hexagonal LLSM ................................................................................................................... 36 

8.  Comparisons Between Light Sheets ......................................................................................... 36 

A. Overall swept optical transfer function .......................................................................................... 37 

B. Spatial resolution ............................................................................................................................ 38 

C. Accuracy of image reconstruction .................................................................................................. 42 

D. Excitation envelope and photobleaching ....................................................................................... 45 

9.  Further Optimizations of Lattice Light Sheets .......................................................................... 48 

10.  Summary ................................................................................................................................ 53 

Acknowledgments ......................................................................................................................... 53 

References ..................................................................................................................................... 54 

Main Figures ................................................................................................................................. 56 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2022. ; https://doi.org/10.1101/2022.07.30.502108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.30.502108
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Abstract 

Lattice light sheet microscopy excels at the non-invasive imaging of three-dimensional (3D) 

dynamic processes at high spatiotemporal resolution within cells and developing embryos.  

Recently, several papers have called into question the performance of lattice light sheets 

relative to the Gaussian sheets most common in light sheet microscopy.  Here we undertake a 

comprehensive theoretical and experimental analysis of various forms of light sheet microscopy 

which both demonstrates and explains why lattice light sheets provide significant 

improvements in resolution and photobleaching reduction.  The analysis provides a procedure 

to select the correct light sheet for a desired experiment and specifies the processing that 

maximizes the use of all fluorescence generated within the light sheet excitation envelope for 

optimal resolution while minimizing image artifacts and photodamage.  Development of a new 

type of “harmonic balanced” lattice light sheet is shown to improve performance at all spatial 

frequencies within its 3D resolution limits and maintains this performance over lengthened 

propagation distances allowing for expanded fields of view. 

Significance Statement 

Despite its rapidly growing use, several misconceptions remain concerning the physics of image 

formation and its optimization in light sheet microscopy, particularly in high resolution variants 

tailored for subcellular imaging.  These include the role of excitation sidelobes, the significance 

of out-of-focus fluorescence, the importance and optimization of deconvolution, and the 

perceived advantages of Gaussian beams.  Here we attempt to shatter these misconceptions by 

showing that the professed tradeoffs between axial resolution and background haze, 

photobleaching rate, phototoxicity, and propensity for image artifacts do not exist for well-

crafted lattice light sheets whose data is acquired and processed rigorously.  The framework we 

provide should enable others to optimize light sheets and extract the most information at the 

lowest cost in their experiments. 

 

1.  Introduction 

In lattice light sheet microscopy (1), a thin, spatially structured sheet of light is repeatedly 

swept axially (i.e., along the 𝑧  axis perpendicular to its direction of confinement) through a 

specimen while the fluorescence thereby generated is imaged plane by plane to generate a three-

dimensional (3D) movie of sub-cellular dynamics.  The method excels at rapid, non-invasive 4D 

imaging with axial resolution superior to confocal microscopy.   

Recently, several papers have questioned the ability of square lattices to produce light 

sheets having practical axial resolution superior to Gaussian light sheets of comparable length (2, 

3) and of hexagonal lattices to produce light sheet images having minimal artifacts, due to strong 
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sidelobes and localized troughs in the overall optical transfer function (OTF) (3, 4).  Here we argue 

that these assertions are consequences of the specific conditions, assumptions, and comparative 

metrics chosen, and demonstrate both theoretically and through live cell imaging conditions 

under which both square and hexagonal lattice light sheets can provide faithful representations 

of sample structure at resolution superior to Gaussian light sheets of comparable length.  

Furthermore, we describe and characterize new, additional optimizations of lattice light sheets 

that further enhance their practical axial resolution and their ability to maintain this resolution 

for longer propagation distances. 

 

2.  General Theoretical Considerations 

A 3D electric field pattern 𝐸𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) that is weakly confined in its propagation direction 𝑦 

and strongly confined in the axis 𝑧 of fluorescence detection can be moved in the direction 𝑥 ⊥

𝑦, 𝑧 to illuminate a specimen with a sheet of light.  In the scalar approximation, 𝐸𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) is given 

by the coherent superposition of plane waves converging to the focal point 𝒙 = 0 of an excitation 

lens of focal length 𝐹 and numerical aperture 𝑁𝐴𝑝𝑢𝑝𝑖𝑙 from every point 𝑥𝑝, 𝑧𝑝 within the radius 

𝑎 = 𝑁𝐴𝑝𝑢𝑝𝑖𝑙𝐹 of the rear pupil of the lens.  Thus, when the lens is excited with an input electric 

field 𝐸𝑝𝑢𝑝𝑖𝑙(𝑥𝑝, 𝑧𝑝), 

                                     𝐸𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) = ∬ 𝐸𝑝𝑢𝑝𝑖𝑙(𝑥𝑝, 𝑧𝑝)exp[𝑖𝒌(𝑥𝑝, 𝑧𝑝) ∙ 𝒙]𝑑𝑥𝑝𝑑𝑧𝑝                   (1𝑎)

 

𝒑𝒖𝒑𝒊𝒍

 

where the components of the wavevector 𝒌 are related to the position in the pupil by: 

(𝑘𝑥, 𝑘𝑧) = 𝑘𝑜 ∙ (𝑥𝑝, 𝑧𝑝)/𝐹 = 𝑘𝑜𝑁𝐴𝑝𝑢𝑝𝑖𝑙 ∙ (𝑥𝑝, 𝑧𝑝)/𝑎 and 𝑘𝑜 = 2𝜋/𝜆𝑒𝑥𝑐 = 𝑘/𝑛            (1𝑏) 

                                                   𝑘𝑦 = 𝑘𝑦(𝑘𝑥, 𝑘𝑧) = √𝑘2 − 𝑘𝑥2 − 𝑘𝑧2                                                    (1𝑐)  

Since 𝐸𝑝𝑢𝑝𝑖𝑙(𝑥𝑝, 𝑧𝑝) = 0 for √𝑥𝑝2 + 𝑧𝑝2 > 𝑎, the integrals can be extended to infinity, and Eq. (1a) 

can be expressed as: 

𝐸𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) ∝ 𝐹𝑇𝑘𝑥𝑘𝑧

−1 {𝐸𝑝𝑢𝑝𝑖𝑙(𝑘𝑥, 𝑘𝑧) exp(𝑖𝑘𝑦𝑦)}                                     (1𝑑) 

where 𝐹𝑇𝛼
−1 refers to an inverse Fourier transform over the variables 𝛼. 

The point spread function (PSF) of the stationary intensity pattern in the specimen 

corresponding to 𝐸𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) is given by: 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) = 𝐸𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝒙) ∙ 𝐸𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                            (2𝑎) 

which has a frequency distribution in any 𝑥𝑧  plane along 𝑦  defined by its optical transfer 

function: 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝑘𝑥, 𝑦, 𝑘𝑧) = 𝐹𝑇𝑥𝑧{𝑃𝑆𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝒙)}                                       (2𝑏) 
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where    ̅  denotes the complex conjugate.  Inserting Eq. (2a) into Eq. (2b) and using the 

convolution theorem gives: 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝑘𝑥, 𝑦, 𝑘𝑧) = 𝐹𝑇𝑥𝑧{𝐸𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝒙)}⨂𝑘𝑥𝑘𝑧𝐹𝑇𝑥𝑧 {𝐸𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }                   (2𝑐) 

Further inserting Eq. (1c) then gives: 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝑘𝑥, 𝑦, 𝑘𝑧) ∝ {𝐸𝑝𝑢𝑝𝑖𝑙(𝑘𝑥, 𝑘𝑧) exp(𝑖𝑘𝑦𝑦)}⨂𝑘𝑥𝑘𝑧{𝐸𝑝𝑢𝑝𝑖𝑙(𝑘𝑥, 𝑘𝑧) exp(𝑖𝑘𝑦𝑦)}

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅      (3) 

At the focal plane (𝑦 = 0) this reduces to the well-known result that the excitation OTF is the 

autocorrelation of the pupil electric field. 

There are at least four ways in which 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) can be moved across the 𝑥𝑦 field of 

view (FOV) to acquire each 𝑧 plane of a light sheet image volume.  We consider each in turn: 

 

A. Swept beam light sheet microscopy 

When a beam of excitation profile 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) confined in two dimensions perpendicular 

to its direction of propagation 𝑦 is swept continuously in 𝑥 ⊥ 𝑦, 𝑧 across a desired FOV large 

compared to its confinement in 𝑥: 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝒙) = ∫ 𝑃𝑆𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝑥 − 𝑥′, 𝑦, 𝑧)𝑑𝑥′ ≈
𝐹𝑂𝑉

0
∫ 𝑃𝑆𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝑥 − 𝑥′, 𝑦, 𝑧)𝑑𝑥′ =
∞

−∞

∭ 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝑥 − 𝑥′, 𝑦, 𝑧)𝛿(𝑦′)𝛿(𝑧′)𝒅𝒙′

∞

−∞
= 𝑃𝑆𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝒙)⊗ [𝛿(𝑦)𝛿(𝑧)]      (4𝑎)  

which is the convolution of the stationary beam with an infinite line along the x axis.  Thus, 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝒙) is constant along 𝑥  and confined in 𝑧 .  By the convolution theorem, the 

corresponding transverse cross-sectional OTF at any position 𝑦 is then given by: 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑘𝑥, 𝑦, 𝑘𝑧) = 𝐹𝑇𝑥𝑧{𝑃𝑆𝐹𝑒𝑥𝑐

𝑠𝑤𝑒𝑝𝑡(𝒙)} ⋅ 𝛿(𝑘𝑥) = 𝑂𝑇𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(0, 𝑦, 𝑘𝑧)                  (4𝑏)                            

This result is intuitively clear: the amplitudes of any spatial frequencies of nonzero 𝑘𝑥  in 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑

 will be averaged out by the sweep operation, whereas purely axial and/or longitudinal 

spatial frequencies are unaffected by a lateral sweep.  Eq. (4b) is also true for any periodic 

excitation pattern 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝑥 + 𝛵, 𝑦, 𝑧) = 𝑃𝑆𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝒙) that is swept at constant velocity over 

an integral multiple of 𝛵  during the acquisition of each frame, such as with a triangle wave 

pattern (“dithered”). 

Combining Eqs. (3) and (4b) and explicitly writing out the convolution in the former yields 

the generalized swept beam OTF in terms of the pupil electric field:  

𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑘𝑧) = 𝑂𝑇𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(0, 𝑦, 𝑘𝑧)                                                              

∝ ∫ 𝑑𝑘𝑥
′ {∫ 𝑑𝑘𝑧

′𝐸𝑝𝑢𝑝𝑖𝑙(𝑘𝑥
′ , 𝑘𝑧

′ )𝐸𝑝𝑢𝑝𝑖𝑙(𝑘𝑥′ , 𝑘𝑧 − 𝑘𝑧′ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ exp[𝑖Κ(𝑘𝑥
′ , 𝑘𝑧

′ , 𝑘𝑧)𝑦]
∞

−∞

}
𝑁𝐴𝑒𝑥𝑐𝑘𝑜

−𝑁𝐴𝑒𝑥𝑐𝑘𝑜

                   (5𝑎) 
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where: 

 Κ(𝑘𝑥
′ , 𝑘𝑧

′ , 𝑘𝑧) = (√𝑘2 − 𝑘𝑥′2 − 𝑘𝑧′2 −√𝑘2 − 𝑘𝑥′2 − (𝑘𝑧 − 𝑘𝑧′ )2)                      (5𝑏) 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑘𝑧) is therefore the 1D auto-correlation in 𝑘𝑧 of the 2D generalized pupil function 

𝐸𝑝𝑢𝑝𝑖𝑙(𝑘𝑥, 𝑘𝑧) exp(𝑖𝑘𝑦𝑦) .  It is equivalent to the incoherent sum (or integral) of the 1D 

autocorrelations in 𝑘𝑧 of every 1D column of different 𝑘𝑥 in the generalized pupil function. This 

result, which is graphically depicted in Fig. S1, is known as the field synthesis theorem (5). 

The ultimate performance of a light sheet microscope is determined by its overall PSF and 

corresponding OTF.  These in turn depend on the interplay of the light sheet’s excitation PSF with 

𝑃𝑆𝐹𝑑𝑒𝑡(𝒙), the ideal diffraction-limited PSF of a detection objective of numerical aperture 𝑁𝐴𝑑𝑒𝑡.  

For a swept light sheet: 

𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝒙) = 𝑃𝑆𝐹𝑒𝑥𝑐

𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧) ⋅ 𝑃𝑆𝐹𝑑𝑒𝑡(𝒙)                                          (6𝑎) 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝑦, 𝒌) = 𝑂𝑇𝐹𝑒𝑥𝑐

𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑘𝑧)⨂𝑘𝑧𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)      where:                  (6𝑏) 

𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) = 𝐹𝑇𝑘𝑥𝑘𝑦𝑘𝑧{𝑃𝑆𝐹𝑑𝑒𝑡(𝒙)}                                                   (6𝑐) 

For our theoretical calculations of light sheet performance, we calculated 𝑃𝑆𝐹𝑑𝑒𝑡(𝒙) over a 3D 

volume of (±50 𝜆𝑒𝑥𝑐/𝑛)
3 sufficiently large to encompass all excitation sidelobes of any of the 

light sheets we studied, which is necessary for an accurate representation of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝑦, 𝒌).  

Notably, by Eq (6c) the size of this volume also determines the scaling of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) at all 𝒌 ≠ 0 

relative to the DC peak, which itself becomes singular as the volume → ∞. 

 

B. Confocal light sheet microscopy 

When a confined beam 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙)  created with a maximum numerical aperture of 

excitation 𝑁𝐴𝑒𝑥𝑐  is moved discretely in steps ∆𝑥~𝜆𝑒𝑥𝑐/(4𝑁𝐴𝑒𝑥𝑐)  across the FOV rather than 

continuously as above, and the fluorescence emission at each step is recorded at a camera 

conjugate to 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) by a slit (2𝑁𝑥′ + 1) pixels wide centered at 𝑥, an optically sectioned 

confocal PSF 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑐𝑜𝑛𝑓 (𝒙) is obtained by summing the recorded emission over all pixels in 𝑥′: 

𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑐𝑜𝑛𝑓 (𝒙) = 𝑃𝑆𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝒙) ∙ ∑ 𝑃𝑆𝐹𝑑𝑒𝑡(𝑥 − 𝑛∆𝑥
′, 𝑦, 𝑧)

𝑁
𝑥′

𝑛=−𝑁𝑥′

                       (7𝑎) 

where ∆𝑥′ is the pixel width.  The effective detection PSF is therefore the discrete 1D convolution 

of the ideal PSF with the width of the pixel band:   

𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑐𝑜𝑛𝑓 (𝒙) = 𝑃𝑆𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝒙) ⋅ 𝑃𝑆𝐹𝑑𝑒𝑡
𝑐𝑜𝑛𝑓(𝒙)                                           (7𝑏) 

where: 
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𝑃𝑆𝐹𝑑𝑒𝑡
𝑐𝑜𝑛𝑓(𝒙) = 𝑃𝑆𝐹𝑑𝑒𝑡(𝒙)⨂𝑥 {𝑟𝑒𝑐𝑡 [

𝑥

(2𝑁𝑥′ + 1)∆𝑥′
]}                           (7𝑐)  

and rect (𝑥) = 1 for |𝑥| <
1

2
,
1

2
 for 𝑥 =

1

2
, 0 for |𝑥| >

1

2
.  By the convolution theorem, the 

corresponding OTF at a given position y is given by: 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑐𝑜𝑛𝑓 (𝑦, 𝒌) = 𝑂𝑇𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝑘𝑥, 𝑦, 𝑘𝑧)⨂𝑘𝑥𝑘𝑧𝑂𝑇𝐹𝑑𝑒𝑡
𝑐𝑜𝑛𝑓(𝒌)

∝ 𝑂𝑇𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝑘𝑥, 𝑦, 𝑘𝑧)⨂𝑘𝑥𝑘𝑧

{𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) ∙ sinc[(2𝑁𝑥′ + 1)𝑘𝑥∆𝑥
′/2]}            (7𝑑) 

where sinc(𝑥) = sin(𝑥) /𝑥. 

 

C. Incoherent structured illumination light sheet microscopy 

When 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) is moved in 𝑥 in discrete steps of period Τ > 𝜆𝑒𝑥𝑐/(2𝑁𝐴𝑒𝑥𝑐)  over a 

FOV large compared to its extent, the excitation PSF of the resulting structured light sheet can 

be approximated by: 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑖𝑆𝐼(𝒙) = ∑ 𝑃𝑆𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝑥 − 𝑗Τ, 𝑦, 𝑧)

𝑁

𝑗=−𝑁

≈ ∑ 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝑥 − 𝑗Τ, 𝑦, 𝑧)

∞

𝑗=−∞

=∭ ∑ 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝑥 − 𝑥′, 𝑦, 𝑧)

∞

𝑗=−∞

∞

−∞

𝛿(𝑥′ − 𝑗Τ)𝛿(𝑦′)𝛿(𝑧′)𝒅𝒙′                        (8𝑎)

= 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙)⊗ ∑ 𝛿(𝑥 − 𝑗Τ)𝛿(𝑦)

∞

𝑗=−∞

𝛿(𝑧) 

In other words, the PSF of the stepped light sheet is the convolution of the stationary PSF with 

an infinite series of delta functions of period Τ along the 𝑥 axis.  By the convolution theorem, the 

corresponding excitation OTF is then given by: 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑖𝑆𝐼(𝑘𝑥, 𝑦, 𝑘𝑧) = 𝑂𝑇𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝑘𝑥, 𝑦, 𝑘𝑧) ∑ 𝛿 (𝑘𝑥 −
2𝜋𝑗

Τ
)

∞

𝑗=−∞

= ∑ 𝑂𝑇𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑 (

2𝜋𝑗

Τ
, 𝑦, 𝑘𝑧)

𝐽

𝑗=−𝐽

 (8𝑏) 

where 𝐽 is the largest integer for which 𝐽 < 2𝑁𝐴𝑒𝑥𝑐Τ/𝜆𝑒𝑥𝑐, since higher values of 𝐽 correspond 

to spatial frequencies 𝒌 beyond the theoretical resolution limits defined by |𝑂𝑇𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒌)| > 0 

(i.e., the “support”).  Indeed, for 𝐽 > 2𝑁𝐴𝑒𝑥𝑐Τ/𝜆𝑒𝑥𝑐, Eq. (8b) reduces to Eq. (4b), because the 

stepped copies of 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑

(𝐱) are then no longer mutually resolvable, and the stepped light 

sheet becomes continuous. 

A single fluorescence image collected with 𝑃𝑆𝐹𝑒𝑥𝑐
𝑖𝑆𝐼(𝒙)  contains information about the 

specimen out to 𝑘𝑥
𝑆𝐼𝑚𝑎𝑥 = ±4𝜋(𝑁𝐴𝑒𝑥𝑐/𝜆𝑒𝑥𝑐 + 𝑁𝐴𝑑𝑒𝑡/𝜆𝑑𝑒𝑡) down shifted by the 2𝐽 + 1 bands 

in Eq. (8b) to overlap within the 𝑘𝑥
𝑑𝑒𝑡𝑚𝑎𝑥 = ±4𝜋𝑁𝐴𝑑𝑒𝑡/𝜆𝑑𝑒𝑡 passband of the detection objective.  

Using the principles of structured illumination microscopy (SIM(6)), this information can be 
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reassigned to its correct location in an expanded frequency space representation of the specimen 

by: a) acquiring 2𝐽 + 1  raw images with 𝑃𝑆𝐹𝑒𝑥𝑐
𝑆𝐼 (𝒙)  successively shifted by Δ𝑥 = Τ/(2𝐽 + 1 ) 

between each; b) separating the overlapped frequency components in these images by matrix 

inversion; c) assigning them to their correct locations in 𝑘𝑥 ; and d) precisely stitching them 

together in amplitude and phase across the extended support by cross-correlation.  The net result 

is a light sheet image with resolution in 𝑥 extended from 𝑘𝑥
𝑑𝑒𝑡𝑚𝑎𝑥 to 𝑘𝑥

𝑆𝐼𝑚𝑎𝑥. 

Prior to deconvolution, the strength of any frequency shifted copy of information in any 

reconstructed SIM image is proportional to the strength of the excitation harmonic responsible 

for the shift.  Thus, the effective overall OTF for incoherent light sheet SIM is:   

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙
𝑖𝑆𝐼 (𝑦, 𝒌) = 𝑂𝑇𝐹𝑒𝑥𝑐

𝑖𝑆𝐼(𝑘𝑥, 𝑦, 𝑘𝑧)⨂𝑘𝑥𝑘𝑧𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)                                    (9) 

 

D. Coherent structured illumination light sheet microscopy 

Rather than stepping 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙)  in increments of Τ  to serially create a periodic 

structured light sheet, such a light sheet can be created instantaneously by writing (e.g., with a 

spatial light modulator (SLM)) a periodic array in 𝑥  of 𝐸𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝑥, 0, 𝑧) from Eqs. (1) at a plane 

conjugate to the focal plane of the excitation objective.  Each array element 𝑗 laterally displaced 

a distance 𝑥 = 𝑗Τ when projected to the focal plane arises from a pupil field given by: 

𝐸𝑝𝑢𝑝𝑖𝑙
𝑗Τ

(𝑥𝑝, 𝑧𝑝) = 𝐸𝑝𝑢𝑝𝑖𝑙
0 (𝑥𝑝, 𝑧𝑝) ⋅ 𝑒𝑥𝑝 [𝑖2𝜋 (

𝑗Τ

𝜆𝑒𝑥𝑐𝐹
)𝑥𝑝]                    (10𝑎) 

where 𝐸𝑝𝑢𝑝𝑖𝑙
0 (𝑥𝑝, 𝑧𝑝) is the pupil field that gives rise to the centered (𝑥 = 0) copy 𝐸𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝒙) from 

above, and 𝐹  is the focal length of the objective.  The total electric field at the rear pupil 

𝐸𝑝𝑢𝑝𝑖𝑙
cSI (𝑥𝑝, 𝑧𝑝) for an infinite linear array of such beams is then given by the superposition of their 

individual pupil fields 𝐸𝑝𝑢𝑝𝑖𝑙
𝑗Τ

(𝑥𝑝, 𝑧𝑝): 

𝐸𝑝𝑢𝑝𝑖𝑙
cSI (𝑥𝑝, 𝑧𝑝) = ∑ 𝐸𝑝𝑢𝑝𝑖𝑙

𝑗Τ
(𝑥𝑝, 𝑧𝑝) =

∞

𝑗=−∞

𝐸𝑝𝑢𝑝𝑖𝑙
0 (𝑥𝑝, 𝑧𝑝) ⋅ ∑ 𝑒𝑥𝑝 [𝑖2𝜋 (

𝑗Τ

𝜆𝑒𝑥𝑐𝐹
)𝑥𝑝] =

∞

𝑗=−∞

 

𝐸𝑝𝑢𝑝𝑖𝑙
0 (𝑥𝑝, 𝑧𝑝) ⋅

𝜆𝑒𝑥𝑐𝐹

Τ
∑ 𝛿 (𝑥𝑝 −𝑚

𝜆𝑒𝑥𝑐𝐹

Τ
)

∞

𝑚=−∞

                                      (10𝑏) 

where the identity ∑ 𝑒𝑥𝑝(𝑖2𝜋𝑗𝑥/𝛽) = 𝛽∑ 𝛿(𝑥 − 𝑚𝛽)∞
−∞

∞
−∞  was used in the lower line of Eq. 

(10b).  Since 𝐸𝑝𝑢𝑝𝑖𝑙
0 (𝑥𝑝, 𝑧𝑝) = 0 for all |𝑥𝑝| >  𝑁𝐴𝑒𝑥𝑐𝐹 outside of the pupil, Eq. (10b) reduces to 

a finite sum: 

𝐸𝑝𝑢𝑝𝑖𝑙
cSI (𝑥𝑝, 𝑧𝑝) ∝ ∑ 𝐸𝑝𝑢𝑝𝑖𝑙

0 (𝑚
𝜆𝑒𝑥𝑐𝐹

Τ
, 𝑧𝑝)

𝑀

𝑚=−𝑀

                                      (10𝑐) 
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where 𝑀 is the largest integer for which 𝑀 < 𝑁𝐴𝑒𝑥𝑐Τ/𝜆𝑒𝑥𝑐.  In other words, the electric field in 

the rear pupil required to produce a light sheet consisting of a linear array of coherent beams of 

period Τ consists of a periodic series of 2𝑀 + 1 lines parallel to the 𝑧𝑝 axis.  

