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Abstract
Tractography is widely used in human studies of connectivity with respect to every brain
region, function, and is explored developmentally, in adulthood, aging, and in disease.
However, the core issue of how to systematically threshold, taking into account the inherent
differences in connectivity values for different track lengths, and to do this in a comparable
way across studies has not been solved. The study adopted Monte Carlo derived distance-
dependent distributions (DDDs) to generate distance-dependent thresholds with various
levels of alpha for connections of varying lengths. As a test case, we applied the DDD
approach to generate a language connectome. The resulting connectome showed expected
short- and long-distance structural connectivity in the close and distant regions within the
language network. The finding demonstrates that the DDD approach can be used for both
individual and group thresholding. Critically, it offers a standard method that can be applied

to various probabilistic tracking datasets.
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Recent methodological advances in diffusion neuroimaging and probabilistic
tractography have enabled the delineation of white matter fibre pathways in vivo [1-3]. For
example, studies have reconstructed pathways in the human brain that are known to sustain
higher-level cognitive functions such as language where non-human analogues are difficult to
define and track [4-10]. Whilst probabilistic tractography allows us to investigate fibre
pathways in vivo, there are at least two fundamental challenges with interpreting outputs.
First, there is no consensus on how to threshold connectivity matrices, which impacts on the
ability to perform statistical analyses that are comparable across studies. Second, brain
networks typically comprise of short- and long-range connections but the latter inherently
have distance dependant reductions in streamline likelihoods due to the inherent nature of
probabilistic tractography. To gain a better understanding of long connections and networks,
a more sophisticated treatment for distance effects is required. Thus, the present study set out
to tackle these two key issues.

While the probabilistic tracking approach has proved useful in reconstructing
complex structural connectivity networks, it has critical challenges especially with respect to
false positives [11-14]. By definition, probabilistic tractography is designed to explore all
possible streamlines, which are generated from fibres orientation distributions with differing
degrees of non-random noise. Consequently, this method often produces widely connected
brain networks [14]; however, thresholds can be applied to allow for more interpretable
outcomes and is particularly useful in reconstructing complex crossing fibres [12]. Previous
research has introduced several thresholding approaches. At the individual level, one could
apply a set threshold to all individuals to remove sub-threshold connections or apply different
thresholds across individuals to retain the same number of connections [15-17]. Group-level
networks are commonly generated based on the consensus of connections, which retains

connections present in some fraction of participants (i.e., at least 50% of subjects) [16, 18].
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However, typically the threshold is arbitrary and as such a range of thresholds are often used
to characterise the network [17]. Taking the field as a whole, given that there are
inconsistencies in methodologies across datasets, tracking procedures and algorithms, it
makes formal comparisons across studies difficult.

Regardless of the specific threshold used, it is common to apply a uniform threshold
to all connections regardless of length/distance. This could be problematic, especially in a
large-scale distributed brain network, because noise accumulates and streamline likelihoods
decrease as a function of path length [19]. Thus, if a strict threshold is applied in order to
minimise false positives near the seed region, then it is likely that long-range connections
would not exceed that threshold, resulting in distance false negatives. A recent study by
Roberts et al. [14] developed consistency-based thresholding, which computed variation of
unthresholded connectivity strength across individuals. A threshold was applied to
connections with high consistency (i.e., low variation) across the group to preserve a desired
level of connectivity density. It was assumed that if long-range connections were truly
connected, the connections would be consistent across individuals such that consistency
could be high even though the connection strengths were low. Given that the individual
connectivity matrix was not thresholded, it remains unclear if this approach may overestimate
connections as an unthresholded matrix is almost always fully connected [14]. Indeed, the
authors noted that the consistency-based approach could potentially be biased by specific
types of data acquisition and pre-processing. More recently, Betzel et al. [16] developed a
distance-dependent consensus thresholding approach. This approach is similar to the
consistency-based approach in that no threshold was applied at the individual level while
group-level consensus was obtained by computing the fraction of individuals that had
connection weights greater than zero. The novel aspect is related to applying a correction

based on distance (across a range of bins), where for each bin the pair of brain regions that
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have the highest consensus across individuals is preserved. One potential caveat is that the
bins used should be reasonably wide to keep the same number of pairs as in the original
matrix. Also, similar to Roberts et al. [14], this approach was primarily operated at the group
level.

