

1 **Cardiolipin coordinates inflammatory metabolic reprogramming through regulation of**
2 **Complex II assembly and stability**

3

4 Mack B. Reynolds¹, Hanna S. Hong², Britton C Michmerhuizen¹, Anna-Lisa E. Lawrence¹, Li
5 Zhang², Jason S. Knight³, Costas A. Lyssiotis², Basel H. Abuaita¹, Mary X. O'Riordan¹

6

7 ¹ Department of Microbiology and Immunology, University of Michigan Medical School, Ann
8 Arbor, MI, USA

9 ² Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann
10 Arbor, MI, USA.

11 ³ Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor,
12 MI, 48109, USA

13

14 **Abstract**

15 Macrophage metabolic plasticity enables repurposing of electron transport from energy
16 generation to inflammation and host defense. Altered Respiratory Complex II function has been
17 implicated in cancer, diabetes and inflammation but regulatory mechanisms are incompletely
18 understood. Here we show that macrophage inflammatory activation triggers Complex II
19 disassembly and succinate dehydrogenase-B subunit loss through sequestration and
20 mitophagy. Mitochondrial fission was required for lipopolysaccharide-stimulated succinate
21 dehydrogenase-B degradation but not sequestration. We hypothesized that this Complex II
22 regulatory mechanism might be coordinated by the mitochondrial phospholipid cardiolipin.
23 Cardiolipin synthase knockdown prevented lipopolysaccharide-induced metabolic remodeling
24 and Complex II disassembly, sequestration and degradation. Cardiolipin-depleted macrophages
25 were defective in lipopolysaccharide-induced pro-inflammatory cytokine production, a
26 phenotype partially rescued by Complex II inhibition. Thus, cardiolipin acts as a critical organizer
27 of inflammatory metabolic remodeling.

28

29 **Introduction**

30

31 Metabolic plasticity is a central feature of immunity (1, 2). Immune cells respond to diverse
32 physiological cues, including infectious and sterile inflammatory stimuli, by eliciting distinct
33 metabolic programs. While it has long been appreciated that these metabolic changes reshape
34 cellular bioenergetics, more recent studies indicate that context-driven metabolic remodeling
35 defines immune cell fate and function. Although metabolic plasticity is common among immune
36 cells, the regulatory mechanisms and consequences of these metabolic changes are highly
37 specialized in different cell types (3–5).

38

39 Metabolic remodeling in macrophages contributes to the initiation and resolution of inflammation
40 in multiple human diseases, including sepsis, infection, inflammatory disease, and autoimmune
41 disease (3, 6–8). Furthermore, a variety of metabolic determinants of inflammatory signaling
42 have been identified in macrophages. Importantly, control of oxidative phosphorylation,
43 particularly through modulation of respiratory chain (RC) function, is critical for inflammatory
44 programming. Recent work has highlighted respiratory complex II (Complex II), which functions
45 uniquely at the interface of the electron transport chain (ETC) and the tricarboxylic acid (TCA)
46 cycle, as a major player in macrophage metabolic remodeling and inflammatory programming
47 (9–13). While ample evidence connects Complex II and its substrate succinate to macrophage
48 inflammatory programming, the regulatory mechanisms governing Complex II activity in
49 macrophages remain to be defined.

50

51 Prior work points to accumulation and oxidation of succinate as critical for macrophage
52 inflammatory programming. Inflammatory accumulation of succinate has been attributed to
53 increased flux through the gamma-aminobutyric acid (GABA) shunt (10). Succinate produced
54 through this mechanism enhances lipopolysaccharide (LPS)-stimulated inflammatory signaling
55 through oxidative stress-dependent activation of the transcription factor Hypoxia Inducible
56 Factor 1 (HIF-1), which increases the production of the immature form of the pro-inflammatory
57 cytokine Interleukin 1 β (pro-IL-1 β). Nevertheless, sustained inhibition of Complex II, which
58 results in succinate accumulation, suppresses inflammatory signaling. Notably, deletion of one
59 of the four subunits of Complex II, succinate dehydrogenase B (SDHB), in macrophages leads
60 to a hypo-inflammatory phenotype, as indicated by a defect in LPS-induced pro-IL-1 β (9). Thus,
61 current models support that Complex II is required for the inflammatory effect of succinate
62 accumulation. Furthermore, acute bacterial infection of macrophages results in increased

63 Complex II activity within the first two hours (12). Overall, the current literature predicts that
64 precise and dynamic control of Complex II activity during inflammatory macrophage activation
65 may be important, but early regulatory mechanisms controlling activity and stability of Complex
66 II during the course of macrophage inflammatory programming are not well defined.

67

68 The supramolecular organization of the respiratory complexes (RCs) depends on phospholipids
69 present in the inner mitochondrial membrane (IMM) (14, 15). In particular, the mitochondrial
70 phospholipid cardiolipin (CL) scaffolds the RCs in supercomplexes and enhances their function.
71 Furthermore, human diseases caused by defects in CL metabolism, such as Barth Syndrome,
72 are associated with defects in RC organization and function across multiple cell types (16).
73 While CL has been linked to RC function, little is known about how CL may control inflammatory
74 modulation of RC activity in macrophages. Here, we identify regulation of SDHB as a key step in
75 LPS-induced respiratory chain remodeling and demonstrate a critical role for CL in enabling
76 Complex II disassembly and SDHB degradation. Our findings point to CL as an architect of
77 macrophage metabolic remodeling that repurposes the respiratory chain towards inflammation.

78

79 **Results**

80

81 **Macrophage inflammatory activation destabilizes Complex II subunit SDHB**

82

83 Activation of Toll-like receptor 4 (TLR4) with lipopolysaccharide (LPS) triggers profound
84 metabolic remodeling in macrophages which culminates in ATP production by aerobic glycolysis
85 at the expense of oxidative phosphorylation (3, 7, 13). In agreement with prior studies,
86 stimulation of murine macrophages with LPS led to decreased oxygen consumption (OCR) and
87 increased extracellular acidification (ECAR) as early as 6h post-treatment, shown by Seahorse
88 extracellular flux assay (**Fig. S1A-B**) (6, 17, 18). We therefore predicted that LPS stimulation
89 might alter relative abundance or assembly of the respiratory complexes (RC). To test this
90 hypothesis, we performed immunoblot analysis of representative RC subunits in macrophages
91 stimulated with LPS. RC subunit analysis revealed selective loss of respiratory complex II
92 (Complex II) subunit SDHB, but not SDHA, at 24h post-LPS stimulation (**Fig. 1A-B**). The other
93 RCs remained at baseline levels or showed slight decreases that were not statistically
94 significant. Our findings are consistent with earlier studies demonstrating that LPS stimulation
95 triggers accumulation of the Complex II substrate succinate, complementing the production of
96 succinate via the GABA shunt (10).

97

98 To investigate how LPS treatment affects the assembly of Complex II, we immunoprecipitated
99 SDHA and measured co-immunoprecipitation of other representative RC subunits (**Fig. 1A and**
100 **C**). We found that, among the tested RC subunits, only SDHB co-immunoprecipitated with
101 SDHA under unstimulated conditions, supporting a known phenomenon whereby Complex II
102 rarely forms supercomplexes with other RCs (19). Importantly, LPS stimulation triggered
103 dissociation of SDHA and SDHB as early as 8h post LPS stimulation. In support of this, blue
104 native (BN)-PAGE analysis of Complex II during LPS stimulation showed a decrease in native
105 Complex II, and a corresponding increase in dissociated SDHA, at 8 and 24h post LPS
106 stimulation (**Fig. 1D-E**). Notably, the assembly of other respiratory complexes was not perturbed
107 by LPS stimulation (**Fig. S2**). Disassembly of Complex II correlated with decreased enzymatic
108 activity, as indicated by an in-gel activity assay of Complex II succinate dehydrogenase activity
109 (**Fig. 1F and G**). We next tested whether Complex II activity was regulated by a similar
110 mechanism in primary human monocyte-derived macrophages (hMDM) and found that that
111 indeed SDHB, but not SDHA, was decreased by LPS stimulation, resulting in loss of Complex II
112 activity by 24h (**Fig. 1H and I**). Finally, we found that pharmacological inhibition of Complex II
113 was sufficient to trigger a glycolytic burst in macrophages (**Fig. S1C**). Thus, we propose that
114 Complex II disassembly and instability leads to functional inactivation, contributing to defective
115 respiration and increased glycolysis during macrophage inflammatory activation.

116

117 **Complex II subunit SDHB is sequestered and selectively degraded through mitophagy**
118 **during macrophage inflammatory activation**

119

120 Selective loss of Complex II subunit SDHB, but not SDHA, upon LPS stimulation could be
121 achieved by a variety of mechanisms, including gene expression and proteolytic pathways. To
122 investigate SDHB protein-level regulation, we first explored the subcellular localization of
123 Complex II during LPS stimulation. We visualized SDHA and SDHB subcellular localization by
124 immunofluorescence staining and high resolution confocal fluorescence microscopy,
125 counterstaining with Complex I subunit MT-ND1 (inner mitochondrial membrane) and LAMP1
126 (endolysosomal network) (**Fig. 2A and Fig. S3**). At 8h post-LPS stimulation, when we observed
127 Complex II disassembly but not loss of SDHA or SDHB subunit abundance, we noted
128 sequestration of SDHB into puncta that were distinct from the main mitochondrial network as
129 defined by MT-ND1 immunofluorescence. In contrast, SDHA remained ubiquitous across the
130 mitochondrial network (**Fig 2B-D, Fig S3B, Fig S4 C-D**). Interestingly, there was selective

131 delivery of SDHB to the LAMP1-positive vesicular network (**Fig 2B and Fig S2A**). Optical
132 sectioning and 3D rendering of confocal immunofluorescence micrographs revealed two
133 subsets of SDHB puncta: one subset localized within spherical LAMP1 structures, while the
134 other subset was retained within the mitochondrial network (**Fig S4A-B**). These results suggest
135 that SDHB is sequestered within the mitochondrial network and then delivered to an
136 endolysosomal compartment in response to LPS stimulation.

137

138 Delivery of mitochondrial components to the endolysosomal network can occur during
139 mitochondrial autophagy (mitophagy), so we reasoned that the decrease in SDHB protein
140 abundance might be mediated by mitophagy. During mitophagy, dynamin-related protein
141 (DRP1)-dependent mitochondrial fission generates small (~1 μm^2), fragmented mitochondria
142 which can be recognized by the autophagy machinery and captured for disposal. Thus, we
143 predicted that DRP1 depletion would inhibit LPS-induced SDHB delivery to a LAMP1-positive
144 compartment. We therefore stimulated DRP1 KD macrophages (**Fig. 2E**) (20) with LPS, and
145 measured SDHB levels by immunoblot (**Fig. 2F-G**). LPS-stimulated DRP1 KD macrophages
146 failed to exhibit decreased SDHB compared to cells expressing non-target control shRNA (NT-
147 Control). Additionally, we tracked SDHB subcellular localization by immunofluorescence labeling
148 and confocal microscopy (**Fig. 2H**). We observed more prominent SDHB puncta formation in
149 LPS-stimulated DRP1 KD macrophages, but these puncta remained associated with the
150 mitochondrial network (**Fig. 2I-J**) Thus, we find that DRP1 KD macrophages are capable of
151 sequestering SDHB but infer that they have a defect in their ability to release SDHB puncta from
152 the mitochondrial network for degradation. To test whether endolysosomal degradation could
153 contribute to LPS-induced loss of SDHB, we treated cells with LPS in the absence or presence
154 of the vacuolar ATPase inhibitor Bafilomycin A1 (Baf A) and measured SDHB levels by
155 immunoblot (**Fig 2K-L**). We found that SDHB was not as efficiently lost in response to LPS
156 when Baf A was present, compared to vehicle control. While our data support selective
157 mitophagy of SDHB, we also tested whether differences in *Sdhb* transcript could account for
158 differences in protein levels. We stimulated macrophages with LPS and measured expression of
159 *Sdha*, *Sdhb*, *Sdhc*, and *Sdhd* by RT-qPCR (**Fig. S5**). We found that LPS stimulation led to a
160 slight (trending) decrease in transcript levels of all Complex II subunits except *Sdhb*, indicating
161 that this mechanism is unlikely to account for selective loss of SDHB. Taken together, our data
162 support Complex II disassembly, followed by SDHB sequestration and degradation, as a
163 functional consequence of LPS-induced macrophage innate immune signaling.

