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Abstract

Translation of maternal mRNAs is detected before transcription of zygotic genes and is essential
for mammalian embryo development. How certain maternal mRNAs are selected for translation
instead of degradation and how this burst of translation affects zygotic genome activation remains
unknown. Using gene-edited mice, we document that the eukaryotic translation initiation factor
4E family member 1B (eIF4E1B) is the regulator of maternal mRNA translation that ensures
subsequent reprogramming of the zygotic genome. In oocytes, the germ-cell specific eIF4E1B
binds to mRNAs encoding chromatin remodeling complexes as well as reprogramming factors to
protect them from degradation and promote their translation in zygotes. These protein products
establish an open chromatin landscape in one-cell zygotes and enable transcription. Our results

define a program for rapid resetting of the zygotic epigenome that is regulated by maternal

mRNA translation and provides new insight into the mammalian maternal-to-zygotic transition.

Introduction
Terminally differentiated, transcriptionally quiescent mammalian gametes fuse at fertilization and
must be reprogrammed to express embryonic genes'. Maternal products stored in oocytes direct

modifications of the epigenome? after which the embryonic genome orchestrates development®.
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Mechanisms controlling this maternal-to-zygotic transition are not fully understood. The earliest
transcripts from mouse zygotic genes are detected in late 1-cell zygotes and are followed by a
more extensive rise of gene expression in 2-cell embryos. The two waves of transcription are
designated minor and major zygotic genome activation (ZGA), respectively®. Active translation in
mammals occurs before activation of zygotic genes™® and mouse embryos arrest at the 1-cell
stage if this translation is inhibited’*. Why this early burst of translation is essential for
embryogenesis remains unknown, but recent experiments suggest this early translation is highly
selective”!? as most maternal RNAs and proteins are rapidly cleared during the maternal-to-
zygotic transition (MZT)!""1?. Considering the brief temporal window between fertilization and
the earliest zygotic gene transcription, we hypothesize that the maternal mRNA translation is
highly regulated to ensure availability of factors for efficient zygotic gene reprogramming. Using
a candidate gene approach and gene-edited mice, we identify an essential role for a germ-cell
specific eukaryotic translation initiation factor 4E family member 1B (eIF4E1B) in maternal

mRNA translation that is essential for the maternal-to-zygotic transition.

Results

Inhibition of maternal mRNA translation prohibits mouse zygotic development

To systematically confirm the effects of maternal mRNA translation on embryo development, we
cultured in vitro fertilized mouse eggs in medium containing cycloheximide (CHX) or
anisomycin to inhibit protein translation (Fig. 1a). Inhibition of protein synthesis was confirmed
(Fig. 1b, ¢) and most embryos arrested at the 1-cell pronuclear stage (Fig. 1d). In agreement with
previous reports, our results emphasize the importance of maternal RNA translation in ensuring
embryogenesis’®. To identify the possible regulator controlling maternal RNA translation, we

selected multiple candidate genes and generated knockout mouse lines, from which we found
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Eif4elb to be a regulator that further controls the maternal-to-zygotic transition and

embryogenesis.

Maternal deletion of Eif4elb arrests embryos at 2-cells
elF4E1B is a member of the eIF4E (eukaryotic translation initiator factor 4E) super family that is

essential for protein translation'>!*

. e[FAE1B shares 50% of its protein sequence with human
elF4E"S, the founding member of the eIF4E family and, by analogy, binds to the 7-
methylguanosine containing mRNA cap (Supplementary Fig. 1a). e[F4E1B protein from multiple
species also share similar sequences'® (Fig. 2a), suggesting a conserved role. High level of
Eif4e]lb mRNA was detected in mouse ovary, with only trace expression in testis'’
(Supplementary Fig. 1b). Using single embryo RNA-seq, we confirmed that Eif4e/b mRNA was
abundant in mouse oocytes and persisted in 2-cell embryos (Fig. 2b, Supplementary Fig. 3a).
Using a knock-in mouse line (Eif4elb*’) in which FLAG and HA epitopes were added at the C
terminus (Fig. 2c, Supplementary Fig. 2a, b), we also detected eI[F4E1B protein in female germ
cells (Supplementary Fig. 1c). eIF4E1B protein was detected in mouse oocytes and had increased
expression in embryos until the late 2-cell stage as determined by immunostaining with samples
derived from Eif4elb! female mice (Fig. 2d). However, eIF4E1B protein was not detected in 4-
cell embryos, agreeing with the absence of Eif4elb expression after 4-cells'® (Supplementary Fig.
1d). Higher amount of Eif4elb was detected in PN5 (pronuclear, stage 5) zygotes, comparing to
that in metaphase II (M2) unfertilized eggs. Since (1) Eif4elb is not detected in male germ cells in
single cell RNA-seq experiments'®2%; and (ii) zygotic gene transcription is low at the 1-cell stage
where zygotic transcripts are poorly polyadenylated?!, we speculate that the higher Eif4elb

abundance detected in PN5 zygotes is due to post-fertilization polyadenylation of maternal

RNAZ2, which facilitated RNA capture in our poly(A) based single embryo RNA-seq experiment
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(Supplementary Fig. 3a). Taken together, the highly specific expression of e[F4E1B in oocytes
made it an attractive candidate for translational control of maternal mRNA.

To explore its function, we also generated Eif4elb null mice using CRISPR/Cas9. After
confirmation by DNA sequence, three Eif4elb knockout lines were obtained and designated
A419, A411 and A329 (Fig. 2e, f and Supplementary Fig. 2c) according to the size of their
deletion. Unless noted, subsequent experiments were performed with the A419 line which was
designated Eif4elb*° for homozygous null and Eif4elb' for heterozygous mice that were used
as controls. Significant reduction of Eif4e/b mRNA in eggs and early embryos retrieved from
Eif4e1bX° females was confirmed by single embryo RNA-seq (Fig. 2b). Although the residual
Eif4elb transcripts in these eggs/embryos existed in multiple isoforms, all of them had lost the
first two exons (Supplementary Fig. 2d) and were not able to produce functional eIF4E1B protein
(Supplementary Fig. 2e). These results further confirmed that e[F4E1B function was completely
abolished in the knockout line. Homozygous null mice from all Eif4elb knockout strains grew to
adulthood. Adult males had normal fertility (Supplementary Fig. 2f) and testis morphology
(Supplementary Fig. 2g), but the female mice were infertile (Fig. 3a).

