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Anxiety disorders affect millions of people worldwide and impair health, happiness, and 
productivity on a massive scale. Developmental research points to a connection between early-
life behavioral inhibition and the eventual development of these disorders. Our group has 
previously shown that measures of behavioral inhibition in young rhesus monkeys (Macaca 
mulatta) predict anxiety-like behavior later in life. In recent years, clinical and basic researchers 
have implicated the central extended amygdala (EAc)—a neuroanatomical concept that includes 
the central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST)—as a 
key neural substrate for the expression of anxious and inhibited behavior. An improved 
understanding of how early-life behavioral inhibition relates to an increased lifetime risk of anxiety 
disorders—and how this relationship is mediated by alterations in the EAc—could lead to 
improved treatments and preventive strategies. In this study, we explored the relationships 
between infant behavioral inhibition and peri-adolescent defensive behavior and brain metabolism 
in 18 female rhesus monkeys. We coupled a mildly threatening behavioral assay with concurrent 
multimodal neuroimaging, and related those findings to various measures of infant temperament. 
To score the behavioral assay, we developed and validated UC-Freeze, a semi-automated 
machine-learning (ML) tool that uses unsupervised clustering to quantify freezing. Consistent with 
previous work, we found that heightened Ce metabolism predicted elevated defensive behavior 
(i.e., more freezing) in the presence of an unfamiliar human intruder. Although we found no link 
between infant inhibited temperament and peri-adolescent EAc metabolism or defensive 
behavior, we did identify infant nervous temperament as a significant predictor of peri-adolescent 
defensive behavior. Our findings suggest a connection between infant nervous temperament and 
the eventual development of anxiety and depressive disorders. Moreover, our approach highlights 
the potential for ML tools to augment existing behavioral neuroscience methods. 
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Introduction 
Anxiety disorders are among the most prevalent 
psychiatric conditions, affecting an estimated 
one in four people during their lifetime1–3. These 
disorders are frequently comorbid with a wide 
range of other psychopathologies, including 
depression, as well as alcohol- and substance-
abuse disorders4–7, and are considerably more 
prevalent in women than in men8. Although a 
complete understanding of the etiology of these 

disorders remains elusive, researchers have 
begun to characterize the risk factors that predict 
their onset. Identifying and investigating these 
risk factors promises to yield an improved 
understanding of anxiety disorders and will likely 
contribute to their treatment and prevention. 
 
An extremely inhibited or anxious temperament 
during childhood increases the risk of developing 
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an anxiety disorder later in life9–13. 
Developmental researchers often evaluate 
inhibited or anxious temperaments by measuring 
a child’s behavioral inhibition (BI)—that is, their 
reactivity to novel stimuli, unfamiliar situations, 
and strangers11,14–16. Some aspects of BI emerge 
early in life and are trait-like and stable; for 
instance, a 4-month-old infant’s aversion to 
unfamiliar stimuli predicts composite BI 
measured years later17,18. Although high BI often 
predicts the eventual development of anxiety 
disorders9,19, researchers do not fully understand 
how infant temperament relates to childhood or 
adolescent BI, or its associated brain function. 
Because nonhuman primates (NHP) have a 
protracted development period, they are well-
suited to build this understanding. 
 
Thanks to our relatively recent evolutionary 
divergence, NHPs and humans share a variety 
of socioemotional, anatomical, and genetic 
similarities that facilitate high-impact 
translational research, notably including an 
elaborated prefrontal cortex20–23. Because of 
this, NHPs are excellent models for studying the 
mechanisms of early-life risk inherent to a range 
of disorders24–30. To support such studies, 
researchers at the California National Primate 
Research Center (CNPRC) have, over the past 
2 decades, evaluated over 5,000 infant (i.e., 3- 
to 4-month-old) NHPs as part of its 
BioBehavioral Assessment program (BBA)—a 
25-hour battery that catalogs each animal’s 
physiological reactivity, emotionality, and 
temperament31. One of the temperament 
measures is based on behavior; four others are 
based on human handlers’ ratings of trait-like 
qualities32,33 and are similar to evaluations of BI 
in children15,16,34. These infant measurements 
complement measures of BI and anxious 
temperament in adult and adolescent rhesus 
monkeys (Macaca mulatta) and are thought to 
reflect a trait-like inhibited temperament defined 
by an enduring tendency to avoid novel and 

potentially threatening stimuli and situations13,35–

40. 
 