Combining Eqs. (1d) and (10c), the electric field of the coherent structured light sheet is 

given by: 

𝐸𝑒𝑥𝑐
𝑐𝑆𝐼(𝒙) ∝ ∑ 𝐹𝑇𝑘𝑥𝑘𝑧

−1 [𝐸𝑝𝑢𝑝𝑖𝑙
0 (

2𝜋𝑚

Τ
, 𝑘𝑧) exp(𝑖𝑘𝑦𝑦)]

𝑀

𝑚=−𝑀

                           (11𝑎) 

Eq. (2a) then gives the corresponding excitation PSF: 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑐𝑆𝐼(𝒙) ∝ ∑ ∑ 𝐹𝑇𝑘𝑥𝑘𝑧

−1 [𝐸𝑝𝑢𝑝𝑖𝑙
0 (

2𝜋𝑚

Τ
, 𝑘𝑧) exp(𝑖𝑘𝑦𝑦)]

𝑀

𝑚′=−𝑀

𝑀

𝑚=−𝑀

                         

                                   ⋅ 𝐹𝑇𝑘𝑥𝑘𝑧
−1 [𝐸𝑝𝑢𝑝𝑖𝑙

0 (
2𝜋𝑚′

Τ
, 𝑘𝑧) exp(𝑖𝑘𝑦𝑦)]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
    (11𝑏) 

and Eqs. (3) and (10c) give the corresponding excitation OTF: 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑐𝑆𝐼(𝑘𝑥, 𝑦, 𝑘𝑧)

∝ ∑ ∑ {𝐸𝑝𝑢𝑝𝑖𝑙
0 (

2𝜋𝑚

Τ
, 𝑘𝑧) exp(𝑖𝑘𝑦𝑦)}

𝑀

𝑚′=−𝑀

𝑀

𝑚=−𝑀

⊗𝑘𝑥𝑘𝑧 {𝐸𝑝𝑢𝑝𝑖𝑙
0 (

2𝜋𝑚′

Τ
, 𝑘𝑧)exp(𝑖𝑘𝑦𝑦)}

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
       (11𝑐) 

Thus, the excitation OTF of the coherent structured light sheet consists of 4𝑀 + 1 equally spaced 

discrete harmonics in 𝑘𝑥 .  As in the incoherent case above, these down shift specimen 

information extending out to 𝑘𝑥
𝑆𝐼𝑚𝑎𝑥 = ±4𝜋(𝑁𝐴𝑒𝑥𝑐/𝜆𝑒𝑥𝑐 + 𝑁𝐴𝑑𝑒𝑡/𝜆𝑑𝑒𝑡)  to the detection 

passband, and by acquiring 4𝑀 + 1 raw images with 𝑃𝑆𝐹𝑒𝑥𝑐
𝑆𝐼 (𝒙) successively shifted by Δ𝑥 =

Τ/(4𝑀 + 1 ) between each image, SIM reconstruction can be used to create a light sheet image 

with resolution in 𝑥 extended from 𝑘𝑥
𝑑𝑒𝑡𝑚𝑎𝑥 to 𝑘𝑥

𝑆𝐼𝑚𝑎𝑥.  However, whereas the strengths of the 

incoherent harmonics are dictated by the autocorrelation over all points in the pupil field 

𝐸𝑝𝑢𝑝𝑖𝑙
0 (𝑘𝑥, 𝑘𝑧) giving rise to the beam that is stepped (Eqs. (3) and (8b)), the strengths of the 

coherent harmonics are dictated by the autocorrelation of the much smaller subset of points in 

the pupil field where 𝑘𝑥 =
2𝜋𝑚

Τ
 for −𝑀 < 𝑚 < 𝑀 (Eq. 11c).  Since each additional point in an 

autocorrelation adds to the DC total, the nonzero incoherent harmonics are generally much 

weaker than the harmonic ones.  Hence, effective overall OTF for coherent structured light sheet 

microscopy: 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙
𝑐𝑆𝐼 (𝑦, 𝒌) = 𝑂𝑇𝐹𝑒𝑥𝑐

𝑐𝑆𝐼(𝑘𝑥, 𝑦, 𝑘𝑧)⨂𝑘𝑥𝑘𝑧𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)                                    (12) 

is generally much stronger than the incoherent one (Eq. 9). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2022. ; https://doi.org/10.1101/2022.07.30.502108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.30.502108
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

E. Theoretical resolution limits 

The theoretical resolution limit of a linear optical microscope is defined by the support of  

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) = 𝑂𝑇𝐹𝑒𝑥𝑐(𝒌)⊗ 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)                                       (13𝑎) 

This support is a 2D surface in 3D space.  The theoretical resolution 𝑅(𝒆̂𝒌) in any particular 

direction 𝒆̂𝑘  is determined by the magnitude 𝑘 of the vector 𝒌 = 𝑘𝒆̂𝑘  from the origin of 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) to this surface.  There are several directions 𝒆̂𝒌 of physical interest for light sheet 

microscopy (Fig. S2).  First, because all light sheets are designed to vary slowly in the propagation 

direction 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  defined by the optical axis of the excitation objective,  

𝑂𝑇𝐹𝑒𝑥𝑐(𝒌)~𝛿(𝑘𝑦)𝑂𝑇𝐹𝑒𝑥𝑐(𝑘𝑥, 𝑘𝑧)                                                    (13𝑏) 

Hence, resolution they provide along 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  is dictated primarily by the lateral support of the 

detection objective: 

𝑅 (𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙) =
2𝜋

𝑘𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙
=

𝜆𝑑𝑒𝑡
2𝑁𝐴𝑑𝑒𝑡

                                              (14𝑎) 

Second, for all four ways above in which 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) can be moved to create a light sheet, the 

resolution in the direction 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  defined by the optical axis 𝑧 of the detection objective is: 

𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) =
2𝜋

𝑘𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙
=

𝜆𝑒𝑥𝑐
2𝑁𝐴𝑒𝑥𝑐

                                               (14𝑏) 

since this is the location in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) where the center of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) is furthest shifted 

axially by its convolution with 𝑂𝑇𝐹𝑒𝑥𝑐(𝒌).  For an ideal optical lattice, 𝑁𝐴𝑒𝑥𝑐 = 𝑁𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒 , the 

latter being the NA on which its 𝐵 discrete illumination points are located (white dots, Figs. 3Aa, 

3Ba, 3Ca, and 3Da).  However, for a lattice light sheet, these points are stretched into lines of 

effective length (∆𝑘𝑧)𝑏  along 𝑘𝑧 , so that 𝑁𝐴𝑒𝑥𝑐 = ~𝑁𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒 + (∆𝑘𝑧)𝑏/2.  Third, the highest 

overall axial resolution is not along 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  but rather along the direction 𝒆̂𝑧𝑚𝑎𝑥
 defined by the 

point of highest axial resolution in this shifted copy of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) (Fig. S2A): 

𝒌𝑧𝑚𝑎𝑥
= (

2𝜋𝑁𝐴𝑑𝑒𝑡
𝜆𝑑𝑒𝑡

) 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙 + 2𝜋 [
2𝑁𝐴𝑒𝑥𝑐
𝜆𝑒𝑥𝑐

+
(𝑛 − √𝑛2 − 𝑁𝐴𝑑𝑒𝑡

2 )

𝜆𝑑𝑒𝑡
] 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  

Hence, the maximum axial resolution at this point is given by: 

(𝑅𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙)𝑚𝑎𝑥 =
2𝜋

𝒌𝑧𝑚𝑎𝑥
∙ 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙

= [
2𝑁𝐴𝑒𝑥𝑐
𝜆𝑒𝑥𝑐

+
(𝑛 − √𝑛2 − 𝑁𝐴𝑑𝑒𝑡

2 )

𝜆𝑑𝑒𝑡
]

−1

                 (14𝑐) 

Fourth, by Eqs. (13), the support of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) in the 𝑘𝑦𝑘𝑧  plane is approximately 

rectangular, because it is given by the convolution of 𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑘𝑧)  with 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)  along 

𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙.  The theoretical resolution is thus particularly high in the diagonal direction: 
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𝒌𝑦𝑧𝑑𝑖𝑎𝑔 = (
4𝜋𝑁𝐴𝑑𝑒𝑡
𝜆𝑑𝑒𝑡

) 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙 + (
4𝜋𝑁𝐴𝑒𝑥𝑐
𝜆𝑒𝑥𝑐

) 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  

given by the point of highest lateral resolution in the axially furthest shifted copy of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) 

(Fig. S2A), where: 

𝑅 (𝒆̂𝑦𝑧𝑑𝑖𝑎𝑔) =
2𝜋

𝑘𝑦𝑧𝑑𝑖𝑎𝑔
= [(

2𝑁𝐴𝑑𝑒𝑡
𝜆𝑑𝑒𝑡

)
2

+ (
2𝑁𝐴𝑒𝑥𝑐
𝜆𝑒𝑥𝑐

)
2

]

−1/2

                        (14𝑑) 

The theoretical resolution limits in the direction 𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙 = 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙 × 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  depends on 

the way in which 𝑃𝑆𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑(𝒙) is moved along 𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙  to create a light sheet.  In the swept mode 

(Sec. 2A), the excitation does not contribute to the resolution in the direction 𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙 , and the 

results above involving 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  still hold true: 

𝑅 (𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙
𝑠𝑤𝑒𝑝𝑡 ) =

𝜆𝑑𝑒𝑡
2𝑁𝐴𝑑𝑒𝑡

                                                       (14𝑒)  

𝑅 (𝒆̂𝑥𝑧𝑑𝑖𝑎𝑔
𝑠𝑤𝑒𝑝𝑡 ) =

2𝜋

𝑘𝑥𝑧𝑑𝑖𝑎𝑔
= [(

2𝑁𝐴𝑑𝑒𝑡
𝜆𝑑𝑒𝑡

)
2

+ (
2𝑁𝐴𝑒𝑥𝑐
𝜆𝑒𝑥𝑐

)
2

]

−1/2

                       (14𝑓) 

In the confocal mode (Sec. 2B), the convolution of 𝑂𝑇𝐹𝑑𝑒𝑡
𝑐𝑜𝑛𝑓(𝒌) with 𝑂𝑇𝐹𝑒𝑥𝑐(𝒌) (Eq. 7c) extends 

the support along 𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙  to the sum of the supports of the excitation and detection individually: 

𝑅 (𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙
𝑐𝑜𝑛𝑓

) = [
2𝑁𝐴𝑑𝑒𝑡
𝜆𝑑𝑒𝑡

+
2𝑁𝐴𝑒𝑥𝑐
𝜆𝑒𝑥𝑐

]
−1

                                      (14𝑔) 

although the weakness of the OTFs near their individual supports makes the confocal OTF 

exceptionally weak near its lateral support.  Finally, for both the incoherent and coherent 

structured illumination modes (Secs. 2C,2D), the support of 𝑂𝑇𝐹𝑒𝑥𝑐
𝑆𝐼 (𝒌) along 𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙  is given by 

the highest harmonic in Eqs. (8b) or (11c), which convolved with 𝑂𝑇𝐹𝑑𝑒𝑡
𝑐𝑜𝑛𝑓(𝒌) gives (Fig. S2B): 

𝑅 (𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙
𝑆𝐼 ) = [

𝐽

Τ
+
2𝑁𝐴𝑑𝑒𝑡
𝜆𝑑𝑒𝑡

]
−1

                                                 (14ℎ) 

where 𝐽  is the largest integer for which 𝐽 < 2𝑁𝐴𝑒𝑥𝑐Τ/𝜆𝑒𝑥𝑐 .  𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑐𝑆𝐼 (𝒌)  for the coherent 

mode is generally much stronger near its expanded support along 𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙  than either 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑐𝑜𝑛𝑓

(𝒌) or 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑖𝑆𝐼 (𝒌), since 𝑂𝑇𝐹𝑒𝑥𝑐

𝑐𝑆𝐼(𝒌) is itself much stronger.  

In LLSM, both objectives are tilted (Fig. S2C) at an angle 𝛼 in the 𝑥𝑧𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛  plane (𝛼 =

32.45°  for the LLSM used here) defined by the directions parallel and perpendicular to the 

sample substrate in order to fit within the 2𝜋  steradian space above the substrate.  The 

resolution in the directions 𝒆̂𝑥𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
 and 𝒆̂𝑧𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛

 are of particular interest for cultured cells.  

These are given by the furthest projections of the four corners of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) onto the 

𝒆̂𝑥𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
 and 𝒆̂𝑧𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛

 axes.  From Eq. (14d) and Fig. S2C: 
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(𝑅𝑥𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
)𝑚𝑎𝑥 = [(

2𝑁𝐴𝑑𝑒𝑡
𝜆𝑑𝑒𝑡

)
2

+ (
2𝑁𝐴𝑒𝑥𝑐
𝜆𝑒𝑥𝑐

)
2

]

−1/2

cos(𝜓𝑦𝑧 − 𝛼)⁄                (14𝑖) 

(𝑅𝑧𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
)𝑚𝑎𝑥 = [(

2𝑁𝐴𝑑𝑒𝑡
𝜆𝑑𝑒𝑡

)
2

+ (
2𝑁𝐴𝑒𝑥𝑐
𝜆𝑒𝑥𝑐

)
2

]

−1/2

sin(𝜓𝑦𝑧 + 𝛼)⁄    where:          (14𝑗) 

𝜓𝑦𝑧 = atan (
𝜆𝑑𝑒𝑡𝑁𝐴𝑒𝑥𝑐
𝜆𝑒𝑥𝑐𝑁𝐴𝑑𝑒𝑡

)                                                   (14𝑘) 

In the direction 𝒆̂𝑦𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
= 𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙 , the resolution is given by Eqs. (14e) and (14h) for the swept 

and SIM modes, respectively. 

 

3.  General Experimental Considerations 

 

There exist a number of metrics by which the performance of different light sheets can be 

compared, both theoretically and experimentally.  These include: 

 

A. Spatial resolution 

In a microscope, the image 𝐼(𝒙) is given by the convolution of the specimen 𝑆(𝒙) with the 

overall PSF of the microscope: 

𝐼(𝒙) =  𝑆(𝒙)⨂𝑥𝑦𝑧𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒙)       or, equivalently:                (15𝑎) 

𝐹𝑇𝑥𝑦𝑧{𝐼(𝒙)} =  𝐹𝑇𝑥𝑦𝑧{𝑆(𝒙)} ∙ 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌)                                         (15𝑏) 

The support, where 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) → 0 , provides a hard limit in 𝒌  space beyond which 

information about 𝑆(𝒙)  cannot be recovered by traditional means.  However, to minimize 

photobleaching and phototoxicity, live imaging requires modest photon counts in 𝐼(𝒙) .  

Consequently, Poisson noise is the dominant noise source in experimental images: 

𝐹𝑇𝑥𝑦𝑧{𝐼𝑒𝑥𝑝(𝒙)} =  𝐹𝑇𝑥𝑦𝑧{𝑆(𝒙)} ∙ 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) + 𝑁(𝒌)                         (15𝑐) 

where 𝑁(𝒌)  represents a flat white noise spectrum.  Information in 𝐼𝑒𝑥𝑝(𝒙)  becomes 

unrecoverable in a practical sense at specific spatial frequencies 𝒌′ where: 

𝑁(𝒌′) > 𝐹𝑇𝑥𝑦𝑧{𝑆(𝒙)} ∙ 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌′)                                         (15𝑑) 

From these equations we draw several conclusions (7): 

i. The experimental resolution depends on the noise in the image -- the theoretical 

resolution as defined by the support of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) can only be approached at a sufficiently 

high signal-to-noise ratio (SNR).  Here we compare all light sheets under two experimental limits:  

a single image volume acquired at high SNR (∼1000 peak photon counts/pixel) to test whether 
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the theoretical limits can be approached under optimal experimental conditions; and a time 

series of 100 image volumes at a more modest SNR (∼250 peak photon counts/pixel above 

background) consistent with long term high speed non-invasive imaging. 

ii. The experimental resolution and the fidelity of deconvolved images depend on the 

accuracy to which the experimental 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑒𝑥𝑝 (𝒌)  is known.  Because 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑒𝑥𝑝 (𝒌)  is 

determined from 𝐹𝑇𝑥𝑦𝑧{𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑒𝑥𝑝 (𝒙)}, it is important that: a) 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑒𝑥𝑝 (𝒙) be measured from 

a sub-diffractive fluorescent bead at a sufficiently high SNR (>10,000 peak photon counts/pixel 

for the measurements herein) such that the noise in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑒𝑥𝑝 (𝒌)  contributes little to the 

deconvolved image 𝐼𝑑𝑒𝑐𝑜𝑛𝑣(𝒙)  compared to the noise in 𝐼𝑒𝑥𝑝(𝒙) ; and b) 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑒𝑥𝑝 (𝒙)  be 

measured over a volume that encompasses all possible sidelobes that could contribute 

measurable signal, so that such signal can be accurately reassigned to its point of origin during 

deconvolution. 

iii. The experimental resolution depends on the spatial frequency distribution 𝐹𝑇𝑥𝑦𝑧{𝑆(𝒙)} 

of the specimen.  Sparse specimens dominated by puncta or lines of sub-diffractive width exhibit 

strong frequency spectra throughout the support and therefore more readily produce images 

with measurable high spatial frequency content above the noise floor for a given SNR.  However, 

biological specimens are often densely labeled and/or contain a broad range of feature sizes, 

from sub-diffractive to many microns.  Such specimens exhibit spectra 𝐹𝑇𝑥𝑦𝑧{𝑆(𝒙)} strongly 

weighted towards DC, and the DC peak is further enhanced by the non-negativity of fluorescence 

emission.  In evaluating performance across different light sheets, it is important to use densely 

fluorescent 3D specimens representative of this common but more challenging limit for 

comparison. 

iv. Due to iii, the experimental resolution cannot be determined from 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑒𝑥𝑝 (𝒙) or 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑒𝑥𝑝 (𝒌), but only from where 𝐹𝑇𝑥𝑦𝑧{𝐼𝑒𝑥𝑝(𝒙)} reaches its noise floor.  However, due to Eq. 

(15c), 𝐹𝑇𝑥𝑦𝑧{𝐼𝑒𝑥𝑝(𝒙)} only contains spatial frequencies that exist in 𝐹𝑇𝑥𝑦𝑧{𝑆(𝒙)}.  Therefore, in 

order to have the capability of measuring potential spatial frequencies up to the theoretical 

support, the specimen itself must contain substantial amplitudes of all frequencies. 

v. Based on iii and iv, light sheets should be compared using a standard living specimen 

that is dense in both real and reciprocal space.  For this reason, we choose the endoplasmic 

reticulum (ER) of cultured LLC-PK1 pig kidney cells for such comparisons, as its thin tubules and 

complex sheets form a dense and intricate 3D network, particularly in the perinuclear region. 

 

B. Fidelity of image reconstruction 

An even more important metric is that the microscope must provide an accurate 

representation of the specimen to within the limits of its resolution.  However, as noted in Eq. 

(15b), every microscope acts as a low pass filter that unevenly transmits to the raw image 𝐼𝑒𝑥𝑝(𝒙) 

information about the specimen 𝑆(𝒙).  Accurate deconvolution is therefore necessary in any 
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microscope to compensate for this filtering and produce a reconstructed image 𝐼𝑑𝑒𝑐𝑜𝑛𝑣(𝒙) that 

closely matches 𝑆(𝒙).  In LLSM, deconvolution is principally important, as sidelobes flanking the 

central excitation band of the light sheet can generate fluorescence at points well away from the 

center of 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑒𝑥𝑝 (𝒙).  These can lead to ghost images of the sample structure in 𝐼𝑒𝑥𝑝(𝒙) that 

require accurate deconvolution to assign them to their true sources.  Relatedly, 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑒𝑥𝑝 (𝒌) of 

certain lattice light sheets contain deep troughs that transmit sample information very weakly.  

Recovering this information without introducing excessive noise can give a more complete 

representation of 𝑆(𝒙).  In addition, 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒙) and 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) degrade for light sheets of 

all types along their propagation direction 𝑦 with increasing distance from the focal point, even 

within their typical range use.   The accuracy of reconstruction must therefore be verified across 

the entire field of view.  Finally, photobleaching causes the SNR of 𝐼𝑒𝑥𝑝(𝒙, 𝑡) to decrease over 

time in 4D movies of subcellular dynamics, and reconstruction parameters must change 

accordingly to avoid introducing artifacts or overamplifying noise. 

The best measure of the fidelity of a reconstructed image is the extent to which it conforms 

to known priors about the specimen.  For the LLC-PK1 cells we use here for light sheet 

comparisons, the ER network should be continuous throughout the cell, the sparse tubules of the 

peripheral reticular network should exhibit no ghost images and appear near diffraction-limited 

in width, and the dense ER in the perinuclear region should surround the interphase nucleus.    

 

C. Light sheet propagation characteristics 

A key characteristic of any light sheet is its propagation length, often defined by the distance 

𝑦𝐹𝑊𝐻𝑀 over which its excitation intensity exceeds 50% of its peak value at the focal point.  A 

longer light sheet produces simultaneous fluorescence emission over a larger area, thereby 

reducing: a) the peak intensity required to image a given volume at a given speed, and the higher 

phototoxicity that can come with it; b) the number of sub-volumes required to cover a given 

image volume, and the overhead associated with camera readout, sample translation, and 

stitching overlap between sub-volumes; and c) the likelihood of sample motion induced 

discontinuities between adjacent sub-volumes. 

Herein we compare different light sheets having similar propagation distances, and explore 

how other properties and performance metrics vary under this constraint.  Specifically, we 

choose 𝑦𝐹𝑊𝐻𝑀~50𝜆𝑒𝑥𝑐/𝑛, unless otherwise noted.  Given the 𝛼 = 32.45° between the optical 

and specimen axes, this yields a FOV perpendicular to the specimen substrate sufficient to image 

even mitotic LLC-PK1 cells up to ~10𝜇𝑚 tall at 𝜆𝑒𝑥𝑐 = 488 nm. 

Even within |𝑦| ≤ 𝑦𝐻𝑊𝐻𝑀, 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒙) , and 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) , can vary substantially.  

Therefore, for all light sheets, we also calculate these parameters at different 𝑦, and compare to 

experimental measurements at the focus (𝑦 = 0) and near the half-width at half maximum (𝑦 =

24𝜆𝑒𝑥𝑐/𝑛). 
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D. Axial extent of excitation 

Longer light sheets can be made either by reducing the maximum numerical aperture of 

the excitation or by restricting the excitation to a narrower range of maximum/minimum 

numerical aperture in the rear pupil.  The former comes at the expense of overall axial resolution 

and the latter at the expense of greater excitation energy in axial sidelobes flanking the central 

excitation peak of the light sheet.    Here we report the axial excitation profile of all light sheets 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(0, 𝑧)  at the focal point and the longitudinal cross-section 𝑃𝑆𝐹𝑒𝑥𝑐

𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧)  for 𝑦 =

0 to 200𝜆𝑒𝑥𝑐/𝑛, and explore the effect of sidelobe excitation, if any, on the fidelity of image 

reconstruction or rate of photobleaching.   

 

E. Light sheet generation 

As in (1), all light sheets were experimentally generated herein by writing an image of the 

desired light sheet electric field 𝐸𝑒𝑥𝑐(𝑥, 0, 𝑧) at the focal point within the specimen onto a 

specimen-conjugate phase-only SLM, and using a pupil-conjugate annular mask of inner and 

outer diameters 𝑁𝐴𝑚𝑖𝑛 and 𝑁𝐴𝑚𝑎𝑥  to filter out undiffracted (“DC”) light as well as unwanted 

higher diffraction orders.  The SLM phase Φ𝑆𝐿𝑀(𝑥, 𝑧) is given by the real part of 𝐸𝑒𝑥𝑐(𝑥, 0, 𝑧), 

renormalized to a range of ±𝜋, and cropped to eliminate weak sidelobes far from the central 

excitation maximum:  

𝐸𝑛𝑜𝑟𝑚(𝑥, 𝑧) =
ℛℯ⌈𝐸𝑒𝑥𝑐(𝑥, 0, 𝑧)⌉

𝑚𝑎𝑥{|ℛℯ⌈𝐸𝑒𝑥𝑐(𝑥, 0, 𝑧)⌉|}
                                          (16𝑎) 

Φ𝑆𝐿𝑀(𝑥, 𝑧) =  𝜋𝐸𝑛𝑜𝑟𝑚(𝑥, 𝑧)       for |𝐸𝑛𝑜𝑟𝑚(𝑥, 𝑧)| > 𝜖                          (16𝑏) 

Φ𝑆𝐿𝑀(𝑥, 𝑧) =  0                             for |𝐸𝑛𝑜𝑟𝑚(𝑥, 𝑧)| ≤ 𝜖                          (16𝑐) 

Typically, a cropping factor 𝜖 ≲ 0.1 is sufficient to truncate the pattern to the effective width of 

the light sheet, while retaining the vast majority of non-zero pixels within the effective width to 

achieve high diffraction efficiency.  It will be shown that such cropping produces additional axial 

side bands to the axial excitation bands in the pupil, beneficially helping to fill troughs in 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌). 

Although we chose an 8-bit grayscale phase SLM here to have fine control over the 

diffracted pattern, a binary phase SLM was used in (1).  Therefore, to generate here multi-Bessel 

(MB, Sec. 7B below) and axially confined (AC, Sec. 7C below) lattice light sheets of the type 

introduced in (1), we used our SLM in a binary mode:   

 Φ𝑆𝐿𝑀
MB,AC(𝑥, 𝑧) = (

𝜋

2
)𝐸𝑛𝑜𝑟𝑚(𝑥, 𝑧)/|𝐸𝑛𝑜𝑟𝑚(𝑥, 𝑧)| +

𝜋

2
    for |𝐸𝑛𝑜𝑟𝑚(𝑥, 𝑧)| > 𝜖       (16𝑑)  

Φ𝑆𝐿𝑀
MB,AC(𝑥, 𝑧) = 0        for |𝐸𝑛𝑜𝑟𝑚(𝑥, 𝑧)| ≤ 𝜖                                        (16𝑒)  
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All other light sheets herein were generated using the grayscale patterns of Eqs. (16b,c). 

 

F. Deconvolution 

Deconvolution is essential in LLSM to reassign signal from excitation sidelobes in raw 3D 

images to their original sources in their reconstructed counterparts, and to produce images that 

better reflect the true amplitudes of spatial frequencies within the specimen.  Here we use 

iterative Richardson-Lucy (RL) deconvolution (8-10).  To avoid any aliasing or interpolation errors, 

we measure the experimental PSF required for this purpose in the same sample scan coordinates 

(skewed space) as the raw image data, with the same sample step size Δ𝑥𝑠𝑝  and camera 

integration time per plane.  Furthermore, to ensure that fluorescence generated by all sidelobes 

is correctly reassigned (which is essential to eliminate ghosting artifacts) we measure the PSF 

over a 3D FOV in skewed space that encompasses all sidelobe emission within the excitation 

envelope of the light sheet (e.g., blue curves, Movie 14) and the raw image frames over a FOV in 

the 𝑥𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙 plane equal to the desired FOV (equal to 𝑦𝐹𝑊𝐻𝑀 in the 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  direction) within 

the specimen plus the FOV of the PSF.  Post-deconvolution we then crop the data to desired 

specimen FOV.  

A key parameter in RL deconvolution is the number of iterations used.  Too few, and the 

original spatial frequencies in the specimen remain under-amplified in the final image, while the 

sidelobe signal is not fully reassigned.  Too many, and the image noise is overamplified, known 

continuous structures like the ER become discontinuous, and spatial frequencies in the 

reconstructed image begin to exceed the theoretical support.  Here we determine the optimal 

number of iterations by Fourier Shell Correlation (FSC) (11).  Because this optimum varies across 

different regions of the specimen, we calculate the optimum for multiple subregions in the  

𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙  direction and choose as the global optimum the mean of these measurements +2.58 

standard deviations, corresponding to the 99th percentile of the distribution.  In all cases we find 

that this results in good reconstructions of the ER with minimal artifacts and a specimen FFT that 

mostly fills the theoretical support region yet largely remains confined to it. More details of the 

approach used are given in Supplementary Information.  

