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Abstract 

Tractography is widely used in human studies of connectivity with respect to every brain 

region, function, and is explored developmentally, in adulthood, aging, and in disease. 

However, the core issue of how to systematically threshold, taking into account the inherent 

differences in connectivity values for different track lengths, and to do this in a comparable 

way across studies has not been solved. The study adopted Monte Carlo derived distance-

dependent distributions (DDDs) to generate distance-dependent thresholds with various 

levels of alpha for connections of varying lengths. As a test case, we applied the DDD 

approach to generate a language connectome. The resulting connectome showed expected 

short- and long-distance structural connectivity in the close and distant regions within the 

language network. The finding demonstrates that the DDD approach can be used for both 

individual and group thresholding. Critically, it offers a standard method that can be applied 

to various probabilistic tracking datasets. 
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Recent methodological advances in diffusion neuroimaging and probabilistic 

tractography have enabled the delineation of white matter fibre pathways in vivo [1-3]. For 

example, studies have reconstructed pathways in the human brain that are known to sustain 

higher-level cognitive functions such as language where non-human analogues are difficult to 

define and track [4-10]. Whilst probabilistic tractography allows us to investigate fibre 

pathways in vivo, there are at least two fundamental challenges with interpreting outputs. 

First, there is no consensus on how to threshold connectivity matrices, which impacts on the 

ability to perform statistical analyses that are comparable across studies. Second, brain 

networks typically comprise of short- and long-range connections but the latter inherently 

have distance dependant reductions in streamline likelihoods due to the inherent nature of 

probabilistic tractography. To gain a better understanding of long connections and networks, 

a more sophisticated treatment for distance effects is required. Thus, the present study set out 

to tackle these two key issues.         

While the probabilistic tracking approach has proved useful in reconstructing 

complex structural connectivity networks, it has critical challenges especially with respect to 

false positives [11-14]. By definition, probabilistic tractography is designed to explore all 

possible streamlines, which are generated from fibres orientation distributions with differing 

degrees of non-random noise. Consequently, this method often produces widely connected 

brain networks [14]; however, thresholds can be applied to allow for more interpretable 

outcomes and is particularly useful in reconstructing complex crossing fibres [12]. Previous 

research has introduced several thresholding approaches. At the individual level, one could 

apply a set threshold to all individuals to remove sub-threshold connections or apply different 

thresholds across individuals to retain the same number of connections [15-17]. Group-level 

networks are commonly generated based on the consensus of connections, which retains 

connections present in some fraction of participants (i.e., at least 50% of subjects) [16, 18]. 
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However, typically the threshold is arbitrary and as such a range of thresholds are often used 

to characterise the network [17]. Taking the field as a whole, given that there are 

inconsistencies in methodologies across datasets, tracking procedures and algorithms, it 

makes formal comparisons across studies difficult. 

Regardless of the specific threshold used, it is common to apply a uniform threshold 

to all connections regardless of length/distance. This could be problematic, especially in a 

large-scale distributed brain network, because noise accumulates and streamline likelihoods 

decrease as a function of path length [19]. Thus, if a strict threshold is applied in order to 

minimise false positives near the seed region, then it is likely that long-range connections 

would not exceed that threshold, resulting in distance false negatives. A recent study by 

Roberts et al. [14] developed consistency-based thresholding, which computed variation of 

unthresholded connectivity strength across individuals. A threshold was applied to 

connections with high consistency (i.e., low variation) across the group to preserve a desired 

level of connectivity density. It was assumed that if long-range connections were truly 

connected, the connections would be consistent across individuals such that consistency 

could be high even though the connection strengths were low. Given that the individual 

connectivity matrix was not thresholded, it remains unclear if this approach may overestimate 

connections as an unthresholded matrix is almost always fully connected [14]. Indeed, the 

authors noted that the consistency-based approach could potentially be biased by specific 

types of data acquisition and pre-processing. More recently, Betzel et al. [16] developed a 

distance-dependent consensus thresholding approach. This approach is similar to the 

consistency-based approach in that no threshold was applied at the individual level while 

group-level consensus was obtained by computing the fraction of individuals that had 

connection weights greater than zero. The novel aspect is related to applying a correction 

based on distance (across a range of bins), where for each bin the pair of brain regions that 
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have the highest consensus across individuals is preserved. One potential caveat is that the 

bins used should be reasonably wide to keep the same number of pairs as in the original 

matrix. Also, similar to Roberts et al. [14], this approach was primarily operated at the group 

level.  