164

165 **CL licenses metabolic remodeling during macrophage inflammatory activation**

166

167 As SDHB appears to be selectively degraded through mitophagy when macrophages are
168 stimulated with LPS, we sought to determine the mechanism by which SDHB is selectively
169 packaged and degraded while other mitochondrial proteins, like SDHA, remain unperturbed.
170 Prior work has determined that the mitochondrial phospholipid cardiolipin (CL) regulates
171 mitophagy upon exposure to the mitochondrial surface, a phenomenon known to occur during
172 LPS stimulation (21, 22). Furthermore, CL facilitates supramolecular organization and function
173 of the respiratory complexes (23). Thus, we hypothesized that CL proximity to and/or interaction
174 with Complex II might control selective mitophagy of SDHB during LPS stimulation. To
175 investigate the role of CL in macrophage metabolism, we knocked down the terminal enzyme in
176 the CL biosynthetic pathway, Cardiolipin Synthase (CRLS1 KD), and validated an effect on
177 CRLS1 and CL levels by immunoblot and untargeted lipidomics of mitochondrial fractions,
178 respectively (**Fig. 3A-B; Fig S6**). We noted that CRLS1 KD did not significantly affect the basal
179 abundance of respiratory complex subunits, respiration, glycolysis, or membrane potential (**Fig**
180 **3C-F; Fig S7**). These findings suggest that the minimum amount of CL needed for basal
181 metabolism is achieved in CRLS1 KD macrophages. While CRLS1 KD macrophages
182 maintained apparently normal basal metabolism, disruption of CL biosynthesis substantially
183 interrupted the ability of macrophages to dampen respiration and switch to aerobic glycolysis
184 during LPS stimulation (**Fig. 3D-F**). Consistent with a failure to inhibit respiration, CRLS1 KD
185 macrophages did not increase mitochondrial reactive oxygen species (mtROS) during LPS
186 stimulation, evidenced by decreased intensity of the mitochondrial superoxide indicator,
187 MitoSOX, quantified by confocal imaging (**Fig. 3G-H**). Collectively, these data suggest that the
188 ability of macrophages to remodel metabolism in response to LPS stimulation depends on CL
189 biosynthesis.

190

191 **CL biosynthesis is required for Complex II destabilization and sequestration during**
192 **macrophage inflammatory activation**

193

194 Macrophage stimulation with LPS triggers rewiring of the TCA cycle, a process which is linked
195 to inflammatory macrophage polarization (24). Since we identified a key role of CL biosynthesis
196 in global metabolic remodeling in LPS-stimulated macrophages, we tested whether CRLS1 KD
197 macrophages were defective in their capacity to alter TCA cycle metabolites in response to
198 LPS. To this end, we performed a metabolomics kinetic study to identify changes in metabolite

199 levels between CRLS1 KD and NT-control macrophages during LPS stimulation. Our analysis
200 revealed that LPS triggers a CRLS1-dependent break in the TCA cycle, whereby succinate
201 accumulates and downstream metabolites malate and aspartate are depleted (**Fig 4A and Fig**
202 **S8**). Additionally, we observed decreased accumulation of itaconate in LPS-stimulated CRLS1
203 KD macrophages, a phenotype normally associated with Complex II dysfunction (**Fig S8**) (25).
204 As succinate is a Complex II substrate, we hypothesized that CRLS1 KD macrophages might
205 have a defect in Complex II stability or activity. We first tested if CL contributes to LPS-induced
206 destabilization of Complex II subunit SDHB. To this end, we stimulated macrophages with or
207 without LPS for 24h and measured abundance and activity of Complex II by BN-PAGE and
208 parallel immunoblot and in-gel activity assays (**Fig. 4B-E**). CL biosynthesis was critical for LPS-
209 induced disassembly and inhibition of Complex II. Furthermore, SDS-PAGE and immunoblot
210 analysis of RC subunits revealed that SDHB was lost in NT-Control macrophages, but retained
211 in CRLS1 KD macrophages (**Fig. 4F-G**). Since Complex II disassembly was prevented in
212 CRLS1 KD macrophages, we predicted that SDHB sequestration would also be limited. To test
213 this hypothesis, we tracked localization of MT-ND1 and SDHB by immunofluorescence and high
214 resolution confocal microscopy. We found that CL biosynthesis was required for focal
215 accumulation of SDHB in response to LPS stimulation, since CRLS1 KD macrophages failed to
216 produce SDHB puncta (**Fig. 4H-I**). Together, our data support that LPS-induced SDHB
217 sequestration and degradation through mitophagy depend on CL.

218

219 **CL biosynthesis and modulation of Complex II activity are critical for early inflammatory** 220 **responses in macrophages**

221

222 Complex II and CL have been implicated in macrophage inflammatory function through HIF-1-
223 driven inflammatory gene expression (10, 22). With this observation in mind, we hypothesized
224 that interaction between CL and Complex II may regulate macrophage inflammatory
225 programming. To test our hypothesis, we stimulated NT-Control and CRLS1 KD with LPS and
226 measured transcript levels of hallmark inflammatory genes *Il6* and *Tnf* by RT-qPCR. CRLS1 KD
227 macrophages exhibited markedly decreased levels of *Il6* transcript compared to NT-control, with
228 only a trending defect in transcript levels of *Tnf* (**Fig 5A**). In parallel, we measured secreted
229 levels of these cytokines by ELISA (**Fig 5B**). Similar to transcript levels, we found that CRLS1
230 was required for LPS-induced production of IL-6, but not TNF- α . To determine if CRLS1 was
231 important for inflammatory responses in other types of macrophages beyond bone marrow-
232 derived macrophages, we knocked down CRLS1 in the peritoneal origin RAW264.7 murine

233 macrophage cell line and saw similar CRLS1-dependent inflammatory responses (**Fig. S9**).
234 Finally, we observed that CRLS1 KD in macrophages prevented IL-6 production in response to
235 the bacterial pathogen *Salmonella enterica* Typhimurium (**Fig S10**). These findings indicate that
236 CL biosynthesis selectively regulates inflammatory gene expression at the transcript level.

237

238 Our results provide evidence that CL biosynthesis is critical for inflammatory programming in
239 macrophages, and work from other labs collectively supports that Complex II regulates
240 inflammatory responses in macrophages. To test if these are related processes, we treated
241 LPS-stimulated NT-control or CRLS KD macrophages with two different commercially available
242 Complex II inhibitors, Atpenin A5 (AA5) or dimethyl malonate (DMM), at a range of sub-cytotoxic
243 concentrations and measured IL-6 production by ELISA (**Fig 5C and Fig S11**). We found that
244 both of these Complex II inhibitors partially restored IL-6 production in CRLS1 KD
245 macrophages. We conclude that CL biosynthesis is critically important for inflammatory
246 programming in macrophages, and that there are likely Complex II-dependent and -independent
247 components to this programming. Interestingly, exogenous addition of diethyl succinate did not
248 rescue IL-6 production, indicating that modulation of Complex II activity may be more nuanced
249 than accumulation of succinate for inflammatory outcomes in the early phase of inflammatory
250 activation. (**Fig S12**). Finally, we tested whether inhibition of Complex II was sufficient to trigger
251 SDHB sequestration. We found that DMM-treated macrophages sequestered SDHB into puncta
252 to a similar extent as LPS-treated cells (**Fig 5D-E and Fig S13**). Additionally, DMM-induced
253 SDHB sequestration was dependent on CRLS1. Thus, we speculate that CL biosynthesis
254 contributes to separable processes of Complex II disassembly and sequestration of
255 dysfunctional Complex II subunits.

256

257 Discussion

258

259 TLR4 activation by LPS triggers global metabolic remodeling, shifting away from respiration and
260 toward glycolysis in macrophages, repurposing the respiratory chain for host defense and
261 inflammatory signaling. Inhibition of the respiratory complexes themselves triggers substantive
262 metabolic reprogramming and is sufficient to stimulate a robust glycolytic burst (26). From these
263 observations, we predicted that one or more of the RCs would be negatively regulated by LPS
264 stimulation. We found that Complex II activity decreased and its components disassembled in
265 response to LPS stimulation. Following disassembly, Complex II subunit SDHB was
266 sequestered into microdomains of the mitochondrial network and released in a DRP1-

267 dependent manner, reminiscent of mitophagy. SDHB released from the mitochondrial network
268 through this mechanism was turned over through endolysosomal degradation. The
269 mitochondrial phospholipid cardiolipin (CL) was critical for disassembly of Complex II, and
270 sequestration and degradation of SDHB. Finally, we show that defective CL biosynthesis
271 compromises the induction or stability of pro-inflammatory cytokine transcripts, notably IL-6, a
272 phenotype which could be partially rescued by Complex II inhibition. Collectively, our work
273 highlights a novel function for CL in regulating macrophage inflammatory programming through
274 coordination of Complex II disassembly and degradation.

275
276 Ample evidence supports an integral role for regulation of electron transport chain components
277 in executing the shift from homeostatic to inflammatory programming (27). Environmental cues
278 alter macrophage metabolism which guides polarization between inflammatory and anti-
279 inflammatory macrophage phenotypes. Metabolic changes influence cellular fate through a
280 variety of factors, including oxidative stress pathways, post-translational modification of proteins
281 by induced metabolites, and epigenetics. O'Neill and colleagues demonstrated that succinate
282 produced through the GABA shunt enhanced LPS-induced IL-1 β production, while conditional
283 deletion of the *Sdhb* gene in macrophages or pharmacological inhibition of Complex II, both
284 approaches that increase succinate pools, paradoxically compromised IL-1 β production during
285 prolonged LPS stimulation (9). The model that best fits these data is that succinate oxidation by
286 Complex II participates in inflammatory signaling. Nevertheless, our data demonstrate that
287 pharmacological inhibition of Complex II in the acute early phase of LPS stimulation enhances
288 inflammatory responses, particularly IL-6 production. Furthermore, our data demonstrate that
289 succinate oxidation alone cannot account for the inflammatory contribution of Complex II, as
290 pro-inflammatory cytokine production in CRLS1 KD macrophages, which maintain succinate
291 dehydrogenase activity, cannot be rescued by exogenous succinate supplementation. Together,
292 our work and prior studies point to dynamic regulation of both Complex II and succinate levels
293 as critical for orchestrating both the acute inflammatory response as well as the subsequent
294 shift from pro- to anti-inflammatory macrophage function. Indeed, prior work has identified that
295 alternative assembly of Complex II, reminiscent of what we have observed, aids in the
296 adaptation to energetic stress (28). Following the model of alternative assembly, we propose
297 that the SDHA/SDHB dimer dissociates from the integral membrane SDHC/SDHD dimer to alter
298 Complex II function. In fact, at 8h post LPS stimulation, we observed by BN-PAGE and SDHA
299 immunoblot a banding pattern consistent with an SDHA/SDHB dimer (Fig S2). Subsequently, by
300 24h post LPS stimulation we have observed loss of SDHB but not SDHA, indicating further

301 dissociation of the SDHA/SDHB dimer and selective loss of SDHB. Thus, we propose that later
302 loss of SDHB may be a mechanism to dampen the inflammatory function of the SDHA/SDHB
303 dimer, though further studies are needed to test these hypotheses.

304

305 Recent findings indicate that inhibitors of Complex I, II, III or V prevent NLRP3 inflammasome
306 activation and IL-1 β production, by sustaining high ATP levels in a ROS-independent manner
307 (29). Although observations using pharmacological inhibition must be interpreted with caution,
308 the preponderance of data support that components of the respiratory complexes are prime
309 targets for multi-level regulation. In addition to alterations in transcript or protein levels, Clayton
310 et al, determined that in response to inflammatory signals, the Cytochrome c oxidase (CcO)
311 subunit NDUFA4, is replaced by a paralogous component, C15ORF48 (30). The expression of
312 *C15orf48* transcript is positively correlated with disease severity in patients with rheumatoid
313 arthritis. In addition, macrophages from human patients genetically lacking NDUFA4, a subunit
314 of CIV, exhibit hyperinflammatory characteristics, independent from changes in cellular ATP
315 production rates, again underscoring the complex relationship between the function of
316 respiration and its component parts (30). Our findings identify a regulatory modality that
317 controls availability and function of SDHB protein during the early pro-inflammatory macrophage
318 response, thereby tuning the activity of CII. Our results further establish that cardiolipin, a key
319 architect of homeostatic mitochondrial function, plays a prominent and distinct role in CII
320 regulation, and possibly other respiratory complexes, during LPS-induced mitochondrial
321 reprogramming that leads to inflammation.

322

323 Metabolic reprogramming is implicated in the pathophysiology of many human diseases, with
324 changes in respiratory chain function evident in many disease states. Genes encoding
325 components of Complex II are mutated in several types of cancer, including hereditary
326 paraganglioma due at least in part to increased ROS production and cell proliferation (31–33).
327 In β -cells, deficiency in Complex II leads to metabolic dysfunction and diabetes in a mouse
328 model of disease (34). A substantial body of evidence therefore points to Complex II as a critical
329 regulatory nexus for metabolic reprogramming, and accordingly positions it as a target of
330 multiple layers of regulation. Most work to date has focused on transcriptional regulation and
331 post-translational modifications as regulatory determinants of Complex II abundance and
332 activity. Post-translational regulatory mechanisms, particularly degradative pathways, have
333 been identified for other respiratory complexes, including multiple subunits of Complex I, but not
334 Complex II(35). Finally, the activity, abundance, and assembly of RCs are affected under

335 diverse biological contexts. Thus, our observations that Complex II stability and activity is
336 disrupted by TLR4 activation in macrophages fits into the broader context of complex regulation
337 of the RCs. We propose that assembly-level control of Complex II enables rapid modulation of
338 inflammatory metabolism in macrophages. Notably, we observe a trending drop in Complex II
339 activity as early as 4h post LPS stimulation and a substantial drop in respiration by 6h post LPS
340 treatment. Further, these early metabolic changes may regulate gene expression during
341 inflammatory signaling. In fact, LPS-induced TCA cycle remodeling has been shown to alter
342 inflammatory signaling through post-translational modifications of signaling molecules and
343 epigenetic decoration of histones by TCA intermediates (36). The multi-protein respiratory
344 complexes present many molecular interfaces for post-translational regulation and how such
345 mechanisms determine the nature and magnitude of inflammation is ripe for further study.

