

1 **Identification of an A20 critical region harboring missense variations that lead to autoinflammation**

2 Elma El Khouri¹, Camille Louvrier^{1,2}, Eman Assrawi¹, Alexandre Nguyen³, William Piterboth², Samuel
3 Deshayes³, Alexandra Desdoits⁴, Bruno Copin², Florence Dastot Le Moal², Sonia-Athina Karabina¹,
4 Serge Amselem^{1,2}, Achille Aouba*³, Irina Giurgea*^{1,2}

5

6 1. Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM),
7 "Maladies génétiques d'expression pédiatrique", Paris, 75012, France

8 2. Département de Génétique Médicale, Hôpital Armand Trousseau, Assistance Publique-Hôpitaux de
9 Paris, Paris, 75012, France

10 3. Département de Médecine Interne et Immunologie Clinique, Normandie Univ, UNICAEN, UR4650
11 PSIR, CHU de Caen Normandie, Caen, 14033, France

12 4. Service de chirurgie pédiatrique, CHU de Caen Normandie, Caen, 14033, France

13

14 *Equally contributing

15

16 **Corresponding author:** Irina Giurgea – 26 Avenue du Dr Netter, Paris 75012 - tel : 0033144735245 –
17 fax : 0033144735219 - irina.giurgea@inserm.fr

18 **Address for correspondence:** Hôpital Armand-Trousseau – AP-HP – Ketty Schwartz bldg - 26 Avenue
19 du Dr Arnold Netter - 75012 Paris Cedex 12 – France

20

21 **ABSTRACT**

22

23 A20 haploinsufficiency (HA20) is an autoinflammatory disease caused by heterozygous loss-of-
24 function variations in *TNFAIP3*, the gene encoding the A20 protein. Diagnosis of HA20 is challenging
25 due to its heterogeneous clinical presentation and the lack of pathognomonic symptoms. While the
26 pathogenic effect of *TNFAIP3* truncating variations is clearly established, that of missense variations
27 is difficult to determine. Herein, we identified a novel *TNFAIP3* variation, p.(Leu236Pro), located in
28 the A20 Ovarian Tumor (OTU) domain and demonstrated its pathogenicity. In the patients' primary
29 cells, we observed reduced A20 levels explained by enhanced degradation. We showed a disrupted
30 ability of A20_Leu236Pro to inhibit the NF- κ B pathway. Review of previously reported *TNFAIP3*
31 missense variations revealed that only 3/7 are pathogenic. Through structural modeling we showed
32 that the residues involved in OTU pathogenic missense variations establish common interactions.
33 Interpretation of newly identified missense variations is challenging, requiring, as illustrated here,
34 functional demonstration of their pathogenicity. Together with functional studies, *in-silico* structure
35 analysis is a valuable approach that allowed us to unveil a region within the OTU domain critical for
36 A20 function.

37 **INTRODUCTION**

38

39 The zinc finger protein A20 is a ubiquitin-editing enzyme encoded by the *TNFAIP3* (*tumor necrosis*
40 *factor α -induced protein 3*) gene that contains an amino-terminal ovarian tumor (OTU) domain
41 followed by seven zinc finger (ZnF) domains. Due to its E3 ligase activity (ZnF4), its deubiquitinase
42 function (OTU) and its ubiquitin-binding domain (ZnF7), A20 regulates the fate of several substrates
43 such as RIPK1 (Receptor-Interacting Serine/Threonine-Protein Kinase 1), NEMO (NF-Kappa-B
44 Essential Modulator) and TRAF6 (TNF Receptor Associated Factor 6), all converging to the canonical
45 NF- κ B pathway (Boone et al., 2004; De et al., 2014; Tokunaga et al., 2012; Wertz et al., 2004). Owing
46 to these various functions, A20 plays a pivotal role in the regulation of inflammation and immunity by
47 inhibiting the canonical NF- κ B signaling pathway and by preventing cell death (Lork et al., 2017;
48 Martens and van Loo, 2020). Abnormal expression or function of A20 therefore contributes to the
49 onset of several autoimmune or inflammatory disorders such as Crohn's disease, systemic lupus
50 erythematosus, rheumatoid arthritis, type-1 diabetes mellitus, psoriasis, and atherosclerosis as
51 shown by genome-wide association studies (reviewed in (Malynn and Ma, 2019)). Furthermore,
52 germline variations in *TNFAIP3* lead to an autoinflammatory disease of autosomal dominant
53 inheritance referred to as A20 haploinsufficiency (HA20; MIM#616744) where insufficient
54 suppression of NF- κ B activity is observed (Zhou et al., 2016). HA20 is a Behçet-like autoinflammatory
55 syndrome of earlier onset associated with variable clinical signs; the hallmark features of HA20 are
56 recurrent fever, painful oral, genital and/or gastrointestinal ulcers with diarrhea, arthralgia or
57 polyarthritis (Aeschlimann et al., 2018). Since the first description of HA20 (Zhou et al., 2016), more
58 than 25 *TNFAIP3* truncating variations have been reported (reviewed in (Yu et al., 2020)) whereas the
59 pathogenic significance has been confirmed for only a part of the 7 reported missense variations (Yu
60 Chen et al., 2020; Dong et al., 2019; Kadowaki et al., 2021; Mulhern et al., 2019; Shigemura et al.,
61 2016). Indeed, a body of genetic and experimental evidence is necessary to determine non-
62 ambiguously the deleterious character of missense variations.

63

64 In this study, we report a non-Previously described *TNFAIP3* missense variation, c.707T>C,
65 p.(Leu236Pro), identified in three patients from the same family. We provide a phenotypic
66 description of all affected patients, as well as cytokine and A20 level quantification in patient-derived
67 samples. Furthermore, we assessed the pathogenicity of this variant through *in vitro* molecular and
68 cellular assays. Interestingly, by studying the location and the amino acid interactions of Leu236 and
69 of the other amino acids involved in pathogenic *TNFAIP3* missense variations, we identified a critical
70 region within the OTU domain of A20 where the pathogenic *TNFAIP3* missense variations are in close

71 proximity and the affected residues share common amino acid interactions on the 3D protein
72 structure.

73 **RESULTS**

74

75 **Clinical features of HA20 patients**

76 Proband II.2, a 13-year-old female patient born to a consanguineous union (**Figure 1A**), first
77 experienced autoinflammatory symptoms when she was 15 months of age. She presented with
78 recurrent episodes of fever as well as oral ulcers occurring once every two weeks. She suffered from
79 abdominal pain and diarrhea during childhood. She presented with asymmetric arthralgia of large
80 joints and persistent folliculitis. Genital ulcers were very rare. Her sister (individual II.1) was 15 years
81 old. Her first symptoms appeared at the age of 5 and they included recurrent episodes of fever,
82 persistent oral ulcers and rare genital ulcers. She also suffered from abdominal pain and diarrhea
83 during childhood. Her skin lesions were acne and folliculitis. Their father (individual I.1) was 38 years
84 old. His first symptoms appeared at the age of 15 and included episodes of fever, oral and genital
85 ulcers occurring once every two weeks. He suffered from abdominal pain with diarrhea twice per
86 year and colonic ulcerations were detected at colonoscopy. He also presented with myalgia and
87 arthralgia of the knees or ankles. His skin lesions included folliculitis. He suffered from episcleritis and
88 uveitis at two occasions. Individuals II.1 and II.2 show significant improvement of their symptoms
89 upon colchicine-treatment. Individual I.1 received colchicine treatment and then tapered courses of
90 oral corticosteroids and azathioprine, leading to a satisfactory long-term control of the disease. The
91 clinical features of the three patients are summarized in table 1.

