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ABSTRACT

Understanding how the central nervous system coordinates diverse motor outputs has been a topic of
extensive investigation. While it is generally accepted that a small set of synergies underlies many
common activities, such as walking, whether synergies are equally robust across a broader array of gait
patterns or can be flexibly modified remains unclear. Here, we evaluated the extent to which synergies
changed as nondisabled adults (n = 14) explored gait patterns using custom biofeedback. Secondarily, we
used Bayesian Additive Regression Trees to identify factors which were predictive of synergy
modulation. Participants performed 41.1 & 8.0 gait patterns using biofeedback, during which synergy
recruitment changed depending on the type and magnitude of gait pattern modification. Specifically, a
consistent set of synergies was recruited to accommodate small deviations from baseline, but additional
synergies emerged for larger gait changes. Synergy complexity was similarly modulated; complexity
decreased for 82.6% of the attempted gait patterns, however, distal gait mechanics were highly predictive
of these changes. In particular, greater ankle dorsiflexion moments and knee flexion through stance, as
well as greater knee extension moments at initial contact corresponded to a reduction in synergy
complexity. Taken together, these results suggest that the central nervous system preferentially adopts a
low-dimensional, largely invariant control strategy, but can modify that strategy to produce diverse gait
patterns. Beyond improving understanding of how synergies are recruited during gait, study outcomes
may also help identify parameters that can be targeted with interventions to alter synergies and improve

motor control following neurological injury.
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1. INTRODUCTION

Humans are capable of producing a broad array of movements, allowing for robust locomotion in diverse
and unpredictable environments. To achieve this range of motor outputs, it has been hypothesized that the
central nervous system (CNS) recruits a small number of synergies (i.e., modes, modules), defined as
groups of coactivating muscles; this architecture is believed to simplify control beyond activating muscles
independently (Bizzi and Cheung, 2013; Ting et al., 2015; Tresch and Jarc, 2009). Numerous studies have
evaluated this hypothesis experimentally, employing matrix decomposition techniques, such as non-
negative matrix factorization, to extract synergies and their corresponding activation patterns from
electromyography (EMG) data (Lee, 1999; Tresch, 2005). These studies revealed that tasks such as
walking (Allen and Neptune, 2012; Ivanenko et al., 2004), running (Cappellini et al., 2006; Hagio et al.,
2015) and cycling (Barroso et al., 2014) share a small set of muscle synergies, despite being
biomechanically distinct. Further, across tasks, changes in speed (Rozumalski et al., 2017), incline
(Ivanenko et al., 2004; Rozumalski et al., 2017), cadence (Rouston et al., 2014), and body-weight loading
(Ivanenko et al., 2004; McGowan et al., 2010) are shown to shift the phase or duration of synergy
activations rather than the structure of the synergies themselves. These observations suggest that modest
changes in sensory input or biomechanical demand are accommodated by altering the activation of
invariant synergies and lend credence to their centralized role in coordination (Cheung et al., 2005;
Torres-Oviedo and Ting, 2010). However, whether synergies are equally robust across a greater subset of
achievable gait patterns or can be actively modified during gait is largely unknown (Jason J. Kutch and

Valero-Cuevas, 2012; Tresch and Jarc, 2009).

Because synergies generally align with the sub-tasks of walking (e.g., push-off, weight
acceptance), gait patterns which impose additional mechanical requirements or present large changes in
somatosensory feedback may alter synergy recruitment (Cheung et al., 2005; Ivanenko et al., 2005; Nazifi
et al., 2017; Torres-Oviedo and Ting, 2010). This is supported by prior work in animal models which

demonstrated that frogs recruit task-specific synergies during swimming, jumping, and walking which
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correspond to the unique biomechanical demands of each movement (d’Avella and Bizzi, 2005).
Similarly, humans recruit specific synergies during perturbation recovery tasks to maintain mediolateral
stability and reduce center of mass movement (Krishnamoorthy et al., 2004; Martino et al., 2015; Nazifi
et al., 2017; Torres-Oviedo and Ting, 2010). Importantly, such synergies emerge in addition to those
shared with other tasks, which suggests that the CNS flexibly draws from a limited library rather than

deploying unique control strategies to accommodate task demand (Torres-Oviedo and Ting, 2010).

Taken together, prior results indicate that a relationship exists between the biomechanical
constraints of a given task and the recruited control strategy. That is, the CNS may preferentially tune the
activation timing of a consistent set of synergies but is simultaneously capable of recruiting different
synergies to produce diverse outputs. Understanding when and how synergies are modulated across
changing biomechanical contexts and the factors driving this modulation is critical to better inform how
the CNS coordinates complex movement. While this relationship has been previously characterized
across broad balance (Torres-Oviedo and Ting, 2010) and finger force generation tasks (Jason J Kutch
and Valero-Cuevas, 2012; Valero-Cuevas et al., 2009), gait has not been studied to the same extent

(Rouston et al., 2014; Zelik et al., 2014).