346

347 Different inflammatory stimuli elicit unique metabolic and inflammatory programs in
348 macrophages (3). These metabolic changes are regulated by complex and multifactorial
349 mechanisms(37). One particular mechanism for the regulation of mitochondrial enzymes is
350 control of protein abundance. The abundance of mitochondrial proteins can be regulated by a
351 variety of mechanisms including gene expression, efficiency of mitochondrial import,
352 degradation by local proteases, and organelle-level autophagic turnover of mitochondria
353 (mitophagy). Here, we provide evidence that degradation of the Complex II subunit SDHB
354 occurs through a novel route of selective mitophagy, whereby specific cargoes are enriched into
355 fragmented mitochondria and targeted for endolysosomal degradation. Prior work from our lab
356 and others has identified that TLR4 activation triggers the generation of a pool of small,
357 fragmented mitochondria through the activity of Dynamin-related Protein 1 (DRP1)(20, 38).
358 While the purpose of these fragmented mitochondria was previously unclear, data from this
359 study supports that a subset of these fragmented mitochondria are enriched with specific
360 mitochondrial cargo, including SDHB, to be turned over through mitophagy. CL organizes the
361 mitochondrial inner membrane into functional microdomains, where it can facilitate respiratory
362 supercomplex assembly and function(14). Our CRLS1 KD macrophages did not have a
363 respiratory defect. Remarkably, one CL species was preferentially preserved even in the
364 context of CRLS1 KD (**Fig. S6**). This particular acyl chain state is maintained by a CL-specific
365 acyltransferase Tafazzin (TAZ)(39). Thus, we speculate that preservation of this CL species is
366 sufficient to sustain homeostatic respiratory chain function. Alternatively, normal respiration in
367 the CRLS1 KD macrophages may be attributed to an increase in phosphatidylethanolamine

368 (PE). PE has been shown to support RC function and a compensatory increase in this
369 phospholipid may sustain RC function when CL is limiting(15).

370

371 CRLS1 deficiency did not disrupt homeostatic respiration in macrophages, but these cells failed
372 to remodel their metabolism in response to LPS stimulation, pointing to a key role for CL
373 specifically in metabolic plasticity. Importantly, we observed that CL biosynthesis is required for
374 the glycolytic burst and the production of mitochondrial superoxide, both of which are linked to
375 inflammatory signaling in macrophages(9, 10). Furthermore, we found that CL biosynthesis was
376 required for selective inflammatory gene expression, where LPS-induced *Il6* transcript levels
377 were more sensitive to CL biosynthesis than *Tnf* transcript levels. This effect was partially
378 dependent on CL-dependent modulation of Complex II stability, but was not completely restored
379 by pharmacological Complex II inhibition. Our results indicate that CL biosynthesis contributes
380 to inflammatory signaling through multiple routes. In fact, CL which is exposed to the OMM
381 through membrane contact sites generated by NME4 contributes to inflammatory signaling
382 upstream of NF- κ B(40). Thus, CL may contribute to metabolic changes and inflammatory
383 signaling cascades to strictly control inflammatory responses at the transcript level. Additionally,
384 CL is proposed to scaffold the assembly of the NLRP3 inflammasome (22). Thus, CL
385 contributes to inflammatory programming in macrophages at multiple levels. Within this context,
386 we have identified a fundamental role for CL in early metabolic changes in macrophages which
387 likely shapes later processes of gene expression and post-translational regulation of
388 inflammatory responses. Taken together, our work reveals a novel mechanism by which
389 macrophages adapt their metabolism to inflammatory cues. We have identified a CL-dependent
390 route by which Complex II is disassembled and destabilized in macrophages. Further, our work
391 has revealed that CL enables selective mitophagy of SDHB during inflammatory macrophage
392 activation, without depleting its partner, SDHA. We speculate that CL microdomains may more
393 generally provide the spatial architecture for selective packaging of mitochondrial cargo, acting
394 as a key platform to execute different metabolic programs.

395 **Materials and methods**

396

397 **Ethics statement**

398 All animals used for experimental protocols were housed in specific pathogen free facilities at
399 the University of Michigan Medical School Unit for Laboratory Animal Medicine (ULAM) and
400 treated humanely in accordance with an IACUC-approved protocol. Blood samples were

401 obtained from healthy adult donors according to the protocol approved by the University of
402 Michigan Medical School (HUM00044257). Written consent was obtained from all donors.

403

404 **Cell culture**

405 Murine immortalized bone marrow-derived macrophages (iBMDMs) were generated as
406 previously described (41–43). Briefly, recombinant Cre-J2 virus containing v-raf and v-myc
407 oncogenes was generated in 3T3 fibroblasts grown in Dulbecco's Modified Eagle Medium
408 (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 50 U/ml of
409 Penicillin and 50 µg/ml of Streptomycin. Sterile-filtered culture supernatants containing Cre-J2
410 virus were stored at –80°C. C57BL/6J lineage mouse femurs and tibiae were flushed and cells
411 were transduced with Cre-J2 virus in macrophage differentiation media (50% DMEM, 2 mM L-
412 Glutamine, 1 mM Sodium Pyruvate, 30% L929 cell-conditioned medium, 20% FBS, 50 U/ml of
413 Penicillin and 50 µg/ml of Streptomycin). iBMDM were grown for at least 1 month before use in
414 experiments to ensure immortalization was successful. L-929 cells were cultured in Minimum
415 Essential Eagle Medium (MEM) supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate,
416 1 mM non-essential amino acid (NEAA), 10 mM HEPES, and 10% FBS. All experiments were
417 performed in DMEM supplemented with 2 mM L-glutamine, 1 mM Sodium Pyruvate and 10%
418 FBS, unless otherwise indicated. When indicated, macrophages were treated with 200 ng/mL
419 lipopolysaccharide (LPS) derived from *Salmonella enterica* serovar Typhimurium (Sigma-
420 Aldrich, L2262). Additionally, a variety of inhibitors were used in this study, the concentration
421 and source of which is included in the appended table. Throughout culturing, all cells were
422 incubated at 37°C in 5% CO₂.

423

424 **Human macrophage differentiation**

425 Blood samples were obtained from healthy adult donors. Peripheral blood mononuclear cells
426 were isolated by ficoll separation and differentiated *in vitro* into human monocyte-derived
427 macrophages (hMDM). Briefly, blood was layered on ficoll and centrifuged at 500 x g at RT with
428 low acceleration and no breaks for 20 min. Plasma was discarded, and the buffy coat and the
429 layer beneath were collected, centrifuged, and resuspended in RPMI 1640 containing 20% FBS
430 and 50 ng/ml human macrophage colony-stimulating factor (M-CSF) (300-25, Peprotech). Cells
431 were seeded into sterile tissue-culture plates and differentiated for 7 days. At 3 days post-
432 isolation, cultures were supplemented with fresh media. On the day of the experiment, cells
433 were washed 3 times with PBS without Ca²⁺ or Mg²⁺ to remove non-adherent cells.

434 Differentiation of macrophages by this protocol was validated by detection of CD68 and CD11b
435 double-positivity by flow cytometry.

436

437 **Bacterial infection**

438 *Salmonella enterica* serovar Typhimurium (STM) (**SL1344**) was grown overnight in LB in a 37°C
439 slanted, shaking incubator (250 rpm). Bacteria were washed three times and diluted in sterile
440 Dulbecco's phosphate buffered saline (DPBS). iBMDM were infected with STM at an MOI of 20,
441 and extracellular bacteria were killed with high concentration gentamicin treatment (100 µg/ml)
442 for 1h, washed with PBS, and then low concentration gentamicin (10 µg/ml) was maintained for
443 the remaining 23h of infection.

444

445 **Generation of DRP1 KD and CRLS1 KD**

446 Stable knock down (KD) of Dynamin-related Protein 1 (DRP1) and Cardiolipin Synthase
447 (CRLS1) in iBMDM was achieved using lentiviral delivery of shRNA. Lentivirus was generated
448 and packaged in HEK293T cells grown in DMEM supplemented with 10% FBS. HEK293T cells
449 were transfected with pLKO.1 plasmid encoding *Drp1*-targeted shRNA, *Crls1*-targeted shRNA,
450 and a non-target control (NT-Ctrl) along with the packaging plasmids (pHCMV-G, and pHCMV-
451 HIV-1) (44) using FUGENE-HD transfection reagent (Promega). The mouse *Drp1*-targeted
452 shRNA plasmid with the sense sequence of GGCAATTGAGCTAGCTATA, *Crls1*-targeted
453 shRNA plasmid with the sense sequence of GAAGACTTTAATGTTGCACTA, and the non-
454 target control shRNA plasmid were purchased from Sigma-Aldrich. Lentivirus-containing
455 supernatants were collected, filtered, and used to transduce macrophage cell lines. Transduced
456 cells were selected with puromycin (3 µg/ml) and resistant cells were grown and used for the
457 experiments.

458

459 **Mitochondrial isolation**

460 Mitochondria were isolated from cells by subcellular fractionation and density centrifugation as
461 previously described(45). Briefly, iBMDM were washed 3 times with ice cold DPBS, centrifuged
462 at 500 x g, 4°C, for 5 min and then resuspended in ice cold mitochondrial isolation buffer (MIB),
463 composed of 0.25 M sucrose, 20 mM HEPES (pH 7.4), 2 mM EGTA, 10 mM KCl, 1.5 mM
464 MgCl₂, 0.1% fatty acid-free bovine serum albumin (BSA; A8806, Sigma), and Halt™ Protease
465 inhibitor. Cells were lysed on ice using a sterile 27G syringe and centrifuged at 1100 x g, 4°C,
466 for 3 min to remove unlysed cells and cell debris. Mitochondria were pelleted from the clarified
467 cell lysate by centrifugation at 12,000 x g, 4°C, for 15 min. The supernatant from this step was

468 kept as the cytosolic fraction and the mitochondria-containing pellet (mitochondrial fraction) was
469 resuspended in MIB and centrifuged at 20,000 x g, 4°C, for 10 min. The supernatant was
470 discarded and the mitochondrial fraction was again resuspended in MIB and centrifuged at
471 20,000 x g, 4°C, for 5 min. The mitochondrial fraction was washed twice with ice cold DPBS at
472 20,000 x g, 4°C, for 5 min, flash frozen in liquid nitrogen, and stored at -80°C for subsequent
473 analysis.