92

93 **Identification of a novel missense variation in *TNFAIP3***

94 To identify the molecular basis of the patients' disease, targeted next generation sequencing (NGS)
95 for autoinflammatory diseases was conducted on a DNA sample from proband II.2. It revealed a non-
96 previously reported heterozygous variation c.707T>C, p.(Leu236Pro) in the *TNFAIP3* gene. Sanger
97 sequencing confirmed this result in the proband and identified this variation in the related affected
98 individuals (I.1 and II.1) (**Figure 1A**). The affected leucine residue at position 236 (Leu236) is located
99 in the OTU domain of A20 (**Figure 1B**) and is invariant across species (**Figure 1C**) supporting a
100 deleterious effect of the substitution of this amino acid. The c.707T>C, p.(Leu236Pro) variant has not
101 been described in sequence-variant databases, such as the genome aggregation database (gnomAD,
102 <https://gnomad.broadinstitute.org>). The Combined Annotation-Dependent Depletion (CADD,
103 <https://cadd.gs.washington.edu/snv>) tool provides a score of 29.5 for the c.707T>C, p.(Leu236Pro)
104 variation, predictive of a pathogenic variation.

105

106

107

108 **Cytokine profile in patients-derived PBMCs**

109 In order to determine the cytokine profile of the patients identified in this study, we quantified
110 inflammatory cytokines in plasma samples and in PBMC supernatants upon LPS cell treatment.
111 Plasma levels of pro-inflammatory cytokines (IL1 β , IL18, IL6, TNF α , IFN γ , and IP10) were substantially
112 elevated in the patients (**Figure 2** – upper panel), as compared to healthy individuals. The patients
113 also exhibited high levels of the anti-inflammatory cytokine IL10. In LPS-stimulated PBMCs, pro-
114 inflammatory cytokine levels were higher in the patients compared to healthy individuals (**Figure 2** –
115 lower panel) except for IL6 which exhibited high levels in the patients' samples prior to stimulation.
116 IFN γ , IP10 and IL10 cytokines were not detected in the PBMC supernatants of healthy individuals or
117 HA20 patients.

118

119 **Evidence for A20 haploinsufficiency from patient-derived samples**

120 To assess the pathogenicity of the p.(Leu236Pro) variation, we first sought to analyze A20 protein
121 expression in patients' PBMCs. In contrast to two healthy individuals, all three patients (individuals
122 I.1, II.1 and II.2) exhibited a significant reduction of A20 expression levels (**Figure 3A**).

123

124 **Decreased stability of the A20_Leu236Pro protein**

125 With the aim of determining the molecular basis of reduced A20 protein expression in the patients
126 and further assessing the impact of the p.(Leu236Pro) missense variation on the protein, we
127 performed *in silico* stability analyses of the available human crystal structure of the OTU domain of
128 A20 in its active form (Protein Data Bank: 3ZJD) (Kulathu et al., 2013) using the bioinformatics tool
129 PremPS (Yuting Chen et al., 2020). The single variation Leu236Pro of A20 is destabilizing, as indicated
130 by the positive value of 1.820 kcal mol $^{-1}$ for the change of unfolding Gibbs free energy $\Delta\Delta G$. Similar
131 results were obtained using two other prediction tools: Site Directed Mutator ($\Delta\Delta G= 1.860$ kcal mol $^{-1}$)
132 and MAESTRO (Multi AgEnt STability pRedictiOn) ($\Delta\Delta G= 1.752$ kcal mol $^{-1}$).

133

134 To confirm these *in silico* results, we assessed the expression and stability of the A20_Leu236Pro
135 protein in HEK293T cells transiently expressing A20_WT and A20_Leu236Pro. As shown in **Figure 3B**,
136 the steady-state protein amounts of A20_Leu236Pro were only 47.6% of that of the WT protein (0.54
137 for A20_WT vs 0.26 for A20_Leu236Pro). To determine if this difference resulted from protein
138 instability, we compared the half-life of each protein upon inhibition of protein synthesis with
139 cycloheximide (CHX) in HEK293T cells. Quantification of protein amounts at different time points
140 showed that the half-life of A20_Leu236Pro was 2.8 hours, whereas the A20_WT protein was still
141 highly expressed even after 24 hours of treatment (**Figure 3C**). This substantial reduction of the
142 protein half-life shows that A20_Leu236Pro is less stable than its WT counterpart. To test whether

143 this reduced stability was associated with abnormal protein degradation by the ubiquitin-
144 proteasome system (UPS), we inhibited the proteasome-dependent degradation with the peptide-
145 aldehyde inhibitor MG132 in HEK293T cells. As shown in **Figure 3D**, substantial accumulation of
146 A20_Leu236Pro was observed upon inhibition of the proteasome up to 91.3% of the WT protein
147 levels (2.52 for A20_WT vs 2.30 for A20_Leu236Pro). This strongly suggests that the difference of the
148 amounts of WT and Leu236Pro A20 proteins in non-treated cells results from enhanced UPS-
149 dependent degradation.

150

151 **Decreased inhibition of NF-κB activity by the A20_Leu236Pro protein**

152 Given the role of A20 in the regulation of the NF-κB activity, we assessed the impact of the
153 p.(Leu236Pro) variation on the ability of A20 to inhibit the canonical NF-κB pathway. To this end, we
154 transiently transfected HEK293T cells with an empty vector, A20_WT or A20_Leu236Pro encoding
155 plasmids along with NF-κB reporter vector and Renilla vector for normalization, and then quantified
156 the luminescence signal upon TNF α treatment (10 ng/mL, 5 hours). Compared to an empty vector,
157 A20_WT exhibited up to 8-fold decrease of the NF-κB activity in a dose-dependent manner (**Figure**
158 **3E**). A20_Leu236Pro failed to suppress TNF α -induced NF-κB activity up to the levels of the WT
159 counterpart: at 25 ng, A20_Leu236Pro decreased the NF-κB activity only by 2 folds compared to the
160 empty vector. Moreover, despite increasing the doses of A20_Leu236Pro (50 ng), the level of NF-κB
161 inhibition observed upon A20_WT expression was not reached (**Figure 3E**).

162

163

164 **Identification of an OTU subdomain containing three *TNFAIP3* pathogenic missense variations**

165 To better assess the impact of the localization of *TNFAIP3* missense variations on A20 protein
166 function we reviewed all missense variations reported to date, including the variation herein
167 identified (**Table 2**). The majority (5/8) are located in the OTU domain: c.707T>C, p.(Leu236Pro) (this
168 study), c.305A>G, p.(Asn102Ser) (Yu Chen et al., 2020), c.574G>A, p.(Glu192Lys) (Kadowaki et al.,
169 2021), c.728G>A, p.(Cys243Tyr) (Shigemura et al., 2016) and c.929T>C, p.(Ile310Thr) (Kadowaki et al.,
170 2021). The missense variations c.1428G>A, p.(Met476Ile) (Dong et al., 2019), c.1939A>C,
171 p.(Thr647Pro) (Mulhern et al., 2019) and c.2126A>G, p.(Gln709Arg) (Kadowaki et al., 2021) are
172 located in ZnF2, between Znf4 and ZnF5 and in ZnF6, respectively (**Table 2**).

173

174 Among the OTU domain missense variations, the pathogenic significance is demonstrated for three:
175 p.(Leu236Pro) (reported in this study), p.(Glu192Lys) (Kadowaki et al., 2021) and p.(Cys243Tyr)
176 (Shigemura et al., 2016), which all fulfill the American College of Medical Genetics and Genomics
177 (ACMG) criteria (Richards et al., 2015). The remaining two missense variations located in the OTU

178 domain, p.(Asn102Ser) and p.(Ile310Thr), cannot be classified as pathogenic. In fact, the
179 p.(Asn102Ser) variation has an allele frequency in the general population gnomAD database of
180 3482/281824, which is incompatible with the rare occurrence of HA20; we therefore classified this
181 variation as not pathogenic despite the potential localization of Asn102 residue within a pocket in the
182 active site of A20 that is important for its deubiquitinase activity (Komander and Barford, 2008; Lin et
183 al., 2008). As for the p.(Ile310Thr) variation, it was qualified by the authors of uncertain significance
184 due to the lack of evolutionary conservation of the affected amino acid together with the absence of
185 functional alteration of the variant (Kadowaki et al., 2021). Among the three *TNFAIP3* missense
186 variations located outside the OTU domain, only the p.(Met476Ile) variation can be considered as
187 pathogenic. The other two variations, c.1939A>C, p.(Thr647Pro) and c.2126A>G, p.(Gln709Arg), are
188 not in favor of HA20 diagnosis. Information about the pathogenic significance of the c.1939A>C,
189 p.(Thr647Pro) variation is conflicting; despite disruption of the inhibitory effect of this variant on NF-
190 κB reporter gene activity (Kadowaki et al., 2021), its allele frequency in gnomAD is 511/282864 and
191 the individuals carrying this variation lack HA20 hallmark clinical features (Mulhern et al., 2019)
192 (**Table 2**). As for the c.2126A>G, p.(Gln709Arg) variation, it is considered as likely benign by the
193 authors due to the lack of evolutionary conservation of Gln709 and the absence of protein function
194 alteration (Kadowaki et al., 2021).

