

Rhizospheric miRNAs affect the plant microbiota.

Harriet Middleton^{1,2#}, Jessica Ann Dozois^{2#}, Cécile Monard¹, Virginie Daburon¹, Emmanuel Clostres¹, Julien Tremblay², Jean-Philippe Combier³, Étienne Yergeau^{2*} and Abdelhak El Amrani^{1*}

Amrani^{1*}

⁸ ¹ECOBIO, CNRS UMR 6553, Université de Rennes, Campus Beaulieu, Rennes, France

9
10 ²Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé
11 Biotechnologie, Laval, Québec, Canada.

13 ³ LRSV, UMR CNRS/UT3/INP 5546, Auzetville-Tolosane, France.

15 #Contributed equally.

16 *Corresponding authors: abdelhak.elamrani@univ-rennes1.fr and Etienne.Yergeau@inrs.ca

17

18 **Abstract**

19 Recently, small RNAs have been shown to play important roles in cross-kingdom
20 communication, notably in plant-pathogen relationships. Plant miRNAs were even shown to
21 regulate gene expression in the gut microbiota. But what impact do they have on the plant
22 microbiota? Here we hypothesized that plant miRNAs can be found in the rhizosphere of
23 plants, where they are taken up by rhizosphere bacteria, influencing their gene expression,
24 thereby shaping the rhizosphere bacterial community. We found plant miRNAs in the
25 rhizosphere of *Arabidopsis thaliana* and *Brachypodium distachyon*. These plant miRNAs
26 were also found in rhizosphere bacteria, and fluorescent synthetic miRNAs were taken up by
27 cultivated bacteria. A mixture of five plant miRNAs modulated the expression of more than a
28 hundred genes in *Variovorax paradoxus*, whereas no effect was observed in *Bacillus*
29 *mycoides*. Similarly, when *V. paradoxus* was grown in the rhizosphere of *Arabidopsis* that
30 overexpressed a miRNA, it changed its gene expression profile. The rhizosphere bacterial
31 communities of *Arabidopsis* mutants that were impaired in their miRNA or small RNA
32 pathways differed from wildtype plants. Similarly, bacterial communities of *Arabidopsis*
33 overexpressing specific miRNAs diverged from control plants. Finally, the growth and the
34 abundance of specific ASVs of a simplified soil community were affected by exposure to a
35 mixture of synthetic plant miRNAs. Taken together, our results support a paradigm shift in
36 plant-bacteria interactions in the rhizosphere, adding miRNAs to the plant tools shaping
37 microbial assembly.

38

39 **Keywords:** plant miRNAs, rhizosphere, bacterial communities, *Variovorax*, transcriptomics.

40 **Introduction**

41 MicroRNAs (miRNAs) are small ~21nt non-coding RNAs that control target gene
42 expression, through sequence complementarity. Their roles in plants vary from regulating
43 developmental processes to responding to abiotic and biotic stresses. Plants also use
44 miRNAs to interact with pathogens: for example, cotton plants use them to inhibit the fungal
45 pathogen *Verticillium dahliae* [1] and *Arabidopsis thaliana* and tomato to inhibit another fungal
46 pathogen, *Botrytis cinerea* [2-4]. The more general role of plant miRNAs in shaping the
47 microbiota is, however, not known. We had hypothesized that miRNAs could be a novel, key
48 mediator in the rhizosphere [5], as it was shown to be in the mammalian gut. In mice and
49 human, both intestinal miRNAs and ingested plant-derived miRNAs regulate gut bacterial
50 gene expression and growth, shaping the gut microbiota [6, 7] [8].

51 *Arabidopsis* roots contain many miRNAs, of which over half are expressed in a
52 tissue-specific manner, with several being enriched at the root tip, in the early meristematic
53 zone [9]. This zone is also a recognized hotspot for plant-driven microbial selection [10]. The
54 current paradigm is that the plant selects the rhizospheric microbiota through
55 rhizodeposition, including exudates such as sugars, peptides, amino acids, nucleic acids,
56 nucleotides, fatty acids or secondary metabolites [11]. Here, we hypothesize that plant
57 miRNAs 1) can be found in the rhizosphere of plants, 2) are taken up by rhizosphere
58 bacteria, 3) influence the gene expression of rhizosphere bacteria, and 4) shape the
59 bacterial community. We report several independent experiments designed to test these
60 hypotheses.

61 **Methods**

62 *The full method description is available as supplementary material.*

63 **Detection of plant miRNAs in the rhizosphere and roots.**

64 For rhizosphere analyses, triplicate *Arabidopsis thaliana* (Col-0) and *Brachypodium*
65 *distachyon* (Bd21-3) were grown for a month, alongside unplanted soils. For root analyses,
66 we grew ten replicated *Arabidopsis thaliana* (Col-0) plants for 21 days, with unplanted
67 controls. RNA was extracted from the plant roots and rhizosphere and from the unplanted
68 soils and sent for small RNA sequencing. Sequences between 18 and 27 nucleotides were
69 mapped against *Arabidopsis* and *Brachypodium* genomes and were assigned to known
70 miRNAs. From these miRNAs we constructed an abundance table that was used to compare
71 the rhizosphere to the unplanted controls. Rhizospheric and root miRNAs were defined as
72 the miRNAs that had at least 10 reads for each of the rhizosphere or root samples and a
73 maximum of one read across all the bulk soil samples.

74

75 **Internalization of plant miRNAs by bacteria.**

76 *Detection of plant miRNAs in rhizospheric bacteria.*

77 We extracted bacterial cells from the rhizosphere soil of one-month old *A. thaliana* (Col-0)
78 using a NycoDenz gradient. RNA was extracted from the bacterial pellet [12], sequenced and
79 processed as described above, but with a lower threshold because of the lower number of
80 plant miRNA sequences retrieved. Only the miRNAs that were represented by at least 5
81 reads in each rhizosphere samples and absent in the bulk soil samples were kept. To further
82 confirm that miRNAs found in the rhizospheric bacteria originated from the plant and not the
83 bacteria, miRNA sequences were searched for on the + and - strands of 3,837 bacterial
84 genomes [13], of which 1,160 were isolated from plants.

85

86 *Confocal microscopy.*

87 *Variovorax paradoxus* EPS and *Bacillus mycoides* YL123 were grown overnight in liquid
88 media. The cultures were incubated for 4 hours with 3'-Cy5 fluorescent miRNAs (ath-
89 miR159a or a scrambled control – same nucleic acid content but in different order), or a
90 pCp-Cy5 control. Twenty minutes before visualization, the cultures were also treated with
91 MitoTracker Green FM (Invitrogen). We visualized the washed and concentrated culture
92 using a confocal microscope (Zeiss LSM780).

93

94 *Flow cytometry.*

95 We prepared the cultures as described in the confocal microscopy section. The cells were
96 fixed with 4% Paraformaldehyde (PFA) and then stained with a DNA marker (Hoechst
97 33342). The cells were diluted in PBS and processed by flow cytometry (BD LSRII).
98 We used a variety of controls to ensure that our statistical analyses were conducted on
99 bacteria that were positive for our green (MitoTraker), red (Cy5 tagged miRNAs) and blue
100 (Hoechst) markers.

101

102 **Effect of miRNAs on bacterial gene expression.**

103 *Bacterial transcriptomic response to miRNAs.*

104 *Variovorax paradoxus* EPS and *Bacillus mycoides* YL123 were grown until the exponential
105 phase, when they were exposed to a mix of the 6 most abundant rhizospheric miRNAs:
106 miR159a, miR159b, miR159c, miR161.1, miR158a and miR165b, or a control mix of 6
107 scrambled miRNAs. The cultures were sampled after 20 min and 120 min of incubation,
108 pelleted, and the RNA of the cell pellet was extracted and sequenced. The transcripts were
109 mapped on their respective genomes, and differential expression analyses (plant miRNA vs.
110 scrambled miRNA) were done using DESeq2.

111

112 *In silico analysis of miRNA targets.*

113 To predict potential targets of the six miRNA used on the genome of *Variovorax paradoxus*,
114 we implemented a workflow [14] named *mirnatarget 1.0 : miRNA target finder*

115 (https://github.com/jtremblay/MiRNATarget), which was inspired from the plant miRNA target
116 finder, *psRNATarget* [15].

117

118 *In vitro miPEP treatment and transcriptomic experiment.*

119 Approximately 50 *Arabidopsis thaliana* (Col-0) surface-sterilized seeds were grown
120 axenically in Petri dishes in a growth chamber. After twenty days of growth, the plants were
121 treated twice within 24 hours by inoculating miPEP159c, a scrambled miPEP, or water at the
122 plant crown. One hour after the second miPEP treatment, *Variovorax paradoxus* was
123 inoculated along the roots of the seedlings. Two hours after the bacterial inoculation, the
124 plants and rhizospheres were sampled, and RNA was extracted. From the potential targets
125 of miR159c found above, three were selected for RT-qPCR analyses in the rhizosphere –
126 alpha-2-macroglobulin, phosphatidate cytidylyltransferase, and LysR. We also quantified the
127 abundance in plant tissues of the primary transcript to mir159c, pri-miR159c.

128

129 **Effect of miRNAs on the bacterial community.**

130 *Arabidopsis mutant experiment.*

131 Five *A. thaliana* mutants were chosen. *RTL1* mutant over-expresses *RTL1* protein which
132 results in a suppression of siRNA pathway without affecting miRNAs [16]. *RTL1myc* over-
133 expresses *RTL1* protein flagged with Myc epitope, rendering *RTL1* less active, so siRNA
134 pathway is less suppressed than with *RTL1* mutant. *Ago1-27* mutant has AGO protein
135 function partially impaired and is completely post-transcription gene silencing (PTGS)
136 deficient [17]. *Dcl1-2* mutant has total loss of function of *DCL1* protein resulting in low levels
137 of miRNA and developmental problems [18]. *Hen1-4* mutant is miRNA defective but is also
138 affected in some siRNA – PTGS [19]. HEN1 methylates siRNA and miRNA to maintain their
139 levels and size, but also to protect them from uridylation and subsequent degradation [20].
140 The plants were grown for a month, after which the roots and attached rhizosphere were
141 sampled, its DNA extracted, amplified using 16S rRNA gene primers, and sequenced. The
142 same primers were used in real-time quantitative PCR to quantify bacterial abundance.

143 Amplicon sequencing data was processed with AmpliconTagger [21] and the R package
144 "phyloseq" v 1.32.0 [22].

145

146 *miPEP experiment.*

147 We treated *Arabidopsis thaliana* Col-0 with 500 μ L of water (control condition) or a miPEP
148 solution (20 μ M of miPEP159a, miPEP159b, or miPEP159c), applied at the base of the
149 crown, 3 times a week for a total of 10 applications. We then extracted the DNA from the
150 roots and the attached rhizosphere and sequenced and quantified the 16S RNA gene as
151 described above.

152

153 *Simplified soil community experiment.*

154 We created a simplified soil community by inoculating five different growth media with 2 g of
155 agricultural soil. The cultures were normalized to the same optical density, pooled, pelleted
156 and suspended in PBS. The cells were inoculated in a 96-wells plate containing a mixture of
157 17 amino acids as nitrogen source. Five wells were treated with a mixture of rhizospheric
158 miRNAs (ath-miR158a-3p, ath-miR158b, ath-miR159a, ath-miR827, and ath-miR5642b) and
159 five wells were treated with a mixture of scrambled miRNAs. These miRNAs were all found
160 in the rhizosphere (but for some below the stringent threshold used above) and were
161 predicted to target bacterial genes associated with nitrogen cycling. We measured bacterial
162 growth every hour for 52 hours, after which we sampled the bacteria, extracted the DNA,
163 and amplified and sequenced the 16S rRNA gene as described above.

164 **Results**

165 **Plant miRNAs are present in the rhizosphere.**

166 We sequenced small RNA extracted from *A. thaliana* rhizosphere soil and unplanted
167 soils. One-hundred-eleven ath-miRNAs (mapped on *A. thaliana*'s genome) were detected, of
168 which 14 were present in the rhizosphere with more than 10 reads per sample and absent in
169 unplanted soil (Fig. 1a). The most abundant miRNAs in the rhizosphere were ath-miR158a-
170 3p, ath-miR161.1, and various members of the miR159, miR166 and miR165 families (Fig.
171 1a). We then sequenced the rhizosphere miRNAs of a second model plant, *Brachypodium*
172 *distachyon*. Ten bdi-miRNAs (mapped on *B. distachyon*'s genome) out of 81 miRNAs were
173 present in the rhizosphere with more than 10 reads per sample and absent in unplanted soil
174 (Fig. 1b). The most abundant miRNAs were bdi-miR159b-3p, bdi-miR156, bdi-miR166, bdi-
175 miR396, and bdi-miR167. Amongst the rhizospheric miRNAs detected, four were common
176 between *A. thaliana* and *B. distachyon*: miR159b-3p, miR167, miR166, and miR396.

177 We then grew more *Arabidopsis* plants and sequenced their root miRNAs to confirm
178 that the rhizospheric miRNAs could be coming from the plant roots. Eleven miRNAs were
179 represented by at least 10 reads in each root sample. There was a clear dominance of ath-
180 miR165, ath-miR166, ath-miR159a, ath-miR160, and ath-miR159b.3p (Fig. 1c). Among
181 these 11 miRNAs, 7 were common with the miRNAs found in *Arabidopsis* rhizosphere (ath-
182 miR158a-3p, ath-miR159a, ath-miR159b-3p, ath-miR161.1, ath-miR162, ath-miR165, ath-
183 miR166), which included most of the top five most abundant root and rhizosphere miRNAs.