474

475 **Untargeted Lipidomics**

476 WT, CRLS1 KD, and NT-Ctrl macrophages were grown overnight in DMEM supplemented with
477 10 mM glucose, 1 mM pyruvate, 2 mM glutamine, and 10% FBS. Mitochondria were isolated as
478 described above, flash frozen in liquid nitrogen, and stored at -80°C. Mitochondrial isolates
479 were quality controlled and tested for cytosolic contamination by immunoblot analysis of TOM20
480 and GAPDH, and total protein stains from SDS-PAGE separated mitochondrial fractions (Revert
481 700, LI-COR) were used for sample loading normalization for lipidomics data. Untargeted
482 lipidomics analysis was performed after general lipid extraction using a methyl-tert-butyl ether
483 (MTBE)-based liquid-liquid protocol. Samples were thawed at RT and 200 µL of PBS and 500
484 mL methanol containing 20 mL of an internal standard mixture (custom mixture from Cayman
485 Chemical; see associated documentation) were added to each sample. Samples were vortexed,
486 and 1000 mL methanol and 5 mL MTBE were sequentially added to each sample. After
487 additional vortexing, the mixture was incubated on a tabletop shaker at 500 rpm at RT for 1
488 hour. Phase separation was induced by the addition of 1.25 mL water. Samples were sonicated
489 for 10 minutes, then centrifuged at 2000 x g for 20 minutes. The upper organic phase of each
490 sample was carefully removed using a Pasteur pipette and transferred into a clean glass tube.
491 The remaining aqueous phase was re-extracted with 2.5 ml of the upper phase of
492 MTBE/methanol/water 10:3:2.5 (v/v/v) solvent mixture, whose composition was similar to the
493 expected composition of the upper phase. After vortexing and centrifugation as above, the
494 organic phase was collected and combined with the initial organic phase. The extracted lipids
495 were dried overnight in a SpeedVac concentrator. The dried lipid extracts were reconstituted in
496 200 µL n-butanol/methanol 1:1 (v/v) and transferred into autosampler vials for analysis by LC-
497 MS/MS. The parameters of the LC-MS/MS settings can be found in the supplementary data
498 files. Lipostar software (Version 2.0.2b3; Molecular Discovery) was used for feature detection,
499 noise and artifact reduction, alignment, normalization, and lipid identification. Significantly
500 changed lipids between CRLS1 KD and NT-Ctrl macrophages were identified using unpaired T
501 tests and filtering of $P < 0.05$ and absolute value of $\log_2(\text{fold change}) > 0.5$

502

503 **Metabolomics**

504 CRLS1 KD, and NT-Ctrl macrophages were grown overnight in DMEM supplemented with 10
505 mM glucose, 1 mM pyruvate, 2 mM glutamine, and 10% FBS and then stimulated with or
506 without LPS (200 ng/mL) for 4, 8, or 24h. Stimulation was synchronized such that cells across
507 conditions were in culture for the same amount of time. After stimulation, cells were washed
508 twice with ice cold DPBS, and metabolites were extracted by adding cold 80% methanol,
509 incubating at -80°C for 10 min, followed by centrifugation at 17,000 x g for 10 min at 4°C. The
510 resulting metabolite supernatant was collected. Metabolite extracts were normalized to protein
511 content from paired samples, and the normalized fraction was dried using a SpeedVac at 4°C
512 for 8h. Dried metabolite pellets were resuspended in a 50:50 mixture of MeOH and water. Liquid
513 chromatography-based targeted tandem mass spectrometry (LC-MS/MS)-based metabolomics
514 were performed and the data analyzed as previously described (46, 47). In brief, samples were
515 run on an Agilent 1290 Infinity II LC -6470 Triple Quadrupole (QqQ) tandem mass spectrometer
516 system consisting of the 1290 Infinity II LC Flexible Pump (Quaternary Pump), the 1290 Infinity
517 II Multisampler, the 1290 Infinity II Multicolumn Thermostat with 6 port valve and the 6470 triple
518 quad mass spectrometer. Agilent MassHunter Workstation Software LC/MS Data Acquisition for
519 6400 Series Triple Quadrupole MS with Version B.08.02 was used for compound optimization,
520 calibration, and data acquisition. Significantly changed metabolites between CRLS1 KD and NT-
521 Ctrl macrophages were identified using T tests and filtering of $P < 0.05$ and absolute value of
522 $\log_2(\text{fold change}) > 0.5$

523

524 **Seahorse Extracellular Flux Assay**

525 An Agilent Seahorse XF96 analyzer was used to simultaneously measure the rate of oxygen
526 consumption and extracellular acidification from cultured macrophages. Macrophages were
527 plated in a 96-well Seahorse plate and allowed to adhere overnight in Seahorse XF DMEM
528 supplemented with 10 mM glucose, 1 mM pyruvate, 2 mM glutamine, and 10% FBS. On the
529 following day, media was replaced with or without 200 ng/ml LPS and cells were stimulated for
530 6h. After 6h, media was exchanged for DMEM supplemented with the same levels of glucose,
531 pyruvate, and glutamine without FBS. Cells were kept in a 37°C incubator without CO₂ for 30
532 min prior to analysis. In some experiments, the Mito Stress Test kit from Agilent was used to
533 probe different aspects of mitochondrial function with manufacturer recommended
534 concentrations of respiratory chain inhibitors, 2 μ M carbonyl cyanide p-
535 trifluoromethoxyphenylhydrazone (FCCP), 1.5 μ M oligomycin, 0.5 μ M rotenone, and 0.5 μ M

536 antimycin A. Comparable plating between conditions was confirmed by staining plates post
537 analysis with Cell Tracker Red and Hoechst Dye, and analysis using a Biotek Synergy H1 plate
538 reader.

539

540 **Protein extraction, SDS-PAGE, and immunoblot (IB) analysis**

541 At experimental endpoints, cells were washed twice with ice-cold DPBS and then lysed in 1%
542 NP40 lysis buffer supplemented with Halt™ Protease and Phosphatase inhibitors for 15 min on
543 ice. A Bio-Rad protein assay was used to normalize sample loading prior to SDS-PAGE.
544 Samples were diluted in Laemmli sample loading buffer, heated for 5 min at 95°C, and then
545 loaded onto precast 4-20% polyacrylamide Tris-Glycine gels (Bio-Rad). After SDS-PAGE,
546 protein was transferred to a 0.45 nitrocellulose membrane by a semi dry transfer system
547 (Cytiva). Membranes were blocked with 5% BSA and 0.1% Tween 20 (IB blocking buffer) for 30
548 min at RT and then incubated with primary antibody in IB blocking buffer overnight at 4°C. Blots
549 were developed using LI-COR IRdye secondary antibodies and an Odyssey IR Imager. A list of
550 all antibodies used in this study with the associated use and concentration are included in a
551 separate document. Quantification of immunoblots was performed using ImageJ densitometric
552 gel analysis protocol for 1D gels. A list of all antibody sources, concentrations, and applications
553 is available in the associated table.

554

555 **Immunoprecipitation (IP) of Complex II**

556 Whole cell extracts were prepared by solubilization in 1% dodecyl maltoside (DDM)
557 supplemented with Halt protease and phosphatase inhibitors on ice for 30 min. The Pierce™
558 Crosslink immunoprecipitation kit was used to conjugate 5 µg of SDHA antibody (14865-1-AP)
559 to Protein A/G agarose resin. Complex II was immunoprecipitated from whole cell extracts
560 overnight at 4°C with rocking. Complex II was eluted according to the Pierce™ Crosslink
561 immunoprecipitation kit, and the pH was neutralized with pH 9.5 Tris-HCl prior to SDS-PAGE
562 analysis.

563

564 **Blue native (BN) PAGE**

565 BN-PAGE analysis of native respiratory complexes was performed as previously described⁽⁴⁸⁾
566 using commercially available reagents (Thermo Fisher). In summary, whole cell extracts were
567 prepared by solubilization of 10⁶ cells with 2 mg digitonin and 1X Native PAGE sample buffer
568 (Thermo Fisher, BN2008) on ice for 30 min. Subsequently, insoluble material was removed by
569 10 min of 17,000g centrifugation at 4°C. The soluble fraction was supplemented with 0.5%

570 Coomassie G-250 immediately before loading samples onto NativePAGE 4 to 16% Bis-Tris mini
571 gels from Invitrogen™. Samples were electrophoresed at 4°C for 30 min in Dark Blue cathode
572 at 150V (Thermo Fisher, BN2007). After this initial electrophoresis, the cathode buffer was
573 switched to the Light Blue cathode buffer. Following electrophoresis, gels were washed with
574 ultrapure water and then soaked with 2x NuPAGE transfer buffer without methanol
575 supplemented with 0.04% SDS for 15 min (Thermo Fisher, NP0006). Protein was transferred to
576 an Immobilon®-FL PVDF membrane at 15V for 15 min with 2x NuPAGE transfer buffer
577 supplemented with 10% methanol using a Bio-Rad Transblot Turbo semi dry transfer system.
578 Immediately following transfer, proteins were fixed in the membrane with 8% acetic acid for 5
579 min. Samples were washed 3 times with water, 3 times with 100% methanol, and then 3 times
580 with water. Downstream immunoblot analysis was performed normally. Quantification of
581 immunoblots was performed using ImageJ densitometric gel analysis protocol for 1D gels.

582

583 **Complex II in gel activity assay**

584 Complex II activity was assessed downstream of native PAGE using an in gel activity assay as
585 previously described([48](#)). Briefly, Native PAGE was performed similar to the BN-PAGE protocol
586 above, except that decreased Coomassie G-250 was used to prevent interference with the
587 colorimetric reaction of the activity assay. Following normal BN-PAGE sample loading, samples
588 were electrophoresed at 150V for 30 min at 4°C with the Light Blue Cathode buffer (Thermo
589 Fisher, NP0006). After 30 min, the Light Blue Cathode buffer was replaced with the clear anode
590 buffer and electrophoresis proceeded for an additional 1.5h. Following electrophoresis, the gel
591 was removed and transferred to ice cold ultrapure water. Fresh Complex II activity assay
592 substrate was prepared with the following components: 5mM Tris HCl pH 7.4, 20 mM sodium
593 succinate, 2.5 mg/ml 4-nitroblue tetrazolium, and 2 mM phenazine methosulfate in ultrapure
594 water. 10 mL of the Complex II substrate was incubated on the gel in a 37C incubator for 40
595 min. The reaction was stopped with 10% acetic acid, washed with ultrapure water, and imaged
596 using a Bio-Rad Gel Doc system.

597

598 **Immunofluorescence assay (IFA) and confocal fluorescence microscopic imaging**

599 Macrophages were plated on glass coverslips (No 1.5). Following stimulation, macrophages
600 were fixed at RT with freshly prepared 4% paraformaldehyde in PBS for 15 min. The IFA was
601 always performed on the same day as the experiment. Coverslips were washed three times with
602 PBS + 0.1% Triton-X100 (IFA wash buffer). Coverslips were blocked with a blocking buffer
603 composed of 5% BSA and 10% normal goat serum in wash buffer. A cocktail of primary

604 antibodies was prepared in blocking buffer and incubated on coverslips for 1h at RT. Coverslips
605 were washed three times with IFA wash buffer and incubated with secondary antibodies and
606 counterstains at RT for 30 min. Coverslips were washed and mounted onto microscope slides
607 using Prolong Glass mounting solution. Coverslips were imaged using a Nikon Yokogawa X1-
608 CSU spinning disk confocal microscope equipped with a 100x objective. Operator bias was
609 minimized during image acquisition through selection of fields of view and focal planes based on
610 counterstains which were unrelated to the experimental question. A list of all antibody sources,
611 concentrations, and applications is available in the associated table.

612

613 **Confocal microscopic analysis of mitochondrial superoxide (MitoSOX)**

614 Macrophages were plated on glass bottom (No 1.5) Mat-Tek dishes and allowed to adhere
615 overnight. Cells were stimulated +/- LPS for 3 or 6h. Within the last 20 minutes of the
616 experiment, cells were stained with 5 μ M MitoSOX dye and 1 μ g/ml Hoechst for 20 min at 37°C,
617 protected from light. Cells were washed with PBS and then fixed with 4% PFA at RT for 15 min.
618 Cells were washed with DPBS and then immediately imaged using a Nikon Yokogawa X1-CSU
619 spinning disk confocal microscope. Fields of view were selected based on the Hoechst stain.

620

621 **Image analysis and processing**

622 Automated image analysis was performed with the open source software CellProfiler™. All
623 CellProfiler pipelines related to this publication are available upon request. Image analysis was
624 performed on raw images. Automated single cell analysis was achieved by identification of
625 nuclear objects based on global thresholding of a nuclear stain (e.g. Hoechst or DAPI) using the
626 *identify primary objects* module, followed by propagation of the nuclear objects to the cellular
627 periphery based on a whole-cell stain (e.g. Cell Tracker) using the *identify secondary objects*
628 module. Subsequently, a variety of cellular parameters were measured and related to parent
629 cells using the *relate objects* module. **To quantify mitochondrial superoxide**, the intensity of
630 the mitochondrial superoxide dye MitoSOX was measured within cell objects. **To measure**
631 **SDHB sequestration**, puncta in the SDHB immunostain were identified using the *speckles*
632 enhancement module and Otsu adaptive thresholding within the *identify primary objects*
633 module. Representative images shown in this manuscript were prepared using the ImageJ
634 background subtraction tool with a rolling ball radius of 30 pixels.

635

636 **Cytokine analysis**

637 Macrophages were stimulated with or without 200 ng/mL LPS for 6 or 24h. In some
638 experiments, 1 μ M or 0.1 μ M Atpenin A5 (AA5) or 10 mM, 1 mM, or 0.1 mM of dimethyl
639 malonate (DMM) was added to the culture supernatant for 1h pretreatment. Following
640 stimulation, culture supernatants were collected, and IL-6 and TNF- α levels in the supernatant
641 were measured by ELISA by the University of Michigan Cancer Center Immunology Core.

642

643 **Flow cytometric analysis of mitochondrial membrane potential**

644 Macrophages were treated with or without 200 ng/mL LPS for 6h or 20 μ M of the protonophore
645 carbonyl cyanide 3-chlorophenylhydrazone (CCCP) for 1h. After stimulation, cells were stained
646 with 150 nM of the mitochondrial membrane potential dye Tetramethylrhodamine methyl ester
647 (TMRM) for 10 min at RT, protected from light. Cells were washed and resuspended in PBS.
648 Cells were immediately analyzed by flow cytometry (Fortessa, BD). Data were processed using
649 FlowJo, and the geometric mean intensity of TMRM from each experiment is reported.