Eif4e1bX? female mice ovulate eggs (Fig. 3b) normally, which could be fertilized in vitro
and in vivo but did not develop beyond 2-cell embryos. After mating control and Eif4elbX?
females with wild-type (WT) males, fertilized zygotes were flushed from their oviducts and
cultured in vitro for four days. The ratio of embryos that developed to different stages of pre-
implantation development was determined (Fig. 3¢, d). None of the embryos derived from
Eif4e1bX° female mice progressed beyond the 2-cell stage whereas control embryos became
blastocysts (Fig. 3c). We confirmed that the 2-cell arrest occurred in vivo, by flushing control and
Eif4e1bX? female reproductive tracts at embryonic day 3.5 (E3.5) after mating with WT males
(Fig. 3e). The arrested phenotype was also observed in the A411 and A329 lines (Supplementary

Fig. 2h) which substantiated a role for Eif4elb in developmental progression beyond 2-cells.
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Maternal ablation of Eif4elb impairs ZGA

To investigate Eif4elb function in early development, we adapted single-cell nucleosome,
methylation, transcript sequencing (scNMT-seq)? to single embryos (seNMT-seq)
(Supplementary Fig. 3a). After mating hormonally stimulated control and Eif4elbX° female mice
with WT males, zygotes were isolated for culture in vitro. Transcriptomes of these embryos,
together with M2 eggs and PN5 zygotes, were analyzed using seNMT-seq (Supplementary Table
1). Most annotated protein-coding RNAs and long noncoding RNAs (IncRNAs) were detected in
embryos from all stages which documented the efficiency of poly(A)-RNA capture and
sequencing (Supplementary Fig. 3b). After quality control, principal component analysis (PCA)
was performed to determine the relationship among samples (Fig. 4a). From the PCA plot, we
calculated Euclidian distances between the centers of the two samples at each developmental

b%9 and control female mice

stage to document differences between embryos from Eif4el
(Supplementary Fig. 3¢). Although 2-cell embryos within the same genotype exhibited significant
heterogeneity (Fig. 4a), we consistently detected significant differences between 2-cell embryos
derived from Eif4el1b*° and control female mice (Fig. 4a, Supplementary Fig. 3¢) which could
account for the observed 2-cell arrest (Fig. 3c-e). In contrast, we did not see significant
differences between the two genotypes in M2 eggs and PNS5 zygotes (Fig. 4a, Supplementary Fig.
3¢) which may reflect the absence of developmental delay at these stages (Fig. 3c). Interestingly,
transcriptomes of M2 eggs and PN5 embryos with maternal Eif4elb ablation were broadly down-
regulated with few up-regulated transcripts (Supplementary Figs. 3d, e). This suggests accelerated
mRNA clearance in these embryos and is consistent with the hypothesis that eIF4E1B binds and
protects maternal mRNA from degradation.

The minor wave of mouse ZGA 1is detected in late 1-cell embryos about 14 hours after

fertilization and continues into the early 2-cell stage®*. Of the 2,166 reported minor ZGA
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transcripts>?!?, 1,447 were down-regulated in embryos from Eif4elb*° female mice at the early
2-cell stage (Fig. 4b, Supplementary Table 2). Protein-coding RNAs normally up-regulated
during minor ZGA?® (e.g., Zscan4 cluster, Rfpl4b, Zfp352) remained at low levels in early 2-cell
embryos after maternal deletion of Eif4elb (Fig. 4c-f and Supplementary Fig. 3f). Major ZGA
follows the minor wave and these zygotic gene products direct subsequent development to
establish the blueprint of early embryos®. Since the major ZGA is affected by the minor, it is not
surprising that many major ZGA genes (e.g., Prmtl, Pdxk, Ddx39), including histone modifying
enzymes were poorly expressed in late 2-cell embryos derived from Eif4elbX° female mice (Fig.
4g-k, and Supplementary Fig. 3g). Of 2,629 major ZGA transcripts®’, 2,402 were downregulated
in late 2-cell embryos derived from Eif4elbX? female mice (Fig. 4g, h, Supplementary Table 3),
indicating near complete failure of major ZGA. These results suggest that maternal ablation of
Eif4elb causes both repression of genes that should be upregulated (Fig. 4b, g) as well as
abnormally upregulated genes in late 2-cell embryos (Supplementary Fig. 3g). Both pathways
affect ZGA and contribute to the 2-cell arrest.

Extensive activation of transposons in early mouse embryos has been reported and long
terminal repeats (LTR) drive gene expression during ZGA?”?8, MuERV-L has been used as a
marker of successful zygotic genome activation®’ and is reported to regulate LincGET as well as
other pluripotency genes>’=2. In embryos from Eif4elb*° females, MuERV-L was down-
regulated at the 2-cell stage (Fig. 41, Supplementary Table 4) as was global expression of LTRs
(Supplementary Fig. 3h). Dux genes are reported to be among the earliest expressed zygotic genes
in mice. Although originally thought to influence early embryo development®-*, their
significance has been challenged more recently*®. Only Duxf4 expression was reduced in M2 eggs
and PNS5 zygotes from Eif4elb*© female mice (Supplementary Fig. 3i). Reduction of Duxf3, the
most important Dux gene in mouse, was not observed , but higher levels were present in late 2-

cell embryos from Eif4elbX female mice (Supplementary Fig. 3j). A recent report suggests
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reduced Duxf3 is necessary for embryo development beyond the 2-cell stage®”. Thus. the altered
Duxf3 abundance after maternal Eif4elb deletion may contribute to the observed 2-cell arrest but
does not affect earlier embryo development. Taken together, our results suggest that maternal
Eif4elb deletion leads to systematical failure of the minor ZGA which causes major ZGA defects

and leads to developmental arrest at the 2-cell stage.

Maternal elF4E1B reprograms zygotic chromatin accessibility
To further investigate mechanisms of impaired ZGA after maternal ablation of Eif4elb, we
exploited seNMT-seq to explore changes in DNA methylation and chromatin accessibility. The
data for DNA methylation and chromatin accessibility from seNMT-seq are sparser in each single
embryo compared to that from seRNA-seq. Thus, to overcome the difficulty from low sample
size, we merged the results of all single embryos with the same genotype and from the same stage
together to obtain a better global view of DNA methylation and chromatin accessibility. Although
maternal ablation of Eif4elb caused overall hyper-methylation of genomic DNA in early 2-cell
embryos, no obvious changes were detected at the earlier PN5 stage (Fig. 5a, Supplementary Fig.
4a). DNA methylation at minor ZGA and major ZGA gene loci also showed no significant
changes between PN5 zygotes from Eif4elbX° and control females and hyper-methylation at these
regions was only detected at early 2-cell embryos derived from Eif4elb*® female mice (Fig. 5b
and Supplementary Fig. 4b). We therefore conclude that rather than changes in genome DNA
methylation, remodeling chromatin to render it more accessible provides the primary basis for
early zygotic gene transcription. In this scenario, if maternal Eif4elb is ablated, zygotic chromatin
would remain inaccessible and lead to failed ZGA.