Investigations into the neural substrates of 
anxiety disorders and BI in humans10,41–46, as 
well as inhibited temperament and BI in 
NHPs35,38,47–52, have implicated a distributed 
network of brain regions. Notably, this network 
includes the central extended amygdala (EAc): a 
neuroanatomical concept that encompasses the 
central nucleus of the amygdala (Ce) and the 
bed nucleus of the stria terminalis (BST). The 
EAc is central to threat processing53–57 and is 
well-positioned to orchestrate adaptive 
defensive physiology and behavior45,52,53,58–60. A 
range of sensory, evaluative, and contextual 
inputs converge on the EAc, which projects to 
downstream effector regions to initiate these 
defensive responses13,53,60,61. The EAc plays a 
role in the integration of emotion-relevant signals 
and produces scaled behavioral responses to a 
variety of stimuli—including uncertain threat 
stimuli, which reliably elicit adaptive defensive 
responses like freezing62,63. Neuroimaging 
studies highlight the EAc’s role in threat 
responding: A study of 592 peri-adolescent 
rhesus monkeys from the Wisconsin National 
Primate Research Center (WNPRC) and the 
Harlow Center for Biological Psychology, for 
example, linked individual differences in anxious 
temperament to variation in glucose metabolism 
in both the Ce and BST during exposure to an 
uncertain threat assay, such that more anxiety-
like behaviors predicted increased metabolism in 
those regions37. Additionally, this study found 
metabolism within different components of the 
EAc to be differentially sensitive to heritable and 
non-heritable influences. Metabolism in the BST 
was co-inherited with individual differences in 
freezing in response to a potential uncertain 
threat, whereas metabolism in the Ce was 
not37,64,65. This raises the intriguing possibility 
that Ce metabolism may be especially plastic 
and represent the environmental contributions to 
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the risk of developing anxiety disorders. Notably 
WNPRC animals are raised in small, indoor 
groups. By comparison, CNPRC animals are 
raised in large, outdoor, naturalistic colonies, 
and thus can experience a broader range 
socioemotional contexts. To maximally advance 
our understanding of inhibited temperament, its 
neural substrates, and its relation to the 
progression of BI across different early-life 
environments, it is critical to standardize the 
methods for cross-facility replication. The current 
gold standard used to measure defensive 
behaviors in NHPs is hand scoring, during which 
trained researchers watch video recordings of 
animals placed in mildly threatening contexts 
and denote the time, type, and duration of 
behaviors of interest, such as freezing episodes. 
Although hand scoring has been instrumental to 
our understanding of NHP behavior, it presents 
challenges to replicability and can demand large 
time commitments from expert-trained 

behavioral coders. The rise of computing speed, 
power, and availability presents an opportunity to 
develop tools that scale easily and improve study 
replicability. To aid in the replicable assessment 
of inhibited temperament in NHPs, we developed 
and validated UC-Freeze, a semi-automated 
machine-learning (ML) approach that scores 
freezing behavior via unsupervised clustering 
(https://github.com/DanHolley/UC-Freeze). 
 
Here, we assessed brain metabolism and used 
UC-Freeze to objectively score freezing in 18 
peri-adolescent female rhesus monkeys during 
exposure to an uncertain threat (i.e., a human 
intruder). We analyzed the relationship between 
infant measures of BI (and, in exploratory 
analyses, temperament), and concurrent 
measures of peri-adolescent BI (i.e., freezing) 
and brain metabolism (Fig. 1A). We 
hypothesized that alterations in the EAc would 
be associated with infant and peri-adolescent BI.  

Figure 1. Study design and selection procedure. a) Study design: At 3 to 4 months 
old, all candidate animals were evaluated for a range of infant measures during the BBA. 
Relevant to our study, the BBA yields objective inhibition scores and other temperament 
ratings for each animal. At 2 to 3 years old, animals selected for our study were removed 
from their home colonies, injected with the radiotracer [18F]fludeoxyglucose (FDG), 
and behaviorally assessed via a 30-minute no-eye-contact (NEC) condition of the 
human intruder paradigm, after which PET scans were administered to evaluate glucose 
metabolism during the NEC. b) Selection procedure: The selection procedure for our 
study: 20 of 98 candidate peri-adolescent animals were initially selected based on a 
stratified sampling of 1 animal from each of 20 bins defined by z-scored inhibited-
temperament scores, assessed during infancy as part of the BBA. 
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Methods 
Animals & Selection Procedure 
Twenty peri-adolescent female rhesus monkeys 
(M. mulatta, M [SD]= 2.71 years [.44]) that 
previously underwent BBA testing during infancy 
(3- to 4-months) were selected from a pool of 
ninety-eight potential animals using a stratified 
sampling procedure, in which one animal was 
selected from each of 20 uniformly distributed 
bins based on BBA inhibited temperament 
scores (Fig. 1B). The stratified selection 
procedure yielded a subject pool that captured 
the full spectrum of variation in 3- to 4-month-old 
inhibited temperament. Because females are at 
increased risk of developing anxiety and 
depressive disorders as they transition to 
adolescence8,66,67, in this study we focused 
specifically on females. We subjected each 
animal to the NEC-FDG paradigm (described in 
detail below) and scored their behavior with UC-
Freeze. Two subjects were excluded from our 
analyses due to problems with video capture that 
rendered their videos unusable, making the final 
number of subjects n=18. All housing and 
experimental procedures were conducted per 
guidelines set by the UC Davis Institutional 
Animal Care and Use Committee. 
 
Infant BioBehavioral Assessment 
The BBA is a 25-hour battery of emotional, 
cognitive, and biological assessments that 
evaluate qualities like resilience to mild 
challenges, willingness to interact with novel 
objects, memory, hypothalamic-pituitary-adrenal 
system regulation, and hematology33,68. CNPRC 
animals undergo BBA testing during infancy (i.e., 
between 3 and 4 months of age), and most live 
the majority of their lives in large, outdoor 
colonies of roughly 100 conspecifics. This 
approach has been described in detail 
elsewhere33 and has enabled CNPRC 
researchers to investigate relationships between 
various infant measures and the eventual 

emergence of disorder-relevant phenotypes in 
naturalistic socio-environmental settings30,69–71.  
 
