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Abstract 24 

Swine is a common model organism for biomedical research. Epigenetic reprogramming in SCNT 25 

embryos does not fully recapitulate the natural DNA demethylation events at fertilisation. This study 26 

aimed to conduct a genome-wide methylation profiling to detect differentially methylated regions 27 

(DMRs) responsible for epigenetic differences in stem cells that displayed high and low efficiency of 28 

SCNT and to elucidate the low efficiency of cloning rate in pigs. Adipose tissue mesenchymal stem 29 

cells (AMSC)s lines were isolated from adipose tissue of adult male pigs (n=20; high-efficiency 30 

cells=10; low efficiency cells= 10). Reduced representation bisulfite sequencing (RRBS) was 31 
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performed on an Illumina HiSeq1500.  Paired-end reads were filtered to remove the adapter 32 

contamination, and low-quality reads using TrimGalore!. Filtered reads were mapped to the reference 33 

genome using Bismark. MethylKit was used to identify differentially methylated regions (DMRs) 34 

(bases and tiles), showing statistically significant differential methylation between two groups: high 35 

and low-efficiency AMSCs. Hierarchical cluster analysis according to methylation patterns clearly 36 

defined groups with low and high cloning efficiency. We report 3704 bases with statistically 37 

significant differences in methylation and 10062 tiles with statistically significant differences in 38 

methylation. Most differentially methylated sites are intergenic 62%, 31% are intronic, 4% are 39 

located in exons and 4% in promoters. 37% of differentially methylated sites are located in known 40 

CpG islands (CGIs) and 4% in CpG island shores (CGSs).  41 

 42 

 43 

1 Introduction 44 

Animal-based disease modeling has become an interest in biomedical research, including cancer, 45 

metabolic, cardiovascular and neurological disorders (Groenen et al., 2012a; Arends et al., 2016; 46 

Grzybek et al., 2017a; Walters et al., 2017; Schachtschneider et al., 2021).  47 

Swine has been an interest for basic and applied biomedical research for more than 20 years (Rideout 48 

et al., 2001; Wilmut et al., 2002; Yang et al., 2007). Swine play essential roles as models of human 49 

diseases (Figure 1.), including cardiovascular disease, cancer, diabetes, toxicology and lipoprotein 50 

metabolism as a model organism (Bendixen et al., 2010; Zhao et al., 2010; Flisikowska et al., 2013; 51 

Walters and Prather, 2013). The first generation of a pig using the SCNT method was conducted in 52 

2000 (Betthauser et al., 2000; Onishi et al., 2000; Polejaeva et al., 2000), and since this time, many 53 

genetically modified cloned pigs have been generated (Lai et al., 2002; Lai and Prather, 2003; Li et 54 

al., 2006). Despite the success in generating of cloned individuals, there are still limitations that need 55 

to be improved to increase the efficiency of the porcine SCNT technique.  56 
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 57 

Figure 1. Swine became a model organism for biomedical research due to their similarity to humans. 58 

Pigs are ideal organisms to study human health and disease. Their genome is three times closer than 59 

the mouse genome to that of humans.  60 

The efficiency of the SCNT method in swine models varies from 0.2% to 7% of newborns per 61 

constructed embryo (Fulka and Fulka, 2007; Yang et al., 2007; Zhao et al., 2010). The low success rate 62 

limits the extensive application of the pig SCNT technique in biomedical research or agricultural 63 

purposes (Kurome et al., 2013). The SCNT method uses somatic cells with low viability and not fully 64 

reprogrammed epigenetic memory. This causes swine models to develop malformations (i.e. 65 

underweight, cardiac dysfunctions, immunological dysfunctions) (Amiridze et al., 2008; Swindle, 66 

2009; Swindle et al., 2012). Due to the high prevalence of these abnormalities, epigenetic disorders are 67 

believed to cause mentioned symptoms during embryo development rather than genetics.  68 

DNA methylation is an essential element in the epigenetic regulation of embryonic development, and 69 

it occurs at most CpG dinucleotides in the mammalian genome (Bird, 2002; Fulka and Fulka, 2007; 70 
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Suzuki and Bird, 2008). Long-term selection and adaption towards high prolificacy and meat 71 

production have transformed porcine epigenetics (Li et al., 2012), along with associated genotypic and 72 

phenotypic changes (Groenen et al., 2012a; Li et al., 2013) resulting from the modification of the 73 

epigenetic regulation of chromatin structure and transcriptional activity. During the transformation 74 

process, the porcine DNA methylome displays variable patterns in different breeds and sexes of pigs 75 

and variations in other anatomic tissues (Li et al., 2012; Wang and Kadarmideen, 2019). Here we 76 

analysed pig methylome of adipose tissue mesenchymal stem cell lines displaying high and low 77 

efficiency for live-born piglets in somatic cell nuclear transfer using the RRBS method.  78 