Despite the fact that a variety of thresholding approaches have been proposed, critical
issues remain. There is still a lack of empirical support for a common thresholding regime
that allows for the comparison across studies and one that resolves the distance artefact at
both individual and group levels. A previous study by Cloutman et al. [7] did propose an
approach towards standardisation that was inspired by statistical hypothesis testing. In that
study, probabilistic tracking was conducted to map connectivity between the sub-regions of
the insula and the rest of the brain. For each individual, the distribution of connection scores
between the seed region and each region of an atlas was fitted with a Poisson distribution,
and that was used to identify a threshold value at a = 5%. At the group level, the consensus
approach was used, in which connections were selected only when they were consistently
identified across at least 50% or 75% of participants. This distribution-thresholding approach
at the individual level was the first attempt to determine individual thresholds based on a
statistical metric (alpha) using the connectivity distributions; however, it did not take into
account distance effects, as in Betzel et al. [16] and Roberts et al. [14]. The present study
extended this distribution approach by developing a distance-dependent distribution (DDD)
method in order to establish a common ground for thresholding based on significance levels
of alpha. Specifically, as per standard Monte Carlo type statistical methods, we generated
normative distributions of randomly-sampled connectivity and then set different levels of
alpha to identify the corresponding thresholds. Critically, we generated the DDDs at different
distances to derive thresholds for connections of varying length. To illustrate the novel

approach, we applied DDD thresholding to generate a language connectivity matrix and
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evaluated if it could capture a priori language networks reported in the literature [4, 5, 8, 9].
Specifically, it was expected that the resulting connectivity matrix could capture long-range
connections and reproduce key white matter tracts in the language network including arcuate
fasciculus (AF) and/or superior longitudinal fasciculus (SLF), which are generally associated
with the dorsal language pathway; and middle longitudinal fasciculus (MdLF), inferior
frontal-occipital fasciculus (IFOF) and uncinate fasciculus (UF), which are generally

associated with the ventral language pathway.

Results

Figure 1A shows the result of the tractogram from an axial slice for a representative
participant in diffusion space. The colour indicates directionality; red for right-left, green for
anterior-posterior and blue for superior-inferior. Figure 1B shows an example of the extracted
streamlines connecting two ROIs in the inferior frontal cortex. We extracted streamlines
between all of the ROIs pairs to compute connectivity strength. Figure 1C shows the 260

ROIs covering the left hemisphere only.

Distance-dependent distributions (DDDs) and thresholds

Figure 2 shows the number of ROI paired samples for 26 distance groupings from the
86 unique distances. For each distance range, there were at least 1000 samples, ranging from
1068 to 2844. Note that the range was not equally spaced due to the limitation of retaining a
minimum number of samples per bin; however, we explored a different distance

categorisation, and the key results remain similar (see Supplementary, Figures S1-S4).
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Figure 1. (A) The representative whole-brain tracking with 10M streamlines. (B) An example
of the extracted streamlines connecting two ROIs in the inferior frontal cortex. (C) The 260
ROIs (diameter 8mm) covering the left hemisphere.
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Figure 2. The number of ROI paired samples for each of the 26 distance ranges.
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For each distance range, we first averaged the connectivity scores across participants
and then conducted resampling 100,000 times to generate a null distribution of random
connectivity. Figure 3 shows the sampling distributions for each distance range. As expected,
the short-range connections tended to have higher connection scores compared to the long-
range connections, as noted by the right skewed distributions. For the longer connections, the
majority of connection scores were close to zero; however, as expected given the presence of
long-range white matter and fasciculi in the brain, there were notable extremes that had

strong connectivity differed from the majority of the null connectivity.
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Figure 3. The sampling distribution of random connectivity for each of the 26 distance
ranges. The x-axis indicates connection strength and the y-axis indicates the number of
samples on a log scale. DR: distance range (mm).