Despite the fact that a variety of thresholding approaches have been proposed, critical 

issues remain. There is still a lack of empirical support for a common thresholding regime 

that allows for the comparison across studies and one that resolves the distance artefact at 

both individual and group levels. A previous study by Cloutman et al. [7] did propose an 

approach towards standardisation that was inspired by statistical hypothesis testing. In that 

study, probabilistic tracking was conducted to map connectivity between the sub-regions of 

the insula and the rest of the brain. For each individual, the distribution of connection scores 

between the seed region and each region of an atlas was fitted with a Poisson distribution, 

and that was used to identify a threshold value at α = 5%. At the group level, the consensus 

approach was used, in which connections were selected only when they were consistently 

identified across at least 50% or 75% of participants. This distribution-thresholding approach 

at the individual level was the first attempt to determine individual thresholds based on a 

statistical metric (alpha) using the connectivity distributions; however, it did not take into 

account distance effects, as in Betzel et al. [16] and Roberts et al. [14]. The present study 

extended this distribution approach by developing a distance-dependent distribution (DDD) 

method in order to establish a common ground for thresholding based on significance levels 

of alpha. Specifically, as per standard Monte Carlo type statistical methods, we generated 

normative distributions of randomly-sampled connectivity and then set different levels of 

alpha to identify the corresponding thresholds. Critically, we generated the DDDs at different 

distances to derive thresholds for connections of varying length. To illustrate the novel 

approach, we applied DDD thresholding to generate a language connectivity matrix and 
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evaluated if it could capture a priori language networks reported in the literature [4, 5, 8, 9]. 

Specifically, it was expected that the resulting connectivity matrix could capture long-range 

connections and reproduce key white matter tracts in the language network including arcuate 

fasciculus (AF) and/or superior longitudinal fasciculus (SLF), which are generally associated 

with the dorsal language pathway; and middle longitudinal fasciculus (MdLF), inferior 

frontal-occipital fasciculus (IFOF) and uncinate fasciculus (UF), which are generally 

associated with the ventral language pathway. 

 

Results 

Figure 1A shows the result of the tractogram from an axial slice for a representative 

participant in diffusion space. The colour indicates directionality; red for right-left, green for 

anterior-posterior and blue for superior-inferior. Figure 1B shows an example of the extracted 

streamlines connecting two ROIs in the inferior frontal cortex. We extracted streamlines 

between all of the ROIs pairs to compute connectivity strength. Figure 1C shows the 260 

ROIs covering the left hemisphere only. 

 

Distance-dependent distributions (DDDs) and thresholds 

Figure 2 shows the number of ROI paired samples for 26 distance groupings from the 

86 unique distances. For each distance range, there were at least 1000 samples, ranging from 

1068 to 2844. Note that the range was not equally spaced due to the limitation of retaining a 

minimum number of samples per bin; however, we explored a different distance 

categorisation, and the key results remain similar (see Supplementary, Figures S1-S4). 
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Figure 1. (A) The representative whole-brain tracking with 10M streamlines. (B) An example 
of the extracted streamlines connecting two ROIs in the inferior frontal cortex. (C) The 260 
ROIs (diameter 8mm) covering the left hemisphere. 
 

 

         Figure 2. The number of ROI paired samples for each of the 26 distance ranges. 
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For each distance range, we first averaged the connectivity scores across participants 

and then conducted resampling 100,000 times to generate a null distribution of random 

connectivity. Figure 3 shows the sampling distributions for each distance range. As expected, 

the short-range connections tended to have higher connection scores compared to the long-

range connections, as noted by the right skewed distributions. For the longer connections, the 

majority of connection scores were close to zero; however, as expected given the presence of 

long-range white matter and fasciculi in the brain, there were notable extremes that had 

strong connectivity differed from the majority of the null connectivity.  