195
196 We further studied the impact of the three pathogenic missense variations located in the OTU
197 domain on the 3D-structure of A20. Notably, the positioning of Leu236, Glu192 and Cys243 residues
198 on the human crystal of A20 OTU domain revealed that Glu192 and Cys243 are in close vicinity to
199 Leu236, suggesting possible common interactions (**Figure 4A**). To address this hypothesis, we first
200 used the PremPS prediction tool to model the interactions established by each of these residues
201 within the WT protein and to predict the impact of each variation on these interactions (**Figures 4B**,
202 **4C** and **4D**). In A20_WT, Leu236 establishes several hydrogen and/or polar bonds as well as
203 hydrophobic interactions with the surrounding residues; some of these interactions are altered in
204 A20_Leu236Pro, e.g., interactions with Phe197, Asn201, and Tyr306 (**Figures 4B**). Modified
205 interactions are also observed in A20_Glu192Lys where Lys192 establishes additional interactions
206 with Leu171 and Met174 compared to Glu192 (**Figure 4C**) and particularly in A20_Cys243Tyr where
207 the phenol group of Tyr243 induces substantial change of amino acid interactions (**Figure 4D**).
208 Additionally, we sought to identify overlapping interaction alterations between these three variations
209 (**Figure 4E**). Indeed, when comparing the alterations of amino acid interactions caused by both
210 p.(Leu236Pro) and p.(Glu192Lys), we observe that more robust interactions exist between Pro236
211 and the cycle of Phe197 as compared to the Leu236 in the WT counterpart (**Figure 4B** and **4E**); these
212 altered interactions could impact those established between Phe197 and surrounding residues,

213 notably in the region 194 to 196 that are close to and interact with Glu192 (**Figures 4C, 4E and 4F**). As
214 for the comparison of the disruptions induced by p.(Leu236Pro) and p.(Cys243Tyr), we first observe
215 that the interactions with residues Asn201 and Tyr306 are lost in A20_Leu236Pro as compared to
216 A20_WT (**Figures 4B and 4E**) and that interestingly, both Asn201 and Tyr306 do not interact with the
217 WT Cys243 but with variant Tyr243 (**Figures 4D and 4E**). Similarly, Trp238 that interacts with Leu236
218 or Pro236 can establish interactions with Tyr243 but not the WT Cys243 (**Figures 4B, 4D and 4E**).
219 Lastly, since the amino acid in position 235 is a proline, the p.(Leu236Pro) variation results in two
220 consecutive proline residues, which is uncommonly encountered in proteins compared to singlet
221 prolines (Morgan and Rubenstein, 2013) and could hinder proper interactions in this region. For
222 instance, the proper interaction established between Cys243 and Pro235 could be altered by the
223 presence of a proline residue in position 236 as shown in **Figures 4D and 4E**.

224

225 This model suggests the existence, on the properly folded protein, of a critical region of the OTU
226 domain encompassing amino acids affected by pathogenic variations and that are distant on the
227 primary sequence: Glu192, Leu236 and Cys243 (**Figure 4G**).

228

229 **DISCUSSION**

230

231 The diagnosis of HA20 is highly challenging due to its heterogeneous clinical presentation and the
232 lack of pathognomonic symptoms. The non-ambiguous pathogenic significance of *TNFAIP3* variations
233 is necessary for the confirmation of HA20 diagnosis and adaptation of the clinical care. While in the
234 case of *TNFAIP3* nonsense or frameshift variations, the deleterious impact is most often established,
235 the pathogenic effect of missense variations is difficult to determine.

236 Herein, through the in-depth study of three patients from a family carrying a novel *TNFAIP3* missense
237 variation, we determine the pathogenic significance of the c.707T>C, p.(Leu236Pro) variation based
238 on well-established criteria defined by the ACMG (Richards et al., 2015). We provide solid proof for
239 the pathogenicity of this variation relying on the analysis of the clinical and biological features of the
240 patients, the intrafamilial segregation of the variation with the disease, the absence of occurrence of
241 the variation in the general population, the conservation of the affected residue as well as the
242 functional evaluation of the variant, i.e., expression and stability of the variant protein and its ability
243 to inhibit the NF- κ B pathway. By assessing two other missense variations in the OTU domain of A20
244 that fulfill the same criteria, we identify a critical region in the OTU domain in which residues
245 involved in pathogenic missense variations establish common interactions.

246

247 The clinical features and the cytokine profile of the patients presented in our study are in line with
248 those exhibited by previously reported HA20 patients. Indeed, elevated levels of pro-inflammatory
249 cytokines in the plasma and supernatants of LPS-stimulated PBMCs of the patients presented in our
250 study resemble that of previously reported patients harboring *TNFAIP3* pathogenic truncating
251 variations (Rajamäki et al., 2018; Zhou et al., 2016). In keeping with this, the patients reported herein
252 exhibit HA20 characteristic features: early-onset, recurrent fever, articular symptoms, recurrent oral,
253 genital and/or gastrointestinal manifestations. Nevertheless, HA20 clinical manifestations can vary
254 considerably between patients even among those who carry the same variation (Aeschlimann et al.,
255 2018). Depending on disease severity, colchicine treatment, corticosteroids or cytokine antagonists
256 can be required for HA20 treatment. Colchicine treatment was satisfactory for the control of the
257 symptoms of individuals II.1 and II.2, suggesting a less severe disease presentation, whereas
258 corticosteroids and azathioprine were required for individual I.1. The difference in disease severity
259 observed in these patients cannot be attributed to the missense nature of the variation. In fact, other
260 HA20 patients carrying pathogenic missense variations were shown to be resistant to colchicine and
261 required steroid therapy (Dong et al., 2019; Kadowaki et al., 2021; Shigemura et al., 2016). Disease
262 management of the patients reported in our study did not require cytokine antagonists.
263 Nevertheless, in light of the elevated IL6 levels in PBMCs supernatant prior to LPS-stimulation, the

264 use of IL6 antagonist for the control of the patients' symptoms could be of therapeutic interest in
265 case the patients develop resistance to their current treatments, as previously reported for the
266 treatment of two HA20 patients (Lawless et al., 2018; Zhou et al., 2016).

267

268 Further findings supporting the pathogenic significance of the p.(Leu236Pro) variation and the
269 similarity of its consequences with other *TNFAIP3* loss-of-function variations include enhanced UPS-
270 dependent degradation of A20_Leu236Pro protein, which is most likely responsible for A20
271 haploinsufficiency observed in the patients' PBMCs. Noteworthy, the pathogenic Cys243Tyr variant
272 also exhibits decreased protein levels (Kadowaki et al., 2021). As shown in our study, Leu236 and
273 Cys243 establish common interactions within a small region of A20 suggesting that variations in this
274 region would lead to enhanced recognition by the protein quality control machinery, thus increased
275 degradation. Moreover, our experiments indicate that in addition to reduced levels of the variant
276 protein, the function of A20_Leu236Pro is altered. Indeed, in an attempt to bypass the decreased
277 protein expression *in vitro*, we doubled the amounts of mutant A20 plasmid used for transfection in
278 the NF- κ B luciferase assay; although this allowed for an increased inhibition of the canonical NF- κ B
279 pathway, the inhibitory function of A20_Leu236Pro was not restored up to the levels of the WT
280 protein. Interestingly, this functional deregulation has also been observed for the pathogenic
281 Cys243Tyr and Glu192Lys variants: a 10-fold protein expression increase was required to compensate
282 the loss-of-function of the Cys243Tyr variant (Shigemura et al., 2016), as for the Glu192Lys variant, it
283 does not exhibit reduced expression compared to the WT protein but it loses the ability to
284 sufficiently inhibit the NF- κ B pathway (Kadowaki et al., 2021), in line with its location at the putative
285 ubiquitin-binding site of A20 (Lin et al., 2008).