o]


https://doi.org/10.1101/2022.07.27.501671
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.27.501671; this version posted July 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Figure 4 shows that the DDD thresholds at three alpha levels of 10%, 20% and 30%
across the 26 distance bins. Specifically, for each alpha level, the connectivity threshold
generally decreased with increased distance. As a result, the short-distances had higher
thresholds than long-distance connections. Moreover, the connectivity thresholds were
moderated by the alpha level, where the highest thresholds were noted for the smallest alpha
and the lowest thresholds for the largest alpha. Next, we applied the DDD thresholds to

generate a language connectivity matrix.
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Figure 4. The distance-dependent distribution thresholds at three alpha levels of 10%, 20%
and 30% varied with the 26 ROI distance bins.
Language network connectivity

Table 1 shows the distance between 13 language ROIs included in the analyses (See
Methods for details). The distance varied widely as expected, where IFG Tri and pFG were
furthest apart (101.45 mm) and the mFG and pFG were closest together (16.28 mm). We first
converted all distance values to integers, which were used to compute the average language
connectivity matrix across individuals. The three levels of the DDD thresholds were applied

to the outputs (as in Figure 4) according to the distance of the ROI pairs. Note that we did not
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threshold the connectivity matrix at the individual level because the DDD approach did not
require sparse individual connectivity matrices which are typically required for group-level
consensus thresholding. For completeness, we also demonstrated that the DDD thresholds
could also be applied to individual connectivity matrices, where the thresholded individual
matrices had high correlations with the thresholded average matrix (see Supplementary
Figures S5-S6).

After thresholding, the average connectivity score was binarised and coded with three
different colours according to the alpha levels (red = 10% of alpha, green = 20% and blue =

30%) as in Figure 5.

Table 1. The distance (mm) between all language ROIs.

mFG | 16 | 61 | 30 | 56 18 | 76 |86 | 83| 713 | 42 | 4 | 69
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Figure 5. The average language connectivity matrix across individuals after thresholding and
binarisation. The different levels of alpha with 10% on the top, 20% on the middle, and 30%
on the bottom were superimposed onto one matrix wherein anything that survives the 10%
would also survive 20% and 30%.

We projected the connection scores (without binarisation) to the brain for an intuitive
way to visualise the results (Figure 6) using the BrainNet Viewer [20]. The width of the line
indicates the strength of connection. With the most stringent threshold (i.e., the alpha level of
10%), the connectivity between the ROIs in both the close and distant cortical regions was
reconstructed. Specifically, we observed neighbouring ROIs to be connected in the occipito-
temporal regions (mFG and the pFG); temporal lobe (aSTG with pSTG and aMTG with
pMTGQG); anterior temporal lobe (VATL and 1ATL); and frontal lobe (IFG Orb, IFG Tri and
IFG Oper) as well as premotor cortex (PMC). We also observed distant ROIs being
connected between the frontal and the parietal lobes, the temporal and the parietal lobes, the
frontal and the temporal lobes, and the frontal and the occipito-temporal lobes. Specifically,
the IFG Tri and IFG Oper were connected to the pSMG presumably via the AF, which could

be part of the dorsal language pathway. The aSTG, pSTG, aMTG and pMTG were also

connected to the pPSMG presumably via the MALF, which could be associated with the
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ventral language pathway. Moreover, there was long-range connectivity between the IFG Tri
and IFG Oper and the pMTG via the AF, as well as between the IFG Orb and the pFG via the
IFOF and/or part of the ILF, which could be part of the ventral language pathway.

