

1 **Methylation genome wide profiling in lowly and highly efficient adipose somatic cell nuclear**
2 **transfer in pigs**

3 Maciej Grzybek^{1*}, Krzysztof Flisikowski², Tom Giles^{3,4}, Marta Walczak⁵, Rafal Ploski⁶, Piotr
4 Gasperowicz⁶, Richard D. Emes^{3,4}, Paweł Lisowski⁷

5

6 1) Medical University of Gdańsk, Powstania Styczniowego 9B, 81-429 Gdańsk, Poland
7 2) Chair of Livestock Biotechnology, Technische Universität München, Liesel-Beckmann Str, 1,
8 D-85354 Freising, Germany.
9 3) School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington
10 Campus, Leicestershire LE12 5RD, UK
11 4) Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
12 5) Department of Animal Behavior, Institute of Genetics and Animal Breeding, Polish Academy
13 of Sciences, Jastrzębiec, 36A Postepu Street, 05-552 Magdalanka, Poland.
14 6) Department of Medical Genetics, Center for Biostructure Research First Faculty of Medicine,
15 3c Pawińskiego Street, 02-106 Warsaw, Poland
16 7) Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish
17 Academy of Science, Jastrzębiec, 36A Postepu Street, 05-552 Magdalanka, Poland.

18

19 *** Correspondence:**

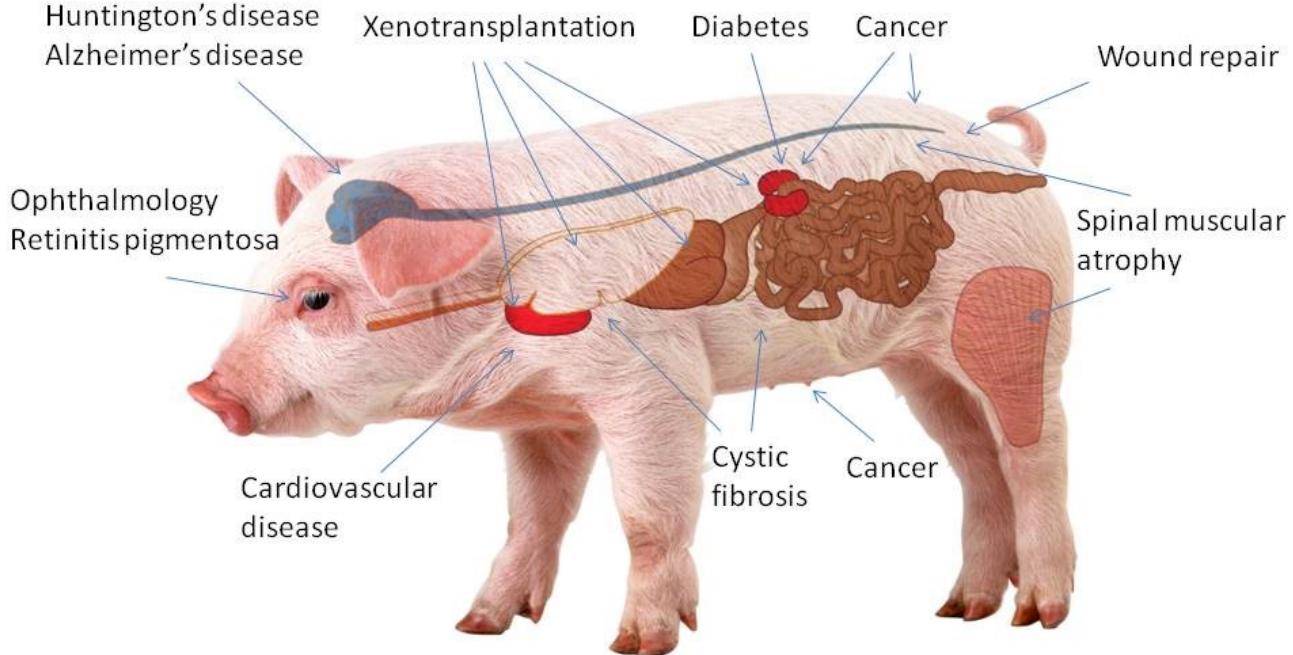
20 Dr Maciej Grzybek
21 maciej.grzybek@gumed.edu.pl

22 **Keywords:** SCNT; RRBS; AMSC; DNA methylation; epigenetics; epigenomics; disease
23 modeling; genetic engineering

24 **Abstract**

25 Swine is a common model organism for biomedical research. Epigenetic reprogramming in SCNT
26 embryos does not fully recapitulate the natural DNA demethylation events at fertilisation. This study
27 aimed to conduct a genome-wide methylation profiling to detect differentially methylated regions
28 (DMRs) responsible for epigenetic differences in stem cells that displayed high and low efficiency of
29 SCNT and to elucidate the low efficiency of cloning rate in pigs. Adipose tissue mesenchymal stem
30 cells (AMSC)s lines were isolated from adipose tissue of adult male pigs (n=20; high-efficiency
31 cells=10; low efficiency cells= 10). Reduced representation bisulfite sequencing (RRBS) was

32 performed on an Illumina HiSeq1500. Paired-end reads were filtered to remove the adapter
33 contamination, and low-quality reads using TrimGalore!. Filtered reads were mapped to the reference
34 genome using Bismark. MethylKit was used to identify differentially methylated regions (DMRs)
35 (bases and tiles), showing statistically significant differential methylation between two groups: high
36 and low-efficiency AMSCs. Hierarchical cluster analysis according to methylation patterns clearly
37 defined groups with low and high cloning efficiency. We report 3704 bases with statistically
38 significant differences in methylation and 10062 tiles with statistically significant differences in
39 methylation. Most differentially methylated sites are intergenic 62%, 31% are intronic, 4% are
40 located in exons and 4% in promoters. 37% of differentially methylated sites are located in known
41 CpG islands (CGIs) and 4% in CpG island shores (CGSs).


