

1 Germ-cell specific eIF4E1B regulates maternal RNA translation 2 to ensure zygotic genome activation

3
4 Guanghui Yang*, Qiliang Xin*, Iris Feng** and Jurrien Dean
5
6

7 Laboratory of Cellular and Developmental Biology, NIDDK,
8 National Institutes of Health, Bethesda, MD 20892, USA
9

10 * These authors contributed equally to this work
11

12 ** Current address: Columbia University Vagelos College of Physicians and Surgeons, New
13 York, NY 10032, USA

14 Corresponding authors: qiliang.xin@nih.gov (Q.X.), jurrien.dean@nih.gov (J.D.)
15
16

17 **Abstract**

18 Translation of maternal mRNAs is detected before transcription of zygotic genes and is essential
19 for mammalian embryo development. How certain maternal mRNAs are selected for translation
20 instead of degradation and how this burst of translation affects zygotic genome activation remains
21 unknown. Using gene-edited mice, we document that the eukaryotic translation initiation factor
22 4E family member 1B (eIF4E1B) is the regulator of maternal mRNA translation that ensures
23 subsequent reprogramming of the zygotic genome. In oocytes, the germ-cell specific eIF4E1B
24 binds to mRNAs encoding chromatin remodeling complexes as well as reprogramming factors to
25 protect them from degradation and promote their translation in zygotes. These protein products
26 establish an open chromatin landscape in one-cell zygotes and enable transcription. Our results
27 define a program for rapid resetting of the zygotic epigenome that is regulated by maternal
28 mRNA translation and provides new insight into the mammalian maternal-to-zygotic transition.
29

30 **Introduction**

31 Terminally differentiated, transcriptionally quiescent mammalian gametes fuse at fertilization and
32 must be reprogrammed to express embryonic genes¹. Maternal products stored in oocytes direct
33 modifications of the epigenome² after which the embryonic genome orchestrates development³.

34 Mechanisms controlling this maternal-to-zygotic transition are not fully understood. The earliest
35 transcripts from mouse zygotic genes are detected in late 1-cell zygotes and are followed by a
36 more extensive rise of gene expression in 2-cell embryos. The two waves of transcription are
37 designated minor and major zygotic genome activation (ZGA), respectively⁴. Active translation in
38 mammals occurs before activation of zygotic genes^{5,6} and mouse embryos arrest at the 1-cell
39 stage if this translation is inhibited^{7,8}. Why this early burst of translation is essential for
40 embryogenesis remains unknown, but recent experiments suggest this early translation is highly
41 selective^{9,10} as most maternal RNAs and proteins are rapidly cleared during the maternal-to-
42 zygotic transition (MZT)^{11,12}. Considering the brief temporal window between fertilization and
43 the earliest zygotic gene transcription, we hypothesize that the maternal mRNA translation is
44 highly regulated to ensure availability of factors for efficient zygotic gene reprogramming. Using
45 a candidate gene approach and gene-edited mice, we identify an essential role for a germ-cell
46 specific eukaryotic translation initiation factor 4E family member 1B (eIF4E1B) in maternal
47 mRNA translation that is essential for the maternal-to-zygotic transition.

48

49 **Results**

50 **Inhibition of maternal mRNA translation prohibits mouse zygotic development**

51 To systematically confirm the effects of maternal mRNA translation on embryo development, we
52 cultured *in vitro* fertilized mouse eggs in medium containing cycloheximide (CHX) or
53 anisomycin to inhibit protein translation (Fig. 1a). Inhibition of protein synthesis was confirmed
54 (Fig. 1b, c) and most embryos arrested at the 1-cell pronuclear stage (Fig. 1d). In agreement with
55 previous reports, our results emphasize the importance of maternal RNA translation in ensuring
56 embryogenesis^{7,8}. To identify the possible regulator controlling maternal RNA translation, we
57 selected multiple candidate genes and generated knockout mouse lines, from which we found

58 *Eif4e1b* to be a regulator that further controls the maternal-to-zygotic transition and
59 embryogenesis.
60

61 **Maternal deletion of *Eif4e1b* arrests embryos at 2-cells**

62 eIF4E1B is a member of the eIF4E (eukaryotic translation initiator factor 4E) super family that is
63 essential for protein translation^{13,14}. eIF4E1B shares 50% of its protein sequence with human
64 eIF4E¹⁵, the founding member of the eIF4E family and, by analogy, binds to the 7-
65 methylguanosine containing mRNA cap (Supplementary Fig. 1a). eIF4E1B protein from multiple
66 species also share similar sequences¹⁶ (Fig. 2a), suggesting a conserved role. High level of
67 *Eif4e1b* mRNA was detected in mouse ovary, with only trace expression in testis¹⁷
68 (Supplementary Fig. 1b). Using single embryo RNA-seq, we confirmed that *Eif4e1b* mRNA was
69 abundant in mouse oocytes and persisted in 2-cell embryos (Fig. 2b, Supplementary Fig. 3a).
70 Using a knock-in mouse line (*Eif4e1b^{KI}*) in which FLAG and HA epitopes were added at the C
71 terminus (Fig. 2c, Supplementary Fig. 2a, b), we also detected eIF4E1B protein in female germ
72 cells (Supplementary Fig. 1c). eIF4E1B protein was detected in mouse oocytes and had increased
73 expression in embryos until the late 2-cell stage as determined by immunostaining with samples
74 derived from *Eif4e1b^{KI}* female mice (Fig. 2d). However, eIF4E1B protein was not detected in 4-
75 cell embryos, agreeing with the absence of *Eif4e1b* expression after 4-cells¹⁸ (Supplementary Fig.
76 1d). Higher amount of *Eif4e1b* was detected in PN5 (pronuclear, stage 5) zygotes, comparing to
77 that in metaphase II (M2) unfertilized eggs. Since (i) *Eif4e1b* is not detected in male germ cells in
78 single cell RNA-seq experiments^{19,20}; and (ii) zygotic gene transcription is low at the 1-cell stage
79 where zygotic transcripts are poorly polyadenylated²¹, we speculate that the higher *Eif4e1b*
80 abundance detected in PN5 zygotes is due to post-fertilization polyadenylation of maternal
81 RNA²², which facilitated RNA capture in our poly(A) based single embryo RNA-seq experiment

82 (Supplementary Fig. 3a). Taken together, the highly specific expression of eIF4E1B in oocytes
83 made it an attractive candidate for translational control of maternal mRNA.

84 To explore its function, we also generated *Eif4e1b* null mice using CRISPR/Cas9. After
85 confirmation by DNA sequence, three *Eif4e1b* knockout lines were obtained and designated
86 $\Delta 419$, $\Delta 411$ and $\Delta 329$ (Fig. 2e, f and Supplementary Fig. 2c) according to the size of their
87 deletion. Unless noted, subsequent experiments were performed with the $\Delta 419$ line which was
88 designated *Eif4e1b*^{KO} for homozygous null and *Eif4e1b*^{Het} for heterozygous mice that were used
89 as controls. Significant reduction of *Eif4e1b* mRNA in eggs and early embryos retrieved from
90 *Eif4e1b*^{KO} females was confirmed by single embryo RNA-seq (Fig. 2b). Although the residual
91 *Eif4e1b* transcripts in these eggs/embryos existed in multiple isoforms, all of them had lost the
92 first two exons (Supplementary Fig. 2d) and were not able to produce functional eIF4E1B protein
93 (Supplementary Fig. 2e). These results further confirmed that eIF4E1B function was completely
94 abolished in the knockout line. Homozygous null mice from all *Eif4e1b* knockout strains grew to
95 adulthood. Adult males had normal fertility (Supplementary Fig. 2f) and testis morphology
96 (Supplementary Fig. 2g), but the female mice were infertile (Fig. 3a).

97 *Eif4e1b*^{KO} female mice ovulate eggs (Fig. 3b) normally, which could be fertilized *in vitro*
98 and *in vivo* but did not develop beyond 2-cell embryos. After mating control and *Eif4e1b*^{KO}
99 females with wild-type (WT) males, fertilized zygotes were flushed from their oviducts and
100 cultured *in vitro* for four days. The ratio of embryos that developed to different stages of pre-
101 implantation development was determined (Fig. 3c, d). None of the embryos derived from
102 *Eif4e1b*^{KO} female mice progressed beyond the 2-cell stage whereas control embryos became
103 blastocysts (Fig. 3c). We confirmed that the 2-cell arrest occurred *in vivo*, by flushing control and
104 *Eif4e1b*^{KO} female reproductive tracts at embryonic day 3.5 (E3.5) after mating with WT males
105 (Fig. 3e). The arrested phenotype was also observed in the $\Delta 411$ and $\Delta 329$ lines (Supplementary
106 Fig. 2h) which substantiated a role for *Eif4e1b* in developmental progression beyond 2-cells.

107

108 **Maternal ablation of *Eif4e1b* impairs ZGA**

109 To investigate *Eif4e1b* function in early development, we adapted single-cell nucleosome,
110 methylation, transcript sequencing (scNMT-seq)²³ to single embryos (seNMT-seq)
111 (Supplementary Fig. 3a). After mating hormonally stimulated control and *Eif4e1b*^{KO} female mice
112 with WT males, zygotes were isolated for culture *in vitro*. Transcriptomes of these embryos,
113 together with M2 eggs and PN5 zygotes, were analyzed using seNMT-seq (Supplementary Table
114 1). Most annotated protein-coding RNAs and long noncoding RNAs (lncRNAs) were detected in
115 embryos from all stages which documented the efficiency of poly(A)-RNA capture and
116 sequencing (Supplementary Fig. 3b). After quality control, principal component analysis (PCA)
117 was performed to determine the relationship among samples (Fig. 4a). From the PCA plot, we
118 calculated Euclidian distances between the centers of the two samples at each developmental
119 stage to document differences between embryos from *Eif4e1b*^{KO} and control female mice
120 (Supplementary Fig. 3c). Although 2-cell embryos within the same genotype exhibited significant
121 heterogeneity (Fig. 4a), we consistently detected significant differences between 2-cell embryos
122 derived from *Eif4e1b*^{KO} and control female mice (Fig. 4a, Supplementary Fig. 3c) which could
123 account for the observed 2-cell arrest (Fig. 3c-e). In contrast, we did not see significant
124 differences between the two genotypes in M2 eggs and PN5 zygotes (Fig. 4a, Supplementary Fig.
125 3c) which may reflect the absence of developmental delay at these stages (Fig. 3c). Interestingly,
126 transcriptomes of M2 eggs and PN5 embryos with maternal *Eif4e1b* ablation were broadly down-
127 regulated with few up-regulated transcripts (Supplementary Figs. 3d, e). This suggests accelerated
128 mRNA clearance in these embryos and is consistent with the hypothesis that eIF4E1B binds and
129 protects maternal mRNA from degradation.

130 The minor wave of mouse ZGA is detected in late 1-cell embryos about 14 hours after
131 fertilization and continues into the early 2-cell stage²⁴. Of the 2,166 reported minor ZGA

132 transcripts^{5,21,25}, 1,447 were down-regulated in embryos from *Eif4e1b*^{KO} female mice at the early
133 2-cell stage (Fig. 4b, Supplementary Table 2). Protein-coding RNAs normally up-regulated
134 during minor ZGA²⁶ (e.g., *Zscan4* cluster, *Rfp14b*, *Zfp352*) remained at low levels in early 2-cell
135 embryos after maternal deletion of *Eif4e1b* (Fig. 4c-f and Supplementary Fig. 3f). Major ZGA
136 follows the minor wave and these zygotic gene products direct subsequent development to
137 establish the blueprint of early embryos³. Since the major ZGA is affected by the minor, it is not
138 surprising that many major ZGA genes (e.g., *Prmt1*, *Pdxk*, *Ddx39*), including histone modifying
139 enzymes were poorly expressed in late 2-cell embryos derived from *Eif4e1b*^{KO} female mice (Fig.
140 4g-k, and Supplementary Fig. 3g). Of 2,629 major ZGA transcripts²⁵, 2,402 were downregulated
141 in late 2-cell embryos derived from *Eif4e1b*^{KO} female mice (Fig. 4g, h, Supplementary Table 3),
142 indicating near complete failure of major ZGA. These results suggest that maternal ablation of
143 *Eif4e1b* causes both repression of genes that should be upregulated (Fig. 4b, g) as well as
144 abnormally upregulated genes in late 2-cell embryos (Supplementary Fig. 3g). Both pathways
145 affect ZGA and contribute to the 2-cell arrest.