650

651 **Real Time quantitative PCR (RT-qPCR)**

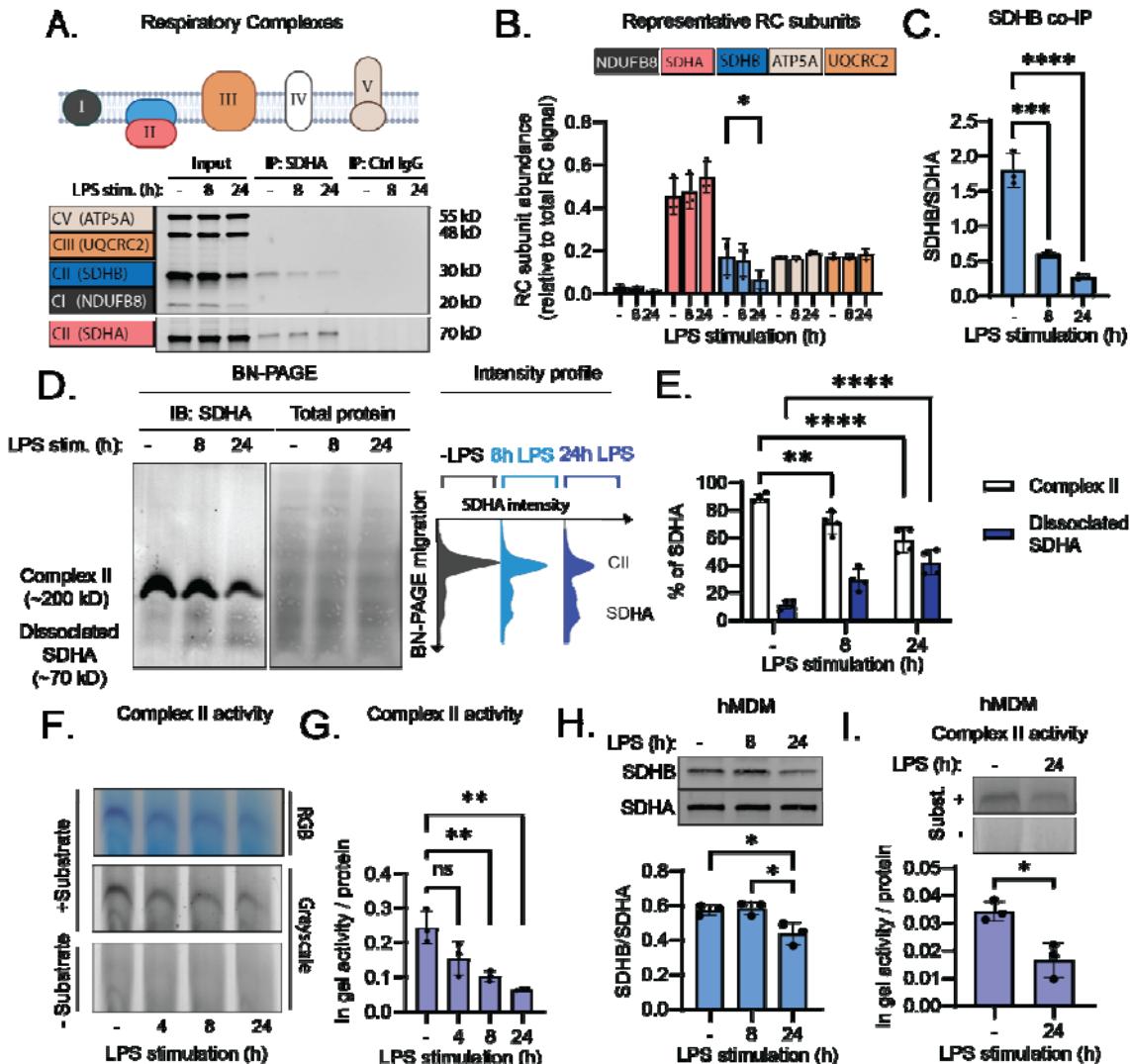
652 RNA was extracted from cells using TRIZOL and purified using the Direct-zol RNA MiniPrep
653 Plus kit (Zymo, R2072). The concentration and purity of RNA extracts were determined by
654 Nanodrop. cDNA was synthesized from equivalent amounts of RNA using the iScript cDNA
655 synthesis kit (Bio-Rad, 1708890). RT-qPCR was performed using the SYBR green system and
656 a Bio-Rad CFX96 Real Time system. qPCR primers were designed based on the literature or
657 using NCBI Primer BLAST. A list of all qPCR primers with sources is available in a separate
658 document.

659

660 **Acknowledgments**

661

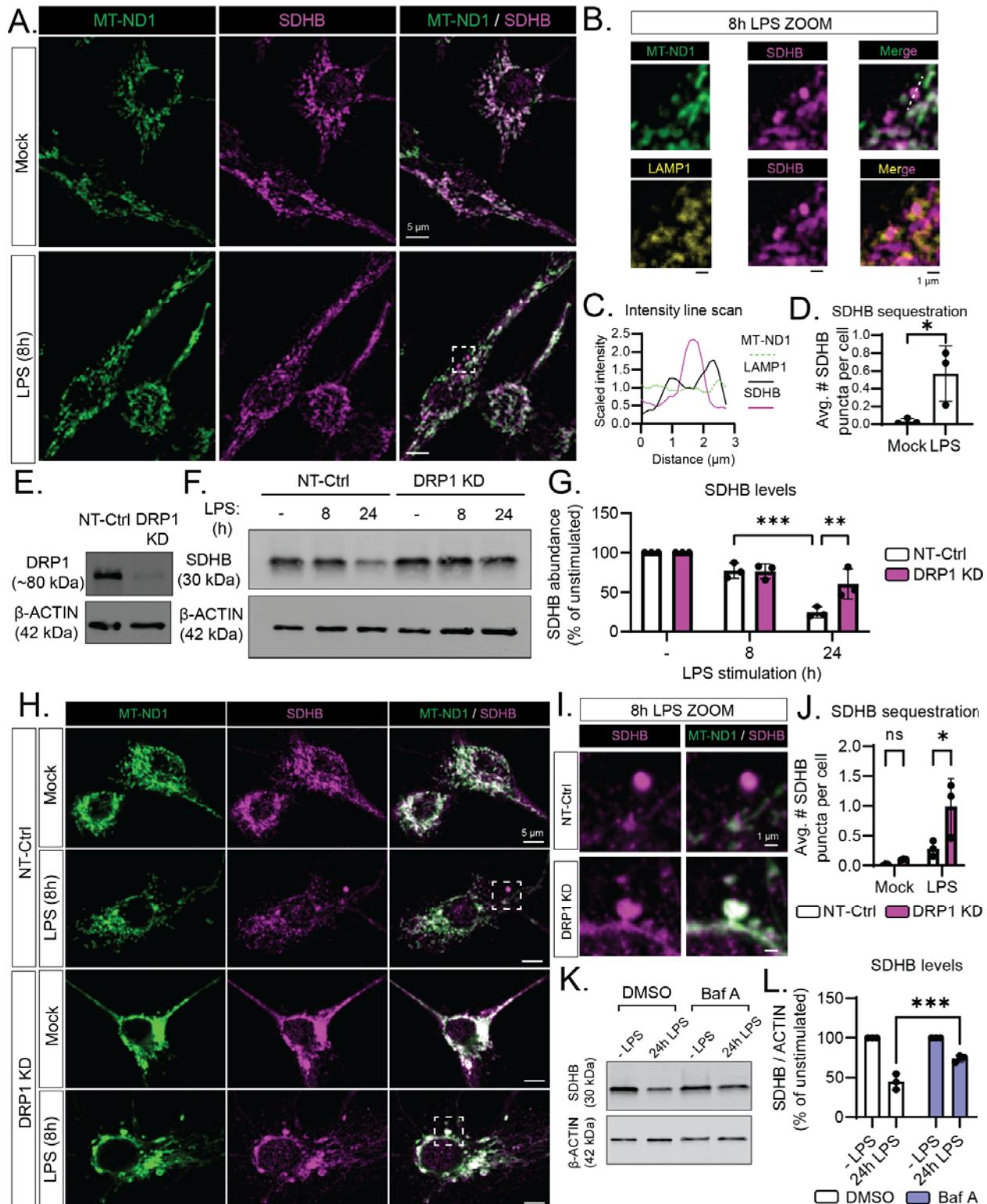
662 We thank the members of the O'Riordan lab, especially Michael J. McFadden and Zachary M.
663 Powers, for helpful discussions. **Funding:** M.X.O. was supported by an NIH R01
664 (R01AI157384). M.B.R. was supported by the University of Michigan Immunology Program
665 Research Training in Experimental Immunology training grant T32 (AI007413) and the Miller
666 Fund Award for Innovative Immunology Research. C.A.L. was supported by the NCI
667 (R37CA237421) and UMCCC Core Grant (P30CA046592). J.S.K. was supported by the Lupus
668 Research Alliance. **Author contributions:** M.B.R., B.H.A., M.X.O. contributed to the
669 conceptualization of the research study. Data curation and formal analysis were completed by
670 M.B.R. and H.S.H. Funding was acquired by M.X.O., C.A.L. and J.S.K. Investigation was


671 completed by M.B.R., H.S.H., B.C.M., L.Z. and A.E.L. Critical resources and supervision were
672 provided by J.S.K., C.A.L. and M.X.O. Writing and visualization of the original manuscript draft
673 were completed by M.B.R, H.S.H. and M.X.O. Review and editing were completed by all
674 authors. **Competing interests:** C.A.L. has received consulting fees from Astellas
675 Pharmaceuticals, Odyssey Therapeutics, and T-Knife Therapeutics, and is an inventor on
676 patents pertaining to Kras regulated metabolic pathways, redox control pathways in pancreatic
677 cancer, and targeting the GOT1-pathway as a therapeutic approach (US Patent No:
678 2015126580-A1, 05/07/2015; US Patent No: 20190136238, 05/09/2019; International Patent
679 No: WO2013177426-A2, 04/23/2015). The remaining authors declare no competing interests.
680 **Data and materials availability:** Full lipidomics and metabolomics datasets are available in the
681 supplemental materials of this manuscript. CellProfiler™ image analysis pipelines are available
682 via Github.

