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                                                                                                                                                                                                                                                                                                                             26 

ABSTRACT  27 

Understanding how the central nervous system coordinates diverse motor outputs has been a topic of 28 

extensive investigation. While it is generally accepted that a small set of synergies underlies many 29 

common activities, such as walking, whether synergies are equally robust across a broader array of gait 30 

patterns or can be flexibly modified remains unclear. Here, we evaluated the extent to which synergies 31 

changed as nondisabled adults (n = 14) explored gait patterns using custom biofeedback. Secondarily, we 32 

used Bayesian Additive Regression Trees to identify factors which were predictive of synergy 33 

modulation. Participants performed 41.1 ± 8.0 gait patterns using biofeedback, during which synergy 34 

recruitment changed depending on the type and magnitude of gait pattern modification.  Specifically, a 35 

consistent set of synergies was recruited to accommodate small deviations from baseline, but additional 36 

synergies emerged for larger gait changes. Synergy complexity was similarly modulated; complexity 37 

decreased for 82.6% of the attempted gait patterns, however, distal gait mechanics were highly predictive 38 

of these changes. In particular, greater ankle dorsiflexion moments and knee flexion through stance, as 39 

well as greater knee extension moments at initial contact corresponded to a reduction in synergy 40 

complexity. Taken together, these results suggest that the central nervous system preferentially adopts a 41 

low-dimensional, largely invariant control strategy, but can modify that strategy to produce diverse gait 42 

patterns. Beyond improving understanding of how synergies are recruited during gait, study outcomes 43 

may also help identify parameters that can be targeted with interventions to alter synergies and improve 44 

motor control following neurological injury.  45 

  46 
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1. INTRODUCTION  47 

Humans are capable of producing a broad array of movements, allowing for robust locomotion in diverse 48 

and unpredictable environments. To achieve this range of motor outputs, it has been hypothesized that the 49 

central nervous system (CNS) recruits a small number of synergies (i.e., modes, modules), defined as 50 

groups of coactivating muscles; this architecture is believed to simplify control beyond activating muscles 51 

independently (Bizzi and Cheung, 2013; Ting et al., 2015; Tresch and Jarc, 2009). Numerous studies have 52 

evaluated this hypothesis experimentally, employing matrix decomposition techniques, such as non-53 

negative matrix factorization, to extract synergies and their corresponding activation patterns from 54 

electromyography (EMG) data (Lee, 1999; Tresch, 2005). These studies revealed that tasks such as 55 

walking (Allen and Neptune, 2012; Ivanenko et al., 2004), running (Cappellini et al., 2006; Hagio et al., 56 

2015) and cycling (Barroso et al., 2014) share a small set of muscle synergies, despite being 57 

biomechanically distinct. Further, across tasks, changes in speed (Rozumalski et al., 2017), incline 58 

(Ivanenko et al., 2004; Rozumalski et al., 2017), cadence (Rouston et al., 2014), and body-weight loading 59 

(Ivanenko et al., 2004; McGowan et al., 2010) are shown to shift the phase or duration of synergy 60 

activations rather than the structure of the synergies themselves. These observations suggest that modest 61 

changes in sensory input or biomechanical demand are accommodated by altering the activation of 62 

invariant synergies and lend credence to their centralized role in coordination (Cheung et al., 2005; 63 

Torres-Oviedo and Ting, 2010). However, whether synergies are equally robust across a greater subset of 64 

achievable gait patterns or can be actively modified during gait is largely unknown (Jason J. Kutch and 65 

Valero-Cuevas, 2012; Tresch and Jarc, 2009).    66 

 Because synergies generally align with the sub-tasks of walking (e.g., push-off, weight 67 

acceptance), gait patterns which impose additional mechanical requirements or present large changes in 68 

somatosensory feedback may alter synergy recruitment (Cheung et al., 2005; Ivanenko et al., 2005; Nazifi 69 

et al., 2017; Torres-Oviedo and Ting, 2010). This is supported by prior work in animal models which 70 

demonstrated that frogs recruit task-specific synergies during swimming, jumping, and walking which 71 
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correspond to the unique biomechanical demands of each movement (d’Avella and Bizzi, 2005). 72 

Similarly, humans recruit specific synergies during perturbation recovery tasks to maintain mediolateral 73 

stability and reduce center of mass movement (Krishnamoorthy et al., 2004; Martino et al., 2015; Nazifi 74 

et al., 2017; Torres-Oviedo and Ting, 2010). Importantly, such synergies emerge in addition to those 75 

shared with other tasks, which suggests that the CNS flexibly draws from a limited library rather than 76 

deploying unique control strategies to accommodate task demand (Torres-Oviedo and Ting, 2010).  77 

 Taken together, prior results indicate that a relationship exists between the biomechanical 78 

constraints of a given task and the recruited control strategy. That is, the CNS may preferentially tune the 79 

activation timing of a consistent set of synergies but is simultaneously capable of recruiting different 80 

synergies to produce diverse outputs. Understanding when and how synergies are modulated across 81 

changing biomechanical contexts and the factors driving this modulation is critical to better inform how 82 

the CNS coordinates complex movement. While this relationship has been previously characterized  83 

across broad balance (Torres-Oviedo and Ting, 2010) and finger force generation tasks (Jason J Kutch 84 

and Valero-Cuevas, 2012; Valero-Cuevas et al., 2009), gait has not been studied to the same extent 85 

(Rouston et al., 2014; Zelik et al., 2014). 86 

 Beyond enhancing understanding of the neural control of gait, characterizing whether synergies 87 

can be modulated in walking may also inform methods for targeting aberrant synergy recruitment. 88 

Individuals with cerebral palsy (Schwartz et al., 2016; Steele et al., 2015; Tang et al., 2015), Parkinson’s 89 

disease (Rodriguez et al., 2013), and spinal cord injury (Fox et al., 2013) as well as stroke survivors 90 

(Cheung et al., 2012; Clark et al., 2010) recruit fewer synergies than nondisabled peers which impacts 91 

independent mobility (Bowden et al., 2010; Clark et al., 2010; Mehrabi et al., 2019) and may reduce the 92 

efficacy of traditional interventions (Schwartz et al., 2016). Because available interventions for these 93 

populations often fail to alter synergies (Shuman et al., 2019), developing new paradigms to directly 94 

improve synergy recruitment has become a critical priority in gait rehabilitation. This has spurred the 95 

development of biofeedback and robotic gait training paradigms which have thus far yielded promising, 96 
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yet still highly variable results (Booth et al., 2019; Conner et al., 2021; Rouston et al., 2013). As such, 97 

mapping the relationship between biomechanical constraints and synergy modulation may further inform 98 

the design of these systems by highlighting gait parameters that can be directly targeted to produce greater 99 

and more consistent changes in motor control.   100 

The aim of this study was to characterize the robustness of synergies to changing biomechanical 101 

constraints during walking. Specifically, we evaluated the extent to which nondisabled individuals could 102 

modulate both synergy structure and complexity during walking while using motor control biofeedback to 103 

drive broad gait pattern exploration. These data were then used to build a Bayesian Additive Regression 104 

Trees (BART) model to identify biomechanical variables that were predictive of synergy modulation. We 105 

hypothesized that changing biomechanical constraints would alter the recruitment but not the structure of 106 

muscle synergies, but that different synergies may be recruited to accommodate large deviations from 107 

baseline. The results from this investigation will provide further insight into the extent to which motor 108 

control can be altered and, importantly, improve understanding of how the CNS shapes its control 109 

strategy to produce a repertoire of motor outputs. The latter will support the development of intervention 110 

strategies to improve motor control among individuals with neurological injury.  111 

2. METHODS 112 

2.1 Experimental Protocol    113 

Fourteen nondisabled individuals (7M/7F; Age: 24.1 ± 4.7 years; Height: 1.7 ± 0.1 m; Mass: 65.7 ± 20.1 114 

kg) were recruited to evaluate synergies during gait pattern exploration. Prior to participation, all provided 115 

written informed consent and the experimental protocol was approved by the University of Washington 116 

Institutional Review Board.  117 

Participants walked on a treadmill at a self-selected speed (1.07 ± 0.13 m/s; Bertec, Columbus, 118 