146 Extensive activation of transposons in early mouse embryos has been reported and long
147 terminal repeats (LTR) drive gene expression during ZGA^{27,28}. MuERV-L has been used as a
148 marker of successful zygotic genome activation²⁹ and is reported to regulate LincGET as well as
149 other pluripotency genes³⁰⁻³². In embryos from *Eif4e1b*^{KO} females, MuERV-L was down-
150 regulated at the 2-cell stage (Fig. 4l, Supplementary Table 4) as was global expression of LTRs
151 (Supplementary Fig. 3h). *Dux* genes are reported to be among the earliest expressed zygotic genes
152 in mice. Although originally thought to influence early embryo development³³⁻³⁵, their
153 significance has been challenged more recently³⁶. Only *Duxf4* expression was reduced in M2 eggs
154 and PN5 zygotes from *Eif4e1b*^{KO} female mice (Supplementary Fig. 3i). Reduction of *Duxf3*, the
155 most important *Dux* gene in mouse, was not observed, but higher levels were present in late 2-
156 cell embryos from *Eif4e1b*^{KO} female mice (Supplementary Fig. 3j). A recent report suggests

157 reduced *Duxf3* is necessary for embryo development beyond the 2-cell stage³⁷. Thus, the altered
158 *Duxf3* abundance after maternal *Eif4e1b* deletion may contribute to the observed 2-cell arrest but
159 does not affect earlier embryo development. Taken together, our results suggest that maternal
160 *Eif4e1b* deletion leads to systematical failure of the minor ZGA which causes major ZGA defects
161 and leads to developmental arrest at the 2-cell stage.

162

163 **Maternal eIF4E1B reprograms zygotic chromatin accessibility**

164 To further investigate mechanisms of impaired ZGA after maternal ablation of *Eif4e1b*, we
165 exploited seNMT-seq to explore changes in DNA methylation and chromatin accessibility. The
166 data for DNA methylation and chromatin accessibility from seNMT-seq are sparser in each single
167 embryo compared to that from seRNA-seq. Thus, to overcome the difficulty from low sample
168 size, we merged the results of all single embryos with the same genotype and from the same stage
169 together to obtain a better global view of DNA methylation and chromatin accessibility. Although
170 maternal ablation of *Eif4e1b* caused overall hyper-methylation of genomic DNA in early 2-cell
171 embryos, no obvious changes were detected at the earlier PN5 stage (Fig. 5a, Supplementary Fig.
172 4a). DNA methylation at minor ZGA and major ZGA gene loci also showed no significant
173 changes between PN5 zygotes from *Eif4e1b*^{KO} and control females and hyper-methylation at these
174 regions was only detected at early 2-cell embryos derived from *Eif4e1b*^{KO} female mice (Fig. 5b
175 and Supplementary Fig. 4b). We therefore conclude that rather than changes in genome DNA
176 methylation, remodeling chromatin to render it more accessible provides the primary basis for
177 early zygotic gene transcription. In this scenario, if maternal *Eif4e1b* is ablated, zygotic chromatin
178 would remain inaccessible and lead to failed ZGA.

179 Indeed, in contrast to the methylome changes, chromatin became less accessible in both
180 PN5 zygotes and early 2-cell embryos in the absence of maternal eIF4E1B (Fig. 5c and
181 Supplementary Fig. 4c). Severe and widespread decrease in chromatin accessibility at promoters

182 of genes expected to express during the minor ZGA was observed in PN5 zygotes derived from
183 *Eif4e1b*^{KO} female mice (Fig. 5d) including the *Zscan4* cluster (Fig. 5e). The lower chromatin
184 accessibility continues until the early 2-cell stage, albeit to a lesser extent (Fig. 5d, e). The
185 genomic locus of MuERV-L transposon also became less accessible (Supplementary Fig. 4d)
186 after maternal ablation of *Eif4e1b*, consistent with the observed lower abundance of MuERV-L
187 itself and downstream target transcripts. Reduced chromatin accessibility was also detected in
188 early embryos derived from *Eif4e1b*^{KO} female mice at major ZGA gene loci, e.g., *Prmt1*
189 (Supplementary Fig. 4e, f). These results support the hypothesis that maternal deletion of *Eif4e1b*
190 fails to reset zygotic chromatin to an open structure which is the primary cause of failed ZGA
191 (Fig. 4b, g).

192

193 **eIF4E1B binds mRNAs of chromatin remodeling complexes and reprogramming factors**

194 As a member of the eukaryotic translation initiator factor 4E (eIF4E) family¹³, eIF4E1B binds the
195 7-methyguanosine cap of target mRNAs to promote translation and protect from degradation. In
196 the absence of maternal eIF4E1B, target mRNAs are likely not efficiently translated and thus
197 quickly degraded in M2 eggs and PN5 zygotes (Supplementary Fig. 3d, e). To confirm eIF4E1B
198 binding and identify potential mRNA targets, we used M2 eggs and early 2-cell embryos from
199 *Eif4e1b*^{KI} and control female mice (Fig. 2c, Supplementary Fig. 2a, b) to perform low-input RNA
200 immunoprecipitation (RIP). There was no systematic difference in mapping input RNA to
201 annotated genes (Fig. 6a and Supplementary Fig. 5a) from the two genotypes at the same
202 developmental stage and immunoprecipitation (IP) results were compared without further
203 normalization. eIF4E1B immunoprecipitated few annotated mRNAs in early 2-cell embryos
204 derived from either control or *Eif4e1b*^{KI} female mice (Supplementary Fig. 5a, b) which suggested
205 that eIF4E1B had little mRNA binding ability at this stage of development. In contrast, eIF4E1B
206 bound more mRNAs (Supplementary Fig. 5a) transcribed from many fewer genes (Fig. 6b) in M2

207 eggs which is consistent with specific binding to a small subset of mRNAs in M2 eggs. In
208 agreement with this result, we observed significant differences between control and *Eif4e1b^{KI}*
209 samples of the RIP-seq data from M2 eggs (Supplementary Fig. 5b).

210 RIP data in M2 eggs was reproducible within each genotype (Fig. 6a and Supplementary
211 Fig. 5c) and we identified 3,436 RNAs that were more abundant in *Eif4e1b^{KI}* M2 eggs,
212 representing candidate targets for eIF4E1B binding (Supplementary Fig. 5d, Supplementary Table
213 5). The RNAs underrepresented in the RIP-seq data from *Eif4e1b^{KI}* M2 eggs reflect non-specific
214 immunoprecipitation observed in control M2 eggs (Supplementary Fig. 5d). Chromatin
215 accessibility is regulated by remodeling complexes which can be affected by histone
216 modifications³⁸. We examined the RIP-seq results of the known 103 histone modifiers³⁹ and 77
217 subunits of chromatin remodeling complexes⁴⁰ in mouse to explore how eIF4E1B may affect the
218 chromatin accessibility in early embryos (Fig. 6c, Supplementary Table 6). 10 of the 77
219 remodeling subunits showed significant upregulation in the RIP-seq results while only 1 of the
220 103 histone modifiers was upregulated. These results suggest eIF4E1B modulates chromatin
221 accessibility by selective regulation of subunits of remodeling complexes. We focused on
222 multiple members of the INO80 complex (Fig. 6d, e) and SMARCA2, a key member of the
223 SWI/SNF complex (Supplementary Fig. 5e), which were potential eIF4E1B RNA targets. We
224 also determined that *Sox2*, *Pou5f1* and *Polr1d* mRNA were additional potential eIF4E1B targets
225 (Fig. 6f, g and Supplementary Fig. 5f, g). SOX2 and POU5F1 (OCT4) are well-known
226 pluripotency factors that regulate early embryo development including zygotic genome
227 activation⁴¹⁻⁴³. These reprogramming factors interact with multiple remodeling complexes^{44,45} and
228 may provide gene-specific localization during ZGA (Supplementary Fig. 6). POLR1D is an
229 important component of RNA polymerase I, whose deletion leads to failed embryo
230 development⁴⁶. It is possible that POLR1D may facilitate translation of maternal or zygotic

231 RNAs. By analyzing RNA sequences of potential eIF4E1B targets, we identified two motifs that
232 may be used by eIF4E1B in selecting its targets (Supplementary Fig. 5h).

233 Taken together, our results suggest eIF4E1B can selectively bind mRNAs encoding
234 chromatin remodeling proteins and reprogramming factors in oocytes to control zygotic
235 chromatin accessibility through regulation of mRNA targets. The absence of binding to mRNAs
236 encoding *Tet3* (Supplementary Fig. 5i) and other regulators of DNA methylation correlates with
237 the absence of change in DNA methylation in zygotes derived from *Eif4e1b*^{KO} female mice. There
238 was also an absence of binding to most mRNAs encoding histone modifiers (Fig. 6c,
239 Supplementary Fig. 5j) and, thus, changes in chromatin accessibility appears to play the primary
240 role in the ability of eIF4E1B to regulate ZGA.

241

242 **eIF4E1B promotes target mRNA expression**

243 *Ino80b* knockout leads to embryonic lethality⁴⁷ and genes bound by the INO80 chromatin
244 remodeling complex have higher chromatin accessibility⁴⁸. Continuous SWI/SNF activity is
245 required for open chromatin structures^{49,50} and successful embryogenesis⁵¹. As reported, mRNA
246 translation occurs in zygotes soon after fertilization⁶ and is essential for embryonic progression⁷.
247 Considering the function of other members of the eIF4E family^{13,14}, we were curious whether
248 eIF4E1B reset zygotic chromatin accessibility by regulating protein translation of mRNA targets.

249 The abundance of mRNA targets of eIF4E1B was decreased in M2 eggs and early embryos after
250 maternal ablation of *Eif4e1b* (Fig. 7a). This was confirmed by expression of selected eIF4E1B
251 mRNA targets during embryo development (Supplementary Fig. 7a-f) and is consistent with a
252 protective effect on transcript stability by active translation⁵². Immunofluorescence using
253 INO80B, IN80E and SMARCA2 specific antibodies determined their protein levels at different
254 stages in early embryo development. Maternal ablation of *Eif4e1b* decreased stability of their
255 mRNAs (Supplementary Fig. 7a-c) and cognate protein levels, especially in zygotes and early 2-

256 cell embryos (Fig. 7b, c and Supplementary Fig. 7g, i, j). These observations were extended to
257 reprogramming factors and confirmed by immunostaining (Fig. 7d, e and Supplementary Fig. 7h,
258 k, l). This is consistent with the hypothesis that eIF4E1B binds essential mRNAs both to protect
259 them from degradation and to promote their translation into proteins. Chromatin remodeling
260 proteins translated could then modify the zygotic genome to create the open structures to facilitate
261 ZGA.

262
263 **eIF4E1B controls maternal mRNA translation**

264 To obtain a global view on protein expression controlled by eIF4E1B and to determine if
265 maternal ablation of *Eif4e1b* affected protein synthesis in zygotes, we labeled nascent proteins in
266 embryos after IVF and quantified signals at different time points. Significant reduction in protein
267 biosynthesis was detected in zygotes and early 2-cell embryos from *Eif4e1b*^{KO} female mice (Fig.
268 7f, g). These results are consistent with eIF4E1B being essential for maternal mRNA translation
269 in mouse zygotes.

270
271 **Discussion**

272 After fertilization, the epigenome of mouse embryo must be reprogrammed to ensure transcription
273 of zygotic genes^{1,3}. Earlier investigations reported asymmetries in genomic DNA methylation in
274 maternal and paternal pronuclei during reprogramming of the early zygotic epigenome. Similarly,
275 differences of multiple histone modifications were observed between the paternal and maternal
276 pronuclei in early zygotes⁵³. However, later results indicated extensive demethylation of genome
277 DNA occurred in both male and female pronuclei⁵⁴ and that demethylation had little gene
278 specificity. It was also noted that maternal and paternal alleles have similar chromatin
279 accessibility at the late 1-cell (zygote) stage⁵⁵, and embryonic gene expression has no significant
280 parental allele preference¹⁸. These epigenomic data suggest that rapid reprogramming of zygotic

281 chromatin accessibility may be the driver of minor and subsequent major ZGA. We now identify
282 maternal eIF4E1B as a key, germ-cell specific component for translation of stored mRNAs in
283 mouse 1-cell zygotes. eIF4E1B binds selectively to mRNAs encoding subunits of chromatin
284 remodeling complexes and reprogramming factors in M2 eggs. We propose that after fertilization,
285 but before ZGA, maternal eIF4E1B ensures translation of proteins required for resetting
286 chromatin accessibility that enables expression of early zygotic genes (Fig. 8).

287 Inhibition of maternal RNA translation arrests mouse embryos primarily at the 1-cell
288 stage while embryos with maternal *Eif4e1b* ablation progressed to 2-cells. These results indicate
289 that other factors participate in the regulation of maternal RNA translation. Our RIP-seq results
290 suggest eIF4E1B has preference in binding RNA targets, but how targets are selected remains
291 unkown. eIF4E1B is a relatively small protein with only one known domain and we suggest that
292 additional co-factors may regulated target specificity for translation of maternal RNAs. Their
293 identification will provide deeper insight into the maternal regulation of early embryogenesis.

294 Heretofore, investigations of the maternal-to-zygotic transition have focused on maternal
295 product clearance and ZGA. Our current results document a program for rapid resetting of the
296 early embryonic epigenome that is controlled by carefully orchestrated translation of maternal
297 mRNA. A recent profiling of translated maternal mRNAs in mouse zygotes supports our findings
298 of the importance of selective translation of chromatin remodeling complexes for ZGA⁵⁶.