Beyond enhancing understanding of the neural control of gait, characterizing whether synergies
can be modulated in walking may also inform methods for targeting aberrant synergy recruitment.
Individuals with cerebral palsy (Schwartz et al., 2016; Steele et al., 2015; Tang et al., 2015), Parkinson’s
disease (Rodriguez et al., 2013), and spinal cord injury (Fox et al., 2013) as well as stroke survivors
(Cheung et al., 2012; Clark et al., 2010) recruit fewer synergies than nondisabled peers which impacts
independent mobility (Bowden et al., 2010; Clark et al., 2010; Mehrabi et al., 2019) and may reduce the
efficacy of traditional interventions (Schwartz et al., 2016). Because available interventions for these
populations often fail to alter synergies (Shuman et al., 2019), developing new paradigms to directly
improve synergy recruitment has become a critical priority in gait rehabilitation. This has spurred the

development of biofeedback and robotic gait training paradigms which have thus far yielded promising,
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97  yetstill highly variable results (Booth et al., 2019; Conner et al., 2021; Rouston et al., 2013). As such,
98  mapping the relationship between biomechanical constraints and synergy modulation may further inform
99 the design of these systems by highlighting gait parameters that can be directly targeted to produce greater

100  and more consistent changes in motor control.

101 The aim of this study was to characterize the robustness of synergies to changing biomechanical
102  constraints during walking. Specifically, we evaluated the extent to which nondisabled individuals could
103  modulate both synergy structure and complexity during walking while using motor control biofeedback to
104  drive broad gait pattern exploration. These data were then used to build a Bayesian Additive Regression
105  Trees (BART) model to identify biomechanical variables that were predictive of synergy modulation. We
106  hypothesized that changing biomechanical constraints would alter the recruitment but not the structure of
107  muscle synergies, but that different synergies may be recruited to accommodate large deviations from
108  baseline. The results from this investigation will provide further insight into the extent to which motor
109  control can be altered and, importantly, improve understanding of how the CNS shapes its control

110  strategy to produce a repertoire of motor outputs. The latter will support the development of intervention

111  strategies to improve motor control among individuals with neurological injury.

112 2. METHODS

113 2.1 Experimental Protocol

114  Fourteen nondisabled individuals (7M/7F; Age: 24.1 + 4.7 years; Height: 1.7 = 0.1 m; Mass: 65.7 £ 20.1
115  kg) were recruited to evaluate synergies during gait pattern exploration. Prior to participation, all provided
116  written informed consent and the experimental protocol was approved by the University of Washington

117 Institutional Review Board.

118 Participants walked on a treadmill at a self-selected speed (1.07 £ 0.13 m/s; Bertec, Columbus,
119  OH) while responding to a custom biofeedback system, designed to encourage gait pattern exploration.

120  Briefly, this system presented the participant with a real-time score of their dominant-limb synergy
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121 complexity, defined as the total variance accounted for by one synergy, on a graphical display (Steele et
122 al., 2015). To facilitate participant interpretation, the displayed score was normalized to baseline walking
123 and scaled such that a value of 100 corresponded to baseline and higher values indicated more complex
124 control (see S1 for additional system details). Participants performed one baseline walking trial with the
125  feedback system turned off followed by feedback trials during which they were instructed to either (1)
126  raise or (2) lower their complexity score; two trials were performed in each target direction. All trials
127  were three minutes long and separated by mandatory one-minute rest periods. During the feedback trials,
128  participants were encouraged to explore a broad range of gait patterns to modify their score. The only
129  imposed restrictions were that they must (1) maintain forward-facing walking and (2) take at least five

130  consecutive strides in the pattern selected.

131 Surface EMG data (Delsys Inc, Natick, MA) were recorded bilaterally for seven lower limb
132 muscles: gluteus maximus (GM), lateral hamstrings (LH), medial hamstrings (MH), vastus medialis
133 (VM), soleus (S0O), tibialis anterior (TA), and medial gastrocnemius (MG). Raw EMG signals were low
134  passed filtered (4™ order Butterworth; 20 Hz), rectified, and high pass filtered (4" order Butterworth; 10
135  Hz) to establish linear envelopes (Shuman et al., 2017). After filtering, non-physiological signal spikes
136  were removed using a robust-PCA algorithm (Lin et al., 2013) and the data were normalized to the 95™

137  percentile of maximum muscle activity across all trials.

138 Full-body motion data were collected using a 10-camera motion capture system (120 Hz) and a
139  modified Helen Hayes marker set (Kadaba et al., 1990). Joint kinematics and kinetics were derived from
140  marker data in OpenSim v3.3 using a 33 degree-of-freedom model, scaled to each subject (Delp et al.,
141 2007; Rajagopal et al., 2016). The average root-mean-squared (RMS) and maximum error for all

142 developed models were 1.3 cm and 2.5 c¢cm, respectively, which fall below the recommended thresholds

143 for model fidelity (Hicks et al., 2015).
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144 2.2 Gait Analysis

145  Because participants explored many different gait patterns using the biofeedback system, we first had to
146  extract each pattern attempted across trials and participants (Figure 1). To do this, the gait deviation index
147  (GDI) was calculated from the kinematic data for every stride in each trial (Schwartz and Rozumalski,
148  2008). The GDI is a summary measure of deviations in pelvis, hip, knee, and ankle kinematics from

149  ‘normative’ trends and was, therefore, expected to change during gait pattern exploration. For each trial,
150  groups of five or more consecutive strides with similar GDI values were automatically labeled as unique
151  gait patterns; each unique pattern identified was then subsequently confirmed via manual inspection to
152  ensure appropriate labeling. Following labeling, average kinematic and kinetic trends at the pelvis, hip,
153  knee, and ankle were quantified for each unique pattern. To identify kinematically-similar strategies

154  adopted by multiple participants, the average kinematics for all unique patterns were separated into

155  clusters (K to Ky) using k-means clustering (Rozumalski and Schwartz, 2009).