 

Figure 3. The sampling distribution of random connectivity for each of the 26 distance 
ranges. The x-axis indicates connection strength and the y-axis indicates the number of 
samples on a log scale. DR: distance range (mm). 
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Figure 4 shows that the DDD thresholds at three alpha levels of 10%, 20% and 30% 

across the 26 distance bins. Specifically, for each alpha level, the connectivity threshold 

generally decreased with increased distance. As a result, the short-distances had higher 

thresholds than long-distance connections. Moreover, the connectivity thresholds were 

moderated by the alpha level, where the highest thresholds were noted for the smallest alpha 

and the lowest thresholds for the largest alpha. Next, we applied the DDD thresholds to 

generate a language connectivity matrix. 

 

Figure 4. The distance-dependent distribution thresholds at three alpha levels of 10%, 20% 
and 30% varied with the 26 ROI distance bins. 

 

Language network connectivity 

Table 1 shows the distance between 13 language ROIs included in the analyses (See 

Methods for details). The distance varied widely as expected, where IFG Tri and pFG were 

furthest apart (101.45 mm) and the mFG and pFG were closest together (16.28 mm). We first 

converted all distance values to integers, which were used to compute the average language 

connectivity matrix across individuals. The three levels of the DDD thresholds were applied 

to the outputs (as in Figure 4) according to the distance of the ROI pairs. Note that we did not 
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threshold the connectivity matrix at the individual level because the DDD approach did not 

require sparse individual connectivity matrices which are typically required for group-level 

consensus thresholding. For completeness, we also demonstrated that the DDD thresholds 

could also be applied to individual connectivity matrices, where the thresholded individual 

matrices had high correlations with the thresholded average matrix (see Supplementary 

Figures S5-S6).     

After thresholding, the average connectivity score was binarised and coded with three 

different colours according to the alpha levels (red = 10% of alpha, green = 20% and blue = 

30%) as in Figure 5. 

 

Table 1. The distance (mm) between all language ROIs. 

mFG 16 61 30 56 18 76 86 83 73 42 49 69 

 pFG 76 41 72 26 91 101 99 85 49 64 83 

  aSTG 42 17 52 37 33 27 46 56 33 31 

   pSTG 46 19 53 64 67 48 20 49 62 

    aMTG 50 50 46 32 60 63 18 17 

     pMTG 70 79 77 67 34 48 64 

      IFG 
Oper 20 39 17 55 61 64 

       IFG 
Tri 24 36 70 60 55 

        IFG 
Orb 55 79 44 35 

         PMC 44 70 75 

          pSMG 68 80 

           vATL 23 

            lATL 
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Figure 5. The average language connectivity matrix across individuals after thresholding and 
binarisation. The different levels of alpha with 10% on the top, 20% on the middle, and 30% 
on the bottom were superimposed onto one matrix wherein anything that survives the 10% 
would also survive 20% and 30%. 
 

We projected the connection scores (without binarisation) to the brain for an intuitive 

way to visualise the results (Figure 6) using the BrainNet Viewer [20]. The width of the line 

indicates the strength of connection. With the most stringent threshold (i.e., the alpha level of 

10%), the connectivity between the ROIs in both the close and distant cortical regions was 

reconstructed. Specifically, we observed neighbouring ROIs to be connected in the occipito-

temporal regions (mFG and the pFG); temporal lobe (aSTG with pSTG and aMTG with 

pMTG); anterior temporal lobe (vATL and lATL); and frontal lobe (IFG Orb, IFG Tri and 

IFG Oper) as well as premotor cortex (PMC). We also observed distant ROIs being 

connected between the frontal and the parietal lobes, the temporal and the parietal lobes, the 

frontal and the temporal lobes, and the frontal and the occipito-temporal lobes. Specifically, 

the IFG Tri and IFG Oper were connected to the pSMG presumably via the AF, which could 

be part of the dorsal language pathway. The aSTG, pSTG, aMTG and pMTG were also 

connected to the pSMG presumably via the MdLF, which could be associated with the 
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ventral language pathway. Moreover, there was long-range connectivity between the IFG Tri 

and IFG Oper and the pMTG via the AF, as well as between the IFG Orb and the pFG via the 

IFOF and/or part of the ILF, which could be part of the ventral language pathway. 

With lenient thresholds (i.e., the alpha levels of 20% and 30%), more cross-region 

connectivity could be observed, especially for the inferior frontal, temporal and occipital 

regions. The IFG Orb was connected with the aMTG via the uncinate fasciculus (UF), and 

the IFG Oper and the IFG Tri were connected to the mFG and pFG via the AF. Collectively, 

these results demonstrated that the connectivity matrix based on the DDD thresholding 

approach was able to reconstruct the key white matter tracts that sustain language processing 

in the language network as previously reported in tractography studies [4, 5, 8, 9] and the 

three inferior frontal regions had different connectivity profiles with temporal and parietal 

regions, consistent with the cortico-cortical evoked potential study [21]. 