Indeed, in contrast to the methylome changes, chromatin became less accessible in both
PNS5 zygotes and early 2-cell embryos in the absence of maternal eI[F4E1B (Fig. 5c and

Supplementary Fig. 4c¢). Severe and widespread decrease in chromatin accessibility at promoters
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182 of genes expected to express during the minor ZGA was observed in PN5 zygotes derived from
183 Eif4elbX9 female mice (Fig. 5d) including the Zscan4 cluster (Fig. 5e). The lower chromatin

184  accessibility continues until the early 2-cell stage, albeit to a lesser extent (Fig. 5d, e). The

185  genomic locus of MuERV-L transposon also became less accessible (Supplementary Fig. 4d)

186  after maternal ablation of Eif4elb, consistent with the observed lower abundance of MuERV-L
187  itself and downstream target transcripts. Reduced chromatin accessibility was also detected in

188 early embryos derived from Eif4elbX° female mice at major ZGA gene loci, e.g., Prmtl

189  (Supplementary Fig. 4e, f). These results support the hypothesis that maternal deletion of Eif4elb
190  fails to reset zygotic chromatin to an open structure which is the primary cause of failed ZGA

191  (Fig. 4b, g).

192

193 elF4E1B binds mRNAs of chromatin remodeling complexes and reprogramming factors
194 As a member of the eukaryotic translation initiator factor 4E (eIF4E) family'®, eIF4E1B binds the
195  7-methyguanosine cap of target mRNAs to promote translation and protect from degradation. In
196  the absence of maternal eIF4E1B, target mRNAs are likely not efficiently translated and thus

197  quickly degraded in M2 eggs and PN5 zygotes (Supplementary Fig. 3d, e). To confirm eI[F4E1B
198  binding and identify potential mRNA targets, we used M2 eggs and early 2-cell embryos from
199 Eif4elb®" and control female mice (Fig. 2c, Supplementary Fig. 2a, b) to perform low-input RNA
200 immunoprecipitation (RIP). There was no systematic difference in mapping input RNA to

201  annotated genes (Fig. 6a and Supplementary Fig. 5a) from the two genotypes at the same

202  developmental stage and immunoprecipitation (IP) results were compared without further

203 normalization. e[F4E1B immunoprecipitated few annotated mRNAs in early 2-cell embryos

204  derived from either control or Eif4elb*! female mice (Supplementary Fig. 5a, b) which suggested
205  that eIF4E1B had little mRNA binding ability at this stage of development. In contrast, eIF4E1B

206  bound more mRNAs (Supplementary Fig. 5a) transcribed from many fewer genes (Fig. 6b) in M2
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eggs which is consistent with specific binding to a small subset of mRNAs in M2 eggs. In
agreement with this result, we observed significant differences between control and Eif4elbX!
samples of the RIP-seq data from M2 eggs (Supplementary Fig. 5b).

RIP data in M2 eggs was reproducible within each genotype (Fig. 6a and Supplementary
Fig. 5¢) and we identified 3,436 RNAs that were more abundant in Eif4elb* M2 eggs,
representing candidate targets for eI[F4E1B binding (Supplementary Fig. 5d, Supplementary Table
5). The RNAs underrepresented in the RIP-seq data from Eif4el b’ M2 eggs reflect non-specific
immunoprecipitation observed in control M2 eggs (Supplementary Fig. 5d). Chromatin
accessibility is regulated by remodeling complexes which can be affected by histone
modifications®®. We examined the RIP-seq results of the known 103 histone modifiers® and 77
subunits of chromatin remodeling complexes*’ in mouse to explore how eIlF4E1B may affect the
chromatin accessibility in early embryos (Fig. 6¢, Supplementary Table 6). 10 of the 77
remodeling subunits showed significate upregulation in the RIP-seq results while only 1 of the
103 histone modifiers was upregulated. These results suggest eI[F4E1B modulates chromatin
accessibility by selective regulation of subunits of remodeling complexes. We focused on
multiple members of the INO80 complex (Fig. 6d, €) and SMARCA?2, a key member of the
SWI/SNF complex (Supplementary Fig. Se), which were potential e[F4E1B RNA targets. We
also determined that Sox2, Pou5fI1 and Polrid mRNA were additional potential eI[F4E1B targets
(Fig. 6f, g and Supplementary Fig. 5f, g). SOX2 and POUSF1 (OCT4) are well-known
pluripotency factors that regulate early embryo development including zygotic genome

44,45 and

activation*!"*. These reprogramming factors interact with multiple remodeling complexes
may provide gene-specific localization during ZGA (Supplementary Fig. 6). POLRID is an

important component of RNA polymerase I, whose deletion leads to failed embryo

development*®. It is possible that POLR1D may facilitate translation of maternal or zygotic
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RNAs. By analyzing RNA sequences of potential eI[F4E1B targets, we identified two motifs that
may be used by e[F4E1B in selecting its targets (Supplementary Fig. Sh).

Taken together, our results suggest eI[F4E1B can selectively bind mRNAs encoding
chromatin remodeling proteins and reprogramming factors in oocytes to control zygotic
chromatin accessibility through regulation of mRNA targets. The absence of binding to mRNAs
encoding Tet3 (Supplementary Fig. 51) and other regulators of DNA methylation correlates with
the absence of change in DNA methylation in zygotes derived from Eif4elb*° female mice. There
was also an absence of binding to most mRNAs encoding histone modifiers (Fig. 6c¢,
Supplementary Fig. 5j) and, thus, changes in chromatin accessibility appears to play the primary

role in the ability of eIF4E1B to regulate ZGA.

elF4E1B promotes target mRNA expression
Ino80b knockout leads to embryonic lethality*” and genes bound by the INO80 chromatin
remodeling complex have higher chromatin accessibility*®. Continuous SWI/SNF activity is

49,50

required for open chromatin structures*->* and successful embryogenesis®'. As reported, mRNA

translation occurs in zygotes soon after fertilization® and is essential for embryonic progression’.