42

43

44 **1 Introduction**

45 Animal-based disease modeling has become an interest in biomedical research, including cancer,
46 metabolic, cardiovascular and neurological disorders (Groenen et al., 2012a; Arends et al., 2016;
47 Grzybek et al., 2017a; Walters et al., 2017; Schachtschneider et al., 2021).

48 Swine has been an interest for basic and applied biomedical research for more than 20 years (Rideout
49 et al., 2001; Wilmut et al., 2002; Yang et al., 2007). Swine play essential roles as models of human
50 diseases (Figure 1.), including cardiovascular disease, cancer, diabetes, toxicology and lipoprotein
51 metabolism as a model organism (Bendixen et al., 2010; Zhao et al., 2010; Flisikowska et al., 2013;
52 Walters and Prather, 2013). The first generation of a pig using the SCNT method was conducted in
53 2000 (Betthauser et al., 2000; Onishi et al., 2000; Polejaeva et al., 2000), and since this time, many
54 genetically modified cloned pigs have been generated (Lai et al., 2002; Lai and Prather, 2003; Li et
55 al., 2006). Despite the success in generating of cloned individuals, there are still limitations that need
56 to be improved to increase the efficiency of the porcine SCNT technique.

57

58 Figure 1. Swine became a model organism for biomedical research due to their similarity to humans.
59 Pigs are ideal organisms to study human health and disease. Their genome is three times closer than
60 the mouse genome to that of humans.

61 The efficiency of the SCNT method in swine models varies from 0.2% to 7% of newborns per
62 constructed embryo (Fulka and Fulka, 2007; Yang et al., 2007; Zhao et al., 2010). The low success rate
63 limits the extensive application of the pig SCNT technique in biomedical research or agricultural
64 purposes (Kurome et al., 2013). The SCNT method uses somatic cells with low viability and not fully
65 reprogrammed epigenetic memory. This causes swine models to develop malformations (i.e.
66 underweight, cardiac dysfunctions, immunological dysfunctions) (Amiridze et al., 2008; Swindle,
67 2009; Swindle et al., 2012). Due to the high prevalence of these abnormalities, epigenetic disorders are
68 believed to cause mentioned symptoms during embryo development rather than genetics.

69 DNA methylation is an essential element in the epigenetic regulation of embryonic development, and
70 it occurs at most CpG dinucleotides in the mammalian genome (Bird, 2002; Fulka and Fulka, 2007;

71 Suzuki and Bird, 2008). Long-term selection and adaption towards high prolificacy and meat
72 production have transformed porcine epigenetics (Li et al., 2012), along with associated genotypic and
73 phenotypic changes (Groenen et al., 2012a; Li et al., 2013) resulting from the modification of the
74 epigenetic regulation of chromatin structure and transcriptional activity. During the transformation
75 process, the porcine DNA methylome displays variable patterns in different breeds and sexes of pigs
76 and variations in other anatomic tissues (Li et al., 2012; Wang and Kadarmideen, 2019). Here we
77 analysed pig methylome of adipose tissue mesenchymal stem cell lines displaying high and low
78 efficiency for live-born piglets in somatic cell nuclear transfer using the RRBS method.

79 **2. Material and methods**

80 **2.1. Ethical approval**

81 All animal experiments were approved by the Government of Upper Bavaria (permit number 55.2-1-
82 54-2532-6-13) and performed according to the German Animal Welfare Act and European Union
83 Normative for Care and Use of Experimental Animals.

84 **2.2. Cell lines**

85 Adipose mesenchymal stem cells (AMSC)s lines were isolated from adipose tissue of adult male pigs
86 (n=10 per experimental group) according to standard isolation protocol. Cells were maintained in
87 DMEM supplemented with 10% fetal bovine serum (FBS), 100U/ml of penicillin and 100mg/ml of
88 streptomycin (Invitrogen) at 37°C and 5% CO₂. The HCT116 DNMT1(2/2) DNMT3b (2/2) double
89 knockout clone number 2 (DKO) cell line was a kind gift from Dr Steve Baylin. The cell line was
90 grown in McCoys'5A medium with 10% FBS, 0.2mg/ml Neomycin, and 0.1mg/ml. Genomic DNA
91 was extracted using standard phenol: chloroform extraction followed by ethanol precipitation.