OH) while responding to a custom biofeedback system, designed to encourage gait pattern exploration. 119 

Briefly, this system presented the participant with a real-time score of their dominant-limb synergy 120 
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complexity, defined as the total variance accounted for by one synergy, on a graphical display (Steele et 121 

al., 2015). To facilitate participant interpretation, the displayed score was normalized to baseline walking 122 

and scaled such that a value of 100 corresponded to baseline and higher values indicated more complex 123 

control (see S1 for additional system details). Participants performed one baseline walking trial with the 124 

feedback system turned off followed by feedback trials during which they were instructed to either (1) 125 

raise or (2) lower their complexity score; two trials were performed in each target direction. All trials 126 

were three minutes long and separated by mandatory one-minute rest periods. During the feedback trials, 127 

participants were encouraged to explore a broad range of gait patterns to modify their score. The only 128 

imposed restrictions were that they must (1) maintain forward-facing walking and (2) take at least five 129 

consecutive strides in the pattern selected.  130 

Surface EMG data (Delsys Inc, Natick, MA) were recorded bilaterally for seven lower limb 131 

muscles: gluteus maximus (GM), lateral hamstrings (LH), medial hamstrings (MH), vastus medialis 132 

(VM), soleus (SO), tibialis anterior (TA), and medial gastrocnemius (MG). Raw EMG signals were low 133 

passed filtered (4th order Butterworth; 20 Hz), rectified, and high pass filtered (4th order Butterworth; 10 134 

Hz) to establish linear envelopes (Shuman et al., 2017). After filtering, non-physiological signal spikes 135 

were removed using a robust-PCA algorithm (Lin et al., 2013) and the data were normalized to the 95th 136 

percentile of maximum muscle activity across all trials.  137 

Full-body motion data were collected using a 10-camera motion capture system (120 Hz) and a 138 

modified Helen Hayes marker set (Kadaba et al., 1990). Joint kinematics and kinetics were derived from 139 

marker data in OpenSim v3.3 using a 33 degree-of-freedom model, scaled to each subject (Delp et al., 140 

2007; Rajagopal et al., 2016). The average root-mean-squared (RMS) and maximum error for all 141 

developed models were 1.3 cm and 2.5 cm, respectively, which fall below the recommended thresholds 142 

for model fidelity (Hicks et al., 2015).   143 
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2.2 Gait Analysis    144 

Because participants explored many different gait patterns using the biofeedback system, we first had to 145 

extract each pattern attempted across trials and participants (Figure 1). To do this, the gait deviation index 146 

(GDI) was calculated from the kinematic data for every stride in each trial (Schwartz and Rozumalski, 147 

2008). The GDI is a summary measure of deviations in pelvis, hip, knee, and ankle kinematics from 148 

‘normative’ trends and was, therefore, expected to change during gait pattern exploration. For each trial, 149 

groups of five or more consecutive strides with similar GDI values were automatically labeled as unique 150 

gait patterns; each unique pattern identified was then subsequently confirmed via manual inspection to 151 

ensure appropriate labeling. Following labeling, average kinematic and kinetic trends at the pelvis, hip, 152 

knee, and ankle were quantified for each unique pattern. To identify kinematically-similar strategies 153 

adopted by multiple participants, the average kinematics for all unique patterns were separated into 154 

clusters (K1 to KN) using k-means clustering (Rozumalski and Schwartz, 2009).  155 

2.3 Synergy Analysis    156 

Muscle synergies were quantified from EMG data for each unique gait pattern using non-negative matrix 157 

factorization (NMF). NMF is a linear matrix decomposition technique which is commonly used to 158 

identify non-negative synergies (W) and their corresponding activations (C) from EMG data, such that 159 

EMGmxt = Wmxi*Cixt + error where m is the number of muscles, i is the number of synergies, and t is the 160 

time points (Lee, 1999; Ting and Chvatal, 2010). The structure of the W and C matrices provide insight 161 

into how muscles coactivate across the gait cycle. Similarly, the total variance accounted for (tVAF) by a 162 

given number of synergies (i) can provide a summary measure of synergy complexity and has been 163 

frequently used as a marker for impairment level; individuals with neurological injury (Cheung et al., 164 

2012; Clark et al., 2010; Fox et al., 2013; Rodriguez et al., 2013; Schwartz et al., 2016; Steele et al., 165 

2015) have higher tVAF values (i.e. less complex control) for a given synergy solution (i) than 166 

nondisabled peers. Therefore, if synergies were sensitive to imposed biomechanical constraints, we may 167 

expect to see changes in both synergy structure and complexity measures.  168 
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 We calculated i = 1 to 7 synergies using the dominant-limb EMG data for five concatenated 169 

strides for each unique gait pattern attempted. Because synergy analysis is sensitive to the amount of 170 

EMG data used, we elected to analyze a consistent number of strides across all patterns and participants 171 

(Oliveira et al., 2014). If a participant took more than five strides in a unique pattern, we performed a 172 

bootstrapping procedure by quantifying synergies using five random strides, selected with replacement 173 

from the available set, and replicating this process until a normal distribution was achieved; average 174 

synergies and tVAF values were then reported. The same bootstrapping procedure was performed on the 175 

baseline walking data with sets of five concatenated strides (replicates = 200) to ensure accurate 176 

comparisons between baseline and feedback conditions.  177 

  We evaluated synergy structure during gait pattern exploration in two ways. We first compared 178 

the inter-cluster (K1 to KN) similarity of synergy weights (W) and activation patterns (C) for the i = 3 179 

synergy solution. This solution was evaluated, as three synergies explained over 90% of the variance in 180 

EMG data for the majority of unique gait patterns. We sorted synergy weights for all unique gait patterns 181 

attempted during exploration as well as baseline walking into k clusters (MacQueen, 1967). Because 182 

individuals may recruit different synergies during exploration compared to baseline gait, we varied k 183 

between k = 3 (i.e., synergies were consistent between baseline and exploration) and k = 10*3 (i.e., 184 

different synergies emerged during exploration) and selected k as the number of clusters with the 185 

maximum silhouette coefficient (Rousseeuw, 1987); the upper bound on k was highly conservative and 186 

based on our expectation that synergies would be predominantly shared across gait patterns (Torres-187 

Oviedo and Ting, 2010). Synergy weights and activations for each unique gait pattern were then sorted 188 

into their respective clusters (K1 to KN) and the average values were calculated. Secondarily, we evaluated 189 

the intrasubject similarity of baseline synergies with those recruited during exploration. This was done by 190 

fixing the W matrix as the synergy weights extracted from baseline walking for the three-synergy solution 191 

(i = 3) and using the multiplicative update rule from NMF to find a C matrix which minimized the error 192 

between W*C and the EMG data for each unique gait pattern that an individual attempted. From this, we 193 
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were able to calculate the total variance that could be explained in each unique gait pattern by baseline 194 

weights (tVAF3_BASE) which was then compared to the tVAF3 values (i.e., those calculated directly from 195 

the EMG data for each unique gait pattern), yielding a measure of synergy similarity. If similar synergies 196 

were recruited during gait pattern exploration and baseline walking, we would expect tVAF3_BASE and 197 

tVAF3 to be similar.  198 

2.4 Statistical Analysis   199 

2.4.1 Cluster-wise comparisons   200 

For each cluster (K1 to KN), we compared mean tVAF values to (1) baseline walking and (2) tVAFBASE 201 

using paired t-tests to evaluate if synergy complexity or structure changed during gait pattern exploration, 202 

respectively. Secondarily, one-way ANOVA tests were used to compare if synergy complexity and 203 

structure were similar between clusters (K1 to KN); for any test that reached significance, t-tests were used 204 

to perform pairwise comparisons. Average kinematic trends at key phases within the gait cycle (e.g., 205 

push-off, initial contact) for each cluster (K1 to KN) were also compared to baseline walking using paired 206 

t-tests. To characterize stride-to-stride variability, the standard deviation of each kinematic parameter 207 

during exploration was also compared to baseline using paired t-tests. For all comparisons to baseline 208 

walking and post-hoc analyses, p-values were adjusted using a Holm-Šídák correction to account for 209 

multiple tests. We defined significance as p < α for α = 0.05 and report mean values ± 1 SD unless 210 

otherwise indicated. All cluster-wise statistical analysis was performed using the MATLAB Statistical 211 