1314 we were curious whether

Considering the function of other members of the elF4E family
elF4E1B reset zygotic chromatin accessibility by regulating protein translation of mRNA targets.
The abundance of mRNA targets of e[F4E1B was decreased in M2 eggs and early embryos after
maternal ablation of Eif4elb (Fig. 7a). This was confirmed by expression of selected eIF4E1B
mRNA targets during embryo development (Supplementary Fig. 7a-f) and is consistent with a
protective effect on transcript stability by active translation®?. Immunofluorescence using
INOS8OB, IN8OE and SMARCAZ2 specific antibodies determined their protein levels at different

stages in early embryo development. Maternal ablation of Eif4elb decreased stability of their

mRNAs (Supplementary Fig. 7a-c) and cognate protein levels, especially in zygotes and early 2-
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cell embryos (Fig. 7b, ¢ and Supplementary Fig. 7g, 1, j). These observations were extended to
reprogramming factors and confirmed by immunostaining (Fig. 7d, e and Supplementary Fig. 7h,
k, ). This is consistent with the hypothesis that eIlF4E1B binds essential mRNAs both to protect
them from degradation and to promote their translation into proteins. Chromatin remodeling
proteins translated could then modify the zygotic genome to create the open structures to facilitate

ZGA.

elF4E1B controls maternal mRNA translation

To obtain a global view on protein expression controlled by eIF4E1B and to determine if
maternal ablation of Eif4elb affected protein synthesis in zygotes, we labeled nascent proteins in
embryos after IVF and quantified signals at different time points. Significant reduction in protein
biosynthesis was detected in zygotes and early 2-cell embryos from Eif4elb*© female mice (Fig.
71, g). These results are consistent with eI[F4E1B being essential for maternal mRNA translation

in mouse zygotes.

Discussion

After fertilization, the epigenome of mouse embryo must be reprogrammed to ensure transcription
of zygotic genes's. Earlier investigations reported asymmetries in genomic DNA methylation in
maternal and paternal pronuclei during reprogramming of the early zygotic epigenome. Similarly,
differences of multiple histone modifications were observed between the paternal and maternal
pronuclei in early zygotes>®. However, later results indicated extensive demethylation of genome
DNA occurred in both male and female pronuclei** and that demethylation had little gene
specificity. It was also noted that maternal and paternal alleles have similar chromatin
accessibility at the late 1-cell (zygote) stage®®, and embryonic gene expression has no significant

parental allele preference'®. These epigenomic data suggest that rapid reprogramming of zygotic
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chromatin accessibility may be the driver of minor and subsequent major ZGA. We now identify
maternal eI[F4E1B as a key, germ-cell specific component for translation of stored mRNAs in
mouse 1-cell zygotes. eIF4E1B binds selectively to mRNAs encoding subunits of chromatin
remodeling complexes and reprogramming factors in M2 eggs. We propose that after fertilization,
but before ZGA, maternal eIF4E1B ensures translation of proteins required for resetting
chromatin accessibility that enables expression of early zygotic genes (Fig. 8).

Inhibition of maternal RNA translation arrests mouse embryos primarily at the 1-cell
stage while embryos with maternal Eif4elb ablation progressed to 2-cells. These results indicate
that other factors participate in the regulation of maternal RNA translation. Our RIP-seq results
suggest e[F4E1B has preference in binding RNA targets, but how targets are selected remains
unkown. e[F4E1B is a relatively small protein with only one known domain and we suggest that
additional co-factors may regulated target specificity for translation of maternal RNAs. Their
identification will provide deeper insight into the maternal regulation of early embryogenesis.

Heretofore, investigations of the maternal-to-zygotic transition have focused on maternal
product clearance and ZGA. Our current results document a program for rapid resetting of the
early embryonic epigenome that is controlled by carefully orchestrated translation of maternal
mRNA. A recent profiling of translated maternal mRNAs in mouse zygotes supports our findings
of the importance of selective translation of chromatin remodeling complexes for ZGA>®.
Although the necessity of translation to trigger ZGA and the start of embryogenesis was
previously suggested®?®, its regulatory mechanisms have remained unclear, and it has not been the
focus of investigations into the maternal-to-zygotic transition. Our results confirm that maternal
mRNAs are selectively regulated and explain why this burst of maternal mRNA translation is
essential for embryo development. Our model supports the hypothesis that activation of early

mouse embryogenesis is based on a genetic program pre-defined in female germ cells.

Yang et al. Page 12 of 36


https://doi.org/10.1101/2022.07.27.501690
http://creativecommons.org/licenses/by-nc-nd/4.0/

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.27.501690; this version posted July 29, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Methods
Ethics statement
All experiments with mice were conducted in accordance with guidelines of the National

Institutes of Health under the Division of Intramural Research and NIDDK Animal Care and Use

Committee approved animal study protocols (KO18-LCDB-18 and KO44-LCDB-19).

Generation of CRISPR/Cas9 mutant mice

To establish the Eif4elbX° mutant mice, two CRISPR-Cas9 crRNA XT oligonucleotides®’: 5 -
CCACAGAGAACATCCACCAG -3’ and 5’ - GCCTTCAGGAGCGCTGAGTT -3' were

synthesized by Integrated DNA Technologies. The crRNA was diluted (200 uM) in nuclease-free
duplex buffer (Integrated DNA Technologies, Cat# 11010301). The two crRNA solutions were
mixed with equal volumes of 200 uM tracrRNA (Integrated DNA Technologies, Cat# 1072533)
separately and annealed into crRNA-tractrRNA duplexes using a thermocycler (Eppendorf). 1.5 ul
of each crRNA-tracrRNA duplex solution was mixed with 1 ul S.p. HiFi Cas9 nuclease
(Integrated DNA Technologies, Cat# 1081060) and 46 pl of advanced KSOM medium (Millipore,
Cat# MR-101-D) to assemble the ribonucleoprotein (RNP) complex. The RNP was kept at room
temperature for 10-30 min prior to use.

B6D2g (C57BL/6 xDBA/2) female mice were hormonally stimulated with 5 [U of equine
chorionic gonadotropin (eCG) followed 46-48 h later by 5 IU of human chorionic hormone (hCG)
and then mated with B6D2r; male mice. Zygotes in cumulus mass were released from the ampulla
of the oviduct into M2 medium containing hyaluronidase (Millipore, Cat# MR-051-F) at
embryonic day 0.5 (E0.5). Zygotes without cumulus were washed and transferred into advanced
KSOM medium (Millipore, Cat# MR-101-D).

A NEPAZ21 electroporator (Nepa Gene) was used to deliver the RNP complex into zygotes

(Poring pulse: voltage 225.0 V, pulse length 2.0 ms, pulse interval 50.0 ms, number of pulses 4,
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decay rate 10%, polarity +; Transfer pulse: voltage 20.0 V, pulse length 50.0 ms, pulse interval
50.0 ms, number of pulses 5, decay rate 40%, polarity +/-). 50 ul of RNP solution was aliquoted
into the electrode (Nepa Gene, Cat# CUY505P5) along with 100 to 200 zygotes with a minimal
volume of medium. The impedance of the solution was adjusted to ~0.5 kQ by changing the
volume as determined by the NEPA21 electroporator. After electroporation, embryos were
washed and cultured in advanced KSOM medium (37 °C, 5% CO.) for one additional day to
obtain 2-cell embryos. Healthy 2-cell embryos were then transferred to the oviduct of pseudo-
pregnant ICR females 1-day post coitus.