 

4.  Gaussian Beam Light Sheet Microscopy 

 

We first apply the above considerations to Gaussian beam light sheet microscopy, as this 

was the first and remains the simplest and most common form of light sheet microscopy.  It also 

served as the standard against which lattice light sheets were putatively compared in (2-5).  The 

pupil field that creates a cylindrically symmetric Gaussian beam at a focus is itself Gaussian: 

 𝐸𝑝𝑢𝑝𝑖𝑙
𝐺𝑎𝑢𝑠𝑠(𝑥𝑝, 𝑧𝑝) = 𝐸𝑜 exp[−(𝑥𝑝

2 + 𝑧𝑝
2)/(𝜌𝑁𝐴 ∙ 𝑁𝐴𝑒𝑥𝑐𝐹)

2]        or:                   (17𝑎) 
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𝐸𝑝𝑢𝑝𝑖𝑙
𝐺𝑎𝑢𝑠𝑠(𝑘𝑥, 𝑘𝑧) = 𝐸𝑜 exp[−(𝑘𝑥

2 + 𝑘𝑧
2)/(𝜌𝑁𝐴 ∙ 2𝜋𝑁𝐴𝑒𝑥𝑐/𝜆𝑒𝑥𝑐)

2]                    (17𝑏) 

𝜌𝑁𝐴 ∙ 𝑁𝐴𝑒𝑥𝑐  is the 1/𝑒2  radius of the intensity of the Gaussian beam input at the rear pupil, 

normalized to the pupil radius.  Using Eqs. (1d) and (2a), the stationary PSF of the Gaussian beam 

at the focus is given by: 

𝑃𝑆𝐹𝑒𝑥𝑐
𝐺𝑎𝑢𝑠𝑠(𝑥, 0, 𝑧) ∝ exp [−2(𝜋𝜌𝑁𝐴𝑁𝐴𝑒𝑥𝑐)

2 ∙
𝑥2 + 𝑧2

𝜆𝑒𝑥𝑐2
]                          (18𝑎) 

which can be written in the form: 

𝑃𝑆𝐹𝑒𝑥𝑐
𝐺𝑎𝑢𝑠𝑠(𝑥, 0, 𝑧) ∝ exp [−2 ∙

𝑥2 + 𝑧2

𝑤𝑜2
]                                            (18𝑏) 

where 𝑤𝑜 is the 1/𝑒2 radius of the intensity cross section at the focus: 

𝑤𝑜 =
𝜆𝑒𝑥𝑐

𝜋𝜌𝑁𝐴𝑁𝐴𝑒𝑥𝑐
                                                                     (18𝑐) 

The corresponding stationary OTF at the focus is given by: 

     𝑂𝑇𝐹𝑒𝑥𝑐
𝐺𝑎𝑢𝑠𝑠(𝑘𝑥, 0, 𝑘𝑧) ∝ 𝐹𝑇{𝑃𝑆𝐹𝑒𝑥𝑐

𝐺𝑎𝑢𝑠𝑠(𝑥, 0, 𝑧)} 

                                          ∝ exp [−
1

2

𝑘𝑥
2 + 𝑘𝑧

2

(𝜌𝑁𝐴𝑁𝐴𝑒𝑥𝑐𝑘𝑜)2
] = exp [−

1

8
(𝑘𝑥

2 + 𝑘𝑧
2)𝑤𝑜

2]                        (19) 

and, according to Eq. (4b), the axial swept sheet excitation OTF at the focus is: 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝐺𝑎𝑢𝑠𝑠(𝑘𝑥, 𝑘𝑧) = 𝑂𝑇𝐹𝑒𝑥𝑐

𝐺𝑎𝑢𝑠𝑠(0,0, 𝑘𝑧)  

∝ exp [−
𝑘𝑧
2

2(𝜌𝑁𝐴𝑁𝐴𝑒𝑥𝑐𝑘𝑜)2
] = 𝛿(𝑘𝑥)exp [−

1

8
(𝑘𝑧𝑤𝑜)

2]                    (20) 

The cross-sectional swept sheet excitation PSF at the focus is given by the inverse transform of 

this OTF: 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝐺𝑎𝑢𝑠𝑠(𝑥, 𝑧) ∝ exp [−2(𝜋𝜌𝑁𝐴𝑁𝐴𝑒𝑥𝑐)

2 ∙
𝑧2

𝜆𝑒𝑥𝑐2
] = exp [−2 ∙ (

𝑧

𝑤𝑜
)
2

]              (21𝑎) 

and 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝐺𝑎𝑢𝑠𝑠(𝑥, 0, 𝑧) = 𝑃𝑆𝐹𝑒𝑥𝑐

𝑠𝐺𝑎𝑢𝑠𝑠(𝑥, 𝑧) ⋅ 𝑃𝑆𝐹𝑑𝑒𝑡(𝑥, 0, 𝑧).  The overall OTF at the focus is then 

given by 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝐺𝑎𝑢𝑠𝑠(𝑘𝑥, 0, 𝑘𝑧) = 𝐹𝑇{𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑠𝐺𝑎𝑢𝑠𝑠(𝑥, 0, 𝑧)} .  For points 𝑦 ≠ 0  along the 

propagation axis, the above parameters are calculated by evaluating the integral in Eq. (1) for 

𝐸𝑒𝑥𝑐
𝐺𝑎𝑢𝑠𝑠(𝒙) using 𝐸𝑝𝑢𝑝𝑖𝑙

𝐺𝑎𝑢𝑠𝑠(𝑘𝑥, 𝑘𝑧) from Eq. (11b), and applying this to Eqs. (2-5).  This includes 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝐺𝑎𝑢𝑠𝑠(𝑦, 𝑧), which shows the divergence of the Gaussian sheet with increasing distance 

from the excitation focus. 

Note from Eq. (21a) that the excitation PSF for a swept 2D Gaussian beam is identical to that 

of a 1D Gaussian light sheet, and hence their overall PSF and OTF are identical.  The peak intensity 

is far lower for the 1D sheet, which may be important for phototoxicity reduction, but the swept 
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beam has the advantage that it can be synchronized with the rolling shutter of certain cameras 

to filter out diffuse or scattered light in thick specimens.   

Given this equivalence, the properties of either light sheet could in principle be measured 

by writing 𝐸𝑒𝑥𝑐
𝑠𝐺𝑎𝑢𝑠𝑠(𝑥, 0, 𝑧) associated with Eq. (21a) to the SLM described in Eqs. (16): 

𝐸𝑒𝑥𝑐
𝑠/1𝐷𝐺𝑎𝑢𝑠𝑠(𝑥, 𝑧) = exp [−(

𝑧

𝑤𝑜
)
2

]                                               (21𝑏) 

which then produces a vertical excitation line in the pupil given by: 

𝐸𝑝𝑢𝑝𝑖𝑙
𝑠/1𝐷𝐺𝑎𝑢𝑠𝑠(𝑘𝑥, 𝑘𝑧) = 𝛿(𝑘𝑥)exp [−

1

4
(𝑘𝑧𝑤𝑜)

2]                                     (21𝑐) 

However, the annular mask needed to block the undiffracted DC light at the pupil then also blocks 

the portion of this line for which |𝑘𝑧| < 𝑘𝑜𝑁𝐴𝑚𝑖𝑛 .  This can be avoided by displacing the 

excitation laterally a distance 𝑥𝑝
𝑜𝑓𝑓𝑠𝑒𝑡

> 𝑁𝐴𝑚𝑖𝑛𝐹 in the pupil so that it is no longer clipped by the 

annulus.  This yields a light sheet of the desired 𝑧  profile, except propagating at an angle 

arcsin (𝑥𝑝
𝑜𝑓𝑓𝑠𝑒𝑡

/(𝑛𝐹)) with respect to the propagation axis 𝑦.  To create a light sheet of similar 

properties except propagating along 𝑦, an identical excitation line can be placed at −𝑥𝑝
𝑜𝑓𝑓𝑠𝑒𝑡

 in 

the pupil (Fig. 1C).  The two lines then create a stationary light sheet in the specimen consisting 

of a standing wave in 𝑥 bound in 𝑧 by the desired Gaussian envelope (Fig. 1E).  Sweeping this 

pattern during image acquisition creates the desired Gaussian light sheet effectively uniform in 

𝑥 (orange curve, Fig. 1G).  The illumination lines themselves are created by diffraction from the 

SLM when it displays an image 𝐸𝑒𝑥𝑐(𝑥, 0, 𝑧) of the stationary Gaussian bound standing wave 

pattern (Fig. 1B). 

Applying this strategy experimentally, we find good agreement with theory for the pupil 

intensity (Figs. 1C,D), the stationary excitation (Fig. 1E) and swept overall PSFs (Fig. 1H) at the 

focal plane, and the overall OTF at both the focal plane (Figs. 1I,J) and near the HWHM of the 

light sheet (Figs. 1K,L).  FSC (Sec. 3F) on a simulated image (Fig. 1M, bottom) of a stripe pattern 

of variable pitch (Fig. 1M, top) reveals that even the line pair of greatest separation (881 nm, red 

arrows) is not well-resolved after an FSC-indicated optimal 10 iterations of RL deconvolution 

(Figs. 1N,O).  On an image volume of live LLC-PK1 cells expressing an ER marker (Fig. 1P), FSC 

indicates an optimum of 35 RL iterations at SNR∼20 (Fig. 1Q, Movie 1, Part 2), at which point the 

FFT (upper right inset, Fig. 1Q)  of the deconvolved image volume (Movie 1, Part 3) indicates the 

ability to detect nearly all spatial frequencies within the support of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝐺𝑎𝑢𝑠𝑠(𝒌) (Fig. 1I). 

 

5.  Sinc Beam Light Sheet Microscopy 
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In (2) and (3), the putative Gaussian light sheets used for experimental comparison to lattice 

light sheets were created by cropping a broadly extended line of illumination along 𝑧 with a slit 

or annulus to create a line of essentially uniform intensity in the pupil plane: 

𝐸𝑝𝑢𝑝𝑖𝑙
𝑠𝑖𝑛𝑐 (𝑘𝑥, 𝑘𝑧) = 𝐸𝑜 δ(𝑘𝑥)rect[𝑘𝑧/(2𝑘𝑜𝑁𝐴𝑠𝑖𝑛𝑐)]                                    (22𝑎) 

Due to the line illumination, the stationary point spread function 𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑖𝑛𝑐(𝑥, 0, 𝑧) and the cross-

sectional swept PSF 𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑠𝑖𝑛𝑐(0, 𝑧) are identical.  By Eqs. (1d) and (2a), at the focal plane (𝑦 = 0) 

they are given by: 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑖𝑛𝑐(𝑥, 0, 𝑧) = 𝑃𝑆𝐹𝑒𝑥𝑐

𝑠𝑠𝑖𝑛𝑐(0, 𝑧) ∝ sinc𝟐(𝑘𝑜𝑁𝐴𝑠𝑖𝑛𝑐𝑧)                            (22𝑏) 

Thus, the sheets used for comparison in (2) and (3) are not Gaussian, but rather exhibit a sinc(𝑧) 

cross section in their electric field at focus.  We therefore term these sinc light sheets.   

As with the Gaussian light sheet, an SLM-generated sinc sheet requires an annular mask to 

block undiffracted light which, when the illumination is centered in the pupil, also blocks the 

portion of 𝐸𝑝𝑢𝑝𝑖𝑙
𝑠𝑖𝑛𝑐 (𝑘𝑥, 𝑘𝑧) for which |𝑘𝑧| < 𝑘𝑜𝑁𝐴𝑚𝑖𝑛.  Experimentally, the solution is the same: 

two equal but oppositely offset vertical beamlets of rect(𝑧) profile are used to create a pupil 

field (Fig. 2C): 

𝐸𝑝𝑢𝑝𝑖𝑙
𝑠𝑖𝑛𝑐𝑆𝑊(𝑘𝑥, 𝑘𝑧) = 𝐸𝑜 [δ(𝑘𝑥 − 𝑘𝑜𝑁𝐴𝑒𝑥𝑐) + δ(𝑘𝑥 + 𝑘𝑜𝑁𝐴𝑒𝑥𝑐)]rect[𝑘𝑧/(2𝑘𝑜𝑁𝐴𝑠𝑖𝑛𝑐)]   (22𝑐) 

that creates a stationary standing wave light sheet in 𝑥 bound in 𝑧 by Eq. (22b) (Fig. 2E).  The 

corresponding swept sheet then also conforms to the desired sinc2(𝑧) profile but is otherwise 

uniform in 𝑥 (orange curve, Fig. 2G).  Applying Eq. (4b) to Eq. (22b) then gives: 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑠𝑖𝑛𝑐(0, 𝑘𝑧) ∝ 𝐹𝑇{𝑃𝑆𝐹𝑒𝑥𝑐

𝑠𝑖𝑛𝑐(𝑥, 0, 𝑧)} = tri[𝑘𝑧/(2𝑘𝑜𝑁𝐴𝑠𝑖𝑛𝑐)]                      (23) 

at the focus, where tri(𝑥) = 1 − |𝑥| for |𝑥| < 1, 0 otherwise.  Eqs. (6), (22b) and (23) then give 

𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑠𝑖𝑛𝑐 (𝑥, 0, 𝑧) (Fig. 2H and red curve, Fig. 2G) and 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑠𝑠𝑖𝑛𝑐 (𝑘𝑥, 0, 𝑘𝑧) (Fig. 2I,J) at 𝑦 = 0.  

For points 𝑦 ≠ 0  along the propagation axis (e.g., Figs. 2F,K,L), the above parameters are 

calculated by evaluating the integral in Eq (1) for 𝐸𝑒𝑥𝑐
𝑠𝑖𝑛𝑐(𝒙) using 𝐸𝑝𝑢𝑝𝑖𝑙

𝑠𝑖𝑛𝑐 (𝑘𝑥, 𝑘𝑧) from Eq. (22a), 

and applying this to Eqs. (2-6).   

Experimental metrics for a sinc light sheet generated in this manner are in good agreement 

with theory, including 𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑖𝑛𝑐𝑆𝑊(𝑥, 0, 𝑧) (Fig. 2E), 𝑃𝑆𝐹𝑒𝑥𝑐

𝑠𝑠𝑖𝑛𝑐(𝑥, 0, 𝑧) (Fig. 2H), and 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑠𝑖𝑛𝑐 (𝒌) 

at both the focal plane (Fig. 2I,J) and near the HWHM of the light sheet (Fig. 2K,L).  FSC on the 

simulated stripe pattern (Fig. 2M) reveals a minimum resolvable stripe separation of 881 nm 

(Figs. 2N,O, and rightmost panels, Movie 2, part 1.  On ER-labeled live LLC-PK1 cells (Fig. 2P), an 

optimum of 50 iterations is found (Fig. 2Q, Movie 2, Part 2), which leads to a uniform specimen 

FFT within the support of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑠𝑖𝑛𝑐 (𝒌) (Fig. 2I). 

The Gaussian and sinc light sheets of Figs. 1 and 2 share a comparable propagation length 

(Figs. 1F,2F).  However, they differ in other respects, because the Gaussian excitation profile in 

the pupil overweights low 𝑘𝑧 and underweights high 𝑘𝑧 compared to the flat pupil profile of the 
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sinc light sheet.  As a result, at the focal plane, 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) is stronger within its 𝑘𝑧 support 

(purple arrows, Figs. 2J vs. 1J) in the sinc case, yielding improved resolvability of the stripe pattern 

(Fig. 2N,O vs. Fig. 1N,O) and a stronger recovery of sample spatial frequencies in the 𝒆̂𝑧 direction 

(yellow arrows, upper right inset, Fig. 2Q vs Fig. 1Q).  Furthermore, the sinc light sheet diverges 

less rapidly, so that its 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑘𝑧) is ∼10x stronger near the support at |𝑦|~𝑦𝐻𝑊𝐻𝑀 than in 

the Gaussian case (purple arrows, Fig. 2L vs. 1L).  Thus, sinc light sheets are generally preferred 

to Gaussian ones.  We compare both to lattice light sheets below. 

 

6.  Bessel Beam Light Sheet Microscopy 

 

LLSM arose out of earlier work using a swept Bessel beam to create a light sheet much 

thinner and longer than a conventional Gaussian one (12-16).  An infinitesimally thin ring of 

illumination at the pupil plane of an objective creates a theoretically ideal Bessel beam that is 

infinitely long, with a narrow central peak surrounded by an infinite series of concentric 

sidelobes.  To create an axially long but radially confined beam better suited to light sheet 

microscopy, a ring of finite width from 𝑁𝐴𝑚𝑖𝑛  to 𝑁𝐴𝑚𝑎𝑥  is used to create a constant annular 

electric field: 

𝐸𝑝𝑢𝑝𝑖𝑙
𝐵𝐵 (𝑘𝑥, 𝑘𝑧) = 𝐸𝑜 ⋅ rect (

𝑁𝐴𝜌−𝑁𝐴𝑚𝑖𝑑

𝑁𝐴𝑟𝑎𝑛𝑔𝑒
) = 𝐸𝑜 ⋅ rect (

𝑘𝜌−𝑘𝜌
𝑚𝑖𝑑

𝑘𝜌
𝑟𝑎𝑛𝑔𝑒 )                (24𝑎)   

where:  𝑘𝜌 = √𝑘𝑥2 + 𝑘𝑧2 = 𝑁𝐴𝜌𝑘𝑜, 𝑘𝜌
𝑚𝑎𝑥 = 𝑁𝐴𝑚𝑎𝑥𝑘𝑜 , 𝑘𝜌

𝑚𝑖𝑛 = 𝑁𝐴𝑚𝑖𝑛𝑘𝑜 , 

 𝑘𝜌
𝑚𝑖𝑑 =

𝑘𝜌
𝑚𝑎𝑥 + 𝑘𝜌

𝑚𝑖𝑛

2
= 𝑁𝐴𝑚𝑖𝑑𝑘𝑜 , 𝑘𝜌

𝑟𝑎𝑛𝑔𝑒
= 𝑘𝜌

𝑚𝑎𝑥 − 𝑘𝜌
min = 𝑁𝐴𝑟𝑎𝑛𝑔𝑒𝑘𝑜                  (24𝑏) 

By Eq. (1a) and the integral representation of the Bessel function 𝐽0(𝑥), the electric field at the 

focal plane (𝑦 = 0) is then given by: 

𝐸𝑒𝑥𝑐
𝐵𝐵 (𝜌, 0) = ∫ 𝑘𝜌

𝑘𝜌
𝑚𝑎𝑥

𝑘𝜌
𝑚𝑖𝑛

𝑑𝑘𝜌∫ 𝑑𝜃
𝜋

−𝜋

exp(𝑖𝑘𝜌𝜌cos𝜃) ∝ ∫ 𝑘𝜌

𝑘𝜌
𝑚𝑎𝑥

𝑘𝜌
𝑚𝑖𝑛

𝐽0(𝑘𝜌𝜌)𝑑𝑘𝜌          (24𝑐) 

which reduces to 𝐽0(𝑘𝜌
𝑚𝑖𝑑𝜌) for 𝑘𝜌

𝑚𝑎𝑥 − 𝑘𝜌
min → 0, as expected.  However, for 𝑘𝜌

𝑟𝑎𝑛𝑔𝑒
> 0, Eq. 

(24c) and the identity ∫ 𝑥𝜈𝐽𝜈−1(𝑥)𝑑𝑥 = 𝑥𝜈𝐽𝜈(𝑥) give: 

𝐸𝑒𝑥𝑐
𝐵𝐵 (𝜌, 0) = 𝐸𝒐 (

𝐽1(𝑘𝜌
𝑚𝑎𝑥𝜌)

𝑘𝜌
𝑚𝑎𝑥𝜌

−
𝐽1(𝑘𝜌

𝑚𝑖𝑛𝜌)

𝑘𝜌
𝑚𝑖𝑛𝜌

)                                       (24𝑑) 

The length 𝑦𝐹𝑊𝐻𝑀 of the radially confined Bessel-like beam is determined by the wavevectors 

converging to the focus with the largest difference Δ𝑘𝑦  in their components along the 

propagation direction.  These originate from the inner and outer edges of the annulus:  
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𝑦𝐹𝑊𝐻𝑀 ≈
𝜋

[(𝒌𝜌
𝑚𝑖𝑛 − 𝒌𝜌

𝑚𝑎𝑥) ∙ 𝑒̂𝑦]
=

𝜆𝑒𝑥𝑐/𝑛

2(√1 − (𝑁𝐴𝑚𝑖𝑛/𝑛)2 −√1 − (𝑁𝐴𝑚𝑎𝑥/𝑛)2)
        (24𝑒) 

All four ways described above in which a confined beam can be moved to create a light 

sheet have been applied to Bessel beam light sheet microscopy.  The confocal mode (Sec. 2B, 

(16, 17)) efficiently removes side lobe emission from the detected signal and extends the 

theoretical support along 𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙  to the sum of the excitation and detection supports (Eq. (14g)).  

However, its practical resolution is often constrained by the weakness of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑐𝑜𝑛𝑓

(𝒌) in the 

region of extended resolution.  Similarly, although the incoherent structured light sheet mode 

(Sec. 2C, (18, 19)) can potentially extend resolution in both 𝑥 and 𝑧, this potential is compromised 

by the weakness of the non-zero incoherent harmonics.  Furthermore, the serial beam stepping 

common to both these modes slows acquisition and requires power high enough to lead to 

premature phototoxicity.  Thus, here we consider only the swept (Sec. 2A, 12-14) and coherent 

multi-Bessel (Sec. 2D, (18, 20)) modes of Bessel beam light sheet microscopy. 

 

A.  Swept Bessel beam light sheet microscopy 

The pupil field of Eq. (24a) for a radially bound Bessel-like beam (Eq. (24d) and Fig. S3C) is 

created by uniform illumination of an annular mask (Fig. S3B), and results in a stationary 

𝑃𝑆𝐹𝑒𝑥𝑐
𝐵𝐵(𝑥, 0, 𝑧) (Fig. S3C) at the focus given by |𝐸𝑒𝑥𝑐

𝐵𝐵 (𝜌, 0)|2 from Eq. (10d).  The corresponding  

𝑂𝑇𝐹𝑒𝑥𝑐
𝐵𝐵(𝒌)  (Fig. S3D) of the Bessel beam is nonzero throughout its 𝑘𝑧 support and has a 

secondary maximum there.  By Eq. (4b), so does the 1D swept 𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝐵𝐵(𝑘𝑥, 𝑦, 𝑘𝑧) =

𝑂𝑇𝐹𝑒𝑥𝑐
𝐵𝐵(0, 𝑦, 𝑘𝑧) (Fig. S3F).  Consequently, by Eq. (6b), the swept 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑠𝐵𝐵 (𝑘𝑥, 𝑦, 𝑘𝑧) (Fig. S3I,J) 

is far stronger near its 𝑘𝑧  support than is either 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝐺𝑎𝑢𝑠𝑠(𝑘𝑥, 𝑦, 𝑘𝑧) or 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑠𝑠𝑖𝑛𝑐 (𝑘𝑥, 𝑦, 𝑘𝑧). 

 

B.  Coherent multi-Bessel light sheet microscopy 

To overcome the speed limitations associated with a single stepped or swept beam, a 

diffractive optical element was used in (19) to create a linear array of 𝑁 = 7 parallel bound Bessel 

beams, each of which then needed to step over only 1/𝑁th of the desired FOV.  In another 

application, the peak power was reduced sevenfold in by keeping the volume acquisition speed 

and FOV the same as for a single beam, while the excitation intensity was reduced sevenfold and 

the camera integration time per plane increased by the same amount.  Surprisingly, despite the 

same integrated exposure, it was discovered that this multi-beam, low power mode was 

considerably less phototoxic to live cells, while it simultaneously preserved the specimen 

fluorescence for more recorded image volumes over the same FOV.    

In these experiments, to ensure that the bound Bessel beams did not coherently interfere 

with one another, their mutual separation was chosen to be larger than the envelope of their 
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respective sidelobes.  However, given the observed benefits of improved speed and/or reduced 

phototoxicity and bleaching, there was an incentive to investigate massively parallel 1D multi-

Bessel beam arrays in the limit of even smaller period Τ  where the beams do coherently 

interfere: 

𝐸𝑒𝑥𝑐
𝑐𝑀𝐵(𝒙) = ∑ 𝐸𝑒𝑥𝑐

𝐵𝐵 (𝜌𝑗 , 𝑦)                                               

∞

𝑗=−∞

(25𝑎) 

where 𝜌𝑗 = √(𝑥 − 𝑗Τ)2 + 𝑧2.  This is the limit of Sec. 2D above.  Hence, by Eq. (24a), the pupil 

field 𝐸𝑝𝑢𝑝𝑖𝑙
𝑐𝐵𝐵 (𝑘𝑥, 𝑘𝑧) giving rise to 𝐸𝑒𝑥𝑐

𝑐𝑀𝐵(𝑥, 𝑧) is: 

𝐸𝑝𝑢𝑝𝑖𝑙
𝑐𝑀𝐵 (𝑘𝑥, 𝑘𝑧) = 𝐸𝑜 ∑ rect (

√(2𝜋𝑚/Τ)2 + 𝑘𝑧2 − 𝑘𝜌
𝑚𝑖𝑑

𝑘𝜌
𝑟𝑎𝑛𝑔𝑒 ) ≡ ∑ 𝐸𝑏𝑎𝑛𝑑(𝑚)

𝑀

𝑚=−𝑀

𝑀

𝑚=−𝑀

    (25𝑏) 

where 𝑀 is the largest integer for which 𝑀 < 𝑁𝐴𝑒𝑥𝑐Τ/𝜆𝑒𝑥𝑐 and 𝑘𝜌
𝑚𝑖𝑑 and 𝑘𝜌

𝑟𝑎𝑛𝑔𝑒
 are defined in 

Eq. (24b).  In other words, the pupil field for a coherent periodic array of Bessel beams is given 

by series of 2𝑀 + 1 lines of period 𝑘𝑥 = 2𝜋/Τ and uniform amplitude along the 𝑧𝑝 axis, cropped 

by the annulus that defines the single bound Bessel beam.  

To create a coherent multi-Bessel pattern in (1), the desired field in Eq (25b) was applied to 

Eqs. (16a,d,e) to write a binary phase pattern on an SLM (Fig. S4A).  After passing through a 

transform lens and an annular mask, diffraction from this pattern produces a pupil field having 

the exact form of Eq. (25b), except with lines of variable rather than uniform intensity (Fig. S4B).  

By Eqs. (1d) and (2), this field produces a stationary 𝑃𝑆𝐹𝑒𝑥𝑐
𝑐𝑀𝐵(𝑥, 0, 𝑧)  (Fig. S4C) and a 

corresponding 𝑂𝑇𝐹𝑒𝑥𝑐
𝑐𝑀𝐵(𝑘𝑥, 0, 𝑘𝑧) (Fig. S4D) at the focal plane given by: 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑐𝑀𝐵(𝑘𝑥, 0, 𝑘𝑧) ∝ ∑ ∑ 𝐸𝑏𝑎𝑛𝑑(𝑚)

𝑀

𝑚′=−𝑀

𝑀

𝑚=−𝑀

⊗𝑘𝑥𝑘𝑧 𝐸𝑏𝑎𝑛𝑑(𝑚
′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                   (26𝑎) 

Because 𝑃𝑆𝐹𝑒𝑥𝑐
𝑐𝑀𝐵(𝒙) extends across the entire FOV, fluorescent molecules across the image 

radiate simultaneously, greatly reducing the acquisition time and peak power needed to image a 

complete image plane.  Because 𝑃𝑆𝐹𝑒𝑥𝑐
𝑐𝑀𝐵(𝒙) is periodic, it can be used in either the swept (Sec. 