2. Material and methods 79 

2.1.Ethical approval 80 

All animal experiments were approved by the Government of Upper Bavaria (permit number 55.2-1-81 

54-2532-6-13) and performed according to the German Animal Welfare Act and European Union 82 

Normative for Care and Use of Experimental Animals. 83 

2.2.Cell lines  84 

Adipose mesenchymal stem cells (AMSC)s lines were isolated from adipose tissue of adult male pigs 85 

(n=10 per experimental group) according to standard isolation protocol. Cells were maintained in 86 

DMEM supplemented with 10% fetal bovine serum (FBS), 100U/ml of penicillin and 100mg/ml of 87 

streptomycin (Invitrogen) at 37°C and 5% CO2. The HCT116 DNMT1(2/2) DNMT3b (2/2) double 88 

knockout clone number 2 (DKO) cell line was a kind gift from Dr Steve Baylin. The cell line was 89 

grown in McCoys’5A medium with 10% FBS, 0.2mg/ml Neomycin, and 0.1mg/ml. Genomic DNA 90 

was extracted using standard phenol: chloroform extraction followed by ethanol precipitation. 91 

2.3.Reduced representation bisulfite sequencing (RRBS) 92 

2.3.1. Restriction enzyme digestion.  93 

A total of 3µg of high molecular weight genomic DNA was used for RRBS sample preparation. Each 94 

DNA sample was subjected to MspI restriction enzyme digestion. A total volume of 50µl was used in 95 

the procedure, including 3µl of MspI restriction enzyme (New England Biolabs) and 5µl of MspI 96 

reaction buffer (New England Biolabs). If the total volume was lower than 50µl, the difference was 97 

made up with nuclease-free water as recommended by the manufacturer. Incubation was performed in 98 

the thermocycler (Thermofisher) at 37°C for 15min. Next, the DNA purification procedure was 99 

performed using AmpureXp magnetic beads (Beckman Coulter). 100 
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2.3.2. End repair 101 

The DNA fragments with 5′-CG-3′ overhangs generated by the restriction enzyme digestion were end-102 

repaired using Nextflex Bisulfite Kit (Bioscientific).  103 

2.3.3. Size selection, adenylation and adapter ligation 104 

After end-repair, SPRI double size selection method combined with DNA purification was applied 105 

using AmpureXp magnetic beads (Beckman Coulter). Nextflex double size selection standard protocol 106 

was followed to select fragments between 200-300 bp (without adapters) with a mean length around 107 

250 bp. A total volume of 20.5µl of preselected DNA was collected, and adenylation reactions were 108 

performed using adenylation mix, followed by incubation in the Thermocycler (Thermofisher) at 37°C 109 

for 30min. A different non-diluted adapter from Nextflex Bisulfite Barcodes Kit (Bioscientific) with a 110 

unique index sequence was chosen for each sample. Adapters were not diluted according to the 111 

manufacturer’s instructions. Ligation was performed for 15 min at 22°C. Subsequently, a DNA 112 

purification procedure was performed using AmpureXp magnetic beads (Beckman Coulter). 113 

2.3.4. Bisulfite conversion and amplification 114 

The PCR products were purified using AmpureXp magnetic beads (Beckman Coulter) according to the 115 

Nextflex procedure. The purified fragments were then subjected to bisulfite conversion using the EZ 116 

DNA Methylation-Gold Kit (Zymo Research). The converted DNA was PCR amplified with some 117 

modifications. PCR reaction total volume was equal to 50µl, including 18µl of converted DNA, 118 

22.75µl nuclease-free water, 2µl of Nextflex primer mix from Nextflex Bisulfite Barcodes Kit 119 

(Bioscientific), 1.25µl 10nM dNTP Mix (ThermoScientific), 5µl  1X Turbo Cx buffer (Agilent) and 120 

2.5U Pfu Turbo Cx polimerase (Agilent). The thermocycling conditions: 2 min at 95°C and 12–121 

18 cycles of 30 sec at 95°C, 30 sec at 65°C and 45 sec at 72°C, followed by a 7-min final extension at 122 

72°C.  123 

2.3.5. Library validation and sequencing 124 

The DNA libraries were quantified using the Qubit instrument (Life Technologies) and qualified using 125 