With lenient thresholds (i.e., the alpha levels of 20% and 30%), more cross-region
connectivity could be observed, especially for the inferior frontal, temporal and occipital
regions. The IFG Orb was connected with the aMTG via the uncinate fasciculus (UF), and
the IFG Oper and the IFG Tri were connected to the mFG and pFG via the AF. Collectively,
these results demonstrated that the connectivity matrix based on the DDD thresholding
approach was able to reconstruct the key white matter tracts that sustain language processing
in the language network as previously reported in tractography studies [4, 5, 8, 9] and the
three inferior frontal regions had different connectivity profiles with temporal and parietal

regions, consistent with the cortico-cortical evoked potential study [21].
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Figure 6. The projections of the average language connectivity matrix in the brain with three
alpha levels of 10% (red), 20% (green) and 30% (blue) and the difference plots between them
(gold). The wider the connection line indicates the stronger the connections.
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Discussion

Probabilistic tractography has become an increasingly important tool in neuroimaging
studies to delineate white matter fibre pathways in vivo. The key advantage of probabilistic
tractography is that it can reveal all possible tracts from a seed because each streamline
propagates along a direction drawn from a probabilistic distribution. The main limitation,
however, is unavoidably increasing the possibility of producing false connections [11-14].
Thus, the primary aim of this study was to develop a thresholding approach for probabilistic
tractography that is grounded in statistical hypothesis testing and to resolve the false
negatives commonly associated with long-distance connections. Specifically, we used a data-
driven distance-dependant distribution (DDD) approach to generate normative distributions
of random connectivity for 26 distance ranges based on ROIs spanning the left hemisphere.
We demonstrated how this novel method could be applied to uncover the connectivity profile
for a language network and how different alpha levels affect the final outcome. Critically, we
were able to reproduce the expected language network [4, 5, 8, 9] as shown in Figure 6.
Overall, this study demonstrated that the data-driven and statistical-inspired thresholds can
minimise false positives for short-range connections and false negatives for long-range
connections.

To date, most connectivity thresholds are chosen heuristically and, arguably,
arbitrarily based on existing literature or exploratory outcome. For a given dataset, one could
use a more lenient criterion to explore the probable tracts in contrast with a more stringent
criterion, which could be used to identify core bundles. Indeed, it has been suggested that
networks might be better characterised with a broad range of thresholds [17]. Additionally,
thresholding might also be related to the demographic, psychosocial and medical information
of the individuals, such as age, gender and mental illness [22]. Although there may be

justifications to apply specific thresholds to a given dataset, the outcomes may not be
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comparable with or generalise to other datasets. The ability to compare across studies is
critically important in validating and testing the reliability of key findings. Thus, while
studies have focused on probabilistic tractography and improving tractography algorithms
[23-26], only a handful of studies have developed thresholding approaches that make the
resulting connectivity close to the ‘ground true’ or comparable across the species [14, 16, 18].
Our data-driven DDD approach was designed to work with any probabilistic tracking dataset
and to provide a common ground (i.e., the alpha level) to relate thresholds across datasets
regardless of the specific tracking approach and parameters used (provided that random
sampling distributions are established per dataset). Obviously, if studies have used similar
datasets, tracking tools and parameters, then the same DDDs can be directly applied.

Our DDD approach dealt with the distance artefact by generating higher thresholds
for close regions and lower thresholds for distant regions (Figure 4). As long-range
connections tend to have smaller connection strength, some tools such as FSL [24, 26] apply
a distance correction by multiplying the distance with the probability of connection strength.
This can lead to probabilities greater than one, which makes interpretations difficult. More
importantly, it is not clear what mathematical form best characterises the relationship
between distance and the probability of connection strength for correction. Two studies have
tried to overcome these challenges. Roberts et al. [14] introduced consistency-based
thresholding, which does not directly deal with distance but it could effectively preserve
long-range connections using high consistency thresholds (possible if variance across
individuals is small). In contrast, Betzel et al. [16] developed distinct thresholds for the
group-level consensus scores of different lengths. Although both approaches have proved
their effectiveness for group-level thresholding, the approaches cannot be applied to
individual-level thresholding. In contrast, we have demonstrated that our DDD approach can

work directly with the average connectivity matrix to identify plausible connections related to
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language processing (Figure 5) and can also be applied at the individual level (see
Supplementary). Thus, our DDD approach extends previous distance-related thresholding
approaches, while supporting both individual-level and group-level analyses.