184

185 ***A. thaliana* miRNAs are internalized by soil bacteria.**

186 Bacterial cells were isolated from the rhizosphere of one month-old *A. thaliana*,
187 washed and their RNA content was extracted and sequenced to identify potentially
188 internalized plant miRNAs. The miRNAs were mapped against *A. thaliana* TAIR10.1
189 genome, identifying a total of 34 ath-miRNAs. Five miRNAs – namely ath-miR158a-3p, ath-
190 miR161.1, miR162, ath-miR159b-3p and ath-miR159a – were represented by at least 5

191 reads per rhizosphere samples and absent in bacteria extracted from the unplanted soil (Fig.
192 2a). Four out of these five miRNAs were among the five most abundant miRNAs found in the
193 rhizosphere of *A. thaliana* (Fig. 1a) and were found in a similar order of relative abundance.
194 To ensure that these miRNAs did not come from the bacteria themselves, their sequences
195 were searched for in 3,837 soil bacterial genomes, of which 1,160 were of bacteria isolated
196 from plants [13]. No matches were found, meaning that the miRNAs detected in the bacteria
197 could not be produced by the bacteria.

198 We then exposed two typical rhizosphere bacteria, *Variovorax paradoxus* EPS [23]
199 and *Bacillus mycoides* [24] to a Cy5-tagged synthetic ath-miR159a and visualized its
200 localization using confocal microscopy. Images show a clear localization of the miRNA inside
201 many bacterial cells (Fig. 2b-c). Flow cytometry confirmed that an average of 6.51%
202 *Variovorax* cells contained the Cy5 signal from plant miRNAs (average median fluorescence
203 intensity= 123.00), compared to 4.95% of *Bacillus* cells (average median fluorescence
204 intensity= 85.75). The scrambled miRNA, containing the same nucleotides as ath-miR159a
205 but in a different order, was also internalized (Supplementary Figure S1), suggesting a
206 general sequence-independent internalization mechanism for miRNAs. *Variovorax*, in
207 contrast to *Bacillus*, internalized more efficiently the tagged miRNAs than the tagged single
208 nucleotide. Indeed, a comparable amount of pCp-Cy5 was also internalized by *Bacillus* (on
209 average 5.04%, average median fluorescence intensity=75.8), but this was an order of
210 magnitude lower for *Variovorax* (on average 0.67%, average median fluorescence
211 intensity=81.5) (Supplementary Figure S1 and S2). This suggests that *Variovorax* actively
212 internalized the miRNAs, whereas it might have passively entered *Bacillus* either as intact
213 miRNAs or degradation products of the miRNA.

214

215 **Plant miRNAs shifts rhizosphere bacterial gene expression.**

216 We then incubated *Variovorax* and *Bacillus* with a synthetic mixture of the six most
217 abundant *A. thaliana* rhizosphere miRNAs: miR159a, miR159b, miR159c, miR161.1,
218 miR158a and miR165b, or a mixture of scrambled miRNAs at the same concentration.

219 *Bacillus* did not respond to the treatment – no gene was significantly differentially expressed
220 following incubation with the synthetic miRNAs. In contrast, *Variovorax* showed important
221 changes in response to the miRNA confrontation. After 20 min of incubation, the expression
222 of 79 genes was significantly lower in the plant miRNA-treated cultures and the expression
223 of 44 genes was significantly higher (adjusted $P<0.05$, Fig. 3a). After 120 min of incubation,
224 the expression of 24 genes was significantly lower in the plant miRNA-treated cultures and
225 the expression of 104 genes was significantly higher. Many genes were repressed after 20
226 min following the addition of the synthetic plant miRNAs to the bacterial culture, whereas
227 after 120 min, more genes presented an increased than decreased expression. Only one
228 gene was differentially expressed at both time points, a gene coding for a methionine
229 synthase (VARPA_RS01000), which was overexpressed in response to the plant miRNA
230 treatment.

231 Using the rules of a plant small RNA target finder, psRNATarget, we compared the
232 differentially expressed genes from the previous experiment with the predicted target genes
233 for the six miRNAs used. The six miRNAs were predicted to target 237 sequences in the
234 *Variovorax paradoxus* EPS genome. Amongst these, 100 targets were positioned too far
235 from any coding sequence (CDS), so they were removed from the following analysis,
236 resulting in 137 potential targets. Amongst the 123 genes differentially expressed at 20 min,
237 only two were predicted as targets *in silico*: VARPA_RS05960 (targeted by miR165), coding
238 for a L-iditol 2-dehydrogenase, and VARPA_RS26385 (targeted by miR159a, b and c),
239 coding for a phosphatidate cytidylyltransferase. Only two genes were predicted as targets
240 amongst the 128 genes at 120 min: VARPA_RS00680 (targeted by miR165), coding for a
241 hypothetical protein, and VARPA_RS22555 (targeted by miR158a-3p and miR159c), coding
242 for a non-ribosomal peptide synthetase.

243 To confirm the effect of miRNAs on the bacterial transcriptome *in planta*, we
244 inoculated the miRNA-encoded peptide (miPEP) miPEP159c to *Arabidopsis* plants growing
245 *in vitro* and inoculated with *Variovorax*. miPEPs increase the expression of specific plant
246 miRNAs [25, 26]. We selected miR159c because it was among the most abundant miRNAs

247 in the rhizosphere, was in the mixture of miRNAs that modulated the gene expression of
248 *Variovorax* and was predicted to target several key genes. The relative expression of the
249 corresponding precursor miRNA (pri-miR159c) in the *Arabidopsis* plant tissue increased as
250 compared to the water control (t-test: $t=3.31$, $P= 0.0145$; Fig. 3c). We then quantified the
251 expression of three *Variovorax* genes determined to be potential targets of the miR159c
252 according to our bioinformatic and transcriptomic analyses. One hundred and twenty
253 minutes after the miPEP159c application, the relative expression of the LysR and the
254 phosphatidate cytidylyltransferase (CdsA) genes decreased by a factor 2.69 and 2.16,
255 respectively (t-test: $t=4.27$, $P=0.00537$, and $t=3.43$, $P=0.00647$, respectively, Fig. 3c),
256 whereas the expression of alpha-2 macroglobulin gene increased by a factor 1.30 (t-test:
257 $t=2.92$, $P=0.0462$, Fig. 3c) in comparison with the water control. The relative expressions of
258 the three genes and the pri-miR159c following the application of the scrambled miPEP
259 control (same amino acid composition as the miPEP, but in different order) were not
260 significantly different from the water control.

261

262 **Plant miRNAs influence the rhizosphere bacterial community.**

263 To investigate the role of plant small RNAs on the rhizospheric microbial diversity, we
264 grew *A. thaliana* mutants with disturbed miRNA and/or siRNA biosynthesis pathways and
265 analyzed their rhizospheric microbial communities by 16S rRNA gene amplicons
266 sequencing. The rhizosphere bacterial communities varied across the different genotypes
267 (Permanova: $P<0.05$; Fig 4a). In PCoA ordinations, *ago1-27* and *RTL1myc* mutants'
268 communities were more like unplanted soil communities than those of WT plants (not
269 shown). Bacterial diversity was higher in the rhizosphere of most mutant plants as compared
270 with the WT plants (Fig. 4b).

271 We then treated soil-grown *Arabidopsis* with miPEPs to further test for the effect of
272 the overexpression of specific miRNAs on the rhizospheric bacterial community. The
273 application of three miPEPs (miPEP159a, miPEP159b, and miPEP159c) on the crown of
274 *Arabidopsis* growing in soil changed the bacterial community in the roots/rhizoplane

275 (Permanova: $R^2=0.160$, $P=0.031$). All pairwise comparisons with the water control were
276 significant or nearly significant (pairwise Permanova: miPEP159a $R^2=0.106$, adjusted
277 $P=0.083$; miPEP159b $R^2=0.164$, adjusted $P=0.025$; miPEP159c $R^2=0.154$, adjusted
278 $P=0.033$). At the phylum level, the application of the miPEPs increased the relative
279 abundance of the *Proteobacteria* ($F=8.91$, $P=0.00029$) and decreased the relative
280 abundance of the *Planctomycetes* ($F=40.78$, $P=3.64 \times 10^{-10}$) (Fig. 4c). This was due to
281 significant (adjusted $P < 0.05$) differences between the water control and each of the miPEP
282 treatments in post-hoc Tukey HSD tests. The application of the miPEP on the crown of
283 *Arabidopsis* did not, however, affect the bacterial alpha diversity nor abundance.

284 Finally, we subjected *in vitro* a simplified microbial community that was enriched from
285 an agricultural soil to a mix of five synthetic plant miRNAs (ath-miR158a-3p, ath-miR158b,
286 ath-miR159a, ath-miR827, and ath-miR5642b), or a mix of their scrambled counterparts.
287 Exposure to the plant miRNAs significantly disturbed the growth of the microbial
288 communities during the log phase (t-test: $P < 0.05$, Fig. 4d). The bacterial community
289 contained twenty ASVs at the endpoint of the incubation (52 hours) and we found shifts in
290 the bacterial community composition due to the plant miRNA exposure (Fig. 4e) and
291 significant shifts in four ASVs related to the *Enterobacter*, *Acinetobacter*, *Citrobacter* genera,
292 and to the *Enterobacteriaceae* family (Fig. 4f).

293 **Discussion**

294 Using multiple lines of independent evidence, we confirmed our four hypotheses.
295 Plant miRNAs are present in the rhizosphere (1) and are taken up by rhizobacteria (2), which
296 induce changes in their transcriptome (3), leading to shifts in the bacterial community (4).
297 Plants and pathogenic fungi interact using small RNAs [1-4, 27-29] and gut bacteria are
298 influenced by host miRNAs [6, 7], but this is the first report of this mechanism for plant-
299 bacterial community interactions in the rhizosphere.

300 We detected for the first time plant miRNAs in the rhizosphere. The two model plants,
301 *A. thaliana* and *B. distachyon* harbored a similar complement of plant miRNAs in their
302 rhizospheres. Although it would require confirmation from more plant species, the presence
303 of similar miRNAs in the rhizosphere of a dicotyledon and a monocotyledon suggests a
304 conserved feature among land plants. All the major miRNAs that we found in the rhizosphere
305 of *Arabidopsis* were also detected in the roots. This agrees well with previous reports of root
306 miRNAs, where the two most abundant rhizospheric miRNAs ath-miR158a and ath-
307 miR161.1, were highly enriched in the early meristematic zone [9]. Many root exudates, such
308 as extracellular DNA, soluble compounds, and mucilage, are produced and secreted, by
309 border cells, in this region of the root tip [30]. Even though there was a large overlap
310 between the root and rhizosphere miRNAs in our two experiments, the relative abundance of
311 the miRNAs was not the same, alluding to a potential selection mechanism for the miRNAs
312 that make it to the rhizosphere. Alternatively, this pattern could also be explained by different
313 half-life in the rhizosphere, preferential uptake by bacteria, the sequencing of entire roots, or
314 by the slightly different conditions under which the two experiments were run.

315 Bacteria growing in the rhizosphere of *Arabidopsis* contained plant miRNA inside
316 their cells and isolated rhizosphere bacteria took up a fluorescent synthetic plant miRNA.
317 The sequence of the miRNA did not affect the uptake, as the scrambled miRNA was taken
318 up just as efficiently as the plant miRNA. Both our Gram-positive and Gram-negative model
319 bacteria showed that they could take up the miRNAs. The incorporation of eukaryote

320 miRNAs in bacteria is consistent with their ability to absorb environmental nucleic acids,
321 such as extracellular DNA, through natural competence. Alternatively, *in planta*, in the same
322 way that some bacteria secrete small RNAs in outer membrane vesicles [31], bacteria may
323 internalize external DNA *via* vesiduction [32], *i.e.* membrane fusion of a vesicle containing
324 DNA or RNA. The use of vesicles seems, however, not necessary for plant-microbe miRNA-
325 based interactions, as naked miRNAs were efficiently taken up by bacteria, and led to
326 transcriptomic and community shifts.

327 In plants, miRNA induce mRNA cleavage or translation inhibition, through near
328 perfect sequence complementarity [33]. Studies in the human gut also suggested that host
329 miRNA interacts with bacterial mRNA through sequence complementarity [6, 8], so we used
330 the rules for plant miRNA based on sequence homology, to search for targets in bacterial
331 genomes. Using this model to select our target genes for the *in vitro* miPEP experiment, we
332 found that two out of three targets were indeed inhibited following miPEP application and
333 increased expression of the precursor miR159c. The third gene, encoding for alpha-2-
334 macroglobulin, was, however, overexpressed in the presence of the miPEP. In bacteria, non-
335 coding small RNAs can sometimes induce expression of target mRNAs [6, 31].

336 Even though the miPEP experiment showed that prediction tools worked well when
337 focusing on a few genes, *Variovorax paradoxus* differentially expressed only 4 of the 137
338 predicted targets and differentially expressed another 247 non-predicted genes when
339 exposed to a mixture of six rhizospheric miRNAs. This suggests that either 1) the bacteria
340 adjusted their transcriptome in response to the shift in the expression of the miRNA-targeted
341 gene, 2) as it is often the case in plants [34], the miRNAs targeted bacterial transcription
342 factors, such as the ones from the LysR family that were differentially expressed at both time
343 points, 3) the miRNAs led to the production of secondary siRNA, as previously shown in
344 plants for two of our rhizospheric miRNAs, miR165 and miR161.1 [35], 4) target genes were
345 translationally repressed, which would be undetectable with transcriptomics, though this is
346 less common in plants than mRNA cleavage [33], 5) miRNAs protected targets from
347 repression, as it was shown for arbuscular mycorrhizal fungi [36], or 6) since many predicted

348 targets of the rhizospheric miRNAs were not in CDS, miRNAs could have affected DNA
349 methylation [37] or interacted with gene promoters [38]. Clearly, further investigation is
350 needed to clarify how eukaryotic miRNAs affect bacteria.