2A) or coherent structured illumination modes (Sec. 2D).  For the latter, acquisition of 4𝑀 + 1 

raw images with 𝑃𝑆𝐹𝑒𝑥𝑐
cMB(𝒙)  phase stepped in increments of Δ𝑥 = Τ/(4𝑀 + 1) produces a 

reconstructed image with resolution extended along 𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙
𝑆𝐼  (Eq. (14h), Fig. S2B), as seen at the 

focal plane in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑐𝑆𝐼𝑀𝐵 (𝑘𝑥, 0, 𝑘𝑧) (Figs. S4K,L).  For the swept mode, Eqs. (4b) and (26a) give 

(Fig. S4F): 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑐𝑀𝐵(0, 𝑘𝑧) = 𝑂𝑇𝐹𝑒𝑥𝑐

𝑐𝑀𝐵(0,0, 𝑘𝑧) ∝ ∑ 𝐸𝑏𝑎𝑛𝑑(𝑚)

𝑀

𝑚=−𝑀

⊗𝑘𝑥𝑘𝑧 𝐸𝑏𝑎𝑛𝑑(𝑚)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅           (26𝑏) 

Using Eq. (26b) and 𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑐𝑀𝐵(0, 𝑧) = 𝐹𝑇𝑘𝑧

−1{𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑐𝑀𝐵(0, 𝑘𝑧)}, the convolution theorem gives: 
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𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑐𝑀𝐵(0, 𝑧) = ∑ 𝐹𝑇𝑘𝑧

−1{𝐸𝑏𝑎𝑛𝑑(𝑚)} ∙

𝑀

𝑚=−𝑀

𝐹𝑇𝑘𝑧
−1{𝐸𝑏𝑎𝑛𝑑(𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅} = ∑ 𝑃𝑆𝐹𝑏𝑎𝑛𝑑(𝑚)

𝑀

𝑚=−𝑀

     (27) 

Eq. (27) again represents the field synthesis theorem:  the swept sheet excitation PSF (green 

curve, Fig. S4H) is the incoherent sum of the excitation PSFs formed by each of the individual 

bands of fixed 𝑘𝑥 in the pupil.  Eqs. (6), (11b), and (12)  then give 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑐𝑀𝐵 (𝑥, 0, 𝑧) (Fig. S4G and 

red curve, Fig. S4H) and 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑐𝑀𝐵 (𝑘𝑥, 0, 𝑘𝑧) (Figs. S4I,J). 

 

7.  Lattice Light Sheet Microscopy 

 

In the course of exploring the effect of the period Τ on the properties of coherent multi-

Bessel light sheets, (Movie S18 of (1)), it was discovered that there exist specific periods where 

the excitation maxima of the light sheet exhibit the symmetry of a 2D optical lattice (Fig. S27 of 

(1)).  An ideal 2D optical lattice forms a periodic pattern across 𝑥𝑧 space and propagates without 

change in 𝑦.  Such lattices are defined by the symmetry operations (e.g., rotation, translation, 

reflection) that map the lattice onto itself.  Each 2D lattice is comprised of a minimum of 𝑁 = 3 

mutually interfering plane waves.  Maximally symmetric composite lattices (1, 21, 22) with 𝑁 >

3 plane waves are formed by adding additional plane waves whose wavevectors are found by 

applying all valid symmetry operations to the wavevectors of the initial plane wave set.  These 

lattices provide the most tightly confined intensity maxima with the greatest contrast relative to 

the surrounding background for a given symmetry.  They are therefore particularly well suited to 

serve as the starting point for either swept or coherent structured illumination light sheet 

microscopy where the ideal lattice is bound in 𝑧 by replacing its discrete illumination points in 

the rear pupil with stripes of finite extent in 𝑧 (Movie S1 of (1)).   

 

A. Considerations in choosing a lattice of a given symmetry 

The field of any ideal 2D optical lattice comprised of 𝑁 plane waves can be expressed as:  

𝑬𝑒𝑥𝑐
𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝒙, 𝑡) = 𝑒𝑥𝑝[𝑖(𝑘𝑦𝑦 + 𝜔𝑡)]∑𝑬𝑛𝑒𝑥𝑝[𝑖(𝑘𝑥)𝑛𝑥 + 𝑖(𝑘𝑧)𝑛𝑧]

𝑁

𝑛=1

                  (28𝑎) 

where 𝑘𝑦 = 𝑘cosθ = 𝑘𝑁𝐴𝑒𝑥𝑐/𝑛.  These produce a longitudinally invariant excitation PSF in the 

specimen given by: 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝒙) = 𝑃𝑆𝐹𝑒𝑥𝑐

𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑥, 𝑧) = 𝑬𝑒𝑥𝑐
𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝒙, 𝑡) ∙ 𝑬𝑒𝑥𝑐

𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝒙, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

=∑|𝑬𝑛|
2

𝑁

𝑛=1

+∑∑ 𝑬𝑛 ∙ 𝑬𝑛′̅̅ ̅̅

𝑁

𝑛′≠𝑛

𝑁

𝑛=1

𝑒𝑥𝑝{𝑖[(𝑘𝑥)𝑛 − (𝑘𝑥)𝑛′]𝑥 + 𝑖[(𝑘𝑧)𝑛 − (𝑘𝑧)𝑛′]𝑧}    (28𝑏)   
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The DC portion of the corresponding 𝑂𝑇𝐹𝑒𝑥𝑐
𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑘𝑥, 𝑘𝑧) is encompassed by the first sum in Eq. 

(28b), whereas each term in the double sum corresponds to a non-zero spatial frequency 𝒌𝒎 −

𝒌𝒎′.  As 𝑁 increases, the DC term becomes increasingly dominant over the non-zero frequencies 

that are responsible for resolution extension in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝒌) beyond the widefield OTF.  Thus, 

to maximize the relative strength of these higher spatial frequencies and enable robust recovery 

of sample information in the presence of noise out to the extended axial support that they 

produce, one should start with a lattice having the fewest number of plane waves necessary to 

cover 𝑂𝑇𝐹𝑒𝑥𝑐
𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑘𝑥, 𝑘𝑧)  within the entirety of the desired 𝑘𝑥𝑘𝑧  support without introducing 

undesirable consequences, such as artifacts in image reconstruction or premature 

photobleaching/photodamage from excessive out-of-focus excitation. 

i.  1D axial standing wave 

The smallest plane wave set that provides the greatest resolution extension in 𝑧 for a given 

𝑁𝐴𝑒𝑥𝑐 consists of a pair wavevectors confined to the 𝑘𝑥 = 0 plane, produced by the pupil field 

(Fig. 3Aa): 

𝐸𝑝𝑢𝑝𝑖𝑙
𝑧𝑆𝑊 (𝑘𝑥, 𝑘𝑧) = 𝐸𝑜𝛿(𝑘𝑥)𝛿(𝑘𝑧 ± 𝑘𝑜𝑁𝐴𝑒𝑥𝑐)                                 (29𝑎) 

where 𝛿(𝑘 ± 𝑘′) ≡  𝛿(𝑘 + 𝑘′) + 𝛿(𝑘 − 𝑘′) .  This creates an axial ( 𝑧  axis) standing wave 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑧𝑆𝑊(𝑥, 𝑧) = 𝑃𝑆𝐹𝑒𝑥𝑐

𝑧𝑆𝑊(𝑧)  (Fig. 3Ab) having a DC normalized OTF of (Fig. 3Ac): 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑧𝑆𝑊(𝑘𝑥, 𝑘𝑧) = 𝛿(𝑘𝑥)𝛿(𝑘𝑧) +

𝛿(𝑘𝑥)𝛿(𝑘𝑧 ± 2𝑘𝑜𝑁𝐴𝑒𝑥𝑐)

2
                    (29𝑏) 

Because 𝑃𝑆𝐹𝑒𝑥𝑐
𝑧𝑆𝑊(𝑧) is uniform along the 𝑥 axis, the swept (Fig. 3Ad) and stationary OTFs are 

identical (Eq. 4b):  

𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑧𝑆𝑊(𝑘𝑧) = 𝑂𝑇𝐹𝑒𝑥𝑐

𝑧𝑆𝑊(0, 𝑘𝑧) = 𝛿(𝑘𝑧) +
𝛿(𝑘𝑧 ± 2𝑘𝑜𝑁𝐴𝑒𝑥𝑐)

2
                         (29𝑐) 

However, 𝑃𝑆𝐹𝑒𝑥𝑐
𝑧𝑆𝑊(𝑧) therefore has no non-zero harmonics in 𝑘𝑥 and cannot provide resolution 

extension in 𝑥 by the coherent SIM mode.  For the swept mode, the overall OTF is given by (Fig. 

3Af): 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑧𝑆𝑊 (𝒌) =

𝑂𝑇𝐹𝑑𝑒𝑡(𝑘𝑥, 𝑘𝑦, 𝑘𝑧±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐)

2
+ 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) = 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑐𝑆𝐼𝑧𝑆𝑊(𝒌)      (29𝑑) 

where 𝑂𝑇𝐹(𝒌 ± 𝒌′) = 𝑂𝑇𝐹(𝒌 + 𝒌′) + 𝑂𝑇𝐹(𝒌 − 𝒌′).  Thus, the 𝑘𝑧 shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) 

that are the source of 𝑧 resolution extension are 1/2 as strong as the DC copy for the axial 

standing wave. 

The axial standing wave light sheet is identical to a coherent multi-Bessel light sheet (Sec. 

6B) of period Τ smaller than the diffraction limit (Τ < 𝜆𝑒𝑥𝑐/𝑁𝐴𝑒𝑥𝑐).  In this limit, only the two 

polar stripes in the 𝑚 = 0 band of 𝐸𝑝𝑢𝑝𝑖𝑙
𝑐𝑀𝐵 (𝑘𝑥, 𝑘𝑧) in Eq. (11b) remain.  As the annulus width 
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approaches zero, the light sheet becomes unbound, and the polar stripes shrink to the discrete 

points of Eq. (29a). 

ii.  2D maximally symmetric square lattice 

For all lattices, the DC region of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑙𝑎𝑡𝑡𝑖𝑐𝑒 (𝒌) is automatically covered by the first sum in 

Eq. (28b), and only gets stronger relative to the regions beyond 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) as more plane waves 

are added.  Thus, usually it is unnecessary and even counterproductive to craft light sheets having 

pupil excitation near the 𝑘𝑧 = 0 equatorial line.  A useful exception is light sheets based on a 

maximally symmetric square lattice having the pupil field,    

𝐸𝑝𝑢𝑝𝑖𝑙
𝑆𝑞 (𝑘𝑥, 𝑘𝑧) = 𝐸𝑜𝛿(𝑘𝑥)𝛿(𝑘𝑧 ± 𝑘𝑜𝑁𝐴𝑒𝑥𝑐) + 𝐸𝑜𝛿(𝑘𝑧)𝛿(𝑘𝑥 ± 𝑘𝑜𝑁𝐴𝑒𝑥𝑐)          (30𝑎) 

for three reasons.  First, in the coherent SIM mode, the two additional illumination points (green 

arrows, Fig. 3Ba) on the 𝑘𝑧 = 0 line extend the support of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑐𝑆𝐼𝑆𝑞 (𝒌) (Fig. 3Be) by the same 

amount in 𝑘𝑥  as do the two points on the 𝑘𝑥 = 0 line common to both the square and axial 

standing wave lattices.  Second, the stationary excitation OTF: 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑆𝑞 (𝑘𝑥, 𝑘𝑧) = 𝛿(𝑘𝑥)𝛿(𝑘𝑧) +

𝛿(𝑘𝑧 ± 𝑘𝑜𝑁𝐴𝑒𝑥𝑐)𝛿(𝑘𝑥 ± 𝑘𝑜𝑁𝐴𝑒𝑥𝑐)

2
+  

𝛿(𝑘𝑥)𝛿(𝑘𝑧 ± 2𝑘𝑜𝑁𝐴𝑒𝑥𝑐)

4
+
𝛿(𝑘𝑧)𝛿(𝑘𝑥 ± 2𝑘𝑜𝑁𝐴𝑒𝑥𝑐)

4
       (30𝑏) 

has four cross terms 𝛿(𝑘𝑧 ± 𝑘𝑜𝑁𝐴𝑒𝑥𝑐) 𝛿(𝑘𝑥 ± 𝑘𝑜𝑁𝐴𝑒𝑥𝑐)/2 that, in the SIM mode, fill in the gaps 

seen in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑆𝑞 (𝒌) of the swept mode (light blue arrows, Fig. 3Bf).  Finally, as all illumination 

points in the pupil are extended as lines in 𝑘𝑧 to produce an axially confined lattice light sheet, 

the two equatorial points can be extended the furthest while still remaining within the annulus 

that dictates the light sheet propagation length.  This both improves the light sheet confinement 

and reduces the size and depth of the troughs/gaps in 𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑆𝑞(𝑘𝑧) (Fig. 3Bd) and 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑠𝑆𝑞 (𝒌).  

However, these advantages come at the cost of a further two-fold diminishment of the strength 

of the ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐  axially shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) relative to those in the axial standing 

wave. 

A square light sheet derived from the lattice described here is identical to a coherent multi-

Bessel light sheet of period Τ = 𝜆𝑒𝑥𝑐/𝑁𝐴𝑒𝑥𝑐.  This leaves only the two polar stripes in the 𝑚 = 0 

band and the two equatorial stripes of the 𝑚 = ±1 bands of 𝐸𝑝𝑢𝑝𝑖𝑙
𝑐𝑀𝐵 (𝑘𝑥, 𝑘𝑧) in Eq. (11b).  As the 

annulus width approaches zero, the light sheet becomes unbound, and these four stripes shrink 

to the discrete points of Eq. (30a). 

iii.  2D maximally symmetric hexagonal lattice 

For either the axial standing wave or the swept mode of the maximally symmetric square 

lattice, as 𝑁𝐴𝑒𝑥𝑐  is increased to increase the axial support (𝑅𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙)𝑚𝑎𝑥  of Eq. (14c), the gap 

between the DC copy and the 𝑘𝑧 = ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐  shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) 
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increases, until eventually 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) becomes discontinuous.  This occurs when the shift is 

larger than the maximum width of the “bowtie” region of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) or, using Eq. (14c), when: 

𝑁𝐴𝑒𝑥𝑐 >
𝜆𝑒𝑥𝑐
𝜆𝑑𝑒𝑡

(𝑛 − √𝑛2 − 𝑁𝐴𝑑𝑒𝑡
2 )                                             (31) 

The consequences of gaps or even complete discontinuities in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) will be explored 

below.  However, one solution for the axial standing wave or swept square lattice is to add 

illumination points in the rear pupil to create additional shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) at the exact 

centers 𝑘𝑧
𝑂𝑇𝐹 = ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐  of their gaps.  This requires illumination points at 𝑘𝑧

𝑝𝑢𝑝𝑖𝑙 =

±𝑘𝑜𝑁𝐴𝑒𝑥𝑐/2 in the pupil.  However, for an ideal non-diffracting 2D lattice these points must also 

lie on the same circle of radius 𝑘𝑜𝑁𝐴𝑒𝑥𝑐  upon which the polar illumination points lie.  Thus, 

𝑘𝑥
𝑝𝑢𝑝𝑖𝑙 = ±

√3

2
𝑘𝑜𝑁𝐴𝑒𝑥𝑐, and: 

𝐸𝑝𝑢𝑝𝑖𝑙
𝐻𝑒𝑥 (𝑘𝑥, 𝑘𝑧) = 𝐸𝑜𝛿(𝑘𝑥)𝛿(𝑘𝑧 ± 𝑘𝑜𝑁𝐴𝑒𝑥𝑐) + 𝐸𝑜𝛿 (𝑘𝑥 ±

√3𝑘𝑜𝑁𝐴𝑒𝑥𝑐
2

)𝛿 (𝑘𝑧 ±
𝑘𝑜𝑁𝐴𝑒𝑥𝑐

2
)     (32𝑎) 

This describes six illumination points equally spaced azimuthally on a ring of radius 𝑘𝜌 =

𝑘𝑜𝑁𝐴𝑒𝑥𝑐 in the pupil (Fig. 3Ca).  These are the exact conditions that produce an ideal maximally 

symmetric lattice of hexagonal symmetry (Fig. 3Cb). 

The six wavevectors arising from this illumination create an 𝑂𝑇𝐹𝑒𝑥𝑐
𝐻𝑒𝑥(𝑘𝑥, 𝑘𝑧)  having 

nineteen discrete non-zero spatial frequencies in a hexagonal array (Fig. 3Cc): 

𝑂𝑇𝐹𝑒𝑥𝑐
𝐻𝑒𝑥(𝑘𝑥, 𝑘𝑧) = 𝛿(𝑘𝑥) [𝛿(𝑘𝑧) +

𝛿(𝑘𝑧 ± 𝑘𝑜𝑁𝐴𝑒𝑥𝑐)

3
+
𝛿(𝑘𝑧 ± 2𝑘𝑜𝑁𝐴𝑒𝑥𝑐)

6
] + 

𝛿 (𝑘𝑥 ±
√3𝑘𝑜𝑁𝐴𝑒𝑥𝑐

2
) [𝛿 (𝑘𝑧 ±

𝑘𝑜𝑁𝐴𝑒𝑥𝑐
2

) + 𝛿 (𝑘𝑧 ±
3𝑘𝑜𝑁𝐴𝑒𝑥𝑐

2
)] /3 +            

𝛿(𝑘𝑥 ± √3𝑘𝑜𝑁𝐴𝑒𝑥𝑐) [
𝛿(𝑘𝑧)

3
+
𝛿(𝑘𝑧 ± 𝑘𝑜𝑁𝐴𝑒𝑥𝑐)

6
]         (32𝑏) 

that, when convolved with 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) according to Eq. (12), yields a gap-free 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑐𝑆𝐼𝐻𝑒𝑥(𝒌) in 

the SIM mode that is reasonably uniform throughout its support (Fig. 3Ce).   

In the swept mode, by Eq.(4b) only the terms having 𝛿(𝑘𝑥) in 𝑂𝑇𝐹𝑒𝑥𝑐
𝐻𝑒𝑥(𝑘𝑥, 𝑘𝑧) remain in 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝐻𝑒𝑥(𝑘𝑧) (Fig. 3Cd).  This leaves five copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑠𝐻𝑒𝑥 (𝒌), including two 

(gold arrows, Fig. 3Cf) that are centered at and help fill the gaps between the DC and 𝑘𝑧 =

±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐 shifted copies present in the axial standing wave.  However, these furthest shifted 

copies are three-fold weaker than those of the axial standing wave. 

A hexagonal light sheet derived from the lattice described here is identical to a coherent 

multi-Bessel light sheet of period Τ = (2/√3)𝜆𝑒𝑥𝑐/𝑁𝐴𝑒𝑥𝑐.  This leaves only the two polar stripes 

in the 𝑚 = 0 band and two pairs of stripes each from the 𝑚 = ±1 bands of 𝐸𝑝𝑢𝑝𝑖𝑙
𝑐𝑀𝐵 (𝑘𝑥, 𝑘𝑧) in Eq. 

(11b).  As the annulus width approaches zero, the light sheet becomes unbound, and these six 

stripes shrink to the discrete points of Eq. (32a). 
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iv.  2D hexagonal-rectangular aperiodic pattern 

In the case of an ideal, infinite hexagonal lattice, the 𝑘𝑧 = ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐  shifted copies of 

𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)  in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝐻𝑒𝑥 (𝒌)  do not completely fill the gaps between the DC and 𝑘𝑧 =

±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐 copies, but rather leave a pair of smaller gaps flanking each of the 𝑘𝑧 = ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐 

copies.  As 𝑁𝐴𝑒𝑥𝑐 increases further, so do these four gaps.  Following the same procedure as 

above, these gaps can be filled by adding eight more illumination points on the ring of 𝑘𝜌 =

𝑘𝑜𝑁𝐴𝑒𝑥𝑐  in the pupil at 𝑘𝑧
𝑝𝑢𝑝𝑖𝑙 = ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐/4  and 𝑘𝑧

𝑝𝑢𝑝𝑖𝑙 = ±3𝑘𝑜𝑁𝐴𝑒𝑥𝑐/4  (Fig. 3Da).  This 

produces a complex, aperiodic interference pattern at the specimen focal plane (Fig. 3Db) 

consisting of 91 discrete spatial frequencies in 𝑂𝑇𝐹𝑒𝑥𝑐
𝐻𝑒𝑥𝑅𝑒𝑐𝑡(𝑘𝑥, 𝑘𝑧)  (Fig. 3Dc) which, by its 

aperiodic nature, cannot be applied to coherent structured illumination reconstruction to extend 

the 𝑥 resolution.  However, by Eq. (27), if the pattern is swept far enough, then the resulting 

𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝐻𝑒𝑥𝑅𝑒𝑐𝑡(𝑘𝑧) (Fig. 3Dd) is the incoherent sum of the swept excitation OTFs of the hexagonal 

lattice above and two rectangular lattices of periods (4/√15)𝜆𝑒𝑥𝑐/𝑁𝐴𝑒𝑥𝑐 and (4/√7)𝜆𝑒𝑥𝑐/𝑁𝐴𝑒𝑥𝑐 

corresponding to the illumination points at 𝑘𝑧
𝑝𝑢𝑝𝑖𝑙 = ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐/4 and 𝑘𝑧

𝑝𝑢𝑝𝑖𝑙 = ±3𝑘𝑜𝑁𝐴𝑒𝑥𝑐/4, 

respectively.  Thus, we describe this as a hexagonal-rectangular (hexrect) aperiodic pattern.  The 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝐻𝑒𝑥𝑅𝑒𝑐𝑡(𝒌)  (Fig. 3Df)) consists of nine copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)  equally spaced in 𝑘𝑧  which 

further minimizes the volume occupied by gaps.  However, because fourteen wavevectors are 

needed to produce the pattern, the DC copy is substantially stronger than all others -- 14× 

stronger in the case of the = ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐 copies that give the greatest resolution extension in 𝑧. 

Because the hexrect pattern is aperiodic, it is not related to a coherent multi-Bessel light 

sheet.  However, from the trends in Fig. 3, it is clear that as more illumination points are added 

to the pupil, the swept overall OTF becomes increasingly continuous but increasingly also 

dominated by the DC portion.  In particular, the hexrect pattern, with sixteen illumination points, 

approaches the characteristics of a single swept Bessel beam (Fig. S3).  In addition, as more 

illumination points are added, the maxima of the resulting coherent pattern become further 

spaced, requiring higher peak power to image at a given speed.  Thus, as 𝑁𝐴𝑒𝑥𝑐 is increased to 

increase the axial support, the lattice requiring the fewest number of illumination points (i.e., 

wavevectors) to achieve the desired propagation length while still enabling faithful post-

deconvolution image reconstruction should be selected. 

 

B. Multi-Bessel lattice light sheet microscopy 

Since the axial standing wave, square, and hexagonal infinite lattices above are examples 

of the coherent multi-Bessel light sheets of Sec. 6B in the limit where the annulus width 

approaches zero, they can be used to produce confined light sheets of the same symmetry by 

replacing each of their pupil illumination points with a stripe of uniform illumination centered on 

𝑘𝜌
𝑚𝑖𝑑 = 𝑘𝑜𝑁𝐴𝑒𝑥𝑐 cropped by a finite width annulus of radii 𝑘𝜌

𝑚𝑎𝑥 = 𝑘𝑜𝑁𝐴𝑚𝑎𝑥 , 𝑘𝜌
𝑚𝑖𝑛 = 𝑘𝑜𝑁𝐴𝑚𝑖𝑛 
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(Eq. 24a,b).  This then recapitulates the multi-Bessel pupil field 𝐸𝑝𝑢𝑝𝑖𝑙
𝑐𝑀𝐵 (𝑘𝑥, 𝑘𝑧) of Eq. (11b), where 

the period Τ is given by: 

Τ < 𝜆𝑒𝑥𝑐/𝑁𝐴𝑒𝑥𝑐   (axial standing wave)                                        (33𝑎) 

Τ = 𝜆𝑒𝑥𝑐/𝑁𝐴𝑒𝑥𝑐   (square lattice)                                                   (33𝑏) 

Τ = (
2

√3
) 𝜆𝑒𝑥𝑐/𝑁𝐴𝑒𝑥𝑐  (hexagonal lattice)                                      (33𝑐) 

We consider two different means which have been used to produce such light sheets 

experimentally.  In the first, by Eq. (1d), the electric field 𝐸𝑒𝑥𝑐
𝑐𝑀𝐵(𝑥, 0, 𝑧) at the focal point within 

the sample is determined from the inverse Fourier transform of 𝐸𝑝𝑢𝑝𝑖𝑙
𝑐𝑀𝐵 (𝑘𝑥, 𝑘𝑧) as given by Eqs. 

(25b) and (33).  The normalized real part of 𝐸𝑒𝑥𝑐
𝑐𝑀𝐵(𝑥, 0, 𝑧) is then applied to a sample-conjugate 

SLM according to Eqs. (16).  The light diffracted by this pattern is passed through a pupil conjugate 

annular mask and then focused by an excitation objective to create the light sheet within the 

sample.  In (1) and the examples here, the SLM is used in a binary mode, so Eqs. (16d,e) apply. 