92 **2.3. Reduced representation bisulfite sequencing (RRBS)**

93 **2.3.1. Restriction enzyme digestion.**

94 A total of 3μg of high molecular weight genomic DNA was used for RRBS sample preparation. Each
95 DNA sample was subjected to MspI restriction enzyme digestion. A total volume of 50μl was used in
96 the procedure, including 3μl of MspI restriction enzyme (New England Biolabs) and 5μl of MspI
97 reaction buffer (New England Biolabs). If the total volume was lower than 50μl, the difference was
98 made up with nuclease-free water as recommended by the manufacturer. Incubation was performed in
99 the thermocycler (Thermofisher) at 37°C for 15min. Next, the DNA purification procedure was
100 performed using AmpureXp magnetic beads (Beckman Coulter).

101 **2.3.2. End repair**

102 The DNA fragments with 5'-CG-3' overhangs generated by the restriction enzyme digestion were end-
103 repaired using Nextflex Bisulfite Kit (Bioscientific).

104 **2.3.3. Size selection, adenylation and adapter ligation**

105 After end-repair, SPRI double size selection method combined with DNA purification was applied
106 using AmpureXp magnetic beads (Beckman Coulter). Nextflex double size selection standard protocol
107 was followed to select fragments between 200-300 bp (without adapters) with a mean length around
108 250 bp. A total volume of 20.5 μ l of preselected DNA was collected, and adenylation reactions were
109 performed using adenylation mix, followed by incubation in the Thermocycler (Thermofisher) at 37°C
110 for 30min. A different non-diluted adapter from Nextflex Bisulfite Barcodes Kit (Bioscientific) with a
111 unique index sequence was chosen for each sample. Adapters were not diluted according to the
112 manufacturer's instructions. Ligation was performed for 15 min at 22°C. Subsequently, a DNA
113 purification procedure was performed using AmpureXp magnetic beads (Beckman Coulter).

114 **2.3.4. Bisulfite conversion and amplification**

115 The PCR products were purified using AmpureXp magnetic beads (Beckman Coulter) according to the
116 Nextflex procedure. The purified fragments were then subjected to bisulfite conversion using the EZ
117 DNA Methylation-Gold Kit (Zymo Research). The converted DNA was PCR amplified with some
118 modifications. PCR reaction total volume was equal to 50 μ l, including 18 μ l of converted DNA,
119 22.75 μ l nuclease-free water, 2 μ l of Nextflex primer mix from Nextflex Bisulfite Barcodes Kit
120 (Bioscientific), 1.25 μ l 10nM dNTP Mix (ThermoScientific), 5 μ l 1X Turbo Cx buffer (Agilent) and
121 2.5U Pfu Turbo Cx polimerase (Agilent). The thermocycling conditions: 2 min at 95°C and 12–
122 18 cycles of 30 sec at 95°C, 30 sec at 65°C and 45 sec at 72°C, followed by a 7-min final extension at
123 72°C.

124 **2.3.5. Library validation and sequencing**

125 The DNA libraries were quantified using the Qubit instrument (Life Technologies) and qualified using
126 Agilent 2100 Bioanalyzer High Sensitivity chips (Agilent Technologies). According to the
127 manufacturer's instructions, paired-end sequencing (2 \times 100 bp) was performed on the Illumina
128 HiSeq1500.

129 **2.3.6. Bioinformatics**

130 Paired-end reads obtained from Illumina 1500 sequencer were filtered to remove the adapter
131 contamination, and low-quality reads using the application TrimGalore!. Filtered reads were mapped
132 to the reference genome (susScr3 version) using Bismark (Krueger and Andrews, 2011). Per CpG,
133 methylation statistics were extracted using an application developed at the Department of Medical
134 Genetics, Medical University of Warsaw. Positions with SNPs, changing CpG places to CpH or TpG,
135 were also detected and filtered using the above application.

136 **2.4.RRBS data analysis**

137 Methylation levels of cytosines were analysed by methylKit.53 Briefly, the number of methylated and
138 unmethylated CpG and non-CpG (CHG and CHH, H representing A/C/T) sites were counted for each
139 region. CGIs were defined as regions >200 bp with a GC fraction >0.5 and an observed-to-expected
140 ratio of CpG >0.6. CGI shores were defined as regions 2 kb in length adjacent to CGIs. To annotate
141 porcine CGIs, reference genome (susScr3) and annotation were downloaded from USCSand and the
142 Ensembl, respectively. To define the differentially methylated cytosines (DMCs), multiple pairwise
143 comparisons were performed against CpG methylation information of twenty samples and filtered (q
144 < 0.01) using methylKit.53