156 2.3 Synergy Analysis

157  Muscle synergies were quantified from EMG data for each unique gait pattern using non-negative matrix
158  factorization (NMF). NMF is a linear matrix decomposition technique which is commonly used to

159  identify non-negative synergies (W) and their corresponding activations (C) from EMG data, such that
160  EMGux = Wui*Ciw + error where m is the number of muscles, i is the number of synergies, and ¢ is the
161  time points (Lee, 1999; Ting and Chvatal, 2010). The structure of the W and C matrices provide insight
162  into how muscles coactivate across the gait cycle. Similarly, the total variance accounted for (tVAF) by a
163  given number of synergies (i) can provide a summary measure of synergy complexity and has been

164  frequently used as a marker for impairment level; individuals with neurological injury (Cheung et al.,
165 2012; Clark et al., 2010; Fox et al., 2013; Rodriguez et al., 2013; Schwartz et al., 2016; Steele et al.,

166  2015) have higher tVAF values (i.e. less complex control) for a given synergy solution (7) than

167  nondisabled peers. Therefore, if synergies were sensitive to imposed biomechanical constraints, we may

168  expect to see changes in both synergy structure and complexity measures.
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We calculated i = 1 to 7 synergies using the dominant-limb EMG data for five concatenated
strides for each unique gait pattern attempted. Because synergy analysis is sensitive to the amount of
EMG data used, we elected to analyze a consistent number of strides across all patterns and participants
(Oliveira et al., 2014). If a participant took more than five strides in a unique pattern, we performed a
bootstrapping procedure by quantifying synergies using five random strides, selected with replacement
from the available set, and replicating this process until a normal distribution was achieved; average
synergies and tVAF values were then reported. The same bootstrapping procedure was performed on the
baseline walking data with sets of five concatenated strides (replicates = 200) to ensure accurate

comparisons between baseline and feedback conditions.

We evaluated synergy structure during gait pattern exploration in two ways. We first compared
the inter-cluster (K; to Kx) similarity of synergy weights (W) and activation patterns (C) for the i = 3
synergy solution. This solution was evaluated, as three synergies explained over 90% of the variance in
EMG data for the majority of unique gait patterns. We sorted synergy weights for all unique gait patterns
attempted during exploration as well as baseline walking into £ clusters (MacQueen, 1967). Because
individuals may recruit different synergies during exploration compared to baseline gait, we varied k
between k = 3 (i.e., synergies were consistent between baseline and exploration) and £ = 10*3 (i.e.,
different synergies emerged during exploration) and selected & as the number of clusters with the
maximum silhouette coefficient (Rousseeuw, 1987); the upper bound on k was highly conservative and
based on our expectation that synergies would be predominantly shared across gait patterns (Torres-
Oviedo and Ting, 2010). Synergy weights and activations for each unique gait pattern were then sorted
into their respective clusters (K; to Kx) and the average values were calculated. Secondarily, we evaluated
the intrasubject similarity of baseline synergies with those recruited during exploration. This was done by
fixing the W matrix as the synergy weights extracted from baseline walking for the three-synergy solution
(i = 3) and using the multiplicative update rule from NMF to find a C matrix which minimized the error

between W*C and the EMG data for each unique gait pattern that an individual attempted. From this, we
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were able to calculate the total variance that could be explained in each unique gait pattern by baseline
weights (tVAF3 gasg) which was then compared to the tVAF; values (i.e., those calculated directly from
the EMG data for each unique gait pattern), yielding a measure of synergy similarity. If similar synergies
were recruited during gait pattern exploration and baseline walking, we would expect tVAF; pase and

tVAF; to be similar.

2.4 Statistical Analysis

2.4.1 Cluster-wise comparisons

For each cluster (K; to Kx), we compared mean tVAF values to (1) baseline walking and (2) tVAFgase
using paired t-tests to evaluate if synergy complexity or structure changed during gait pattern exploration,
respectively. Secondarily, one-way ANOVA tests were used to compare if synergy complexity and
structure were similar between clusters (K; to Kx); for any test that reached significance, t-tests were used
to perform pairwise comparisons. Average kinematic trends at key phases within the gait cycle (e.g.,
push-off, initial contact) for each cluster (K; to Kx) were also compared to baseline walking using paired
t-tests. To characterize stride-to-stride variability, the standard deviation of each kinematic parameter
during exploration was also compared to baseline using paired t-tests. For all comparisons to baseline
walking and post-hoc analyses, p-values were adjusted using a Holm-Sidak correction to account for
multiple tests. We defined significance as p < a for a = 0.05 and report mean values = 1 SD unless
otherwise indicated. All cluster-wise statistical analysis was performed using the MATLAB Statistical

Toolbox (MathWorks, Natick, USA).

2.4.2. BART analysis

To further examine the relationship between gait pattern exploration and synergy complexity, we
developed a Bayesian Additive Regression Trees (BART) statistical model (Chipman et al., 2010). BART
is a ‘sum-of-trees’ machine learning method used for non-parametric function estimation, similar to other
techniques such as boosting (Freund and Schapire, 1997; Schapire, 1990) and random forests (Breiman,

2001). However, unlike other methods, BART uses a regularization prior to control tree depth and
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shrinkage, effectively constraining individual trees as ‘weak learners’ to prevent data overfitting
(Chipman et al., 2010; Kapelner and Bleich, 2016). BART was selected for this application due to its
favorable predictive performance compared to other machine learning algorithms and because it can
capture the non-linear relationships inherent in motion data (Chipman et al., 2010; Dorie et al., 2019; Tan

and Roy, 2019).