Toolbox (MathWorks, Natick, USA).  212 

2.4.2. BART analysis  213 

To further examine the relationship between gait pattern exploration and synergy complexity, we 214 

developed a Bayesian Additive Regression Trees (BART) statistical model (Chipman et al., 2010). BART 215 

is a ‘sum-of-trees’ machine learning method used for non-parametric function estimation, similar to other 216 

techniques such as boosting (Freund and Schapire, 1997; Schapire, 1990) and random forests (Breiman, 217 

2001). However, unlike other methods, BART uses a regularization prior to control tree depth and 218 
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shrinkage, effectively constraining individual trees as ‘weak learners’ to prevent data overfitting 219 

(Chipman et al., 2010; Kapelner and Bleich, 2016). BART was selected for this application due to its 220 

favorable predictive performance compared to other machine learning algorithms and because it can 221 

capture the non-linear relationships inherent in motion data (Chipman et al., 2010; Dorie et al., 2019; Tan 222 

and Roy, 2019).   223 

 We developed a BART model to predict changes in synergy complexity during exploration 224 

compared to baseline walking, quantified as the difference in total variance accounted for by a one-225 

synergy solution (i.e., ΔtVAF1). Our predictor set (Table 1) included kinematic and kinetic variables that 226 

characterized each unique gait pattern as well as other metrics which could influence the type of gait 227 

patterns a participant attempted. When defining kinematic and kinetic predictor variables, we prioritized a 228 

set that captured salient trends at the pelvis, hip, knee, and ankle, while simultaneously maintaining 229 

predictor set conciseness. These criteria resulted in the variables outlined in Figure 2 (n = 31). For each of 230 

the identified kinematic and kinetic variables, both the mean and standard deviation values are included in 231 

the predictor set, normalized to baseline walking. We elected to include standard deviation measures in 232 

the model, as tVAF1 is sensitive to the amount of variance in the data and could, therefore, be affected by 233 

individuals simply moving with greater stride-to-stride variability, as might be expected during novel gait 234 

pattern exploration (Sawers et al., 2015). We tuned hyperparameters for the developed BART model 235 

using 10-fold cross-validation (parameters: k = 3, q = 0.9, nu = 3, num_trees = 200, seed = 30) and report 236 

both pseudo-R2 and the out-of-sample root-mean-squared error (RMSE) as metrics of model quality. 237 

 Outputs from the BART model were interpreted with accumulated local effect (ALE) plots 238 

(Apley and Zhu, 2020). ALE plots are used to visualize the effect that individual predictors have on the 239 

specified response variable (i.e., ΔtVAF1), conditioned on all other model covariates. Unlike partial 240 

dependence plots, which are also commonly used, ALE plots are generated by averaging and 241 

accumulating the local rather than marginal effects of each predictor, making them unbiased in cases 242 
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where predictors are highly correlated; this is particularly advantageous for this application, due to the 243 

high level of correlation between kinematic and kinetic variables during gait.  244 

 Because ALE plots are generated by sampling from the available data, some discrepancy between 245 

the ‘true’ and ‘estimated’ effect is expected (Apley and Zhu, 2020). To capture this uncertainty, we 246 

performed a boostrap analysis (n = 100 replicates), drawing samples with replacement from the original 247 

data set to generate a series of ALE plots from which the average and standard deviation could be 248 

quantified. Using these average plots, we approximated net effects for each predictor as the difference 249 

between the 95th and 5th percentile of the response. If synergies were sensitive to biomechanical 250 

constraints during gait pattern exploration, we would expect both kinematic and kinetic variables to have 251 

large net effects on ΔtVAF1. BART model development and ALE plot generation were performed in 252 

RStudio (RStudio Team, 2020) using the bartMachineCV and ALEPlot packages (Apley and Zhu, 2020; 253 

Kapelner and Bleich, 2016).  254 

3. RESULTS 255 

3.1 Gait Exploration   256 

Participants explored 10.3 ± 2.8 unique gait patterns per feedback trial on average, resulting in 575 total 257 

patterns across all participants. These data were separated into five clusters, representing the common 258 

kinematic strategies attempted (Figure 3). K2 and K4 represented 24 and 78 unique gait patterns, 259 

respectively, and were characterized by increased hip flexion (K2: 47.7 ± 11.3°; K4: 23.1 ± 8.8°), knee 260 

flexion (K2: 70.6 ± 9.1°; K4: 40.9 ± 11.1°), hip abduction (K2: 7.4± 7.0°; K4: 7.7 ± 7.6°), anterior pelvic 261 

tilt (K2: 14.1 ± 6.6°; K4: 8.4 ± 7.9°), and ankle dorsiflexion (K2: 20.7 ± 2.7°; K4: 15.6 ± 5.2°) through 262 

stance compared to baseline. K3 represented 98 unique gait patterns defined by greater anterior pelvic tilt 263 

(2.8 ± 3.7°), hip abduction (3.9 ± 4.2°), and plantarflexion (6.3 ± 8.9°) through stance, as well as 264 

decreased knee flexion through swing (29.8 ± 9.1°). K5 included patterns with increased hip (44.7 ± 265 

12.2°) and knee flexion (80.0 ± 10.1°) during swing and increased hip abduction (4.5 ± 3.5°) in stance. 266 
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Finally, K1 included 322 unique gait patterns that aligned closely with baseline trends (p > 0.054 for all 267 

angles), capturing points within the feedback trials in which participants were minimally exploring.  268 

 As expected, stride-to-stride variability increased for all kinematic parameters in K2 to K5 (p < 269 

0.05 for all parameters), with the largest variability seen in gait patterns in K2. This increase in variability 270 

highlights an inherent learning effect associated with unique gait pattern reproduction. Even when 271 

participants were minimally exploring (i.e., K1), there was generally an increase in variability compared 272 

to baseline, likely due to the added attentional demand of responding to the biofeedback system.  273 

3.2 Synergy Analysis  274 

All participants were able to significantly modify synergy complexity during exploration (Figure 4). A 275 

one-synergy decomposition (i = 1) accounted for 66.1 ± 5.9% of the variance in the EMG data during 276 

baseline. When clustered, tVAF1 was 71.6 ± 7.2% (K1), 78.3 ± 6.6% (K2), 76.5 ± 6.4% (K3), 76.0 ± 6.2% 277 

(K4), and 69.8 ± 5.7% (K5), indicating that all of the explored patterns significantly decreased complexity 278 

(p < 0.05). Interestingly, there were also significant inter-cluster differences in tVAF1, suggesting that the 279 

type of gait pattern modification impacted complexity (p << 0.001). It should be noted that although 280 

participants were instructed to either raise or lower their synergy complexity scores, minimal differences 281 

existed between these trials; participants generally decreased complexity regardless of the target direction. 282 

As such, we did not conduct further analyses comparing target directions.  283 

 A three-synergy solution (i = 3) accounted for 92.6 ± 2.3% of the variance for all exploration and 284 

baseline walking patterns. Clustering yielded four distinct synergy structures (Figure 5) that were 285 

dominated by the TA (W1), hamstrings (W2), the quadriceps and gluteus maximus (W3), and the 286 

plantarflexors (W4). All four synergy structures were observed across K1 to K5 as well as baseline walking 287 

but were recruited with varying frequency. For example, baseline walking was primarily defined by W2, 288 

W3, and W4, which were present in 85.7%, 78.6%, and 100% of gait patterns in the group, respectively. 289 

These synergies align with those previously reported in nondisabled adults during steady-state walking 290 
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(Allen and Neptune, 2012; Clark et al., 2010).  In contrast, K3 was dominated by W1 (76.5%), W2 291 

(82.7%), and W4 (91.8%). Interestingly, the plantarflexor synergy (W4) emerged for the majority of 292 

patterns in all clusters (K1 to K5) whereas W1, W2, and W3 were differentially recruited. These results 293 

suggest that a small pool of synergies exists that can be selectively drawn from depending on the 294 

biomechanical constraints of a given pattern. Across groups, synergy activation patterns were also distinct 295 

from baseline and aligned with key kinematic trends. For example, K2 was characterized by increased 296 

knee flexion and ankle dorsiflexion through the gait cycle, which was reflected in the increased activation 297 

of W1 in swing and W3 through stance.  298 

 The observed change in synergies recruited during exploration corresponded to an overall 299 

decrease in tVAF3_BASE when baseline synergy weights were used to reconstruct EMG data from 300 

exploration trials (Figure 6; p << 0.001 for all groups). For the three-synergy solution, baseline synergy 301 

weights accounted for 6.0 ± 6.0% (K1), 17.7 ± 11.0% (K2), 10.6 ± 8.0% (K3), 15.3 ± 8.7% (K4), and 11.3 302 