145 **2.4.1. Mapping**

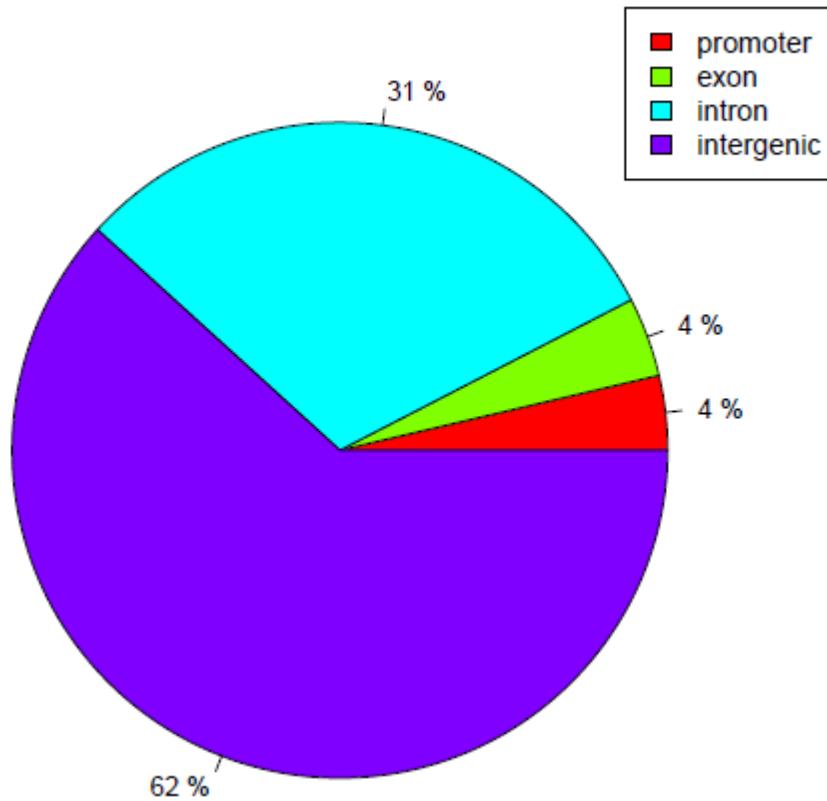
146 S.scrofa 10.2.79 and associated GTF files were downloaded from Ensembl. The fasta sequences were
147 prepared for bismark (v0.14.3), them mapped using bowtie 1 as recommended for bismark software.
148 To allow compatibility with bismark and methylkit, only somatic chromosomes were retained.

149 **2.4.2. Raw_reads and trimming**

150 Raw reads were trimmed using TrimGalore
151 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with the following parameters --
152 trim1 --phred33 --length 50 --retain_unpaired --paired. Trimmed reads were mapped to the converted
153 pig genome using bismark command bismark_v0.14.3/bismark --gzip -n 1 -1 pair1.fq.gz -2 pair2.fq.gz

154 **2.4.3. Identification of differentially methylated regions (DMRs)**

155 MethylKit (<https://code.google.com/p/methylkit/>) was used to identify differentially methylated
156 regions (DMRs) (bases and tiles), which show statistically significant differential methylation between
157 two groups: high and low-efficiency AMSCs.


158 **2.4.4. annotation of genomic regions**

159 High-density CpG promoter (HCP), intermediate-density CpG promoter (ICP), and low-density CpG
160 promoter (LCP) annotations were defined based on the transcription start sites (TSS) of known RefSeq
161 genes. In detail, HCP, which indicated the “CpG-rich” promoters, was identified as having a GC
162 density ≥ 0.55 and the observed to expected CpG ratio (CpG O/E) ≥ 0.6 ; promoters with CpG O/E $\#$
163 0.4 were classified as LCP; the remaining nonoverlapping promoter populations ($0.4 < \text{CpG O/E} < 0.6$)
164 were classified as ICP. The annotated repeat elements such as LINEs, SINEs, and LTRs were
165 downloaded directly from the RepeatMasker track of the UCSC Genome Browser. Other regions such
166 as CGIs, exons, and introns were downloaded from the UCSC Genome Browser. Intragenic regions
167 were included from the TSS to the transcription termination sites (TTS), whereas the intergenic regions
168 were defined as the complement of the intragenic regions.

169 **3. Results**

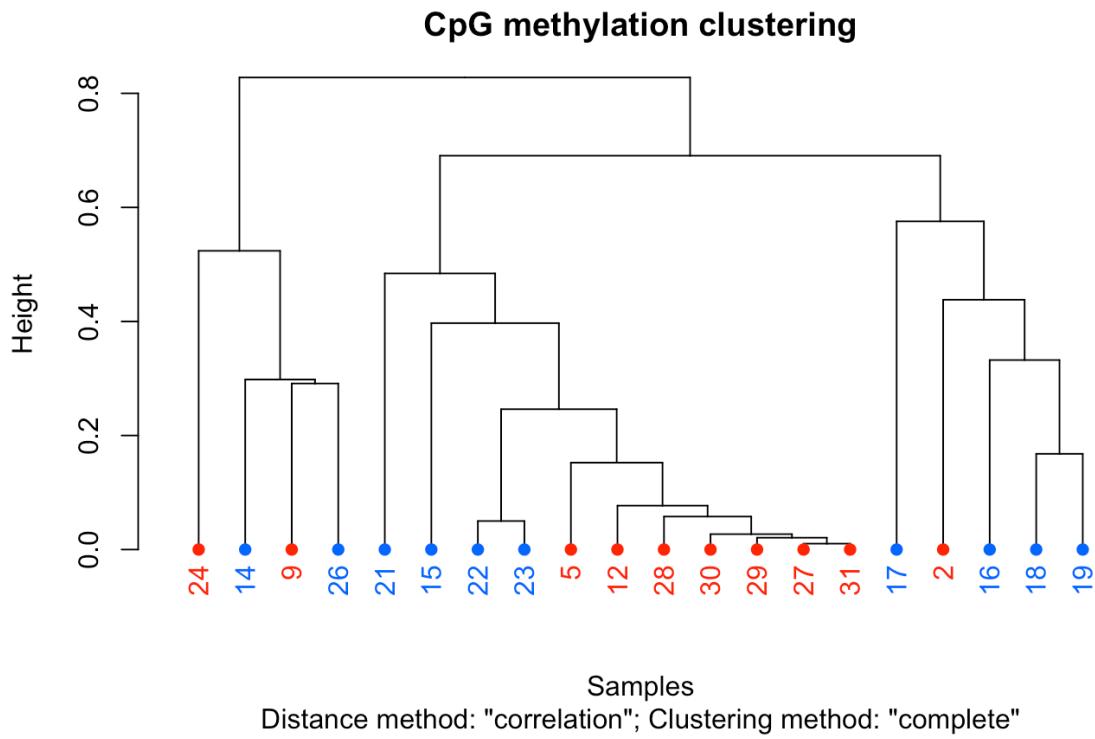
170 **3.1. Genomic location of Differentially methylated sites**