286

287 The consequences on the native structure of A20 of the three pathogenic missense variations of the
288 OTU domain (p.(Leu236Pro), p.(Glu192Lys) and p.(Cys243Tyr)) converge. Although Glu192 and
289 Cys243 are distant, Leu236 bridges the interactions between the two regions they belong to on the
290 tertiary structure of A20. Moreover, p.(Leu236Pro) and p.(Cys243Tyr) have common consequences
291 on interactions established by surrounding amino acids such as Asn201, Pro235, Trp238 and Tyr306,
292 suggesting a putative importance for these residues for proper protein expression and or function.

293

294 The OTU domain of A20 harbors the active site essential for the deubiquitinase activity of A20, which
295 encompasses the catalytic Cys103, His256 and a third residue for which Asp70 or Thr97 are possible
296 candidates (Komander and Barford, 2008; Lin et al., 2008). Study of the crystal structure of the A20
297 OTU domain shows that the ubiquitin binding site of A20 may require the surface formed by α -
298 helices (α 4, α 7 and α 8) and β sheets (β 2, β 3, β 4 and β 5) and the loops between them; Glu192 is

299 among the surface residues identified in the ubiquitin binding region, whereas Leu236 and Cys243
300 are in the loop between β 3 and β 4 (Lin et al., 2008). Ubiquitin binding requires interactions between
301 hydrophobic residues of ubiquitin and hydrophobic A20 amino acid, making Leu236 a very suitable
302 candidate for surface amino acids in the ubiquitin binding domain. Overall, the HA20-causing
303 missense variations in the OTU domain, which alter the proper function and/or expression of the
304 protein, are located in a critical region outside the deubiquitinase active site but close to the
305 ubiquitin binding domain.

306

307

308 **CONCLUSION**

309

310 In the present study, we analyzed a family with three patients presenting with a phenotype
311 reminiscent of HA20 in which we identified the p.(Leu236Pro) missense variation in the *TNFAIP3*
312 gene that segregates with the disease. We provide evidence from patient-derived samples for the
313 A20 haploinsufficiency, as well as cellular evidence for the loss-of-function effect induced by the
314 variation. By studying the pathogenic missense *TNFAIP3* variations located in the OTU domain of the
315 protein we shed the light on a non-Previously identified pathogenic missense variation-containing
316 region. Our data can help in the interpretation of *TNFAIP3* missense variations and in providing an
317 adapted clinical care for the patients.

318 **PATIENTS AND METHODS**

319

320 **Affected and healthy individuals** – Clinical features were collected through a standardized form.
321 Written informed consents were obtained from each individual for genetic tests according to French
322 legislation and the principles of the Declaration of Helsinki regarding ethical principles for medical
323 research.

324

325 **Next generation sequencing** – Next-generation sequencing (NGS) was performed using a custom
326 sequence capture (Nimblegen SeqCap EZ Choice system; Roche Sequencing, Pleasanton, California)
327 of the exons and the flanking intronic sequences of the main autoinflammatory disease-causing
328 genes. Sequencing was performed on Nextseq500 platform (Illumina, San Diego, California) according
329 to the manufacturer's instructions. Variations and segregation analysis were confirmed by standard
330 PCR and Sanger sequencing of DNA extracted from peripheral blood.

331

332 **Sanger sequencing** – *TNFAIP3* was amplified by PCR and sequenced using the Big-Dye Terminator
333 sequencing kit (Applied Biosystems, Foster City, California) on an ABI3730XL automated capillary
334 DNA sequencer (Applied Biosystems). Sequences were analyzed against the reference sequence
335 (NM_006290) using the SeqScape software (Applied Biosystems).

336

337 **Plasma and PBMC isolation** – Whole blood samples from patients and healthy individuals (provided
338 by the Etablissement Français du Sang) were collected in EDTA-tubes. Plasma was isolated by blood
339 centrifugation at 950g for 10 minutes and kept at –80°C for cytokine measurements. For PBMC
340 (Peripheral Blood Mononuclear Cell) isolation, blood samples were diluted with an equal volume of
341 PBS-EDTA (1 mM) and PBMCs were collected by centrifugation (800g, 15 minutes) of the diluted
342 samples on Pancoll gradient tubes (PANbiotech, Aidenbach). PBMCs were washed three times with
343 PBS-EDTA and incubated at 37°C for 1 hour in RPMI medium before being treated with LPS (100
344 ng/mL for 16 hours) before proceeding to ELISA cytokine quantification.

345

346 **ELISA cytokine quantification** – IL1 β , IL18, IL6, TNF α , IFN γ , IP10 and IL10 quantification was carried
347 out on plasma and PBMC culture medium using R&D systems kits (Minneapolis, Minnesota)
348 according to the manufacturer's instructions. For each cytokine quantification, samples from at least
349 five healthy individuals were used as controls.

350

351 **Plasmids** – Full-length human *TNFAIP3* was purchased from Addgene (pEGFP-C1-A20 - RRID:
352 Addgene_22141). Directed mutagenesis using the Q5 High-Fidelity DNA Polymerase (New England
353 Biolabs, Ipswich, Massachusetts) was used.

354

355 **Cell culture and transfection** – HEK293T (Human embryonic kidney 293T) cells were maintained in
356 DMEM containing GlutaMAX (ThermoFisher Scientific, Waltham, Massachusetts) supplemented with
357 10% fetal bovine serum and 1% penicillin/streptomycin (ThermoFisher Scientific) at 37°C in a 5% CO₂
358 atmosphere. Cells were transiently transfected using Fugene HD Transfection Reagent (Promega
359 E231A - Madison, Wisconsin) according to the manufacturer's instructions.

360

361 **Proteasome inhibition** – HEK293T cells were transfected with the indicated plasmids and treated 24
362 hours later with 20 µM MG132 (Sigma-Aldrich M7449, Saint-Louis, Missouri) or the equivalent
363 volume of DMSO (Sigma-Aldrich) for 5 hours. Proteins were then extracted and detergent-soluble
364 and insoluble fractions of protein lysates were analyzed.

365

366 **Cycloheximide study** – HEK293T cells were transfected with the indicated plasmids, and treated 24
367 hours later with 100 µg/ml cycloheximide (Sigma-Aldrich C4859) or the equivalent volume of DMSO
368 for the indicated times.

369

370 **Western blot analysis** – Protein extraction and western blot analysis were carried out as previously
371 described (El Khouri et al., 2021). The primary antibodies used were: polyclonal rabbit A20 (Cell
372 Signaling 5630 – RRID: AB_10698880), anti-GFP-HRP (Cell Signaling 2037 - RRID: AB_1281301), anti-
373 GAPDH-HRP (Cell Signaling 51332 - RRID: AB_2799390) and anti-α-Tubulin-HRP (Cell Signaling 9099 –
374 RRID: AB_10695471). The secondary antibodies used were Anti-Rabbit IgG-HRP, Sigma Aldrich A0545
375 – RRID: AB_257896. Proteins were detected with Amersham ECL Select Western Blotting Detection
376 Reagent (GE healthcare, Chicago, Illinois) and BioRad ChemiDoc Imaging Systems was used for
377 detection. The ImageJ software was used for signal quantification.

378

379 **NF-κB luciferase assay** – HEK293T cells were transiently transfected with the indicated quantities of
380 *TNFAIP3* WT and mutant plasmids, 100 ng of pGL4.32[Luc2P/NF-κB-RE/Hygro] vector and 10 ng of
381 Renilla Luciferase Control Reporter Vector (pGL4-hRluc), purchased from Promega. 24 hours later,
382 cells were treated with 10 ng/mL TNFα for 5 hours then lysed with Passive Lysis Buffer (Promega).
383 Firefly luciferase activity was measured in duplicate according to the manufacturer's instructions and
384 normalized against the Renilla signal.