We developed a BART model to predict changes in synergy complexity during exploration
compared to baseline walking, quantified as the difference in total variance accounted for by a one-
synergy solution (i.e., AtVAF). Our predictor set (Table 1) included kinematic and kinetic variables that
characterized each unique gait pattern as well as other metrics which could influence the type of gait
patterns a participant attempted. When defining kinematic and kinetic predictor variables, we prioritized a
set that captured salient trends at the pelvis, hip, knee, and ankle, while simultaneously maintaining
predictor set conciseness. These criteria resulted in the variables outlined in Figure 2 (n = 31). For each of
the identified kinematic and kinetic variables, both the mean and standard deviation values are included in
the predictor set, normalized to baseline walking. We elected to include standard deviation measures in
the model, as tVAF, is sensitive to the amount of variance in the data and could, therefore, be affected by
individuals simply moving with greater stride-to-stride variability, as might be expected during novel gait
pattern exploration (Sawers et al., 2015). We tuned hyperparameters for the developed BART model
using 10-fold cross-validation (parameters: k =3, q = 0.9, nu = 3, num_trees = 200, seed = 30) and report

both pseudo-R? and the out-of-sample root-mean-squared error (RMSE) as metrics of model quality.

Outputs from the BART model were interpreted with accumulated local effect (ALE) plots
(Apley and Zhu, 2020). ALE plots are used to visualize the effect that individual predictors have on the
specified response variable (i.e., AtVAF)), conditioned on all other model covariates. Unlike partial
dependence plots, which are also commonly used, ALE plots are generated by averaging and

accumulating the local rather than marginal effects of each predictor, making them unbiased in cases
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where predictors are highly correlated; this is particularly advantageous for this application, due to the

high level of correlation between kinematic and kinetic variables during gait.

Because ALE plots are generated by sampling from the available data, some discrepancy between
the ‘true’ and ‘estimated’ effect is expected (Apley and Zhu, 2020). To capture this uncertainty, we
performed a boostrap analysis (n = 100 replicates), drawing samples with replacement from the original
data set to generate a series of ALE plots from which the average and standard deviation could be
quantified. Using these average plots, we approximated net effects for each predictor as the difference
between the 95 and 5™ percentile of the response. If synergies were sensitive to biomechanical
constraints during gait pattern exploration, we would expect both kinematic and kinetic variables to have
large net effects on AtVAF,. BART model development and ALE plot generation were performed in
RStudio (RStudio Team, 2020) using the bartMachineCV and ALEPIot packages (Apley and Zhu, 2020;

Kapelner and Bleich, 2016).
3. RESULTS

3.1 Gait Exploration

Participants explored 10.3 & 2.8 unique gait patterns per feedback trial on average, resulting in 575 total
patterns across all participants. These data were separated into five clusters, representing the common
kinematic strategies attempted (Figure 3). K> and K4 represented 24 and 78 unique gait patterns,
respectively, and were characterized by increased hip flexion (K»: 47.7 £ 11.3°; K4: 23.1 & 8.8°), knee
flexion (K»: 70.6 £9.1°; K4: 40.9 £ 11.1°), hip abduction (K,: 7.4+ 7.0°; K4: 7.7 £ 7.6°), anterior pelvic
tilt (Kz: 14.1 £ 6.6°%; K4: 8.4 + 7.9°), and ankle dorsiflexion (K»: 20.7 = 2.7°; K4: 15.6 + 5.2°) through
stance compared to baseline. K3 represented 98 unique gait patterns defined by greater anterior pelvic tilt
(2.8 = 3.7°), hip abduction (3.9 + 4.2°), and plantarflexion (6.3 £ 8.9°) through stance, as well as
decreased knee flexion through swing (29.8 & 9.1°). Ks included patterns with increased hip (44.7 £

12.2°) and knee flexion (80.0 £ 10.1°) during swing and increased hip abduction (4.5 & 3.5°) in stance.
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Finally, K; included 322 unique gait patterns that aligned closely with baseline trends (p > 0.054 for all

angles), capturing points within the feedback trials in which participants were minimally exploring.

As expected, stride-to-stride variability increased for all kinematic parameters in K> to Ks (p <
0.05 for all parameters), with the largest variability seen in gait patterns in K. This increase in variability
highlights an inherent learning effect associated with unique gait pattern reproduction. Even when
participants were minimally exploring (i.e., Ki), there was generally an increase in variability compared

to baseline, likely due to the added attentional demand of responding to the biofeedback system.

3.2 Synergy Analysis

All participants were able to significantly modify synergy complexity during exploration (Figure 4). A
one-synergy decomposition (i = 1) accounted for 66.1 £ 5.9% of the variance in the EMG data during
baseline. When clustered, tVAF; was 71.6 + 7.2% (K), 78.3 + 6.6% (K2), 76.5 £ 6.4% (K3), 76.0 £ 6.2%
(K4), and 69.8 £+ 5.7% (Ks), indicating that all of the explored patterns significantly decreased complexity
(p <0.05). Interestingly, there were also significant inter-cluster differences in tVAF, suggesting that the
type of gait pattern modification impacted complexity (p << 0.001). It should be noted that although
participants were instructed to either raise or lower their synergy complexity scores, minimal differences
existed between these trials; participants generally decreased complexity regardless of the target direction.

As such, we did not conduct further analyses comparing target directions.