171 We mapped the global DNA methylation patterns of adult male ADMSCs showing high and low
172 efficiency of SCNT in pigs. We identified 3704 bases with statistically significant differences in
173 methylation, 890 bases within 5Kb of a known transcript, 10062 tiles with statistically significant
174 differences in methylation, and 4965 tiles within 5Kb of a known transcript.

175

176 Figure 2. Differential methylation annotations of CpG.

177 **3.2. Non-CG methylation: CHH, CHG**


178 Fewer differentially methylated sites were seen in other contexts CHH 128 bases with statistically
179 significant differences in methylation 39 bases within 5Kb of a known transcript, 2458 tiles with
180 statistically significant differences in methylation 1354 tiles within 5Kb of a known transcript.

181 In the CHG context, we identified 59 bases with statistically significant differences in methylation, 23
182 bases within 5Kb of a known transcript, 2554 tiles with statistically significant differences in
183 methylation and 1356 tiles within 5Kb of a known transcript.

184 **3.3. Genome-wide CpG methylation and density patterns in relation to genomic features**

185 Unsupervised hierarchical clustering of the individual methylation profiles of high and low efficient
186 cells revealed separated sample groups (Figure 3). Thus, hierarchical clustering indicates that
187 highly efficient and low efficient cells differ in methylation profiles.

188

189

190 Figure 3. Hierarchical cluster analysis according to methylation patterns across analysed samples. Blue
191 colour – high cloning efficiency cells; Red colour – low cloning efficiency cells. Dendograms
192 were produced using correlation distance and ward clustering methods. Numbers represent the
193 individual sample ID.

194

195 **4. Discussion**

196

197 Cloning has become a powerful tool for analysing gene functions, genomic imprinting, genomic re-
198 programming, development, neurodegenerative diseases, gene therapy, and more (Capecchi, 2000;
199 Jang et al., 2010; Matoba and Zhang, 2018; Perrera and Martello, 2019). Somatic cell nuclear transfer
200 is an essential cloning tool for biomedical and epigenetic research (Srirattana et al., 2022). This method
201 enables significant development in biomedicine and disease modeling, where genome-edited mammals
202 can be bred and used for disease research, transplantation, or to protect endangered species (Tian et al.,
203 2003; Grzybek et al., 2017b; Fatira et al., 2018; Liu et al., 2021; Yue et al., 2021).

204

205 Due to its similarity to humans, the combination of somatic cell nuclear transfer (SCNT) and precise
206 genome editing to generate transgenic pigs carrying required disease phenotype may be applied to
207 swine (Wilmut et al., 2002; Yang et al., 2007). Here we showed that according to methylation patterns,
208 there is a clear definition of groups with low and high cloning efficiency. Our study confirmed the
209 presence of porcine CpG methylation patterns similar to those previously demonstrated for humans
210 and mice and established the functional aspects of porcine CpG methylation (Ziller et al., 2011; Shirane
211 et al., 2013; Schachtschneider et al., 2015).

212 DNA methylation in a promoter correlates with the transcription of a target gene (Niesen et al., 2005).
213 Methylated genes are known to be linked with genomic region-specific DNA methylation patterns
214 (Raza et al., 2017). We investigated promoter, exon and intron regions along the porcine genome and
215 localised CpG islands to these genic features. The majority of differentially methylated sites were
216 intergenic (Figure 2), and 37% were located in previously described CpG islands. We showed that
217 methylation levels of CpG islands were lower than CpG island shores in the promoter, exon and intron
218 regions. These results demonstrated that CpG islands located in different genic features displayed
219 effects on the methylation patterns of the associated genes. A strong relation between methylations in
220 CpG island shores located within 2 kb of an annotated transcription start site (TSS) and expression of
221 associated genes was reported by Irizarry and others (Irizarry et al., 2009). CpG islands in exon regions
222 showed different methylation levels than those in intron regions, suggesting that exons may affect the
223 methylation patterns of CpG islands (Yuan et al., 2016; Chen et al., 2018).