 

 

Figure 6. The projections of the average language connectivity matrix in the brain with three 
alpha levels of 10% (red), 20% (green) and 30% (blue) and the difference plots between them 
(gold). The wider the connection line indicates the stronger the connections. 
  

          Alpha 10%                                Alpha 20%                              Alpha 30% 

                                 Difference                                   Difference 
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Discussion 

Probabilistic tractography has become an increasingly important tool in neuroimaging 

studies to delineate white matter fibre pathways in vivo. The key advantage of probabilistic 

tractography is that it can reveal all possible tracts from a seed because each streamline 

propagates along a direction drawn from a probabilistic distribution. The main limitation, 

however, is unavoidably increasing the possibility of producing false connections [11-14]. 

Thus, the primary aim of this study was to develop a thresholding approach for probabilistic 

tractography that is grounded in statistical hypothesis testing and to resolve the false 

negatives commonly associated with long-distance connections. Specifically, we used a data-

driven distance-dependant distribution (DDD) approach to generate normative distributions 

of random connectivity for 26 distance ranges based on ROIs spanning the left hemisphere. 

We demonstrated how this novel method could be applied to uncover the connectivity profile 

for a language network and how different alpha levels affect the final outcome. Critically, we 

were able to reproduce the expected language network [4, 5, 8, 9] as shown in Figure 6. 

Overall, this study demonstrated that the data-driven and statistical-inspired thresholds can 

minimise false positives for short-range connections and false negatives for long-range 

connections. 

To date, most connectivity thresholds are chosen heuristically and, arguably, 

arbitrarily based on existing literature or exploratory outcome. For a given dataset, one could 

use a more lenient criterion to explore the probable tracts in contrast with a more stringent 

criterion, which could be used to identify core bundles. Indeed, it has been suggested that 

networks might be better characterised with a broad range of thresholds [17]. Additionally, 

thresholding might also be related to the demographic, psychosocial and medical information 

of the individuals, such as age, gender and mental illness [22]. Although there may be 

justifications to apply specific thresholds to a given dataset, the outcomes may not be 
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comparable with or generalise to other datasets. The ability to compare across studies is 

critically important in validating and testing the reliability of key findings. Thus, while 

studies have focused on probabilistic tractography and improving tractography algorithms 

[23-26], only a handful of studies have developed thresholding approaches that make the 

resulting connectivity close to the ‘ground true’ or comparable across the species [14, 16, 18]. 

Our data-driven DDD approach was designed to work with any probabilistic tracking dataset 

and to provide a common ground (i.e., the alpha level) to relate thresholds across datasets 

regardless of the specific tracking approach and parameters used (provided that random 

sampling distributions are established per dataset). Obviously, if studies have used similar 

datasets, tracking tools and parameters, then the same DDDs can be directly applied.      

Our DDD approach dealt with the distance artefact by generating higher thresholds 

for close regions and lower thresholds for distant regions (Figure 4). As long-range 

connections tend to have smaller connection strength, some tools such as FSL [24, 26] apply 

a distance correction by multiplying the distance with the probability of connection strength. 

This can lead to probabilities greater than one, which makes interpretations difficult. More 

importantly, it is not clear what mathematical form best characterises the relationship 

between distance and the probability of connection strength for correction. Two studies have 

tried to overcome these challenges. Roberts et al. [14] introduced consistency-based 

thresholding, which does not directly deal with distance but it could effectively preserve 

long-range connections using high consistency thresholds (possible if variance across 

individuals is small). In contrast, Betzel et al. [16] developed distinct thresholds for the 

group-level consensus scores of different lengths. Although both approaches have proved 

their effectiveness for group-level thresholding, the approaches cannot be applied to 

individual-level thresholding. In contrast, we have demonstrated that our DDD approach can 

work directly with the average connectivity matrix to identify plausible connections related to 
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language processing (Figure 5) and can also be applied at the individual level (see 

Supplementary). Thus, our DDD approach extends previous distance-related thresholding 

approaches, while supporting both individual-level and group-level analyses.  