Relevant to this study, the BBA yields an 
inhibited temperament (IT) score for each animal 
(described in31,33,47) based on four factors: 
Activity in the first 15 minutes of day 1 and a 
period during day 2, and Emotionality during 
those same time points. These factors were 
previously identified through the factor analysis 
of roughly 2,000 animals72. Activity includes time 
locomoting; time NOT hanging from the top or 
side of the cage; rate of environmental 
exploration; and whether the animal drank 
water*, ate food*, or was observed crouching in 
the cage* (* = dichotomized due to rarity). 
Emotionality includes the animal’s rates of 
cooing and barking, as well as whether the 
animal lipsmacked*, displayed threats*, or 
scratched* (* = dichotomized due to rarity). Each 
animal’s early-life inhibition score was calculated 
as the mean of its z-scored day 1 and day 2 
Activity and Emotionality. 
 
At the end of BBA testing, before each animal 
was returned to its mother, the technician who 
administered testing rated each animal on four 
composite measures of trait-like infant 
temperament: vigilance, nervousness, 
confidence, and gentleness (see33, for a full 
description of the BBA’s temperament ratings). 
These measures are intended to accumulate 
across the full 25-hour testing period, and reflect 
an expert primatologist’s cumulative assessment 
of the animal, akin to teacher or experimenter 
ratings in studies of children. 
 
NEC-FDG Paradigm: Measuring Peri-
Adolescent Behavior & Brain Metabolism 
To evaluate the relationship between infant 
measures and peri-adolescent defensive 
behaviors, we used the well-validated no-eye- 
contact condition (NEC) of the human intruder 
paradigm37,73. In the NEC context, a human 
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intruder enters the room and presents their 
profile to the animal while making no eye 
contact. Integrated brain metabolism during the 
NEC was measured using [18F]fludeoxyglucose 
(FDG) positron emission tomography (PET). 
Specifically, each animal was injected with FDG 
immediately prior to behavioral testing and then

 placed in a test-cage for exposure to the 30-
minute NEC context. Immediately after 
exposure, animals were anesthetized for PET 
scanning (Fig. 1A). Because of the time-course 
of FDG-uptake, this paradigm is ideal for 
identifying integrated brain metabolic differences 
between individuals during threat processing.  
  

Figure 2. UC-Freeze: An unsupervised-clustering approach to semi-automated behavioral scoring. a) UC-Freeze 
decomposes 30fps video into individual frames, converts each frame to grayscale, and computes the coefficient of 
determination value (i.e., r2, or similarity score) for pairs of consecutive frames. b) UC-Freeze next filters the similarity scores 
and arrays them along the timecourse of the video, so that the full timecourse is described as a series of similarity scores. The 
similarity scores are then passed into our unsupervised clustering algorithm, which first c) arranges them as a histogram before 
d) computing a probability density function for the similarity scores by iterating over a randomly seeded one-dimensional 
GMM 300 times. In edge cases, the output of UC-Freeze can be manually overridden (see Methods). e) Example output: UC-
Freeze generates a unique model for each subject. Our program then queries each subject’s similarity scores against the model’s 
putative freezing distribution and recapitulates the timecourse of the video as a series of posterior probabilities indicating each 
similarity score’s likelihood of belonging to that distribution. Finally, UC-Freeze uses a combination of anomaly-detection and 
thresholding operations to find 90-frame sequences during which the posterior probability of every score’s membership in the 
freezing distribution’s rightmost 25% density is 95% or greater, and classifies those events as freezing. 
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FDG-PET and MRI Acquisition. Animals 
received an intravenous injection (IV) of 
[18F]fludeoxyglucose (M=7.449 mCi, sd=1.512 
mCi) immediately before their 30-minute 
exposure to the NEC context, during which FDG 
uptake occurred. After behavioral testing, 
animals were anesthetized, intubated, and 
transported to undergo a PET scan. Anesthesia 
was maintained using 1-2% isoflurane gas. FDG 
and attenuation scans were acquired using a 
piPET scanner (Brain Biosciences) located 
within the Multimodal Imaging Core at the 
CNPRC. Approximately 1 week after exposure 
to the NEC-FDG paradigm, anatomical 3D T1-
weighted scans were obtained using a 3T 
Siemens Skyra scanner, a dedicated rhesus 8-
channel surface coil, with inversion-recovery, 
fast gradient echo prescription (TI/TR/TE/Flip/ 
FOV/Matrix/Bandwidth: 1100ms/2500.0ms/3.65 
ms/7°/154mm/512×512/240 Hz/Px) with whole 
brain coverage (480 slice encodes over 144 mm) 
reconstructed to 0.3×0.3×0.3 mm on the 
scanner). 
 