To establish a mouse line containing FLAG and HA tags fused at the C-terminus of
Eif4elb, crRNA XT was synthesized using the sequence 5’- CAACTTAGCAAACAAGTTTG-3’.
RNP complexes containing 3 pl crRNA-tractRNA duplex were assembled as described above.
12.5 pl of the RNP solution was mixed with 3 pl ssDNA (100 uM) in nuclease-free duplex buffer.
Advanced KSOM was added to a final volume of 50 pl. Electroporation and embryo transfer were
performed as described. The ssDNA for homologous repair’® was synthesized by Integrated DNA
Technologies:
5°-
CCAGAATCCACAGTGCAGTATAGTCTTCCTTGTCCATCAAGCAGCAAGATGAGGGTG
CCCACTGAGTAGTGGCTGAAACCGGTCTCAGGCGTAGTCGGGCACGTCGTAGGGGTA
GCTCCCTCCCTTATCGTCGTCATCCTTGTAATCACTGCCACCCACCACAAACTTGTTTG

CTAAGTTGTTGCTCTTGGCAGCAGTGT-3".

Genotyping
Tail tips of mice were lysed in 200 pul of DirectPCR Lysis Reagent (Viagen Biotech, Cat# 102-T)
with proteinase K (0.2 mg/ml, Sigma-Aldrich, Cat# 3115879001) at 55 °C for 4-16 h. To

inactivate proteinase K, samples were incubated at 85 °C for 1 h. EmeraldAmp GT PCR Master

Yang et al. Page 14 of 36


https://doi.org/10.1101/2022.07.27.501690
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.27.501690; this version posted July 29, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

356  Mix (Takara Bio USA, Cat# RR310A) and gene specific primers (Supplementary Table 7) were
357  used to amplify specific DNA fragments. PCR was performed with an annealing temperature of
358 59 °C and 37 cycles using Mastercycler Pro (Eppendorf).

359

360  Fertility assay

361  To test female fertility, pairs of Eif4elb™ (control) and Eif4elbX° female mice were harem mated
362 with a WT male to determine the number and size of litters. Eif4elb'™ and Eif4elb*° male mice
363  were mated with WT females separately to determine male fertility.

364

365  Histology and immunofluorescence

366  Mouse testes and ovaries were fixed in Bouin’s solution (Sigma-Aldrich, Cat# HT10132-1L) or
367 4% paraformaldehyde (PFA, Electron Microscopy Sciences, Cat# 15710) overnight at 4 °C for
368  histology and immunostaining, respectively. Samples were embedded in paraffin, sectioned

369 (5 um) and mounted on slides prior to staining with periodic acid-Schiff (PAS) and hematoxylin.
370 For immunofluorescence, ovary sections were blocked with SuperBlock blocking buffer
371 (ThermoFisher Scientific, Cat# 37515) containing 0.05% Tween-20 at room temperature for 1 h
372 after de-waxing, rehydration, and antigen retrieval with 0.01% sodium citrate buffer (pH 6.0)

373 (Sigma-Aldrich, Cat# C9999-100ML). The sections were then incubated with primary antibodies
374  overnight at 4 °C. Goat anti-mouse antibody conjugated with Alexa Fluor 488 (1:500, Invitrogen,
375  Cat# A-11001) or goat anti-rabbit antibody conjugated with Alexa Fluor 594 (1:500, Invitrogen,
376  Cat# A-11012) were used to detect antigens and DNA was stained with DAPI in the mounting
377  medium (ThermoFisher Scientific, Cat# P36941).

378 M2 eggs and embryos were fixed in 4% paraformaldehyde (PFA) for 30 min at room

379  temperature and washed in phosphate-buffered saline (PBS, Invitrogen, Cat# 10010023)

380  supplemented with 0.3 % polyvinylpyrrolidone (PVP, Sigma-Aldrich, Cat# PVP360-100G).
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381  Eggs/embryos were incubated in PBS with 0.3% BSA (Cell Signaling Technology, Cat# 9998S)
382 and 0.1% Tween 20 (Sigma-Aldrich, Cat# P9416-50ML) for 2 h and stained overnight at 4 °C
383 with anti-HA (Cell Signaling Technology, Cat# 3724S), anti-INO80B (Novus, Cat# NBP2-

384  68903), anti-INOSOE (Sigma, Cat# HPA043146), anti-SMARCA?2 (Abcam, Cat# ab15597), anti-
385  SOX2 (R&D Systems, Cat# MAB2018), anti-POLR1D (Proteintech, Cat# 12254-1-AP) or anti-
386  OCT4 (Santa Cruz, Cat# sc-5279) primary antibodies. Goat anti-mouse or rabbit antibody

387  conjugated with Alexa Fluor (Invitrogen) was used for immunofluorescent imaging. All the

388  experiments were repeated at least three times and representative results from one replicate were
389  presented.

390

391  Single embryo NMT-seq

392 M2 eggs and embryos were collected from 6-8-week-old female mice. The females were injected
393 intraperitoneally with eCG (5 IU) 46 h to 48 h prior to hCG (5 IU) injection and then co-caged
394  with WT males. Fertilized zygotes were flushed from plugged females 16 h post hCG injection
395 and cultured in M2 medium containing hyaluronidase to remove the cumulus mass. Zygotes

396  without cumulus were then washed and cultured in advanced KSOM until sample collection.

397  Embryos were collected at defined time points after hCG administration: PN5 (25 to 27 h), early
398 2-cell (35 h), late 2-cell (46 h). M2 eggs were collected 16 h post hCG injection without mating™’.
399  When collecting samples, M2 eggs or embryos were washed in PBS and transferred into acidic
400  Tyrode’s solution (Millipore, Cat# MR-004-D) to remove zonae pellucidae. Single zona-free

401  eggs/embryos were transferred into 8-well PCR strips containing 2.5 ul methyltransferase reaction
402  mix which was comprised of 1 x M.CviPI Reaction buffer, 2 U M.CviPI (NEB, Cat# M0227S),
403 160 uM S-adenosylmethionine (NEB, Cat# B9003S), 1 U/ul RNasin (Promega, Cat# N2511),
404  0.1% IGEPAL CA630 (Sigma-Aldrich, Cat# 13021-50ML) in each well. The PCR strips were

405  then incubated for 15 min at 37 °C in a thermocycler and the reaction was stopped by adding 5 pl
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406  RLT plus buffer (Qiagen, Cat# 1053393) to each well. The PCR strips with single eggs/embryos
407  were frozen at -80 °C until library construction.