351 In contrast to *Variovorax*, plant miRNAs did not impact the transcriptome of *Bacillus*.
352 In our simplified soil community, only 4 out of the 20 ASVs were significantly impacted by
353 plant miRNAs, and, similarly, intestinal miRNAs only impacted the growth of specific
354 bacterial strains [6]. Plant exosomes containing miRNAs are also preferentially taken up by
355 some bacteria, affecting their gene expression and activity [8]. Our experiments were,
356 however, carried out using naked miRNAs, excluding this explanation. We first thought that
357 this could be related to differences in the cell wall that made miRNA entry impossible for
358 Gram-positive, but our microscopy work disproved that. Another possibility is that the
359 mechanism of interaction differs between the two groups of bacteria. In bacteria, chaperone
360 proteins such as RNA-binding Hfq, ProQ, or CrsA proteins protect small RNAs and stabilize
361 their interaction with mRNA, improving the formation of sRNA-mRNA duplexes that lead to
362 gene silencing [39]. This crucial role of chaperones in sRNA-mediated interactions was only
363 reported for a handful of Gram-positive bacteria [40, 41]. Alternatively, competence for DNA
364 uptake depends on environmental conditions, such as stress, nutrient availability, and cell
365 density [42]. The two bacteria tested might have different cues to initiate nucleic acid uptake,
366 and the growing conditions might not have been met during the transcriptomic experiment to
367 trigger this behavior in *Bacillus*. In any case, the differential transcriptomic response to
368 miRNAs of the two bacteria tested suggests a selective mechanism in the rhizosphere. Any
369 effect on a bacterium could have cascading effects on the rest of the community.

370 *Arabidopsis* miRNAs impacted the bacterial community in the root environment. We
371 conducted three complementary experiments to prove this point. First, we examined the
372 root-associated bacterial community of *A. thaliana* mutants affected in the biosynthesis of
373 miRNA and/or siRNA. Many of these mutants had disrupted bacterial communities
374 compared to wild-type plants. One of the most relevant mutants, the *dc1-2* mutant, which is
375 specifically impaired in miRNA production, was severely affected in its community

376 composition at the phylum level and harbored a more diversified community. Microbial
377 communities in the roots and rhizosphere of *ago1-27* and *RTL1myc* mutants resembled
378 those of an unplanted soil more than those of wild-type plants. This suggests that mutations
379 in small RNA related pathways lead to a certain dysbiosis in the roots and rhizosphere
380 microbiota. Bacterial diversity was higher in the root environment of mutant plants which
381 could reflect a weaker selection from these plants because of their lack of miRNAs and/or
382 siRNAs. The mutations used are, however, pleiotropic, and plants were severely affected in
383 their phenotype, which could have also affected the bacterial community.

384 Second, the bacterial community associated with soil-grown *Arabidopsis* responded
385 significantly to miPEP application. As we showed in the *in vitro* experiment using
386 miPEP159c, miPEPs stimulate the production their corresponding miRNA in plant tissues.
387 This means that the up-regulation of a single miRNA could lead to changes in the bacterial
388 community. Other than the direct effect of the overexpressed miRNA on the bacteria, the
389 shifts observed in bacterial community could, however, also be explained by other factors.
390 For instance, plant miRNAs alter various physiological processes within the plant, such as
391 root development and plant immune response [34]. These changes induced by the
392 overexpression of some miRNAs would also lead to large shifts in the plant microbiota.

393 Third, to exclude most of the indirect plant-mediated effects of the mutant and the
394 miPEP experiments, we did an *in vitro* experiment with a simplified soil-derived bacterial
395 community of twenty ASVs exposed to a mixture of synthetic miRNAs. The plant miRNAs
396 affected the abundance of five ASVs and the growth of the community during the log phase.
397 This shows that plant miRNAs directly affect bacterial communities. At the individual level, a
398 bacterium could change in relative abundance because of 1) direct effect of the miRNA on
399 its growth or 2) changes in the relative abundance of other bacteria with which it interacts.
400 Some species can have a keystone role in interaction networks [43], and shift in these
401 species would influence the entire community. For instance, the presence of *Variovorax* in
402 the rhizosphere of *Arabidopsis* counteracted the root growth inhibition induced by many
403 other members of the community [44]. Plant miPEPs, through their effect on miRNAs, also

404 modulated the interactions between plants and key root symbionts, such as arbuscular
405 mycorrhizal fungi [36] and rhizobia [45]. This effect would profoundly alter the microbial
406 community, even if the miRNA had only affected a single keystone species.

407 We showed here for the first time that plant miRNAs are found in the rhizosphere of
408 two model plants, that they are internalized in rhizosphere bacteria, that they affect the
409 transcriptome of rhizosphere bacteria, and that they modulate soil microbial community
410 composition and growth. The rhizosphere effect is thought to be mainly due to the
411 rhizodeposition of various small organic molecules. Our study suggests a novel molecule,
412 miRNAs, that plants could use to interact with their microbiota, challenging the current
413 paradigm of rhizosphere microbial assembly. Many questions remain to be answered, but
414 our study has shown beyond any doubt that plant miRNAs can shape the rhizosphere
415 bacterial community.

416

417 **Acknowledgments**

418 We want to thank Hervé Vaucheret and Taline Elmayan (IJPB, INRAE, Versailles, France)
419 for sharing their *Arabidopsis* mutant seeds with us and Paul M. Orwin for providing the
420 *Variovorax paradoxus* EPS strain. We also thank Christophe Penno for the helpful
421 discussions. We also thank Jessy Tremblay (INRS, Laval, Canada) for the expertise and
422 support regarding the confocal microscopy and flow cytometry experiments.

423

424 **Funding**

425 This work was financially supported by a CNRS MITI (Mission pour les Initiatives
426 Transverses et Interdisciplinaires 2020-2021), by a IEA (International Emerging Actions)
427 grant (France), by the French National program EC2CO (Ecosphère Continentale et Côtière
428 2024-2025), a CRSNG discovery grant (RGPIN-2020-05723), a FRQNT Samuel-de-
429 Champlain grant (2019-FQ-264131). We acknowledge Compute Canada for access to the
430 Graham compute cluster.

431

432 **Conflict of interest statement**

433 The authors report no conflict of interest.

434

435 **Data availability statement**

436 We deposited the sequence data generated in this study under NCBI BioProject accessions

437 PRJNA836586 (rhizosphere miRNAs), PRJNA1107220 (root miRNAs), PRJNA1111839

438 (soil-extracted bacteria miRNAs), PRJNA1111831 (mutant and miPEP 16S rRNA gene

439 amplicons), PRJNA1111829 (simplified soil community 16S rRNA gene amplicons), and

440 PRJNA1111827 (*Bacillus* and *Variovorax* transcriptomics). The R code used to manipulate

441 the data and generate the figures is available on GitHub (<https://github.com/le-labo->

442 [ergeau/Middleton_miRNA](https://github.com/le-labo-ergeau/Middleton_miRNA)) with the accompanying data being available on Zenodo

443 (<https://zenodo.org/doi/10.5281/zenodo.11105307>).

444 **References**

- 445 1. Zhang T, Zhao Y-L, Zhao J-H, Wang S, Jin Y, Chen Z-Q et al. Cotton plants export
446 microRNAs to inhibit virulence gene expression in a fungal pathogen. *Nat Plants*.
447 2016;2:16153.
- 448 2. Cai Q, Qiao L, Wang M, He B, Lin F-M, Palmquist J et al. Plants send small RNAs in
449 extracellular vesicles to fungal pathogen to silence virulence genes. *Science*.
450 2018;360:1126-1129.
- 451 3. Qin S, Veloso J, Puccetti G, van Kan JAL. Molecular characterization of cross-
452 kingdom RNA interference in *Botrytis cinerea* by tomato small RNAs. *Front Plant Sci*.
453 2023;14:
- 454 4. Wu F, Huang Y, Jiang W, Jin W. Genome-wide identification and validation of
455 tomato-encoded sRNA as the cross-species antifungal factors targeting the virulence
456 genes of *Botrytis cinerea*. *Front Plant Sci*. 2023;14:
- 457 5. Middleton H, Yergeau É, Monard C, Combier J-P, El Amrani A. Rhizospheric Plant–
458 Microbe Interactions: miRNAs as a Key Mediator. *Trends Plant Sci*. 2021;26:132–
459 141.
- 460 6. Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L et al. The Host Shapes the
461 Gut Microbiota via Fecal MicroRNA. *Cell Host Microbe*. 2016;19:32-43.
- 462 7. Liu S, Rezende RM, Moreira TG, Tankou SK, Cox LM, Wu M et al. Oral
463 Administration of miR-30d from Feces of MS Patients Suppresses MS-like Symptoms
464 in Mice by Expanding *Akkermansia muciniphila*. *Cell Host Microbe*. 2019;26:779-794.
465 e8.
- 466 8. Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A et al. Plant-Derived Exosomal
467 MicroRNAs Shape the Gut Microbiota. *Cell host & microbe*. 2018;24:637-652.e8.
- 468 9. Breakfield NW, Corcoran DL, Petricka JJ, Shen J, Sae-Seaw J, Rubio-Somoza I et
469 al. High-resolution experimental and computational profiling of tissue-specific known
470 and novel miRNAs in *Arabidopsis*. *Genome Res*. 2012;22:163-176.
- 471 10. DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK.
472 Selective progressive response of soil microbial community to wild oat roots. *ISME J*.
473 2009;3:168–178.
- 474 11. Tian T, Reverdy A, She Q, Sun B, Chai Y. The role of rhizodeposits in shaping
475 rhizomicrobiome. *Environ Microbiol Rep*. 2020;12:160-172.
- 476 12. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. Rapid method for coextraction of
477 DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-
478 based microbial community composition. *Appl Environ Microb*. 2000;66:5488–5491.
- 479 13. Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao
480 J et al. Genomic features of bacterial adaptation to plants. *Nat Genetics*. 2017;
- 481 14. Penno C, Tremblay J, O'Connell Motherway M, Daburon V, El Amrani A. Analysis of
482 Small Non-coding RNAs as Signaling Intermediates of Environmentally Integrated
483 Responses to Abiotic Stress. *Methods Mol Biol*. 2023;2642:403-427.
- 484 15. Dai X, Zhuang Z, Zhao PX. psRNATarget: a plant small RNA target analysis server
485 (2017 release). *Nucl Acids Res*. 2018;
- 486 16. Shamandi N, Zytnicki M, Charbonnel C, Elvira-Matelot E, Bochnakian A, Comella P
487 et al. Plants Encode a General siRNA Suppressor That Is Induced and Suppressed
488 by Viruses. *PLoS Biol*. 2015;13:e1002326.
- 489 17. Morel JB, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F et al. Fertile
490 hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene
491 silencing and virus resistance. *Plant Cell*. 2002;14:629-639.
- 492 18. Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation of Dicer-Like1 in
493 *Arabidopsis* by microRNA-guided mRNA degradation. *Curr Biol*. 2003;13:784-9.
- 494 19. Boutet S, Vazquez F, Liu J, Béclin C, Fagard M, Gratias A et al. *Arabidopsis HEN1*: a
495 genetic link between endogenous miRNA controlling development and siRNA
496 controlling transgene silencing and virus resistance. *Curr Biol*. 2003;13:843-848.

497 20. Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a
498 3'-end uridylation activity in *Arabidopsis*. *Curr Biol.* 2005;15:1501-7.

499 21. Tremblay J, Yergeau É. Systematic processing of rRNA gene amplicon sequencing
500 data. *GigaScience.* 2019;8:giz146.

501 22. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive
502 analysis and graphics of microbiome census data. *PLoS One.* 2013;8:e61217.

503 23. Han JI, Spain JC, Leadbetter JR, Ovchinnikova G, Goodwin LA, Han CS et al.
504 Genome of the Root-Associated Plant Growth-Promoting Bacterium *Variovorax*
505 *paradoxus* Strain EPS. *Genome Announc.* 2013;1:

506 24. Agoussar A, Azarbad H, Tremblay J, Yergeau É. The resistance of the wheat
507 microbial community to water stress is more influenced by plant compartment than
508 reduced water availability. *FEMS Microbiol Ecol.* 2021;97:fiab149.

509 25. Lauressergues D, Couzigou J-M, San Clemente H, Martinez Y, Dunand C, Bécard G
510 et al. Primary transcripts of microRNAs encode regulatory peptides. *Nature.*
511 2015;520:90.

512 26. Couzigou J-M, Lauressergues D, Bécard G, Combier J-P. miRNA-encoded peptides
513 (miPEPs): A new tool to analyze the roles of miRNAs in plant biology. *RNA Biol.*
514 2015;12:1178-1180.

515 27. Wang B, Sun Y, Song N, Zhao M, Liu R, Feng H et al. *Puccinia striiformis* f. sp. *tritici*
516 microRNA-like RNA 1 (Pst-miR1), an important pathogenicity factor of Pst, impairs
517 wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. *New*
518 *Phytol.* 2017;215:338-350.

519 28. Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. Bidirectional cross-
520 kingdom RNAi and fungal uptake of external RNAs confer plant protection. *Nat*
521 *Plants.* 2016;2:16151.

522 29. Wang M, Weiberg A, Dellota E, Jr., Yamane D, Jin H. Botrytis small RNA Bc-siR37
523 suppresses plant defense genes by cross-kingdom RNAi. *RNA Biol.* 2017;14:421-
524 428.

525 30. Sasse J, Martinoia E, Northen T. Feed Your Friends: Do Plant Exudates Shape the
526 Root Microbiome? *Trends Plant Sci.* 2018;23:25-41.

527 31. Choi J-W, Um J-H, Cho J-H, Lee H-J. Tiny RNAs and their voyage via extracellular
528 vesicles: Secretion of bacterial small RNA and eukaryotic microRNA. *Exp Biol Med.*
529 2017;242:1475-1481.

530 32. Soler N, Forterre P. Vesiduction: the fourth way of HGT. *Environ Microbiol.*
531 2020;22:2457-2460.

532 33. Yu Y, Jia T, Chen X. The 'how' and 'where' of plant microRNAs. *New Phytol.*
533 2017;216:1002-1017.

534 34. Tang J, Chu C. MicroRNAs in crop improvement: fine-tuners for complex traits. *Nat*
535 *Plants.* 2017;3:17077.

536 35. Manavella PA, Koenig D, Weigel D. Plant secondary siRNA production determined
537 by microRNA-duplex structure. *Proc Natl Acad Sci.* 2012;109:2461-2466.