± 7.1% (K5) less of the variance in EMG data than weights extracted directly from each unique pattern. 303 

Further, reconstruction quality was different between clusters (p << 0.001), with the largest change in 304 

synergy structure seen in K2. This suggests that baseline synergy weights captured muscle activity for 305 

certain gait patterns better than others, further confirming the flexible recruitment of synergies to 306 

changing biomechanical constraints.   307 

3.3 BART Analysis  308 

The BART model was able to explain changes in synergy complexity observed during exploration (R2 = 309 

0.88; RMS error = 4.4). Baseline tVAF1 emerged as the top predictor of ΔtVAF1 (net effect = 4.6%), as 310 

individuals with higher baseline complexity increased tVAF1 to a greater extent during exploration than 311 

those with lower baseline complexity (Figure 8). However, this observation partially reflects the effects of 312 

regression to the mean. After baseline tVAF1, kinematic and kinetic predictors, especially those at the 313 

knee and ankle, had the largest effects on ΔtVAF1 (Figure 9A). In particular, greater knee flexion (net 314 

effect = 3.2%), anterior pelvic tilt (2.3%), hip extension moment (2.7%), and ankle dorsiflexion moment 315 
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(2.8%) through stance corresponded to a greater decrease in synergy complexity. Increased knee 316 

extension moment (net effect = 3.1%) at initial contact also corresponded to less complex control. 317 

Interestingly, only one swing-phase variable had a large effect on ΔtVAF1; decreased knee flexion during 318 

swing resulted in greater decreases in synergy complexity (net effect = 3.3%).  Further, two measures of 319 

kinematic and kinetic variability emerged among the top predictors in the BART model (Figure 9B), 320 

highlighting the sensitivity of synergy complexity to the increased stride-to-stride variability observed 321 

during gait pattern exploration.    322 

Beyond gait mechanics, both participant number (net effect = 2.1%) and speed (1.6%) emerged 323 

among the top predictors in the model. Although the former effect was largely driven by one participant 324 

(P8), it still indicates that differences may exist in how individuals interacted with the biofeedback 325 

system, including both the range of patterns they explored and their comprehension of the presented 326 

metric. Further, the moderate effect of speed on synergy complexity, whereby slower speeds were 327 

associated with greater decreases in complexity (Figure 8), could suggest differences in the feasibility of 328 

performing certain gait patterns at different speeds.  329 

4. DISCUSSION 330 

This study demonstrated that a small library of synergies was sufficient to characterize a broad repertoire 331 

of gait patterns attempted during biofeedback walking, and that recruitment from this library was 332 

dependent on both the type and magnitude of gait pattern deviation. Specifically, small deviations from 333 

baseline walking were generally accommodated by altering the activations of a consistent set of synergies 334 

whereas different synergies were recruited to produce larger gait changes. Participants were also able to 335 

widely modulate synergy complexity during gait pattern exploration. However, the majority of gait 336 

patterns corresponded to an increase in tVAF1 (i.e., decreased complexity); across all participants, only 337 

17.4% of attempted patterns decreased tVAF1. Collectively, these results suggest that although synergy 338 

structures appear to be invariant, synergies can be flexibly recruited in response to changing sensory input 339 

or biomechanical constraints. This organizational strategy is advantageous for enabling rapid learning of 340 
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new movement patterns and ensuring successful navigation in complex environments (Torres-Oviedo and 341 

Ting 2010, Chiel et al 2009, McKay 2007).  342 

 Our observation that a small pool of synergies emerged during gait pattern exploration aligns 343 

closely with prior literature in both animal and human models. These studies have demonstrated that 344 

synergies are consistent across a repertoire of motor outputs (Allen and Neptune, 2012; Barroso et al., 345 

2014; Cappellini et al., 2006; Hagio et al., 2015; Ivanenko et al., 2004) and can be flexibly combined to 346 

accommodate changes in sensory input (Cheung et al., 2005; Ivanenko et al., 2004; Kargo et al., 2010; 347 

McGowan et al., 2010; Rozumalski et al., 2017) or biomechanical constraints (Krishnamoorthy et al., 348 

2004; Nazifi et al., 2017; Torres-Oviedo and Ting, 2010). However, beyond identifying differences in 349 

synergy recruitment across movements, the nature of our protocol enabled us to understand the factors 350 

associated with these differences with greater precision. For example, we demonstrated that small 351 

deviations at the hip, knee, and ankle, as observed in K1, were accommodated by baseline synergies, as 352 

baseline synergy weights largely captured the variance in EMG activity during feedback walking (i.e., 353 

tVAF3_BASE for K1). Baseline synergies were also recruited for the majority of patterns in K5, as the large 354 

increase in knee flexion through swing could be accommodated by altering the activation timing of the 355 

hamstring synergy (W2). In contrast, patterns which were defined by large deviations in sagittal plane 356 

mechanics through stance (e.g., K2 and K4), had synergy structures more dissimilar from baseline (Figure 357 

6). A similar relationship emerged when considering synergy complexity. The results from our BART 358 

analysis demonstrated that deviations at the knee and ankle during stance largely predicted changes in 359 

tVAF1 during gait pattern exploration. Specifically, greater knee extension moment, ankle dorsiflexion 360 

moment, and knee flexion through stance corresponded to reduced complexity. This finding aligns with 361 

observations in clinical crouch gait in cerebral palsy, where a crouched posture places greater demand on 362 

the quadriceps to accelerate the center of mass upward and counteract gravitational force, resulting in 363 

increased coactivation of the hamstrings and quadriceps through stance and, therefore, reduced control 364 

complexity (Spomer et al., 2022; Steele et al., 2013). Hip extension moment through stance also emerged 365 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


among the top predictors in the BART model, which further indicates that increased hamstring-quadricep 366 

co-contraction had a large effect on ΔtVAF1.  367 

 Beyond identifying those variables which were most predictive of changes in synergy 368 

recruitment, the results from the BART analysis also allowed us to capture the non-linear relationship 369 

between gait pattern deviations and synergy complexity. Specifically, a stepwise relationship consistently 370 

emerged for kinematic and kinetic predictor variables wherein tVAF1 was similar to baseline values up 371 

until a certain threshold, after which changes in tVAF1 were larger, but generally consistent. The stability 372 

of synergy complexity measures for gait patterns similar to baseline walking further confirms the 373 

propensity for the CNS to maintain a consistent control strategy to accommodate small gait deviations. 374 

Further, the plateau in ΔtVAF1 observed at the extremes of each gait variable suggest that bounds exist on 375 

the extent to which synergy complexity can be modulated, at least when limited to a specific muscle set.    376 

 While outcomes from the BART analysis also revealed a monotonic relationship between 377 

baseline complexity and ΔtVAF1, partially reflecting regression to the mean, the overwhelming majority 378 

of patterns selected during exploration increased tVAF1. Although these results could reflect participant 379 

comprehension of the biofeedback system and the task instructions, they may also be indicative of the 380 

underlying control strategy employed by the CNS during learning. In novel task execution, the CNS may 381 

initially assume a less complex strategy, sacrificing efficiency for stability. This hypothesis is consistent 382 

with studies demonstrating that long-term training facilitates more efficient use of neural resources 383 

(Krings et al., 2000; Picard et al., 2013) and increased supraspinal excitability (Christiansen et al., 2020; 384 