408 During RNA-seq library construction, 1 pl of pre-diluted (1:10°) ERCC spike-in was

409  added to each well containing a single egg/embryo. RNA captured by the oligo-dT beads was
410  converted into cDNA prior to amplification by 15 PCR cycles. After indexing, single embryo
411 RNA-seq libraries from the same developmental stage were pooled together (usually 48 from
412 Eif4elb™™ and 48 from Eif4elb*° females) and purified with AMPure XP beads (Beckman, Cat#
413 A63881) at a ratio of 1:0.6.

414 The supernatants containing genomic DNA after capture of RNA were processed

415  following the scNMT-seq protocol?’

with modified adapters:

416  First strand oligo: /5SpC3/TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNN
417  Second strand oligo: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNN

418  After PCR with Nextera XT dual indexing primers, single embryo DNA-seq libraries from the
419  same developmental stage were pooled together and purified with AMPure XP beads at a ratio of
420  1:0.6. The quality of the pooled RNA-seq and DNA-seq libraries was confirmed by Bioanalyzer
421 2100 and each pooled library was sequenced (150 bp paired-end) in one lane on the Illumina

422 HiSeq4000 platform (Novogene US).

423

424  Low-input RNA immunoprecipitation (RIP)

425 200-250 M2 eggs or early 2-cell embryos were collected from WT or Eif4elbX! female mice and,
426  after removing the zona pellucida, washed with PBS and transferred into 1.5 ml nuclease free
427  centrifuge tubes with a minimal volume of PBS. The tubes were frozen immediately in dry ice
428  and stored at -80 °C.

429 Low-input RNA immunoprecipitation was adapted by incorporating Smart-seq2®® and

430  G&T-seq®! steps into the RIP-seq protocol®?. Buffers from the EZ-Manga RIP kit (Millipore, Cat#
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431 17-701) were used according to instructions from the manufacturer. 5 pl of anti-HA beads

432 (ThermoFisher Scientific, Cat# 88836) was used for each RIP group and 20 pl of anti-HA beads
433 (enough for 4 RIP groups) was prepared in one tube. The beads were separated on a magnetic

434 rack, washed with 400 ul RIP wash buffer and resuspended in 1 ml RIP wash buffer

435  (supplemented with 2% BSA) prior to rotation at 4 °C for 1 h to block non-specific binding. The
436  blocked beads were washed on ice with 1 ml RIP wash buffer (supplemented with 2% BSA) and
437  twice with 1 ml RIP wash buffer without BSA. The washed beads were resuspended in 800 pl

438  RIP IP buffer supplemented with EDTA and RNase inhibitor.

439 100 pl freshly prepared lysis buffer from the EZ-Manga RIP kit containing protease

440  inhibitor cocktail and RNase inhibitor was added to each previously frozen tube, tapped briefly,
441  and kept on ice for 5 min. After freezing again on dry ice for 5 min, the thawed and lysed samples
442 were used for the following experiments. 700 pl RIP IP buffer was added to each tube of lysate
443 along with 200 ul of resuspended anti-HA beads. The tubes were rotated at 4 °C for 3 h and the
444  beads were then separated magnetically. 200 ul supernatant was mixed with 360 ul RNAclean XP
445  beads (1:1.8 ratio, Beckman, Cat# A63987) to purify the RNA. The RNAs bound by the

446 RNAclean XP beads were used as input for each RIP group after washing (2X) with 80% ethanol.
447  The remaining supernatant was discarded, and the beads were washed by 500 ul cold RIP wash
448 buffer (6X) followed by the Smart-seq2 protocol to complete the library preparation: 18.2 pl

449  elution buffer containing 9.2 ul RNase free water, 4 ul 10 uM oligo-dT30VN primer, 4 ul 10 uM
450  dNTP mix and 1 pl RNase inhibitor (40 U/ul, Ambion, Cat# AM2682) was added to each tube
451  containing RNAclean XP beads (input group) or anti-HA beads (IP group). The beads were

452 triturated and transferred to individual wells of a PCR strip together with elution buffer. Elution
453 was performed using a thermocycler with the following program: 55 °C 5 min, 70 °C 3 min.

454  Other reagents used by Smart-seq2 for reverse transcription were mixed according to the volume

455  of the elution buffer to a final volume of 21.8 pl. This reagent mix was added to each well of the
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PCR strip containing the eluted RNAs for reverse transcription. The cDNA in each well was then
amplified following the Smart-seq2 protocol for 14 PCR cycles. The cDNA purification and
tagmentation steps from the G&T-seq protocol were followed to provide indexing of the RIP
libraries. Equal amounts of the RIP libraries (including the input) were mixed and sequenced (150

bp paired-end) in one lane on Illumina HiSeq4000 platform (Novogene US).

Alignment of RNA-seq reads

The quality of FASTQ files was analyzed and confirmed by FastQC version 0.11.8. The reads
were trimmed with Trimmomatic version 0.39 by indicating ‘“NexteraPE-PE.fa” as the adapter
sequence file®’. The primary assembly of GRCm38 reference genome as well as the GTF
annotation were downloaded from ENSEMBL (release 101). ERCC sequences as well as the
corresponding GTF file were downloaded from the product page and concatenated to the end of
the mouse reference genome and GTF files, respectively. The merged genome file and GTF file
were used as references in downstream analysis. STAR version 2.7.6a was used to generate the
genome indexes which were further used by STAR to align the trimmed FASTQ files®*. Reads
without pair-mates were also aligned by STAR and all the bam files from one sample were
merged, sorted, and indexed by SAMtools version 1.12%. StringTie version 2.1.4 was used to

generate counts of genes in the GTF reference® which were further used for downstream analysis.

Analysis of single embryo RNA-seq data

A total of 371 single embryo RNA-seq libraries were sequenced. Reads in each bam file that were
aligned to the Eif4elb deleted region as determined by Eif4elbX° genomic DNA were extracted
and counted to confirm the genotype of each sample. Samples were deleted from downstream
analyses if their genotypes were mislabeled or had high ratios of mitochondrial reads (more than

1.5 IQR above Q3). Samples with extremely high or low number of total reads (more than 1.5
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IQR below Q1 or more than 1.5 IQR above Q3) were also considered outliers and deleted from
downstream analysis. DESeq2 was used to analyze the cleaned RNA-seq data®’ from 355 single
embryos. The ERCC normalized gene count matrix was used for all plots. PCA and MA plots
were generated using R. When Euclidian distances between different clusters were calculated,
only PC1 and PC2 from the PCA plot were used. The percentage of variances from PC1 and PC2
was also considered during calculation. The gene biotype information was downloaded from
Biomart®®. Heatmaps illustrating RNA abundance detected in RNA-seq and the following
experiments were generated by R heatmap.3 function with defined column order which represent
different samples. The arrangement of the rows, which represent different RNAs, in the heatmaps

was determined by the default arguments of heatmap.3 function.