299 Although the necessity of translation to trigger ZGA and the start of embryogenesis was
300 previously suggested⁶⁻⁸, its regulatory mechanisms have remained unclear, and it has not been the
301 focus of investigations into the maternal-to-zygotic transition. Our results confirm that maternal
302 mRNAs are selectively regulated and explain why this burst of maternal mRNA translation is
303 essential for embryo development. Our model supports the hypothesis that activation of early
304 mouse embryogenesis is based on a genetic program pre-defined in female germ cells.

305

306 **Methods**

307 **Ethics statement**

308 All experiments with mice were conducted in accordance with guidelines of the National
309 Institutes of Health under the Division of Intramural Research and NIDDK Animal Care and Use
310 Committee approved animal study protocols (KO18-LCDB-18 and KO44-LCDB-19).

311

312 **Generation of CRISPR/Cas9 mutant mice**

313 To establish the *Eif4e1b*^{KO} mutant mice, two CRISPR-Cas9 crRNA XT oligonucleotides⁵⁷: 5' -
314 CCACAGAGAACATCCACCAAG -3' and 5' - GCCTTCAGGAGCGCTGAGTT -3' were
315 synthesized by Integrated DNA Technologies. The crRNA was diluted (200 μM) in nuclease-free
316 duplex buffer (Integrated DNA Technologies, Cat# 11010301). The two crRNA solutions were
317 mixed with equal volumes of 200 μM tracrRNA (Integrated DNA Technologies, Cat# 1072533)
318 separately and annealed into crRNA-tracrRNA duplexes using a thermocycler (Eppendorf). 1.5 μl
319 of each crRNA-tracrRNA duplex solution was mixed with 1 μl S.p. HiFi Cas9 nuclease
320 (Integrated DNA Technologies, Cat# 1081060) and 46 μl of advanced KSOM medium (Millipore,
321 Cat# MR-101-D) to assemble the ribonucleoprotein (RNP) complex. The RNP was kept at room
322 temperature for 10-30 min prior to use.

323 B6D2_{F1} (C57BL/6 ×DBA/2) female mice were hormonally stimulated with 5 IU of equine
324 chorionic gonadotropin (eCG) followed 46-48 h later by 5 IU of human chorionic hormone (hCG)
325 and then mated with B6D2_{F1} male mice. Zygotes in cumulus mass were released from the ampulla
326 of the oviduct into M2 medium containing hyaluronidase (Millipore, Cat# MR-051-F) at
327 embryonic day 0.5 (E0.5). Zygotes without cumulus were washed and transferred into advanced
328 KSOM medium (Millipore, Cat# MR-101-D).

329 A NEPA21 electroporator (Nepa Gene) was used to deliver the RNP complex into zygotes
330 (Poring pulse: voltage 225.0 V, pulse length 2.0 ms, pulse interval 50.0 ms, number of pulses 4,

331 decay rate 10%, polarity +; Transfer pulse: voltage 20.0 V, pulse length 50.0 ms, pulse interval
332 50.0 ms, number of pulses 5, decay rate 40%, polarity +/-). 50 μ l of RNP solution was aliquoted
333 into the electrode (Nepa Gene, Cat# CUY505P5) along with 100 to 200 zygotes with a minimal
334 volume of medium. The impedance of the solution was adjusted to \sim 0.5 k Ω by changing the
335 volume as determined by the NEPA21 electroporator. After electroporation, embryos were
336 washed and cultured in advanced KSOM medium (37 °C, 5% CO₂) for one additional day to
337 obtain 2-cell embryos. Healthy 2-cell embryos were then transferred to the oviduct of pseudo-
338 pregnant ICR females 1-day post coitus.

339 To establish a mouse line containing FLAG and HA tags fused at the C-terminus of
340 *Eif4e1b*, crRNA XT was synthesized using the sequence 5'- CAACTTAGCAAACAAGTTG-3'.
341 RNP complexes containing 3 μ l crRNA-tracrRNA duplex were assembled as described above.
342 12.5 μ l of the RNP solution was mixed with 3 μ l ssDNA (100 μ M) in nuclease-free duplex buffer.
343 Advanced KSOM was added to a final volume of 50 μ l. Electroporation and embryo transfer were
344 performed as described. The ssDNA for homologous repair⁵⁸ was synthesized by Integrated DNA
345 Technologies:

346 5'-
347 CCAGAACACAGTGCAGTATAGTCTTCCTTGTCCATCAAGCAGCAAGATGAGGGTG
348 CCCACTGAGTAGTGGCTGAAACCGGTCTCAGGCGTAGTCGGGCACGTCGTAGGGGTA
349 GCTCCCTCCCTTATCGTCGTACCTTGTAAATCACTGCCACCCACCACAAACTTGTGGT
350 CTAAGTTGTTGCTCTTGGCAGCAGTGT-3'.

351

352 **Genotyping**

353 Tail tips of mice were lysed in 200 μ l of DirectPCR Lysis Reagent (Viagen Biotech, Cat# 102-T)
354 with proteinase K (0.2 mg/ml, Sigma-Aldrich, Cat# 3115879001) at 55 °C for 4-16 h. To
355 inactivate proteinase K, samples were incubated at 85 °C for 1 h. EmeraldAmp GT PCR Master

356 Mix (Takara Bio USA, Cat# RR310A) and gene specific primers (Supplementary Table 7) were
357 used to amplify specific DNA fragments. PCR was performed with an annealing temperature of
358 59 °C and 37 cycles using Mastercycler Pro (Eppendorf).

359

360 **Fertility assay**

361 To test female fertility, pairs of *Eif4e1b*^{Het} (control) and *Eif4e1b*^{KO} female mice were harem mated
362 with a WT male to determine the number and size of litters. *Eif4e1b*^{Het} and *Eif4e1b*^{KO} male mice
363 were mated with WT females separately to determine male fertility.

364

365 **Histology and immunofluorescence**

366 Mouse testes and ovaries were fixed in Bouin's solution (Sigma-Aldrich, Cat# HT10132-1L) or
367 4% paraformaldehyde (PFA, Electron Microscopy Sciences, Cat# 15710) overnight at 4 °C for
368 histology and immunostaining, respectively. Samples were embedded in paraffin, sectioned
369 (5 µm) and mounted on slides prior to staining with periodic acid-Schiff (PAS) and hematoxylin.

370 For immunofluorescence, ovary sections were blocked with SuperBlock blocking buffer
371 (ThermoFisher Scientific, Cat# 37515) containing 0.05% Tween-20 at room temperature for 1 h
372 after de-waxing, rehydration, and antigen retrieval with 0.01% sodium citrate buffer (pH 6.0)
373 (Sigma-Aldrich, Cat# C9999-100ML). The sections were then incubated with primary antibodies
374 overnight at 4 °C. Goat anti-mouse antibody conjugated with Alexa Fluor 488 (1:500, Invitrogen,
375 Cat# A-11001) or goat anti-rabbit antibody conjugated with Alexa Fluor 594 (1:500, Invitrogen,
376 Cat# A-11012) were used to detect antigens and DNA was stained with DAPI in the mounting
377 medium (ThermoFisher Scientific, Cat# P36941).

378 M2 eggs and embryos were fixed in 4% paraformaldehyde (PFA) for 30 min at room
379 temperature and washed in phosphate-buffered saline (PBS, Invitrogen, Cat# 10010023)
380 supplemented with 0.3 % polyvinylpyrrolidone (PVP, Sigma-Aldrich, Cat# PVP360-100G).

381 Eggs/embryos were incubated in PBS with 0.3% BSA (Cell Signaling Technology, Cat# 9998S)
382 and 0.1% Tween 20 (Sigma-Aldrich, Cat# P9416-50ML) for 2 h and stained overnight at 4 °C
383 with anti-HA (Cell Signaling Technology, Cat# 3724S), anti-INO80B (Novus, Cat# NBP2-
384 68903), anti-INO80E (Sigma, Cat# HPA043146), anti-SMARCA2 (Abcam, Cat# ab15597), anti-
385 SOX2 (R&D Systems, Cat# MAB2018), anti-POLR1D (Proteintech, Cat# 12254-1-AP) or anti-
386 OCT4 (Santa Cruz, Cat# sc-5279) primary antibodies. Goat anti-mouse or rabbit antibody
387 conjugated with Alexa Fluor (Invitrogen) was used for immunofluorescent imaging. All the
388 experiments were repeated at least three times and representative results from one replicate were
389 presented.

390

391 **Single embryo NMT-seq**

392 M2 eggs and embryos were collected from 6-8-week-old female mice. The females were injected
393 intraperitoneally with eCG (5 IU) 46 h to 48 h prior to hCG (5 IU) injection and then co-caged
394 with WT males. Fertilized zygotes were flushed from plugged females 16 h post hCG injection
395 and cultured in M2 medium containing hyaluronidase to remove the cumulus mass. Zygotes
396 without cumulus were then washed and cultured in advanced KSOM until sample collection.
397 Embryos were collected at defined time points after hCG administration: PN5 (25 to 27 h), early
398 2-cell (35 h), late 2-cell (46 h). M2 eggs were collected 16 h post hCG injection without mating⁵⁹.
399 When collecting samples, M2 eggs or embryos were washed in PBS and transferred into acidic
400 Tyrode's solution (Millipore, Cat# MR-004-D) to remove zonae pellucidae. Single zona-free
401 eggs/embryos were transferred into 8-well PCR strips containing 2.5 µl methyltransferase reaction
402 mix which was comprised of 1 × M.CviPI Reaction buffer, 2 U M.CviPI (NEB, Cat# M0227S),
403 160 µM S-adenosylmethionine (NEB, Cat# B9003S), 1 U/µl RNasin (Promega, Cat# N2511),
404 0.1% IGEPAL CA630 (Sigma-Aldrich, Cat# I3021-50ML) in each well. The PCR strips were
405 then incubated for 15 min at 37 °C in a thermocycler and the reaction was stopped by adding 5 µl

406 RLT plus buffer (Qiagen, Cat# 1053393) to each well. The PCR strips with single eggs/embryos
407 were frozen at -80 °C until library construction.

408 During RNA-seq library construction, 1 µl of pre-diluted (1:10⁵) ERCC spike-in was
409 added to each well containing a single egg/embryo. RNA captured by the oligo-dT beads was
410 converted into cDNA prior to amplification by 15 PCR cycles. After indexing, single embryo
411 RNA-seq libraries from the same developmental stage were pooled together (usually 48 from
412 *Eif4e1b*^{Het} and 48 from *Eif4e1b*^{KO} females) and purified with AMPure XP beads (Beckman, Cat#
413 A63881) at a ratio of 1:0.6.

414 The supernatants containing genomic DNA after capture of RNA were processed
415 following the scNMT-seq protocol²³ with modified adapters:

416 First strand oligo: /5SpC3/TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNN
417 Second strand oligo: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNN
418 After PCR with Nextera XT dual indexing primers, single embryo DNA-seq libraries from the
419 same developmental stage were pooled together and purified with AMPure XP beads at a ratio of
420 1:0.6. The quality of the pooled RNA-seq and DNA-seq libraries was confirmed by Bioanalyzer
421 2100 and each pooled library was sequenced (150 bp paired-end) in one lane on the Illumina
422 HiSeq4000 platform (Novogene US).

423

424 **Low-input RNA immunoprecipitation (RIP)**

425 200-250 M2 eggs or early 2-cell embryos were collected from WT or *Eif4e1b*^{KI} female mice and,
426 after removing the zona pellucida, washed with PBS and transferred into 1.5 ml nuclease free
427 centrifuge tubes with a minimal volume of PBS. The tubes were frozen immediately in dry ice
428 and stored at -80 °C.

429 Low-input RNA immunoprecipitation was adapted by incorporating Smart-seq2⁶⁰ and
430 G&T-seq⁶¹ steps into the RIP-seq protocol⁶². Buffers from the EZ-Manga RIP kit (Millipore, Cat#

431 17-701) were used according to instructions from the manufacturer. 5 μ l of anti-HA beads
432 (ThermoFisher Scientific, Cat# 88836) was used for each RIP group and 20 μ l of anti-HA beads
433 (enough for 4 RIP groups) was prepared in one tube. The beads were separated on a magnetic
434 rack, washed with 400 μ l RIP wash buffer and resuspended in 1 ml RIP wash buffer
435 (supplemented with 2% BSA) prior to rotation at 4 °C for 1 h to block non-specific binding. The
436 blocked beads were washed on ice with 1 ml RIP wash buffer (supplemented with 2% BSA) and
437 twice with 1 ml RIP wash buffer without BSA. The washed beads were resuspended in 800 μ l
438 RIP IP buffer supplemented with EDTA and RNase inhibitor.