Pascual-Leone et al., 1995; Rosenkranz et al., 2007). For example, Sawers et al (2015) demonstrated that 385 

trained dancers recruited a larger number of synergies than novices during both beam and overground 386 

walking and that the synergies recruited were sparser, both of which were used to suggest that training 387 

promoted greater selective motor control. In our study, because individuals typically explored each 388 

unique gait pattern for a short bout (~10 strides) during exploration, the CNS may have had insufficient 389 
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time to tune its control strategy, contributing to the observation that participants could increase, but not 390 

consistently decrease tVAF1 values.  391 

 Whether synergy complexity is similarly flexible and can be consistently increased following 392 

neurologic injury is largely unknown but is especially salient for informing gait rehabilitation. Individuals 393 

with central nervous system damage recruit fewer synergies than nondisabled peers (Cheung et al., 2012; 394 

Clark et al., 2010; Fox et al., 2013; Rodriguez et al., 2013; Schwartz et al., 2016; Steele et al., 2015). 395 

Further, within these populations, both synergy complexity and structure have been associated with 396 

impairment level, as those with more severe impairments have less complex control (Cheung et al., 2012; 397 

Steele et al., 2015). This is hypothesized to reflect increased reliance on spinal circuitry over supraspinal 398 

input to shape motor outputs following neurologic injury, which may reduce the overall flexibility of 399 

synergy recruitment (Leonard et al., 1991). This relationship has been demonstrated in CP, where prior 400 

literature has reported that synergies are unchanged following surgery and biofeedback training, despite 401 

both interventions yielding measurable improvements in gait (Booth et al., 2019; Shuman et al., 2019). 402 

Further, stroke survivors with less severe impairment appear to maintain the capacity to modulate 403 

synergies during locomotor training better than those with more severe impairment (Rouston et al., 2013). 404 

Understanding whether individuals with neurologic injury can consistently alter synergy complexity and 405 

improve movement, or how interventions can support sustained changes in control remain active and 406 

important areas for future investigations. While recent literature has indicated that providing richer 407 

afferent information via spinal stimulation or sensorimotor biofeedback may promote greater supraspinal 408 

involvement and, therefore, more flexible synergy recruitment during movement, studies are still ongoing 409 

(Cheng et al., 2019; Conner et al., 2021; Gad et al., 2021).  410 

  Our observation that participant number was predictive ofΔtVAF1 further accentuates the need to 411 

evaluate personalized responses to biofeedback. This result suggests that even when controlling for all 412 

other model covariates, including baseline complexity, interparticipant differences in response persisted. 413 

Heterogeneous response to biofeedback training has been cited previously and  may stem from both 414 
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individual capacity to modify the parameter targeted by biofeedback as well as system design choices 415 

(Booth et al., 2019; Huang et al., 2006; MacIntosh et al., 2019; Sigrist et al., 2013; Spencer et al., 2021; 416 

van Gelder et al., 2017). The latter likely contributed to the results observed here. Because synergy 417 

complexity is derived from multiple data streams, some participants reported feeling unsure about how 418 

specific gait changes affected the displayed metric or struggled to conceptualize what ‘more’ or ‘less’ 419 

complex gait patterns entailed, both of which likely influenced their exploration strategy. These results 420 

highlight an inherent challenge of using motor control-based biofeedback in gait training applications and 421 

presents an opportunity to explore more interpretable biofeedback metrics that can still be used to 422 

improve control patterns. For example, the output from our model suggests that providing information on 423 

joint moments to reduce hamstring-quadricep co-contraction in early stance may elicit changes in synergy 424 

complexity, although further work is needed to extend these findings to populations with neurologic 425 

injury. Our results also demonstrate the unique advantage of using non-linear function estimation 426 

techniques such as BART in order to better interpret the inherently complex and multifactorial user-427 

system interactions present during biofeedback training to inform future system design.  428 

4.1 Methodological Considerations  429 

Although the decision to use a biofeedback system and minimal researcher coaching allowed us to 430 

capture a broader array of patterns than have been previously examined in studies of synergies in gait, 431 

there are limitations to this approach that should be considered when interpreting the results. Because we 432 

wanted participants to freely explore using the biofeedback system, we only required them to take five 433 

strides in a selected gait pattern. This meant that the novelty of the attempted patterns was likely reflected 434 

in our results, as previously described. In order to reduce this effect, we calculated synergies from the 435 

same number of strides during exploration and baseline walking (n = 5); however, it is possible that 436 

synergies may have adapted further if we had collected a larger number of strides for each unique pattern 437 

(Oliveira et al., 2014). The unstructured nature of the protocol also introduced the likelihood of observing 438 

extreme outliers, as a given gait pattern may only be attempted by a single participant. The opportunity 439 
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for outliers and observed heterogeneity of participant response informed our decision to use BART as a 440 

modeling paradigm. Because BART natively constrains tree structure, it prevents data overfitting, thereby 441 

reducing the likelihood that outliers in our data set could significantly affect model outputs (Chipman et 442 

al., 2010). Finally, despite the diversity of patterns attempted, our analysis was still limited to a subset of 443 

gait patterns making it challenging to draw definitive conclusions about the relationship between 444 

biomechanical constraints and synergies.  In future studies, biofeedback systems may be useful to guide 445 

users through a sample of possible walking configurations in order to develop a more comprehensive 446 

landscape of user response. Simulation paradigms, such as those employed by Kutch and Valero-Cuevas 447 

(2012), which involve systematically iterating over a range of achievable outputs, could also be a valuable 448 

compliment to the present study to provide further insight into how synergies change as a function of gait 449 

exploration. Importantly, such analyses need to be performed in both nondisabled populations and those 450 

with neurologic injury in order to understand how injury impacts one’s ability to flexibly alter control 451 

strategies during walking.  452 

5. CONCLUSION 453 

Using motor control-based biofeedback to encourage exploration and capitalizing on non-linear machine 454 

learning methodology allowed us to identify salient features which influence how the CNS flexibly 455 

shapes control during walking. This analysis revealed that a small library of spatially invariant synergies 456 

can be flexibly recruited to produce a diverse array of motor outputs and that recruitment changes as a 457 

function of the imposed biomechanical constraints. Specifically, our results suggest that large deviations 458 

in distal joint mechanics during stance resulted in the greatest overall change in synergy recruitment from 459 

baseline walking. Further, they indicate that other participant-level factors may affect one’s ability to 460 

modify synergy recruitment during walking, which must be considered when designing interventions to 461 

this end. Whether the recruitment flexibility observed in this study is a luxury of the unimpaired 462 

neurological system or is maintained following neurological injury is a critical next step of this work. By 463 

modeling how synergies are modulated during locomotion, we believe that this study presents both 464 
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theoretical and methodological contributions towards bolstering understanding of the neural control of 465 

movement and may aid in improving interventions for individuals with neurological injury.  466 

Conflict of Interest  467 
The authors declare no conflict of interest regarding the publication of this manuscript.  468 
 469 

Author Contributions  470 
A.M.S., conceived and designed this research, collected and analyzed data, prepared figures, and drafted 471 
the manuscript. R.Z.Y collected and analyzed data and revised the manuscript. M.H.S. and K.M.S 472 
conceived and designed the research, interpreted results, and revised the manuscript. All authors approved 473 
the final version of the manuscript of publication.  474 

Acknowledgements  475 
The authors would like to recognize Nick Baicoianu for his help developing the biofeedback system.  476 

Funding  477 
This work was supported by NIH National Institute of Neurological Disorders & Stroke, R01NS091056, 478 
NIH National Center for Advancing Translational Sciences, TR002318, and NSF Graduate Research 479 
Fellowship Program, DGE-1762114. 480 

  481 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 482 

Allen, J.L., Neptune, R.R., 2012. Three-dimensional modular control of human walking. J Biomech 45, 483 

2157–2163. https://doi.org/10.1016/j.jbiomech.2012.05.037 484 

Apley, D.W., Zhu, J., 2020. Visualizing the effects of predictor variables in black box supervised learning 485 

models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 82, 1059–1086. 486 

https://doi.org/10.1111/rssb.12377 487 

Barroso, F.O., Torricelli, D., Moreno, J.C., Taylor, J., Gomez-Soriano, J., Bravo-Esteban, E., Piazza, S., 488 