683

684

685 **Main Figures**

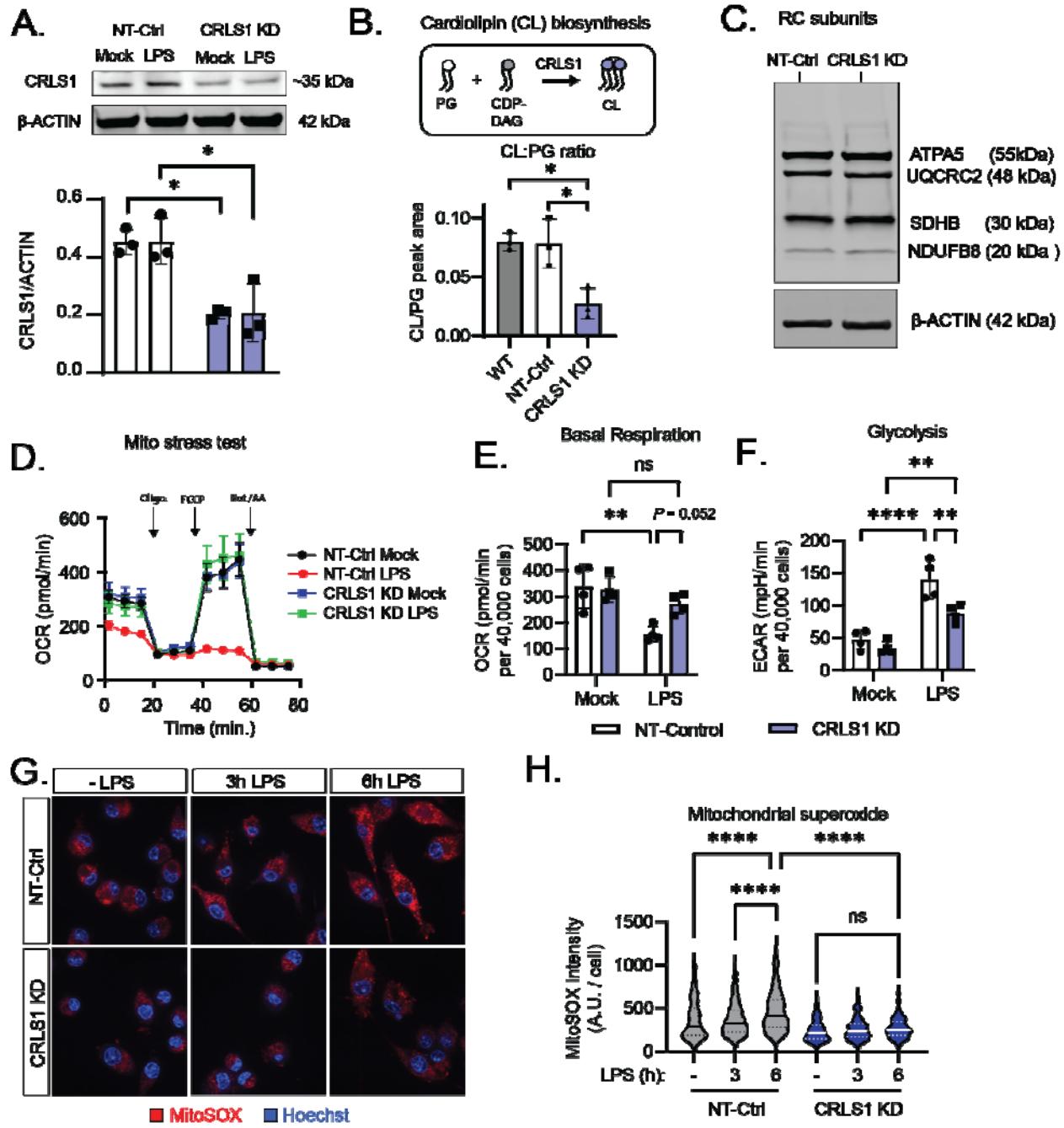

686

687

688 **Fig 1. Macrophage LPS stimulation destabilizes Complex II.** A. iBMDM were synchronously
 689 stimulated with or without 200 ng/mL LPS for 8 or 24h. Whole cell extracts were subject to
 690 SDHA or control IgG immunoprecipitation. Samples were analyzed by SDS-PAGE and
 691 immunoblot against a panel of respiratory complex (RC) subunits (ATPA5, UQCRC2, SDHA,
 692 SHDB, and NDUFB8). B. Quantification of RC subunit abundance from input sample from 1A
 693 relative to total RC signal. C. Quantification of immunoprecipitated SDHB relative to SDHA from
 694 1A. D. Whole cell extracts from iBMDM synchronously stimulated with or without LPS for 8 or
 695 24h were analyzed by blue native (BN) PAGE and subject to SDHA immunoblot. Intensity profile
 696 analysis of the SDHA blot shows two peaks, corresponding to Complex II-associated and
 697 dissociated SDHA. E. Quantification of the percentage of SDHA occupancy in Complex II and

698 dissociated SDHA populations as highlighted in 1D. **F.** iBMDM were synchronously stimulated
699 with or without LPS for 4, 8, or 24h and subject to a modified BN PAGE protocol (clear native
700 [CN]-PAGE) and a succinate dehydrogenase in gel activity assay. **G.** Enzymatic activity
701 quantified from each gel as in 1G was normalized to protein loading from the whole cell extract.
702 **H.** Primary human monocyte-derived macrophages (hMDM) were stimulated with or without 200
703 ng/mL LPS for 8 or 24h. Whole cell extracts were subject to SDS-PAGE and SDHA/SDHB
704 immunoblot. The ratio between SDHB and SDHA was quantified. **I.** Complex II succinate
705 dehydrogenase activity was measured as in 1F-G from hMDM stimulated with or without LPS
706 for 24h. Graphs are presented as the mean of $n \geq 3$ independent experiments with standard
707 deviation (SD) error bars. P values were calculated using an unpaired T-test or one-way
708 ANOVA with Tukey's post-test for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001.
709
710

711
712

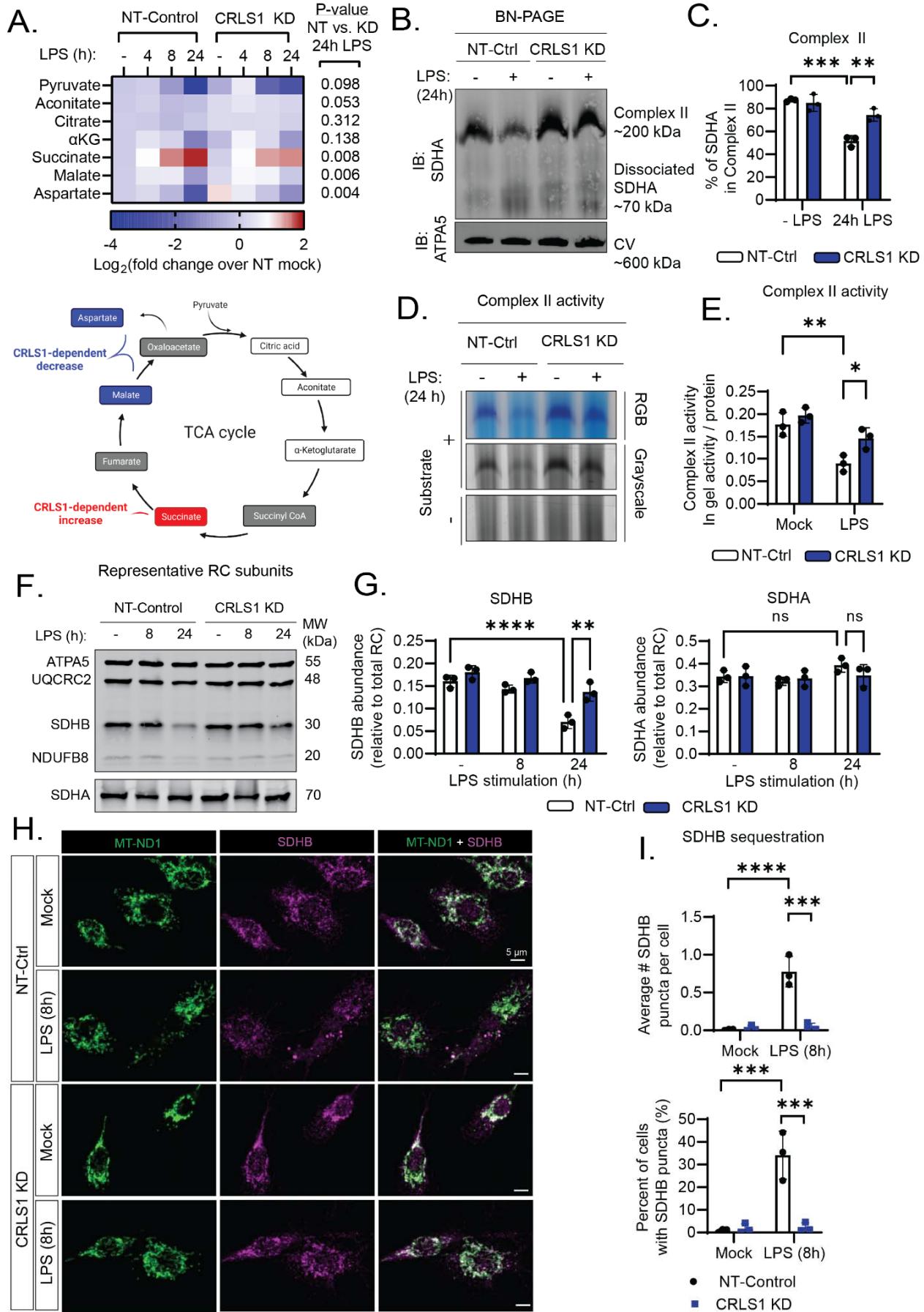

713 **Fig 2. SDHB is degraded by selective mitophagy during LPS stimulation.** Representative
714 confocal fluorescence micrographs from WT iBMDM stimulated with or without 200 ng/mL LPS

715 for 8h and subject to immunofluorescence labeling of Complex II subunit SDHB and Complex I
716 subunit MT-ND1. **B.** Magnified region of interest from 2A and S3 highlighting sequestration of
717 SDHB signal into puncta which are distinct from MT-ND1 signal and enclosed in a LAMP1-
718 positive compartment. **C.** Representative line scan from SDHB puncta in 2B where pixel
719 intensity is scaled to the mean intensity across the sampled region for each immunostain. **D.**
720 Automated quantification of the average number of SDHB puncta per cell from 2A based on
721 spot identification and thresholding modules in CellProfiler™. **E.** Whole cell extracts from
722 iBMDM expressing non target control (NT-Ctrl) or Dynamin-Related Protein 1 (*Drp1*)-targeted
723 shRNA (DRP1 KD) were subject to SDS-PAGE and immunoblot analysis of DRP1. **F.** NT-Ctrl
724 and DRP1 KD iBMDM were stimulated with or without 200 ng/mL LPS for 8 or 24h and SDHB
725 levels were assessed by SDS-PAGE and immunoblot. **G.** Quantification of 2F as percentage of
726 the unstimulated condition (- LPS) within each cell line. **H.** Representative confocal fluorescence
727 micrographs from NT-Ctrl and DRP1 KD iBMDM stimulated with or without 200 ng/mL LPS for
728 8h and subject to immunofluorescence labeling of SDHB and MT-ND1. **I.** Magnified region of
729 interest from 2H highlighting retention of LPS-induced SDHB puncta within MT-ND1 signal in
730 DRP1 KD iBMDM. **J.** Automated quantification of the average number of SDHB puncta per cell
731 from 2H, as described in 2D. **K.** iBMDM were treated with or without 200 ng/mL LPS with either
732 Bafilomycin A1 (Baf A, 100 µM) or vehicle control (0.1% DMSO). SDHB levels from whole cell
733 extracts were measured by SDS-PAGE and immunoblot. **L.** Quantification of 2K as percentage
734 of the unstimulated condition (- LPS) within each treatment condition. Graphs are presented as
735 the mean of n = 3 independent experiments with standard deviation (SD) error bars. For image
736 analysis, the mean of ~100 cells per condition is reported for each independent experiment. P
737 values were calculated using an unpaired T-test or two-way ANOVA with Sidak's post-test for
738 multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001.