439 100 μ l freshly prepared lysis buffer from the EZ-Manga RIP kit containing protease
440 inhibitor cocktail and RNase inhibitor was added to each previously frozen tube, tapped briefly,
441 and kept on ice for 5 min. After freezing again on dry ice for 5 min, the thawed and lysed samples
442 were used for the following experiments. 700 μ l RIP IP buffer was added to each tube of lysate
443 along with 200 μ l of resuspended anti-HA beads. The tubes were rotated at 4 °C for 3 h and the
444 beads were then separated magnetically. 200 μ l supernatant was mixed with 360 μ l RNAClean XP
445 beads (1:1.8 ratio, Beckman, Cat# A63987) to purify the RNA. The RNAs bound by the
446 RNAClean XP beads were used as input for each RIP group after washing (2X) with 80% ethanol.
447 The remaining supernatant was discarded, and the beads were washed by 500 μ l cold RIP wash
448 buffer (6X) followed by the Smart-seq2 protocol to complete the library preparation: 18.2 μ l
449 elution buffer containing 9.2 μ l RNase free water, 4 μ l 10 μ M oligo-dT30VN primer, 4 μ l 10 μ M
450 dNTP mix and 1 μ l RNase inhibitor (40 U/ μ l, Ambion, Cat# AM2682) was added to each tube
451 containing RNAClean XP beads (input group) or anti-HA beads (IP group). The beads were
452 triturated and transferred to individual wells of a PCR strip together with elution buffer. Elution
453 was performed using a thermocycler with the following program: 55 °C 5 min, 70 °C 3 min.
454 Other reagents used by Smart-seq2 for reverse transcription were mixed according to the volume
455 of the elution buffer to a final volume of 21.8 μ l. This reagent mix was added to each well of the

456 PCR strip containing the eluted RNAs for reverse transcription. The cDNA in each well was then
457 amplified following the Smart-seq2 protocol for 14 PCR cycles. The cDNA purification and
458 fragmentation steps from the G&T-seq protocol were followed to provide indexing of the RIP
459 libraries. Equal amounts of the RIP libraries (including the input) were mixed and sequenced (150
460 bp paired-end) in one lane on Illumina HiSeq4000 platform (Novogene US).

461
462 **Alignment of RNA-seq reads**

463 The quality of FASTQ files was analyzed and confirmed by FastQC version 0.11.8. The reads
464 were trimmed with Trimmomatic version 0.39 by indicating “NexteraPE-PE.fa” as the adapter
465 sequence file⁶³. The primary assembly of GRCm38 reference genome as well as the GTF
466 annotation were downloaded from ENSEMBL (release 101). ERCC sequences as well as the
467 corresponding GTF file were downloaded from the product page and concatenated to the end of
468 the mouse reference genome and GTF files, respectively. The merged genome file and GTF file
469 were used as references in downstream analysis. STAR version 2.7.6a was used to generate the
470 genome indexes which were further used by STAR to align the trimmed FASTQ files⁶⁴. Reads
471 without pair-mates were also aligned by STAR and all the bam files from one sample were
472 merged, sorted, and indexed by SAMtools version 1.12⁶⁵. StringTie version 2.1.4 was used to
473 generate counts of genes in the GTF reference⁶⁶ which were further used for downstream analysis.

474
475 **Analysis of single embryo RNA-seq data**

476 A total of 371 single embryo RNA-seq libraries were sequenced. Reads in each bam file that were
477 aligned to the *Eif4e1b* deleted region as determined by *Eif4e1b*^{KO} genomic DNA were extracted
478 and counted to confirm the genotype of each sample. Samples were deleted from downstream
479 analyses if their genotypes were mislabeled or had high ratios of mitochondrial reads (more than
480 1.5 IQR above Q3). Samples with extremely high or low number of total reads (more than 1.5

481 IQR below Q1 or more than 1.5 IQR above Q3) were also considered outliers and deleted from
482 downstream analysis. DESeq2 was used to analyze the cleaned RNA-seq data⁶⁷ from 355 single
483 embryos. The ERCC normalized gene count matrix was used for all plots. PCA and MA plots
484 were generated using R. When Euclidian distances between different clusters were calculated,
485 only PC1 and PC2 from the PCA plot were used. The percentage of variances from PC1 and PC2
486 was also considered during calculation. The gene biotype information was downloaded from
487 Biomart⁶⁸. Heatmaps illustrating RNA abundance detected in RNA-seq and the following
488 experiments were generated by R heatmap.3 function with defined column order which represent
489 different samples. The arrangement of the rows, which represent different RNAs, in the heatmaps
490 was determined by the default arguments of heatmap.3 function.

491

492 **Analysis of transposable elements**

493 The GTF file for mouse transposable element (TE) annotation was downloaded from the
494 Hammell lab (Cold Spring Harbor) and ERCC spike-in GTF file was added to its end. The
495 FASTQ reads were then re-aligned by STAR with this GTF file with the following parameter: “--
496 winAnchorMultimapNmax 200 --outFilterMultimapNmax 100”. featureCounts was used to
497 generate the expression table of annotated genes in the GTF⁶⁹. The integer part of TE expression
498 was used by DESeq2 and expression of ERCC spike-in was used to estimate the size factor for
499 normalization.

500

501 **Alignment and processing of single-embryo DNA-seq data**

502 Single-embryo DNA-seq data for analysis of DNA methylation and chromatin accessibility were
503 aligned using HISAT-3N⁷⁰ version 2.2.1-3n. Picard version 2.20.5 was used to remove duplicates
504 in the bam files⁷¹. The methylated cytosines given by HISAT-3N were annotated by a home-made
505 C++ program to identify CG and GC dinucleotides for analysis of DNA methylation and

506 chromatin accessibility. Results of embryos from the same stage and of the same strain were
507 merged and methylation rates of detected cytosines were calculated and transformed into
508 bedGraph format. The bedGraph files were transformed in bigwig format and deepTools was used
509 to generate the heatmaps covering genes that were interested⁷².
510

511 **Analysis of low-input RIP data**

512 The number of reads that can be mapped to annotated genes as well as the total number of
513 different genes that were mapped per million reads were calculated directly from bam files. The
514 latter was used to check the gene origins of reads. Only RIP results from M2 eggs were used for
515 downstream analysis as described in the text. The gene count matrix table was generated by
516 Stringtie with the “-l 150” parameter and then used for the calculation and plotting. DESeq2,
517 Biomart were used for analyses. Annotated transcripts with \log_2 fold change > 1 and padj value $<$
518 0.1 were considered differentially expressed and regarded as potential eIF4E1B targets. The bam
519 files were first normalized with deepTools by FPKM and visualized with IGV⁷³. Sequences of
520 transcripts in the experimental group which had \log_2 fold change ≥ 2 and padj value ≤ 0.01 as
521 determined by DESeq2 were analyzed by MEME-ChIP to identify shared motifs⁷⁴.
522

523 **Re-analysis of ChIP-seq results**

524 The bigwig files of the ChIP-seq experiments from GSE49137 and GSE87820 were used for
525 analysis of INO80, SOX2, OCT4 recruitment in the genome. deepTools was used to generate the
526 heatmap results with GTF annotation from ENSEMBL.
527

528 **Embryo treatment and imaging of protein synthesis**

529 To determine effects of maternal mRNA translation on embryo development, M2 eggs were
530 obtained from hormonally simulated WT females and incubated with sperm released from WT

531 male epididymides for *in vitro* fertilization (IVF)⁷⁵. 4 h later, unfertilized eggs and fertilized
532 zygotes were washed and cultured in advanced KSOM medium supplemented with
533 cycloheximide (CHX, Sigma-Aldrich, Cat# C7698-1G), anisomycin (Sigma-Aldrich, Cat#
534 A9789-5MG) or DMSO (Sigma-Aldrich, Cat# D8418-50ML) as control for another 20 h before
535 imaging. The Click-iT Plus OPP Alexa Fluor 488 Protein Synthesis Assay Kit (ThermoFisher
536 Scientific, Cat# C10456) was used to determine nascent protein synthesis in each group of
537 embryos. Nuclei were labeled with DAPI.

538 To quantify nascent protein synthesis in embryos fertilized from *Eif4e1b^{Het}* and *Eif4e1b^{KO}*
539 eggs, IVF was performed as described. 4 h after insemination, the unfertilized eggs and fertilized
540 zygotes in each group were washed and cultured in advanced KSOM medium. Zygotes were
541 imaged 5 h, 10 h, 15 h, 25 h after insemination following the manufacturer's instructions of the
542 Click-iT Plus OPP Alexa Fluor 488 Protein Synthesis Assay Kit. M2 eggs were imaged before
543 fertilization. All the experiments were repeated for at least three times and representative results
544 from one replicate were presented.

545

546 Quantification of fluorescence intensity

547 For all fluorescent staining experiments, the fluorescence intensity in each egg/embryo was
548 quantified by ImageJ version 1.53k⁷⁶ and then used for plotting in R.

549

550 References

- 551 1 Ladstatter, S. & Tachibana, K. Genomic insights into chromatin reprogramming to
552 totipotency in embryos. *J Cell Biol* **218**, 70-82, doi:10.1083/jcb.201807044 (2019).
- 553 2 Zhang, K. & Smith, G. W. Maternal control of early embryogenesis in mammals. *Reprod
554 Fertil Dev* **27**, 880-896, doi:10.1071/RD14441 (2015).

555 3 Tadros, W. & Lipshitz, H. D. The maternal-to-zygotic transition: a play in two acts.
556 *Development* **136**, 3033-3042, doi:10.1242/dev.033183 (2009).

557 4 Zernicka-Goetz, M., Morris, S. A. & Bruce, A. W. Making a firm decision: multifaceted
558 regulation of cell fate in the early mouse embryo. *Nat Rev Genet* **10**, 467-477,
559 doi:10.1038/nrg2564 (2009).

560 5 Abe, K. I. *et al.* Minor zygotic gene activation is essential for mouse preimplantation
561 development. *Proc Natl Acad Sci U S A* **115**, E6780-E6788,
562 doi:10.1073/pnas.1804309115 (2018).

563 6 Latham, K. E., Garrels, J. I., Chang, C. & Solter, D. Quantitative analysis of protein
564 synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages.
565 *Development* **112**, 921-932 (1991).

566 7 Aoki, F., Hara, K. T. & Schultz, R. M. Acquisition of transcriptional competence in the 1-
567 cell mouse embryo: requirement for recruitment of maternal mRNAs. *Mol Reprod Dev* **64**,
568 270-274, doi:10.1002/mrd.10227 (2003).

569 8 Israel, S. *et al.* An integrated genome-wide multi-omics analysis of gene expression
570 dynamics in the preimplantation mouse embryo. *Sci Rep* **9**, 13356, doi:10.1038/s41598-
571 019-49817-3 (2019).

572 9 Alizadeh, Z., Kageyama, S. & Aoki, F. Degradation of maternal mRNA in mouse
573 embryos: selective degradation of specific mRNAs after fertilization. *Mol Reprod Dev* **72**,
574 281-290, doi:10.1002/mrd.20340 (2005).

575 10 Wang, S. *et al.* Proteome of mouse oocytes at different developmental stages. *Proc Natl
576 Acad Sci U S A* **107**, 17639-17644, doi:10.1073/pnas.1013185107 (2010).

577 11 Despic, V. & Neugebauer, K. M. RNA tales - how embryos read and discard messages
578 from mom. *J Cell Sci* **131**, doi:10.1242/jcs.201996 (2018).

579 12 Farley, B. M. & Ryder, S. P. Regulation of maternal mRNAs in early development. *Crit
580 Rev Biochem Mol Biol* **43**, 135-162, doi:10.1080/10409230801921338 (2008).

581 13 Osborne, M. J. & Borden, K. L. The eukaryotic translation initiation factor eIF4E in the
582 nucleus: taking the road less traveled. *Immunol Rev* **263**, 210-223, doi:10.1111/imr.12240
583 (2015).

584 14 von der Haar, T., Gross, J. D., Wagner, G. & McCarthy, J. E. The mRNA cap-binding
585 protein eIF4E in post-transcriptional gene expression. *Nat Struct Mol Biol* **11**, 503-511,
586 doi:10.1038/nsmb779 (2004).

587 15 Larkin, M. A. *et al.* Clustal W and Clustal X version 2.0. *Bioinformatics* **23**, 2947-2948,
588 doi:10.1093/bioinformatics/btm404 (2007).

589 16 Evsikov, A. V. *et al.* Cracking the egg: molecular dynamics and evolutionary aspects of
590 the transition from the fully grown oocyte to embryo. *Genes Dev* **20**, 2713-2727,
591 doi:10.1101/gad.1471006 (2006).

592 17 Li, B. *et al.* A comprehensive mouse transcriptomic body map across 17 tissues by RNA-
593 seq. *Sci Rep* **7**, 4200, doi:10.1038/s41598-017-04520-z (2017).

594 18 Deng, Q., Ramskold, D., Reinarius, B. & Sandberg, R. Single-cell RNA-seq reveals
595 dynamic, random monoallelic gene expression in mammalian cells. *Science* **343**, 193-196,
596 doi:10.1126/science.1245316 (2014).