Santos, C., Pons, J.L., 2014. Shared muscle synergies in human walking and cycling. Journal of 489 

neurophysiology 112, 1984–1998. 490 

Bizzi, E., Cheung, V.C., 2013. The neural origin of muscle synergies. Frontiers in computational 491 

neuroscience 7, 51. 492 

Booth, A.T.C., van der Krogt, M.M., Harlaar, J., Dominici, N., Buizer, A.I., 2019. Muscle synergies in 493 

response to biofeedback-driven gait adaptations in children with cerebral palsy. Front Physiol 10. 494 

https://doi.org/10.3389/fphys.2019.01208 495 

Bowden, M.G., Clark, D.J., Kautz, S.A., 2010. Evaluation of Abnormal Synergy Patterns Poststroke: 496 

Relationship of the Fugl-Meyer Assessment to Hemiparetic Locomotion. Neurorehabil Neural Repair 24, 497 

328–337. https://doi.org/10.1177/1545968309343215 498 

Breiman, L., 2001. Random Forests. Machine Learning 45, 5–32. 499 

https://doi.org/10.1023/A:1010933404324 500 

Cappellini, G., Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F., 2006. Motor patterns in human walking and 501 

running. Journal of Neurophysiology 95, 3426–3437. https://doi.org/10.1152/jn.00081.2006 502 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cheng, R., Sui, Y., Sayenko, D., Burdick, J.W., 2019. Motor Control After Human SCI Through 503 

Activation of Muscle Synergies Under Spinal Cord Stimulation. IEEE Transactions on Neural Systems 504 

and Rehabilitation Engineering 27, 1331–1340. https://doi.org/10.1109/TNSRE.2019.2914433 505 

Cheung, V.C., d’Avella, A., Tresch, M.C., Bizzi, E., 2005. Central and sensory contributions to the 506 

activation and organization of muscle synergies during natural motor behaviors. Journal of Neuroscience 507 

25, 6419–6434. 508 

Cheung, V.C., Turolla, A., Agostini, M., Silvoni, S., Bennis, C., Kasi, P., Paganoni, S., Bonato, P., Bizzi, 509 

E., 2012. Muscle synergy patterns as physiological markers of motor cortical damage. Proceedings of the 510 

National Academy of Sciences 109, 14652–15656. 511 

Chipman, H.A., George, E.I., McCulloch, R.E., 2010. BART: Bayesian additive regression trees. The 512 

Annals of Applied Statistics 4, 266–298. https://doi.org/10.1214/09-AOAS285 513 

Christiansen, L., Larsen, M.N., Madsen, M.J., Grey, M.J., Nielsen, J.B., Lundbye-Jensen, J., 2020. Long-514 

term motor skill training with individually adjusted progressive difficulty enhances learning and promotes 515 

corticospinal plasticity. Sci Rep 10, 15588. https://doi.org/10.1038/s41598-020-72139-8 516 

Clark, D.J., Ting, L.H., Zajac, F.E., Neptune, R.R., Kautz, S.A., 2010. Merging of healthy motor modules 517 

predicts reduced locomotor performance and muscle coordination complexity post-stroke. Journal of 518 

neurophysiology 103, 844–857. 519 

Conner, B.C., Schwartz, M.H., Lerner, Z.F., 2021. Pilot evaluation of changes in motor control after 520 

wearable robotic resistance training in children with cerebral palsy. Journal of Biomechanics 126, 521 

110601. https://doi.org/10.1016/j.jbiomech.2021.110601 522 

d’Avella, A., Bizzi, E., 2005. Shared and specific muscle synergies in natural motor behaviors. 523 

Proceedings of the National Academy of Sciences 102, 3076–3081. 524 

https://doi.org/10.1073/pnas.0500199102 525 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G., 526 

2007. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE 527 

Trans Biomed Eng 54, 1940–1950. https://doi.org/10.1109/TBME.2007.901024 528 

Dorie, V., Hill, J., Shalit, U., Scott, M., Cervone, D., 2019. Automated versus Do-It-Yourself Methods for 529 

Causal Inference: Lessons Learned from a Data Analysis Competition. Statistical Science 34, 43–68. 530 

https://doi.org/10.1214/18-STS667 531 

Fox, E.J., Tester, N.J., Kautz, S.A., Howland, D.R., Clark, D.J., Garvan, C., Behrman, A.L., 2013. 532 

Modular control of varied locomotor tasks in children with incomplete spinal cord injuries. J 533 

Neurophysiol 110, 1415–1425. https://doi.org/10.1152/jn.00676.2012 534 

Freund, Y., Schapire, R.E., 1997. A Decision-Theoretic Generalization of On-Line Learning and an 535 

Application to Boosting. Journal of Computer and System Sciences 55, 119–139. 536 

https://doi.org/10.1006/jcss.1997.1504 537 

Gad, P., Hastings, S., Zhong, H., Seth, G., Kandhari, S., Edgerton, V.R., 2021. Transcutaneous Spinal 538 

Neuromodulation Reorganizes Neural Networks in Patients with Cerebral Palsy. Neurotherapeutics. 539 

https://doi.org/10.1007/s13311-021-01087-6 540 

Hagio, S., Fukuda, M., Kouzaki, M., 2015. Identification of muscle synergies associated with gait 541 

transition in humans. Frontiers in Human Neuroscience 9, 1–11. 542 

Hicks, J.L., Uchida, T.K., Seth, A., Rajagopal, A., Delp, S.L., 2015. Is my model good enough? Best 543 

practices for verification and validation of musculoskeletal models and simulations of movement. J 544 

Biomech Eng 137, 020905. https://doi.org/10.1115/1.4029304 545 

Huang, H., Wolf, S.L., He, J., 2006. Recent developments in biofeedback for neuromotor rehabilitation. 546 

https://doi.org/10.1186/1743-0003-3-11 547 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ivanenko, Y.P., Cappellini, G., Dominici, N., Poppele, R.E., Lacquaniti, F., 2005. Coordination of 548 

Locomotion with Voluntary Movements in Humans. J. Neurosci. 25, 7238–7253. 549 

https://doi.org/10.1523/JNEUROSCI.1327-05.2005 550 

Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F., 2004. Five basic muscle activation patterns account for 551 

muscle activity during human locomotion. The Journal of Physiology 556, 267–282. 552 

Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E., 1990. Measurement of lower extremity kinematics 553 

during level walking. Journal of Orthopaedic Research 8, 383–392. 554 

https://doi.org/10.1002/jor.1100080310 555 

Kapelner, A., Bleich, J., 2016. bartMachine: Machine Learning with Bayesian Additive Regression Trees. 556 

Journal of Statistical Software 70, 1–40. https://doi.org/10.18637/jss.v070.i04 557 

Kargo, W.J., Ramakrishnan, A., Hart, C.B., Rome, L.C., Giszter, S.F., 2010. A Simple Experimentally 558 

Based Model Using Proprioceptive Regulation of Motor Primitives Captures Adjusted Trajectory 559 

Formation in Spinal Frogs. Journal of Neurophysiology 103, 573–590. 560 

https://doi.org/10.1152/jn.01054.2007 561 

Krings, T., Töpper, R., Foltys, H., Erberich, S., Sparing, R., Willmes, K., Thron, A., 2000. Cortical 562 

activation patterns during complex motor tasks in piano players and control subjects. A functional 563 

magnetic resonance imaging study. Neuroscience Letters 278, 189–193. https://doi.org/10.1016/S0304-564 

3940(99)00930-1 565 

Krishnamoorthy, V., Latash, M.L., Scholz, J.P., Zatsiorsky, V.M., 2004. Muscle modes during shifts of 566 

the center of pressure by standing persons: effect of instability and additional support. Exp Brain Res 157, 567 

18–31. https://doi.org/10.1007/s00221-003-1812-y 568 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kutch, Jason J., Valero-Cuevas, F.J., 2012. Challenges and new approaches to proving the existence of 569 

muscle synergies of neural origin. PLoS Computational Biology. 570 

https://doi.org/10.1371/journal.pcbi.1002434 571 

Kutch, Jason J, Valero-Cuevas, F.J., 2012. Challenges and new approaches to proving the existence of 572 

muscle synergies of neural origin. PLoS computational biology 8, e1002434. 573 

Lee, 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791. 574 

Leonard, C.T., Hirschfeld, H., Forssberg, H., 1991. The development of independent walking in children 575 

with cerebral palsy. Developmental Medicine & Child Neurology 33, 567–577. 576 

https://doi.org/10.1111/j.1469-8749.1991.tb14926.x 577 

Lin, Z., Chen, M., Ma, Y., 2013. The augmented lagrange multiplier method for exact recovery of 578 

corrupted low-rank matrices. Journal of Structural Biology 181, 116–127. 579 

https://doi.org/10.1016/j.jsb.2012.10.010 580 

MacIntosh, A., Lam, E., Vigneron, V., Vignais, N., Biddiss, E., 2019. Biofeedback interventions for 581 

individuals with cerebral palsy: a systematic review. Disability and Rehabilitation 41, 2369–2391. 582 

https://doi.org/10.1080/09638288.2018.1468933 583 

MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations, in: 584 

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. pp. 281–297. 585 

Martino, G., Ivanenko, Y.P., d’Avella, A., Serrao, M., Ranavolo, A., Draicchio, F., Cappellini, G., Casali, 586 