385

386 **Crystal structure and amino acid interaction analysis** – The PremPS (Predicting the Effects of
387 Mutations on Protein Stability) tool, a computational method that predicts protein stability changes
388 induced by missense variations available as a web server
389 (<https://lilab.jysw.suda.edu.cn/research/PremPS/>) (Yuting Chen et al., 2020) was used to predict
390 protein stability and to analyze amino acid interactions of the Protein Data Bank-available crystal
391 structure of A20 OTU domain in reduced, active state at 1.87 Å resolution (PDB accession number
392 3ZJD) (Kulathu et al., 2013). The amino acid interactions were shown as provided by the PremPS
393 online tool. Three-dimensional structure was visualized and amino acids were positioned using the
394 PyMol Software.

395

396 **Identification of *TNFAIP3* missense variations reported in the literature** - Literature review of
397 *TNFAIP3* variations was performed in PubMed using the terms “HA20”, “A20” or “TNFAIP3” and
398 “variation” or “mutation”.

399

400 **Statistical analyses** – Statistical analyses and graph representation were performed using GraphPad
401 Prism 9.0 software. Unpaired two-tailed Student’s t tests were used for comparisons of the means of
402 two groups. The means of the data provided by sets of independent experiments carried out on
403 samples from the patients (or cells expressing the variant protein) were compared to the means of
404 data provided by sets of independent experiments carried out on the samples from healthy
405 individuals (or cells expressing the WT protein). The number of replicates (n) corresponds to
406 biological replicates. Data are presented as means ± SEM and individual data points are represented
407 when required. P values <0.05 were considered statistically significant. P values <0.05, <0.01, <0.001,
408 and <0.0001 are indicated with *, **, ***, and ****, respectively.

409

410 **DATA AVAILABILITY**

411 Uncropped western blots are provided as Source Data files for Figures 3A, 3B, 3C and 3D.

412

413 **ACKNOWLEDGMENTS**

414 We thank the patients and their family as well as the control individuals for their cooperation. The
415 research reported in this manuscript was funded by: Institut National de la Santé et de la Recherche
416 Médicale (INSERM); Agence Nationale de la Recherche (ANR-17-CE17-0021-01); European Union's
417 Horizon 2020 research and innovation programme under grant agreement No 779295; and Sorbonne
418 Université EMERGENCE-PhenomAID.

419 **The authors declare that they have no conflict of interest.**

420 REFERENCES

421 Aeschlimann FA, Batu ED, Canna SW, Go E, Güll A, Hoffmann P, Leavis HL, Ozen S, Schwartz DM, Stone
422 DL, van Royen-Kerkhof A, Kastner DL, Aksentijevich I, Laxer RM. 2018. A20 haploinsufficiency
423 (HA20): clinical phenotypes and disease course of patients with a newly recognised NF- κ B-
424 mediated autoinflammatory disease. *Ann Rheum Dis* **77**:728–735. doi:10.1136/annrheumdis-
425 2017-212403

426 Boone DL, Turer EE, Lee EG, Ahmad R-C, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu
427 O, McNally E, Pickart C, Ma A. 2004. The ubiquitin-modifying enzyme A20 is required for
428 termination of Toll-like receptor responses. *Nat Immunol* **5**:1052–1060. doi:10.1038/ni1110

429 Chen Yu, Huang H, He Y, Chen M, Seidler U, Tian D, Xiao F. 2020. A20 Haploinsufficiency in a Chinese
430 Patient With Intestinal Behcet's Disease-Like Symptoms: A Case Report. *Front Immunol*
431 **11**:1414. doi:10.3389/fimmu.2020.01414

432 Chen Yuting, Lu H, Zhang N, Zhu Z, Wang S, Li M. 2020. PremPS: Predicting the impact of missense
433 mutations on protein stability. *PLoS Comput Biol* **16**:e1008543.
434 doi:10.1371/journal.pcbi.1008543

435 De A, Dainichi T, Rathinam CV, Ghosh S. 2014. The deubiquitinase activity of A20 is dispensable for
436 NF- κ B signaling. *EMBO Rep* **15**:775–783. doi:10.15252/embr.201338305

437 Dong X, Liu L, Wang Y, Yang X, Wang W, Lin L, Sun B, Hou J, Ying W, Hui X, Zhou Q, Liu D, Yao H, Sun J,
438 Wang X. 2019. Novel Heterogeneous Mutation of TNFAIP3 in a Chinese Patient with Behcet-
439 Like Phenotype and Persistent EBV Viremia. *J Clin Immunol* **39**:188–194. doi:10.1007/s10875-
440 019-00604-9

441 El Khouri E, Ghoumid J, Haye D, Giuliano F, Drevillon L, Briand-Suleau A, De La Grange P, Nau V,
442 Gaillon T, Bienvenu T, Jacquemin-Sablon H, Goossens M, Amselem S, Giurgea I. 2021. Wnt/ β -
443 catenin pathway and cell adhesion deregulation in CSDE1-related intellectual disability and
444 autism spectrum disorders. *Mol Psychiatry*. doi:10.1038/s41380-021-01072-7

445 Kadowaki S, Hashimoto K, Nishimura T, Kashimada K, Kadowaki T, Kawamoto N, Imai K, Okada S,
446 Kanegae H, Ohnishi H. 2021. Functional analysis of novel A20 variants in patients with
447 atypical inflammatory diseases. *Arthritis Res Ther* **23**:52. doi:10.1186/s13075-021-02434-w

448 Komander D, Barford D. 2008. Structure of the A20 OTU domain and mechanistic insights into
449 deubiquitination. *Biochemical Journal* **409**:77–85. doi:10.1042/BJ20071399

450 Kulathu Y, Garcia FJ, Mevissen TET, Busch M, Arnaudo N, Carroll KS, Barford D, Komander D. 2013.
451 Regulation of A20 and other OTU deubiquitinases by reversible oxidation. *Nat Commun*
452 **4**:1569. doi:10.1038/ncomms2567

453 Lawless D, Pathak S, Scambler TE, Ouboussad L, Anwar R, Savic S. 2018. A Case of Adult-Onset Still's
454 Disease Caused by a Novel Splicing Mutation in TNFAIP3 Successfully Treated With
455 Tocilizumab. *Front Immunol* **9**:1527. doi:10.3389/fimmu.2018.01527

456 Lin S-C, Chung JY, Lamothe B, Rajashankar K, Lu M, Lo Y-C, Lam AY, Darnay BG, Wu H. 2008.
457 Molecular basis for the unique deubiquitinating activity of the NF- κ B inhibitor A20. *J Mol
458 Biol* **376**:526–540. doi:10.1016/j.jmb.2007.11.092

459 Lork M, Verhelst K, Beyaert R. 2017. CYLD, A20 and OTULIN deubiquitinases in NF- κ B signaling and
460 cell death: so similar, yet so different. *Cell Death Differ* **24**:1172–1183.
461 doi:10.1038/cdd.2017.46

462 Malynn BA, Ma A. 2019. A20: A multifunctional tool for regulating immunity and preventing disease.
463 *Cell Immunol* **340**:103914. doi:10.1016/j.cellimm.2019.04.002

464 Martens A, van Loo G. 2020. A20 at the Crossroads of Cell Death, Inflammation, and Autoimmunity.
465 *Cold Spring Harb Perspect Biol* **12**:a036418. doi:10.1101/cshperspect.a036418

466 Morgan AA, Rubenstein E. 2013. Proline: the distribution, frequency, positioning, and common
467 functional roles of proline and polyproline sequences in the human proteome. *PLoS One*
468 **8**:e53785. doi:10.1371/journal.pone.0053785

469 Mulhern CM, Hong Y, Omoyinmi E, Jacques TS, D'Arco F, Hemingway C, Brogan PA, Eleftheriou D.
470 2019. Janus kinase 1/2 inhibition for the treatment of autoinflammation associated with

471 heterozygous TNFAIP3 mutation. *J Allergy Clin Immunol* **144**:863-866.e5.
472 doi:10.1016/j.jaci.2019.05.026