597 19 Chen, Y. *et al.* Single-cell RNA-seq uncovers dynamic processes and critical regulators in
598 mouse spermatogenesis. *Cell Res* **28**, 879-896, doi:10.1038/s41422-018-0074-y (2018).

599 20 Green, C. D. *et al.* A Comprehensive Roadmap of Murine Spermatogenesis Defined by
600 Single-Cell RNA-Seq. *Dev Cell* **46**, 651-667 e610, doi:10.1016/j.devcel.2018.07.025
601 (2018).

602 21 Abe, K. *et al.* The first murine zygotic transcription is promiscuous and uncoupled from
603 splicing and 3' processing. *EMBO J* **34**, 1523-1537, doi:10.15252/embj.201490648
604 (2015).

605 22 Schultz, R. M. The molecular foundations of the maternal to zygotic transition in the
606 preimplantation embryo. *Hum Reprod Update* **8**, 323-331, doi:10.1093/humupd/8.4.323
607 (2002).

608 23 Clark, S. J. *et al.* scNMT-seq enables joint profiling of chromatin accessibility DNA
609 methylation and transcription in single cells. *Nat Commun* **9**, 781, doi:10.1038/s41467-
610 018-03149-4 (2018).

611 24 Aoki, F., Worrad, D. M. & Schultz, R. M. Regulation of transcriptional activity during the
612 first and second cell cycles in the preimplantation mouse embryo. *Dev Biol* **181**, 296-307,
613 doi:10.1006/dbio.1996.8466 (1997).

614 25 Hamatani, T., Carter, M. G., Sharov, A. A. & Ko, M. S. Dynamics of global gene
615 expression changes during mouse preimplantation development. *Dev Cell* **6**, 117-131,
616 doi:10.1016/s1534-5807(03)00373-3 (2004).

617 26 Lee, M. T., Bonneau, A. R. & Giraldez, A. J. Zygotic genome activation during the
618 maternal-to-zygotic transition. *Annu Rev Cell Dev Biol* **30**, 581-613, doi:10.1146/annurev-
619 cellbio-100913-013027 (2014).

620 27 Cohen, C. J., Lock, W. M. & Mager, D. L. Endogenous retroviral LTRs as promoters for
621 human genes: a critical assessment. *Gene* **448**, 105-114, doi:10.1016/j.gene.2009.06.020
622 (2009).

623 28 Franke, V. *et al.* Long terminal repeats power evolution of genes and gene expression
624 programs in mammalian oocytes and zygotes. *Genome Res* **27**, 1384-1394,
625 doi:10.1101/gr.216150.116 (2017).

626 29 Kigami, D., Minami, N., Takayama, H. & Imai, H. MuERV-L is one of the earliest
627 transcribed genes in mouse one-cell embryos. *Biol Reprod* **68**, 651-654,
628 doi:10.1095/biolreprod.102.007906 (2003).

629 30 Ramirez, M. A. *et al.* Transcriptional and post-transcriptional regulation of
630 retrotransposons IAP and MuERV-L affect pluripotency of mice ES cells. *Reprod Biol
631 Endocrinol* **4**, 55, doi:10.1186/1477-7827-4-55 (2006).

632 31 Wang, J. *et al.* A novel long intergenic noncoding RNA indispensable for the cleavage of
633 mouse two-cell embryos. *EMBO Rep* **17**, 1452-1470, doi:10.15252/embr.201642051
634 (2016).

635 32 Wang, J. *et al.* Asymmetric Expression of LincGET Biases Cell Fate in Two-Cell Mouse
636 Embryos. *Cell* **175**, 1887-1901 e1818, doi:10.1016/j.cell.2018.11.039 (2018).

637 33 De Iaco, A. *et al.* DUX-family transcription factors regulate zygotic genome activation in
638 placental mammals. *Nat Genet* **49**, 941-945, doi:10.1038/ng.3858 (2017).

639 34 Hendrickson, P. G. *et al.* Conserved roles of mouse DUX and human DUX4 in activating
640 cleavage-stage genes and MERVL/HERVL retrotransposons. *Nat Genet* **49**, 925-934,
641 doi:10.1038/ng.3844 (2017).

642 35 Whiddon, J. L., Langford, A. T., Wong, C. J., Zhong, J. W. & Tapscott, S. J. Conservation
643 and innovation in the DUX4-family gene network. *Nat Genet* **49**, 935-940,
644 doi:10.1038/ng.3846 (2017).

645 36 Chen, Z. & Zhang, Y. Loss of DUX causes minor defects in zygotic genome activation
646 and is compatible with mouse development. *Nat Genet* **51**, 947-951, doi:10.1038/s41588-
647 019-0418-7 (2019).

648 37 Xie, S. Q. *et al.* Nucleolar-based Dux repression is essential for embryonic two-cell stage
649 exit. *Genes Dev* **36**, 331-347, doi:10.1101/gad.349172.121 (2022).

650 38 Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory
651 epigenome. *Nat Rev Genet* **20**, 207-220, doi:10.1038/s41576-018-0089-8 (2019).

652 39 Shah, S. G. *et al.* HISTome2: a database of histone proteins, modifiers for multiple
653 organisms and epidrugs. *Epigenetics Chromatin* **13**, 31, doi:10.1186/s13072-020-00354-8
654 (2020).

655 40 Hota, S. K. & Bruneau, B. G. ATP-dependent chromatin remodeling during mammalian
656 development. *Development* **143**, 2882-2897, doi:10.1242/dev.128892 (2016).

657 41 Lee, M. T. *et al.* Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the
658 maternal-to-zygotic transition. *Nature* **503**, 360-364, doi:10.1038/nature12632 (2013).

659 42 Masui, S. *et al.* Pluripotency governed by Sox2 via regulation of Oct3/4 expression in
660 mouse embryonic stem cells. *Nat Cell Biol* **9**, 625-635, doi:10.1038/ncb1589 (2007).

661 43 Pan, H. & Schultz, R. M. Sox2 modulates reprogramming of gene expression in two-cell
662 mouse embryos. *Biol Reprod* **85**, 409-416, doi:10.1095/biolreprod.111.090886 (2011).

663 44 King, H. W. & Klose, R. J. The pioneer factor OCT4 requires the chromatin remodeller
664 BRG1 to support gene regulatory element function in mouse embryonic stem cells. *eLife* **6**,
665 doi:10.7554/eLife.22631 (2017).

666 45 Wang, L. *et al.* INO80 facilitates pluripotency gene activation in embryonic stem cell self-
667 renewal, reprogramming, and blastocyst development. *Cell Stem Cell* **14**, 575-591,
668 doi:10.1016/j.stem.2014.02.013 (2014).

669 46 Miao, X., Sun, T., Golan, M., Mager, J. & Cui, W. Loss of POLR1D results in embryonic
670 lethality prior to blastocyst formation in mice. *Mol Reprod Dev* **87**, 1152-1158,
671 doi:10.1002/mrd.23427 (2020).

672 47 Dickinson, M. E. *et al.* High-throughput discovery of novel developmental phenotypes.
673 *Nature* **537**, 508-514, doi:10.1038/nature19356 (2016).

674 48 Yu, H. *et al.* INO80 promotes H2A.Z occupancy to regulate cell fate transition in
675 pluripotent stem cells. *Nucleic Acids Res* **49**, 6739-6755, doi:10.1093/nar/gkab476 (2021).

676 49 Iurlaro, M. *et al.* Mammalian SWI/SNF continuously restores local accessibility to
677 chromatin. *Nat Genet* **53**, 279-287, doi:10.1038/s41588-020-00768-w (2021).

678 50 Schick, S. *et al.* Acute BAF perturbation causes immediate changes in chromatin
679 accessibility. *Nat Genet* **53**, 269-278, doi:10.1038/s41588-021-00777-3 (2021).

680 51 Laue, K., Rajshekhar, S., Courtney, A. J., Lewis, Z. A. & Goll, M. G. The maternal to
681 zygotic transition regulates genome-wide heterochromatin establishment in the zebrafish
682 embryo. *Nat Commun* **10**, 1551, doi:10.1038/s41467-019-09582-3 (2019).

683 52 Jacobson, A. & Peltz, S. W. Interrelationships of the pathways of mRNA decay and
684 translation in eukaryotic cells. *Annu Rev Biochem* **65**, 693-739,
685 doi:10.1146/annurev.bi.65.070196.003401 (1996).

686 53 Morgan, H. D., Santos, F., Green, K., Dean, W. & Reik, W. Epigenetic reprogramming in
687 mammals. *Hum Mol Genet* **14 Spec No 1**, R47-58, doi:10.1093/hmg/ddi114 (2005).

688 54 Guo, F. *et al.* Active and passive demethylation of male and female pronuclear DNA in
689 the mammalian zygote. *Cell Stem Cell* **15**, 447-459, doi:10.1016/j.stem.2014.08.003
690 (2014).

691 55 Guo, F. *et al.* Single-cell multi-omics sequencing of mouse early embryos and embryonic
692 stem cells. *Cell Res* **27**, 967-988, doi:10.1038/cr.2017.82 (2017).

693 56 Zhang, C., Wang, M., Li, Y. & Zhang, Y. Profiling and functional characterization of
694 maternal mRNA translation during mouse maternal-to-zygotic transition. *Sci Adv* **8**,
695 eabj3967, doi:10.1126/sciadv.abj3967 (2022).

696 57 Labun, K. *et al.* CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome
697 editing. *Nucleic Acids Res* **47**, W171-W174, doi:10.1093/nar/gkz365 (2019).

698 58 Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing
699 homology-directed genome editing by catalytically active and inactive CRISPR-Cas9
700 using asymmetric donor DNA. *Nat Biotechnol* **34**, 339-344, doi:10.1038/nbt.3481 (2016).

701 59 Zhang, B. *et al.* Allelic reprogramming of the histone modification H3K4me3 in early
702 mammalian development. *Nature* **537**, 553-557, doi:10.1038/nature19361 (2016).

703 60 Picelli, S. *et al.* Full-length RNA-seq from single cells using Smart-seq2. *Nat Protoc* **9**,
704 171-181, doi:10.1038/nprot.2014.006 (2014).

705 61 Macaulay, I. C. *et al.* G&T-seq: parallel sequencing of single-cell genomes and
706 transcriptomes. *Nat Methods* **12**, 519-522, doi:10.1038/nmeth.3370 (2015).

707 62 Keene, J. D., Komisarow, J. M. & Friedersdorf, M. B. RIP-Chip: the isolation and
708 identification of mRNAs, microRNAs and protein components of ribonucleoprotein
709 complexes from cell extracts. *Nat Protoc* **1**, 302-307, doi:10.1038/nprot.2006.47 (2006).

710 63 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
711 sequence data. *Bioinformatics* **30**, 2114-2120, doi:10.1093/bioinformatics/btu170 (2014).

712 64 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21,
713 doi:10.1093/bioinformatics/bts635 (2013).

714 65 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
715 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

716 66 Pertea, M. *et al.* StringTie enables improved reconstruction of a transcriptome from RNA-
717 seq reads. *Nat Biotechnol* **33**, 290-295, doi:10.1038/nbt.3122 (2015).

718 67 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
719 for RNA-seq data with DESeq2. *Genome Biol* **15**, 550, doi:10.1186/s13059-014-0550-8
720 (2014).

721 68 Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the
722 integration of genomic datasets with the R/Bioconductor package biomaRt. *Nat Protoc* **4**,
723 1184-1191, doi:10.1038/nprot.2009.97 (2009).

724 69 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for
725 assigning sequence reads to genomic features. *Bioinformatics* **30**, 923-930,
726 doi:10.1093/bioinformatics/btt656 (2014).

727 70 Zhang, Y., Park, C., Bennett, C., Thornton, M. & Kim, D. Rapid and accurate alignment
728 of nucleotide conversion sequencing reads with HISAT-3N. *Genome Res*,
729 doi:10.1101/gr.275193.120 (2021).

730 71 McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing
731 next-generation DNA sequencing data. *Genome Res* **20**, 1297-1303,
732 doi:10.1101/gr.107524.110 (2010).

733 72 Ramirez, F. *et al.* deepTools2: a next generation web server for deep-sequencing data
734 analysis. *Nucleic Acids Res* **44**, W160-165, doi:10.1093/nar/gkw257 (2016).

735 73 Robinson, J. T. *et al.* Integrative genomics viewer. *Nat Biotechnol* **29**, 24-26,
736 doi:10.1038/nbt.1754 (2011).

737 74 Ma, W., Noble, W. S. & Bailey, T. L. Motif-based analysis of large nucleotide data sets
738 using MEME-ChIP. *Nat Protoc* **9**, 1428-1450, doi:10.1038/nprot.2014.083 (2014).