739

740

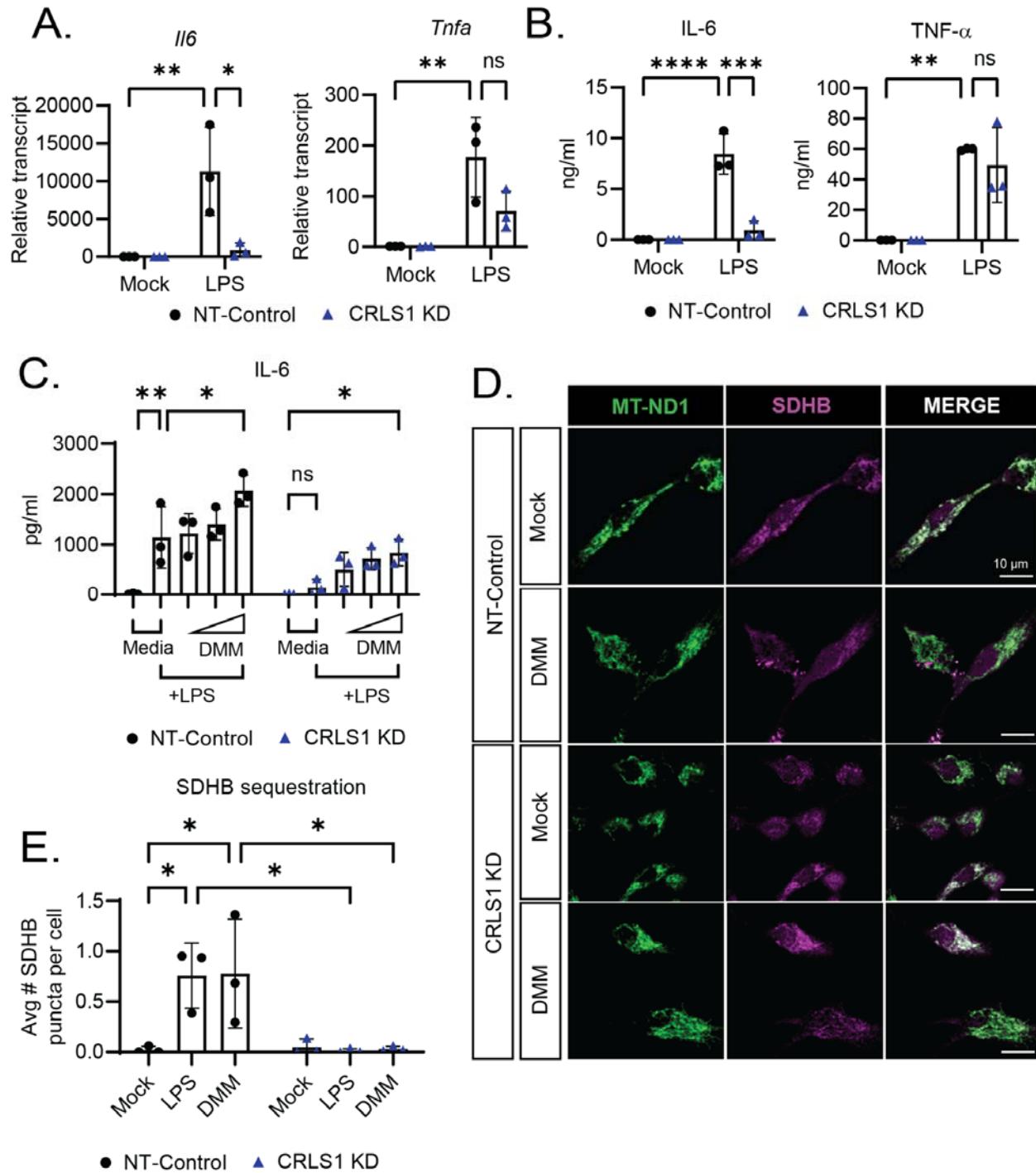
741



742

743

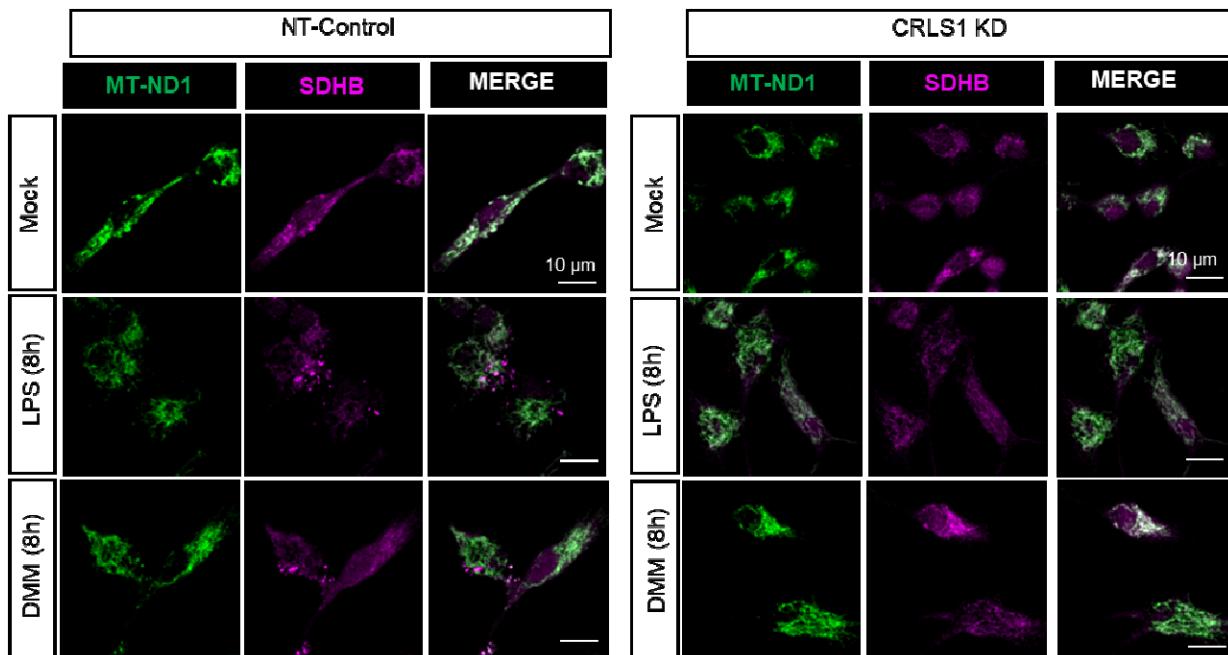
744 **Fig 3. CL biosynthesis licenses metabolic remodeling during macrophage LPS**
745 **stimulation.** A. Whole cell extracts from iBMDM expressing non-target control (NT-Ctrl) or
746 Cardiolipin Synthase (*Crls1*)-targeted shRNA (CRLS1 KD) stimulated with or without 200 ng/mL
747 LPS for 6h were subject to SDS-PAGE and immunoblot analysis of CRLS1. B. Cartoon
748 showing cardiolipin synthesis from phosphatidylglycerol (PG) and cytidine diphosphate
749 diacylglycerol (CDP-DAG) in the mitochondria. Untargeted lipidomics was performed on WT,


750 NT-Ctrl, and CRLS1 KD iBMDM mitochondrial isolates. Ratio of peak area corresponding to
751 total measured species of cardiolipin (CL) and its precursor phosphatidylglycerol (PG) is
752 reported. **C.** NT-Ctrl and CRLS1 KD iBMDM were subject SDS-PAGE and immunoblot analysis
753 of a panel of representative RC subunits (ATPA5, UQCRC2, SDHA, SDHB, and NDUFB8). **D.**
754 NT-Ctrl and CRLS1 KD iBMDM were pretreated with 200 ng/mL LPS for 6h and then subject to
755 the Agilent Seahorse Extracellular Flux (XF) analysis of the oxygen consumption rate (OCR)
756 and the extracellular acidification rate (ECAR) during the Mito Stress Test assay. The following
757 concentrations of respiratory chain inhibitors were used in the Mito Stress Test: 2 μ M FCCP, 1.5
758 μ M oligomycin, 0.5 μ M rotenone, and 0.5 μ M antimycin A. **E.** Quantification of basal respiration
759 (OCR) as in 3D across 4 independent experiments. **F.** Quantification of basal ECAR as a
760 readout of glycolysis across 4 independent experiments corresponding to 3D and 3E. **G.**
761 Representative confocal fluorescence micrographs from NT-Ctrl and CRLS1 KD iBMDM
762 synchronously stimulated with or without 200 ng/mL LPS for 3 or 6h and then stained with the
763 mitochondrial superoxide indicator MitoSOX and counterstain Hoechst. **H.** Automated
764 quantification of MitoSOX intensity per cell from ~300 cells across 3 independent experiments,
765 as shown in 3G, using Cell ProfilerTM. Graphs are presented as the mean of $n \geq 3$ independent
766 experiments with standard deviation (SD) error bars. For image analysis, the mean of ~100 cells
767 per condition is reported for each independent experiment. P values were calculated using a
768 one-way ANOVA with Tukey's post-test for multiple comparisons or two-way ANOVA with
769 Sidak's post-test for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
770

772

773 **Fig 4. CL biosynthesis is required for Complex II disassembly and degradation during**
774 **LPS stimulation. A.** Highlighted TCA cycle metabolites from targeted metabolomics analysis of
775 NT-Ctrl and CRLS1 KD iBMDM synchronously stimulated with or without 200 ng/mL LPS for 4,
776 8, or 24h. **B.** Whole cell extracts from NT-Ctrl and CRLS1 KD iBMDM stimulated with or without
777 LPS for 24h were analyzed by blue native (BN) PAGE and subject to SDHA and ATPA5
778 immunoblot. **C.** Quantification of the percentage of SDHA occupancy in Complex II from 4B, as
779 performed in 1E. **D.** CN-PAGE and in gel succinate dehydrogenase activity assay of NT-Ctrl
780 and CRLS1 KD iBMDM stimulated with or without LPS for 24h. **E.** Quantification of 4D as in gel
781 activity normalized to protein loading. **F.** SDS-PAGE and immunoblot analysis of representative
782 RC subunits of NT-Ctrl and CRLS1 KD iBMDM synchronously stimulated with 200 ng/mL LPS
783 for 8 or 24h. **G.** Quantification of SDHB and SDHA abundance relative to total RC signal from
784 4F. **H.** Representative confocal fluorescence micrographs from NT-Ctrl and CRLS1 KD iBMDM
785 stimulated with or without 200 ng/mL LPS for 8h and subject to immunofluorescence labeling of
786 SDHB and MT-ND1. **I.** Automated quantification of the average number of SDHB puncta per cell
787 and percentage of cells with SDHB puncta from 4H, as described in 2D. Graphs are presented
788 as the mean of $n = 3$ independent experiments with standard deviation (SD) error bars. For
789 image analysis, the mean of ~100 cells per condition is reported for each independent
790 experiment. P values were calculated using a two-way ANOVA with Sidak's post-test for
791 multiple comparisons. * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; **** $P < 0.0001$.

792



793

794

795 **Fig 5. CL biosynthesis and Complex II inhibition contribute to inflammatory gene**
 796 **expression during LPS stimulation. A.** RT-qPCR analysis of transcript levels of *IL6* and *Tnf* in
 797 NT-Ctrl and CRLS1 KD iBMDM stimulated with or without 200 ng/mL LPS for 4h. **B.** ELISA
 798 analysis of IL-6 and TNF- α secreted by NT-Ctrl and CRLS1 KD iBMDM stimulated with 200
 799 ng/mL LPS for 24h. **C.** ELISA analysis of IL-6 secreted by NT-Ctrl and CRLS1 KD iBMDM

800 pretreated for 1h with or without 0.1, 1, or 10 mM dimethyl malonate (DMM) then challenged
801 with 200 ng/mL LPS for 6h. **D.** Representative confocal fluorescence micrographs from NT-Ctrl
802 and CRLS1 KD iBMDM stimulated with or without 10 mM DMM for 8h and subject to
803 immunofluorescence labeling of SDHB and MT-ND1. **E.** Quantification of SDHB puncta in NT-
804 Ctrl and CRLS1 KD iBMDM stimulated with 10 mM DMM or 200 ng/mL LPS for 8h, quantified as
805 described in Fig 2D. Complete set of representative confocal fluorescence micrographs shown
806 in Fig S12. Graphs are presented as the mean of $n = 3$ independent experiments with standard
807 deviation (SD) error bars. For image analysis, the mean of ~100 cells per condition is reported
808 for each independent experiment. P values were calculated using a two-way ANOVA with
809 Sidak's post-test for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
810

811
812
813
814 **References**
815
816 1. L. A. J. O'Neill, R. J. Kishton, J. Rathmell, A guide to immunometabolism for immunologists.
817 *Nat. Rev. Immunol.* **16**, 553–565 (2016).
818 2. L. Sun (孙李哲), X. Yang (杨晓峰), Z. Yuan (袁祖贻), H. Wang (王虹), Metabolic
819 Reprogramming in Immune Response and Tissue Inflammation. *Arterioscler. Thromb. Vasc. Biol.* **40**, 1990–2001 (2020).
820

821 3. A. Viola, F. Munari, R. Sánchez-Rodríguez, T. Scolaro, A. Castegna, The Metabolic
822 Signature of Macrophage Responses. *Front. Immunol.* **10**, 1462 (2019).

823 4. S. K. Wculek, S. C. Khouili, E. Priego, I. Heras-Murillo, D. Sancho, Metabolic Control of
824 Dendritic Cell Functions: Digesting Information. *Frontiers in Immunology*. **10** (2019), ,
825 doi:10.3389/fimmu.2019.00775.

826 5. N. M. Chapman, H. Chi, Metabolic adaptation of lymphocytes in immunity and disease.
827 *Immunity*. **55**, 14–30 (2022).

828 6. B. Kelly, L. A. J. O'Neill, Metabolic reprogramming in macrophages and dendritic cells in
829 innate immunity. *Cell Res.* **25**, 771–784 (2015).

830 7. Y. Liu, R. Xu, H. Gu, E. Zhang, J. Qu, W. Cao, X. Huang, H. Yan, J. He, Z. Cai, Metabolic
831 reprogramming in macrophage responses. *Biomark Res.* **9**, 1 (2021).

832 8. A. Chawla, K. D. Nguyen, Y. P. S. Goh, Macrophage-mediated inflammation in metabolic
833 disease. *Nat. Rev. Immunol.* **11**, 738–749 (2011).

834 9. E. L. Mills, B. Kelly, A. Logan, A. S. H. Costa, M. Varma, C. E. Bryant, P. Tourlomousis, J.
835 H. M. Däbritz, E. Gottlieb, I. Latorre, S. C. Corr, G. McManus, D. Ryan, H. T. Jacobs, M.
836 Szibor, R. J. Xavier, T. Braun, C. Frezza, M. P. Murphy, L. A. O'Neill, Succinate
837 Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory
838 Macrophages. *Cell*. **167**, 457-470.e13 (2016).

839 10. G. M. Tannahill, A. M. Curtis, J. Adamik, E. M. Palsson-McDermott, A. F. McGettrick, G.
840 Goel, C. Frezza, N. J. Bernard, B. Kelly, N. H. Foley, L. Zheng, A. Gardet, Z. Tong, S. S.
841 Jany, S. C. Corr, M. Haneklaus, B. E. Caffrey, K. Pierce, S. Walmsley, F. C. Beasley, E.
842 Cummins, V. Nizet, M. Whyte, C. T. Taylor, H. Lin, S. L. Masters, E. Gottlieb, V. P. Kelly, C.
843 Clish, P. E. Auron, R. J. Xavier, L. A. J. O'Neill, Succinate is an inflammatory signal that
844 induces IL-1 β through HIF-1 α . *Nature*. **496**, 238–242 (2013).

845 11. J. K. Dowling, R. Afzal, L. J. Gearing, M. P. Cervantes-Silva, S. Annett, G. M. Davis, C. De
846 Santi, N. Assmann, K. Dettmer, D. J. Gough, G. R. Bantug, F. I. Hamid, F. K. Nally, C. P.
847 Duffy, A. L. Gorman, A. M. Liddicoat, E. C. Lavelle, C. Hess, P. J. Oefner, D. K. Finlay, G.
848 P. Davey, T. Robson, A. M. Curtis, P. J. Hertzog, B. R. G. Williams, C. E. McCoy,
849 Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory
850 macrophages. *Nat. Commun.* **12**, 1460 (2021).