C., Lacquaniti, F., 2015. Neuromuscular adjustments of gait associated with unstable conditions. Journal 587 

of Neurophysiology 114, 2867–2882. https://doi.org/10.1152/jn.00029.2015 588 

McGowan, C.P., Neptune, R.R., Clark, D.J., Kautz, S.A., 2010. Modular control of human walking: 589 

Adaptations to altered mechanical demands. J Biomech 43, 412–419. 590 

https://doi.org/10.1016/j.jbiomech.2009.10.009 591 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mehrabi, N., Schwartz, M.H., Steele, K.M., 2019. Can altered muscle synergies control unimpaired gait? 592 

Journal of Biomechanics 90, 84–91. https://doi.org/10.1016/j.jbiomech.2019.04.038 593 

Nazifi, M.M., Yoon, H.U., Beschorner, K., Hur, P., 2017. Shared and task-specific muscle synergies 594 

during normal walking and slipping. Frontiers in human neuroscience 11, 40. 595 

Oliveira, A.S., Gizzi, L., Farina, D., Kersting, U.G., 2014. Motor modules of human locomotion: 596 

influence of EMG averaging, concatenation, and number of step cycles. Frontiers in Human Neuroscience 597 

8. https://doi.org/10.3389/fnhum.2014.00335 598 

Pascual-Leone, A., Nguyet, D., Cohen, L.G., Brasil-Neto, J.P., Cammarota, A., Hallett, M., 1995. 599 

Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of 600 

new fine motor skills. Journal of Neurophysiology 74, 1037–1045. 601 

https://doi.org/10.1152/jn.1995.74.3.1037 602 

Picard, N., Matsuzaka, Y., Strick, P.L., 2013. Extended practice of a motor skill is associated with 603 

reduced metabolic activity in M1. Nat Neurosci 16, 1340–1347. https://doi.org/10.1038/nn.3477 604 

Rajagopal, A., Dembia, C.L., DeMers, M.S., Delp, D.D., Hicks, J.L., Delp, S.L., 2016. Full-body 605 

musculoskeletal model for muscle-driven simulation of human gait. IEEE Transactions on Biomedical 606 

Engineering 63, 2068–2079. https://doi.org/10.1109/TBME.2016.2586891 607 

Rodriguez, K.L., Roemmich, R.T., Cam, B., Fregly, B.J., Hass, C.J., 2013. Persons with Parkinson’s 608 

disease exhibit decreased neuromuscular complexity during gait. Clinical Neurophysiology 124, 1390–609 

1397. https://doi.org/10.1016/j.clinph.2013.02.006 610 

Rosenkranz, K., Kacar, A., Rothwell, J.C., 2007. Differential Modulation of Motor Cortical Plasticity and 611 

Excitability in Early and Late Phases of Human Motor Learning. J. Neurosci. 27, 12058–12066. 612 

https://doi.org/10.1523/JNEUROSCI.2663-07.2007 613 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rousseeuw, P.J., 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. 614 

Journal of Computational and Applied Mathematics 20, 53–65. https://doi.org/10.1016/0377-615 

0427(87)90125-7 616 

Rouston, R.L., Clark, D.J., Bowden, M.G., Kautz, S.A., Neptune, R.R., 2013. The influence of locomotor 617 

rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture 38, 511–618 

517. https://doi.org/10.1016/j.gaitpost.2013.01.020 619 

Rouston, R.L., Kautz, S.A., Neptune, R.R., 2014. Modular organization across changing task demands in 620 

healthy and poststroke gait. Physiological Reports 2, ee12055. 621 

Rozumalski, A., Schwartz, M.H., 2009. Crouch gait patterns defined using k-means cluster analysis are 622 

related to underlying clinical pathology. Gait & Posture 30, 155–160. 623 

https://doi.org/10.1016/j.gaitpost.2009.05.010 624 

Rozumalski, A., Steele, K.M., Schwartz, M.H., 2017. Muscle synergies are similar when typically 625 

developing children walk on a treadmill at different speeds and slopes. Journal of Biomechanics 64, 112–626 

119. 627 

Sawers, A., Allen, J.L., Ting, L.H., 2015. Long-term training modifies the modular structure and 628 

organization of walking balance control. Journal of Neurophysiology 114, 3359–3373. 629 

https://doi.org/10.1152/jn.00758.2015 630 

Schapire, R.E., 1990. The strength of weak learnability. Mach Learn 5, 197–227. 631 

https://doi.org/10.1007/BF00116037 632 

Schwartz, M.H., Rozumalski, A., 2008. The gait deviation index: A new comprehensive index of gait 633 

pathology. Gait and Posture. https://doi.org/10.1016/j.gaitpost.2008.05.001 634 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Schwartz, M.H., Rozumalski, A., Steele, K.M., 2016. Dynamic motor control is associated with treatment 635 

outcomes for children with cerebral palsy. Developmental Medicine and Child Neurology 58, 1139–1145. 636 

https://doi.org/10.1111/dmcn.13126 637 

Shuman, B.R., Goudriaan, M., Desloovere, K., Schwartz, M.H., Steele, K.M., 2019. Muscle synergies 638 

demonstrate only minimal changes after treatment in cerebral palsy. Journal of NeuroEngineering and 639 

Rehabilitation 16. https://doi.org/10.1186/s12984-019-0502-3 640 

Shuman, B.R., Schwartz, M.H., Steele, K.M., 2017. Electromyography Data Processing Impacts Muscle 641 

Synergies during Gait for Unimpaired Children and Children with Cerebral Palsy. Front Comput 642 

Neurosci 11, 50. https://doi.org/10.3389/fncom.2017.00050 643 

Sigrist, R., Rauter, G., Riener, R., Wolf, P., 2013. Augmented visual, auditory, haptic, and multimodal 644 

feedback in motor learning: A review. Psychon Bull Rev 20, 21–53. https://doi.org/10.3758/s13423-012-645 

0333-8 646 

Spencer, J., Wolf, S.L., Kesar, T.M., 2021. Biofeedback for Post-stroke Gait Retraining: A Review of 647 

Current Evidence and Future Research Directions in the Context of Emerging Technologies. Front Neurol 648 

12. https://doi.org/10.3389/fneur.2021.637199 649 

Spomer, A.M., Yan, R.Z., Schwartz, M.H., Steele, K.M., 2022. Synergies are minimally affected during 650 

emulation of cerebral palsy gait patterns. Journal of Biomechanics 133, 110953. 651 

https://doi.org/10.1016/j.jbiomech.2022.110953 652 

Steele, K.M., Rozumalski, A., Schwartz, M.H., 2015. Muscle synergies and complexity of neuromuscular 653 

control during gait in cerebral palsy. Developmental Medicine & Child Neurology 57, 1176–1182. 654 

Steele, K.M., Seth, A., Hicks, J.L., Schwartz, M.H., Delp, S.L., 2013. Muscle contributions to vertical and 655 

fore-aft accelerations are altered in subjects with crouch gait. Gait & Posture 38, 86–91. 656 

https://doi.org/10.1016/j.gaitpost.2012.10.019 657 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tan, Y.V., Roy, J., 2019. Bayesian additive regression trees and the General BART model. Statistics in 658 

Medicine 38, 5048–5069. https://doi.org/10.1002/sim.8347 659 

Tang, L., Li, F., Cao, S., Zhang, X., Wu, D., Chen, X., 2015. Muscle synergy analysis in children with 660 

cerebral palsy. Journal of Neural Engineering 12, 046017. https://doi.org/10.1088/1741-661 