Agilent 2100 Bioanalyzer High Sensitivity chips (Agilent Technologies). According to the 126 

manufacturer's instructions, paired-end sequencing (2 × 100 bp) was performed on the Illumina 127 

HiSeq1500. 128 

2.3.6. Bioinformatics 129 
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Paired-end reads obtained from Illumina 1500 sequencer were filtered to remove the adapter 130 

contamination, and low-quality reads using the application TrimGalore!. Filtered reads were mapped 131 

to the reference genome (susScr3 version) using Bismark (Krueger and Andrews, 2011). Per CpG, 132 

methylation statistics were extracted using an application developed at the Department of Medical 133 

Genetics, Medical University of Warsaw. Positions with SNPs, changing CpG places to CpH or TpG, 134 

were also detected and filtered using the above application. 135 

2.4.RRBS data analysis 136 

Methylation levels of cytosines were analysed by methylKit.53 Briefly, the number of methylated and 137 

unmethylated CpG and non-CpG (CHG and CHH, H representing A/C/T) sites were counted for each 138 

region. CGIs were defined as regions >200 bp with a GC fraction >0.5 and an observed-to-expected 139 

ratio of CpG >0.6. CGI shores were defined as regions 2 kb in length adjacent to CGIs. To annotate 140 

porcine CGIs, reference genome (susScr3) and annotation were downloaded from USCSand and the 141 

Ensembl, respectively. To define the differentially methylated cytosines (DMCs), multiple pairwise 142 

comparisons were performed against CpG methylation information of twenty samples and filtered (q 143 

< 0.01) using methylKit.53  144 

2.4.1. Mapping 145 

S.scrofa 10.2.79 and associated GTF files were downloaded from Ensembl. The fasta sequences were 146 

prepared for bismark (v0.14.3), them mapped using bowtie 1 as recommended for bismark software. 147 

To allow compatibility with bismark and methylkit, only somatic chromosomes were retained. 148 

2.4.2. Raw_reads and trimming 149 

Raw reads were trimmed using TrimGalore 150 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with the following parameters --151 

trim1 --phred33 --length 50 --retain_unpaired –paired. Trimmed reads were mapped to the converted 152 

pig genome using bismark command bismark_v0.14.3/bismark --gzip -n 1 -1 pair1.fq.gz -2 pair2.fq.gz 153 

2.4.3. Identification of differentially methylated regions (DMRs) 154 

MethylKit (https://code.google.com/p/methylkit/) was used to identify differentially methylated 155 

regions (DMRs) (bases and tiles), which show statistically significant differential methylation between 156 

two groups: high and low-efficiency AMSCs.  157 
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2.4.4. annotation of genomic regions 158 

High-density CpG promoter (HCP), intermediate-density CpG promoter (ICP), and low-density CpG 159 

promoter (LCP) annotations were defined based on the transcription start sites (TSS) of known RefSeq 160 

genes. In detail, HCP, which indicated the ‘‘CpG-rich’’ promoters, was identified as having a GC 161 

density  ≥0.55 and the observed to expected CpG ratio (CpG O/E) ≥ 0.6; promoters with CpG O/E # 162 

0.4 were classified as LCP; the remaining nonoverlapping promoter populations (0.4 < CpG O/E < 0.6) 163 

were classified as ICP. The annotated repeat elements such as LINEs, SINEs, and LTRs were 164 

downloaded directly from the RepeatMasker track of the UCSC Genome Browser. Other regions such 165 

as CGIs, exons, and introns were downloaded from the UCSC Genome Browser. Intragenic regions 166 

were included from the TSS to the transcription termination sites (TTS), whereas the intergenic regions 167 

were defined as the complement of the intragenic regions. 168 

3. Results 169 

3.1.Genomic location of Differentially methylated sites 170 

We mapped the global DNA methylation patterns of adult male ADMSCs showing high and low 171 

efficiency of SCNT in pigs. We identified 3704 bases with statistically significant differences in 172 

methylation, 890 bases within 5Kb of a known transcript, 10062 tiles with statistically significant 173 

differences in methylation, and 4965 tiles within 5Kb of a known transcript. 174 
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 175 

Figure 2. Differential methylation annotations of CpG.  176 

3.2.Non-CG methylation: CHH, CHG 177 

Fewer differentially methylated sites were seen in other contexts CHH 128 bases with statistically 178 

significant differences in methylation 39 bases within 5Kb of a known transcript, 2458 tiles with 179 

statistically significant differences in methylation 1354 tiles within 5Kb of a known transcript. 180 