There are some limitations that are not addressed with the DDD approach. First, the
DDDs generated by the present study may not be directly applied to tractography datasets
that are acquired using different data acquisition protocols, pre-processing, tractography
algorithms, or different numbers/sizes of ROIs. That is because the distributions of random
connectivity are data-specific and generated from the outcome of a specific tractography
setting. This means that DDDs would need to be calculated for each study/analysis; however,
we have provided detailed methodological descriptions about how to generate appropriate
DDDs (downloadable from https://www.mrc-cbu.cam.ac.uk/bibliography/opendata/). Despite
the computational cost required to generate data-specific DDDs, a major advance is that one
could formally compare results between studies based on the alpha threshold and in the future
collated data for formal meta-analyses. Secondly, the ROIs used to generate DDDs cover the
left hemisphere but not the right hemisphere. This was deliberate for two reasons: (a)
crossing fibres through the corpus callosum are complex especially for the callosal fibres
connecting from the midsagittal slice of the corpus callosum to inferior and lateral brain
regions [27, 28]; and (b) to keep computational costs down. Further work is required to
extend the principles outlined for the DDD approach to the right hemisphere and the whole
brain. Lastly, our DDD approach is designed to work with the outcome of tractography and to
provide a method of comparing thresholding results regardless of tractography
algorithm/settings. Thus, we did not seek to identify optimal thresholds for a ‘ground truth’.
Instead, we considered a range of comparable thresholds that can help characterise the

structural connectivity [17] and bridge studies using different tractography approaches. We
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acknowledge the key role of thresholding techniques in reducing the probability of spurious
connectivity in probabilistic tractography, which can allow us to identify ‘real’ networks.

To conclude, the DDD approach was developed as a strategy to formally threshold
structural connectivity maps from any tractography datasets and allow for comparisons across
studies. The DDD approach also addressed the distance artefact by providing different

thresholds for short- and long-range connections.

Methods
Human connectome data, pre-processing and tracking

Fifty-four participants’ pre-processed structural and diffusion datasets were
downloaded from the WU-Minn 1200 Human Connectome Project (HCP) [29-33]. Both the
HCP T1-weighted and diffusion imaging data were acquired on a 3T Siemens Skyra
“Connectome” scanner with a customised SC72 gradient insert and a customised body
transmitter coil with 56 cm bore size.

The HCP T1-weighted (T1w) images were acquired using the 3D Magnetisation
Prepared Rapid Acquisition GRE (MP-RAGE) method with TR = 2400 ms, TE = 2.14 ms,
T1 = 1000 ms, flip angle = 8", FOV = 224 x 224 mm, voxel size = 0.7 mm isotropic, BW =
210 Hz/Px and acquisition time = 7 m 40 s. The diffusion weighted images were acquired
using a Spin-echo EPI with TR = 5520 ms, TE = 89.5 ms, flip angle = 78 deg, refocusing flip
angle = 160 deg, FOV =210 x 180 mm, voxel size = 1.25 mm isotropic, and BW = 1488
Hz/Px.

In the HCP, a full diffusion session included six runs for three different gradient
tables, and each table acquired twice, one from right-to-left and the other one from left-to-
right phase encoding polarities. Each gradient table included approximately 90 diffusion

weighting directions plus six b = 0 acquisitions interspersed throughout each run. Multiple
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shells of b = 1000, 2000 and 3000 s/mm? were utilised with each shell having an
approximately equal number of acquisitions within each run.

The dataset used in the present study were pre-processed using the HCP pipelines.
Briefly, the T1w and T2w images were aligned in native space using FSL’s FLIRT and
FNIRT functions. A field map distortion correction was conducted and registered to T1w and
T2w images using FSL’s FLIRT boundary-based registration (BBR) algorithm. The
structural images were subjected to bias field correction [30]. Each participant’s native
structural volume space was registered to MNI space using FSL’s FLIRT and FNIRT
functions. As the diffusion data were collected with reversed phase encoded polarities, these
pairs of images were utilised to estimate the susceptibility-induced off-resonance field, and
they were combined into a single image using FSL’s TOPUP and EDDY functions for
distortion-correction [34-36].