538 36. Couzigou JM, Lauressergues D, André O, Gutjahr C, Guillotin B, Bécard G et al.
539 Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular
540 Mycorrhizal Symbiosis. *Cell Host & Microbe.* 2017;21:106-112.

541 37. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C et al. DNA Methylation Mediated by a
542 MicroRNA Pathway. *Mol Cell.* 2010;38:465-475.

543 38. Toscano-Garibay JD, Aquino-Jarquin G. Transcriptional regulation mechanism
544 mediated by miRNA-DNA•DNA triplex structure stabilized by Argonaute. *Biochimica*
545 *et Biophysica Acta.* 2014;1839:1079-1083.

546 39. Boutet E, Djerroud S, Perreault J. Small RNAs beyond Model Organisms: Have We
547 Only Scratched the Surface? *Int J Mol Sci.* 2022;23:4448.

548 40. Nielsen JS, Lei LK, Ebersbach T, Olsen AS, Klitgaard JK, Valentin-Hansen P et al.
549 Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent
550 antisense regulation in *Listeria monocytogenes*. *Nucl Acids Res.* 2010;38:907-919.

551 41. Müller P, Gimpel M, Wildenhain T, Brantl S. A new role for CsrA: promotion of
552 complex formation between an sRNA and its mRNA target in *Bacillus subtilis*. *RNA*
553 *Biol.* 2019;16:972-987.

554 42. Blokesch M. Natural competence for transformation. *Curr Biol.* 2016;26:R1126-
555 R1130.

556 43. Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA.
557 Synthetic microbiota reveal priority effects and keystone strains in the *Arabidopsis*
558 phyllosphere. *Nat Ecol Evol.* 2019;3:1445-1454.

559 44. Finkel OM, Salas-González I, Castrillo G, Conway JM, Law TF, Teixeira PJPL et al.
560 A single bacterial genus maintains root growth in a complex microbiome. *Nature.*
561 2020;587:103-108.

562 45. Couzigou J-M, André O, Guillotin B, Alexandre M, Combier J-P. Use of microRNA-
563 encoded peptide miPEP172c to stimulate nodulation in soybean. *New Phytol.*
564 2016;211:379-381.

565

566 **Figure legends.**

567 **Figure 1: Plant miRNAs are present in the rhizosphere and absent in unplanted soil.**

568 Relative abundance of the plant miRNAs found in the rhizosphere of *Arabidopsis thaliana*

569 (A), *Brachypodium distachyon* (B) and in the roots of *Arabidopsis thaliana* (C), while

570 completely absent from unplanted soil.

571 **Figure 2: Plant miRNAs are internalized by rhizosphere bacteria.** Relative abundance of

572 *Arabidopsis thaliana* miRNAs found in cells pelleted from the rhizosphere and absent in cells

573 pelleted from unplanted soil (A) and confocal microscopy images of *Variovorax paradoxus*

574 (B) and *Bacillus mycoides* (C) after a 4-hour exposure to ath-miR159a tagged with Cy5.

575 Arrows indicate cells containing the fluorescent molecule.

576 **Figure 3: Plant miRNAs affect the transcriptome of a rhizosphere bacterium.** Gene

577 expression of *Variovorax paradoxus* after 20 min (A) and 120 min (B) exposure to a mixture

578 of five synthetic miRNAs. (C): *Arabidopsis thaliana* expression of pri-miR159c and

579 rhizospheric *Variovorax paradoxus* expression of CdsA, Alpha-2-macroglobulin and LysR

580 after exposure of the plant to miPEP159c.

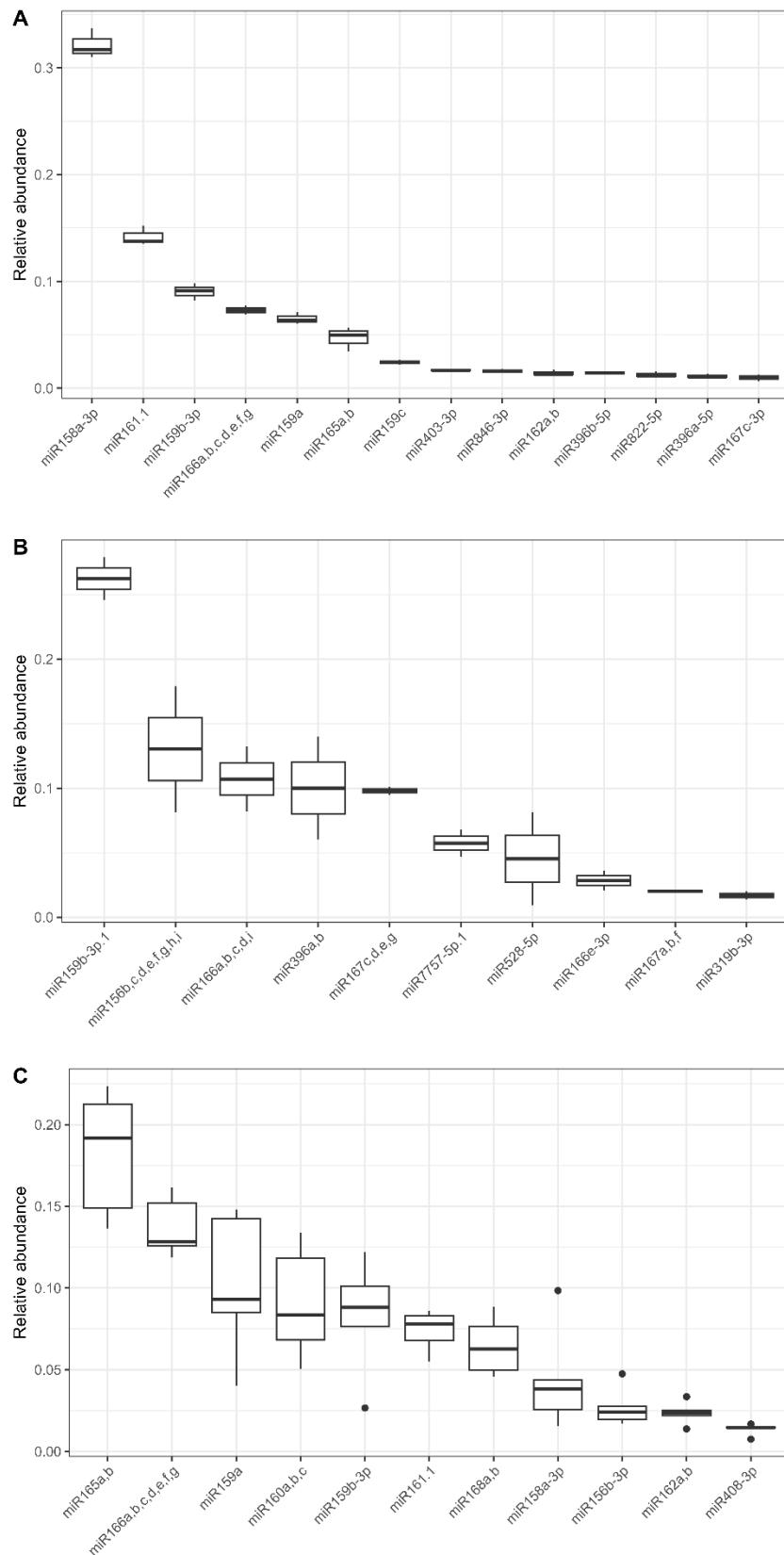
581 **Figure 4: Plant miRNAs affect the bacterial community.** Phylum-level bacterial

582 community composition (A) and Shannon diversity (B) for different *Arabidopsis* mutants with

583 impaired small RNAs pathways. (C): Phylum-level bacterial community composition for

584 *Arabidopsis* plants inoculated with miPEP159a, miPEP159b or miPEP159c. Growth curve

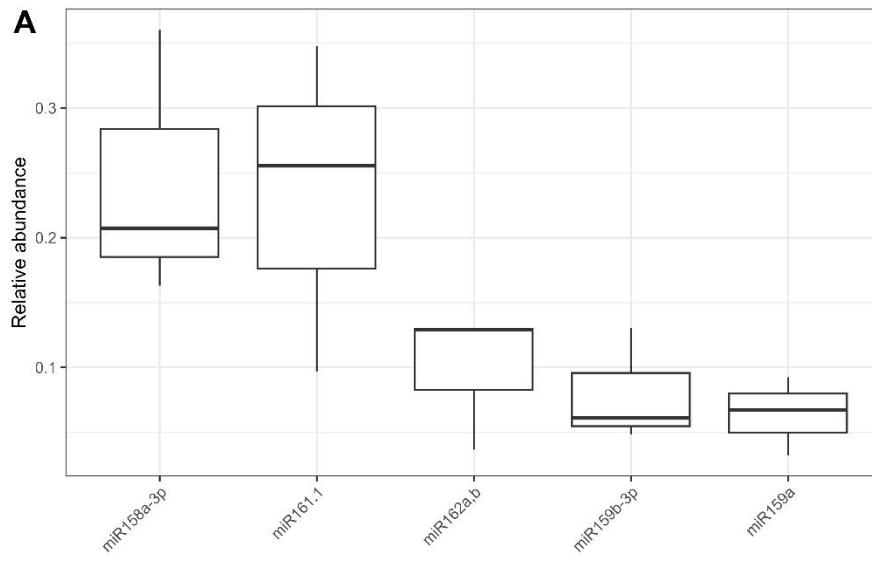
585 (D), community composition at genus level (E), and relative abundance of significantly

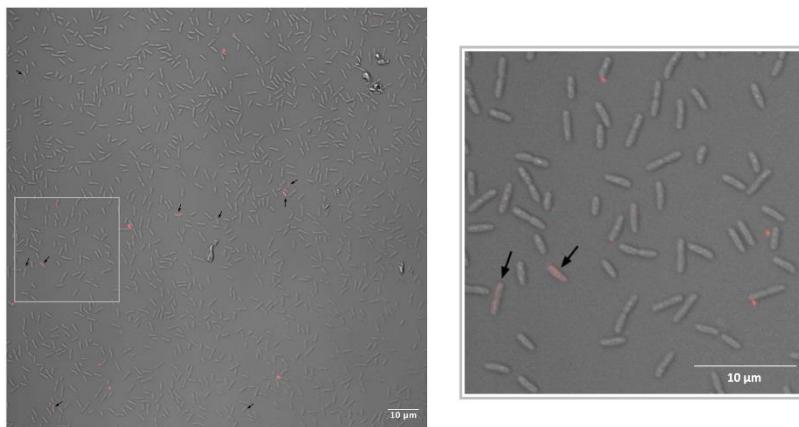

586 affected ASVs (F) for a simplified soil microbial community exposed to a mixture of synthetic