2560/12/4/046017 662 

Ting, L., Chvatal, S.A., 2010. Decomposing Muscle Activity in Motor Task, in: Danion, F., Latash, M.L. 663 

(Eds.), Motor Control: Theories, Experiments, and Applications. Oxford University Press, New York, pp. 664 

102–138. 665 

Ting, L.H., Chiel, H.J., Trumbower, R.D., Allen, J.L., McKay, J.L., Hackney, M.E., Kesar, T.M., 2015. 666 

Neuromechanical principles underlying movement modularity and their implications for rehabilitation. 667 

Neuron. https://doi.org/10.1016/j.neuron.2015.02.042 668 

Torres-Oviedo, G., Ting, L.H., 2010. Subject-specific muscle synergies in human balance control are 669 

consistent across different biomechanical contexts. American Journal of Physiology-Heart and 670 

Circulatory Physiology 103, 3084–3098. 671 

Tresch, M.C., 2005. Matrix Factorization Algorithms for the Identification of Muscle Synergies: 672 

Evaluation on Simulated and Experimental Data Sets. Journal of Neurophysiology. 673 

https://doi.org/10.1152/jn.00222.2005 674 

Tresch, M.C., Jarc, A., 2009. The case for and against muscle synergies. Current Opinion in 675 

Neurobiology 19, 601–607. https://doi.org/10.1016/j.conb.2009.09.002 676 

Valero-Cuevas, F.J., Venkadesan, M., Todorov, E., 2009. Structured Variability of Muscle Activations 677 

Supports the Minimal Intervention Principle of Motor Control. Journal of Neurophysiology. 678 

https://doi.org/10.1152/jn.90324.2008 679 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


van Gelder, L., Booth, A.T.C., van de Port, I., Buizer, A.I., Harlaar, J., van der Krogt, M.M., 2017. Real-680 

time feedback to improve gait in children with cerebral palsy. Gait & Posture. 681 

https://doi.org/10.1016/j.gaitpost.2016.11.021 682 

Zelik, K.E., La Scaleia, V., Ivanenko, Y.P., Lacquaniti, F., 2014. Can modular strategies simplify neural 683 

control of multidirectional human locomotion? Journal of Neurophysiology 111, 1686–1702. 684 

https://doi.org/10.1152/jn.00776.2013 685 

 686 

  687 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.25.501482doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: BART Model Variables 688 
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 691 

 692 

Figure 1: Methodology used to identify clusters (K1 to KN), representing kinematically-similar gait 693 
patterns attempted by participants during feedback walking. Full-body kinematic and kinetic data and 694 
lower-limb EMG data were collected while participants explored a broad range of movement patterns 695 
using biofeedback. The Gait Deviation Index (GDI) was calculated from kinematic data for each 696 
recorded stride for every participant and trial (56 data sets). Unique gait patterns were labeled as five or 697 
more consecutive strides with similar GDI values and manually confirmed. Kinematic data for these 698 
unique patterns were input into a k-means clustering algorithm to identify clusters (K1 to KN) across 699 
participants and trials.  700 
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701 
Figure 2: Kinematic and kinetic predictor variables included in the BART model. Each icon indicates a 702 
variable (n = 31 total) that was identified for every unique gait pattern. Variables were selected to 703 
capture trends at the pelvis, hip, knee, and ankle that could change during exploration. Circles indicate 704 
local maximum or minimum values, and triangles indicate initial contact points, calculated as the mean 705 
value over the first 5% of the gait cycle. Average pelvis list, tilt, and rotation angles across the gait cycle 706 
were included to capture asymmetries. The standard deviations of each kinematic and kinetic variable, 707 
used to capture stride-to-stride variability during gait pattern exploration, were also included in the 708 
predictor set.  709 
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 710 

Figure 3: Average pelvis, hip, knee, and ankle kinematics for the five clusters identified by k-means 711 
clustering (K1 – K5), representing common gait patterns attempted during exploration. The baseline 712 
condition shows ± 1SD. 713 
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 714 

Figure 4: The total variance accounted for by a one-synergy solution (tVAF1) for each participant (P1-715 
P14). Each dot represents a unique gait pattern and is colored according to the cluster it was sorted into 716 
(K1 to K5). For each participant, data is organized into two columns representing the feedback trials in 717 
which participants were instructed to decrease (left) and increase (right) their tVAF1. Baseline data is 718 
presented as a mean ± 1SD, representing the distribution of tVAF1 values resulting from bootstrapping 719 
using sets of five random strides (replicates = 200). Boxes represent the mean (black line), 95% 720 
confidence interval (solid color), and standard deviation (shading) of tVAF1 values for each cluster and 721 
the baseline condition. Larger tVAF1 values correspond to decreased motor control complexity. * denotes 722 
significant difference between each group and the baseline condition and black bars indicate significant 723 
inter-cluster differences (α = 0.05). 724 
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 725 

Figure 5: Average synergy weights (W) and activations (C) for the three-synergy solution for baseline 726 
walking and each cluster of kinematically-similar gait patterns (K1 to K5). K-means clustering was 727 
performed for the i = 3 synergy solution across all unique gait patterns and yielded four unique 728 
structures. Synergy weight plots reflect cluster-wise averages as well as weights for individual gait 729 
patterns, sorted in descending order. Percentages reflect the number of gait patterns within each cluster 730 
(i.e., K1 to K5) that used each synergy. Muscles: gluteus maximus (GM), lateral hamstring (LH), medial 731 
hamstring (MH), vastus medialis (VM), medial gastrocnemius (MG), soleus (SO), and tibialis anterior 732 
(TA).  733 
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 735 

 736 

Figure 6: Similarity of the i = 3 synergy solution for each cluster (K1 to K5) as compared to baseline 737 
walking. Baseline synergy weights were used to reconstruct the EMG data for all unique gait patterns 738 
within each cluster. tVAF3_BASE represents the amount of variance accounted for by baseline walking 739 
synergy weights and tVAF3 represents the variance accounted for by weights extracted directly from 740 
EMG data for each unique gait pattern. For each box, the white bars represent mean values, the solid-741 
colored blocks represent a 95% confidence interval, and shading shows ±1 SD. Dots represent unique 742 
gait patterns and are arranged in columns to represent individual participants (P1 to P14). Large 743 
differences between tVAF3_BASE and tVAF3 indicate that synergies during gait pattern exploration deviate 744 
more from baseline walking. * denotes significant difference between each group and zero, indicating a 745 
change in synergies from baseline walking.  746 
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 747 

Figure 7: Net effects for the top fifteen predictors on ΔtVAF1 from the BART model. Net effects were 748 
derived from the generated ALE plots and defined as the difference between the 95th and 5th percentile of 749 
the response variable over the range of each predictor, when controlling for all other model covariates. 750 
Cross-hatching indicates measures of stride-to-stride variability. Gait phases: Initial contact (IC), stance 751 
(ST), and swing (SW). See Table 1 for all variables included in the BART model.  752 
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 754 

 755 

Figure 8: Accumulated local effect (ALE) plots for baseline synergy complexity, participant number, and 756 
speed. Speed is normalized to participant leg length. Each plot depicts the effect of an individual 757 
predictor on changes in synergy complexity from baseline, conditioned on all other predictors in the 758 
model. Predictor data is separated into evenly spaced bins and the size of individual points represents the 759 
number of samples in each bin. Larger values for tVAF1 indicate less complex control. Net effects were 760 
calculated as the difference between the 95th and 5th percentile of ΔtVAF1 over the range of each 761 
predictor.  762 
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 764 

Figure 9: Accumulated local effects of kinematic, kinetic, and variability measures on ΔtVAF1. Kinematic 765 
and kinetic measures (A) are presented as z-scores normalized to baseline walking, such that the x-axis 766 
depicts standard deviations away from baseline. Variability measures (B) are presented as degrees away 767 
from baseline variability. Vertical bars indicate ± 1 SD. Plots are cropped to display the middle 95% of 768 
the predictor data to remove extreme outliers. Predictor data was separated into evenly spaced bins and 769 
the size of individual points represent the number of samples in each bin. Gait phases: Initial contact 770 
(IC), stance (ST), and swing (SW).  771 
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