A three-synergy solution (i = 3) accounted for 92.6 £ 2.3% of the variance for all exploration and
baseline walking patterns. Clustering yielded four distinct synergy structures (Figure 5) that were
dominated by the TA (W), hamstrings (W»), the quadriceps and gluteus maximus (W3), and the
plantarflexors (W4). All four synergy structures were observed across K; to Ks as well as baseline walking
but were recruited with varying frequency. For example, baseline walking was primarily defined by Wo,
W3, and W4, which were present in 85.7%, 78.6%, and 100% of gait patterns in the group, respectively.

These synergies align with those previously reported in nondisabled adults during steady-state walking


https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.25.501482; this version posted July 27, 2022. The copyright holder for this preprint (which

201

292

293

204

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(Allen and Neptune, 2012; Clark et al., 2010). In contrast, K3 was dominated by W1 (76.5%), W»
(82.7%), and W4 (91.8%). Interestingly, the plantarflexor synergy (W4) emerged for the majority of
patterns in all clusters (K; to Ks) whereas Wi, W, and W3 were differentially recruited. These results
suggest that a small pool of synergies exists that can be selectively drawn from depending on the
biomechanical constraints of a given pattern. Across groups, synergy activation patterns were also distinct
from baseline and aligned with key kinematic trends. For example, K, was characterized by increased
knee flexion and ankle dorsiflexion through the gait cycle, which was reflected in the increased activation

of W, in swing and W3 through stance.

The observed change in synergies recruited during exploration corresponded to an overall
decrease in tVAF3 gase when baseline synergy weights were used to reconstruct EMG data from
exploration trials (Figure 6; p << 0.001 for all groups). For the three-synergy solution, baseline synergy
weights accounted for 6.0 + 6.0% (K), 17.7 + 11.0% (K>), 10.6 £ 8.0% (K3), 15.3 £ 8.7% (K4), and 11.3
+ 7.1% (K5) less of the variance in EMG data than weights extracted directly from each unique pattern.
Further, reconstruction quality was different between clusters (p << 0.001), with the largest change in
synergy structure seen in K». This suggests that baseline synergy weights captured muscle activity for
certain gait patterns better than others, further confirming the flexible recruitment of synergies to

changing biomechanical constraints.

3.3 BART Analysis

The BART model was able to explain changes in synergy complexity observed during exploration (R?=
0.88; RMS error = 4.4). Baseline tVAF; emerged as the top predictor of AtVAF; (net effect = 4.6%), as
individuals with higher baseline complexity increased tVAF, to a greater extent during exploration than
those with lower baseline complexity (Figure 8). However, this observation partially reflects the effects of
regression to the mean. After baseline tVAF, kinematic and kinetic predictors, especially those at the
knee and ankle, had the largest effects on AtVAF, (Figure 9A). In particular, greater knee flexion (net

effect = 3.2%), anterior pelvic tilt (2.3%), hip extension moment (2.7%), and ankle dorsiflexion moment
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(2.8%) through stance corresponded to a greater decrease in synergy complexity. Increased knee
extension moment (net effect = 3.1%) at initial contact also corresponded to less complex control.
Interestingly, only one swing-phase variable had a large effect on AtVAF;; decreased knee flexion during
swing resulted in greater decreases in synergy complexity (net effect = 3.3%). Further, two measures of
kinematic and kinetic variability emerged among the top predictors in the BART model (Figure 9B),
highlighting the sensitivity of synergy complexity to the increased stride-to-stride variability observed

during gait pattern exploration.

Beyond gait mechanics, both participant number (net effect = 2.1%) and speed (1.6%) emerged
among the top predictors in the model. Although the former effect was largely driven by one participant
(P8), it still indicates that differences may exist in how individuals interacted with the biofeedback
system, including both the range of patterns they explored and their comprehension of the presented
metric. Further, the moderate effect of speed on synergy complexity, whereby slower speeds were
associated with greater decreases in complexity (Figure 8), could suggest differences in the feasibility of

performing certain gait patterns at different speeds.

4. DISCUSSION

This study demonstrated that a small library of synergies was sufficient to characterize a broad repertoire
of gait patterns attempted during biofeedback walking, and that recruitment from this library was
dependent on both the type and magnitude of gait pattern deviation. Specifically, small deviations from
baseline walking were generally accommodated by altering the activations of a consistent set of synergies
whereas different synergies were recruited to produce larger gait changes. Participants were also able to
widely modulate synergy complexity during gait pattern exploration. However, the majority of gait
patterns corresponded to an increase in tVAF; (i.e., decreased complexity); across all participants, only
17.4% of attempted patterns decreased tVAF;. Collectively, these results suggest that although synergy
structures appear to be invariant, synergies can be flexibly recruited in response to changing sensory input

or biomechanical constraints. This organizational strategy is advantageous for enabling rapid learning of
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new movement patterns and ensuring successful navigation in complex environments (Torres-Oviedo and

Ting 2010, Chiel et al 2009, McKay 2007).