 There are some limitations that are not addressed with the DDD approach. First, the 

DDDs generated by the present study may not be directly applied to tractography datasets 

that are acquired using different data acquisition protocols, pre-processing, tractography 

algorithms, or different numbers/sizes of ROIs. That is because the distributions of random 

connectivity are data-specific and generated from the outcome of a specific tractography 

setting. This means that DDDs would need to be calculated for each study/analysis; however, 

we have provided detailed methodological descriptions about how to generate appropriate 

DDDs (downloadable from https://www.mrc-cbu.cam.ac.uk/bibliography/opendata/). Despite 

the computational cost required to generate data-specific DDDs, a major advance is that one 

could formally compare results between studies based on the alpha threshold and in the future 

collated data for formal meta-analyses. Secondly, the ROIs used to generate DDDs cover the 

left hemisphere but not the right hemisphere. This was deliberate for two reasons: (a) 

crossing fibres through the corpus callosum are complex especially for the callosal fibres 

connecting from the midsagittal slice of the corpus callosum to inferior and lateral brain 

regions [27, 28]; and (b) to keep computational costs down. Further work is required to 

extend the principles outlined for the DDD approach to the right hemisphere and the whole 

brain. Lastly, our DDD approach is designed to work with the outcome of tractography and to 

provide a method of comparing thresholding results regardless of tractography 

algorithm/settings. Thus, we did not seek to identify optimal thresholds for a ‘ground truth’. 

Instead, we considered a range of comparable thresholds that can help characterise the 

structural connectivity [17] and bridge studies using different tractography approaches. We 
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acknowledge the key role of thresholding techniques in reducing the probability of spurious 

connectivity in probabilistic tractography, which can allow us to identify ‘real’ networks.  

 To conclude, the DDD approach was developed as a strategy to formally threshold 

structural connectivity maps from any tractography datasets and allow for comparisons across 

studies. The DDD approach also addressed the distance artefact by providing different 

thresholds for short- and long-range connections.  

 

Methods 

Human connectome data, pre-processing and tracking 

Fifty-four participants’ pre-processed structural and diffusion datasets were 

downloaded from the WU-Minn 1200 Human Connectome Project (HCP) [29-33]. Both the 

HCP T1-weighted and diffusion imaging data were acquired on a 3T Siemens Skyra 

“Connectome” scanner with a customised SC72 gradient insert and a customised body 

transmitter coil with 56 cm bore size.  

The HCP T1-weighted (T1w) images were acquired using the 3D Magnetisation 

Prepared Rapid Acquisition GRE (MP-RAGE) method with TR = 2400 ms, TE = 2.14 ms, 

T1 = 1000 ms, flip angle = 8˚, FOV = 224 x 224 mm, voxel size = 0.7 mm isotropic, BW = 

210 Hz/Px and acquisition time = 7 m 40 s. The diffusion weighted images were acquired 

using a Spin-echo EPI with TR = 5520 ms, TE = 89.5 ms, flip angle = 78 deg, refocusing flip 

angle = 160 deg, FOV = 210 x 180 mm, voxel size = 1.25 mm isotropic, and BW = 1488 

Hz/Px.     

In the HCP, a full diffusion session included six runs for three different gradient 

tables, and each table acquired twice, one from right-to-left and the other one from left-to-

right phase encoding polarities. Each gradient table included approximately 90 diffusion 

weighting directions plus six b = 0 acquisitions interspersed throughout each run. Multiple 
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shells of b = 1000, 2000 and 3000 s/mm2 were utilised with each shell having an 

approximately equal number of acquisitions within each run.    

The dataset used in the present study were pre-processed using the HCP pipelines. 

Briefly, the T1w and T2w images were aligned in native space using FSL’s FLIRT and 

FNIRT functions. A field map distortion correction was conducted and registered to T1w and 

T2w images using FSL’s FLIRT boundary-based registration (BBR) algorithm. The 

structural images were subjected to bias field correction [30]. Each participant’s native 

structural volume space was registered to MNI space using FSL’s FLIRT and FNIRT 

functions. As the diffusion data were collected with reversed phase encoded polarities, these 

pairs of images were utilised to estimate the susceptibility-induced off-resonance field, and 

they were combined into a single image using FSL’s TOPUP and EDDY functions for 

distortion-correction [34-36].  