473 Rajamäki K, Keskitalo S, Seppänen M, Kuismin O, Vähäsalo P, Trotta L, Väänänen A, Glumoff V,
474 Keskitalo P, Kaarteenaho R, Jartti A, Hautala N, Jackson P, Nordström DC, Saarela J, Hautala T,
475 Eklund KK, Varjosalo M. 2018. Haploinsufficiency of A20 impairs protein-protein interactome
476 and leads into caspase-8-dependent enhancement of NLRP3 inflammasome activation. *RMD Open* **4**:e000740. doi:10.1136/rmdopen-2018-000740

477 Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E,
478 Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee. 2015. Standards
479 and guidelines for the interpretation of sequence variants: a joint consensus
480 recommendation of the American College of Medical Genetics and Genomics and the
481 Association for Molecular Pathology. *Genet Med* **17**:405-424. doi:10.1038/gim.2015.30

482 Shigemura T, Kaneko N, Kobayashi N, Kobayashi K, Takeuchi Y, Nakano N, Masumoto J, Agematsu K.
483 2016. Novel heterozygous C243Y A20/TNFAIP3 gene mutation is responsible for chronic
484 inflammation in autosomal-dominant Behcet's disease. *RMD Open* **2**:e000223.
485 doi:10.1136/rmdopen-2015-000223

486 Tokunaga F, Nishimatsu H, Ishitani R, Goto E, Noguchi T, Mio K, Kamei K, Ma A, Iwai K, Nureki O. 2012.
487 Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF- κ B
488 regulation. *EMBO J* **31**:3856-3870. doi:10.1038/embj.2012.241

489 Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL,
490 Ma A, Koonin EV, Dixit VM. 2004. De-ubiquitination and ubiquitin ligase domains of A20
491 downregulate NF- κ B signalling. *Nature* **430**:694-699. doi:10.1038/nature02794

492 Yu M-P, Xu X-S, Zhou Q, Deutitch N, Lu M-P. 2020. Haploinsufficiency of A20 (HA20): updates on the
493 genetics, phenotype, pathogenesis and treatment. *World J Pediatr* **16**:575-584.
494 doi:10.1007/s12519-019-00288-6

495 Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH, Zhang Y, Yang D, Demirkaya E, Takeuchi M, Tsai
496 WL, Lyons JJ, Yu X, Ouyang C, Chen C, Chin DT, Zaal K, Chandrasekharappa SC, Hanson EP, Yu
497 Z, Mullikin JC, Hasni SA, Wertz IE, Ombrello AK, Stone DL, Hoffmann P, Jones A, Barham BK,
498 Leavis HL, van Royen-Kerkhof A, Sibley C, Batu ED, Gü A, Siegel RM, Boehm M, Milner JD,
499 Ozen S, Gadina M, Chae J, Laxer RM, Kastner DL, Aksentijevich I. 2016. Loss-of-function
500 mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset
501 autoinflammatory disease. *Nat Genet* **48**:67-73. doi:10.1038/ng.3459

502

503

504

505 **FIGURE LEGENDS**

506

507 **Figure 1** - *A. Upper panel - Genealogical tree of the patients with HA20 (Individuals I.1, II.1 and II.2).*
508 *Lower panel - Electropherograms from Sanger sequencing showing the heterozygous c.707T>C,*
509 *p.(Leu236Pro) variation in individual II.2 and not in her healthy mother (individual I.2). B. Schematic*
510 *representation of A20 with domain organization showing the OTU domain harboring the*
511 *p.(Leu236Pro) variation as well as the ZnF domains. C. Evolutionary conservation of the A20 Leu236*
512 *residue across species.*

513

514 **Figure 2** - *Upper panel.* ELISA-assessed plasma cytokine levels in the patients (Individual I.1: red
515 square, individual II.1: red triangle and individual II.2: red circle) and 5 healthy donors (blue circles).
516 **Lower panel.** ELISA-assessed cytokine levels in PBMC supernatants prior to (empty symbols) and upon
517 (filled symbols) LPS treatment (100 ng/mL for 16h) (Individual I.1: red square, individual II.1: red
518 triangle and individual II.2 red circle, and 5 healthy donors: blue circles). ND: Not Detected. A two-
519 tailed t-test was used and asterisks indicate that the mean of the cytokine levels quantified in samples
520 from five healthy individuals is significantly different from the mean of the cytokine levels quantified
521 in samples from the three patients. P values <0.05 were considered statistically significant. P values
522 <0.05, <0.01, and <0.001 are indicated with *, **, and *** respectively.

523

524 **Figure 3** - *A. A20 protein expression in PBMCs of healthy individuals and individuals I.1, II.1 and II.2. B.*
525 *Steady-state protein levels of A20_WT and A20_Leu236Pro upon transient expression in HEK293T*
526 *(n=3, P value = 0.0004). C. Protein levels of A20_WT and A20_Leu236Pro upon transient expression in*
527 *HEK293T and treatment with cycloheximide (100 µg/ml) at the indicated time points. (n=3, P value =*
528 *0.0158, 0.0008 and 0.026 for time points 3, 9 and 24 hours, respectively). D. Protein levels of A20_WT*
529 *and A20_Leu236Pro upon transient expression in HEK293T and treatment with MG132 (20 µM – 5*
530 *hours) (n=3, P values for (A20_WT-DMSO vs -MG132), (A20_Leu236Pro-DMSO vs -MG132) and*
531 *(A20_WT-MG132 vs A20_Leu236Pro-MG132) = 0.037, 0.006 and 0.125, respectively). For all western*
532 *blot experiments, equal amounts of protein extracts were subjected to SDS-PAGE and immunoblotted*
533 *with the indicated antibodies. The A20 or GFP (the TNFAIP3-expressing plasmid used is pEGFP-C1-
534 A20) signal was quantified with ImageJ software and normalized to the amount of GAPDH or α-
535 tubulin used as a loading control. E. Quantification of the NF-κB signaling in HEK293T cells transiently*
536 *expressing 25 or 50 ng of empty vector, A20_WT or A20_Leu236Pro. Cells were treated with 10 ng/mL*
537 *TNFα for 5 hours. Firefly luciferase activity was normalized to the Renilla signal (n=5, P values for*
538 *(A20_WT vs Empty vector – 25 ng), (A20_WT vs A20_Leu236Pro – 25 ng), (A20_WT vs Empty vector –*
539 *50 ng), (A20_WT vs A20_Leu236Pro – 50 ng) are <0.0001, = 0.0011, = 0.0001 and = 0.0003,*

540 respectively). For all experiments, two-tailed t-test was used and asterisks indicate that the mean is
541 significantly different; P values <0.05 were considered statistically significant. P values <0.05, <0.01,
542 <0.001, and <0.0001 are indicated with *, **, ***, and ****, respectively.

543

544 **Figure 4 - A.** Amino acids Leu236 (red), Glu192 (orange) and Cys243 (purple) are placed on the crystal
545 structure of the OTU domain of A20 using the 3zjd crystal available of PDB and PyMol software. **B. C.**
546 **D.** Prediction of the amino acid interactions in A20_WT or A20 variant proteins) established by B:
547 Leu236 (upper panel) or Pro236 (lower panel), C: Glu192 (upper panel) or Lys192 (lower panel), D:
548 C243Y (upper panel) or Tyr243 (lower panel)) using the 3zjd crystal available of PDB and the PrempS
549 in silico prediction tool. Oxygen atoms are represented in red; nitrogen atoms are represented in blue;
550 the remaining atoms are in grey. The interactions are shown in dotted lines: hydrophobic (dark blue),
551 polar (turquoise blue) and Van der Waals (green). **E.** Schematic representation of the predicted amino
552 acid interactions in A20_WT (upper panel) and the variant protein (lower protein). The amino acids
553 involved in pathogenic variations are: Glu192 (orange frame), Leu236 (red frame) and Cys243 (purple
554 frame). On the lower panel, the variant counterpart is represented in grey background and changes in
555 amino acid interactions compared to A20_WT are represented in red: full-lines represent newly
556 formed interaction, dotted lines represent the loss of an interaction compared to A20_WT, the thicker
557 line represents a higher number of possible interactions. **F. G.** Amino acids are placed on the crystal
558 structure of the OTU domain of A20 using the 3zjd crystal available of PDB and PyMol software:
559 residues not affected by variations are shown in light green, Glu192 is shown in orange, Leu236 in red
560 and Cys243 in purple. In F, the helix formed by amino acids 111-149 is hidden to allow for better
561 graphical representation of the amino acids of interest.