FDG-PET and T1-MRI processing. All T1-
weighted images were manually masked to 
exclude non-brain tissue by LJC. A study 
specific T1 anatomical template was created 
using an iterative procedure with Advanced 
Normalization Tools74,75 (ANTS) in order to 
standardize our study-specific template for 
cross-facility replication, we first aligned each 
subject’s T1 anatomical image to the National 
Institute of Mental Health Macaque Template 
(NMT) using a rigid body registration. The NMT 
template provides a common platform for the 
characterization of neuroimaging results across 
studies76. A non-linear registration was then 
performed using a symmetric diffeomorphic 
image registration and a .25 gradient step size; 
a pure cross correlation with cost-function with a 
window radius 2 and weight 1; the similarity 
matrix was smoothed with sigma=2; and the 
process was repeated at four increasingly fine 

levels of resolution with 30, 20, 20, and 5 
iterations at each level, respectively. The 
average of all 20 individual subjects’ T1 images 
in NMT space was computed and taken to be  
the study-mean. Similarly, the non-linear 
deformation field was also averaged and taken 
to be the deformation mean. The deformation 
mean was then inverted and 15% of the 
deformation was applied to the study mean, to 
obtain the first iteration of the study specific 
template. This process of averaging was 
repeated four times to obtain a final study 
specific T1-weighted MRI template that matched 
the NMT template, and optimally reflected the 
brain morphometry of subjects of this study.  
 
To get each subject’s FDG-PET scan into this 
template space, each animal’s FDG-PET image 
was aligned to its respective T1 anatomical 
image using a rigid body mutual information 
warp, and the transformation matrices from T1 to 
the study-specific NMT-template space was then 
applied to the FDG-PET image to obtain PET 
images in NMT template space.  
 
Once in standard space, the FDG-PET images 
were grand mean scaled to the average 
metabolism across the brain. To facilitate cross-
animal comparisons, images were spatially 
smoothed using a 4-mm FWHM Gaussian 
kernel. 
 
A priori regions of interest (ROI) were drawn for 
the motor cortex, as well as the two major 
components of the EAc, the Ce and the BST. All 
ROIs were manually drawn on the study-specific 
T1 template according to the Paxinos atlas77 and 
verified by members of the team (LJC, DH, ASF). 
 
UC-Freeze: An Unsupervised Clustering 
Approach to Measuring Freezing 
To accurately and reproducibly assess freezing 
behavior during the NEC, we developed UC-
Freeze: a semi-automated ML approach that 
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uses unsupervised clustering to score freezing 
behavior. We targeted the definition of freezing 
used in previous NEC NHP studies35,37,65; that is, 
any period of 3 or more seconds during which 
the animal displayed a tense body posture and 
no movement, other than slow movements of the 
head. 
 
UC-Freeze assesses freezing by first de-
composing 30-fps full-motion video collected 
from each subject into individual frames. It then 
converts the frames to grayscale and vectorizes 
them such that a two-dimensional array of 
numeric values corresponding to various shades 
of gray represents each frame’s pixels. UC-
Freeze next computes the coefficient of 
determination (r2) between each pair of 
consecutive frames in order to quantify the 
degree of change between frames. We 
henceforth refer to these r2 values as similarity 
scores. Lower similarity scores correspond to 
larger differences between frames, which 
suggest the animal is in motion (Fig. 2A). To 
ensure robustness against dropped video 
frames and video aliasing that can occur as a 
function of lighting, UC-Freeze then denoises 
the signal by substituting outlier similarity scores 
(thresholded as any score at or below an r2 of 
.93) with the modal similarity score before 
passing the corrected vector through an 
adjustable median filter. (A 3-frame kernel was 
used in our analyses and is recommended as a 
default setting.) This process maintains 
sensitivity to the behavior of interest while 
buffering against frame-to-frame variation. 
These filtered similarity scores comprise the 
dataset that is passed into UC-Freeze’s 
unsupervised clustering algorithm (Fig. 2B), 
which leverages one-dimensional Gaussian 
mixture modeling (GMM). 
 
GMM is a form of unsupervised machine 
learning that assumes non-normal datasets are 
a mixture of standard normal distributions78. An 

advantage of GMM is its ability to cluster 
effectively by estimating probability densities of 
one-dimensional data, such as our subjects’ 
similarity scores, before making probabilistic 
assignments to clusters based on probability-
density estimates. GMM uses expectation-
maximization (EM) to estimate the underlying 
Gaussian distributions that comprise a dataset. 
UC-Freeze adds similarity scores to the model 
one at a time. Before each new similarity score 
is added, EM’s expectation step estimates the 
model’s probability distributions. After a new 
similarity score has been added, EM’s 
maximization step refines the model’s 
distributions based on the inclusion of the new 
data. These processes are repeated until the 
model is stable; that is, until the expectation step 
correctly predicts the maximization step. UC-
Freeze iterates over each subject’s similarity 
scores 300 times, each time randomizing the 
order of its input, to converge on a highly stable 
model unique to each subject (Fig. 2C, D). Here, 
we have calibrated UC-Freeze to cluster each 
animal’s similarity scores into three Gaussian 
distributions: the lowest of which is assumed to 
reflect freezing; the highest of which is assumed 
to represent motion; and, between them, a third 
distribution captures similarity scores that are 
too ambiguous to confidently classify as either 
freezing or motion, which makes UC-Freeze 
more robust against spurious classifications 
(Fig. 2E).  
 