Our observation that a small pool of synergies emerged during gait pattern exploration aligns
closely with prior literature in both animal and human models. These studies have demonstrated that
synergies are consistent across a repertoire of motor outputs (Allen and Neptune, 2012; Barroso et al.,
2014; Cappellini et al., 2006; Hagio et al., 2015; Ivanenko et al., 2004) and can be flexibly combined to
accommodate changes in sensory input (Cheung et al., 2005; Ivanenko et al., 2004; Kargo et al., 2010;
McGowan et al., 2010; Rozumalski et al., 2017) or biomechanical constraints (Krishnamoorthy et al.,
2004; Nazifi et al., 2017; Torres-Oviedo and Ting, 2010). However, beyond identifying differences in
synergy recruitment across movements, the nature of our protocol enabled us to understand the factors
associated with these differences with greater precision. For example, we demonstrated that small
deviations at the hip, knee, and ankle, as observed in K;, were accommodated by baseline synergies, as
baseline synergy weights largely captured the variance in EMG activity during feedback walking (i.e.,
tVAF; gase for Ki). Baseline synergies were also recruited for the majority of patterns in Ks, as the large
increase in knee flexion through swing could be accommodated by altering the activation timing of the
hamstring synergy (W2). In contrast, patterns which were defined by large deviations in sagittal plane
mechanics through stance (e.g., Ks and K4), had synergy structures more dissimilar from baseline (Figure
6). A similar relationship emerged when considering synergy complexity. The results from our BART
analysis demonstrated that deviations at the knee and ankle during stance largely predicted changes in
tVAF; during gait pattern exploration. Specifically, greater knee extension moment, ankle dorsiflexion
moment, and knee flexion through stance corresponded to reduced complexity. This finding aligns with
observations in clinical crouch gait in cerebral palsy, where a crouched posture places greater demand on
the quadriceps to accelerate the center of mass upward and counteract gravitational force, resulting in
increased coactivation of the hamstrings and quadriceps through stance and, therefore, reduced control

complexity (Spomer et al., 2022; Steele et al., 2013). Hip extension moment through stance also emerged
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among the top predictors in the BART model which further indicates that increased hamstring-quadricep

co-contraction had a large effect on AtVAF;.

Beyond identifying those variables which were most predictive of changes in synergy
recruitment, the results from the BART analysis also allowed us to capture the non-linear relationship
between gait pattern deviations and synergy complexity. Specifically, a stepwise relationship consistently
emerged for kinematic and kinetic predictor variables wherein tVAF; was similar to baseline values up
until a certain threshold, after which changes in tVAF, were larger, but generally consistent. The stability
of synergy complexity measures for gait patterns similar to baseline walking further confirms the
propensity for the CNS to maintain a consistent control strategy to accommodate small gait deviations.
Further, the plateau in AtVAF; observed at the extremes of each gait variable suggest that bounds exist on

the extent to which synergy complexity can be modulated, at least when limited to a specific muscle set.

While outcomes from the BART analysis also revealed a monotonic relationship between
baseline complexity and AtVAF;, partially reflecting regression to the mean, the overwhelming majority
of patterns selected during exploration increased tVAF;. Although these results could reflect participant
comprehension of the biofeedback system and the task instructions, they may also be indicative of the
underlying control strategy employed by the CNS during learning. In novel task execution, the CNS may
initially assume a less complex strategy, sacrificing efficiency for stability. This hypothesis is consistent
with studies demonstrating that long-term training facilitates more efficient use of neural resources
(Krings et al., 2000; Picard et al., 2013) and increased supraspinal excitability (Christiansen et al., 2020;
Pascual-Leone et al., 1995; Rosenkranz et al., 2007). For example, Sawers et al (2015) demonstrated that
trained dancers recruited a larger number of synergies than novices during both beam and overground
walking and that the synergies recruited were sparser, both of which were used to suggest that training
promoted greater selective motor control. In our study, because individuals typically explored each

unique gait pattern for a short bout (~10 strides) during exploration, the CNS may have had insufficient
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390 time to tune its control strategy, contributing to the observation that participants could increase, but not

391  consistently decrease tVAF, values.

392 Whether synergy complexity is similarly flexible and can be consistently increased following

393  neurologic injury is largely unknown but is especially salient for informing gait rehabilitation. Individuals
394  with central nervous system damage recruit fewer synergies than nondisabled peers (Cheung et al., 2012;
395 Clark et al., 2010; Fox et al., 2013; Rodriguez et al., 2013; Schwartz et al., 2016; Steele et al., 2015).

396  Further, within these populations, both synergy complexity and structure have been associated with

397  impairment level, as those with more severe impairments have less complex control (Cheung et al., 2012;
398  Steele et al., 2015). This is hypothesized to reflect increased reliance on spinal circuitry over supraspinal
399 input to shape motor outputs following neurologic injury, which may reduce the overall flexibility of

400  synergy recruitment (Leonard et al., 1991). This relationship has been demonstrated in CP, where prior
401 literature has reported that synergies are unchanged following surgery and biofeedback training, despite
402  both interventions yielding measurable improvements in gait (Booth et al., 2019; Shuman et al., 2019).
403  Further, stroke survivors with less severe impairment appear to maintain the capacity to modulate

404  synergies during locomotor training better than those with more severe impairment (Rouston et al., 2013).
405  Understanding whether individuals with neurologic injury can consistently alter synergy complexity and
406  improve movement, or how interventions can support sustained changes in control remain active and

407  important areas for future investigations. While recent literature has indicated that providing richer

408  afferent information via spinal stimulation or sensorimotor biofeedback may promote greater supraspinal
409  involvement and, therefore, more flexible synergy recruitment during movement, studies are still ongoing

410 (Cheng et al., 2019; Conner et al., 2021; Gad et al., 2021).

411 Our observation that participant number was predictive ofAtVAF, further accentuates the need to
412  evaluate personalized responses to biofeedback. This result suggests that even when controlling for all
413  other model covariates, including baseline complexity, interparticipant differences in response persisted.