562

563 **Figure 3—source data 1**

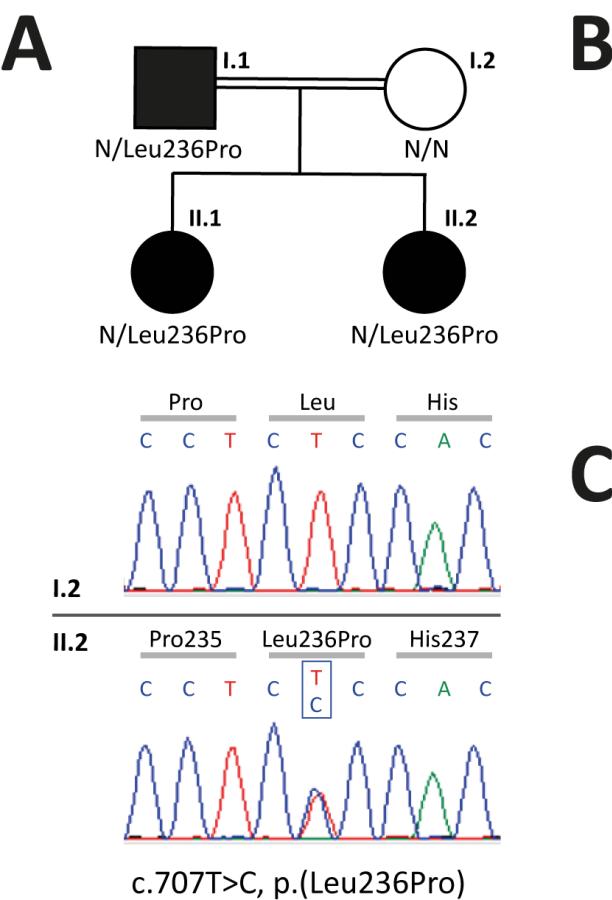
564 A20 protein expression in PBMCs of healthy individuals and individuals I.1, II.1 and II.2. Uncropped
565 Western blot images of A20 and GAPDH protein expression in PBMCs of the patients and healthy
566 individuals.

567 **Figure 3—source data 2**

568 Protein levels of A20_WT and A20_Leu236Pro upon transient expression in HEK293T.
569 Uncropped Western blot images of GFP-A20 and α -tubulin protein expression (n=4).

570 **Figure 3—source data 3**

571 Protein levels of A20_WT and A20_Leu236Pro upon transient expression in HEK293T and treatment
572 with cycloheximide.


573 Uncropped Western blot images of GFP-A20 and α -tubulin protein expression (n=3).

574 **Figure 3—source data 4**

575 Protein levels of A20_WT and A20_Leu236Pro upon transient expression in HEK293T and treatment
576 with MG132.

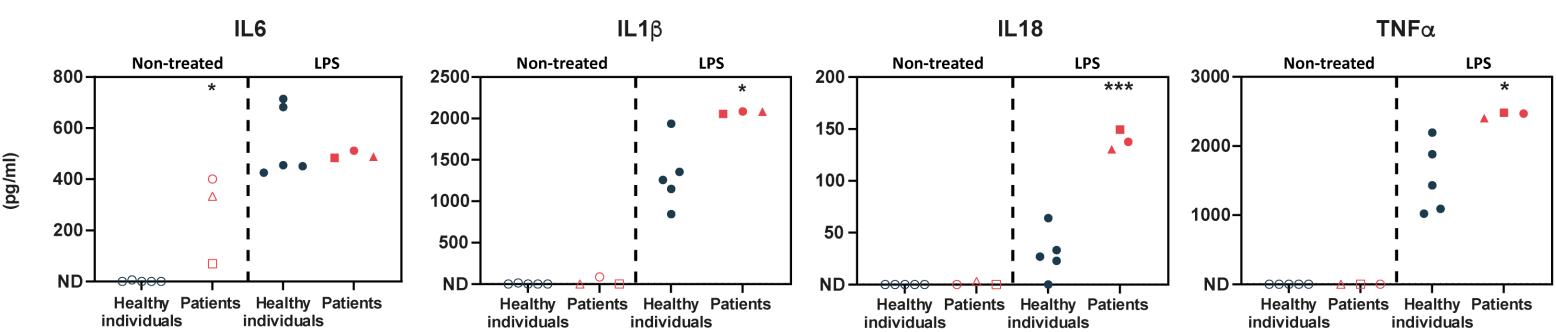
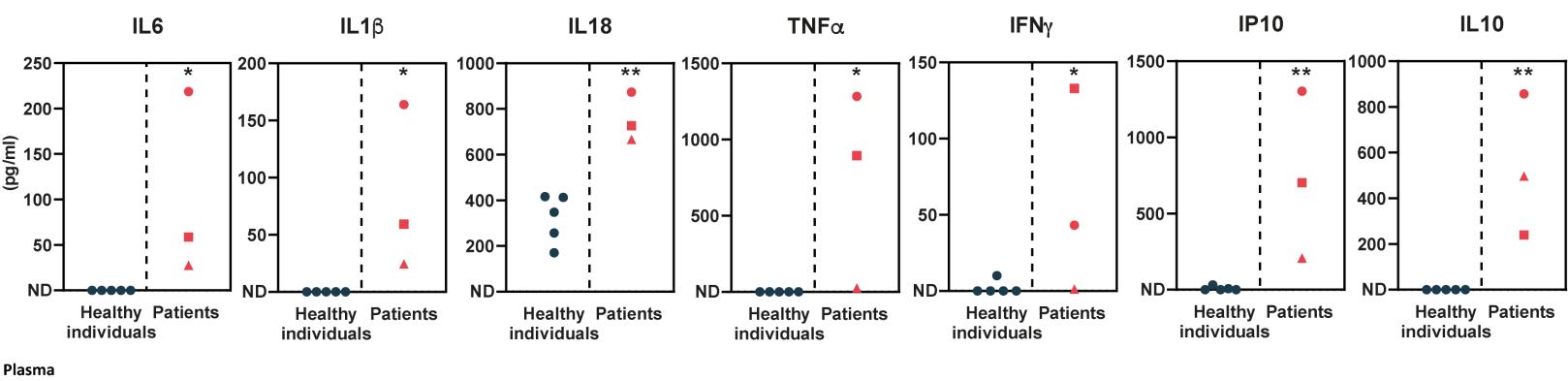