587 plant or scrambled miRNAs

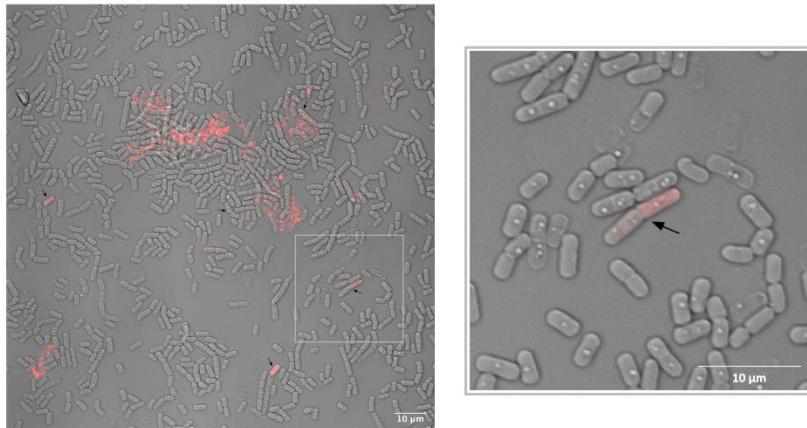
588

589 **Figure 1.**

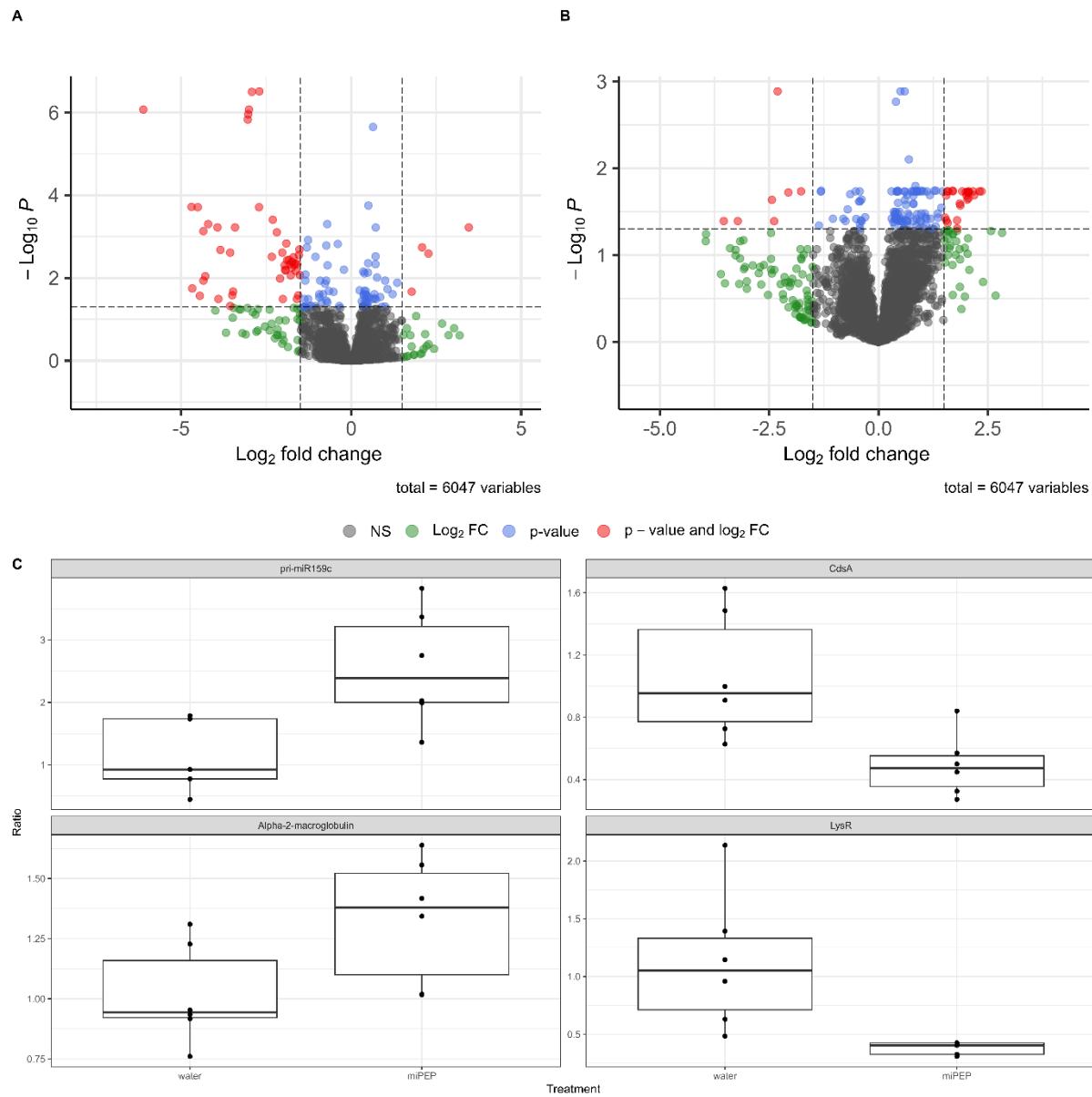

590


591

592

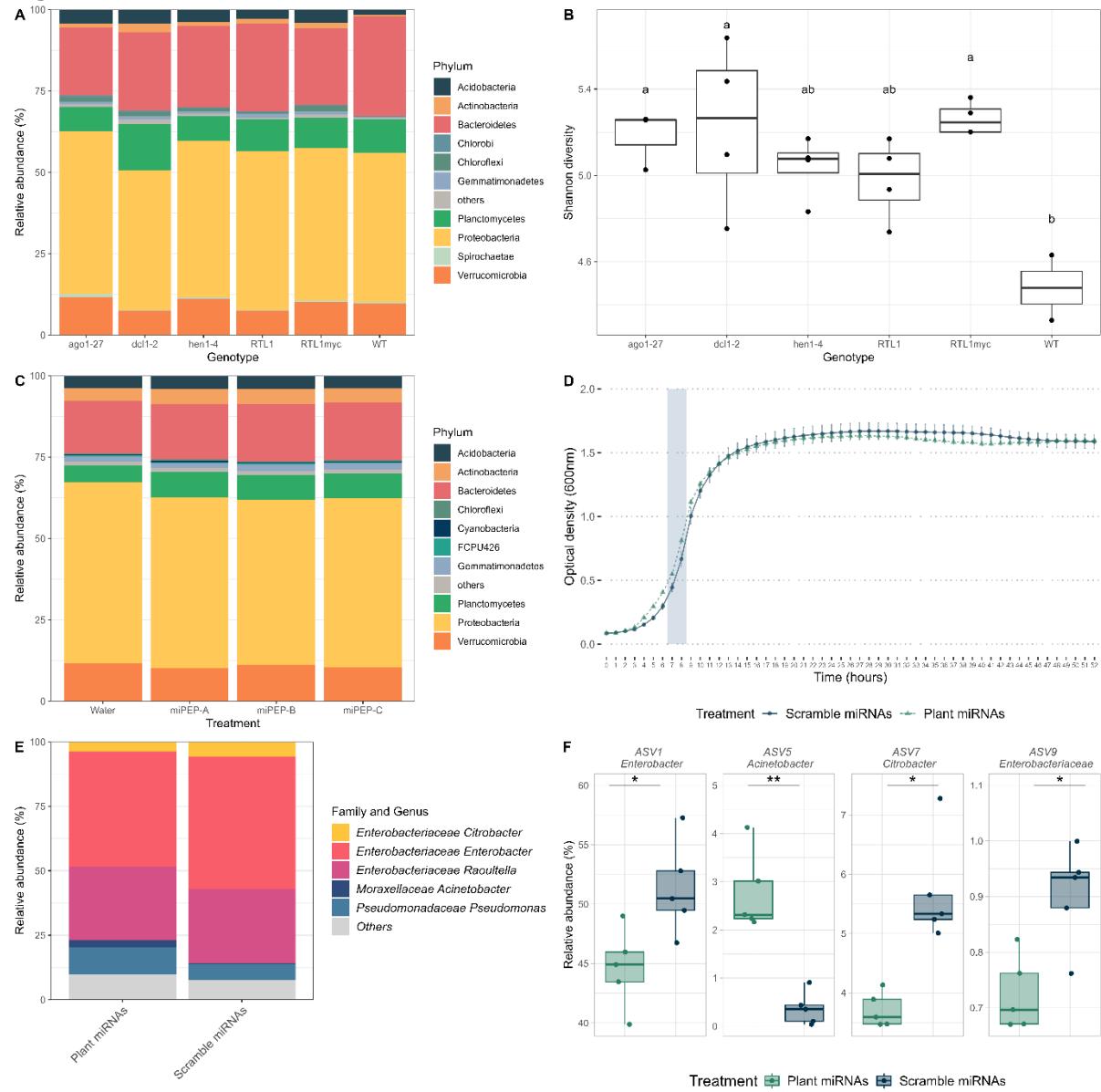

593 **Figure 2.**

B



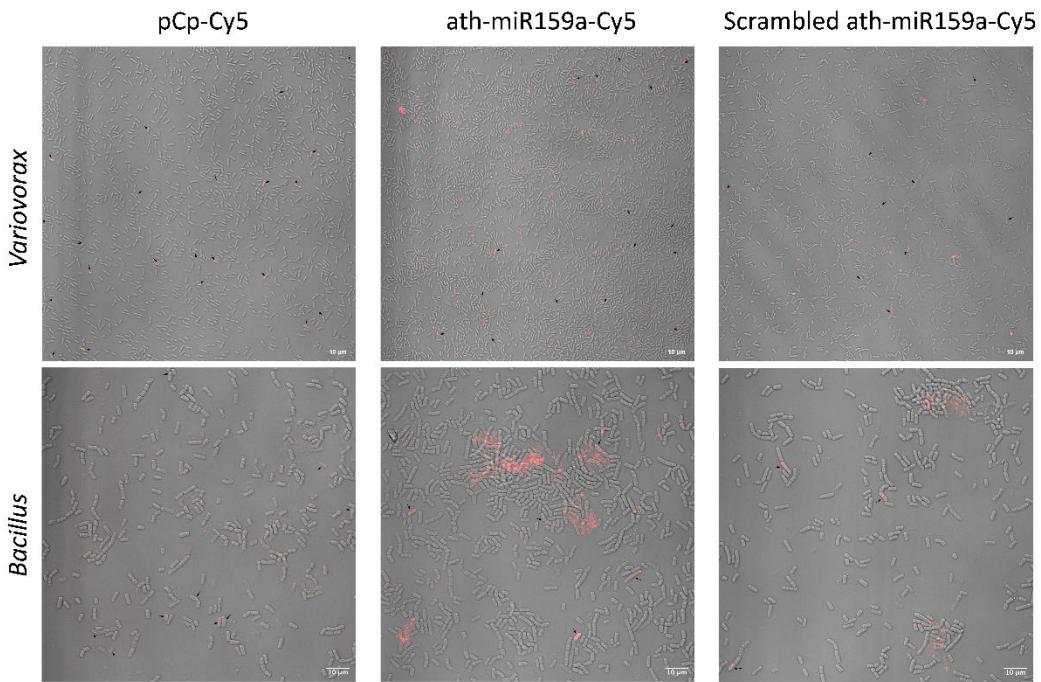
C

596 **Figure 3.**


597

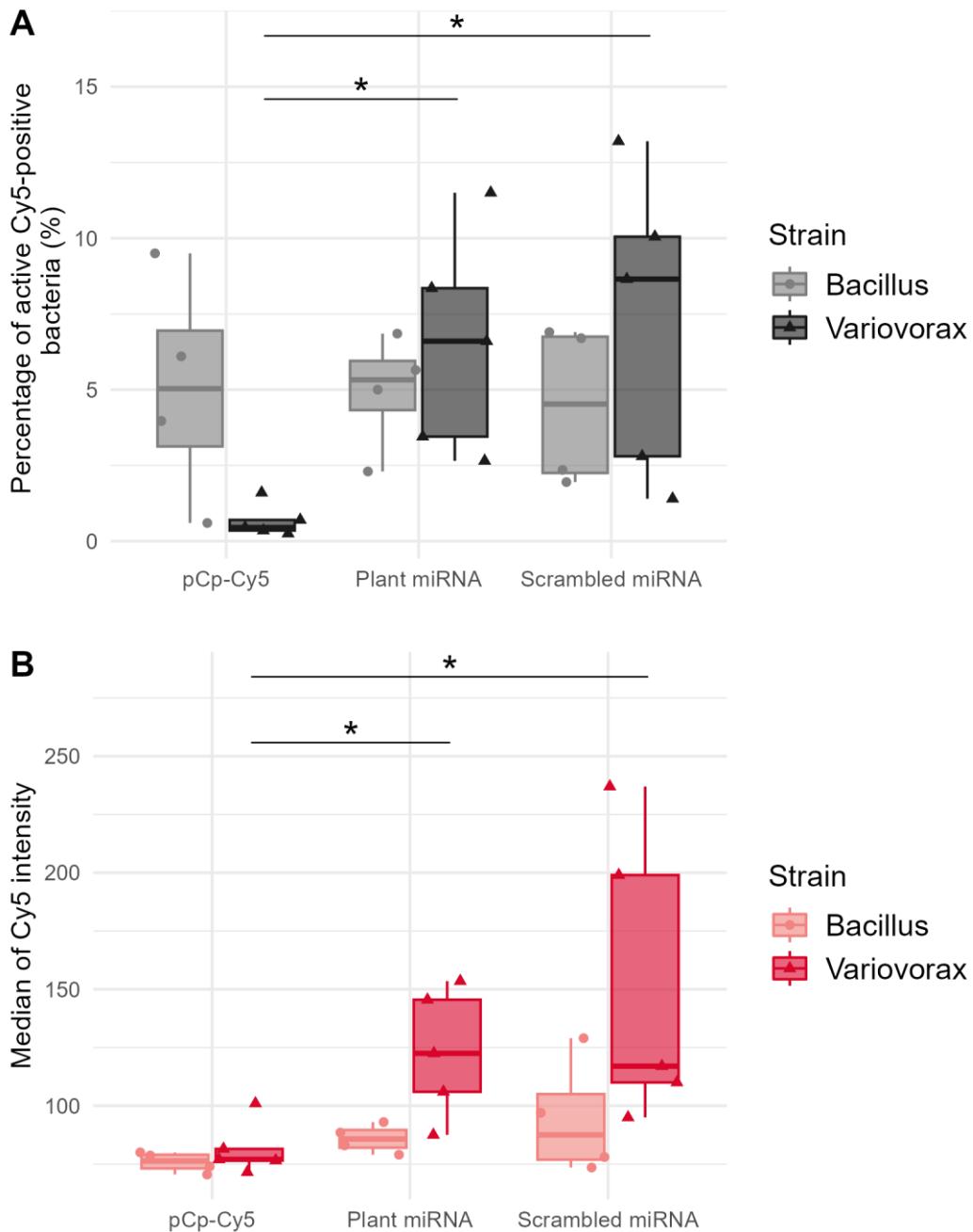
598
599

600


Figure 4.

601

602


603 **Figure S1.**

604

605

606 **Figure S2.**

607
608

609 **Supplementary methods**

610 **Detection of plant miRNAs in the roots and the rhizosphere**

611 *Plant growth conditions.*

612 For the detection of miRNA in the rhizosphere, *Arabidopsis thaliana* (Col-0) and
613 *Brachypodium distachyon* (Bd21-3) were planted in triplicates and grown for a month in a
614 growth cabinet, alongside unplanted soils. For the detection of miRNA in roots, *Arabidopsis*
615 *thaliana* (Col-0) was planted in ten different experimental blocks and grown for 21 days in a
616 growth cabinet, alongside unplanted soils. The program of the growth cabinets was: 12
617 hours of daylight, 3 hours of twilight, 3 hours of dawn light, and 6 hours of darkness at a
618 constant humidity of 70%. The temperature varied in accordance with the light cycle
619 between 20-25 °C.

620 *Sampling, RNA extraction and sequencing*

621 The rhizospheres and control soils were sampled and flash-frozen in liquid nitrogen. RNA
622 was then extracted from 2 g of soil using MOBIO RNA Power soil kit, eluted in 100 µL,
623 following the manufacturer's guidelines. The roots were gently and quickly washed with
624 sterile PBS, placed in a sterile tube and flash frozen with liquid nitrogen. The roots were
625 lyophilized for three hours, crushed with a micro pestle, and RNA was extracted using the
626 Qiagen RNeasy Plant Mini kit, following the manufacturer's guidelines. The RNA was treated
627 with DNase (Turbo DNA-free kit, Ambion), purified and concentrated (RNA Clean &
628 Concentrator 25µl, ZymoResearch). We evaluated RNA quality with Nanodrop and 4%
629 agarose gels, before sending it for sequencing on an Illumina HiSeq 2500 in single read
630 mode (1x50bp) at the Centre d'expertise et de services Génome Québec (Montreal,
631 Canada).