Once a model has been created for a subject, 
UC-Freeze recursively queries the model to 
determine the posterior probability of every 
similarity score’s membership in its putative 
freezing and motion distributions. The posterior 
probabilities of every score’s membership in the 
motion distribution are summed to compute an 
objective measure of an animal’s motor activity. 
To objectively measure freezing, UC-Freeze 
then combines Tukey’s anomaly-detection79 with 
a thresholding operation to identify similarity 
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scores that have a 95%-or-greater chance of 
belonging to the rightmost 25% of the freezing 
distribution’s probability density. If 90 or more 
consecutive frames (i.e., 3 or more seconds) 
meet this criteria, UC-Freeze automatically 
classifies that segment as freezing (Fig. 2F). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Importantly, because this approach can fail if an 
animal very rarely or almost always freezes, this 
approach is not fully automated. Each video was 
reviewed, and the thresholding operation was 
manually adjusted in two cases to ensure edge 
cases did not disrupt the data  (DH).  In  these  
cases, neither animal moved sufficiently for UC-
Freeze to create a GMM with meaningfully 
dissimilar Gaussian distributions. 
 
Statistical Analyses 
Pearson correlation coefficient (r) values 
describing the relationships between infant 
measures, and peri-adolescent measures were 
performed in Python v3.8.3 using the 
statsmodels module80. Results of all 
relationships tested have been reported in the 
text and/or in figures 3, 5, and 6. Analyses of 
interrater reliability (IRR) used to validate UC-
Freeze were performed in Python v3.8.3 using 
the sklearn.metrics module81. An independent-
samples t-test to check for significant differences 
in animals’ freezing behavior between the first 
and second halves of the NEC context was 
performed in Python v3.8.3 using the scipy.stats 
module82. 
 
 
 
  Figure 3. Validating UC-Freeze. a) Subjects’ motor 
activity, as coded by UC-Freeze, significantly predicted 
integrated motor cortex metabolism in a brain region of 
interest defined a priori by the coordinates x=-0.448, y=-
2.785, and z=19.091 (inset). b) A posteriori voxelwise 
analyses revealed subjects’ motor activity as a significant 
predictor of integrated metabolism in regions of motor 
cortex (blue arrows). Together, these findings validate UC-
Freeze’s ability to recapitulate well-established brain-
behavior relationships. c) Measures of interrater reliability 
(IRR), Cohen’s kappa84, computed in the scoring of 80 3-
second video segments for freezing, showed that UC-
Freeze had “moderate to substantial” interrater agreement 
with each of three human raters; performed best when 
compared to human raters’ consensus (magenta; 
kappa=.73, p<.001); and approximated mean human-vs-
human IRR (grey; kappa=.77, p<.001), calculated by 
round-robin comparison. Together, these findings validate 
UC-Freeze as a reliable tool for scoring freezing in rhesus. 
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Relationships between brain metabolism and 
other phenotypic measures were performed 
based on a priori ROIs in the motor cortex, Ce, 
and BST. FDG-PET values were extracted from 
each ROI (bilaterally), and the mean metabolism 
within each region was computed. To ensure our 
results were robust to a voxelwise approach, 
exploratory voxelwise analyses were also 
performed using FSL’s nonparametric 
permutation inference tool randomise83. 
Voxelwise analyses were thresholded at p<.05, 
uncorrected.  
 

Results 
Validation: UC-Freeze Detects Established 
Brain-Behavior Relationships 
To validate UC-Freeze, we first examined the 
relationship between behavior and well-
established metabolic correlates. Specifically, 
we looked for a relationship between subjects’ 
movement about their enclosures during the 
NEC, automatically coded by UC-Freeze as 
motor activity, and variation in glucose 
metabolism in subjects’ motor cortices using an 
a priori ROI. These results demonstrated a 
significant positive association between motor 
activity and motor cortex metabolism, as 
expected (r=.55, p<.05; Fig. 3A). These results 
were corroborated by voxelwise analysis 
showing a significant relationship between motor 
activity and metabolism in motor cortex regions 
(p < .05, uncorrected; Fig. 3B). These proof-of-
principle findings confirm that UC-Freeze can 
recapitulate a well-established brain-behavior 
relationship. 
 
Validation: Comparing UC-Freeze to Human 
Raters 
To further validate UC-Freeze’s ability to 
accurately and reliably score freezing behavior, 
we compared its semi-automated classifications 
to the manual classifications of three raters who 
had observed rhesus behaving in experimental 