The second approach applies the result of the field synthesis theorem in Eq. (27) that 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑐𝑀𝐵(0, 𝑧) of a swept multi-Bessel light sheet is the incoherent sum of the excitation PSFs 

formed by each of the individual bands of fixed 𝑘𝑥  in the pupil.  Thus, in (5) time-averaged 

versions of swept lattice light sheets were generated by discretely and serially stepping a line of 

illumination oriented in the 𝑘𝑧 direction to the 2𝑀 + 1 positions of these bands (Fig. S5).  There 

are two types of bands.  Those that symmetrically span the 𝑘𝑥 axis are identical to the sinc light 

sheet case of Sec. 5 and form a single beamlet.  By Eq. (22b), they therefore each contribute a 

term:  

𝑃𝑆𝐹𝑏𝑎𝑛𝑑(𝑚) ∝ sinc𝟐((𝑘𝑧
+)𝑚𝑧)  for  𝑘𝜌

𝑚𝑎𝑥 > 2𝜋|𝑚|/Τ > 𝑘𝜌
𝑚𝑖𝑛     where:       (34𝑎) 

(𝑘𝑧
+)𝑚 = √(𝑘𝜌

𝑚𝑎𝑥)2 − (2𝜋𝑚/Τ)2                                                (34𝑏) 

to the incoherent sum in Eq. (27).  Bands with 2𝜋|𝑚|/𝛵 < 𝑘𝜌
𝑚𝑖𝑛 are split by the inner circle of the 

mask to produce a pair of beamlets in the pupil given by: 

𝐸𝑏𝑎𝑛𝑑(𝑚) = 𝐸𝑜 δ (𝑘𝑥 −
2𝜋𝑚

Τ
) {rect [

𝑘𝑧 − (𝑘𝑧
𝑚𝑖𝑑)

𝑚

(𝑘𝑧
𝑟𝑎𝑛𝑔𝑒

)
𝑚

] + rect [
𝑘𝑧 + (𝑘𝑧

𝑚𝑖𝑑)
𝑚

(𝑘𝑧
𝑟𝑎𝑛𝑔𝑒

)
𝑚

]}   where:    (34𝑐) 

(𝑘𝑧
𝑚𝑖𝑑)

𝑚
= [(𝑘𝑧

+)𝑚 + (𝑘𝑧
−)𝑚]/2,      (𝑘𝑧

𝑟𝑎𝑛𝑔𝑒
)
𝑚
= (𝑘𝑧

+)𝑚 − (𝑘𝑧
−)𝑚                  (34𝑑)  

(𝑘𝑧
−)𝑚 = √(𝑘𝜌

𝑚𝑖𝑛)2 − (2𝜋𝑚/Τ)2                                                (34𝑒) 

and a corresponding term in Eq. (27) for the swept PSF at the sample of: 

𝑃𝑆𝐹𝑏𝑎𝑛𝑑(𝑚, 𝑧) ∝  cos
2 [(𝑘𝑧

𝑚𝑖𝑑)
𝑚
𝑧] sinc2 [(𝑘𝑧

𝑟𝑎𝑛𝑔𝑒
)
𝑚
𝑧/2]       for     𝑘𝜌

𝑚𝑖𝑛 < 2𝜋|𝑚|/Τ     (34𝑓) 
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Thus, the PSF contributed by each split band to Eq. (27) is a multiplicative combination of the PSF 

of an ideal axial standing wave with the PSF of a sinc light sheet.  We therefore term patterns 

created by this method cosine-sinc (CS) light sheets.  Both the cos2 and sinc2 terms contribute to 

the axial resolution.  In the limit (𝑘𝑧
𝑚𝑖𝑑)

𝑚
→ 0, the period of the cos2 function → ∞ , and is 

essentially constant over the bounding of the sinc2 term.  In this limit, Eq. (34f) → Eq. (34a), and 

the two subbands merge into a single one.  In the limit (𝑘𝑧
𝑟𝑎𝑛𝑔𝑒

)
𝑚
→ 0 (i.e., 𝑁𝐴𝑚𝑎𝑥 − 𝑁𝐴𝑚𝑖𝑛 →

0), the sinc2 function binds 𝑃𝑆𝐹𝑏𝑎𝑛𝑑(𝑚, 𝑧) increasingly weakly, so that the cos2  term dominates.  

This strengthens the axial 𝑂𝑇𝐹𝑒𝑥𝑐
𝐶𝑆 (𝑘𝑧) near the ±2(𝑘𝑧

𝑚𝑖𝑑)
𝑚

 shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) at the 

expense of stronger sidelobes in 𝑃𝑆𝐹𝑒𝑥𝑐
𝐶𝑆 (𝑧). 

Although the two approaches produce similar results (e.g., Fig. 4 vs. Fig. S6), there are two 

differences of note.  First, only the SLM approach produces a light sheet structured in 𝑥 that can 

be used in the coherent SIM mode to fill all gaps in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑀𝐵 (𝒌) (e.g., Figs. 3Be, 3Ce) and extend 

the 𝑘𝑥 support to the limit of Eq. (14h).  Second, the beamlets of any multi-Bessel light sheet 

increase in length and move towards 𝑘𝑧 = 0 in the pupil as 𝑘𝑥 = 2𝜋|𝑚|/Τ increases (gold vs. 

purple beamlets, Fig. S6A).  This weakens the amplitude of higher spatial frequencies near the 

𝑘𝑧 support of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑀𝐵 (𝒌) relative to the DC peak, making their recovery by deconvolution 

more difficult at modest SNR.  However, this effect is more pronounced for cosine-sinc light 

sheets, for which all beamlets have the same intensity per unit length.  SLM-generated multi-

Bessel light sheets have more degrees of freedom in their production that permit a degree of 

independent adjustment of beamlet intensities (e.g., gold vs. purple beamlets, Fig. 4C), including 

the cropping factor (Eqs. (16d,e)) and the 𝑁𝐴𝑚𝑎𝑥  and 𝑁𝐴𝑚𝑖𝑛 assumed in the calculation of field 

𝐸𝑒𝑥𝑐
𝑐𝑆𝐼(𝒙) applied to the SLM (Eq. (11a)) as opposed to those used at the annular mask itself.  These 

can be used to increase the strength of the higher excitation harmonics and thereby strengthen 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑀𝐵 (𝒌) near its 𝑘𝑧 support (e.g., purple arrows, Figs. 4I,J vs. Fig. S6D,E). 

A key advantage of multi-Bessel lattice light sheets lies in the uniformity of their 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑀𝐵 (𝒌) over the desired propagation range |𝑦| ≲ 𝑦𝐻𝑊𝐻𝑀.  By analogy to Eq. (24e), the 

individual propagation length (𝑦𝐹𝑊𝐻𝑀)𝑏 of any beamlet 𝑏 of the 𝐵 beamlets comprising a lattice 

light sheet is given by: 

(𝑦𝐹𝑊𝐻𝑀)𝑏 ≈
𝜋

[((𝒌𝜌
𝑚𝑖𝑛)𝑏 − (𝒌𝜌

𝑚𝑎𝑥)𝑏) ∙ 𝑒̂𝑦]
=

𝜆𝑒𝑥𝑐/𝑛

2(√1 − ((𝑁𝐴𝑚𝑖𝑛)𝑏/𝑛)
2 −√1 − ((𝑁𝐴𝑚𝑎𝑥)𝑏/𝑛)

2)
   (35) 

For beamlets that do not cross the equatorial pupil line 𝑧𝑝 = 0  (Fig. S7A), (𝑁𝐴𝑚𝑖𝑛)𝑏  and 

(𝑁𝐴𝑚𝑎𝑥)𝑏 are estimated by the 𝑁𝐴 of the points in the beamlet closest and furthest from the 

equatorial line at which the electric field amplitude drops below some threshold (e.g., the half 

maximum).  For beamlets that do cross 𝑧𝑝 = 0 (Fig. S7B), (𝑁𝐴𝑚𝑎𝑥)𝑏 is estimated in the same 

manner, but (𝑁𝐴𝑚𝑖𝑛)𝑏 is given by the 𝑁𝐴 at the point where the beamlet crosses the line.  Since 

the bands of any coherent multi-Bessel light sheet span the entirety of the annulus in 𝑘𝑧 (Eq. 

25b), all beamlets with (𝑘𝑥)𝑏 = 2𝜋|𝑚|/𝛵 < 𝑘𝑜(𝑁𝐴𝑚𝑖𝑛)𝑎𝑛𝑛𝑢𝑙𝑢𝑠  have identical values of 
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(𝑁𝐴𝑚𝑎𝑥)𝑏 = (𝑁𝐴𝑚𝑎𝑥)𝑎𝑛𝑛𝑢𝑙𝑢𝑠 and (𝑁𝐴𝑚𝑖𝑛)𝑏 = (𝑁𝐴𝑚𝑖𝑛)𝑎𝑛𝑛𝑢𝑙𝑢𝑠 (e.g., the polar beamlets in Fig. 

S7C) and hence, by Eq. (35), the same propagation length.  This includes all six beamlets 

comprising a multi-Bessel hexagonal LLS (Figs. 4C and S6A), and explains how the ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐 and 

±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐  shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑀𝐵𝐻𝑒𝑥(𝒌) maintain their relative amplitudes 

from 𝑦 = 0 to 𝑦 = 𝑦𝐻𝑊𝐻𝑀 (Figs. 4I,K and gold and purple arrows, Figs. 4J,L).  On the other hand, 

multi-Bessel beamlets with 𝑘𝑜(𝑁𝐴𝑚𝑎𝑥)𝑎𝑛𝑛𝑢𝑙𝑢𝑠 > (𝑘𝑥)𝑏 > 𝑘𝑜(𝑁𝐴𝑚𝑖𝑛)𝑎𝑛𝑛𝑢𝑙𝑢𝑠 have (𝑁𝐴𝑚𝑖𝑛)𝑏 >

(𝑁𝐴𝑚𝑖𝑛)𝑎𝑛𝑛𝑢𝑙𝑢𝑠  and hence longer propagation lengths than those extending between 

(𝑁𝐴𝑚𝑎𝑥)𝑎𝑛𝑛𝑢𝑙𝑢𝑠 and (𝑁𝐴𝑚𝑖𝑛)𝑎𝑛𝑛𝑢𝑙𝑢𝑠.  This includes the two equatorial beamlets of the square 

lattice, which only match (𝑦𝐹𝑊𝐻𝑀)𝑏  of the polar beamlets when they are tangent to 

(𝑁𝐴𝑚𝑖𝑛)𝑎𝑛𝑛𝑢𝑙𝑢𝑠 (Fig. S7C). 

i.  multi-Bessel square LLSM 

A key difference between a lattice light sheet (LLS) and the ideal lattice from which it is 

derived is the finite lengths in 𝑘𝑧 of the pupil beamlets of the former.  By Eq. (11c), these create 

extended bands in 𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑐𝑀𝐵(𝑘𝑧)  which, when convolved with 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) , create an 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑐𝑀𝐵 (𝒌) where the discrete excitation-shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in the overall OTF of 

the ideal swept lattice (e.g., Fig. 3Bf) are each smeared across a finite 𝑘𝑧 range.  The beneficial 

result is a narrowing of the gaps in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑐𝑀𝐵 (𝒌) (e.g, light blue arrows, Figs. 4I, S6D vs. Fig. 3Cf).  

The equatorial beamlets of the multi-Bessel square LLS, being particularly long (green arrows, 

Fig. 5C, Fig. S8A), nearly completely fill the gaps in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑐𝑀𝐵 (𝒌) (Fig. 5I,J, Fig. S8E,F) in the case 

of light sheets of length 𝑦𝐹𝑊𝐻𝑀~50 𝜆𝑒𝑥𝑐/𝑛 and 𝑁𝐴𝑒𝑥𝑐 up to ∼0.30.  As a corollary, most of the 

excitation energy is confined to the central peak (orange curve Fig. 5G, and green curve Fig. S8H), 

thereby minimizing out-of-focus background for applications such as single molecule localization 

in thickly fluorescent specimens ((23), Fig. 3 of (1)). 

Using an SLM to apply this strategy experimentally, we find good agreement with theory 

for the pupil intensity (Figs. 5C,D), the stationary excitation (Fig. 5E) and swept overall PSFs (Fig. 

5H) at the focal plane, as well as the overall OTF at both the focal plane (Figs. 5I,J) and near the 

HWHM of the light sheet (Figs. 5K,L).  FSC on a simulated image (Fig. 5M, bottom) of the stripe 

test pattern indicates an optimal 𝑧 resolution of 661 nm (green arrows, Fig. 5O) is achieved after 

10 RL iterations (Movie 3, part 1).  The corresponding cosine-sinc simulation (green arrows, Fig. 

S8K) with the same annulus achieves the same result.  In live experiments on LLC-PK1 cells (Fig. 

5P), the SLM-generated light sheet reaches an optimal result at 60 RL iterations for SNR∼20 

according to FSC, at which point the Fourier transform (upper right inset, Fig. 5Q)  of the 

deconvolved image volume (Movie 3, Part 2) indicates that nearly all spatial frequencies within 

the support of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑀𝐵𝑆𝑞(𝒌) are detectable (Fig. 5I). 

For a multi-Bessel square LLS, as either 𝑁𝐴𝑒𝑥𝑐 increases beyond 0.30 for 𝑦𝐹𝑊𝐻𝑀~50 𝜆𝑒𝑥𝑐/𝑛 

or 𝑦𝐹𝑊𝐻𝑀 increases beyond 50 𝜆𝑒𝑥𝑐/𝑛 for 𝑁𝐴𝑒𝑥𝑐~0.30, the annulus becomes thinner than that 

in Figs. 5 and S8.  As a result, the gap in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑆𝑞 (𝒌) between the DC and ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐 shifted 
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copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) gets larger, and the shifted copies that provide the extended 𝑧 resolution 

become weaker as the ratio (𝑁𝐴𝑚𝑎𝑥 − 𝑁𝐴𝑚𝑖𝑛)/(2𝑁𝐴𝑚𝑎𝑥)  of the lengths of the polar to 

equatorial beamlets decreases.  Under these conditions, a hexagonal LLS becomes a better 

choice.  Conversely, however, a multi-Bessel square LLS remains an effective solution for 

𝑁𝐴𝑒𝑥𝑐 > 0.30 in cases where a light sheet substantially shorter than 𝑦𝐹𝑊𝐻𝑀~50 𝜆𝑒𝑥𝑐/𝑛  can 

suffice.  This includes small specimens such as bacteria, D. discoideum, or the peripheral regions 

of cultured cells.  For example, an SLM-generated multi-Bessel square LLS with 𝑁𝐴𝑒𝑥𝑐 = 0.41 and 

an annulus 𝑁𝐴𝑚𝑎𝑥/𝑁𝐴𝑚𝑖𝑛 = 0.60/0.40 (Fig. S9C,D) has a strong and gap-free 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑀𝐵𝑆𝑞(𝒌) out 

to the ±2𝑘𝑜𝑁𝐴𝑚𝑎𝑥  maximum limits of the possible 𝑘𝑧 support (Figs. S9I,J).  This results in a well 

confined 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑀𝐵𝑆𝑞(𝒙)  (Figs. S9H) with the energy in 𝑃𝑆𝐹𝑒𝑥𝑐

𝑠𝑀𝐵𝑆𝑞(𝑧)  largely confined to the 

central peak (orange curve, Fig. S9G).  A simulated image of the stripe test pattern with this light 

sheet (Fig. S9M) at SNR = 20 reveals (Movie 4, part 1) a minimum resolvable stripe separation 

after 10 RL iterations of 404 nm (green arrows, Fig. S9O), close to the limit of 407 nm from Eq. 

(14b) with (𝑁𝐴𝑒𝑥𝑐)𝑚𝑎𝑥 = 0.60.  However, such resolution is only achieved in a square lattice at 

the expense of light sheet length:  𝑦𝐹𝑊𝐻𝑀~16 𝜆𝑒𝑥𝑐/𝑛 in this case (Fig. S9F).  Consequently, to 

cover the same FOV as the 𝑦𝐹𝑊𝐻𝑀~50 𝜆𝑒𝑥𝑐/𝑛 light sheets used most commonly in this work, we 

imaged live LLC-PK1 cells across four tiles perpendicular to the specimen substrate (Fig. S9P).  

After tile stitching and 85 iterations of RL deconvolution as indicated by FSC, the resulting image 

volume (Fig. S8Q and Movie 4, part 3) recovers specimen spatial frequencies (inset, Fig. S9Q) 

within most of the  theoretical support region of Fig. S9I.  However, despite the comparatively 

stronger polar and weaker equatorial beamlets (Figs. S9C,D) made possible by the binarized and 

cropped SLM pattern (Fig. S8B), the strength of the ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐 shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑀𝐵𝑆𝑞(𝒌) is not great enough to recover spatial frequencies (yellow arrows, Fig. S9I vs. inset, 

Fig. S9Q) in the live cell data in the direction 𝒆̂𝑦𝑧𝑑𝑖𝑎𝑔  (Eq. (14d) and Fig. S2) of highest spatial 

resolution. 

ii.  multi-Bessel hexagonal LLSM 

While the ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐  harmonics of the swept ideal square lattice are 1.5×  stronger 

relative to the DC peak than those of the corresponding hexagonal lattice (Eq. (30b) vs. Eq. (32b) 

and purple arrows, Fig. 3Bd&f vs. Fig. 3Cd&f), the inverse is often true for a multi-Bessel square 

LLS compared to a hexagonal one (purple arrows, Fig. 5I,J vs. Fig. 4I,J).  This is because the long 

equatorial pupil beamlets in the square case overweight the DC region of the overall OTF relative 

to the higher harmonics.  However, for hexagonal lattices it is the ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐  harmonics that 

shrink the OTF gaps and permit operation at higher 𝑁𝐴𝑒𝑥𝑐 , and no equatorial beamlets are 

needed.  Thus, both experimental SLM-generated (Fig. 4H) and simulated cosine-sinc (Fig. S6F) 

multi-Bessel hexagonal LLS at 𝑁𝐴𝑒𝑥𝑐 =0.43 and 0.40 respectively exhibit more tightly confined 

swept overall PSFs than the corresponding square lattices at 𝑁𝐴𝑒𝑥𝑐 = 0.30.  Four small OTF gaps 

remain in both cases (light blue arrows, Figs. 4I, S6D), although these are partially filled in the 
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experimental OTF (e.g., light blue arrows, Fig. 4I,J).  Despite these gaps, after RL deconvolution 

(Movie 5, part 1) the SLM and cosine-sinc lattices are capable in simulations of resolving all line 

pairs in the stripe test pattern down to 440 nm and 514 nm, respectively (green arrows, Figs. 4O 

and S6).  Furthermore, an RL deconvolved image volume of live LLC-PK1 cells shows biologically 

realistic ER structure with no obvious artifacts (Fig. 4Q, Movie 5, Part 3), and the FFT of this 

volume shows recovery of spatial frequencies throughout most of the support region, notably 

including those associated with the OTF gaps (upper right insert, Fig. 4Q). 

 

C. Axially confined lattice light sheet microscopy 

Rather than creating lattice light sheets from coherent multi-Bessel light sheets at the 

specific periods Τ of Eq. (33) corresponding to lattices of specific symmetries, one can start from 

an ideal lattice of the desired symmetry (e.g, Fig. 2) and modify its discrete points of pupil 

illumination in ways that confine the lattice while simultaneously optimizing other desired 

properties.  By doing so, one is not wedded to pupil beamlets whose lengths are dictated solely 

by the annulus.    

One such optimization is to require that the light sheet be axially confined in a specific way.  

This is a natural constraint when out-of-focus background and/or photobleaching / phototoxicity 

is a concern.  Since every ideal 2D lattice is comprised of a finite set of plane waves: 

𝐸𝑙𝑎𝑡𝑡𝑖𝑐𝑒
𝑖𝑑𝑒𝑎𝑙 (𝒙) = ∑ 𝑬𝒎𝑒𝑥𝑝[𝑖𝒌𝒎 ∙ 𝒙] =𝑀

𝑚=1 𝐸𝑠𝑎𝑚𝑝𝑙𝑒(𝒙)                               (36𝑎) 

an axially confined (AC) LLS is defined by: 

𝐸𝑠𝑎𝑚𝑝𝑙𝑒
𝐴𝐶𝐿𝐿𝑆 (𝒙) = 𝐵(𝑧)∑ 𝑬𝒎𝑒𝑥𝑝[𝑖𝒌𝒎 ∙ 𝒙]

𝑀
𝑚=1                                             (36𝑏) 

where the bounding function 𝐵(𝑧) → 0 as 𝑧 → ∞.  Since 𝐸𝑝𝑢𝑝𝑖𝑙(𝑥𝑝, 𝑧𝑝) = 𝐹𝑇{𝐸𝑠𝑎𝑚𝑝𝑙𝑒(𝑥, 0, 𝑧)}, 

this gives: 

𝐸𝑝𝑢𝑝𝑖𝑙
𝐴𝐶𝐿𝐿𝑆(𝑘𝑥, 𝑘𝑧) = ∑ 𝑬𝒎𝛿(𝑘𝑥 − (𝑘𝑥)𝑚)

𝑀

𝑚=1

𝐵̃(𝑘𝑧 − (𝑘𝑧)𝑚)                        (37𝑎) 

where 𝐵̃(𝑘𝑧) ≡ 𝐹𝑇{𝐵(𝑧)}.  In other words, in an axially confined LLS, the discrete points of 

illumination in the pupil plane (insets, Figs. 6A-8A) are replaced by stripes parallel to the 𝑘𝑧 axis 

centered at these points, all of which are bound equally (Figs. 6C- 8C).   

A common bounding function, used in (1) as well as here, unless otherwise specified, is a 

Gaussian: 𝐵(𝑧) = exp (−𝑧2/𝜎𝑧
2) , where 𝜎𝑧  is the 1/𝑒2  axial width of 𝑃𝑆𝐹𝑒𝑥𝑐

𝑓𝑖𝑥𝑒𝑑(𝒙)  and 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝒙) , in which case 𝐵̃(𝑘𝑧)  or, equivalently, 𝐵̃(𝑧𝑝)  is also Gaussian.  While the 

confinement of an axially confined LLS can be described by either 𝐵 or 𝐵̃, here we choose the 

latter, with: 

 𝐵̃(𝑧𝑝) = exp[−𝑧𝑝
2/(𝜎𝑁𝐴 ∙ 𝑁𝐴𝑒𝑥𝑐𝐹)

2]                                         (37𝑏) 
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𝜎𝑁𝐴 then describes, in terms of effective numerical aperture, the 1/𝑒2 width of the intensity in 

the rear pupil of the 1D Gaussian beamlets that replace the discrete points of illumination of the 

ideal lattice.  Experimentally, we generated these light sheets by calculating the desired light 

sheet electric field 𝐸𝑒𝑥𝑐(𝑥, 0, 𝑧) at the specimen focal plane from the inverse Fourier transform 

(Eq. (1d)) of 𝐸𝑝𝑢𝑝𝑖𝑙
𝐴𝐶𝐿𝐿𝑆(𝑘𝑥, 𝑘𝑧) from Eqs. (37) and then using Eqs. (16) to determine the binary phase 

Φ𝑆𝐿𝑀(𝑥, 𝑧) at the SLM needed to produce the desired axially confined LLS.  Notably, because the 

confinement is determined by 𝐵(𝑧) as encoded in Φ𝑆𝐿𝑀(𝑥, 𝑧), the pupil conjugate annulus is not 

needed to enforce the confinement, as is the case for any multi-Bessel LLS, and can be 

independently adjusted to filter out undiffracted light and either admit or reject higher 

diffraction orders from the SLM. 

i.  axially confined standing wave (SW) LSM 

Because a SW light sheet is created by only a single polar pair of pupil beamlets, it is not 

subject to the same tradeoffs between multiple pupil bands characteristic of other lattice light 

sheets.  As a result, for a SW light sheet, the multi-Bessel formalism leads to similar results as the 

axially confined approach, provided 𝜎𝑁𝐴 in the latter case is of the same order as the half-width 

of the annulus, (𝑁𝐴𝑚𝑎𝑥 − 𝑁𝐴𝑚𝑖𝑛)/2.  We therefore characterize here only the axially confined 

case. 

By Eq. (11c), 𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑆𝑊(𝑘𝑧) is given by the autocorrelation of the pupil beamlet pair.  Thus, 

for: 

𝑁𝐴𝑒𝑥𝑐 ≲ 2𝜎𝑁𝐴                                                                    (38) 

the DC term from the autocorrelation of each beamlet bridges the gap between the cross-

correlation terms from the two beamlets to produce a gap-free excitation OTF and, by the 

convolution in Eq. (12), a gap-free overall OTF.  This condition is explored theoretically and 

experimentally for an axially confined SW light sheet with 𝑁𝐴𝑒𝑥𝑐 =  0.25, 𝜎𝑁𝐴 = 0.13, and 

𝑦𝐹𝑊𝐻𝑀~ 50
𝜆𝑒𝑥𝑐

𝑛
 in Fig. S10 and Movie 6.  As with the Gaussian and sinc beams of low 𝑁𝐴𝑒𝑥𝑐, the 

pupil field consists of a pair of laterally offset axial standing wave pupil patterns, which in turn 

each consist of a pair of vertically offset beamlets, in order to avoid their clipping by the inner 

diameter of the annulus. As a result, the pupil field consists of four beamlets (Figs. S10C,D) that 

together produce a rectangular stationary LLS in the specimen (Figs. S10A,B).  When this is swept, 

it produces a LLS equivalent to an axial standing wave of the desired 𝑁𝐴𝑒𝑥𝑐 , 𝜎𝑁𝐴, and 𝑦𝐹𝑊𝐻𝑀. 

As with all axial confined lattice light sheets, to achieve higher axial resolution for the same 

light sheet length, 𝑁𝐴𝑒𝑥𝑐 must increase and 𝜎𝑁𝐴 must decrease, resulting in increasingly wide 

OTF gaps.  This problem is most severe for the axial standing wave, since it consists of only two 

beamlets of the widest possible separation in 𝑘𝑧 for a given 𝑁𝐴𝑒𝑥𝑐, and is explored in Fig. 6 for 

𝑁𝐴𝑒𝑥𝑐 = 0.30, 𝜎𝑁𝐴 = 0.10.  Under these conditions, 𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑆𝑊(𝑧) exhibits a broad set of strong 

sidebands (Fig. 6E and orange curve, Fig. 6G).  The innermost pair are not fully suppressed by the 

axial envelope of 𝑃𝑆𝐹𝑑𝑒𝑡(𝒙)  (blue curve, Fig. 6G), leaving a weak pair of sidebands in 
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𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑆𝑊 (𝒙) (red arrows, Fig. 6G,H) that create parallel ghost features in both a simulated raw 

image of the stripe test pattern (red arrows, Fig. 6M) and xz raw views of live LLC-PK1 cells (red 

arrows, Fig. 6P).  In addition, the theoretical OTF exhibits deep gaps, although these are partially 

filled in the experimental case (light blue arrows, Fig. 6I,J).  Despite these issues, after 15 and 55 

iterations respectively of RL deconvolution (Movie 7, parts 1 & 3), the sideband signals are 

correctly assigned to their true origins in the images and removed from the deconvolved results 

(Figs. 6N,O,&Q), leaving  a minimum resolvable line separation of 550 nm (green lines Fig. 6O) 

and an FFT of the cell volume that fills most of its support region (inset Fig. 6Q).  Thus, despite 

the strong excitation sidelobes, the parallel ghosts in the raw data from the sidelobes of the 

overall PSF, and the deep OTF gaps, the axial SW light sheet at 𝑦𝐹𝑊𝐻𝑀~ 50𝜆𝑒𝑥𝑐/𝑛 can still yield 

accurate image reconstructions up to 𝑁𝐴𝑒𝑥𝑐~ 0.30. 