Analysis of transposable elements

The GTF file for mouse transposable element (TE) annotation was downloaded from the
Hammell lab (Cold Spring Harbor) and ERCC spike-in GTF file was added to its end. The
FASTQ reads were then re-aligned by STAR with this GTF file with the following parameter: “--
winAnchorMultimapNmax 200 --outFilterMultimapNmax 100”. featureCounts was used to
generate the expression table of annotated genes in the GTF®’. The integer part of TE expression
was used by DESeq?2 and expression of ERCC spike-in was used to estimate the size factor for

normalization.

Alignment and processing of single-embryo DNA-seq data

Single-embryo DNA-seq data for analysis of DNA methylation and chromatin accessibility were
aligned using HISAT-3N"° version 2.2.1-3n. Picard version 2.20.5 was used to remove duplicates
in the bam files’!. The methylated cytosines given by HISAT-3N were annotated by a home-made

C++ program to identify CG and GC dinucleotides for analysis of DNA methylation and
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chromatin accessibility. Results of embryos from the same stage and of the same strain were
merged and methylation rates of detected cytosines were calculated and transformed into
bedGraph format. The bedGraph files were transformed in bigwig format and deepTools was used

to generate the heatmaps covering genes that were interested”>.

Analysis of low-input RIP data

The number of reads that can be mapped to annotated genes as well as the total number of
different genes that were mapped per million reads were calculated directly from bam files. The
latter was used to check the gene origins of reads. Only RIP results from M2 eggs were used for
downstream analysis as described in the text. The gene count matrix table was generated by
Stringtie with the “-1 150” parameter and then used for the calculation and plotting. DESeq_2,
Biomart were used for analyses. Annotated transcripts with log> fold change > 1 and padj value <
0.1 were considered differentially expressed and regarded as potential eIF4E1B targets. The bam
files were first normalized with deepTools by FPKM and visualized with IGV"3. Sequences of

transcripts in the experimental group which had log, fold change = 2 and padj value < 0.01 as

determined by DESeq2 were analyzed by MEME-ChIP to identify shared motifs’™.

Re-analysis of ChIP-seq results
The bigwig files of the ChIP-seq experiments from GSE49137 and GSE87820 were used for
analysis of INO80, SOX2, OCT4 recruitment in the genome. deepTools was used to generate the

heatmap results with GTF annotation from ENSEMBL.

Embryo treatment and imaging of protein synthesis
To determine effects of maternal mRNA translation on embryo development, M2 eggs were

obtained from hormonally simulated WT females and incubated with sperm released from WT
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male epididymides for in vitro fertilization (IVF)’>. 4 h later, unfertilized eggs and fertilized
zygotes were washed and cultured in advanced KSOM medium supplemented with
cycloheximide (CHX, Sigma-Aldrich, Cat# C7698-1G), anisomycin (Sigma-Aldrich, Cat#
A9789-5MG) or DMSO (Sigma-Aldrich, Cat# D8418-50ML) as control for another 20 h before
imaging. The Click-iT Plus OPP Alexa Fluor 488 Protein Synthesis Assay Kit (ThermoFisher
Scientific, Cat# C10456) was used to determine nascent protein synthesis in each group of
embryos. Nuclei were labeled with DAPI.

To quantify nascent protein synthesis in embryos fertilized from Eif4elb'® and Eif4elb*°
eggs, IVF was performed as described. 4 h after insemination, the unfertilized eggs and fertilized
zygotes in each group were washed and cultured in advanced KSOM medium. Zygotes were
imaged 5 h, 10 h, 15 h, 25 h after insemination following the manufacturer’s instructions of the
Click-iT Plus OPP Alexa Fluor 488 Protein Synthesis Assay Kit. M2 eggs were imaged before
fertilization. All the experiments were repeated for at least three times and representative results

from one replicate were presented.

Quantification of fluorescence intensity
For all fluorescent staining experiments, the fluorescence intensity in each egg/embryo was

quantified by ImagelJ version 1.53k’¢ and then used for plotting in R.
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767  Figures

768  Fig. 1 Inhibition of maternal mRNA translation prohibits mouse zygotic development. a

769  Imaging M2 eggs before IVF (0 Hour) and embryos after IVF and drug treatment (24 Hour). Inset
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770 shows one enlarged representative egg/embryo (4.5% magnification). Scale bar, 100 um. b

771 Imaging nascent proteins 24 h after IVF. Representative images are shown. Inhibition of protein
772 synthesis arrested embryos at the pronuclear stage while control embryos progressed to 2-cells 24
773 h after insemination. Scale bar, 20 pm. ¢ Qualification of fluorescence signal in all embryos

774 examined in b. The box plot includes the median (horizontal line) and data between the 25th and
775  75th percentile and each dot reflects the signal in one embryo. The black diamonds show average
776  within each group. **** P <0.0001, two-tailed t-test. d Ratio of embryos at different

777 developmental stages with or without treatment 24 h after IVF. 4 h after insemination in IVF,
778 embryos were washed and cultured in medium containing protein synthesis inhibitor

779 cycloheximide (CHX) or anisomycin for additional 20 h. DMSO was used as the control.

780

781  Fig. 2 Generation of Eif4elb gene-edited mouse lines. a Alignment of e[F4E1B protein

782 sequences from multiple species. elF4E1B sequences of Mus musculus, Rattus norvegicus,

783 Cricetulus griseus, Homo sapiens, Macaca mulatta, Canis lupus familiaris, Bos taurus, Danio
784  rerio, Gallus gallus and Xenopus laevis are aligned by ClustalX2. b Abundance of Eif4elb

785 mRNA in samples from Eif4elb*° and Eif4elb'™ (control) female mice. All counts are

786 normalized by ERCC spike-in. The box plot includes the median (horizontal line) and data

787  between the 25th and 75th percentile and each dot reflects the result in one embryo. The black
788  diamonds show average within each group. * P < 0.05, **** P <(0.0001, two-tailed t-test. ¢

789  Schematic of the Eif4elb gene locus in the Eif4elb* mouse line with FLAG and HA tags at the
790  C-terminus. d Immunofluorescence of eggs and embryos derived from Eif4elbX! female mice in
791  which eIF4E1B has been fused with FLAG and HA tags at the C-terminus. Anti-HA antibody
792 was used to visualize the eIF4E1B fusion protein. DAPI was used to visualize the nuclei. Scale

793 bar, 20 um. e Schematic of the Eif4elb gene (upper) and sequences of sgRNAs (lower) for

Yang et al. Page 32 of 36


https://doi.org/10.1101/2022.07.27.501690
http://creativecommons.org/licenses/by-nc-nd/4.0/

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.27.501690; this version posted July 29, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

generation of Eif4elbX° mouse lines. *, initiator methionine; x, stop codon. f Sanger DNA

sequencing at the Eif4elb gene locus of the 3 knockout mouse lines.