632 *Bioinformatic analyses*

633 Reads were trimmed using Trimmomatic [1] (v0.39) to remove the sequencing adapters with
634 the following Illumina clip settings :5:10:4 and to remove the 5' and 3' flanking sequences
635 containing bases having quality scores below 33 and 30, respectively. Common
636 contaminants, such as Illumina adapters and PhiX spike-in sequences, were removed using

637 BBDuk (BBMap v38.11, <https://github.com/BioInfoTools/BBMap>), with key parameters: k=20
638 and minkmerhits=1. Remaining sequences were then filtered by size such that reads having
639 a length between 18 and 27 nucleotides were selected. Selected reads were mapped
640 against either *A. thaliana* (TAIR10/GCA_000001735.1) or *B. distachyon*
641 (bd21/GCF_000005505.1) reference genomes, which are the same as those used in
642 miRbase [2], using BWA-aln [3] with the following parameters: mismatch=1 and seed=5.
643 Using BEDTools v.2.29.2 [4] with -F 0.95 argument, a number of reads aligned inside
644 miRNA coordinates were determined, meaning that at least 95% of each read had to belong
645 inside the miRNA coordinates to be considered a valid hit. These assigned miRNAs which
646 were mapped against the reference database were kept for abundance estimation across
647 samples.

648 *Statistical analyses*

649 Rhizospheric and root miRNAs were defined as the miRNAs that had at least 10 reads for
650 each the rhizosphere or root samples and a maximum of one read across all the bulk soil
651 samples.

652

653 **Internalization of plant miRNAs by bacteria**

654 *Detection of plant miRNAs in rhizospheric bacteria*

655 Plant growth and bacteria isolation. *A. thaliana* Col-0 was grown for a month, then the
656 rhizosphere was sampled. Bacteria were isolated from 5 g of rhizospheric soil, using a
657 density gradient. Samples were added to 30 mL of 0.2% sodium hexametaphosphate and
658 rotated on a spinning wheel for 2 h. Samples were then centrifuged at 18 g for 1 min at
659 10°C, the supernatants were pooled two-by-two and centrifuged at 2824 x g for 20 min at
660 10°C. The microbe-containing pellet was resuspended in 10 mL of 0.8% NaCl and samples
661 were again pooled by two. The resuspended solution was then transferred onto 10 mL of
662 sterile Nycodenz and was centrifuged at 3220 g for 40 min. The bacterial layer was collected
663 and a volume of 0.8% NaCl sufficient for a total of 35 mL was added. This solution was
664 centrifuged at 3220 g for 15 min at 10°C. Finally, the pellet was resuspended in 1 mL of

665 NaCl 0.8% to wash the residual Nycodenz away and centrifuged at 1700 *g* for 5 min at 10°C.
666 The final pellet was resuspended in 100 μ L TE buffer and kept at -20°C. Eight bacterial
667 samples were obtained from the rhizosphere and six from unplanted soils.
668 RNA extraction and sequencing. RNA was extracted from this bacterial solution as follows:
669 the 100 μ L were transferred into a MP Biomedicals™ Lysing Matrix E tube with 250 μ L of
670 warmed 10% CTAB (Cetyl Trimethyl Ammonium Bromide) - 0.7 M NaCl, followed by 250 μ L
671 of 240 mM K₂HPO₄/KH₂PO₄ (pH 8.0) and 500 μ L of phenol-chloroform-isoamyl alcohol
672 (25:24:1) (pH 8.0). Samples were then bead-beaten using TissueLyser II (QIAGEN) at 30 Hz
673 for 3 min. The tubes were centrifuged at 16000 *g* for 10 min at 4°C and the supernatant was
674 transferred into a new tube. One volume of chloroform-isoamyl alcohol (24:1) was added to
675 the supernatant and centrifuged again at 16,000 *g* for 10 min at 4°C. The supernatant was
676 collected and 2 volumes of 30% PEG 6000-1.6 M NaCl were added, and the tube was
677 inverted to mix and was left at 4°C for at least 2 h. The tubes were then centrifuged at
678 18,000 *g* for 30 min at 4°C to precipitate RNA. The RNA pellet was then washed with 500 μ L
679 of 70% ethanol and centrifuged at 18,000 *g* for 10 min at 4°C. The pellet was then air dried
680 and resuspended in 50 μ L of RNase-free water. RNA quality and quantity was verified using
681 a 1% agarose gel and Nanodrop, and then sent for sequencing on an Illumina NovaSeq
682 6000 using paired-end 100 bp with size-selected library.

683 Bioinformatic analyses. Sequencing results were processed as stated above with the
684 rhizospheric miRNAs. To confirm that miRNAs found in the rhizospheric bacteria originated
685 from the plant and not the bacteria, miRNA sequences were searched for on the + and -
686 strands of 3,837 bacterial genomes [5], of which 1,160 bacteria were isolated from plants.
687 These miRNA sequences were also searched for in the genome of *A. thaliana* TAIR10.1 in
688 which they were found at their expected position.

689 Statistical analyses. We used the same strategy as above to define the internalized
690 rhizospheric miRNAs, but with a lower threshold because there were less plant miRNA reads
691 produced for this experiment. We defined the internalized miRNAs as the miRNAs that were

692 represented by at least 5 reads in each rhizosphere microbial pellets and absent in the bulk
693 soil microbial pellets.

694

695 *Confocal microscopy.*

696 *Variovorax paradoxus* EPS and *Bacillus mycoides* YL123 were cultured on solid media
697 (Bacto Yeast Extract Agar for *V. paradoxus* EPS and Tryptic Soy Agar for *B. mycoides*
698 YL123) for 48 hours and then a few colonies were inoculated in 5 mL of the equivalent liquid
699 media and grown overnight (250 rpm 28 °C). The cultures were then standardized to an
700 OD600 of 0.200, treated with one of the 3'-Cy5-labelled oligos (plant ath-miR159a-Cy5,
701 scrambled ath-miR159a-Cy5 or a modified version of cytidine pCp-Cy5, final concentration 2
702 µM) (Supplementary Table S1) and incubated for a total of 3 hours and 40 minutes (the
703 cultures were within the log phase) after which they were treated with MitoTracker Green FM
704 (Invitrogen, final concentration 2 µM). The cultures were immediately reincubated for 20
705 minutes, pelleted, washed with sterile PBS, pelleted again, and concentrated 10 times in
706 sterile PBS. The cells (4.5 µl of washed and concentrated culture) were then placed on a
707 glass bottom dish, covered with a thin slice of 2% agarose, and visualized using a confocal
708 microscope (Zeiss LSM780). The experiment was repeated three independent times.

709 *Flow cytometry.*

710 We prepared the bacterial cultures as for the confocal microscopy. After that, we took 5.5 µl
711 of washed and concentrated culture and incubated it for 1 h and 30 min (room temperature).
712 Then, we treated the bacteria with 4% Paraformaldehyde (PFA) for 40 min to fix them. We
713 then stained the cells with a DNA marker (Hoechst 33342) for 35 min. After which we diluted
714 the cells in sterile PBS to reach a final volume of 350 µl and processed the samples with a
715 flow cytometer (BD LSRII). For each sample, 50 000 events were measured. We
716 used a variety of controls, such as cells only stained with Hoechst, cells only stained with
717 MitoTracker GreenFM, cells stained with Hoechst + Mitotracker GreenFM and cells without
718 dye to set appropriate gates and to ensure that our analyses were conducted on bacteria
719 that were positive for our green (MitoTracker), red (Cy5 tagged miRNAs) and blue (Hoechst)

720 markers. For each experiment, duplicates for each strain were prepared. The experiment
721 was repeated five independent times for *V. paradoxus* EPS and four times for *B. mycoides*
722 YL123. For our analyses, we used the mean of the duplicates and tested the differences
723 between the strains and treatments with two Kruskal-Wallis tests. As a post-hoc test, we
724 used Dunn's test for pairwise multiple comparisons (significance=p adjusted < 0.05).

725

726 **Effect of miRNAs on bacterial gene expression**

727 *In silico analysis of miRNA targets*

728 To predict potential plant miRNA targets in bacterial genomes, we implemented a workflow
729 named *mirnatarget 1.0 : miRNA target finder* (<https://github.com/jtremblay/MiRNATarget>),
730 which was inspired from the plant miRNA target finder, *psRNATarget* [6]. This tool is based
731 on specific pairing patterns between plant miRNA and targets [7] and implements
732 SSEARCH36 (from the *fasta36 v36.3.8* package) which uses the Smith-Waterman local
733 alignment algorithm, resulting in optimal alignments [8]. Multiple targets for each miRNA can
734 be identified. Based on the *psRNATarget* rules for miRNA-target recognition, an e-value was
735 calculated for each alignment and only those with an e-value ≤ 5 were retained. The
736 positions of the targeted regions were noted with respect to the neighbouring coding
737 sequences (CDS): the target sequence could be inside a CDS, at the 5' or 3' flanking
738 regions (FLR) or in other short/very short inter-CDS regions, overlapping CDSs or
739 elsewhere, further away from any CDS. Targets in the latter category were positioned at a
740 distance superior to 100 nt from the 5' end or at a distance superior to 350 nt from the 3' end
741 of the CDS. These distances were chosen as they correspond to the longest UTRs that are
742 implicated in gene regulation. Targets in this category were discarded from the analysis,
743 because it was considered that a miRNA in that area would not affect mRNA translation. The
744 annotation of targeted regions and extraction of the closest CDSs were carried out with our
745 tool "align2cdsRegions" (<https://github.com/ntzv-qit/align2cdsRegions>). Sequences of
746 targeted CDSs were retrieved using the *getfasta* tool from BEDTools [4] (v2.30.0) and GO
747 (Gene Ontology) terms were attributed using InterProScan (v5.59-91.0) [9]. For each domain

748 of GO (*i.e.* Biological Processes, Cellular Component, Molecular Function) and for each
749 targeted CDS, a GO ancestor and their description were associated, and a level of
750 hierarchical ontology was attributed [10].

751

752 *Bacterial transcriptomic response to miRNAs*

753 Bacterial growth and miRNA treatment. *Variovorax paradoxus* EPS was grown in 5% yeast
754 extract (YE), at 30°C with 250 rpm shaking. *Bacillus mycoides* YL123 was grown in tryptic
755 soy broth (TSB), at 25°C with 250 rpm shaking. Bacterial stocks were plated on YE or TSB
756 and single colonies were selected for liquid culture overnight ($n = 3$), in 20 mL YE or TSB. In
757 the morning, cultures were normalised as such: the optical density (OD) of overnight cultures
758 was measured at 600 nm, which were then centrifuged at 5000 rpm for 5 min to collect the
759 bacterial pellet. The supernatant was removed, and a calculated volume of medium was
760 added to the pellet to reach OD = 1 for *B. mycoides* (*i.e.* 7.36×10^8 CFU/mL) and OD = 0.3
761 for *V. paradoxus* (*i.e.* 9.99×10^8 CFU/mL). Bacterial cultures were left to grow until the
762 exponential phase was reached, which was determined previously (4-5 h for both strains).
763 OD was then measured to check that the maximum number of cells/mL for RNA extraction
764 was not exceeded (10^9 cells/mL). At this point, 1 μ g of the miRNA mix, or scrambled mix was
765 applied to the cultures and gently mixed (15 μ L of each miRNA solution diluted at 10 μ M).
766 Cultures were normalised to reach the same number of bacterial cells per mL. The volume of
767 the cultures was varied to mimic natural differences in rhizosphere volume. Total
768 concentration of miRNAs ranged between 65 nM-104 nM for *B. mycoides* and 45 nM-85 nM
769 for *V. paradoxus*. The same cultures were sampled after 20 min and 120 min of incubation,
770 to evaluate the evolution of gene expression in a same biological sample in response to a
771 short and long confrontation with miRNAs. The miRNA mix was composed of 6 rhizospheric
772 miRNAs : miR159a, miR159b, miR159c, miR161.1, miR158a and miR165b (Supplementary
773 Table S1). The scrambled mix was composed of 6 RNA sequences with the same nucleic
774 acids as the respective miRNAs but in a random order (Supplementary Table S1). To
775 resemble mature plant miRNAs found in the rhizosphere, these synthetic miRNAs were

776 single-stranded with a 3' methyl group. They were synthesised by Integrated DNA
777 Technologies (IDT).

778 RNA extraction. After incubation, 1 mL of every culture was sampled and centrifuged at 5000
779 rpm for 5 min. The bacterial pellet was resuspended in 100 μ L of a lysozyme solution: 1
780 mg/mL for *V. paradoxus* (Gram -) and 3 mg/mL for *B. mycoides* (Gram +). After vortexing the
781 resuspension, the samples were left to incubate for 15 min at room temperature. The
782 following steps used solutions from the RNeasy Plant Mini Kit (QIAGEN). The guanidine-
783 thiocyanate-based buffer RLT was added to the samples for further lysis (600 μ L) and
784 vortexed for 10 s. For *B. mycoides* samples, an additional step was necessary: the 700 μ L
785 were transferred to a sterile 2 mL Safe-Lock tube containing 100 mg glass beads (0.1 mm
786 diameter) and 100 mg zirconia/silica beads (0.5 mm diameter). Beads were resuspended by
787 pipetting then cells were disrupted using Fast Prep for 50 s (5 m/s), followed by 5 min on ice
788 and another 50 s of Fast Prep. Tubes were centrifuged at 10 000 g for 1 min and
789 supernatant was transferred to a new tube. The next steps were common to both strains. An
790 equal volume of 70% ethanol was added to the lysed samples and mixed by pipetting. The
791 lysate was transferred to a RNeasy spin column (pink column) in a 2 mL collection tube and
792 centrifuged at 10 000 rpm for 30 s, then the flow-through was discarded. Columns were first
793 washed with 700 μ L of the RW1 wash buffer, followed by 500 μ L RPE buffer and again with
794 500 μ L RPE buffer. Collection tube was changed, and the column was centrifuged for 1 min
795 at maximum speed to dry the membrane off. To elute RNA, columns were placed in new 1.5
796 mL tubes and 30 μ L of RNase-free water was added before centrifugation. The 30 μ L were
797 then reloaded and centrifuged one last time.