Whereas the results of Figs. 4 and 6 show that strong excitation sidelobes and deep gaps in 

the overall OTF need not compromise accurate volumetric image restoration, a truly 

discontinuous overall OTF is a different matter.  By Eq. (31), this occurs for a SW light sheet with 

𝜆𝑒𝑥𝑐/𝜆𝑑𝑒𝑡 =  0.94, 𝑛 =  1.33, and 𝑁𝐴𝑑𝑒𝑡 =  1.0 when 𝑁𝐴𝑒𝑥𝑐 >  0.426.  In Fig. S11, this is 

approximated with 𝑁𝐴𝑒𝑥𝑐 = 0.45 and 𝜎𝑁𝐴 = 0.065, where the “bowtie” regions of the three 

copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑆𝑊 (𝒌) have little to no overlap (light blue arrows, Fig. S11I and 

yellow-green arrows, Fig. S11J).   As a result, the excitation sidelobes of 𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑆𝑊(𝑧) extend over 

𝑧 > 20 𝜆𝑒𝑥𝑐/𝑛 (orange curve, Fig. S11G), and the pair immediately flanking the central peak are 

suppressed only 50% in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑆𝑊 (𝒌) by the envelope of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) (red arrows, Figs. S11G,H).  

This leads to even stronger parallel ghost features in both a simulated image of the stripe test 

pattern (red arrows, Fig. S11M) and an experimental raw image volume of live cells (red arrows, 

Fig. S11P) than in the 𝑁𝐴𝑒𝑥𝑐 = 0.30 case of Fig. 6.  However, unlike in that case, these ghosts do 

not fully disappear after a FSC-indicated 20 and 75 iterations of RL deconvolution, respectively 

(red arrows, Figs. S11N,Q, and Movie 8, parts 1 & 3), and dips between the three copies of 

𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) remain in the FFT of the image volume even after RL deconvolution (light blue arrows, 

inset, Fig. S11Q).  The suppressed or missing spatial frequencies are evidenced as a band of 

unresolved lines in the raw and deconvolved simulated images of the stripe pattern (blue bands, 

Figs. S11M,N,O) and the artifactual punctate appearance of the deconvolved ER (Fig. S11Q).  

Thus, the 𝑁𝐴𝑒𝑥𝑐 and 𝑘𝑧 locations of the beamlets of any lattice light sheet must be chosen to 

ensure sufficient overlap of the shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in the swept overall OTF in order to 

produce interpretable images reflective of the true sample structure. 

ii.  axially confined square LLSM 

The advantages and disadvantages of an axially confined square LLS are primarily the 

inverse of those for a multi-Bessel one, thanks to the difference in the lengths of their equatorial 

beamlets.  In the axially confined case, the short and equal length equatorial and polar beamlets 

(green and purple arrows, Fig. 7C) result, at the focal plane, in a stronger 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝐴𝐶𝑆𝑞 (𝒌) within 
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the ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐 shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) compared to the multi-Bessel case (purple arrows, 

Figs. 7I,J vs. Figs. 5I,J).  Resolution in the 𝒆̂𝑧 direction as determined by the smallest observable 

line pair in simulated images remains similar (624 nm vs. 660 nm, green arrows, Fig. 7O vs. Fig. 

5O, Movie 9, part 1).  However, by Eq. (31) the short equatorial beamlets propagate much further 

than the polar ones, and hence the low spatial frequencies they contribute to 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝐴𝐶𝑆𝑞 (𝒌) 

increasingly dominate the ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐 shifted copies with increasing 𝑦 (purple arrows, Fig. 7K,L 

vs Fig 5K,L).  This results in a 𝑃𝑆𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝐴𝐶𝑆𝑞 (𝒙) spatially varying in 𝑦, with gradually decreasing axial 

resolution within 𝑦𝐻𝑊𝐻𝑀. 

For a given light sheet length: a) the axially confined SW provides a stronger and more 

uniform OTF over this length for values of 𝑁𝐴𝑒𝑥𝑐 where it remains continuous; b) the multi-Bessel 

hexagonal LLS maintains uniformity and continuity of the OTF at values of 𝑁𝐴𝑒𝑥𝑐 where the SW 

and square lattice OTFs approach discontinuity; and c) a multi-Bessel square light sheet is a better 

choice in applications where confinement of excitation to the focal plane is paramount (orange 

curves, Figs. 5G vs. Fig. 7G). 

iii.  axially confined hexagonal LLSM 

Similar trends are seen for the axially confined hexagonal LLS (Fig. 8), although not as 

pronounced, since the difference in length of the 𝑘𝑥 ≠ 0 side beamlets (gold arrows, Fig. 8C) 

between the multi-Bessel and axially confined cases is not as great as with the square lattice.  

Notably, the cropping factor 𝜖 (Eqs. (16d,e)) and the bounding envelope 𝐵(𝑧) (Eq. (36b)) work 

together to produce a sharply bound version of the desired lattice at the binary SLM (Fig. 8B).  

This creates an effective rect( 𝑧 ) bounding function to the diffracted field 𝐸𝑆𝐿𝑀(𝑥, 𝑧) =

𝐸𝑜exp (−Φ𝑆𝐿𝑀(𝑥, 𝑧))  and, since 𝐸𝑝𝑢𝑝𝑖𝑙(𝑘𝑥, 𝑘𝑧) ∝ 𝐹𝑇𝑥𝑧(𝐸𝑆𝐿𝑀(𝑥, 𝑧)) , a sinc( 𝑘𝑧 ) bounding 

function to each beamlet in the rear pupil (pink and light blue arrows, Fig. 8C).  These 

advantageously fill the gaps (pink and light blue arrows, Figs. 8I,J) in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝐴𝐶𝐻𝑒𝑥 (𝒌) between the 

five shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) seen in the multi-Bessel case (Figs. 4I,J).  The smallest resolvable 

linewidth of 514 nm (green arrows, Fig. 8O) after 20 RL iterations (Movie 10, part 1) matches the 

estimate of 𝜆𝑒𝑥𝑐/(𝑁𝐴𝑒𝑥𝑐 + 𝜎𝑁𝐴) from Eq. (14b).  However, at 𝑦𝐻𝑊𝐻𝑀, the contribution of the 

±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐 shifted copies is greatly reduced (purple arrows, Figs. 8K,L vs. Figs. 4K,L) due to the 

shorter propagation length (𝑦𝐹𝑊𝐻𝑀)𝑏 of the polar beamlets, leading to a variable PSF along 𝑦 

and effectively reduced axial resolution. 

 

8.  Comparisons Between Light Sheets 

 

To better compare the strengths and weaknesses of the light sheets discussed above, we 

summarize their various properties, across the entire light sheet propagation length where 
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appropriate, one at a time below.  All light sheets are of length 𝑦𝐹𝑊𝐻𝑀 ~ 50 𝜆𝑒𝑥𝑐/𝑛.  We also 

include two “harmonic balanced” light sheets that are described in Sec. 9 below. 

 

A. Overall swept optical transfer function 

As argued above, 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝒌) gives the most comprehensive and quantitative measure 

of the ability of a microscope to accurately measure the spatial frequencies in a specimen in the 

presence of noise.  To characterize its variation along the axis of propagation 𝑦, we calculated 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝑘𝑥, 𝑦, 𝑘𝑧) at intervals of Δ𝑦 = 3 𝜆𝑒𝑥𝑐/𝑛 (Movie 11) from the focal plane (𝑦 = 0) to 

~1.5 𝑦𝐻𝑊𝐻𝑀 (𝑦 = 39𝜆𝑒𝑥𝑐/𝑛) and plotted linecuts through 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝑘𝑥, 𝑦, 𝑘𝑧)  (Movie 12) 

along  𝑘𝑥 = 0 (red), 𝑘𝑥 = 2𝜋𝜆𝑒𝑥𝑐/𝑛 = 𝑘𝑥
𝑚𝑎𝑥/2 (green), and 𝑘𝑧 = 0 (blue). 

Focusing first on the Gaussian light sheet (upper left, Movies 11), although it has the 

narrowest divergence of all light sheets for distances 𝑦  past the common 𝑦𝐻𝑊𝐻𝑀  of all light 

sheets considered above (Fig. S12), it diverges the fastest within the propagation range 

|𝑦| ≲ 𝑦𝐻𝑊𝐻𝑀 that is most relevant to light sheet microscopy.  Indeed, the modest 𝑧 resolution 

extension and filling of the missing cone of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) it provides at the focal plane are mostly 

lost by 𝑦 = 24𝜆𝑒𝑥𝑐/𝑛 ≈ 𝑦𝐻𝑊𝐻𝑀  (Movies 11,12).  In contrast, the sinc beam (upper middle, 

Movies 11,12)) offers slightly superior 𝑧 resolution at the focal plane for the same propagation 

range and yet better retains that resolution as it propagates, as evidenced by a ∼10x stronger 

overall OTF near the 𝑘𝑧 support at 𝑦 = 24𝜆𝑒𝑥𝑐/𝑛.  However, the beams in (2) and (3) that were 

compared to lattice light sheets were sinc in nature, not Gaussian, as they were created with a 

uniform, sharply bound stripe of illumination in the pupil, according to Eq. (25).  Thus, any 

conclusions regarding Gaussian vs. lattice light sheets in these works are invalid. 

The evolution of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝑘𝑥, 𝑦, 𝑘𝑧)  with increasing 𝑦  for the multi-Bessel and axially 

confined square lattice light sheets (Figs. 5,7, upper right and middle left, Movies 11,12) 

demonstrate the tradeoffs of these two confinement strategies.  By Eqs. (26b) and (27), 

𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧) and 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑠𝑤𝑒𝑝𝑡 (𝑘𝑥, 𝑦, 𝑘𝑧) are each the incoherent sum of the (𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧))

𝑚
 

and (𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝑘𝑥, 𝑦, 𝑘𝑧))𝑚 formed by each pupil band individually.  The two equatorial bands 

of the multi-Bessel LLS, being much longer than the axially confined ones (Fig. 5C,D vs. Fig. 7C,D), 

create a pair of contributing light sheets (𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧))

𝑚
 more intense and much more 

confined in both 𝑦 and 𝑧 (magenta and aqua arrows, respectively, Fig. S13A vs. S13B).  However, 

even this intense focus is heavily weighted toward 𝑘𝑧  values lower than those of the 

(𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧))

𝑚
 contributed by the polar band.  Thus, near the focal plane, 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝑘𝑥, 𝑦, 𝑘𝑧) is weaker near the 𝑘𝑧 support for the multi-Bessel square LLS than for the 

axially confined one.  On the other hand, the long equatorial bands in the multi-Bessel case have 

a range (𝑁𝐴𝑚𝑖𝑛)𝑏 to (𝑁𝐴𝑚𝑎𝑥)𝑏  similar to that of the polar band and hence, by Eq. (35), similar 

propagation lengths for their corresponding individual light sheets.  This leads to a more uniform 
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𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝑘𝑥, 𝑦, 𝑘𝑧) over the propagation range than in the axially confined LLS, where the 

(𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧))

𝑚
 associated with the polar band decays far more rapidly with increasing 𝑦 

than that associated with the equatorial bands (magenta arrows, Fig. S13B). 

Because the axial standing wave light sheet, whether produced by the multi-Bessel or 

axially confined method, has only a single pupil band, its 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝑘𝑥, 𝑦, 𝑘𝑧) is not subject to 

these tradeoffs, and it remains strong throughout its support throughout its propagation range 

(center, Movies 11).  As a result, it is the preferred light sheet type in cases where its OTF gaps 

are not too large to preclude accurate image restoration (e.g., Eq. (31) and Fig. 6Q vs. Fig. S11Q) 

and the sidelobes of 𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝒙) do not lead to excessive photobleaching (Sec. 8D below). 

For higher 𝑁𝐴𝑒𝑥𝑐 , the additional 𝑘𝑧 = ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐  harmonics contributed by the flanking 

pupil bands of the hexagonal lattice help fill these gaps (Fig. 3).  In the multi-Bessel case, all three 

bands generate contributing terms (𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧))

𝑚
 to the overall light sheet that have similar 

propagation lengths (Fig. S13C), so the ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐 and ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐 shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) 

in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝑘𝑥, 𝑦, 𝑘𝑧)  maintain their relative strengths throughout the propagation range 

(lower left, Movies 11).  In contrast, the ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐  shifted copies in the axial confined 

hexagonal LLS decay rapidly in strength as |𝑦| → 𝑦𝐻𝑊𝐻𝑀 (center right, Movies 11,12) due to the 

shorter propagation length of (𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧))

𝑚
 for the polar band (Fig. S13D).  On the other 

hand, the higher 𝑘𝑧 diffraction orders in the pupil bands of the axially confined hexagonal LLS 

better fill the OTF troughs seen in the multi-Bessel hexagonal case. 

 

B. Spatial resolution 

The theoretical resolution limits of the seven light sheets in Figs. 1, 2, and 4-8 above and 

the two harmonic balanced light sheets introduced in Figs. 9, 10 below are summarized in Table 

S1, using the definitions and equations of Sec. 2E and Fig. S2.  Both the experimental 

configuration used in the measurements here (𝑁𝐴𝑒𝑥𝑐
𝑜𝑏𝑗

= 0.6, 𝑁𝐴𝑑𝑒𝑡 = 1.0) and that used in (1) 

(𝑁𝐴𝑒𝑥𝑐
𝑜𝑏𝑗

= 0.7 , 𝑁𝐴𝑑𝑒𝑡 = 1.1) are included for comparison.  Estimates of the resolution limit 

𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) for all nine of these light sheets based on simulated images of a variable pitch stripe 

pattern are summarized in Fig. S14, along with the corresponding theoretical limit (blue) from 

Table S1.  Measurements of the detectable spatial frequencies from the ER within live LLC-PK1 

cells are summarized for all nine light sheets in Fig. S15 and shown along with a boundary curve 

indicating the theoretical support in each case.  Finally, deconvolved orthoslices from the cell 

images are compared (Fig. S16) in the 𝑥𝑧𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 plane that exhibits the greatest resolution gain 

with increasing 𝑁𝐴𝑒𝑥𝑐  of the light sheet but also the greatest potential for side lobe ghost 

artifacts if the data is not correctly deconvolved. 
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Considering first the multi-Bessel and axially confined square LLS, we find close agreement 

between the theoretical 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙)  (651 and 659 nm, respectively) and corresponding 

simulation-based estimates (661 and 624 nm, respectively).  Notably, these limits are well beyond 

the theoretical estimates of 1162 nm and 1017 nm for the Gaussian and sinc light sheets 

respectively as well as the simulation-based estimate of 881 nm in the sinc case.  Experimentally, 

post-deconvolution all four light sheets recover sample spatial frequencies across the majority of 

their support regions, although the support itself differs in extent in each case based on the 

𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥  needed to achieve the common light sheet propagation length of 𝑦𝐹𝑊𝐻𝑀  ~ 50𝜆𝑒𝑥𝑐/𝑛.  

Given that 𝑅 (𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙
𝑠𝑤𝑒𝑝𝑡 ) = 260 nm for all light sheets, the resolution for the Gaussian and sinc 

light sheets is particularly anisotropic.  This is evidenced as a smearing of sample structure along 

the 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  axis in deconvolved 𝑥𝑧𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 orthoslices (white arrow, upper left, Fig. S16) that is 

most pronounced in the Gaussian case, where such smearing makes it difficult to resolve ER 

tubules and sheets in the dense perinuclear region (red circle). 

These results directly conflict with the conclusions of (2-4) that the resolution of Gaussian 

and square lattice light sheets is similar for comparable propagation length.  There are several 

possible reasons for this discrepancy: 

•  In (2) and (3), experimental “Gaussian” light sheets were generated by illuminating the 

pupil with a thin line along 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  of uniform intensity cropped by an adjustable slit or annulus 

to the desired 𝑁𝐴𝑒𝑥𝑐.  However, these are the conditions that produce a sinc light sheet (e.g., 

Fig. 2), not a Gaussian one, and as described in Sec. 5, the stronger weighting of high 𝑘𝑧 points in 

the pupil leads to an 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) that is stronger throughout its support region than in the 

Gaussian case, leading to improved resolution on both the stripe test pattern and live LLC-PK1 

cells and, thanks to its slower divergence with its propagation range, an 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑘𝑧) is ∼10x 

stronger near the support at |𝑦|~𝑦𝐻𝑊𝐻𝑀. 

•  (2-4) compare the performance of different light sheets based on the FWHM of the 

central peak of 𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑥, 0, 𝑧) at the specimen focal plane.  However, this does not take into 

account the full spatial frequency content 𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑘𝑧) encoded by the overall shape of the 

central peak and its sidelobes, nor its interplay with 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) that determines 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝒌) =

𝑂𝑇𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑘𝑧)⨂𝑘𝑧𝑂𝑇𝐹𝑑𝑒𝑡(𝒌).  Theoretically, it is this latter 3D function and the 2D support 

surface where it falls to zero that most accurately and completely define resolution (Sec. 3A).  

Experimentally, it is the 3D FFT of the specimen and its self-consistent cross-correlation that 

defines the practical resolution under the specific conditions of the experiment.  For the light 

sheets studied here in Figs. 1,2, and 4-10, the experimental 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝒌)  closely matched 

theory, and the FFT of the ER in living LLC-PK1 cells closely filled the region bound by the 

theoretical support (Fig. S15).  
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•  For example, in (2) a multi-Bessel square LLS of 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 = 0.55/0.44 identical to that 

of one of the lattice light sheets in (1) and a length of 𝑦𝐹𝑊𝐻𝑀 = 51.8 𝜆𝑒𝑥𝑐/𝑛 (19 𝜇m at 𝜆𝑒𝑥𝑐 = 488 

nm and 𝑛 = 1.33) had a measured FWHM of 900 nm (Table 2 of (2)), vs a theoretical one of 980 

nm in Fig. S17Ad for a light sheet we generated with the same conditions.  The stated 𝑦𝐹𝑊𝐻𝑀 

implies 𝑁𝐴𝑒𝑥𝑐 ≈ 0.495.  At this 𝑁𝐴𝑒𝑥𝑐, the equatorial beamlets alone (green arrows, Fig. S17Aa) 

behave equivalently to a sinc light sheet of 𝑁𝐴𝑒𝑥𝑐 = 0.24, which has a theoretical FWHM of 1100 

nm (Fig. 2G) and the ability to resolve the 880 nm line pair in the simulated stripe pattern (green 

arrows, Fig. 2O).  This is recapitulated as expected for the square LLS in Fig. S17Ai and taken alone 

would suggest that the multi-Bessel square and sinc beams of comparable 𝑁𝐴𝑒𝑥𝑐  offer 

comparable resolution.  However, the polar beamlets (purple arrows, arrows, Fig. S17Aa) also 

contribute, creating ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐  shifted copies (purple arrows, Fig.S17Ae) of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)  in 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝒌).  Although, due to the far greater length of the equatorial beamlets, these are 

much weaker than the DC copy (green arrow, Fig. S17Ae), the central peaks of these shifted 

copies are strong enough (purple arrows, Fig. S17Af) that the light sheet can resolve line spacings 

in the 404-514 nm range after 10 iterations of RL deconvolution (light green arrows, Fig. S17Ai), 

slightly beyond the theoretical limit 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) = 444 nm with 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥 = 0.55.  Thus, despite 

their comparable FWHM, this square lattice light sheet from (2) has a resolution limit along 

𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  ~2.5×  and ~2.2×  greater than that of Gaussian and sinc beams of similar length, 

respectively.  On the other hand, the large separation in 𝑘𝑧 between the ends of the equatorial 

bands and the ends of the polar bands in the pupil (Fig. S17Aa) lead to a pair of wide and deep 

troughs in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝒌) (light blue arrows, Figs. S17Ae,Af) that leave unresolved the line pairs 

of separation 550 to 844 nm at the SNR = 20 used in the simulation (red band, Fig. S17Ai).  In 

addition, the ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐  shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)  are so weak that most of the spatial 

frequencies they cover within the support boundary, such as along the “bowtie” line of 𝑘𝑥 =

2𝜋𝑁𝐴𝑑𝑒𝑡/𝜆𝑑𝑒𝑡 (green curve and orange arrows, Fig. S17f) are probably unrecoverable at modest 

SNR.  However, to produce accurate reconstructions of sample structure, a microscope should 

be able to recover all spatial frequencies within its support boundary.  Thus, this particular LLS is 

far from optimal. 

•  Relatedly, in (2-4) conditions were often chosen which produce lattice light sheets of sub-

optimal performance.  One such example is the multi-Bessel square LLS just discussed (Fig. S17A) 

and used in (2) for comparison with (1).  Although this light sheet has the same 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 as one 

from (1), it is twice as long: 𝑦𝐹𝑊𝐻𝑀 = 51.8 𝜆𝑒𝑥𝑐/𝑛 in (2) vs. 27.3 𝜆𝑒𝑥𝑐/𝑛 (10 𝜇𝑚 at 𝜆𝑒𝑥𝑐 = 488 nm 

and 𝑛 = 1.33, Table S1 of (1)).  The shorter light sheet in (1) results from four optimizations that 

were made specifically for multi-Bessel square light sheets.  First, 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠
𝑚𝑎𝑥  was chosen to 

achieve the desired resolution 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) .  Second, 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠
𝑚𝑖𝑛  was chosen to obtain the 

desired propagation length (𝑦𝐹𝑊𝐻𝑀)𝑏  of the polar beamlets near the specimen focal plane 
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according to Eq. (35).  Third, 𝑁𝐴𝑒𝑥𝑐  was set to just above 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠
𝑚𝑖𝑛  so that the equatorial 

beamlets (green arrows, Fig. 17Ba), also according to Eq. (35), had the same propagation length 

as the polar ones (Fig. S7C).  Finally, the cropping factor 𝜖 (Eqs. (16)) was chosen to adjust the 𝑧 

extent of sidelobe excitation in the LLS cross-section (Fig. 17Bb vs. Fig. 17Ab) and, equivalently, 

the relative intensity of the equatorial and polar beamlets in the pupil (green vs. purple arrows, 

Fig. 17Ba). 

These optimizations resulted in a LLS far more suitable for imaging than the corresponding 

one in (2).  The longer equatorial beamlets behaved equivalently to a sinc light sheet of 𝑁𝐴𝑒𝑥𝑐 = 

0.32, extending the resolvability of the wider line pairs in the test pattern simulation down to 697 

nm (green arrows, Fig. S17Bi), and reducing the size of the OTF troughs (light blue arrows, Figs. 

S17Be,f) so that the range of unresolved line pairs along 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  was reduced to only 621-664 

nm at SNR = 20 (red band, Fig. S17Bi).  The reduced intensity of the equatorial beamlets relative 

to the polar ones yielded a narrower light sheet FWHM of 590 nm (Fig. 17Bd) and  ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐 

shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) more than 3×  stronger than the comparative light sheet in (2) 

(purple and orange arrows, Fig. S17Bf vs. Fig. S17Af).  Although the 𝑘𝑧 support and hence the 

smallest resolvable line pair for the two light sheets were identical (404 nm), this increased OTF 

strength resulted in deeper modulation depth for all line pairs.  Furthermore, the OTF strength 

along the “bowtie” line (green lines, Fig. S17Be,f) was similar to that of the multi-Bessel hexagonal 

LLS of Fig. 4, which in that case proved sufficient to recover spatial sample frequencies of the ER 

in live LLC-PK1 cells throughout the support region (upper right inset, Fig. 4O).  Thus, optimization 

of lattice light sheets requires a thorough understanding of all input parameters, and valid 

comparisons require all such parameters to be identical. 

•  In (3), the contribution of the polar beamlets to square and hexagonal lattices was 

deemed insignificant based on PSF linecuts (supplementary note of (3)).  This left only the paired 

equatorial (square) or flanking (hexagonal) beamlets, of which they generated a single copy using 

a uniformly illuminated stripe.  Thus, the “square” and “hexagonal” lattice light sheets used in 

their comparisons were actually sinc and cosine-sinc light sheets having 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥  values 

substantially smaller than the value 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠
𝑚𝑎𝑥  they would have if the polar beamlets were 

included, and hence substantially poorer resolution 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙).  As shown in Fig. S17, given the 

proper optimization of all light sheet parameters, the polar beamlets can have a profound effect 

on LLS performance. 

Overall, Figs. S14 and S15 demonstrate that all seven lattice light sheets were able to meet 

or slightly exceed their theoretical resolution limits as defined by 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) and the support 

boundaries of Fig. S15, even at an SNR of 30 compatible with long term non-invasive live cell 

imaging.  Given that these limits are defined by 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥  (Table S1) which, in the hexagonal and 

hexagonal-rectangular cases, can approach the limits 𝑁𝐴𝑒𝑥𝑐
𝑜𝑏𝑗

=  0.6 (here) or 0.7 (in (1)), the 
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resolution along 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  can reach 3.3 or 2.8× that of a Gaussian light sheet of identical length 

𝑦𝐹𝑊𝐻𝑀 ~ 50𝜆𝑒𝑥𝑐/𝑛, and the maximum axial resolution (𝑅𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙)𝑚𝑎𝑥 at the widefield “bowtie” 

position can reach 3.8 or 4.6× that of a widefield microscope at 𝜆𝑑𝑒𝑡 =520 nm and 𝑁𝐴𝑒𝑥𝑐
𝑑𝑒𝑡 = 1.0 

(here) or 1.1 (in (1)).  These ratios increase further with increasing light sheet length, since 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥  

remains unchanged for a lattice light sheet but decreases as 1/√𝑦𝐹𝑊𝐻𝑀  for a Gaussian one. 

 

C. Accuracy of image reconstruction 

One surprising finding on comparing all nine light sheets is the apparent recovery of sample 

spatial frequencies by RL deconvolution outside the theoretical support: in Fig. S14, seven of 

them were able to resolve line pairs in simulated images separated by (green) less than the 

theoretical limit 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) (blue), and in Fig. S15 all nine cellular FFTs exhibited partial filling 

of the outward facing pair missing cones associated with the furthest shifted copies of  

𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) (e.g., yellow arrows, middle left, Fig. S15).  Furthermore, FSC-guided RL deconvolution 

was able to fill the troughs in the overall OTFs of all seven lattice light sheets (e.g., light blue 

arrows, center, Fig. S15).  Together, these observations suggest that, unlike linear Wiener 

deconvolution, iterative Bayesian restoration with a non-negative prior can recover the 

otherwise missing information in the OTF troughs of lattice light sheets and slightly expand the 

axial support, while also producing sharper images (e.g., Fig. S18A).  However, even Wiener 

deconvolution can produce accurate reconstructions for light sheets with strong excitation 

sidelobes, such as (Fig. S18B,C) the multi-Bessel hexagonal light sheet of Fig. 4, where the pair of 

sidelobes flanking the central excitation peak are >75% of that peak’s intensity (orange curve, 

Fig. 4G).  