Fig. 3 Maternal deletion of Eiffelb leads to developmental arrest at 2-cells. a Eif4elb"
(control) and homozygous Eif4elbX female litter sizes. b Number of ovulated eggs retrieved
from Eif4elb' or Eif4elbX° female mice after mating to WT males. The box plot includes the
median (horizontal line) and data between the 25th and 75th percentile. Each dot or triangle
reflects one observation. The white diamonds show average within each group. **** P <(.0001,
N.S. not significant, two-tailed t-test. ¢ Representative images of in vitro cultured embryos from
Eif4elb™ and Eif4e1bX? females after mating with WT males at embryonic day 0.5 (E0.5), E1.5,
E2.5, E3.0 and E4.0. Inset, 2.5% magnification. Scale bar, 100 pm. d Quantification of embryos as
in ¢. Ratio of embryos at different stages is plotted. Total number of embryos is on top of each
bar. e Images of embryos flushed from Eif4elb and Eif4el1b*© female reproductive tracts at

E3.5 after successful in vivo mating. Inset, 2.7% magnification. Scale bar, 100 um.

Fig. 4 Maternal deletion of Eif4elb impairs ZGA. a PCA plot of RNA-seq results of single
embryos from Eif4elb"™ (control) or Eif4el1b*® female mice at different developmental stages.
The length of dashed lines between cluster centers represents differences between samples. b
Heatmap to show expression of all known minor ZGA genes at different stages. Note embryos
from Eif4el1b*° females have reduced expression of most minor ZGA genes at the early 2-cell
stage (red box). ¢, Scatter plot documents differentially expressed RNAs expected to be
transcribed during minor ZGA in early 2-cell embryos. Up-regulated and down-regulated RNAs
are shown as red and blue dots, respectively. The total number of up- or down- regulated RNAs is
labelled in each plot. mRNAs from multiple well-known minor ZGA genes are labeled in the

plots. d-f Abundance of Zscan4a, Rfpl4b and Zfp352, three minor ZGA genes, at early 2-cell
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819  stage. g Heatmap to show expression of most known major ZGA genes at different stages. Note
820  that embryos from Eif4elbX? females have reduced expression of almost all major ZGA genes at
821  the late 2-cell stage as highlighted by the red box. h, Scatter plot documents differentially

822  expressed RNAs expected to be transcribed during major ZGA in late 2-cell embryos. Up-

823  regulated and down-regulated RNAs are shown as red and blue dots, respectively. The total

824  number of up- or down- regulated RNAs is labelled in each plot. mRNAs from multiple well-

825  known major ZGA genes are labeled in the plots. i-k Abundance of Pdxk, Prmtl and Ddx39, three
826  major ZGA genes, at late 2-cell stage. 1 Abundance of transcripts from MuERV-L transposon in
827  embryos from control or Eif4elb*° female mice at different developmental stages. All counts are
828  normalized with ERCC spike-in. The box plot includes the median (horizontal line) and data

829  between the 25th and 75th percentile and each dot reflects the count in one embryo. The black

830  diamonds show average expression of the genes. **** P <(0.0001, two-tailed t-test.

831

832 Fig. 5 Maternal eIF4E1B reprograms zygotic chromatin accessibility. a Ratio of methylated
833  CpG to document global DNA methylation. b DNA methylation profile at minor ZGA gene loci
834  in PNS5 zygotes and early 2-cell embryos from control and Eif4elbX? females. ¢ Ratio of

835  methylated GpC to show global chromatin accessibility. d Chromatin accessibility profile at

836 minor ZGA gene loci in PN5 zygotes and early 2-cell embryos from control and Eif4elb%°

837  females. e Integrated genomic view (IGV) to document chromatin accessibility and DNA

838  methylation profiles at the Zscan4 gene cluster. Note the lower chromatin accessibility at gene
839  loci in embryos from Eif4elbX? females (framed). The box plot includes the median (horizontal
840  line) and data between the 25th and 75th percentile. Each dot reflects the results from one embryo
841  and the black diamonds show average within each group. N.S. not significant, * P < 0.1, **** P <
842  0.0001, two-tailed t-test.

843
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Fig. 6 eIF4E1B binds to a subset of mRNAs in M2 eggs. a PCA analysis of input and
immunoprecipitated transcripts after eIF4E1B-RIP. M2 eggs or early 2-cell embryos from
Eif4elbX! female mice were used and WT eggs/embryos served as controls. b Gene origins per
million reads from the RIP-seq data. Box plot includes the median (horizontal line) and data
between the 25" and 75" percentile. Each small square reflects the results from one sample and
the white diamonds indicate average in each group. ¢ Scatter plot documents differentially
expressed RNAs encoding known chromatin remodeling complex subunits and histone modifying
enzymes as determined by the RIP-seq experiments using WT and Eif4elb*! M2 eggs. Up- and
down- regulated RNAs are shown as red and blue dots, respectively. Several potential e[F4E1B
mRNA targets are labeled. (d-g) Integrated genomic view (IGV) of eIF4E1B RIP-seq results at

Ino80b, Ino80e, Sox2 and Pou5f1(Oct4) loci in RIP-seq data from WT and Eif4elbX M2 eggs.

Fig. 7 eIF4E1B controls translation of maternal mRNA in mouse zygotes. a Heatmap
showing average expression of eIF4E1B RNA targets in embryos from Eif4elb™ and Eif4elbX°
females at different developmental stages as determined by single embryo RNA-seq. All counts
are normalized by ERCC spike-in. b INO8OB protein expression in embryos from Eif4elb' and
Eif4e1bX° females at different developmental stages. Scale bar, 20 um. ¢-e Same as in b but for
INOSOE, SOX2 and OCT4 protein expression, respectively. The fluorescent signals are quantified
in Supplementary Fig. 7i-1. f Imaging of nascent proteins in embryos derived from Eif4elb"* and

Eif4e1b%° females at different time points after IVF. The fluorescence signal was quantified in g.

Scale bar, 20 um. N.S. not significant, ** P <0.01, **** P <(.0001, two-tailed t-test.

Fig. 8 Working Model. eI[F4E1B binds a subset of RNAs in M2 eggs. After fertilization,
elF4E1B bound mRNAs are rapidly translated into protein. Translation stabilizes the selected

maternal mRNAs and prevents degradation. Their protein products remodel chromatin into a
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highly open state to enable transcription of the early zygotic genes that further establish early
developmental programs. Maternal mRNAs and proteins are ultimately degraded during the

maternal-to-zygotic transition.
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