The distortion-corrected data were submitted to the MRtrix3 toolbox
(https://www.mrtrix.org/) for further processing and whole-brain probabilistic tracking.
Specifically, the diffusion data were first subjected to bias correction using the ANTS flag
[37]. Next, a response function was estimated using spherical deconvolution for grey, white
matter and cerebrospinal fluid (CSF) compartments using the ‘dhollander’ algorithm.
Subsequently, we averaged the response function across subjects for each tissue type to
obtain a group average, which was then used to estimate fibre orientation distributions (FOD)
using the multi-shell multi-tissue constrained spherical deconvolution algorithm [38]. Finally,
intensity normalisation (in the log-domain) was applied to all FOD outputs. Whole-brain
tractography was performed using MRtrix3 with anatomically constrained priors (obtained
using the five-tissue segmentation function) and the iFOD2 algorithm. We obtained 10
million streamlines per subject with a maximum streamline length of 250 mm and a

fractional anisotropy (FA) cut-off value of 0.06. The resultant whole-brain tractogram was
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further filtered using spherical-deconvolution informed filtering of tractograms (SIFT2) to
improve the quantification and biologically-meaningful nature of whole-brain connectivity

[23].

Distance-dependent distributions of random connectivity

To generate normative distributions via randomly-sampled connectivity at different
distances, we created a grid of 230 regions of interest (ROIs) with a diameter of 8 mm that
covered the entire left hemisphere in MNI space. For each participant, ROIs were inverted to
native diffusion space (using inverse FLIRT and FNIRT transforms) and binarised over the
grey and white matter interface (GWI). The GWI-ROIs were used as a mask to extract the
number of streamlines connecting all other ROIs based on the whole brain tractogram. The
connection value between a pair of ROIs was quantified by computing the proportion of
streamlines emerging from the seed and ending at the target ROI. It was expected that closer
ROI pairs would have higher connection scores while distant ROI pairs would have lower
scores. However, as the ROIs were randomly placed, many ROI pairs would have connection
scores close to zero.

The pairwise connection scores between ROI were collapsed and the number of
samples for each ROI distance was computed. For simplicity, we computed the distance
between two ROI coordinates and rounded it to the nearest integer, resulting in 87 unique
distances (range = 16 -168 mm). As there were varying numbers of samples for each
distance, the distance values were further grouped into 26 distance bins to ensure that each
had at least 1000 samples. For each distance bin, the average connection values across
participants was computed and randomly sampled 100,000 times to generate sampling

distributions. The procedure of resampling generated 26 distance-dependent distributions of
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random connectivity. For each distribution, we set three alpha levels of 10%, 20% and 30%,

which resulted in three different DDD thresholds.

Language network ROIls

To generate a language connectivity matrix, we selected 13 left hemisphere ROIs (8
mm diameter) associated with language processing and reading. The peak coordinates were
taken from the literature with slight modifications to avoid any overlap between ROIs [9, 39-
43]. The ROIs included the middle and posterior fusiform gyrus (mFG and pFG), the anterior
and posterior superior temporal gyrus (aSTG and pSTG), the anterior and posterior middle
temporal gyrus (aMTG and pMTGQG), the opercularis, triangularis and orbital parts of the
inferior frontal gyrus (IFG Oper, IFG Tri and IFG Orb), the premotor cortex (PMC), posterior
supramarginal gyrus (pSMG) and both the lateral and ventral anterior temporal lobe (VATL
and 1ATL). The language connectivity matrix was generated by computing the connection
strength between all of the language ROIs pairs. A group-level language connectivity matrix
was generated by computing the average connectivity matrix across individuals. We then
applied the three levels of the DDD thresholds to the average language connectivity matrix

according to the distances between the ROI pairs.

Data Availability

The image data used in this work was downloaded from the WU-Minn 1200 Human

Connectome Project (http://www.humanconnectomeproject.org/).

Code Availability
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The relevant scripts to generate DDDs are available (conducted in MATLAB) from the MRC

Cognition and Brain Science Units Data Repository (https://www.mrc-

cbu.cam.ac.uk/bibliography/opendata/).
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