and naturalistic conditions, and who were 
instructed on how to identify freezing in rhesus 
using criteria from previous publications35,37,65. 
We intentionally chose raters with a diversity of 
hand-scoring experience in order to model the 
challenges labs are likely to face as they seek to 
implement, or scale, studies that require hand 
scoring (i.e., the situations in which UC-Freeze 
would be most valuable). We randomly selected 
four animals for our analysis. From each 
animal’s NEC video, we randomly generated 20 
3-second video segments, 10 of which were 
classified by UC-Freeze as freezing, to yield a 
total of 40 freezing segments and 40 non-
freezing segments. The raters were not given 
any information about the proportion of freezing 
vs non-freezing segments, and worked in 
isolation to score every segment as either 
freezing or non-freezing. We evaluated interrater 
reliability (IRR) by calculating Cohen’s kappa 
values for UC-Freeze and each rater. In all three 
cases, UC-Freeze demonstrated “moderate to 
substantial” agreement with the rater, well above 
chance levels, and approximated human-level 
IRR (Fig. 3C). Next, we estimated UC-Freeze’s 
sensitivity and specificity—that is, its ability to 
detect true positives (freezing) and negatives 
(non-freezing), respectively. Because there was 
variation between raters’ scoring, we used 
consensus among raters for each video 
segment, calculated as the mode of scores, as a 
proxy for “true outcomes” (e.g., if Rater 1 scored 
freezing in a given video but Raters 2 and 3 did 
not, the “true outcome” was coded as non-
freezing). Using this approach, UC-Freeze 
exhibited 84% sensitivity and 89% specificity. 
Finally, to evaluate pairwise internal reliability we 
calculated the mean Cohen’s kappa derived 
from pairs of raters (kappa=.77, p<.001), and 
between UC-Freeze and the raters’ consensus 
(i.e., modal) classifications (kappa=.73, p<.001), 
confirming the substantial, above-chance 
agreement84 between each pair of raters, and 
between the average rater and UC-Freeze (Fig. 
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3C). Taken together, these analyses validate 
UC-Freeze as a reliable, sensitive, and specific 
tool for classifying freezing behavior in rhesus, at 
a standard comparable to that of human raters. 
 

Exploring UC-Freeze Automated Measures 
To derive behavioral measures for subsequent 
correlational analyses, we used UC-Freeze to 
compute total freezing duration, number of 
freezing episodes, and mean freezing-episode 
during the NEC context for each animal (Fig 4A). 
We observed substantial variability between 
animals: UC-Freeze identified freezing episodes 
in all 18 subjects, ranging from 3 episodes in our 
most infrequent freezer, to 90 in our most prolific 
freezer. UC-Freeze detected 853 episodes 
(roughly 3 hours 15 minutes) of total freezing 
across all animals, which accounted for 10.9% of 
their total behavior during the NEC.

Although we hypothesized that animals would 
eventually habituate to the presence of the 
human intruder during the 30-minute NEC 
context, an analysis of the mean total duration 
our animals spent freezing during the first and 
second halves of the NEC suggested that the 
animals did not habituate (independent-samples 
t-test: t(34)=0.27, p=.79; Fig. 4B). UC-Freeze 
detected large individual differences in animals’ 
split-halves freezing behavior: Some animals 
froze less during the second half of the NEC, 
others froze considerably more during the 
second half, and still others exhibited no notable 
difference in freezing between the two halves 
(Fig. 4B).  
 
To capitalize on the ability of UC-Freeze to 
analyze large datasets, we next examined 
freezing trends on a per-minute basis by 
  

Figure 4. Exploring automated measures of freezing and activity. a) UC-Freeze detected varied total freezing durations, 
mean freezing-episode durations, total number of freezing episodes, and motor activity in all 18 subjects. b) A split-halves 
analysis revealed no overall trend in subjects’ freezing duration in seconds (s) between the first (M=299.88s, SD=303.25s) and 
second (M=273.12s SD=271.65s) halves of the NEC (independent-samples t-test: t(34)=0.27, p=.79), indicating that subjects 
generally did not habituate to the presence of the human intruder during the NEC context. 
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calculating the grand mean average of the 
animals’ probability of freezing during each of 
the NEC context’s 30 1-minute bins. Like our 
split-halves analysis, individual animal’s 
behavior varied widely, but no overall linear 
trend in minute-by-minute freezing was 
observed (r=-.25, p=.18). These findings are 
consistent with the view that, on average, our 
animals’ defensive posture did not substantially 
change during the NEC context. 
 
 
Infant Measures Predict Peri-Adolescent 
Defensive Behavior 
To test whether infant measures predict variation 
in defensive behavior in adolescence, we next 
compared our animals’ infant measures to their 
peri-adolescent freezing and motor activity 
measured during the NEC (Fig. 5A). We 
observed no significant relationship between 
infant inhibited temperament scores and peri- 

adolescent total number of freezing episodes 
(r=.37, p=.127), total freezing duration (r=.24, 
 p=.328; Fig. 5B), or mean freezing-episode 
duration (r=-.14, p=.580) during the NEC 
context. We further tested the relationships 
between freezing and BBA experimenter ratings  
for trait-like vigilance, nervousness, confidence, 
and gentleness. Although the overall measure of 
inhibited temperament did not significantly 
predict a greater tendency to freeze during the 
NEC context, infant nervousness significantly 
predicted total freezing duration (r=.50, p<.05; 
Fig. 5C) and mean freezing-episode duration 
(r=.52, p<.05). These findings point toward infant 
nervous temperament as a potential target of 
future studies aimed at identifying extremely 
early-life risk factors for the eventual 
development of anxiety disorders. 
 