798 RNA-seq & sequence analysis. Total RNA was sent for sequencing at the Centre d'expertise
799 et de services Génome Québec (Montreal, Canada), where ribosomal RNAs were depleted
800 and messenger RNAs were sequenced. RNA-seq raw reads were processed with
801 ShotgunMG [11]. Reads were trimmed and filtered for quality (Trimmomatic v.39) and
802 mapped (BWA v0.7.17) against their respective reference genome. The genome of *B.*
803 *mycoides* YL123 originated from our lab, was sequenced, processed and submitted to the

804 NCBI through the Prokaryotic Genome Annotation Pipeline (PGAP) under the assembly
805 accession GCA_024297165.1 on GenBank. The *V. paradoxus* EPS genome was published
806 with accession number NC_014931 [12]. BedTools v2.23.0 was used to generate read
807 count files from each .bam file that were then merged to generate a raw count matrix. The
808 latter file was used as input data for a differential gene expression analysis using DESeq2
809 (Bioconductor, version 1.36.0). For each strain and each time point, gene expression of
810 samples treated with synthetic miRNAs was compared to those treated with scrambled
811 synthetic miRNAs.

812

813 *In vitro miPEP transcriptomic experiment*

814 Arabidopsis culture in vitro. Approximately 50 *Arabidopsis thaliana* col-0 seeds were surface-
815 sterilised by soaking them in 70% ethanol for 5 minutes, followed by 20 minutes in 0.5%
816 sodium hypochlorite. Seeds were then rinsed six times with sterile distilled water and
817 resuspended in 1 mL of water, which was poured onto a Petri dish, with some culture
818 medium, to let the water evaporate under sterile conditions. The Petri dish was sealed with
819 parafilm and placed at 4°C for 3 days, for the stratification process, allowing a synchronous
820 germination. The culture medium was composed of 1.2 g of Hoagland's No. 2 basal salt
821 mixture (Sigma-Aldrich, reference H2395), 8 g of agar 'suitable for plant cell culture' (Sigma-
822 Aldrich, ref. A8678) and 500 mL of MilliQ water. The pH of the medium was adjusted with
823 HCl to 5.8-5.9, before adding the final 250 mL of water, resulting in 750 mL of medium. The
824 solution was autoclaved and poured into square petri dishes for plant culture. When
825 hardened, around 2 cm of solid medium was cut out, creating a ridge where the surface-
826 sterilized seeds were positioned (10-15 seeds/dish). Petri dishes with these positioned
827 seeds were sealed with microtape and placed vertically in a growth chamber, with 16 h of
828 daylight at 21°C, 8 h of darkness at 19°C, with 25% relative humidity.

829 miPEP treatment. Twenty days after the seeds were placed in the growth chamber, the
830 seedlings had developed at least 6 leaves and were ready to be treated. The miPEP
831 treatment consisted in applying 100 µL of a 10 µM solution to each plant, starting at the tip of

832 the root to the base (bottom-to-top). A second treatment was applied 24 h later, before the
833 microbial inoculation. There were three conditions: miPEP159c treatment
834 (MQNLRVHVFLIESARC), a scrambled version of miPEP159c and a water control, each
835 treatment was applied to 7 Petri dishes (biological replicates), containing 10-15 plants each
836 (pseudo-replicates). The use of a scrambled control as well as a solvent control (*i.e.* water)
837 was to ensure that any “miPEP-effect” was indeed due to its action on the plant and not *via*
838 some nutritive or anti-microbial effect of the peptide.

839 Bacterial growth and inoculation. *Variovorax paradoxus* EPS was first inoculated, from a -
840 20°C stock, on a yeast extract Petri dish (5 g/L) to check that colonies are homogenous. A
841 single colony was transferred into a liquid culture of yeast extract to grow overnight at 30°C
842 and 110 rpm. The overnight culture’s optical density was measured at 600 nm to estimate
843 the number of bacterial cells added to each plant: at OD = 1, the estimated cellular
844 concentration is 3.33×10^9 CFU/mL. 100 μ L (with OD = 0.418 *i.e.* $\sim 1.39 \times 10^8$ cells) of the
845 overnight culture was directly applied to each plant, from the tip to the base of the root, one
846 hour after the second miPEP treatment.

847 Sampling. Two hours after the bacterial inoculation, the plants and rhizospheres were
848 sampled. The rhizosphere samples were isolated using a sterile spatula by extracting small
849 squares of medium around the tip of the roots. Whole plants were gently extracted from the
850 medium, by pulling on the aerial system. Samples were flash-frozen in liquid nitrogen and
851 ground shortly after, using a sterile mortar and pestle. The resulting fine powder was stored
852 at -80°C.

853 RNA extraction. The NucleoSpin ® RNA kit (MACHEREY-NAGEL, Düren, Germany) was
854 used to extract RNA from ~100 mg of previously ground powder, with some changes to the
855 manufacturer’s protocol. During the cell lysis, 400 μ L of RA1 solution were used instead of
856 350 μ L, followed by 400 μ L of ethanol to adjust the RNA binding conditions. The following
857 steps remained the same, up until the elution, where only 30 μ L of water was used and left to
858 incubate on the column before centrifugation, resulting in better yields. DNase reaction was
859 performed on-column during the protocol.

860 Target prediction. Potential targets of miRNA159c in the genome of *Variovorax paradoxus*
861 EPS were identified using the online *psRNAtarget* tool. On the server, the ath-miRNA159c
862 sequence (UUUGGAUUGAAGGGAGCUCCU), obtained from miRBase, and the accession
863 number of the EPS genome (CP002417.1) were uploaded for analysis, with the default
864 parameters of the Schema V2 of the 2017 release. Three of the targeted genes were
865 selected for *in vivo* quantification.

866 RT-qPCR. Retrotranscription was performed using 50 ng of total RNA, more or less diluted
867 to start the reaction with 12 μ L of RNA, to which was added 1 μ L dNTPs (10 mM) and 1 μ L
868 of random primers (200 ng), followed by a 5-minute incubation at 65°C. Samples were then
869 placed on ice for 1min. Sequentially, 4 μ L of 5X First-Strand Buffer, 1 μ L of DTT (0,1 M) and
870 1 μ L of SuperScript™ Reverse Transcriptase (200 U/ μ L, Invitrogen) were mixed in by
871 pipetting and the samples incubated for 5 min at 25°C, followed by 1 h at 60°C and 15 min at
872 70°C. Samples were then placed on ice and 100 μ L of RNase-free water was added to the
873 25 μ L of newly synthesised cDNA. Quantitative PCR was performed using a reaction mix
874 composed of 5 μ L of iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories, ref.
875 1725124), 0.6 μ L of primer mix (10 μ M, forward & reverse) and 3.4 μ L of RNase-free water,
876 to which 1 μ L of cDNA was added. All measurements were performed using three technical
877 replicates, in 384-well plates, on a Roche LightCycler ® 340 thermocycler. The qPCR was
878 programmed as follows : a first step of polymerase activation and DNA denaturation at 95°C
879 for 5 min; then the cycle commenced with further denaturation at 95°C for 10 sec, an
880 annealing step at Tm for 20 sec and an extension step at 72°C for 30 sec; after 40 cycles, a
881 final melting curve was produced: from 65°C to 97°C, with 5 acquisitions per °C. The melting
882 temperature (Tm) for each primer set was adjusted to optimise the amplification specificity
883 and their efficiency was validated beforehand and can be found with primer sequences in
884 Supplementary Table S2. Using a dilution range of a cDNA mixture, each primer set's
885 efficiency was calculated using the slope of the $x=\log(\text{dilution})$; $y=C_t$, in the following
886 equation: $(10^{(-1/\text{slope})}-1)*100$, which should be in the 90-110% range. A melting curve

887 was produced at the end of each qPCR program to ensure that a single gene was amplified.

888 In some cases, the amplicon was verified by gel electrophoresis.

889 Data analysis. After RNA extraction and RT, two samples were discarded from further

890 analysis due to experimental mishaps, resulting in 6 replicates in the “miPEP” and “water”

891 conditions and 7 replicates in the “scrambled” condition. Quantification of pri-miR159c only

892 succeeded in 6 out of 7 “scrambled” replicates and 5 out of 6 “water” replicates. Bacterial

893 genes, *i.e.* Lys R, phosphatidate and alpha-macroglobulin, were quantified relative to RecA

894 and GyrA reference genes, whereas the plant pri-miRNA159c was quantified relative to a

895 plant reference gene, cyclophilin. The number of PCR cycles necessary for the fluorescence

896 to emerge from the background noise is referred to as the “ C_t ”. Noise was automatically

897 determined by the LightCycler 480 software and C_t s were calculated with the Abs Quant/2nd

898 Derivative Max - high confidence mode. A coefficient of variation (CV) was calculated for the

899 three technical replicates and a threshold of 2% was applied : extreme technical replicates

900 were excluded, if this limit was exceeded. The remaining technical replicates were averaged

901 to create the C_t value for each sample. The analysis of pri-miR159c expression was done

902 using the Pfaffl method, which takes into account the efficiency of each primer set [13]. This

903 method calculates a relative expression ratio based on the difference of C_t s of a gene of

904 interest in a sample *versus* a calibrator, and in comparison, with a reference gene. The

905 analysis of bacterial genes relied on two reference genes, which called for a slightly modified

906 version of the Pfaffl method. To calculate a relative expression ratio, we had to normalise our

907 qPCR data using the geometric mean of both reference genes [14]. In both cases, we

908 averaged the samples treated with water to create a calibrator.

909 Statistical analyses. Statistical analyses were performed on the resulting relative expression

910 ratios, comparing group-to-group, using a Welch Two Sample t-test or a Wilcoxon rank sum

911 exact test, depending on if the data were normal.

912

913 **Effect of miRNAs on the bacterial community**

914 *Arabidopsis mutant experiment*

915 Plant growth and mutant description. Five *A. thaliana* mutants were grown in a mix of soil
916 and sand (2:1) for a month, in individual pots. Mutants were provided by Hervé Vaucheret
917 and Taline Elmayan (IJPB, INRAE, Versailles, France). *RTL1* mutant over-expresses *RTL1*
918 protein which results in a suppression of siRNA pathway without affecting miRNAs [15].
919 *RTL1myc* over-expresses *RTL1* protein flagged with Myc epitope, rendering *RTL1* less
920 active, so siRNA pathway is less suppressed than with *RTL1* mutant. *Ago1-27* mutant has
921 AGO protein function partially impaired and is completely post-transcription gene silencing
922 (PTGS) deficient [16]. *Dcl1-2* mutant has total loss of function of *DCL1* protein resulting in
923 low levels of miRNA and developmental problems [17]. *Hen1-4* mutant is miRNA defective
924 but is also affected in some siRNA – PTGS [18]. *HEN1* methylates siRNA and miRNA to
925 maintain their levels and size, but also to protect them from uridylation and subsequent
926 degradation [19].

927 DNA extraction, sequencing and qPCR. We grew *A. thaliana* mutants and wild-type plants in
928 quadruplicate for a month and sampled the root, rhizoplane and closely adhering
929 rhizosphere. Two of the wild-type plants were lost during the experiment and subsequent
930 analyses. DNA was extracted using NucleoSpin Plant II kit (Macherey-Nagel). DNA was sent
931 for 16S rRNA gene amplicon (primers 341F: 5'- CCTACGGNGGCWGCAG- 3' and 534R:
932 5'- ATTACCGCGGCTGCTGGCA – 3') sequencing on an Illumina MiSeq in paired-end mode
933 (2x250 bp) at the Centre d'expertise et de services Génome Québec (Montreal, Canada). In
934 parallel, 16S rRNA gene was quantified by qPCR, using the same primers as for
935 sequencing. Within each well was 0.1 μ L of each primer (10 μ M), 4 μ L LightCycler® 480
936 SYBR Green I Master (final volume 6 μ L PCR mix) and 2 μ L of DNA (25 ng. μ L $^{-1}$). We used
937 the following 40-cycle program: pre-incubation (95°C- 4 min) / amplification (95°C – 30 s ;
938 49°C – 1 min ; 72°C – 1 min) / 72°C-10 min/ melting curve (95°C – 5 s ; 49°C – 1 min ; 97°C
939 – continuous 5 measures/ °C) / cooling (40°C – 30 s). At the last step of amplification, a
940 single measurement was performed and then continuously during the melting curve step. A
941 minimum of 3 technical replicates was quantified. The number of copies of 16S rRNA gene

942 was determined in comparison with a standard curve using serial dilutions of plasmids with
943 cloned fragments ($R^2 = 0.994$).

944 Amplicon sequences processing. Amplicon sequencing data was processed with
945 AmpliconTagger [20]. Briefly, contaminants and unpaired reads were removed, and
946 remaining sequences were trimmed to remove adaptors and primers. Reads were then
947 filtered for quality control such that reads having at least one N or having average phred
948 score quality less than 20 were left out. A total of 3,776,292 reads passed the quality control
949 and 1,230,944 sequences were successfully processed to generate ASVs (DADA2) [21].
950 ASVs were filtered for chimaeras using DADA2's internal removeBimeraDeNovo (method =
951 'consensus') workflow followed by VSEARCH's [22] UCHIME *de novo*. Each remaining ASV
952 was assigned a taxonomic lineage by using the RDP classifier with the SILVA [23] R138.
953 ASVs assigned to bacterial/archaeal and rendered into ASV abundance tables.

954 Microbial community analyses. Analyses of ASVs composing the microbial communities
955 were performed using the R package "phyloseq" v 1.32.0 [24]. After checking the rarefaction
956 curves, all samples seemed sufficiently sequenced. For Shannon diversity index calculation,
957 all reads were rarefied to the lowest number of reads found in a sample. Significance of
958 differences in alpha-diversity between mutants was tested using a linear model, whilst
959 checking the normal distribution of residuals and using wild-type (WT) samples as a
960 reference. If residuals did not follow a normal distribution, a general linear model (GLM) with
961 gamma distribution and "log" or "link" scale were used. All tests performed were, by default,
962 two-sided.