224 Completion of the swine reference genome sequence (Groenen et al., 2012b; Groenen, 2016) gives a
225 great ability to perform porcine studies for human diseases and disorders, as well as opens the door for
226 targeted approaches to produce models for diseases (Gutierrez et al., 2015; Prather et al., 2015; Lunney
227 et al., 2021). Our results provide novel information for future studies of the porcine epigenomics. The
228 results based on RRBS are a powerful technology for epigenetic profiling of cell populations relevant

229 to developmental biology and genetic engineering for porcine disease models. Further studies are
230 necessary to investigate the similarities in methylation levels between humans and pigs for specific
231 genomic regions. This knowledge will give a chance to analyse disease progression, the differences
232 observed in intron and exon methylation patterns between pig tissues and human cell lines, and the
233 proposed adaptive evolutionary role of CpG methylation.

234 In conclusion, porcine CpG methylation levels were similar to those reported for other mammals. We
235 believe that our work will accelerate the practical use of the SCNT technique for pig model production
236 and contribute to the studies of human disease, xenotransplantation, and molecular breeding in
237 agriculture.

238

239
240

241 REFERENCES:

242
243 Amiridze, N. S., Darwish, R., Griffith, G. M., and Zoarskia, G. H. (2008). Treatment of arteriovenous
244 malformations with hydrocoils in a Swine model. *Interv. Neuroradiol.* 14, 165–171.
245 Arends, M. J., White, E. S., and Whitelaw, C. B. A. (2016). Animal and cellular models of human
246 disease. *J. Pathol.* 238, 137–140. doi: 10.1002/path.4662.
247 Bendixen, E., Danielsen, M., Larsen, K., and Bendixen, C. (2010). Advances in porcine genomics
248 and proteomics-a toolbox for developing the pig as a model organism for molecular biomedical
249 research. *Briefings Funct. Genomics Proteomics* 9, 208–219. doi: 10.1093/bfgp/elq004.
250 Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., et al. (2000).
251 Production of cloned pigs from in vitro systems. *Nat. Biotechnol.* 18, 1055–1059. doi:
252 10.1038/80242.
253 Bird, A. (2002). DNA methylation patterns and epigenetic memory. *Genes Dev.* 16, 6–21. doi:
254 10.1101/gad.947102.
255 Capecchi, M. R. (2000). How close are we to implementing gene targeting in animals other than the
256 mouse? *Proc. Natl. Acad. Sci.* 97, 956–957. doi: 10.1073/pnas.97.3.956.
257 Chen, X., Shen, L.-H., Gui, L.-X., Yang, F., Li, J., Cao, S.-Z., et al. (2018). Genome-wide DNA
258 methylation profile of prepubertal porcine testis. *Reprod. Fertil. Dev.* 30, 349. doi:
259 10.1071/RD17067.
260 Fatira, E., Havelka, M., Labb  , C., Depinc  , A., Iegorova, V., P  seni  ka, M., et al. (2018). Application
261 of interspecific Somatic Cell Nuclear Transfer (iSCNT) in sturgeons and an unexpectedly
262 produced gynogenetic sterlet with homozygous quadruple haploid. *Sci. Rep.* 8, 5997. doi:
263 10.1038/s41598-018-24376-1.
264 Flisikowska, T., Kind, A., and Schnieke, A. (2013). The new pig on the block: Modelling cancer in
265 pigs. *Transgenic Res.* 22, 673–680. doi: 10.1007/s11248-013-9720-9.
266 Fulka, J., and Fulka, H. (2007). Somatic cell nuclear transfer (SCNT) in mammals: The cytoplasm and

267 its reprogramming activities. *Adv. Exp. Med. Biol.* 591, 93–102. doi: 10.1007/978-0-387-37754-
268 4-7.

269 Groenen, M. A. M. (2016). A decade of pig genome sequencing: a window on pig domestication and
270 evolution. *Genet. Sel. Evol.* 48, 23. doi: 10.1186/s12711-016-0204-2.

271 Groenen, M. A. M., Archibald, A. L., Uenishi, H., Tuggle, C. K., Takeuchi, Y., Rothschild, M. F., et
272 al. (2012a). Analyses of pig genomes provide insight into porcine demography and evolution.
273 *Nature* 491, 393–8. doi: 10.1038/nature11622.

274 Groenen, M. A. M., Archibald, A. L., Uenishi, H., Tuggle, C. K., Takeuchi, Y., Rothschild, M. F., et
275 al. (2012b). Analyses of pig genomes provide insight into porcine demography and evolution.
276 *Nature* 491, 393–398. doi: 10.1038/nature11622.

277 Grzybek, M., Golonko, A., Walczak, M., and Lisowski, P. (2017a). Epigenetics of cell fate
278 reprogramming and its implications for neurological disorders modelling. *Neurobiol. Dis.* 99,
279 doi: 10.1016/j.nbd.2016.11.007.

280 Grzybek, M., Golonko, A., Walczak, M., and Lisowski, P. (2017b). Epigenetics of cell fate
281 reprogramming and its implications for neurological disorders modelling. *Neurobiol. Dis.* 99,
282 84–120. doi: 10.1016/j.nbd.2016.11.007.

283 Gutierrez, K., Dicks, N., Glanzner, W. G., Agellon, L. B., and Bordignon, V. (2015). Efficacy of the
284 porcine species in biomedical research. *Front. Genet.* 6. doi: 10.3389/fgene.2015.00293.

285 Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., et al. (2009). The
286 human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-
287 specific CpG island shores. *Nat. Genet.* 41, 178–86. doi: 10.1038/ng.298.