The problem of creating accurate representations of sample structure from images 

acquired by a microscope having an overall PSF with strong sidebands and, equivalently, deep 

overall OTF troughs was investigated previously (24-26) in comparisons of 4Pi (27), standing wave 

(SWM, (28)) and image interference and incoherent interference illumination (I5M, (29)) 

microscopy.  The findings include: 

• For accurate linear deconvolution, the primary sidelobes in the overall PSF must be no 

stronger than 50% of the central peak (25).  This condition is met by all the light sheets considered 

here, except for the axial standing wave light sheet of Fig. S11, where 𝑁𝐴𝑒𝑥𝑐 = 0.45 was explicitly 

chosen to produce a discontinuous overall OTF according to Eq. (31) and thereby create a 

condition where RL deconvolution would not be able to generate an accurate reconstruction. 

• The preferred embodiment in (25) consisted of a two-photon 4Pi type A microscope 

(coherent excitation, incoherent detection) with primary sidelobes of the overall PSF at 18% the 

strength of the central peak.  With this arrangement, a raw image of microtubules in a fixed 

fibroblast cell exhibited clear ghost images from these sidelobes, but the corresponding linear 
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deconvolved image produced an accurate representation of the microtubules with no ghosts (Fig. 

6 of (25)).  In comparison, here all light sheets except for that in Fig. S11 exhibited shoulders to 

the central peak, rather than clearly separate sidebands, comparable to or often much smaller 

than this, leading to accurate post-deconvolution reconstructions of the ER in live LLC-PK1 cells. 

•  The single-photon 4Pi type C embodiment (coherent excitation and detection) was able to 

produce a nearly artifact-free images of simulated test structures after RL deconvolution (Fig. 2 

of (26) and Fig. 6C of (24)), despite having overall OTF troughs ∼5% of the DC peak (Fig. 2 of (25), 

Fig. 2 of (24)) and a pair of sidelobes 40-60% as strong as the central peak (Fig. 1 of (26) and Fig. 

4 of (24)) that create a pair of bright ghosts in the simulated raw image (Fig. 2 of (26)).  In Fig. 2 

of (26), this required 1871 RL iterations. 

•  The stronger the sidelobes, the more RL iterations needed to achieve an optimal 

deconvolved result (26).  Similar trends are seen for the light sheets presented here. 

In short, the sidelobe conditions for which RL deconvolution produces artifact-free images 

of sample structure in 4Pi microscopy is consistent with the conditions that produce accurate 

reconstructions of simulated stripe test patterns and experimental image volumes of live LLC-

PK1 cells with the light sheets studied here.  Furthermore, in either modality, accurate, ghost-

free reconstruction implies the ability of RL deconvolution to recover sample spatial frequencies 

even within deep OTF gaps, as surmised above. 

Although the results of (24-26) and the measurements here are mutually consistent, they 

disagree with the conjectures and assertions of (2-4).  We consider these differences as follows: 

•  Both (2) and (3) cite the 50% rule of (25) for the maximum sidelobe height beyond which 

accurate image reconstruction cannot be performed as a reason to dismiss the usefulness of 

hexagonal lattices.  However, they both refer to the sidelobes of the excitation PSF (e.g., Fig. 3C 

of (3)), whereas (25) refers to the overall PSF, in which the excitation sidelobes are suppressed 

by the envelope of 𝑃𝑆𝐹𝑑𝑒𝑡(𝒙).  Indeed, the primary excitation sidelobes of the two-photon 4Pi 

type A arrangement that produced accurate reconstructions in (25, 26) were stronger than this 

50% threshold, and those of the axial standing wave and hexagonal LLSs of Figs. 4, 6, 8, 9, and 

S10 were 76%, 93%, 100%, 85%, and 55%, respectively, of the central peak intensity.  However, 

in all these cases, the shoulders of the corresponding overall PSF were < 25% of the central peak, 

and every one was able to achieve reconstructions largely free of ghost artifacts (panel Q and 

Movies 5, 7, 10, 18, and 6, respectively). 

•  Similarly, (3) and (4) state that hexagonal or “periodic” light sheets exhibit gaps in the their 

OTFs that are prone to artifacts.  While OTF troughs certainly exist for nearly all the lattice light 

sheets considered here, all produce accurate reconstructions after an FSC-determined optimum 

number of RL iterations, as seen in panels Q and the comparative 𝑥𝑧𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 orthoslices in Fig. 

S16.  Furthermore, despite the OTF troughs, all light sheets recovered the spatial frequencies at 
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the locations of these troughs as evidenced by the FFTs of their reconstructed image volumes, 

even at the modest SNR ≈ 20 (∼500 counts/pixel, including ∼100 dark counts/pixel) used in 

these experiments. 

•  Both (2) and (4) argue that sidelobes of the excitation PSF introduce “blur” and “background 

noise” that reduce “optical sectioning” and “image contrast”.  However, this is relevant only if 

one were to rely only on raw images.  In any raw image, the true sample structure is convolved 

with the overall PSF of the microscope, so that fluorescence emission from 3D regions outside 

the specimen point conjugate to any raw image voxel, including those associated with the 

excitation sidelobes, is incorrectly assigned to that voxel.  The purpose of deconvolution is then 

to reassign this misassigned signal to its correct sources in the deconvolved image.  Thus, to the 

extent that this assignment can be performed accurately, the fluorescence emission from the 

sidelobes represents useful signal, not obscuring haze, blur, or background noise.  The results for 

4pi microscopy in (24-26) and all the light sheets in this work (except the specifically designed 

counterexample of Fig. S11) demonstrate that such accurate reassignment is possible, even with 

strong primary excitation sidelobes.  In these cases, the optical sectioning post-deconvolution is 

defined by the support of the overall OTF in the 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  direction which, for most lattice light 

sheets, is well beyond that of confocal microscopy, and the image contrast is very high. 

•  Of (2-4), only (3) sought to demonstrate experimentally the claim that OTF troughs and 

strong primary excitation sidebands lead to image artifacts, even post-deconvolution.  There, a 

light sheet designed to mimic a swept hexagonal LLS was generated by illuminating a pupil 

annulus of 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 = 0.536/0.450 with a single uniform stripe parallel to the 𝑘𝑧 axis at 𝑁𝐴 = 

0.423 (Hex79, row 3, Fig. 3 of (3)).  The polar beamlets of the hexagonal lattice were not included, 

as they were deemed inconsequential.  The light sheet therefore actually mimics a swept 

rectangular cosine-sinc LLS of 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥 = 0.324 (Fig. S19) with resolution 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) = 753 nm 

and a propagation length of 𝑦𝐹𝑊𝐻𝑀 = 35.5 𝜆𝑒𝑥𝑐/𝑛.  In 3D images of collagen and clathrin-coated 

pits in ARPE cells (Figs. 4 and 5 of (3)), clear ghost image artifacts were seen after 10 iterations of 

RL deconvolution, so chosen “to avoid clipping of dim features and over-deconvolution”.  

However, by our FSC metric, we found that the hexagonal LLSs in Figs. 4, 8, 9, and S27 optimally 

required 55, 105, 65, and 50 iterations, respectively, at which point each showed negligible ghost 

artifacts.  Indeed, all these light sheets still exhibited clear blur and ghost images after only 10 

iterations (e.g., Fig. S20, for the case of the multi-Bessel hexagonal LLS in Fig. 4) but no such 

anomalies remained after the FSC-proscribed number of iterations.  Yet the LLS of Fig. 4 has 

higher resolution 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) =  519 nm and a longer propagation length of 𝑦𝐹𝑊𝐻𝑀 =  48.0 

𝜆𝑒𝑥𝑐/𝑛 and therefore might be expected to be more susceptible to sidelobe-generating artifacts, 

not less.  Thus, assuming correct alignment of the light sheet to the detection focal plane, it seems 

likely that the ghost artifacts for the “hexagonal” LLS in (3) are due to insufficient deconvolution. 
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It should perhaps not be surprising that the fluorescence generated by the sidelobes of a LLS 

provide valuable high resolution information rather than obscuring background, given the 

success of widefield 3D SIM (6).  There, periodic interference patterns often extending 

throughout the entirety of whole cells create fuzzy raw images rife with ghost artifacts.  However, 

after acquiring 15 such images per 𝑧 plane at three different orientations and five equal phase 

steps within the lateral period of the interference pattern, overlapping specimen spatial 

frequencies in these images are separated, amplitude-corrected by deconvolution, and 

reassembled into a final image of ~2× resolution gain in all three dimensions.  Accurate image 

reconstruction by RL deconvolution in LLSM is generally much easier, given the generally much 

tighter envelope bounding the sidelobes of a swept LLS. 

In fact, this tighter bounding envelope allows LLSM to extend SIM to samples that are so large 

and/or densely fluorescent that the amount of out-of-focus emission is too large to enable 

accurate reconstruction by widefield SIM (1, 19).  Axially, the resolution  

(𝑅𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙)𝑚𝑎𝑥 of LLS-SIM is identical to swept LLSM with the same light sheet: 316 nm in the case 

of a hexagonal LLS of 𝑁𝐴𝑒𝑥𝑐 = 0.46 and 𝜎𝑁𝐴 = 0.1 (Fig. S21 and Movie 13).  This is 2.17× better 

than (𝑅𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙)𝑚𝑎𝑥 of a widefield microscope at 𝑁𝐴𝑒𝑥𝑐 = 1.2 and slightly better than the 344 nm 

axial resolution at 𝑁𝐴𝑒𝑥𝑐 =  1.2 of widefield 3D SIM.  Laterally, however, the resolution  

𝑅 (𝒆̂𝒙𝒐𝒑𝒕𝒊𝒄𝒂𝒍
𝑆𝐼 ) = 183 nm is 1.42× better than in the swept mode with the same light sheet, and the 

harmonics of 𝑂𝑇𝐹𝑒𝑥𝑐
𝑓𝑖𝑥𝑒𝑑

(𝒌)  of the hexagonal lattice (Fig. 3Cc) create copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)  in 

𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑆𝐼 (𝒌) that fill the gaps in the swept OTF to result in a more uniform OTF throughout the 

extended support without the need for RL deconvolution.  Although this comes at the cost of 

acquiring five phase-stepped raw images per plane, LLS-SIM is sufficiently rapid and gentle that 

we imaged a 80 x 194 x 18 µm3 field of living LLC-PK1 cells expressing an ER marker at 5.62 

sec/volume for 100 volumes with minimal photobleaching (Movie 13), and the FFTs of the 

reconstructed image volume indicated the ability to recover sample information across most of 

the expanded support region (upper right insert, right panel, Fig. S21).  

 

D. Excitation envelope and photobleaching 

Another concern expressed in (2-4) is that sidelobes to the excitation PSF lead to 

accelerated photobleaching and phototoxicity.  In Movie 14, the theoretical light sheet excitation 

cross-section (red) and cumulative intensity from the center of the light sheet (blue), normalized 

to the integrated intensity across the entire light sheet: 

𝐼𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑠𝑤𝑒𝑝𝑡 (𝑦, 𝑧) = ∫ 𝑃𝑆𝐹𝑒𝑥𝑐

𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧′)𝑑𝑧′
𝑧

−𝑧

∫ 𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(𝑦, 𝑧′)𝑑𝑧′

∞

−∞

⁄                   (39) 

is shown as a function of position y along the propagation axis for the Gaussian, sinc, and seven 

lattice light sheets of common length 𝑦𝐹𝑊𝐻𝑀 ∼ 50 𝜆𝑒𝑥𝑐/𝑛 in Figs. 1,2, and 4-10.  At the excitation 
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focus, the FWHM of 𝐼𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑠𝑤𝑒𝑝𝑡 (0, 𝑧)  scales approximately with (𝑁𝐴𝑒𝑥𝑐

𝑚𝑎𝑥)2  in most cases.  

Furthermore, at the edges of the propagation range, where 𝑃𝑆𝐹𝑒𝑥𝑐
𝑠𝑤𝑒𝑝𝑡(|𝑦𝐻𝑊𝐻𝑀|, 0)/ the FWHM 

of 𝐼𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑠𝑤𝑒𝑝𝑡 (𝑦𝐻𝑊𝐻𝑀, 𝑧) approximately doubles, as expected by energy conservation.  Thus, 

there is potentially a quadratically increasing cost in terms of photobleaching and phototoxicity 

at higher desired 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) which should be addressed. 

It is difficult to assess phototoxicity quantitatively and apply the findings broadly, as it 

depends on: cell type, state, density, passage number, and expression level; fluorophore type 

and delivery; environment past and present (e.g., temperature, pH, CO2, contamination, 

substrate adhesion); and imaging wavelength, intensity, and total dose.  Hence, we focus on the 

simpler problem of quantifying photobleaching across light sheets, since it appears less 

dependent on a number of these parameters.  Specifically, as a reproducible standard we use the 

photobleaching of living confluent human induced pluripotent stem cells (hiPSCs) gene-edited 

for mono-allelic expression of mEGFP-αTubulin (Fig. S22).  For twelve light sheets of length 

𝑦𝐹𝑊𝐻𝑀 ∼ 50 𝜆𝑒𝑥𝑐/𝑛  (left and center groups, Fig. 11), we imaged cells at an SNR ∼ 20, as 

measured at microtubules, for 100 volumes of 151 planes each at 2.1 sec intervals.  The step size 

∆𝑥𝑠𝑝 between planes varied to achieve Nyquist sampling for the 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥  of each light sheet (as 

given in Fig. 11 and Table S1).  We imaged six different fields of cells for each light sheet and fit a 

single exponential 𝐼(𝑛𝑣𝑜𝑙𝑢𝑚𝑒) = 𝐼𝑜exp(−𝑛𝑣𝑜𝑙𝑢𝑚𝑒/𝜏𝑣𝑜𝑙𝑢𝑚𝑒)  to the bleaching data from each 

session to estimate 𝜏𝑣𝑜𝑙𝑢𝑚𝑒 and its uncertainty (light blue band for each light sheet, Fig. 11).  

Expressed in terms of 𝜏𝑣𝑜𝑙𝑢𝑚𝑒, the bleaching rate between the twelve light sheets varied by 

∼2×, with the Gaussian light sheet bleaching the slowest.  However, these differences are far 

less than would be expected if the only role of excitation sidelobes were to create out-of-focus 

haze that accelerates photobleaching: after all, the integrated intensity 𝐼𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑠𝑤𝑒𝑝𝑡 (0, 𝑧𝐻𝑊𝐻𝑀

𝑐𝑒𝑛𝑡𝑒𝑟) 

across the FWHM of the central excitation peak in the Gaussian and sinc light sheets were 80% 

and 70% of the total, whereas 𝐼𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒
𝑠𝑤𝑒𝑝𝑡 (0, 𝑧𝐻𝑊𝐻𝑀

𝑐𝑒𝑛𝑡𝑒𝑟) was only 12-18% for the seven lattice light 

sheets in Movie 14.  These numbers provide additional evidence that LLS sidelobes provide useful 

signal.  Furthermore, 𝜏𝑣𝑜𝑙𝑢𝑚𝑒 does not take into account that the Gaussian and sinc light sheets 

move in coarser steps (∆𝑥𝑠𝑝 =340 nm and 270 nm, respectively) by virtue of their lower 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥, 

and therefore the signal they produce at the 151 planes/volume used here comes from a larger 

volume having a correspondingly larger photon budget than the lattice light sheets.  Once the 

bleaching rate is normalized by 𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚 = 𝜏𝑣𝑜𝑙𝑢𝑚𝑒/∆𝑥𝑠𝑝 to account for the extra information 

per unit length of FOV produced by light sheets of higher 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥, the bleaching rates of all ten 

lattice light sheets in Fig. 11 are to within ∼30% of that in the Gaussian and sinc cases.  Thus, to 

close order all these light sheets are equally efficient in converting fluorescent photons into 

useful signal.  This is consistent with the successful reassignment of side lobe fluorescence to its 

correct origins after RL deconvolution at comparable SNR seen for all lattice light sheets in LLC-

PK1 cells (Figs. 4-10) as well as the hiPSCs used for the bleaching measurements here (Fig. S22). 
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Rather than using a lattice light sheet to image across a long FOV in the propagation 

direction 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  at high 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥 , an alternative is to scan a Gaussian or sinc light sheet of 

comparably high 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥  but shorter length 𝑦𝐹𝑊𝐻𝑀  across a comparable FOV in the 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  

direction at each image plane (30).  To eliminate the collection of out-of-focus fluorescence from 

parts of the light sheet outside the |𝑦| ≤ 𝑦𝐻𝑊𝐻𝑀 𝑧-confined propagation portion but inside the 

𝑦  FOV (e.g., gold arrow, Fig. S23), the camera integration window moves with the confined 

portion as the light sheet is scanned.  We evaluated the imaging performance of short light sheets 

such as these by imaging live ER-labeled LLC-PK1 cells over the same ~50 𝜆𝑒𝑥𝑐/𝑛 FOV in the 

propagation direction as used in the examples above, but with Gaussian (Fig. S23 and Movie 14), 

sinc (Fig. S24 and Movie 16), and multi-Bessel square lattice light sheets (Fig. S9 and Movie 4) of 

length ~15 𝜆𝑒𝑥𝑐/𝑛.  Because we were not equipped to rapidly scan these light sheets across the 

𝑦 FOV, we instead imaged the cells with four tiles stacked in the 𝒆̂𝑧𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
 direction, which gave 

the small overlap between tiles needed to successful stitch the data into a single image volume.  

The integration time for each single tile frame was set to ¼ that used for the longer light sheets 

used elsewhere here in order to achieve a total signal integration time over the entire volume 

comparable to that used with the longer light sheets, although the overhead associated with the 

additional scan steps and tiling resulted in total imaging times ~4× slower. 

As seen in panels I-L, the agreement between the theoretical and experimental overall OTFs 

at both the focal plane and 𝑦 = 𝑦𝐻𝑊𝐻𝑀 is good for all three light sheets.  In addition, all three 

were able to recover sample spatial frequencies (FFT insets, panels Q) up to the boundary of their 

𝑘𝑧 support, corresponding to 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) = 581, 546, and 407 nm for the Gaussian, sinc, and 

multi-Bessel square cases of 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥 = 0.42, 0.45, and 0.60 respectively.  However, unlike the ten 

lattice light sheets of length 𝑦𝐹𝑊𝐻𝑀 ∼ 50 𝜆𝑒𝑥𝑐/𝑛 in the left and center regions of Fig. 11, all three 

short light sheets in the rightmost region induced photobleaching in hiPSCs endogenously 

expressing mEGFP-αTubulin substantially faster than the reference long Gaussian light sheet of 

Fig. 1, with 𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚/𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚
𝑟𝑒𝑓

= 4.3, 5.4, and 6.4, respectively. 

The reason for faster bleaching with these shorter light sheets is clear: for all light sheets 

studied here, both long and short, nearly all the fluorescence generated within the region |𝑦| ≤

𝑦𝐻𝑊𝐻𝑀  is collected and converted to useful signal, including that produced by any significant 

sidelobes, at SNR levels of 20-30 consistent with long term 3D live cell imaging (blue regions, Fig. 

S25A).  However, if the specimen is longer than 𝑦𝐹𝑊𝐻𝑀 in the 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  direction, fluorescence is 

also generated beyond |𝑦| = 𝑦𝐻𝑊𝐻𝑀 that is increasingly out-of-focus and information poor (red 

regions, Fig. S25B).  This background obscures the in-focus signal (blue region, Fig. S25B) as the 

light sheet is scanned in 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  to cover a larger 𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙
𝐹𝑂𝑉  unless a sliding camera integration 

window of width 𝑦𝐹𝑊𝐻𝑀 is used to reject it. 

By this argument, any of the light sheets studied here should photobleach a specimen of 

size 𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙
𝐹𝑂𝑉 > 𝑦𝐹𝑊𝐻𝑀 at a rate 𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚 ∝ 1/𝑦𝐹𝑊𝐻𝑀.  Given the four tiles used for the short 
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light sheets in Fig. 11, this is consistent with the 4.3× faster bleaching seen for the short Gaussian 

light sheet (Fig. S23) vs. the long one (Fig. 1).  However, the photobleaching rate increases further 

with increasing 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥  for the short sinc and multi-Bessel square light sheets.  This is consistent 

with (1) and (19), where it was determined that photobleaching increases nonlinearly with 

increasing peak intensity in the specimen.  The lattice light sheets studied here are particularly 

advantageous in this regard, because by spreading the excitation across multiple planes 

simultaneously (the fluorescence from all which contribute useful signal) the intensity in the 

central peak is kept lower for the same SNR than would be the case even if it were possible to 

produce a sidelobe-free light sheet of the same central peak width and propagation length.  

Furthermore, it has been shown that live specimens often exhibit phototoxic effects long before 

substantial photobleaching is evident (e.g.: movie S3 of (1); Figs. 3H,I of (16), Figs. 1C and 4E,F of 

(16)), so the relative non-invasiveness of lattice light sheets compared to axially scanned confined 

beams of similar 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥  can be expected to be even more pronounced. 

 

9.  Further Optimizations of Lattice Light Sheets 

 

Thus far, we have considered the properties of both multi-Bessel and axially confined lattice 

light sheets.  Both derive from pupil excitation patterns consisting of a periodic set of 𝑘𝑥 =

2𝜋|𝑚|/Τ illumination bands with |𝑚| < 𝑁𝐴𝑒𝑥𝑐Τ/𝜆𝑒𝑥𝑐 .  In the multi-Bessel case, these bands 

span the entirety of the pupil in 𝑘𝑧, and every band for which 2𝜋|𝑚|/𝛵 < 𝑘𝑜(𝑁𝐴𝑚𝑖𝑛)𝑎𝑛𝑛𝑢𝑙𝑢𝑠 is 

split by the annulus into a pair of beamlets having identical values of (𝑁𝐴𝑚𝑎𝑥)𝑏 =

(𝑁𝐴𝑚𝑎𝑥)𝑎𝑛𝑛𝑢𝑙𝑢𝑠  and (𝑁𝐴𝑚𝑖𝑛)𝑏 = (𝑁𝐴𝑚𝑖𝑛)𝑎𝑛𝑛𝑢𝑙𝑢𝑠 .  Therefore, by Eq. (35), all such beamlets 

have similar propagation lengths (e.g., Fig. S13C) along 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  and advantageously create 𝑘𝑧-

shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) that retain their relative strengths throughout their 

propagation range (e.g., purple and gold arrows, Figs. 4J,L).  Disadvantageously, these beamlets 

simultaneously increase in length Δ𝑘𝑧 = 𝑘𝑧
+ − 𝑘𝑧

− and move towards lower 𝑘𝑧  with increasing 

|𝑚| (e.g., purple and gold arrows, Fig. 4C), so that 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌)  becomes strongly weighted at 

lower 𝑘𝑧 .  This effect is most pronounced for cosine-sinc lattices (Figs. S6,S8, such as those 

created by serial illumination of each of the pupil bands), where every beamlet has the same 

pupil intensity per unit length, but can be ameliorated to some extent with binary SLM generated 

light sheets, where the cropping factor (Eqs. (16d,e)) and the 𝑁𝐴𝑚𝑎𝑥  and 𝑁𝐴𝑚𝑖𝑛 assumed in the 

calculation of field 𝐸𝑒𝑥𝑐
𝑐𝑆𝐼(𝒙) applied to the SLM (Eq. (11a)) can be adjusted empirically to increase 

the intensity per unit length of the higher 𝑘𝑧 beamlets relative to the lower ones (e.g., purple and 

gold arrows, Fig. S6A vs. Fig. 4C). 

To compensate for the different strengths of the beams that interfere in the specimen to 

create a multi-Bessel lattice light sheet, we can modify the pattern Φ𝑆𝐿𝑀(𝑥, 𝑧) applied to the SLM 

by: a) individually adjusting the electric field amplitudes 𝑬𝒎 of the plane waves that comprise the 
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corresponding ideal lattice of the desired symmetry (Eq. (36a) and yellow points, inset of Fig. 

S27A); b) calculating the desired pupil field 𝐸𝑝𝑢𝑝𝑖𝑙
𝑐𝑀𝐵 (𝑘𝑥, 𝑘𝑧) by replacing all pupil points with bands 

along 𝑘𝑧 of the new amplitude 𝑬𝒎 bound by the 𝑁𝐴𝑚𝑎𝑥  and 𝑁𝐴𝑚𝑖𝑛 of the desired annulus (i.e., 

by replacing 𝐸𝑜 with 𝑬𝒎 in each term of the sum in Eq. (36b)); c) calculating the desired electric 

field at the specimen focal plane 𝐸𝑒𝑥𝑐(𝑥, 0, 𝑧) ∝ 𝐹𝑇𝑘𝑥𝑘𝑧{𝐸𝑝𝑢𝑝𝑖𝑙
𝑐𝑀𝐵 (𝑘𝑥, 𝑘𝑧)} ; and d) using 

𝐸𝑒𝑥𝑐(𝑥, 0, 𝑧) to determine Φ𝑆𝐿𝑀
MB (𝑥, 𝑧) (e.g., Fig. 26B) according to Eqs. (16).   

Applying this procedure to the multi-Bessel LLS of Fig. 4 by increasing the amplitude of its 

polar beamlets by √2 × results in a LLS of all the same properties (Fig. S27 and Movie 17), except 

with the strength of the ±2𝑘𝑜𝑁𝐴𝑒𝑥𝑐  harmonics of 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) increased twofold to match 

that of the ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐   harmonics (purple and gold arrows, respectively, Fig. S27I,J).  

Furthermore, because all the beamlets in a multi-Bessel hexagonal LLS have the same 

propagation length, the adjusted weighting of the non-zero harmonics is maintained across this 

length (purple and gold arrows, Fig. S27K,L).  Although the theoretical support is unchanged 

(white border, FFT inset of panel Q, Fig. S27 vs. Fig. 4), as is the minimum resolvable line spacing 

in simulations (Fig. F26O vs. Fig. 4O), the higher strength near the 𝑘𝑧 support by equalizing the 

strengths of the harmonics can be expected to lead to higher 𝑧 resolution in practice in low SNR 

situations. 

Axially confined lattice light sheets have tradeoffs the inverse of multi-Bessel ones.  By Eqs. 

(36b) and (37), all axially confined beamlets share the same bounding factor 𝐵̃(𝑧𝑝) at the pupil 

and the same beam envelope and intensity 𝐵(𝑧) at the specimen focal plane (green arrows, Fig. 