Freezing and Concurrent FDG 
To test whether infant measures 
predict variation in regional brain 
metabolism during adolescence, 
we examined the relationship 
between EAc metabolism and 
subjects' defensive behavior as 
classified by UC-Freeze. Results 
revealed a significant relationship 
between animals’ integrated Ce 
metabolism and total time spent 
freezing, as well as the number of 
freezing episodes (Fig. 6A). 
There was no significant 
relationship between BST 
metabolism and total freezing 
duration (r=.32, p=.20), nor other 
UC-Freeze measures of 
defensive behavior.  
 
ROI-based analyses supported 
by voxelwise analyses of subjects 
FDG-PET scans, obtained 
immediately after exposure to the 
NEC context (Fig. 1A), revealed a 

Figure 5. Infant nervous temperament predicts peri-adolescent defensive behavior. a) Heatmap of associations between infant BBA 
measures and peri-adolescent NEC measures (*=p<.05). b) We found no association between BBA inhibition and total NEC freezing duration 
(r=.37, p=.127). c) Experimenter-rated BBA nervousness, however, was a significant predictor of total NEC freezing duration (r=.50, p<.05). 
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significant relationship between metabolism 
within an area of the dorsal amygdala 
encompassing the Ce and subjects’ total 
freezing duration (r=.48, p<.05), as well as their 
total number of freezing episodes (r=.48, p<.05). 
These findings are consistent with previous 
human42,85 and NHP studies35–37 documenting 
elevated Ce activation and metabolism, 
respectively, during threat processing.  

Discussion 
We developed, validated, and field-tested UC-
Freeze, a machine-learning tool for analyzing 
anxiety-like behavior in rhesus through the  
semi-automated classification of freezing. 
Consistent with well-established brain-behavior 
relationships, UC-Freeze uncovered a 
significant positive correlation between freezing 
behavior and increased metabolism in a dorsal 
amygdala region encompassing the Ce. 
Because of the increased risk of anxious 
psychopathology among adolescent females8, 
we focused exclusively on a peri-adolescent 
female cohort. By comparing subjects’ infant BI 
and temperament to their freezing behavior 
assessed via UC-Freeze, we were able to link 
infant differences in experimenter-rated BBA 
nervous temperament to peri-adolescent 
differences in defensive behavior: Higher 
nervous temperament ratings by CNPRC staff 
during infancy predicted more freezing during 
peri-adolescent exposure to the NEC context. 
 
Large-scale FDG-PET studies of young rhesus 
at the WNPRC and Harlow Labs have revealed 
a robust relationship between Ce metabolism 
and NEC-induced freezing37,65. We replicated 
this finding at the CNPRC—in animals that have 
had dramatically different upbringings—by 
identifying an area of the dorsal amygdala, 
encompassing the Ce, in which metabolic 
activity was a significant predictor of NEC-
induced freezing. Further, we extended previous 
work by identifying infant temperament 

measures that predict peri-adolescent behavior 
and brain function. 
 
Intriguingly, the Wisconsin researchers have 
also shown that Ce metabolism is largely 
attributable to non-heritable influences37,65, and 
can be altered by the overexpression of the 
plasticity-inducing gene, NTF3 (neurotrophic 
factor-3)86. In CNPRC animals, we found that Ce 
regional metabolism was associated with 
concurrent peri-adolescent freezing, but not 
significantly correlated with infant inhibited 
temperament. Other predicted relationships 
between infant inhibited temperament and peri-
adolescent freezing, as well as BST metabolism, 
were not statistically significant. While we 
interpret these findings cautiously in light of our 
study’s limited statistical power, these outcomes 
hint at the Ce’s potential plasticity in response to 
environmental perturbations. In their large, 
outdoor, multi-generational social groups, the 
CNPRC’s animals learn from other conspecifics, 
each with their own idiosyncratic temperament, 
and experience the formative complexities of 
social bonds and hierarchies. Raised in this rich 
social setting, these animals are likely to develop 
nuanced ways of interacting with others in a 
variety of contexts, just as humans do. Because 
of that, the CNPRC’s naturalistic conditions 
provide a unique opportunity to investigate how 
complex social environments can, over time, 
influence individual differences in BI— 
possibly through Ce plasticity (among other 
mechanisms).  
 
Together, these observations point to the 
possibility that Ce metabolism may be 
particularly relevant to understanding how early-
life experience and environment affect the risk of 
developing anxiety disorders. Future work will be 
necessary to test this hypothesis and build 
support for our reported non-significant 
relationships. Nevertheless, our findings 
continue to implicate the EAc—and specifically 
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the Ce—as prominently involved in the 
development of anxious pathology and the 
expression of defensive behavior. These 
findings should be considered alongside 
evidence implicating the EAc in a range of 
appetitive, consummatory, and addictive 
behaviors58,87-94, as we work toward a refined 
understanding that can guide the development 
of novel interventions. 
 