288 Jang, G., Kim, M. K., and Lee, B. C. (2010). Current status and applications of somatic cell nuclear
289 transfer in dogs. *Theriogenology* 74, 1311–1320. doi: 10.1016/j.theriogenology.2010.05.036.

290 Krueger, F., and Andrews, S. R. (2011). Bismark: A flexible aligner and methylation caller for
291 Bisulfite-Seq applications. *Bioinformatics* 27, 1571–1572. doi: 10.1093/bioinformatics/btr167.

292 Kurome, M., Geistlinger, L., Kessler, B., Zakhartchenko, V., Klymiuk, N., Wuensch, A., et al.
293 (2013). Factors influencing the efficiency of generating genetically engineered pigs by nuclear
294 transfer: multi-factorial analysis of a large data set. *BMC Biotechnol.* 13, 43. doi: 10.1186/1472-
295 6750-13-43.

296 Lai, L., Kolber-Simonds, D., Park, K.-W., Cheong, H.-T., Greenstein, J. L., Im, G.-S., et al. (2002).
297 Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. *Science*
298 295, 1089–1092. doi: 10.1126/science.1068228.

299 Lai, L., and Prather, R. S. (2003). Creating genetically modified pigs by using nuclear transfer.
300 *Reprod. Biol. Endocrinol.* 1, 82. doi: 10.1186/1477-7827-1-82.

301 Li, M., Tian, S., Jin, L., Zhou, G., Li, Y., Zhang, Y., et al. (2013). Genomic analyses identify distinct
302 patterns of selection in domesticated pigs and Tibetan wild boars. *Nat Genet* 45, 1431–1438.
303 doi: 10.1038/ng.2811.

304 Li, M., Wu, H., Luo, Z., Xia, Y., Guan, J., Wang, T., et al. (2012). An atlas of DNA methylomes in
305 porcine adipose and muscle tissues. *Nat. Commun.* 3, 850. doi: 10.1038/ncomms1854.

306 Li, R., Lai, L., Wax, D., Hao, Y., Murphy, C. N., Rieke, A., et al. (2006). Cloned transgenic swine
307 via in vitro production and cryopreservation. *Biol. Reprod.* 75, 226–230. doi:
308 10.1095/biolreprod.106.052514.

309 Liu, X., Chen, L., Wang, T., Zhou, J., Li, Z., Bu, G., et al. (2021). TDG is a pig-specific epigenetic
310 regulator with insensitivity to H3K9 and H3K27 demethylation in nuclear transfer embryos.
311 *Stem Cell Reports* 16, 2674–2689. doi: 10.1016/j.stemcr.2021.09.012.

312 Lunney, J. K., Van Goor, A., Walker, K. E., Hailstock, T., Franklin, J., and Dai, C. (2021).
313 Importance of the pig as a human biomedical model. *Sci. Transl. Med.* 13. doi:
314 10.1126/scitranslmed.abd5758.

315 Matoba, S., and Zhang, Y. (2018). Somatic Cell Nuclear Transfer Reprogramming: Mechanisms and

316 Applications. *Cell Stem Cell* 23, 471–485. doi: 10.1016/j.stem.2018.06.018.

317 Niesen, M. I., Osborne, A. R., Yang, H., Rastogi, S., Chellappan, S., Cheng, J. Q., et al. (2005).
318 Activation of a Methylated Promoter Mediated by a Sequence-specific DNA-binding Protein,
319 RFX. *J. Biol. Chem.* 280, 38914–38922. doi: 10.1074/jbc.M504633200.

320 Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., et al. (2000). Pig cloning by
321 microinjection of fetal fibroblast nuclei. *Science* 289, 1188–1190. doi:
322 10.1126/science.289.5482.1188.

323 Perrera, V., and Martello, G. (2019). How Does Reprogramming to Pluripotency Affect Genomic
324 Imprinting? *Front. cell Dev. Biol.* 7, 76. doi: 10.3389/fcell.2019.00076.

325 Polejaeva, I. A., Chen, S. H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., et al. (2000). Cloned
326 pigs produced by nuclear transfer from adult somatic cells. *Nature* 407, 86–90. doi:
327 10.1038/35024082.

328 Prather, R. S., Walters, E. M., and Wells, K. D. (2015). Swine in Biomedical Research 2014. *Lab
329 Anim. (NY)*. 44, 9–9. doi: 10.1038/laban.666.

330 Raza, M. A., Yu, N., Wang, D., Cao, L., Gan, S., and Chen, L. (2017). Differential DNA methylation
331 and gene expression in reciprocal hybrids between *Solanum lycopersicum* and *S.
332 pimpinellifolium*. *DNA Res.* 24, 597–607. doi: 10.1093/dnares/dsx028.

333 Rideout, W. M., Eggan, K., and Jaenisch, R. (2001). Nuclear cloning and epigenetic reprogramming
334 of the genome. *Science* 293, 1093–1098. doi: 10.1126/science.1063206.

335 Schachtschneider, K. M., Madsen, O., Park, C., Rund, L. A., Groenen, M. A. M., and Schook, L. B.
336 (2015). Adult porcine genome-wide DNA methylation patterns support pigs as a biomedical
337 model. *BMC Genomics* 16, 743. doi: 10.1186/s12864-015-1938-x.