414  Heterogeneous response to biofeedback training has been cited previously and may stem from both
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individual capacity to modify the parameter targeted by biofeedback as well as system design choices
(Booth et al., 2019; Huang et al., 2006; MaclIntosh et al., 2019; Sigrist et al., 2013; Spencer et al., 2021;
van Gelder et al., 2017). The latter likely contributed to the results observed here. Because synergy
complexity is derived from multiple data streams, some participants reported feeling unsure about how
specific gait changes affected the displayed metric or struggled to conceptualize what ‘more’ or ‘less’
complex gait patterns entailed, both of which likely influenced their exploration strategy. These results
highlight an inherent challenge of using motor control-based biofeedback in gait training applications and
presents an opportunity to explore more interpretable biofeedback metrics that can still be used to
improve control patterns. For example, the output from our model suggests that providing information on
joint moments to reduce hamstring-quadricep co-contraction in early stance may elicit changes in synergy
complexity, although further work is needed to extend these findings to populations with neurologic
injury. Our results also demonstrate the unique advantage of using non-linear function estimation
techniques such as BART in order to better interpret the inherently complex and multifactorial user-

system interactions present during biofeedback training to inform future system design.

4.1 Methodological Considerations

Although the decision to use a biofeedback system and minimal researcher coaching allowed us to
capture a broader array of patterns than have been previously examined in studies of synergies in gait,
there are limitations to this approach that should be considered when interpreting the results. Because we
wanted participants to freely explore using the biofeedback system, we only required them to take five
strides in a selected gait pattern. This meant that the novelty of the attempted patterns was likely reflected
in our results, as previously described. In order to reduce this effect, we calculated synergies from the
same number of strides during exploration and baseline walking (n = 5); however, it is possible that
synergies may have adapted further if we had collected a larger number of strides for each unique pattern
(Oliveira et al., 2014). The unstructured nature of the protocol also introduced the likelihood of observing

extreme outliers, as a given gait pattern may only be attempted by a single participant. The opportunity
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440  for outliers and observed heterogeneity of participant response informed our decision to use BART as a
441  modeling paradigm. Because BART natively constrains tree structure, it prevents data overfitting, thereby
442  reducing the likelihood that outliers in our data set could significantly affect model outputs (Chipman et
443 al., 2010). Finally, despite the diversity of patterns attempted, our analysis was still limited to a subset of
444  gait patterns making it challenging to draw definitive conclusions about the relationship between

445  biomechanical constraints and synergies. In future studies, biofeedback systems may be useful to guide
446  users through a sample of possible walking configurations in order to develop a more comprehensive

447  landscape of user response. Simulation paradigms, such as those employed by Kutch and Valero-Cuevas
448  (2012), which involve systematically iterating over a range of achievable outputs, could also be a valuable
449  compliment to the present study to provide further insight into how synergies change as a function of gait
450  exploration. Importantly, such analyses need to be performed in both nondisabled populations and those
451  with neurologic injury in order to understand how injury impacts one’s ability to flexibly alter control

452  strategies during walking.

453 5. CONCLUSION

454  Using motor control-based biofeedback to encourage exploration and capitalizing on non-linear machine
455  learning methodology allowed us to identify salient features which influence how the CNS flexibly

456  shapes control during walking. This analysis revealed that a small library of spatially invariant synergies
457  can be flexibly recruited to produce a diverse array of motor outputs and that recruitment changes as a
458  function of the imposed biomechanical constraints. Specifically, our results suggest that large deviations
459  in distal joint mechanics during stance resulted in the greatest overall change in synergy recruitment from
460  baseline walking. Further, they indicate that other participant-level factors may affect one’s ability to

461  modify synergy recruitment during walking, which must be considered when designing interventions to
462  this end. Whether the recruitment flexibility observed in this study is a luxury of the unimpaired

463  neurological system or is maintained following neurological injury is a critical next step of this work. By

464  modeling how synergies are modulated during locomotion, we believe that this study presents both
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theoretical and methodological contributions towards bolstering understanding of the neural control of

movement and may aid in improving interventions for individuals with neurological injury.
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Table 1: BART Model Variables

Response Description
Difference in motor control complexity between each unique gait pattern
AtVAF, . )
and baseline walking.
Predictors Description
Measure of motor control complexity during the baseline walking
Baseline tVAF, condition. Values range from 0 - 1, where a higher value indicates less
complex control.
.. Values range from 1-14. This variable was used to evaluate if participant-
Participant Number . P .
level differences in biofeedback exploration emerged.
Speed Nondimensional walking speed normalized to participant leg length.
Mean values of all variables outlined in Figure 2. Variables input as z-
Kinematics/Kinetics scores, normalized to baseline walking. These variables were selected as

Kinematic/Kinetic Variability

they sufficiently capture kinematic/kinetic trends during the gait cycle.
Difterence in the standard deviation of all variables outlined in Figure 2
between each unique gait pattern and baseline walking. These variables
reflect the participant's ability to consistently produce the attempted gait
patterns.
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693  Figure 1: Methodology used to identify clusters (K; to Ky), representing kinematically-similar gait
694  patterns attempted by participants during feedback walking. Full-body kinematic and kinetic data and
695  lower-limb EMG data were collected while participants explored a broad range of movement patterns
696  using biofeedback. The Gait Deviation Index (GDI) was calculated from kinematic data for each
697  recorded stride for every participant and trial (56 data sets). Unique gait patterns were labeled as five or
698  more consecutive strides with similar GDI values and manually confirmed. Kinematic data for these
699  unique patterns were input into a k-means clustering algorithm to identify clusters (K; to Ky) across
700  participants and trials.
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702 Figure 2: Kinematic and kinetic predictor variables included in the BART model. Each icon indicates a
703 variable (n = 31 total) that was identified for every unique gait pattern. Variables were selected to