An improved understanding of extremely early-
life risk factors for anxiety disorders could lead to 
premorbid interventions that prevent their onset. 
In both humans and rhesus, it is challenging to 
measure behavioral risk factors due to a general 
lack of motor coordination and the immaturity of 
threat-response repertoires56. Overcoming this 

challenge could lead to early interventions aimed 
at blunting organizing effects that contribute to 
increased risk. Our finding that experimenter-
rated nervous temperament in infants predicts 
peri-adolescent BI in rhesus is consistent with 
human studies. Such studies have shown that 
human infants’ aversive reactions to negatively-
valenced stimuli predict BI in childhood13,18 and 
foreshadow the development of anxiety 
disorders9,12,14,19. Our study contributes to an 
improved understanding of the development of 
anxiety by directly examining the relationship 
between infant temperament and peri-
adolescent brain function during threat 
processing. These findings could provide targets 
for future studies evaluating the longitudinal 
effects of infant interventions on disorder-
relevant brain-behavior relationships. 
  

Figure 6. Peri-adolescent Ce metabolism 
predicts infant BBA measures and 
concurrent defensive behavior. a) 
Heatmap of associations between PET-
obtained, ROI-defined regional metabolism 
(y axis) and infant BBA measures (x axis, 
left) as well as concurrent NEC behaviors as 
automatically scored by UC Freeze (x axis, 
right; *=p < .05). b) The association 
between Ce ROI metabolism and BBA 
inhibition was not statistically significant 
(r=.32, p=.196). c) The association between 
Ce ROI metabolism and total freezing 
duration during the NEC, however, was 
significant (r=.48, p<.05). d) The location of 
the Ce (shown on the Paxinos et al. atlas, 
left) corresponds to a voxelwise analysis 
(middle and right) that revealed a significant 
correlation between NEC freezing behavior 
and integrated metabolism in a region of the 
dorsal amygdala encompassing the Ce 
(p<.05, uncorrected). No significant 
relationships were identified between BST 
metabolism and infant BBA measures or 
concurrent defensive behavior (not shown).  
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UC-Freeze lowers the bar for other groups to 
replicate or extend these findings in animals with 
a diversity of early experiences. More generally, 
UC-Freeze demonstrates the potential for ML 
tools to augment existing behavioral 
neuroscience approaches. A reliance on hand 
scoring can make behavioral paradigms 
challenging to scale, since the time required to 
score each video may be several times greater 
than the duration of the video itself. Scoring 
behavior during a 30-minute paradigm 
administered to hundreds of animals—such as in 
Fox et al., 2015 (n=592)37—can impose a 
significant burden. Nevertheless, the benefit of 
increased statistical power provided by scale 
often justifies these efforts. One goal of our study 
was to provide a proof-of-principle solution to the 
hand-scoring bottleneck that can arise when 
behavioral studies are scaled to large cohorts. 
When video-capture conditions such as lighting 
and camera position are held constant, UC-
Freeze only needs to be manually adjusted in 
edge cases; for instance, to accurately score an 
animal that always, or never, freezes. Apart from 
these edge cases, UC-Freeze operates 
automatically, trivializing the time commitment 
required to score behavior and freeing 
researchers to engage in other tasks. 
 
Scale can also improve ML accuracy. In an 
influential study on the effect of increasingly 
large corpora on the accuracy of competing ML 
techniques in a confusion-set dis-ambiguation 
task, Banko and Brill (2001)95 showed not only 
that the size of the dataset mattered much more 
in improving accuracy than the specific approach 
used, but also that the worst approach at a small 
data volume can emerge as the best approach 
as the size of the data set increases. With this in 
mind, another goal of our study was to produce 
large datasets per individual subject in order to 
maximally leverage the inherent quality of ML 
approaches to grow increasingly accurate and 
informative as datasets expand (see also96). By 

decomposing our subjects’ 30-fps videos into 
individual frames, we produced 54,000 similarity 
scores for each subject. This data-maximalist 
approach will allow us to develop increasingly 
granular assessments of subjects’ behavior at a 
temporal resolution that would be impractical 
and prohibitively time-consuming to achieve by 
hand. Such granularity will grow more important 
as NHP researchers continue developing neuro-
scientific strategies97,98 that enable millisecond-
resolution techniques like optogenetics99 and 
fiber photometry100 in studies of NHP behavior. 
 
Although our study was reasonably well-
powered by NHP neuroimaging standards, it 
was unlikely to detect anything less than a large 
effect as a significant predictor of brain-behavior 
relationships101. Contrary to our predictions, our 
study did not reveal a significant correlation 
between infant inhibited temperament and peri-
adolescent defensive behavior (though it was in 
the predicted direction; Fig. 5B). However, we 
refrain from further interpreting this effect given 
the limited statistical power of our study. A power 
analysis revealed that, in our n=18 subjects, we 
had ~80% power to identify a correlation that 
accounted for ~36% variance (R Studio version 
1.0.153’s pwr package102). We remain interested 
in the potential relationship between inhibited 
temperament and peri-adolescent defensive 
behavior, and are engaged in well-powered 
studies that explore it thoroughly. 
 
Our findings underscore the importance of 
examining the developmental time-course of BI. 
Peri-adolescent BI reflects both inborn 
temperament and a multitude of environmental 
influences that accumulate during maturation. 
Moving forward, it will be important to scale-up 
these efforts, investigate sex differences, and 
integrate these findings with mechanistic 
studies.  
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