The distortion-corrected data were submitted to the MRtrix3 toolbox 

(https://www.mrtrix.org/) for further processing and whole-brain probabilistic tracking. 

Specifically, the diffusion data were first subjected to bias correction using the ANTS flag 

[37]. Next, a response function was estimated using spherical deconvolution for grey, white 

matter and cerebrospinal fluid (CSF) compartments using the ‘dhollander’ algorithm. 

Subsequently, we averaged the response function across subjects for each tissue type to 

obtain a group average, which was then used to estimate fibre orientation distributions (FOD) 

using the multi-shell multi-tissue constrained spherical deconvolution algorithm [38]. Finally, 

intensity normalisation (in the log-domain) was applied to all FOD outputs. Whole-brain 

tractography was performed using MRtrix3 with anatomically constrained priors (obtained 

using the five-tissue segmentation function) and the iFOD2 algorithm. We obtained 10 

million streamlines per subject with a maximum streamline length of 250 mm and a 

fractional anisotropy (FA) cut-off value of 0.06.  The resultant whole-brain tractogram was 
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further filtered using spherical-deconvolution informed filtering of tractograms (SIFT2) to 

improve the quantification and biologically-meaningful nature of whole-brain connectivity 

[23].  

 

Distance-dependent distributions of random connectivity 

To generate normative distributions via randomly-sampled connectivity at different 

distances, we created a grid of 230 regions of interest (ROIs) with a diameter of 8 mm that 

covered the entire left hemisphere in MNI space. For each participant, ROIs were inverted to 

native diffusion space (using inverse FLIRT and FNIRT transforms) and binarised over the 

grey and white matter interface (GWI). The GWI-ROIs were used as a mask to extract the 

number of streamlines connecting all other ROIs based on the whole brain tractogram. The 

connection value between a pair of ROIs was quantified by computing the proportion of 

streamlines emerging from the seed and ending at the target ROI. It was expected that closer 

ROI pairs would have higher connection scores while distant ROI pairs would have lower 

scores. However, as the ROIs were randomly placed, many ROI pairs would have connection 

scores close to zero.  

The pairwise connection scores between ROI were collapsed and the number of 

samples for each ROI distance was computed. For simplicity, we computed the distance 

between two ROI coordinates and rounded it to the nearest integer, resulting in 87 unique 

distances (range = 16 -168 mm). As there were varying numbers of samples for each 

distance, the distance values were further grouped into 26 distance bins to ensure that each 

had at least 1000 samples. For each distance bin, the average connection values across 

participants was computed and randomly sampled 100,000 times to generate sampling 

distributions. The procedure of resampling generated 26 distance-dependent distributions of 
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random connectivity. For each distribution, we set three alpha levels of 10%, 20% and 30%, 

which resulted in three different DDD thresholds. 

  

Language network ROIs 

To generate a language connectivity matrix, we selected 13 left hemisphere ROIs (8 

mm diameter) associated with language processing and reading. The peak coordinates were 

taken from the literature with slight modifications to avoid any overlap between ROIs [9, 39-

43]. The ROIs included the middle and posterior fusiform gyrus (mFG and pFG), the anterior 

and posterior superior temporal gyrus (aSTG and pSTG), the anterior and posterior middle 

temporal gyrus (aMTG and pMTG), the opercularis, triangularis and orbital parts of the 

inferior frontal gyrus (IFG Oper, IFG Tri and IFG Orb), the premotor cortex (PMC), posterior 

supramarginal gyrus (pSMG) and both the lateral and ventral anterior temporal lobe (vATL 

and lATL). The language connectivity matrix was generated by computing the connection 

strength between all of the language ROIs pairs. A group-level language connectivity matrix 

was generated by computing the average connectivity matrix across individuals. We then 

applied the three levels of the DDD thresholds to the average language connectivity matrix 

according to the distances between the ROI pairs. 

 

Data Availability 

The image data used in this work was downloaded from the WU-Minn 1200 Human 

Connectome Project (http://www.humanconnectomeproject.org/). 

 

Code Availability 
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The relevant scripts to generate DDDs are available (conducted in MATLAB) from the MRC 

Cognition and Brain Science Units Data Repository (https://www.mrc-

cbu.cam.ac.uk/bibliography/opendata/). 
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