S13B,D).  Advantageously, these create 𝑘𝑧-shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) having 

similar strengths at the specimen focal plane, resulting in a more uniform 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) up to its 

𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  support (e.g, purple and gold arrows, Fig. 8I vs. Fig. 4I) than in the multi-Bessel case.  In 

addition, because the beamlet lengths are not determined by the annular mask, the mask can be 

replaced with a DC beam block to permit the passage of higher diffraction orders created at the 

SLM that help fill the troughs between the shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) (e.g., 

pink and light blue arrows, Fig. 8I,J).  Disadvantageously, by Eq. (35) pupil beamlets of increasingly 

high 𝑘𝑧 create beams in the specimen that intersect the propagation axis 𝒆̂𝑦𝑜𝑝𝑡𝑖𝑐𝑎𝑙  at increasingly 

high angles 𝛼 (Fig. S26) and therefore have decreasingly small propagation distances 𝐿 along this 

axis (e.g., Fig. S13B,D).  Consequently, increasingly shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) that contribute 

increasingly higher resolution 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙)  become increasingly weak with increasing 𝑦  (e.g., 

purple arrows, Fig. 8K,L vs. Fig. 8I,J) even within the overall propagation range |𝑦| ≤ 𝑦𝐻𝑊𝐻𝑀. 

The disparate propagation lengths (𝑦𝐹𝑊𝐻𝑀)𝑏 of the beams that interfere in the specimen 

to create an axially confined lattice light sheet (e.g., Figs. S13B,D) result in an increasingly rapid 

decay in the strength of the higher harmonics in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) with increasing 𝑦  within the 

propagation range (e.g., purple arrows, Figs. 7I,J vs. Fig. 7K,L).  To compensate for this, one 

strategy is to reduce the Gaussian bounding 𝜎𝑁𝐴 (Eq. (37b)) of all pupil beamlets until the one 
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with the shortest (𝑦𝐹𝑊𝐻𝑀)𝑏 is as long as the desired propagation range (Figs. S28, S29 and Movie 

18).  Again, this does not change the theoretical support, but it results in much stronger 

frequency-shifted harmonics near 𝑦𝐻𝑊𝐻𝑀  (purple arrows, Fig. S29K,L) than by the usual 

prescription of adjusting 𝜎𝑁𝐴 based on the desired propagation range of the entire light sheet. 

The optimal lattice light sheet would have an overall OTF both uniform and strong 

everywhere within its 3D support and maintain this strength and uniformity over its designed 

propagation range.  It would also have sidelobes confined enough that the fluorescence they 

generate can be converted to useful signal to minimize unnecessary photobleaching.  We can 

come closer to this ideal by combining the ideas above as follows: 

1)  Choose the symmetry (Sec. 7A and Fig. 3), 𝑁𝐴𝑒𝑥𝑐, and propagation length 𝑦𝐹𝑊𝐻𝑀 of the 

desired LLS.  The symmetry determines the wavevectors 𝒌𝑏 of the underlying ideal 2D lattice.  

We exclude the square lattice since, although it is well suited for applications requiring minimal 

sidelobe excitation, such as single molecule detection, its overall OTF is unnecessarily weighted 

toward DC by its equatorial beamlets.  For most other applications, the axial standing wave or 

hexagonal lattice is a better choice.  

2)  Model the pupil electric field 𝐸𝑏(𝑘𝑥, 𝑘𝑧) of each beamlet of the desired LLS as a 1D 

Gaussian centered 𝒌𝑏𝑁𝐴𝑒𝑥𝑐/𝑘 having a 1/𝑒 half-width of (𝜎𝑁𝐴)𝑏 and peak amplitude (𝐸𝑜)𝑏: 

𝐸𝑏(𝑘𝑥, 𝑘𝑧) = (𝐸𝑜)𝑏δ(𝑘𝑥 − (𝒌𝑏 ∙ 𝒆̂𝑥𝑜𝑝𝑡𝑖𝑐𝑎𝑙)𝑁𝐴𝑒𝑥𝑐) × 

exp (−(𝑘𝑧 − (𝒌𝑏 ∙ 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙)𝑁𝐴𝑒𝑥𝑐)
2)/(𝜎𝑁𝐴)𝑏

2)                                 (40) 

3)  Find the relative value of (𝜎𝑁𝐴)𝑏 for each beamlet which gives it the same propagation 

length (𝑦𝐹𝑊𝐻𝑀)𝑏 = 𝑦𝐹𝑊𝐻𝑀  as every other beamlet.  By Eq. (35), (𝑦𝐹𝑊𝐻𝑀)𝑏  of any beamlet is 

proportional to the numerical aperture range: 

 Δ𝑁𝐴𝑏 = 𝑁𝐴𝑏
+ − 𝑁𝐴𝑏

−                                                           (41𝑎) 

 it covers in the pupil.  For our 1D Gaussian beamlets, we estimate Δ𝑁𝐴𝑏 from the numerical 

aperture at the 1/𝑒 points 𝒌𝑏𝑁𝐴𝑒𝑥𝑐 ± (𝜎𝑁𝐴)𝑏𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙  of 𝐸𝑏(𝑘𝑥, 𝑘𝑧), akin to the points 𝑘𝑧
± in Fig. 

S5: 

𝑁𝐴𝑏
± ≈ √𝑁𝐴𝑒𝑥𝑐2 ± 2𝑁𝐴𝑒𝑥𝑐 |𝒌𝑏 ∙ 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙| (𝜎𝑁𝐴)𝑏/𝑘𝑜 + (𝜎𝑁𝐴)𝑏

2                       (41𝑏) 

This assumes that the beamlet does not cross the equatorial 𝑘𝑧 = 0 line, which is true for all 

beamlets of all lattices in Fig. 3 except the square one.  Since |𝒌𝑏 ∙ 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙| (𝜎𝑁𝐴)𝑏/𝑘𝑜 < 1 and 

usually (𝜎𝑁𝐴)𝑏/𝑁𝐴𝑒𝑥𝑐 ≪ 1, to lowest order in (𝜎𝑁𝐴)𝑏/𝑁𝐴𝑒𝑥𝑐 we find: 

(𝑦𝐹𝑊𝐻𝑀)𝑏 ∝ Δ𝑁𝐴𝑏 ≈ 2 |𝒌𝑏 ∙ 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙| (𝜎𝑁𝐴)𝑏/𝑘𝑜                                (41𝑐) 

If we choose one of the beamlets as the reference, then by Eq. (41c), (𝜎𝑁𝐴)𝑏  of the other 

beamlets is: 

(𝜎𝑁𝐴)𝑏 ≈
Δ𝑁𝐴𝑟𝑒𝑓

Δ𝑁𝐴𝑏
(𝜎𝑁𝐴)𝑟𝑒𝑓                                               (41𝑑) 
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4)  Find (𝜎𝑁𝐴)𝑟𝑒𝑓 in terms of the desired 𝑦𝐹𝑊𝐻𝑀 of the entire light sheet and therefore, by 

Eq. (41d), (𝜎𝑁𝐴)𝑏 for all other beamlets.  To do so, we choose a polar beamlet, for which:  

|𝒌𝑟𝑒𝑓 ∙ 𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙| = 𝑘𝑜                                                           (42)  

as the reference.  By Eq. 35, 𝑦𝐹𝑊𝐻𝑀 and (𝜎𝑁𝐴)𝑟𝑒𝑓 are then related by: 

𝑦𝐹𝑊𝐻𝑀 ≈
𝜆𝑒𝑥𝑐/𝑛

2(√1 − ((𝑁𝐴𝑒𝑥𝑐 − (𝜎𝑁𝐴)𝑟𝑒𝑓)/𝑛)2 − √1 − ((𝑁𝐴𝑒𝑥𝑐 + (𝜎𝑁𝐴)𝑟𝑒𝑓)/𝑛)2
        (43𝑎) 

Expanding to lowest order in (𝜎𝑁𝐴)𝑟𝑒𝑓/𝑁𝐴𝑒𝑥𝑐, this yields: 

(𝜎𝑁𝐴)𝑟𝑒𝑓 ≈
√𝑛2 − 𝑁𝐴𝑒𝑥𝑐

2

4𝑁𝐴𝑒𝑥𝑐

𝜆𝑒𝑥𝑐
𝑦𝐹𝑊𝐻𝑀

                                              (43𝑏) 

5)  Individually adjust the electric field amplitudes (𝐸𝑜)𝑏 of the beamlets at the pupil so that 

the amplitudes (𝐸𝑓𝑜𝑐𝑢𝑠)𝑏of the Gaussian beams they produce at the focal point in the specimen 

are identical.  For example,  

(𝐸𝑓𝑜𝑐𝑢𝑠)𝑏 = (𝐸𝑓𝑜𝑐𝑢𝑠)𝑟𝑒𝑓                                                     (44𝑎) 

By doing so, all non-zero harmonics of the swept excitation OTF are identical, leading to 𝑘𝑧 

shifted copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌)  of equal strength, and thus a more uniform 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝒌) 

throughout the support region.  To do so, we note that, by energy conservation: 

(𝐸𝑓𝑜𝑐𝑢𝑠)𝑏 =
(𝐸𝑜)𝑏

(𝜎𝑓𝑜𝑐𝑢𝑠)𝑏

                                                        (44𝑏) 

However, for every Gaussian beam: 

(𝜎𝑓𝑜𝑐𝑢𝑠)𝑏 ∝
1

(𝜎𝑁𝐴)𝑏
                                                             (44𝑐) 

Combining Eqs. (41d) and (44a-c) then gives the desired relationship between the beamlet 

amplitudes in the pupil: 

(𝐸𝑜)𝑏 =
Δ𝑁𝐴𝑏
Δ𝑁𝐴𝑟𝑒𝑓

(𝐸𝑜)𝑟𝑒𝑓                                                       (44𝑑) 

6)  Use the pupil pattern 𝐸𝑝𝑢𝑝𝑖𝑙(𝑘𝑥, 𝑘𝑧) = ∑𝐸𝑏(𝑘𝑥, 𝑘𝑧) described by Eq. (40) to determine 

𝐸(𝑥, 0, 𝑧) according to Eq. (1d) and then find the SLM grayscale pattern Φ𝑆𝐿𝑀(𝑥, 𝑧) needed to 

generate the LLS from Eqs. (16a-c). 

7)  Since (𝜎𝑁𝐴)𝑏  and (𝜎𝑁𝐴)𝑟𝑒𝑓  in Eqs. (41d) and (43b) are estimates, adjust (𝜎𝑁𝐴)𝑟𝑒𝑓 

empirically and all other (𝜎𝑁𝐴)𝑏  of according to Eq. (41d) to fine tune 𝑦𝐹𝑊𝐻𝑀  to the desired 

length. 

Because this procedure is designed to produce lattice light sheets of equal harmonic 

strength that maintain their equality throughout their propagation range, we term them 

harmonic balanced lattice light sheets.  The examples shown for hexagonal and hexrect lattices 
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of 𝑁𝐴𝑒𝑥𝑐 = 0.50 and 𝑦𝐹𝑊𝐻𝑀  ~ 50 𝜆𝑒𝑥𝑐/𝑛 in Figs. 9 and 10, respectively, show that these goals 

are largely achieved in practice, with all harmonics maintaining comparable relative amplitudes 

throughout the propagation range (colored arrows, Figs. 9,10I-L, Movies 19,20).  Likewise, the 

individual harmonic bands of both lattices are all close to the desired length (Fig. S30), with the 

exception of the ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐/2 band of the hexrect LLS, where the two beamlets in each band 

merge into a pair of longer DC bands (blue arrows, Fig. 10C,D).  This may be because the 

assumption (𝜎𝑁𝐴)𝑏/𝑁𝐴𝑒𝑥𝑐 ≪ 1 used to derive Eq. (41d) is not valid in this case.  If desired, 

(𝜎𝑁𝐴)𝑏 for these beamlets could be empirically adjusted to achieve the desired 𝑦𝐹𝑊𝐻𝑀, but even 

as is, the effect on the overall OTF is not substantial. 

Both harmonic balanced light sheets resolve line pairs in the simulated stripe test pattern 

down to 404 nm after 20 RL iterations (green arrows, Figs. 9,10 panel O, and Movies 19,20 part 

1), consistent with their mutual 𝑁𝐴𝑒𝑥𝑐 =  0.50.  However, the modulation depth across the 

pattern is deeper and more uniform in the hexrect case (orange arrows, Figs. 9,10 panels N,O), 

perhaps due to the deeper OTF troughs of a hexagonal lattice at this NA (light blue arrows, Fig. 

9I,J), although these could be in principle be partially filled in as demonstrated in the axially 

confined case (pink and light blue arrows, Fig. 8I,J) by using a higher cropping factor 𝜖 to create 

higher diffraction orders flanking the beamlets in the pupil (pink and light blue arrows, Fig. 8C).  

Nevertheless, even as is, live imaging of LLC-PK1 cells reveals 3D ER structure with no obvious 

artifacts in both the hexagonal and hexrect cases after 65 and 60 RL iterations, respectively, as 

indicated by FSC (Figs. 9,10Q, Movies 19,20 part 3), and FFTs of deconvolved image volumes show 

recovery of spatial frequencies throughout most of the support region in both cases (upper right 

insert, Figs. 9,10Q). 

Because harmonic balanced light sheets have reduced confinement (𝜎𝑁𝐴)𝑏  and higher 

amplitude (𝐸𝑜)𝑏  for pupil beamlets associated with increasingly high spatial frequencies, 

excitation at these frequencies extends increasingly far from the center of the light sheet (e.g., 

magenta arrows, Figs. 9,10E).  In the hexagonal case, this leads to a normalized photobleaching 

rate 𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚 nearly 50% faster than the reference Gaussian beam of 𝑁𝐴𝑒𝑥𝑐 = 0.21 (Fig. 11), 

making it the fastest bleaching of all light sheets of  𝑦𝐹𝑊𝐻𝑀 ~ 50 𝜆𝑒𝑥𝑐/𝑛 studied here.  However, 

in the hexrect case, the added harmonics at ±3𝑘𝑜𝑁𝐴𝑒𝑥𝑐/2 and ±𝑘𝑜𝑁𝐴𝑒𝑥𝑐/2 produce an overall 

swept LLS cross-section with substantially weaker off-center maxima (orange curves, Fig. 10G vs. 

Fig. 9G) and, consequently, a bleaching rate 𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚 nearly identical to that of the Gaussian 

beam, despite an 𝑁𝐴𝑒𝑥𝑐
𝑚𝑎𝑥 more than 2.5× larger.  Thus, harmonic balanced lattice light sheets 

represent the preferred embodiment for lattice light sheet microscopy, with axial standing wave, 

hexagonal, and hexrect patterns being the preferred symmetries for 𝑁𝐴𝑒𝑥𝑐 ≲  0.25, 0.25 ≲

𝑁𝐴𝑒𝑥𝑐 ≲ 0.45, and 0.45 ≲ 𝑁𝐴𝑒𝑥𝑐 ≲ 0.60, respectively. 
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10.  Summary 

 

The above results demonstrate that lattice light sheets of all four symmetries in Fig. 3 can 

experimentally achieve resolution 𝑅 (𝒆̂𝑧𝑜𝑝𝑡𝑖𝑐𝑎𝑙) well in excess of that possible with Gaussian and 

sinc light sheets of similar length and completely consistent with the expectations of theoretical 

models.  Furthermore, the out-of-focus fluorescence these light sheets generate can be 

efficiently reassigned by RL deconvolution to their original sources to achieve accurate, 

background-free, high resolution reconstructions of sample structure without accelerating 

photobleaching beyond that observed with low resolution Gaussian beams of similar length.  

Consequently, as has been shown in dozens of publications, lattice light sheet microscopy is 

uniquely suited to reveal novel 3D biological processes noninvasively at high resolution in both 

space and time.  Our introduction here of the hexrect pattern and harmonic balanced lattice light 

sheets further improve their performance and expand their potential range of applicability, 

particularly at higher resolution (i.e., higher 𝑁𝐴𝑒𝑥𝑐) and/or over larger fields of view (i.e., longer 

𝑦𝐹𝑊𝐻𝑀). 
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Main Figures 

 

 
Fig. 1.  Theoretical and experimentally measured characteristics of a swept Gaussian light sheet 

of propagation length 𝑦𝐹𝑊𝐻𝑀 = 51.0  𝜆𝑒𝑥𝑐/𝑛  created by a swept lateral standing wave of 

𝑁𝐴𝑒𝑥𝑐 =  0.21 having a Gaussian bounding envelope in 𝑘𝑧  of 𝜎𝑁𝐴 =  0.21, filtered by a pupil 

conjugate annulus of 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 = 0.40/0.20.  The three dot-dash curves in panels J and L, as well 

as the same panels for all other light sheet figures, give for reference the strength of the widefield 

OTF, 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌), along the 𝑘𝑥 (light blue) and 𝑘𝑧 (pink) axes, as well as the “bowtie” line 𝑘𝑥 =

2𝜋𝑁𝐴𝑑𝑒𝑡/𝜆𝑑𝑒𝑡 where the widefield microscope has its highest resolution in 𝑧. 
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Fig. 2.  Theoretical and experimentally measured characteristics of a swept sinc light sheet of 

propagation length 𝑦𝐹𝑊𝐻𝑀 = 51.5 𝜆𝑒𝑥𝑐/𝑛 created by a pair of uniformly illuminated equatorial 

pupil bands of 𝑁𝐴𝑒𝑥𝑐 =  0.32 filtered by an annulus of 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 =  0.40/0.20 to limit the 

maximum NA in 𝑘𝑧  to 𝑁𝐴𝑠𝑖𝑛𝑐 =  0.24 for the resulting swept lateral standing wave in the 

specimen. 
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Fig. 3.  Characteristics of four ideal optical lattices of different symmetries useful for LLSM.  Each 

successive lattice (panels b) adds illumination points to the previous one at locations on the ring 

of constant 𝑁𝐴𝑒𝑥𝑐 in the pupil (panels a).  The positions of these points are chosen to create new 

discrete spatial frequencies in the swept axial excitation OTF halfway between existing ones 

(panels d) and, consequently, additional copies of 𝑂𝑇𝐹𝑑𝑒𝑡(𝒌) in 𝑂𝑇𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑠𝑤𝑒𝑝𝑡 (𝒌) exactly positioned 

to fill the OTF gaps (light blue arrows, panels f) of the previous lattice.  However, as the number 

of pupil illumination points increases, so does the strength of the DC copy relative to all others 

(e.g., purple arrows, panels d), and hence they should be added only as needed when the desired 

𝑁𝐴𝑒𝑥𝑐 increases to the point that the OTF gaps become difficult to fill via RL deconvolution. 
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Fig. 4.  Theoretical and experimentally measured characteristics of a multi-Bessel LLS of period 

Τ = (2/√3)𝜆𝑒𝑥𝑐/𝑁𝐴𝑒𝑥𝑐  having hexagonal symmetry.  𝑁𝐴𝑒𝑥𝑐 =  0.43, 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 =  0.47/0.40, 

cropping factor 𝜖 = 0.08, and 𝑦𝐹𝑊𝐻𝑀 = 48.0 𝜆𝑒𝑥𝑐/𝑛. 
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Fig. 5.  Theoretical and experimentally measured characteristics of a multi-Bessel LLS of period 

Τ = 𝜆𝑒𝑥𝑐/𝑁𝐴𝑒𝑥𝑐  having square symmetry.  𝑁𝐴𝑒𝑥𝑐 = 0.30, 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 = 0.375/0.225, cropping 

factor 𝜖 = 0.1, and 𝑦𝐹𝑊𝐻𝑀 = 48.5 𝜆𝑒𝑥𝑐/𝑛. 
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Fig. 6. Theoretical and experimentally measured characteristics of an axial standing wave light 

sheet of 𝑁𝐴𝑒𝑥𝑐 =  0.30,  𝜖 =  0.02, and 𝑦𝐹𝑊𝐻𝑀 =  54.5 𝜆𝑒𝑥𝑐/𝑛  axially confined by a Gaussian 

bounding function of 𝜎𝑁𝐴 = 0.10 and filtered by an annulus of 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 = 0.40/0.20. 
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Fig. 7.  Theoretical and experimentally measured characteristics of an axially confined square LLS 

of 𝑁𝐴𝑒𝑥𝑐 = 0.30, 𝜎𝑁𝐴 = 0.09, 𝜖 = 0.10, 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 = 0.40/0.20, and 𝑦𝐹𝑊𝐻𝑀 = 54.0 𝜆𝑒𝑥𝑐/𝑛. 
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Fig. 8.  Theoretical and experimentally measured characteristics of an axially confined hexagonal 

LLS of 𝑁𝐴𝑒𝑥𝑐 = 0.40, 𝜎𝑁𝐴 = 0.075, 𝜖 = 0.10, 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 = 0.60/0.20, and 𝑦𝐹𝑊𝐻𝑀 = 52.0 𝜆𝑒𝑥𝑐/

𝑛. 
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Fig. 9.  Theoretical and experimentally measured characteristics of a harmonic balanced 

hexagonal LLS of 𝑁𝐴𝑒𝑥𝑐 = 0.50, 𝜎𝑁𝐴 = 0.075, 𝜖 = 0.01, 𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 = 0.60/0.40, and 𝑦𝐹𝑊𝐻𝑀 = 

53.0 𝜆𝑒𝑥𝑐/𝑛. 
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Fig. 10.  Theoretical and experimentally measured characteristics of a harmonic balanced 

hexagonal-rectangular patterned light sheet of 𝑁𝐴𝑒𝑥𝑐 =  0.50, 𝜎𝑁𝐴 =  0.15, 𝜖 =  0.01, 

𝑁𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠 = 0.60/0.40, and 𝑦𝐹𝑊𝐻𝑀 = 56.0 𝜆𝑒𝑥𝑐/𝑛. 
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Fig. 11.  Comparative bleaching rates for fifteen light sheets studied here during live 3D imaging of confluent 

human induced pluripotent stem cells gene-edited for mono-allelic expression of mEGFP-αTubulin. 
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axially confined hexagonal LLSaxial standing wave

𝐼𝑠𝑢𝑚
𝐹𝑊𝐻𝑀 = 6.4 lexc /𝑛

𝑁𝐴𝑠𝑞= 0.40

Δ𝑥𝑠𝑝= 230 nm
𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚= 917 

𝜏𝑣𝑜𝑙𝑢𝑚𝑒𝑠= 220

𝑁𝐴 = 0.075 

multi-Bessel hexagonal LLS

𝐼𝑠𝑢𝑚
𝐹𝑊𝐻𝑀 = 6.6 lexc /𝑛

𝑁𝐴𝑠𝑞= 0.43

Δ𝑥𝑠𝑝= 230 nm
𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚= 1387 

𝜏𝑣𝑜𝑙𝑢𝑚𝑒𝑠= 319

𝑁𝐴𝑚𝑎𝑥
𝑎𝑛𝑛𝑢𝑙𝑢𝑠= 0.47 

𝐼𝑠𝑢𝑚
𝐹𝑊𝐻𝑀 = 7.6 lexc /𝑛

𝑁𝐴 𝑒𝑥= 0.50

Δ𝑥𝑠𝑝= 200 nm
𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚= 840 

𝜏𝑣𝑜𝑙𝑢𝑚𝑒𝑠= 168

𝑁𝐴 = 0.075 

harmonic balanced hexagonal LLS

𝐼𝑠𝑢𝑚
𝐹𝑊𝐻𝑀 = 7.6 lexc /𝑛

𝑁𝐴 𝑒𝑥= 0.50

Δ𝑥𝑠𝑝= 200 nm
𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚= 1230 

𝜏𝑣𝑜𝑙𝑢𝑚𝑒𝑠= 246

𝑁𝐴 = 0.15 

harmonic balanced hexrect LLS

𝐼𝑠𝑢𝑚
𝐹𝑊𝐻𝑀 = 5.4 lexc /𝑛

𝑁𝐴𝑠𝑞= 0.25

Δ𝑥𝑠𝑝= 310 nm
𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚= 1213 

𝜏𝑣𝑜𝑙𝑢𝑚𝑒𝑠= 376

𝑁𝐴 = 0.13 

axial standing wave

purpose: no OTF gaps

purpose: equal beamlet 
propagation lengths

𝑁𝐴𝑚𝑎𝑥
𝑎𝑛𝑛𝑢𝑙𝑢𝑠= 0.40 

𝐼𝑠𝑢𝑚
𝐹𝑊𝐻𝑀 = 2.8 lexc /𝑛

𝑁𝐴𝑠𝑞= 0.31

Δ𝑥𝑠𝑝= 280 nm
𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚= 1175 

𝜏𝑣𝑜𝑙𝑢𝑚𝑒𝑠= 329

multi-Bessel square LLS

𝐼𝑠𝑢𝑚
𝐹𝑊𝐻𝑀 = 7.0 lexc /𝑛

𝑁𝐴𝑠𝑞= 0.43

Δ𝑥𝑠𝑝= 230 nm
𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚= 1222 

𝜏𝑣𝑜𝑙𝑢𝑚𝑒𝑠= 280

𝑁𝐴𝑚𝑎𝑥
𝑎𝑛𝑛𝑢𝑙𝑢𝑠= 0.47 

purpose: equal harmonic 
amplitudes at focal plane

multi-Bessel hexagonal LLS with 
polar beamlets increased by 2

Gaussian by lateral standing wave

sNA = 0.42 

𝐼𝑠𝑢𝑚
𝐹𝑊𝐻𝑀 = 1.0 lexc /𝑛

𝑁𝐴𝑆𝑊= 0.21

Δ𝑥𝑠𝑝= 230 nm

𝑦𝐹𝑊𝐻𝑀= 14.5 lexc /𝑛

𝜏𝑣𝑜𝑙𝑢𝑚𝑒𝑠= 65.6 𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝜇𝑚= 285

4 z tiles

𝑁𝐴𝑠𝑖𝑛𝑐= 0.447 

𝐼𝑠𝑢𝑚
𝐹𝑊𝐻𝑀 = 1.0 lexc /𝑛

𝑁𝐴𝑆𝑊= 0.21

Δ𝑥𝑠𝑝= 340 nm

𝑦𝐹𝑊𝐻𝑀= 15.0 lexc /𝑛

𝜏𝑣𝑜𝑙𝑢𝑚𝑒𝑠= 78.0 𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝑠𝑒𝑐= 229

4 z tiles

sinc by lateral standing wave

𝐼𝑠𝑢𝑚
𝐹𝑊𝐻𝑀 = 1.8 lexc /𝑛

Δ𝑥𝑠𝑝= 240 nm

𝑦𝐹𝑊𝐻𝑀= 16.0 lexc /𝑛

𝜏𝑣𝑜𝑙𝑢𝑚𝑒𝑠= 46.0

𝜏𝑝𝑙𝑎𝑛𝑒𝑠/𝑠𝑒𝑐= 192

4 z tiles

multi-Bessel square LLS

𝑁𝐴𝑠𝑞= 0.41

𝑁𝐴𝑚𝑎𝑥
𝑎𝑛𝑛𝑢𝑙𝑢𝑠= 0.60 

95% Cl
Avg Int
Exponential fit
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