739 75 Tokuhiro, K. & Dean, J. Glycan-Independent Gamete Recognition Triggers Egg Zinc
740 Sparks and ZP2 Cleavage to Prevent Polyspermy. *Dev Cell* **46**, 627-640 e625,
741 doi:10.1016/j.devcel.2018.07.020 (2018).

742 76 Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of
743 image analysis. *Nat Methods* **9**, 671-675, doi:10.1038/nmeth.2089 (2012).

744

745 **Acknowledgements** We thank all members of J.D. lab, especially Dr. Di Wu, for insightful
746 comments.

747

748 **Funding:** This work was supported by the Intramural Research Program of the National Institutes
749 of Health, National Institute of Diabetes and Digestive and Kidney Disease under grant
750 ZIAADK015603 to J.D. Part of the analyses utilized the computational resources of the NIH HPC
751 Biowulf cluster (<http://hpc.nih.gov>).

752

753 **Author contributions:** G.Y., Q.X. and J.D. conceived the project. G.Y., Q.X. and J.D. designed
754 the experiments. G.Y., Q.X. and I.F. performed experiments. G.Y. analyzed results and wrote the
755 manuscript with input from X.Q., J.D. revised the manuscript. All authors discussed and approved
756 the manuscript.

757

758 **Competing interests:** The authors declare no competing interests.

759

760 **Data availability:** The next generation sequencing data in this study has been deposited in the
761 Gene Expression Omnibus website with accession number GSE180218. Source data for Fig. 1c,
762 d; Fig. 3a, b; Fig. 7g; Supplementary Fig. 2f; Supplementary Fig. 7g-1 are provided as a
763 supplementary table (Supplementary Table 8). Other data are available in the main text and the
764 supplementary materials. All other relevant data and materials that support the findings of this
765 study are available from J.D. upon request.

766

767 **Figures**

768 **Fig. 1 Inhibition of maternal mRNA translation prohibits mouse zygotic development. a**
769 Imaging M2 eggs before IVF (0 Hour) and embryos after IVF and drug treatment (24 Hour). Inset

770 shows one enlarged representative egg/embryo (4.5 \times magnification). Scale bar, 100 μ m. **b**
771 Imaging nascent proteins 24 h after IVF. Representative images are shown. Inhibition of protein
772 synthesis arrested embryos at the pronuclear stage while control embryos progressed to 2-cells 24
773 h after insemination. Scale bar, 20 μ m. **c** Qualification of fluorescence signal in all embryos
774 examined in **b**. The box plot includes the median (horizontal line) and data between the 25th and
775 75th percentile and each dot reflects the signal in one embryo. The black diamonds show average
776 within each group. **** P < 0.0001, two-tailed t-test. **d** Ratio of embryos at different
777 developmental stages with or without treatment 24 h after IVF. 4 h after insemination in IVF,
778 embryos were washed and cultured in medium containing protein synthesis inhibitor
779 cycloheximide (CHX) or anisomycin for additional 20 h. DMSO was used as the control.
780

781 **Fig. 2 Generation of *Eif4e1b* gene-edited mouse lines. a** Alignment of eIF4E1B protein
782 sequences from multiple species. eIF4E1B sequences of *Mus musculus*, *Rattus norvegicus*,
783 *Cricetulus griseus*, *Homo sapiens*, *Macaca mulatta*, *Canis lupus familiaris*, *Bos taurus*, *Danio*
784 *rerio*, *Gallus gallus* and *Xenopus laevis* are aligned by ClustalX2. **b** Abundance of *Eif4e1b*
785 mRNA in samples from *Eif4e1b*^{KO} and *Eif4e1b*^{het} (control) female mice. All counts are
786 normalized by ERCC spike-in. The box plot includes the median (horizontal line) and data
787 between the 25th and 75th percentile and each dot reflects the result in one embryo. The black
788 diamonds show average within each group. * P < 0.05, **** P < 0.0001, two-tailed t-test. **c**
789 Schematic of the *Eif4e1b* gene locus in the *Eif4e1b*^{KI} mouse line with FLAG and HA tags at the
790 C-terminus. **d** Immunofluorescence of eggs and embryos derived from *Eif4e1b*^{KI} female mice in
791 which eIF4E1B has been fused with FLAG and HA tags at the C-terminus. Anti-HA antibody
792 was used to visualize the eIF4E1B fusion protein. DAPI was used to visualize the nuclei. Scale
793 bar, 20 μ m. **e** Schematic of the *Eif4e1b* gene (upper) and sequences of sgRNAs (lower) for

794 generation of *Eif4e1b*^{KO} mouse lines. *, initiator methionine; x, stop codon. **f** Sanger DNA
795 sequencing at the *Eif4e1b* gene locus of the 3 knockout mouse lines.

796

797 **Fig. 3 Maternal deletion of *Eif4e1b* leads to developmental arrest at 2-cells. a** *Eif4e1b*^{Het}
798 (control) and homozygous *Eif4e1b*^{KO} female litter sizes. **b** Number of ovulated eggs retrieved
799 from *Eif4e1b*^{Het} or *Eif4e1b*^{KO} female mice after mating to WT males. The box plot includes the
800 median (horizontal line) and data between the 25th and 75th percentile. Each dot or triangle
801 reflects one observation. The white diamonds show average within each group. **** P < 0.0001,
802 N.S. not significant, two-tailed t-test. **c** Representative images of *in vitro* cultured embryos from
803 *Eif4e1b*^{Het} and *Eif4e1b*^{KO} females after mating with WT males at embryonic day 0.5 (E0.5), E1.5,
804 E2.5, E3.0 and E4.0. Inset, 2.5× magnification. Scale bar, 100 μm. **d** Quantification of embryos as
805 in **c**. Ratio of embryos at different stages is plotted. Total number of embryos is on top of each
806 bar. **e** Images of embryos flushed from *Eif4e1b*^{Het} and *Eif4e1b*^{KO} female reproductive tracts at
807 E3.5 after successful *in vivo* mating. Inset, 2.7× magnification. Scale bar, 100 μm.

808

809 **Fig. 4 Maternal deletion of *Eif4e1b* impairs ZGA. a** PCA plot of RNA-seq results of single
810 embryos from *Eif4e1b*^{Het} (control) or *Eif4e1b*^{KO} female mice at different developmental stages.
811 The length of dashed lines between cluster centers represents differences between samples. **b**
812 Heatmap to show expression of all known minor ZGA genes at different stages. Note embryos
813 from *Eif4e1b*^{KO} females have reduced expression of most minor ZGA genes at the early 2-cell
814 stage (red box). **c**, Scatter plot documents differentially expressed RNAs expected to be
815 transcribed during minor ZGA in early 2-cell embryos. Up-regulated and down-regulated RNAs
816 are shown as red and blue dots, respectively. The total number of up- or down- regulated RNAs is
817 labelled in each plot. mRNAs from multiple well-known minor ZGA genes are labeled in the
818 plots. **d-f** Abundance of *Zscan4a*, *Rfp14b* and *Zfp352*, three minor ZGA genes, at early 2-cell

819 stage. **g** Heatmap to show expression of most known major ZGA genes at different stages. Note
820 that embryos from *Eif4e1b*^{KO} females have reduced expression of almost all major ZGA genes at
821 the late 2-cell stage as highlighted by the red box. **h**, Scatter plot documents differentially
822 expressed RNAs expected to be transcribed during major ZGA in late 2-cell embryos. Up-
823 regulated and down-regulated RNAs are shown as red and blue dots, respectively. The total
824 number of up- or down- regulated RNAs is labelled in each plot. mRNAs from multiple well-
825 known major ZGA genes are labeled in the plots. **i-k** Abundance of *Pdxk*, *Prmt1* and *Ddx39*, three
826 major ZGA genes, at late 2-cell stage. **l** Abundance of transcripts from MuERV-L transposon in
827 embryos from control or *Eif4e1b*^{KO} female mice at different developmental stages. All counts are
828 normalized with ERCC spike-in. The box plot includes the median (horizontal line) and data
829 between the 25th and 75th percentile and each dot reflects the count in one embryo. The black
830 diamonds show average expression of the genes. **** P < 0.0001, two-tailed t-test.

831

832 **Fig. 5 Maternal eIF4E1B reprograms zygotic chromatin accessibility. a** Ratio of methylated
833 CpG to document global DNA methylation. **b** DNA methylation profile at minor ZGA gene loci
834 in PN5 zygotes and early 2-cell embryos from control and *Eif4e1b*^{KO} females. **c** Ratio of
835 methylated GpC to show global chromatin accessibility. **d** Chromatin accessibility profile at
836 minor ZGA gene loci in PN5 zygotes and early 2-cell embryos from control and *Eif4e1b*^{KO}
837 females. **e** Integrated genomic view (IGV) to document chromatin accessibility and DNA
838 methylation profiles at the *Zscan4* gene cluster. Note the lower chromatin accessibility at gene
839 loci in embryos from *Eif4e1b*^{KO} females (framed). The box plot includes the median (horizontal
840 line) and data between the 25th and 75th percentile. Each dot reflects the results from one embryo
841 and the black diamonds show average within each group. N.S. not significant, * P < 0.1, **** P <
842 0.0001, two-tailed t-test.

843

844 **Fig. 6 eIF4E1B binds to a subset of mRNAs in M2 eggs. a** PCA analysis of input and
845 immunoprecipitated transcripts after eIF4E1B-RIP. M2 eggs or early 2-cell embryos from
846 *Eif4e1b^{KI}* female mice were used and WT eggs/embryos served as controls. **b** Gene origins per
847 million reads from the RIP-seq data. Box plot includes the median (horizontal line) and data
848 between the 25th and 75th percentile. Each small square reflects the results from one sample and
849 the white diamonds indicate average in each group. **c** Scatter plot documents differentially
850 expressed RNAs encoding known chromatin remodeling complex subunits and histone modifying
851 enzymes as determined by the RIP-seq experiments using WT and *Eif4e1b^{KI}* M2 eggs. Up- and
852 down- regulated RNAs are shown as red and blue dots, respectively. Several potential eIF4E1B
853 mRNA targets are labeled. **(d-g)** Integrated genomic view (IGV) of eIF4E1B RIP-seq results at
854 *Ino80b*, *Ino80e*, *Sox2* and *Pou5f1*(*Oct4*) loci in RIP-seq data from WT and *Eif4e1b^{KI}* M2 eggs.

855

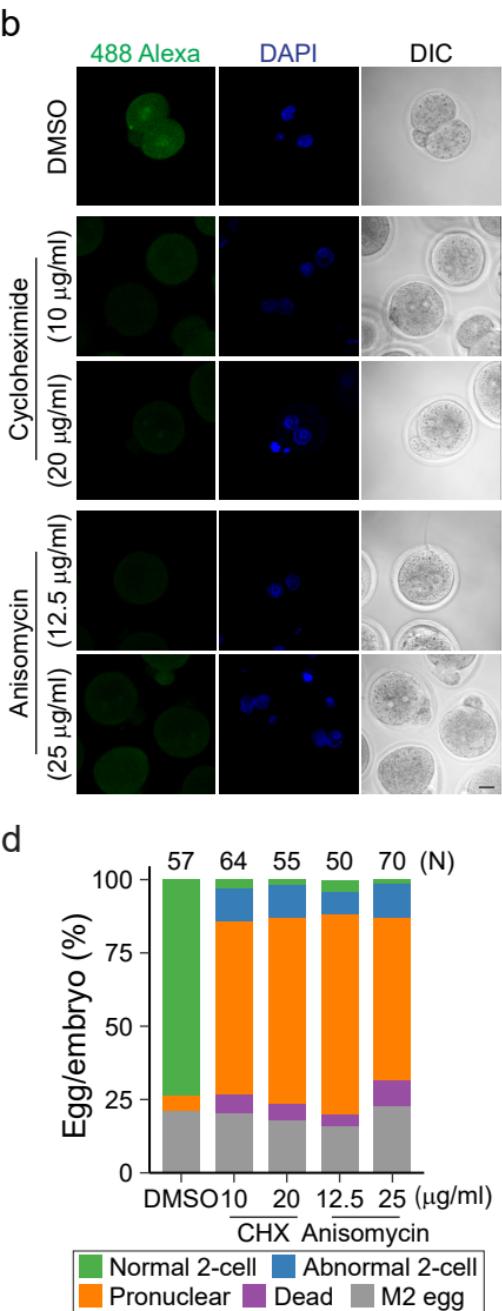
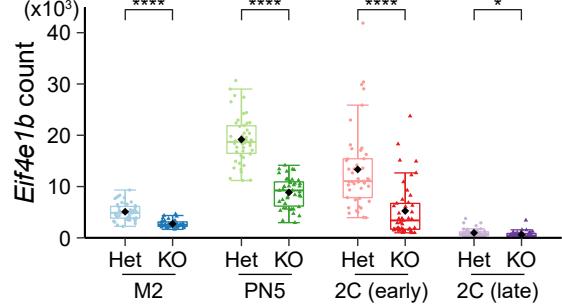
856 **Fig. 7 eIF4E1B controls translation of maternal mRNA in mouse zygotes. a** Heatmap
857 showing average expression of eIF4E1B RNA targets in embryos from *Eif4e1b^{Het}* and *Eif4e1b^{KO}*
858 females at different developmental stages as determined by single embryo RNA-seq. All counts
859 are normalized by ERCC spike-in. **b** INO80B protein expression in embryos from *Eif4e1b^{Het}* and
860 *Eif4e1b^{KO}* females at different developmental stages. Scale bar, 20 μ m. **c-e** Same as in b but for
861 INO80E, SOX2 and OCT4 protein expression, respectively. The fluorescent signals are quantified
862 in Supplementary Fig. 7*i-l*. **f** Imaging of nascent proteins in embryos derived from *Eif4e1b^{Het}* and
863 *Eif4e1b^{KO}* females at different time points after IVF. The fluorescence signal was quantified in **g**.
864 Scale bar, 20 μ m. N.S. not significant, ** P < 0.01, **** P < 0.0001, two-tailed t-test.