338 Schachtschneider, K. M., Schook, L. B., Meudt, J. J., Shanmuganayagam, D., Zoller, J. A., Haghani,
339 A., et al. (2021). Epigenetic clock and DNA methylation analysis of porcine models of aging
340 and obesity. *GeroScience* 43, 2467–2483. doi: 10.1007/s11357-021-00439-6.

341 Shirane, K., Toh, H., Kobayashi, H., Miura, F., Chiba, H., Ito, T., et al. (2013). Mouse Oocyte
342 Methylomes at Base Resolution Reveal Genome-Wide Accumulation of Non-CpG Methylation
343 and Role of DNA Methyltransferases. *PLoS Genet.* 9. doi: 10.1371/journal.pgen.1003439.

344 Srirattana, K., Kaneda, M., and Parnpai, R. (2022). Strategies to Improve the Efficiency of Somatic
345 Cell Nuclear Transfer. *Int. J. Mol. Sci.* 23, 1969. doi: 10.3390/ijms23041969.

346 Suzuki, M. M., and Bird, A. (2008). DNA methylation landscapes: provocative insights from
347 epigenomics. *Nat. Rev. Genet.* 9, 465–476. doi: 10.1038/nrg2341.

348 Swindle, M. M. (2009). Swine as Surgical Models in Biomedical Research. in *Swindle, M. M. (2010).
349 Swine as Surgical Models in Biomedical Research (p. 4.)*, 4.

350 Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J., and Frazier, K. S. (2012). Swine as Models in
351 Biomedical Research and Toxicology Testing. *Vet. Pathol.* 49, 344–356. doi:
352 10.1177/0300985811402846.

353 Tian, X. C., Kubota, C., Enright, B., and Yang, X. (2003). Cloning animals by somatic cell nuclear
354 transfer--biological factors. *Reprod. Biol. Endocrinol.* 1, 98. doi: 10.1186/1477-7827-1-98.

355 Walters, E. M., and Prather, R. S. (2013). Advancing swine models for human health and diseases.
356 *Mo. Med.* 110, 212–5. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/23829105>.

357 Walters, E. M., Wells, K. D., Bryda, E. C., Schommer, S., and Prather, R. S. (2017). Swine models,
358 genomic tools and services to enhance our understanding of human health and diseases. *Lab
359 Anim. (NY)*. 46, 167–172. doi: 10.1038/laban.1215.

360 Wang, X., and Kadarmideen, H. N. (2019). An Epigenome-Wide DNA Methylation Map of Testis in
361 Pigs for Study of Complex Traits. *Front. Genet.* 10. doi: 10.3389/fgene.2019.00405.

362 Wilmut, I., Beaujean, N., de Sousa, P. A., Dinnyes, A., King, T. J., Paterson, L. A., et al. (2002).
363 Somatic cell nuclear transfer. *Nature* 419, 583–586. doi: 10.1038/nature01079.

364 Yang, X., Smith, S. L., Tian, X. C., Lewin, H. A., Renard, J.-P., and Wakayama, T. (2007). Nuclear

365 reprogramming of cloned embryos and its implications for therapeutic cloning. *Nat. Genet.* 39,
366 295–302. doi: 10.1038/ng1973.

367 Yuan, X.-L., Gao, N., Xing, Y., Zhang, H.-B., Zhang, A.-L., Liu, J., et al. (2016). Profiling the
368 genome-wide DNA methylation pattern of porcine ovaries using reduced representation bisulfite
369 sequencing. *Sci. Rep.* 6, 22138. doi: 10.1038/srep22138.

370 Yue, Y., Xu, W., Kan, Y., Zhao, H.-Y., Zhou, Y., Song, X., et al. (2021). Extensive germline genome
371 engineering in pigs. *Nat. Biomed. Eng.* 5, 134–143. doi: 10.1038/s41551-020-00613-9.

372 Zhao, J., Whyte, J., and Prather, R. S. (2010). Effect of epigenetic regulation during swine
373 embryogenesis and on cloning by nuclear transfer. *Cell Tissue Res.* 341, 13–21. doi:
374 10.1007/s00441-010-1000-x.

375 Ziller, M. J., Müller, F., Liao, J., Zhang, Y., Gu, H., Bock, C., et al. (2011). Genomic Distribution
376 and Inter-Sample Variation of Non-CpG Methylation across Human Cell Types. *PLoS Genet.* 7,
377 e1002389. doi: 10.1371/journal.pgen.1002389.

378

379

380

381 **Funding:** MG was funded by National Center for Science, Poland PRELUDIUM Grant no.
382 2012/07/N/NZ9/02060. MW was funded by National Center for Science, Poland SONATA Grant no.
383 2012/07/D/NZ9/03370.

384

385 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design
386 of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in
387 the decision to publish the results.

388

389 **Authors' Contributions:** The study was conceived and designed by MG & PL. Samples were
390 maintained by PL. Laboratory work: PL, MG, MD, RP, KF. Data handling – MG. Statistical analysis
391 was carried by TG, KF, PG and RDE. The manuscript was written by MG, MD, KF, TG. MG and MD
392 revised the manuscript. Project administration – MG & PL. Funding acquisition – MG and PL.

393