851 12. J. Garaude, R. Acín-Pérez, S. Martínez-Cano, M. Enamorado, M. Ugolini, E. Nistal-Villán,
852 S. Hervás-Stubbs, P. Pelegrín, L. E. Sander, J. A. Enríquez, D. Sancho, Mitochondrial
853 respiratory-chain adaptations in macrophages contribute to antibacterial host defense. *Nat.
854 Immunol.* **17**, 1037–1045 (2016).

855 13. H. Zuo, Y. Wan, Metabolic Reprogramming in Mitochondria of Myeloid Cells. *Cells*. **9**
856 (2019), doi:10.3390/cells9010005.

857 14. J. Dudek, Role of Cardiolipin in Mitochondrial Signaling Pathways. *Front Cell Dev Biol.* **5**,
858 90 (2017).

859 15. G. Tasseva, H. D. Bai, M. Davidescu, A. Haromy, E. Michelakis, J. E. Vance,
860 Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative

861 phosphorylation and alters mitochondrial morphology. *J. Biol. Chem.* **288**, 4158–4173
862 (2013).

863 16. J. Dudek, M. Hartmann, P. Rehling, The role of mitochondrial cardiolipin in heart function
864 and its implication in cardiac disease. *Biochim. Biophys. Acta Mol. Basis Dis.* **1865**, 810–
865 821 (2019).

866 17. G. C. Hard, Some biochemical aspects of the immune macrophage. *Br. J. Exp. Pathol.* **51**,
867 97–105 (1970).

868 18. P. Newsholme, S. Gordon, E. A. Newsholme, Rates of utilization and fates of glucose,
869 glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. *Biochem. J.* **242**,
870 631–636 (1987).

871 19. N. V. Dudkina, R. Kouril, K. Peters, H.-P. Braun, E. J. Boekema, Structure and function of
872 mitochondrial supercomplexes. *Biochim. Biophys. Acta* **1797**, 664–670 (2010).

873 20. F. Gao, M. B. Reynolds, K. D. Passalacqua, J. Z. Sexton, B. H. Abuaita, M. X. D.
874 O'Riordan, The Mitochondrial Fission Regulator DRP1 Controls Post-Transcriptional
875 Regulation of TNF- α . *Front. Cell. Infect. Microbiol.* **10**, 593805 (2020).

876 21. V. E. Kagan, J. Jiang, Z. Huang, Y. Y. Tyurina, C. Desbourdes, C. Cottet-Rousselle, H. H.
877 Dar, M. Verma, V. A. Tyurin, A. A. Kapralov, A. Cheikhi, G. Mao, D. Stolz, C. M. St Croix, S.
878 Watkins, Z. Shen, Y. Li, M. L. Greenberg, M. Tokarska-Schlattner, M. Boissan, M.-L.
879 Lacombe, R. M. Epand, C. T. Chu, R. K. Mallampalli, H. Bayır, U. Schlattner, NDPK-D
880 (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized
881 mitochondria by mitophagy. *Cell Death Differ.* **23**, 1140–1151 (2016).

882 22. S. S. Iyer, Q. He, J. R. Janczy, E. I. Elliott, Z. Zhong, A. K. Olivier, J. J. Sadler, V. Knepper-
883 Adrian, R. Han, L. Qiao, S. C. Eisenbarth, W. M. Nauseef, S. L. Cassel, F. S. Sutterwala,
884 Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. *Immunity* **39**, 311–
885 323 (2013).

886 23. Y.-W. Lu, S. M. Claypool, Disorders of phospholipid metabolism: an emerging class of
887 mitochondrial disease due to defects in nuclear genes. *Front. Genet.* **6**, 3 (2015).

888 24. D. G. Ryan, L. A. J. O'Neill, Krebs Cycle Reborn in Macrophage Immunometabolism. *Annu.*
889 *Rev. Immunol.* **38**, 289–313 (2020).

890 25. V. Lampropoulou, A. Sergushichev, M. Bambouskova, S. Nair, E. E. Vincent, E.
891 Loginicheva, L. Cervantes-Barragan, X. Ma, S. C.-C. Huang, T. Griss, C. J. Weinheimer, S.
892 Khader, G. J. Randolph, E. J. Pearce, R. G. Jones, A. Diwan, M. S. Diamond, M. N.
893 Artyomov, Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage
894 Metabolic Remodeling and Regulation of Inflammation. *Cell Metab.* **24**, 158–166 (2016).

895 26. W. van der Stel, H. Yang, N. G. Vrijenhoek, J. P. Schimming, G. Callegaro, G. Carta, S.
896 Darici, J. Delp, A. Forsby, A. White, S. le Dévédec, M. Leist, P. Jennings, J. B. Beltman, B.
897 van de Water, E. H. J. Danen, Mapping the cellular response to electron transport chain
898 inhibitors reveals selective signaling networks triggered by mitochondrial perturbation. *Arch.*
899 *Toxicol.* **96**, 259–285 (2022).

900 27. M. Yin, L. A. J. O'Neill, The role of the electron transport chain in immunity. *FASEB J.* **35**,
901 e21974 (2021).

902 28. A. Bezawork-Geleta, H. Wen, L. Dong, B. Yan, J. Vider, S. Boukalova, L. Krobova, K.
903 Vanova, R. Zobalova, M. Sobol, P. Hozak, S. M. Novais, V. Caisova, P. Abaffy, R. Naraine,
904 Y. Pang, T. Zaw, P. Zhang, R. Sindelka, M. Kubista, S. Zuryn, M. P. Molloy, M. V. Berridge,
905 K. Pacak, J. Rohlrena, S. Park, J. Neuzil, Alternative assembly of respiratory complex II
906 connects energy stress to metabolic checkpoints. *Nat. Commun.* **9**, 2221 (2018).

907 29. L. K. Billingham, J. S. Stoolman, K. Vasan, A. E. Rodriguez, T. A. Poor, M. Szibor, H. T.
908 Jacobs, C. R. Reczek, A. Rashidi, P. Zhang, J. Miska, N. S. Chandel, Mitochondrial
909 electron transport chain is necessary for NLRP3 inflammasome activation. *Nat. Immunol.*,
910 1–13 (2022).

911 30. S. A. Clayton, K. K. Daley, L. MacDonald, E. Fernandez-Vizarra, G. Bottegoni, J. D. O'Neil,
912 T. Major, D. Griffin, Q. Zhuang, A. B. Adewoye, K. Woolcock, S. W. Jones, C. Goodyear, A.
913 Elmesmari, A. Filer, D. A. Tennant, S. Alivernini, C. D. Buckley, R. D. S. Pitceathly, M.
914 Kurowska-Stolarska, A. R. Clark, Inflammation causes remodeling of mitochondrial
915 cytochrome c oxidase mediated by the bifunctional gene *C15orf48*. *Sci Adv.* **7**, eabl5182
916 (2021).

917 31. B. G. Slane, N. Aykin-Burns, B. J. Smith, A. L. Kalen, P. C. Goswami, F. E. Domann, D. R.
918 Spitz, Mutation of Succinate Dehydrogenase Subunit C Results in Increased O₂–,
919 Oxidative Stress, and Genomic Instability. *Cancer Res.* **66**, 7615–7620 (2006).

920 32. R. D. Guzy, B. Sharma, E. Bell, N. S. Chandel, P. T. Schumacker, Loss of the SdhB, but
921 Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-
922 inducible factor activation and tumorigenesis. *Mol. Cell. Biol.* **28**, 718–731 (2008).

923 33. B. E. Baysal, R. E. Ferrell, J. E. Willett-Brozick, E. C. Lawrence, D. Myssiorek, A. Bosch, A.
924 van der Mey, P. E. M. Taschner, W. S. Rubinstein, E. N. Myers, C. W. Richard, C. J.
925 Cornelisse, P. Devilee, B. Devlin, Mutations in *SDHD*, a Mitochondrial Complex II Gene, in
926 Hereditary Paraganglioma. *Science* **287**, 848–851 (2000).

927 34. S. Lee, H. Xu, A. Van Vleck, A. M. Mawla, A. M. Li, J. Ye, M. O. Huisng, J. P. Annes, β-Cell
928 Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic
929 Diabetes. *Diabetes* (2022), doi:10.2337/db21-0834.

930 35. K. R. Pryde, J. W. Taanman, A. H. Schapira, A LON-ClpP Proteolytic Axis Degrades
931 Complex I to Extinguish ROS Production in Depolarized Mitochondria. *Cell Rep.* **17**, 2522–
932 2531 (2016).

933 36. I. Martínez-Reyes, N. S. Chandel, Mitochondrial TCA cycle metabolites control physiology
934 and disease. *Nat. Commun.* **11**, 102 (2020).

935 37. P. Jadiya, D. Tomar, Mitochondrial Protein Quality Control Mechanisms. *Genes* **11** (2020),
936 doi:10.3390/genes11050563.

937 38. R. Kapetanovic, S. F. Afroz, D. Ramnath, G. M. Lawrence, T. Okada, J. E. Curson, J. de
938 Bruin, D. P. Fairlie, K. Schroder, J. C. St John, A. Blumenthal, M. J. Sweet,
939 Lipopolysaccharide promotes Drp1-dependent mitochondrial fission and associated
940 inflammatory responses in macrophages. *Immunol. Cell Biol.* **98**, 528–539 (2020).

941 39. M. Schlame, Y. Xu, M. Ren, The Basis for Acyl Specificity in the Tafazzin Reaction. *J. Biol.*
942 *Chem.* **292**, 5499–5506 (2017).

943 40. O. Ernst, J. Sun, B. Lin, B. Banoth, M. G. Dorrington, J. Liang, B. Schwarz, K. A.
944 Stromberg, S. Katz, S. J. Vaytaden, C. J. Bradfield, N. Slepushkina, C. M. Rice, E.
945 Buehler, J. S. Khillan, D. W. McVicar, C. M. Bosio, C. E. Bryant, F. S. Sutterwala, S. E.
946 Martin, M. Lal-Nag, I. D. C. Fraser, A genome-wide screen uncovers multiple roles for
947 mitochondrial nucleoside diphosphate kinase D in inflammasome activation. *Sci. Signal.* **14**
948 (2021), doi:10.1126/scisignal.abe0387.

949 41. S. M. Roberson, W. S. Walker, Immortalization of cloned mouse splenic macrophages with
950 a retrovirus containing the v-raf/mil and v-myc oncogenes. *Cell. Immunol.* **116**, 341–351
951 (1988).

952 42. V. Hornung, F. Bauernfeind, A. Halle, E. O. Samstad, H. Kono, K. L. Rock, K. A. Fitzgerald,
953 E. Latz, Silica crystals and aluminum salts activate the NALP3 inflammasome through
954 phagosomal destabilization. *Nat. Immunol.* **9**, 847–856 (2008).

955 43. D. De Nardo, D. V. Kalvakolanu, E. Latz, Immortalization of Murine Bone Marrow-Derived
956 Macrophages. *Methods Mol. Biol.* **1784**, 35–49 (2018).

957 44. D. A. Kulpa, N. Del Cid, K. A. Peterson, K. L. Collins, Adaptor protein 1 promotes cross-
958 presentation through the same tyrosine signal in major histocompatibility complex class I as
959 that targeted by HIV-1. *J. Virol.* **87**, 8085–8098 (2013).

960 45. M. J. Kim, J. W. Hwang, C.-K. Yun, Y. Lee, Y.-S. Choi, Delivery of exogenous mitochondria
961 via centrifugation enhances cellular metabolic function. *Sci. Rep.* **8**, 3330 (2018).

962 46. C. J. Halbrook, C. Pontious, I. Kovalenko, L. Lapienye, S. Dreyer, H.-J. Lee, G. Thurston,
963 Y. Zhang, J. Lazarus, P. Sajjakulnukit, H. S. Hong, D. M. Kremer, B. S. Nelson, S. Kemp, L.
964 Zhang, D. Chang, A. Biankin, J. Shi, T. L. Frankel, H. C. Crawford, J. P. Morton, M. Pasca
965 di Magliano, C. A. Lyssiotis, Macrophage-Released Pyrimidines Inhibit Gemcitabine
966 Therapy in Pancreatic Cancer. *Cell Metab.* **29**, 1390–1399.e6 (2019).

967 47. H.-J. Lee, D. M. Kremer, P. Sajjakulnukit, L. Zhang, C. A. Lyssiotis, A large-scale analysis
968 of targeted metabolomics data from heterogeneous biological samples provides insights
969 into metabolite dynamics. *Metabolomics.* **15**, 103 (2019).

970 48. P. Jha, X. Wang, J. Auwerx, Analysis of Mitochondrial Respiratory Chain Supercomplexes
971 Using Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE). *Curr. Protoc. Mouse*
972 *Biol.* **6**, 1–14 (2016).