963 Statistical analyses. The effect of miRNA/siRNA mutation in *A. thaliana* on the structure of
964 microbial communities was visualized using Principal Coordinate Analysis (PCoA)
965 ordinations of Bray-Curtis dissimilarities. Permutational Multivariate Analysis of Variance
966 (Permanova) was used to determine the statistical impact of miRNA/siRNA mutations on the
967 microbiota structure, alongside checking group dispersion and pairwise tests.

968

969 *miPEP experiment*

970 Plant growth and miPEP treatment. *Arabidopsis thaliana* Col-0 were sowed on a mix of
971 potting soil and sifted sand (<2.2 mm) (ratio 2:1), in a greenhouse. After germination,
972 seedlings were transferred into individual pots (3 cm diameter, 5 cm depth) that were moved
973 to a growth chamber under 16 h of daylight, 8 h of darkness, at 20°C. When the plants
974 reached the 6-leaf stage, the miPEP treatments started. Plants (16 replicates/condition)
975 were treated with 500 µL of water (control condition) or a miPEP solution (20 µM of
976 miPEP159a: MTWPLLSLSFLLSKYV, miPEP159b: MGLRKVLEMNTIFDSLFLSH or
977 miPEP159c: MQNLRVHVFLIESARC), applied at the base of the crown, 3 times a week for a
978 total of 10 applications. After each application, the trays in the chamber were moved around
979 to diminish any border effect.

980 Sampling & DNA-RNA extraction. Once the treatments were over, each individual pot was
981 spilled on a sieve and the aerial part was separated from the root system. The roots of two
982 plants were pooled together and briefly rinsed in 10 mL of PBS (1X). The roots and the
983 attached soil were then separated from the rinsing solution, using a funnel and a sterile
984 compress, and were subsequently dried using absorbent paper. The dried roots and
985 rhizosphere were flash frozen in liquid nitrogen and stored at -80°C. DNA was extracted
986 using the NucleoSpin® Plant II mini kit (MACHEREY-NAGEL, Düren, Germany) whereas
987 RNA was isolated with a homemade protocol [25]. The integrity and quantity of the extracted
988 DNA and RNA was estimated using Nanodrop and by running a 1% agarose gel. Amplicon
989 sequencing, processing, qPCR quantification, and analyses were performed as described
990 above.

991

992 *Simplified soil community experiment*

993 Soil microbes enrichment.

994 The soil microbes were enriched from five different media: 1) Tryptic Soy Broth, 2) Potato
995 Dextrose Broth, 3) Minimal medium + Carbon solution + NH4NO3, 4) Minimal medium +
996 Carbon solution + urea and 5) Minimal medium + Carbon solution + amino acids. The
997 minimal media were supplemented with a solution of artificial carbon-rich root exudates: 20

998 mM glucose 20 mM fructose, 12 mM sucrose, 20 mM lactic acid, 12 mM citric acid, 16 mM
999 succinic acid. For these media, the final concentration was 0.5 g/L of C and 0.1 g/L of N. To
1000 culture the soil microbes, 2 g of sieved agricultural soil (sampled at the Armand-Frappier
1001 experimental field: 45.5416N, -73.7173E) was incubated in 20 mL of each media, for 28 h
1002 (200 rpm, 25 °C). The cultures were, filtered 30 µm, normalized to the same optical density,
1003 pelleted (4 °C, 15 min, 4700 g), suspended in PBS, pooled and aliquoted into sterile
1004 cryotubes. A cryoprotective solution 2x (0.6% (w/v) Tryptic Soy Broth, 10% (v/v) DMSO and
1005 2% (w/v) trehalose) was added to the cultures (1:1 (v/v)) and the cryotubes were gently
1006 mixed (5x inverting), left to equilibrate for 20 min and placed at -80 °C [26]. Cells were
1007 revived, inoculated in 5 mL of TSB overnight, washed, normalized to OD600 0.200 and
1008 inoculated in a 96-wells plate containing a mixture of 17 amino acids as nitrogen source and
1009 artificial root exudates as a carbon source.

1010 Microbial growth and miRNA exposure.

1011 To investigate the potential modification of microbial activity by plant miRNAs, we revived,
1012 cultured overnight (in 5 mL of TSB, 28 °C, 200 rpm), washed (2x) and normalized the soil
1013 microbes (OD600 0.200). We then cultured them in a medium containing an equimolar
1014 mixture of 17 L-amino acids (15 mM), artificial root exudates (15 mM) and a miRNA
1015 treatment that had a final concentration of 10 µM (five biological replicates were prepared).
1016 The miRNA treatment consisted of an equimolar mix of five miRNAs (ath-miR158a-3p, ath-
1017 miR158b, ath-miR159a, ath-miR827, and ath-miR5642b) of either the plant mimics or
1018 scrambled controls (Supplementary Table S1). Microbial activity was quantified by
1019 introducing a tetrazolium dye, which undergoes a color change to purple in the presence of
1020 dehydrogenases, subsequently intensifying the optical density at 600 nm. Optical density
1021 measurements were recorded hourly using a plate reader. The experiment was concluded
1022 after 52 hours.

1023 16S rRNA gene amplicon sequencing.

1024 To determine whether alterations in microbial activity were indicative of changes within the
1025 bacterial community, we proceeded with a microvolume physical DNA extraction [27] from

1026 the cultures and prepared the libraries to sequence the V4-V5 region of the 16S rRNA gene
1027 (primers 515F-Y: GTGYCAGCMGCCGCGGTAA and 926R: CCGYCAATTYMTTTRAGTTT)
1028 [28] using the Illumina MiSeq platform at the Centre d'expertise et de services de Génome
1029 Québec, Montreal, Canada. The sequences were processed with the AmpliconTagger
1030 pipeline [20], and analysed as described above.

1031 **References**

1032 1. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
1033 sequence data. *Bioinformatics*. 2014;30:2114-2120.

1034 2. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences
1035 to function. *Nucl Acids Res.* 2019;47:D155-D162.

1036 3. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
1037 transform. *Bioinformatics*. 2009;25:1754-60.

1038 4. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
1039 features. *Bioinformatics*. 2010;26:841-842.

1040 5. Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao
1041 J et al. Genomic features of bacterial adaptation to plants. *Nat Genetics*. 2017;

1042 6. Dai X, Zhuang Z, Zhao PX. psRNATarget: a plant small RNA target analysis server
1043 (2017 release). *Nucl Acids Res.* 2018;

1044 7. Axtell MJ. Classification and Comparison of Small RNAs from Plants. *Ann Rev Plant
1045 Biol.* 2013;64:137-159.

1046 8. Pearson WR. Finding Protein and Nucleotide Similarities with FASTA. *Curr Protoc
1047 Bioinformatics*. 2016;53:3 9 1-3 9 25.

1048 9. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C et al. InterProScan 5:
1049 genome-scale protein function classification. *Bioinformatics*. 2014;30:1236-1240.

1050 10. Manjang K, Tripathi S, Yli-Harja O, Dehmer M, Emmert-Streib F. Graph-based
1051 exploitation of gene ontology using GOxploreR for scrutinizing biological significance.
1052 *Sci Rep.* 2020;10:16672.

1053 11. Tremblay J, Schreiber L, Greer C. High resolution shotgun metagenomics the more
1054 data the better? *Brief Bioinfo.* 2022;23:bbac443.

1055 12. Han J-I, Choi H-K, Lee S-W, Orwin PM, Kim J, LaRoe SL et al. Complete genome
1056 sequence of the metabolically versatile plant growth-promoting endophyte *Variovorax
1057 paradoxus* S110. *J Bacteriol.* 2011;193:1183-1190.

1058 13. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR.
1059 *Nucl Acids Res.* 2001;29:e45.

1060 14. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al.
1061 Accurate normalization of real-time quantitative RT-PCR data by geometric
1062 averaging of multiple internal control genes. *Genome Biol.* 2002;3:RESEARCH0034.

1063 15. Shamandi N, Zytnicki M, Charbonnel C, Elvira-Matelot E, Bochnakian A, Comella P
1064 et al. Plants Encode a General siRNA Suppressor That Is Induced and Suppressed
1065 by Viruses. *PLoS Biol.* 2015;13:e1002326.

1066 16. Morel JB, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F et al. Fertile
1067 hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene
1068 silencing and virus resistance. *Plant Cell.* 2002;14:629-639.

1069 17. Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation of Dicer-Like1 in
1070 *Arabidopsis* by microRNA-guided mRNA degradation. *Curr Biol.* 2003;13:784-9.

1071 18. Boutet S, Vazquez F, Liu J, Béclin C, Fagard M, Gratias A et al. *Arabidopsis HEN1*: a
1072 genetic link between endogenous miRNA controlling development and siRNA
1073 controlling transgene silencing and virus resistance. *Curr Biol.* 2003;13:843-848.

1074 19. Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a
1075 3'-end uridylation activity in *Arabidopsis*. *Curr Biol.* 2005;15:1501-7.

1076 20. Tremblay J, Yergeau É. Systematic processing of rRNA gene amplicon sequencing
1077 data. *GigaScience.* 2019;8:giz146.

1078 21. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:
1079 high-resolution sample inference from Illumina amplicon data. *Nat Meth.*
1080 2016;13:581.

1081 22. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open
1082 source tool for metagenomics. *PeerJ.* 2016;4:e2584.

1083 23. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al. The SILVA
1084 ribosomal RNA gene database project: improved data processing and web-based
1085 tools. *Nucl Acids Res.* 2012;41:D590-D596.

1086 24. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive
1087 analysis and graphics of microbiome census data. *PLoS One.* 2013;8:e61217.

1088 25. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. Rapid method for coextraction of
1089 DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-
1090 based microbial community composition. *Appl Environ Microb.* 2000;66:5488–5491.

1091 26. Kerckhof FM, Courtens EN, Geirnaert A, Hoefman S, Ho A, Vilchez-Vargas R et al.
1092 Optimized cryopreservation of mixed microbial communities for conserved
1093 functionality and diversity. *PLoS ONE.* 2014;9:e99517.

1094 27. Bramucci AR, Focardi A, Rinke C, Hugenholtz P, Tyson GW, Seymour JR et al.
1095 Microvolume DNA extraction methods for microscale amplicon and metagenomic
1096 studies. *ISME Commun.* 2021;1:79.

1097 28. Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small
1098 subunit rRNA primers for marine microbiomes with mock communities, time series
1099 and global field samples. *Environ Microbiol.* 2016;18:1403-1414.

1100

1101

1102 **Supplementary Table S1:** Sequences of the single-stranded synthetic miRNAs.

1103

1104

miRNA	Sequences
ath-miR158a-3p	UCCCAAAUGUAGACAAAGCA
ath-miR158b	CCCCAAUUGUAGACAAAGCA
ath-miR159a	UUUGGAUUGAAGGGAGCUCUA
ath-miR159b-3p	UUUGGAUUGAAGGGAGCUCUU
ath-miR159c	UUUGGAUUGAAGGGAGCUCCU
ath-miR161.1	UGAAAGUGACUACAUUCGGGGU
ath-miR165b	UCGGACCAGGCUUCAUCCCCC
ath-miR827	UUAGAUGACCAUCAACAAACU
ath-miR5642b	UCUCGCGCUUGUACGGCUUU
sc-ath-miR158a-3p	CAACAAGAUGACAAUGUCAC UGAAAACAUACAUACAGACCG*
sc-ath-miR158b	GACAAGCUCCACAUACAGAA
sc-ath-miR159a	AGGGAAGUAUUGUCGUGACUU AGAGAGACCUUGGGUUGAUU**
sc-ath-miR159b-3p	UGGGGACUGUAUCUUAGUUAG
sc-ath-miR159c	CAGGCCUUGGUGUUUAUAGAG
sc-ath-miR161.1	CUGCAGCUAGUUGGGUAAAGA
sc-ath-miR165b	CUCCACCGAGGUCCUCCACGU
sc-ath-miR827	GAUCCAAAAGCUAAUUCAC
sc-ath-miR5642b	ACGUCGUAAAACUUCACGUG

1119

1120 * and **: Scramble miRNAs used in the simplified soil community experiment

1121 ** Scramble miRNA ath-miR159a used during confocal microscopy imaging and flow cytometry.

1122 Note: all sequences were methylated at their 3' end.

1123

1124

1125

1126 **Supplementary Table S1:** Primers used for qPCR in *Arabidopsis thaliana* and *Variovorax*
1127 *paradoxus* EPS for the *in vitro* miPEP transcriptomic experiment. Most primers were

Amplified gene	Amplicon size	Forward primer 5'-3'	Reverse primer 5'-3'	Tm	Reference
pri-miR159c	178bp	AGCTCCTTCTTCTCTCTTAAT	CGTCTTCTCGAAATAAACAAACATT	53°C	Allen, et al., 2010
cyclophilin	62bp	TGGACCAGGTGTACTTCAATGG	CCACTGTCGCAATTACGACTTG	53°C	Allen, et al., 2010
LysR	96bp	GTAGGTGAAGCGGGTGAGG	TCAAGGTGAAAGGCCACGTC	53°C	from EPS genome
phosphatidate	90bp	TTCATCAGCCTGGCCTACAC	CGGGGCAGTACTTCTGATC	54°C	from EPS genome
alpha-macroglobulin	82bp	CAGGCTGGTGATCTGAAGGG	AATGAGGGAACGAAACGGGTC	53°C	from EPS genome
RecA	99bp	CCTTCTTGATGGTGCCGAT	TGATGTTCGGTTGCCCTGAA	57°C	from EPS genome
GyrA	93bp	CCGAACCTCTGCTTGATGGT	CAGAGATCGACGACCTGCTC	57°C	from EPS genome

1128 designed based on the EPS genome, except for plant gene primers.

1129

1130

1131 Allen R. S., Li J., Alonso-Peral M. M., White R. G., Gubler F., Millar A. A. (2010). MicroR159

1132 regulation of most conserved targets in *Arabidopsis* has negligible phenotypic effects.

1133 Silence 1:18. doi: 10.1186/1758-907X-1-18

1134