577 Uncropped Western blot images of GFP-A20 and α -tubulin protein expression (n=3).

Figure 1

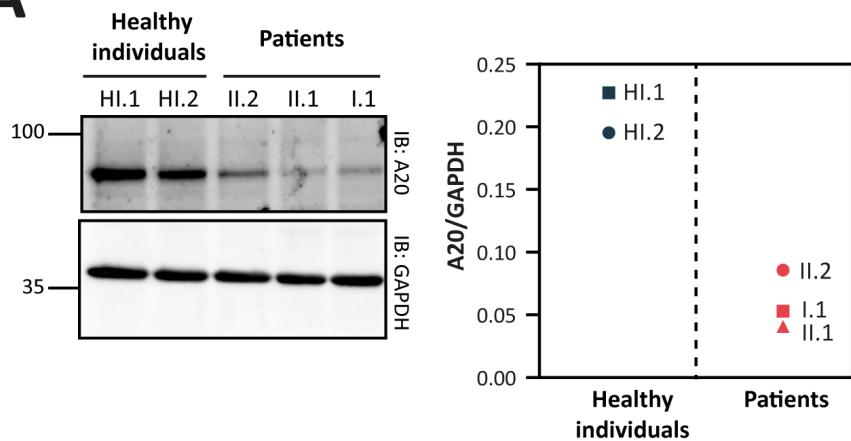

C

Figure 2

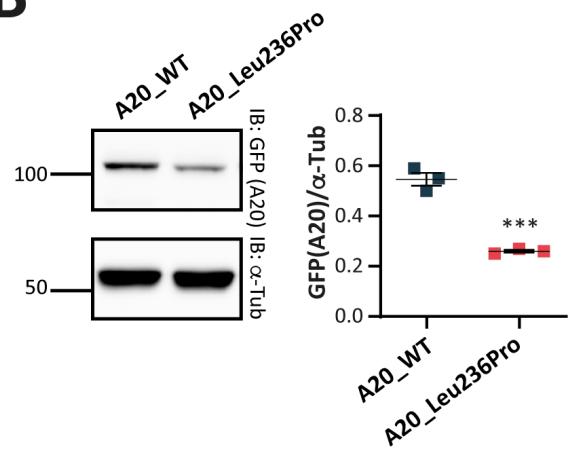
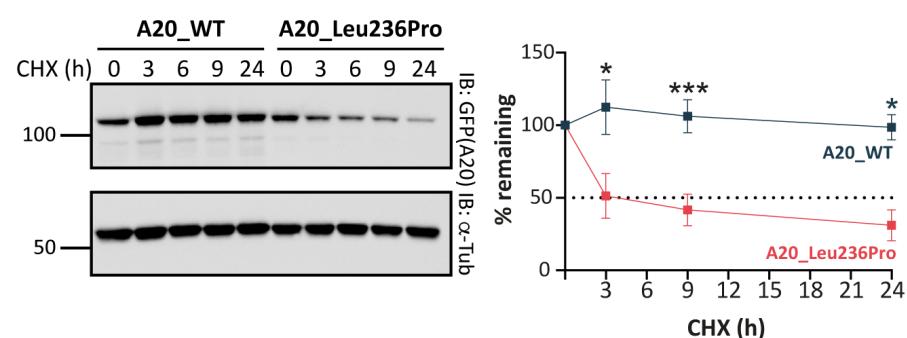
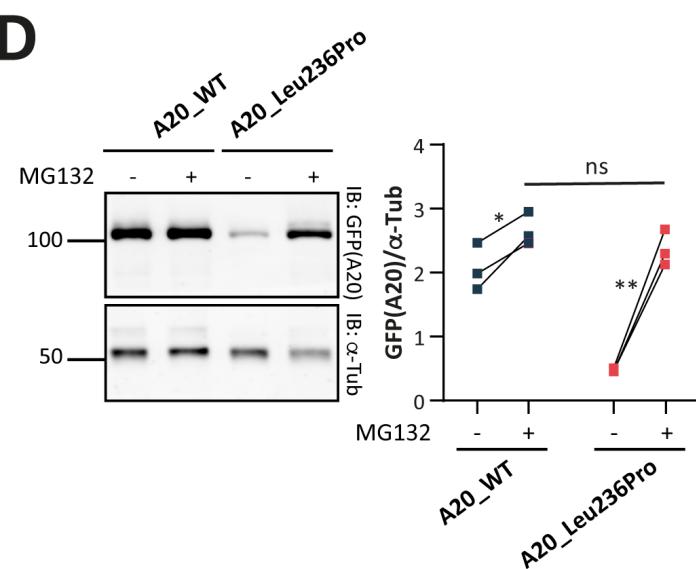
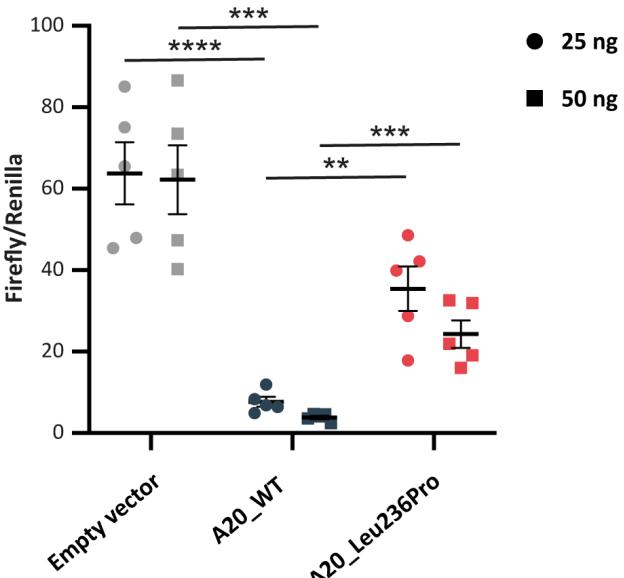


Figure 3

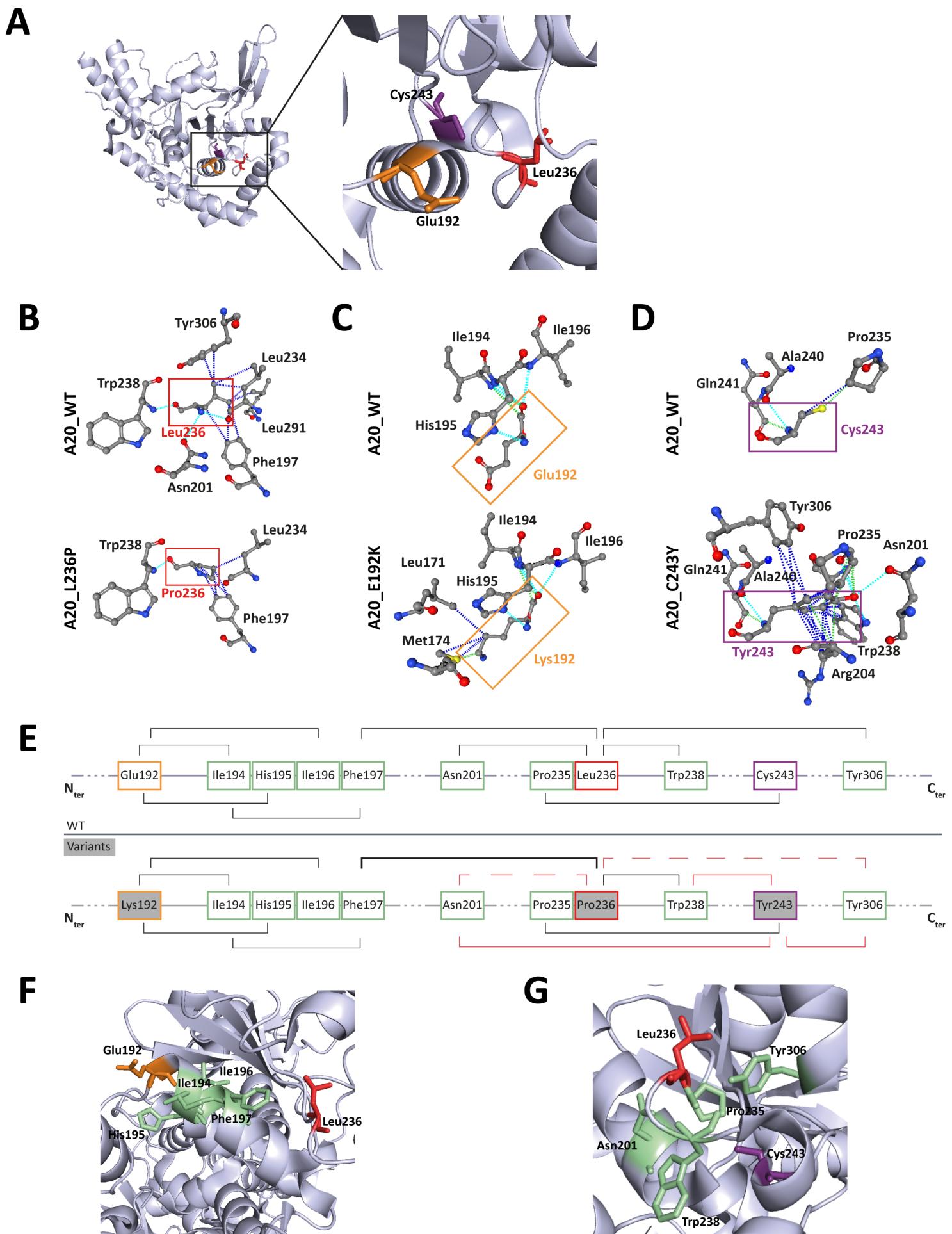

A


B

C



D



E

NF- κ B luciferase assay

Figure 4