In the CHG context, we identified 59 bases with statistically significant differences in methylation, 23 181 

bases within 5Kb of a known transcript, 2554 tiles with statistically significant differences in 182 

methylation and 1356 tiles within 5Kb of a known transcript.  183 

3.3.Genome-wide CpG methylation and density patterns in relation to genomic features 184 

Unsupervised hierarchical clustering of the individual methylation profiles of high and low efficient 185 

cells revealed separated sample groups (Figure 3). Thus, hierarchical clustering indicates that 186 

highly efficient and low efficient cells differ in methylation profiles.  187 

 188 
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 189 

Figure 3. Hierarchical cluster analysis according to methylation patterns across analysed samples. Blue 190 

colour – high cloning efficiency cells; Red colour – low cloning efficiency cells. Dendrograms 191 

were produced using correlation distance and ward clustering methods. Numbers represent the 192 

individual sample ID.  193 

 194 

4. Discussion 195 

 196 

Cloning has become a powerful tool for analysing gene functions, genomic imprinting, genomic re-197 

programming, development, neurodegenerative diseases, gene therapy, and more (Capecchi, 2000; 198 

Jang et al., 2010; Matoba and Zhang, 2018; Perrera and Martello, 2019). Somatic cell nuclear transfer 199 

is an essential cloning tool for biomedical and epigenetic research (Srirattana et al., 2022. This method 200 

enables significant development in biomedicine and disease modeling, where genome-edited mammals 201 

can be bred and used for disease research, transplantation, or to protect endangered species (Tian et al., 202 

2003; Grzybek et al., 2017b; Fatira et al., 2018; Liu et al., 2021; Yue et al., 2021).  203 

 204 
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Due to its similarity to humans, the combination of somatic cell nuclear transfer (SCNT) and precise 205 

genome editing to generate transgenic pigs carrying required disease phenotype may be applied to 206 

swine (Wilmut et al., 2002; Yang et al., 2007). Here we showed that according to methylation patterns, 207 

there is a clear definition of groups with low and high cloning efficiency. Our study confirmed the 208 

presence of porcine CpG methylation patterns similar to those previously demonstrated for humans 209 

and mice and established the functional aspects of porcine CpG methylation (Ziller et al., 2011; Shirane 210 

et al., 2013; Schachtschneider et al., 2015).  211 

DNA methylation in a promoter correlates with the transcription of a target gene (Niesen et al., 2005). 212 

Methylated genes are known to be linked with genomic region-specific DNA methylation patterns 213 

(Raza et al., 2017). We investigated promoter, exon and intron regions along the porcine genome and 214 

localised CpG islands to these genic features. The majority of differentially methylated sites were 215 

intergenic (Figure 2), and 37% were located in previously described CpG islands. We showed that 216 

methylation levels of CpG islands were lower than CpG island shores in the promoter, exon and intron 217 

regions. These results demonstrated that CpG islands located in different genic features displayed 218 

effects on the methylation patterns of the associated genes. A strong relation between methylations in 219 

CpG island shores located within 2 kb of an annotated transcription start site (TSS) and expression of 220 

associated genes was reported by Irizarry and others (Irizarry et al., 2009). CpG islands in exon regions 221 

showed different methylation levels than those in intron regions, suggesting that exons may affect the 222 

methylation patterns of CpG islands (Yuan et al., 2016; Chen et al., 2018).  223 

Completion of the swine reference genome sequence (Groenen et al., 2012b; Groenen, 2016) gives a 224 

great ability to perform porcine studies for human diseases and disorders, as well as opens the door for 225 

targeted approaches to produce models for diseases (Gutierrez et al., 2015; Prather et al., 2015; Lunney 226 

et al., 2021). Our results provide novel information for future studies of the porcine epigenomics. The 227 

results based on RRBS are a powerful technology for epigenetic profiling of cell populations relevant 228 
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to developmental biology and genetic engineering for porcine disease models. Further studies are 229 

necessary to investigate the similarities in methylation levels between humans and pigs for specific 230 

genomic regions. This knowledge will give a chance to analyse disease progression, the differences 231 

observed in intron and exon methylation patterns between pig tissues and human cell lines, and the 232 

proposed adaptive evolutionary role of CpG methylation.  233 

In conclusion, porcine CpG methylation levels were similar to those reported for other mammals. We 234 

believe that our work will accelerate the practical use of the SCNT technique for pig model production 235 

and contribute to the studies of human disease, xenotransplantation, and molecular breeding in 236 

agriculture. 237 

 238 

 239 

 240 
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