704  capture trends at the pelvis, hip, knee, and ankle that could change during exploration. Circles indicate
705 local maximum or minimum values, and triangles indicate initial contact points, calculated as the mean
706  value over the first 5% of the gait cycle. Average pelvis list, tilt, and rotation angles across the gait cycle
707  were included to capture asymmetries. The standard deviations of each kinematic and kinetic variable,
708  used to capture stride-to-stride variability during gait pattern exploration, were also included in the

709  predictor set.


https://doi.org/10.1101/2022.07.25.501482
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.25.501482; this version posted July 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pelvis Tilt Post (+) / Ant (-) Pelvis List Down (+) / Up (-) Pelvis Int (+) / Ext (-) Rot
10p

Angle (°)

-20 -10 -10

Hip Flex (+) / Ext (-) Hip Ad (+) / Ab (-) Hip Int (+) / Ext (-) Rot

Angle (°)

20 40 60 80 100
% Gait Cycle

Knee Flex (+) / Ext (-) Ankle Dorsi (+) / Plant (-)
30
1001 K (N = 322)
. 8ot Ky (N = 24)
o
; 6ok P K3 (N =98)
g 40t /” Ky N =78)
< / e K5 (N = 53)
201 / — \ = =Baseline
ol 20 : : : : :
0 20 40 60 80 100 0 20 40 60 80 100
710 % Gait Cycle % Gait Cycle

711 Figure 3: Average pelvis, hip, knee, and ankle kinematics for the five clusters identified by k-means
712 clustering (K; — Ks), representing common gait patterns attempted during exploration. The baseline
713 condition shows £ 1SD.
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715  Figure 4: The total variance accounted for by a one-synergy solution (tVAF;) for each participant (PI-
716  Pli4). Each dot represents a unique gait pattern and is colored according to the cluster it was sorted into
717  (K:to Ks). For each participant, data is organized into two columns representing the feedback trials in
718  which participants were instructed to decrease (left) and increase (vight) their tVAF ). Baseline data is
719  presented as a mean £ 1SD, representing the distribution of tVAF| values resulting from bootstrapping
720  using sets of five random strides (replicates = 200). Boxes represent the mean (black line), 95%

721  confidence interval (solid color), and standard deviation (shading) of tVAF; values for each cluster and
722 the baseline condition. Larger tVAF; values correspond to decreased motor control complexity. * denotes
723 significant difference between each group and the baseline condition and black bars indicate significant
724  inter-cluster differences (a. = 0.05).
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726  Figure 5: Average synergy weights (W) and activations (C) for the three-synergy solution for baseline

727  walking and each cluster of kinematically-similar gait patterns (K; to Ks). K-means clustering was

728  performed for the i = 3 synergy solution across all unique gait patterns and yielded four unique

729  structures. Synergy weight plots reflect cluster-wise averages as well as weights for individual gait

730  patterns, sorted in descending order. Percentages reflect the number of gait patterns within each cluster

731  (ie., K;to Ks) that used each synergy. Muscles: gluteus maximus (GM), lateral hamstring (LH), medial

732 hamstring (MH), vastus medialis (VM), medial gastrocnemius (MG), soleus (SO), and tibialis anterior

733 (TA).

734
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737  Figure 6: Similarity of the i = 3 synergy solution for each cluster (K; to Ks) as compared to baseline
738  walking. Baseline synergy weights were used to reconstruct the EMG data for all unique gait patterns
739  within each cluster. tVAF; pase represents the amount of variance accounted for by baseline walking
740  symergy weights and tVAFs represents the variance accounted for by weights extracted directly from
741  EMG data for each unique gait pattern. For each box, the white bars represent mean values, the solid-
742  colored blocks represent a 95% confidence interval, and shading shows 1 SD. Dots represent unique
743 gait patterns and are arranged in columns to represent individual participants (P1 to P14). Large

744 differences between tVAF; piseand tVAFzindicate that synergies during gait pattern exploration deviate
745  more from baseline walking. * denotes significant difference between each group and zero, indicating a
746  change in synergies from baseline walking.
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Figure 7: Net effects for the top fifteen predictors on AtVAF; from the BART model Net effects were
derived from the generated ALE plots and defined as the difference between the 95™ and 5™ percentile of
the response variable over the range of each predictor, when controlling for all other model covariates.
Cross-hatching indicates measures of stride-to-stride variability. Gait phases: Initial contact (IC), stance
(ST), and swing (SW). See Table 1 for all variables included in the BART model.
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Figure 8: Accumulated local effect (ALE) plots for baseline synergy complexity, participant number, and
speed. Speed is normalized to participant leg length. Each plot depicts the effect of an individual
predictor on changes in synergy complexity from baseline, conditioned on all other predictors in the
model. Predictor data is separated into evenly spaced bins and the size of individual points represents the
number of samples in each bin. Larger values for tVAF; indicate less complex control. Net effects were
calculated as the difference between the 95" and 5™ percentile of AtVAF; over the range of each

predictor.
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Figure 9: Accumulated local effects of kinematic, kinetic, and variability measures on AtVAF; Kinematic
and kinetic measures (A) are presented as z-scores normalized to baseline walking, such that the x-axis
depicts standard deviations away from baseline. Variability measures (B) are presented as degrees away
from baseline variability. Vertical bars indicate = 1 SD. Plots are cropped to display the middle 95% of
the predictor data to remove extreme outliers. Predictor data was separated into evenly spaced bins and
the size of individual points represent the number of samples in each bin. Gait phases: Initial contact
(1C), stance (ST), and swing (SW).
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