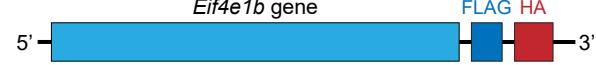
865

866 **Fig. 8 Working Model.** eIF4E1B binds a subset of RNAs in M2 eggs. After fertilization,
867 eIF4E1B bound mRNAs are rapidly translated into protein. Translation stabilizes the selected
868 maternal mRNAs and prevents degradation. Their protein products remodel chromatin into a

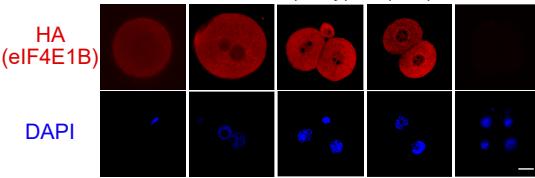
869 highly open state to enable transcription of the early zygotic genes that further establish early
870 developmental programs. Maternal mRNAs and proteins are ultimately degraded during the
871 maternal-to-zygotic transition.

Figure 1

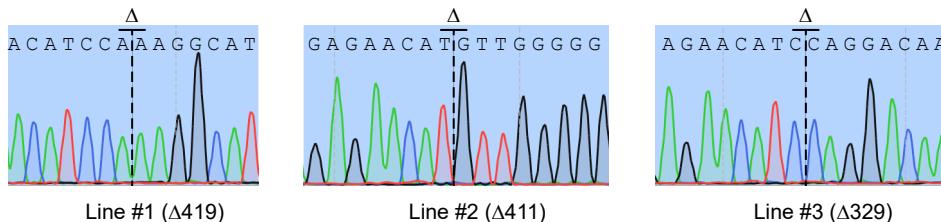



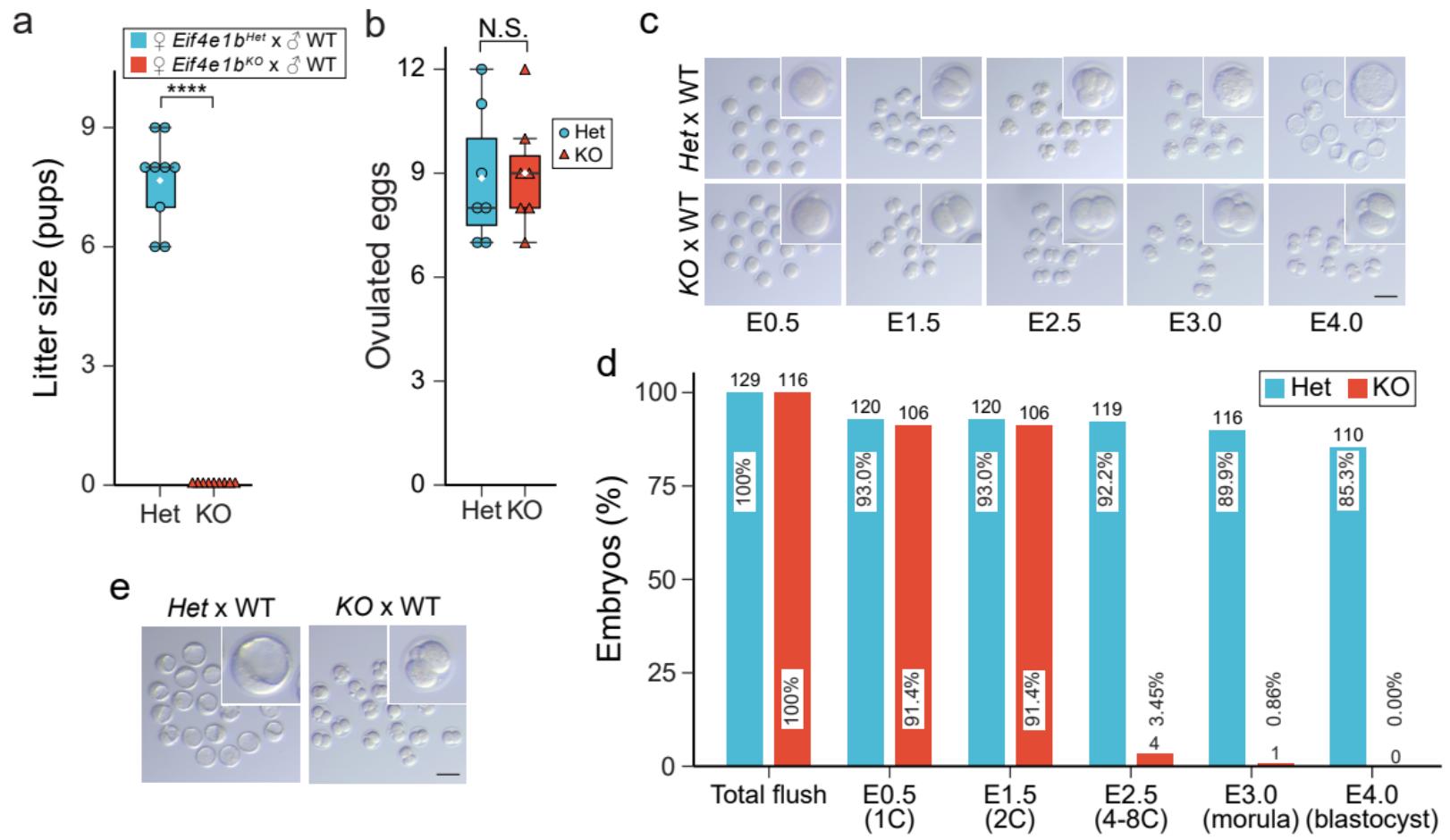

Figure 2

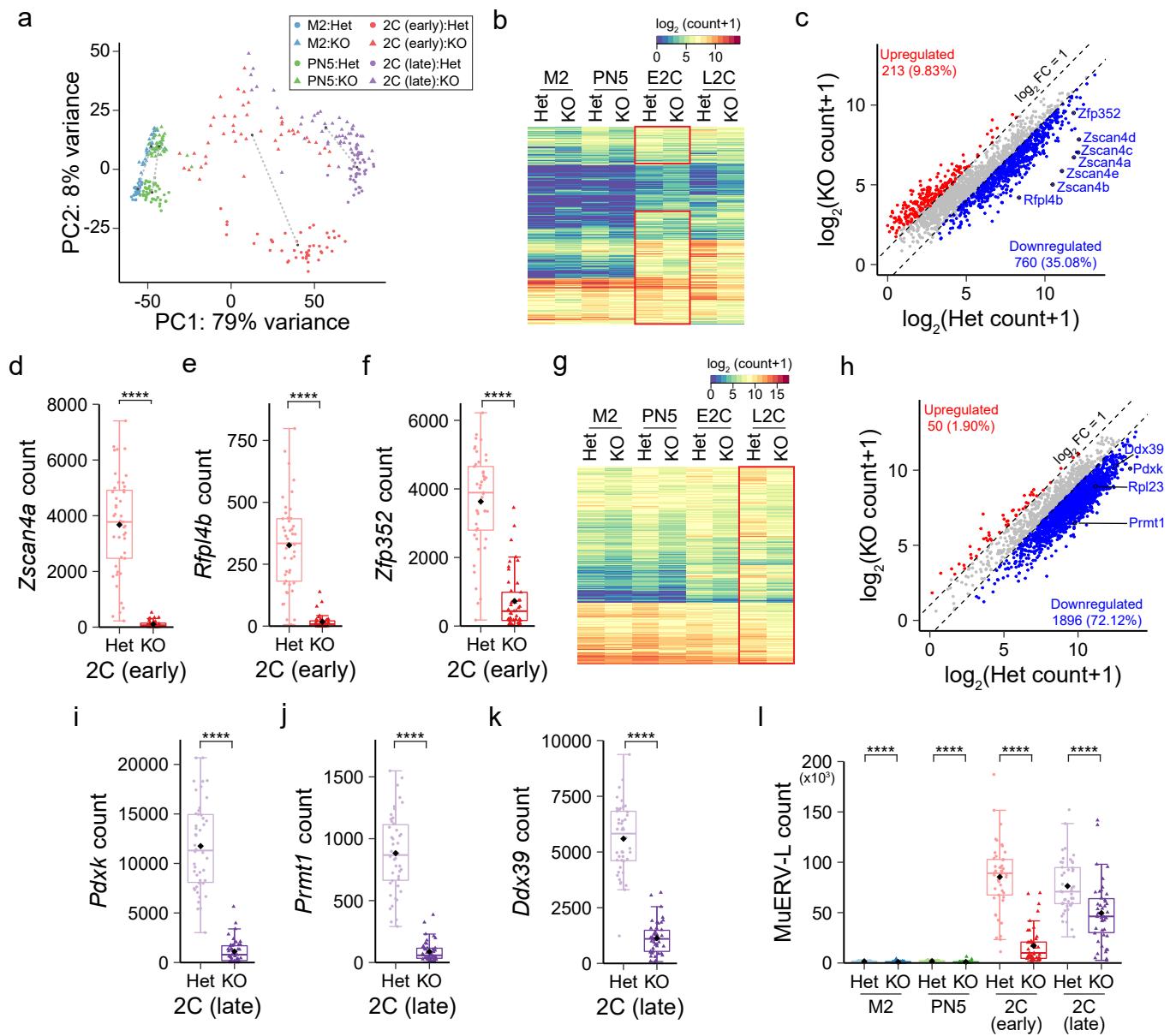
a


b

C


d


e



f

Figure 3

Figure 4

Figure 5

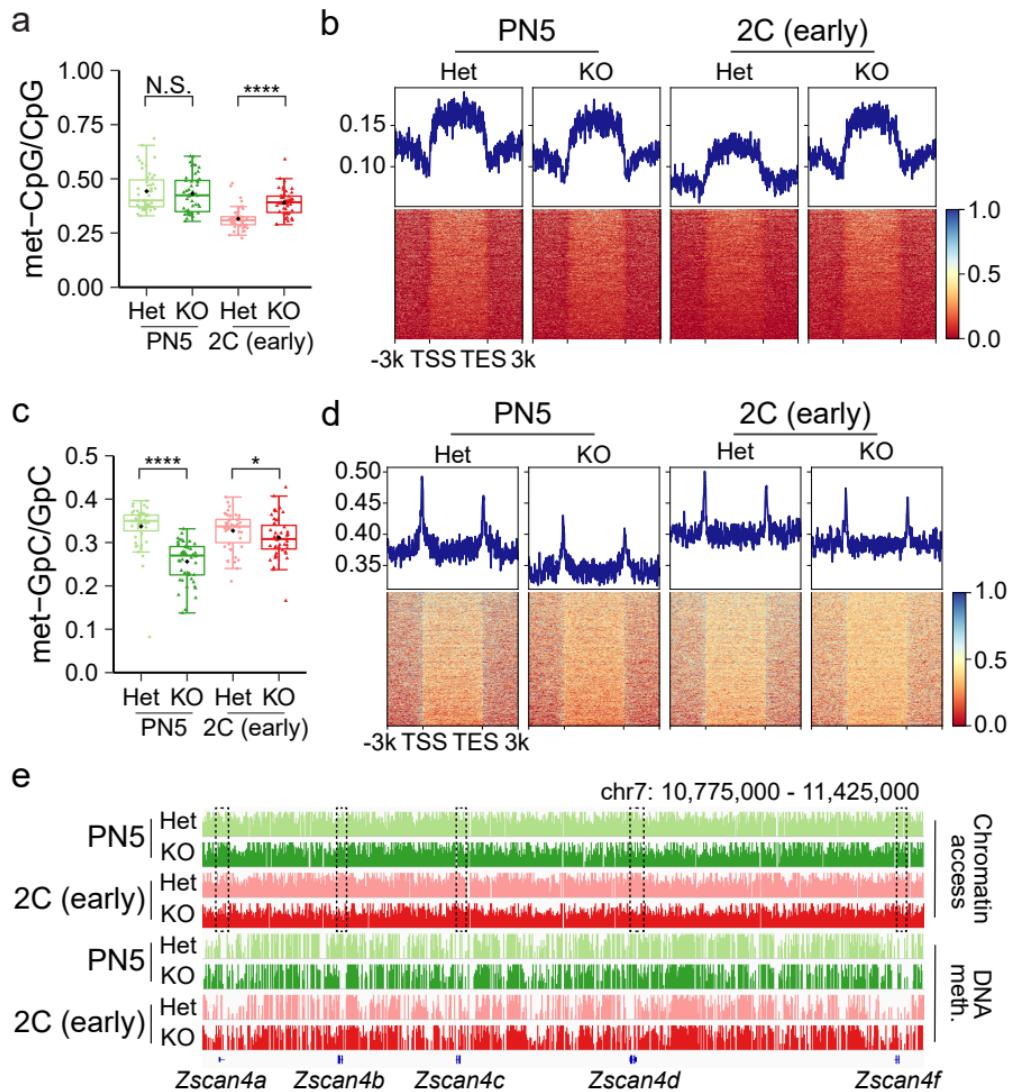
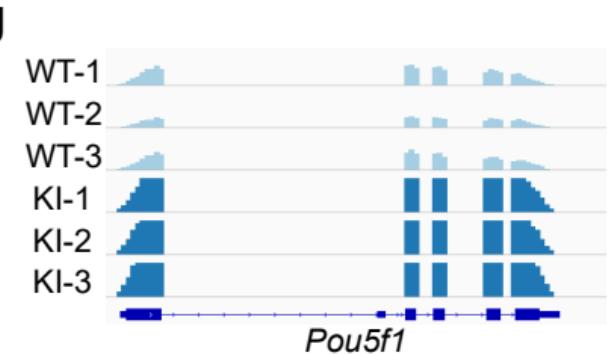
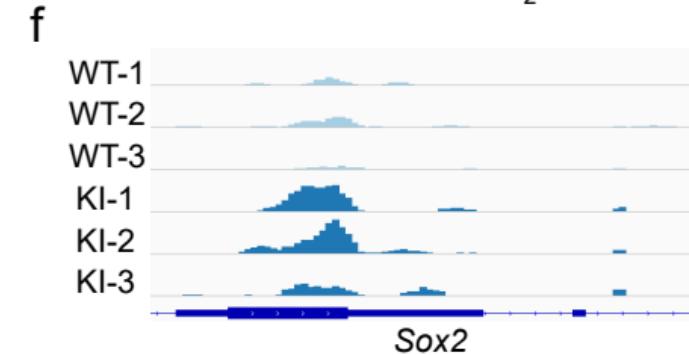
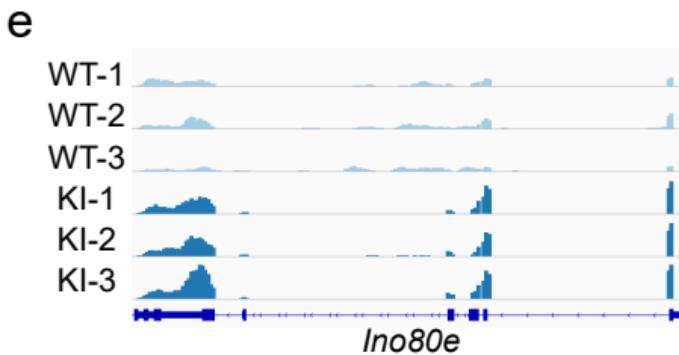
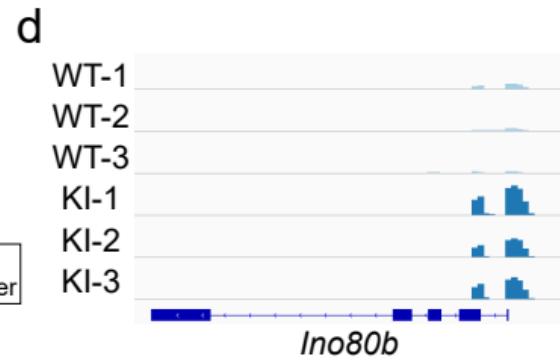
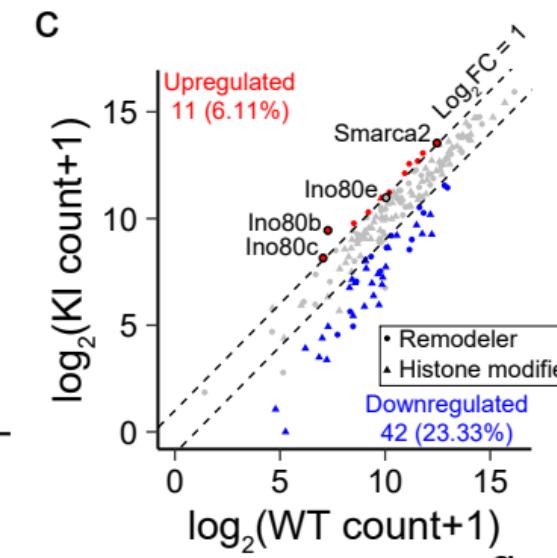
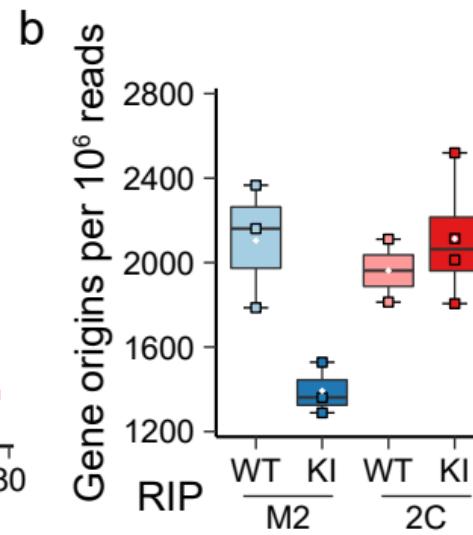
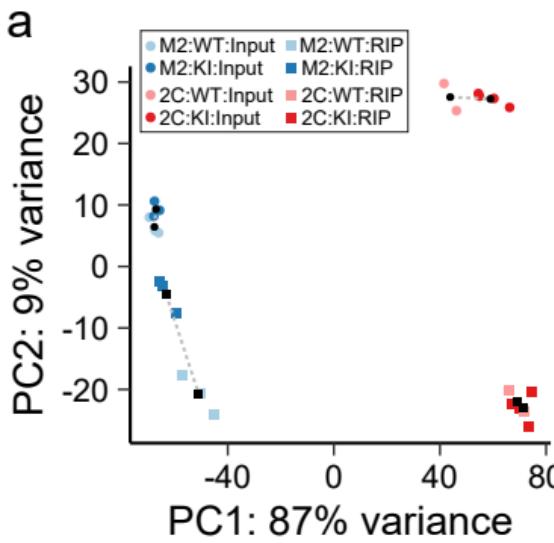









Figure 6

Figure 7

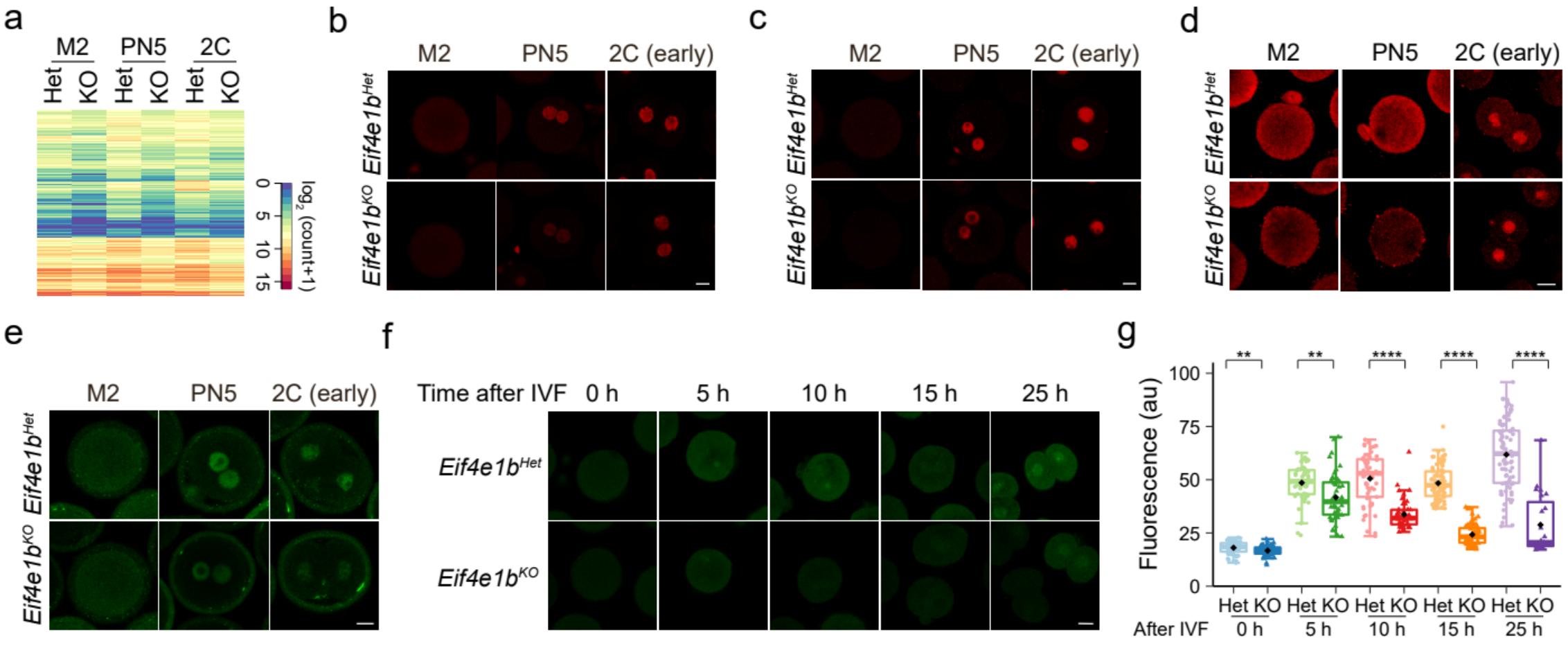
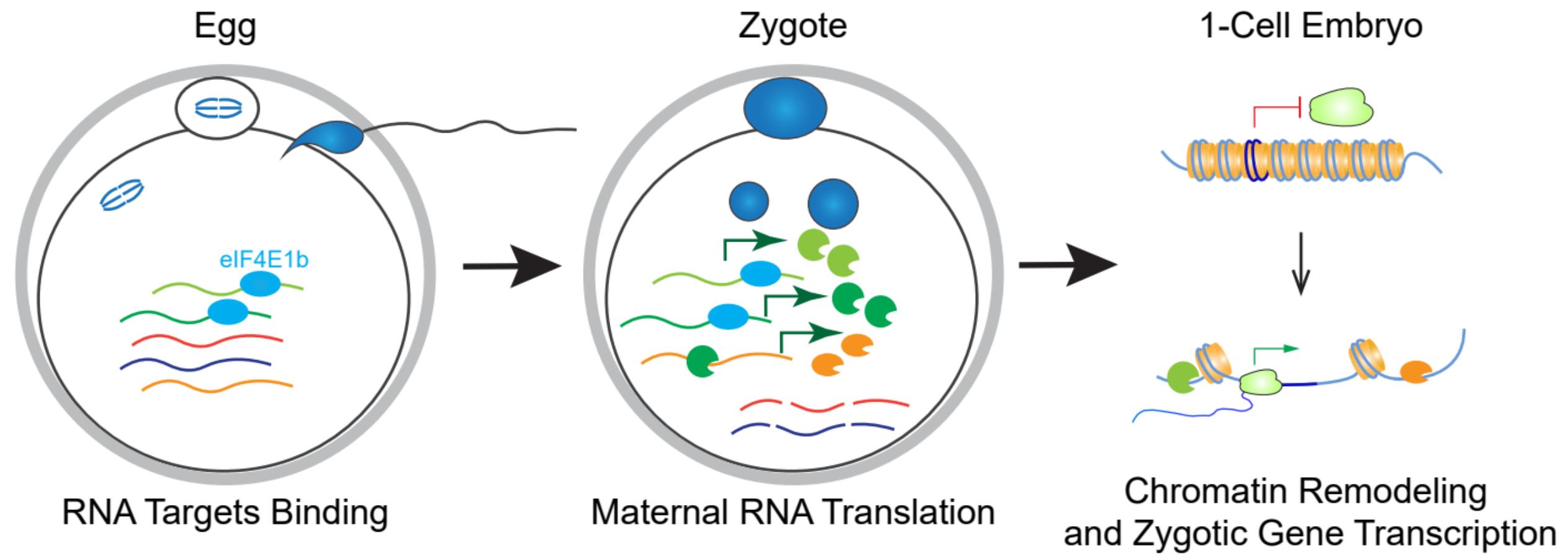



Figure 8

