

1 **Enhanced epithelial to mesenchymal transition and chemoresistance in**
2 **advanced Retinoblastoma tumors is driven by miR-181a**

3

4 Vishnu Suresh Babu^{1,4}, Anadi Bisht¹, Ashwin Mallipatna², Deepak SA³, Gagan Dudeja²,
5 Ramaraj Kannan¹, Rohit Shetty¹, Stephane Heymans^{4,5,*}, Nilanjan Guha^{3,*} and Arkasubhra
6 Ghosh^{1,*}

7

8 ¹ GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India

9 ² Retinoblastoma Service, Narayana Nethralaya, Bangalore 560099, India

10 ³ Agilent Technologies India Pvt Ltd, Bangalore 560048, India.

11 ⁴ Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht
12 University, 6229 ER Maastricht, The Netherlands.

13 ⁵ Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven,
14 Herestraat 49, Bus 911, 3000 Leuven, Belgium.

15

16

17 * Co-corresponding authors.

18 Email: arkasubhra@narayananethralaya.com, nilanjan_guha@agilent.com,
19 stephane.heymans@mumc.nl

20

21

22

23

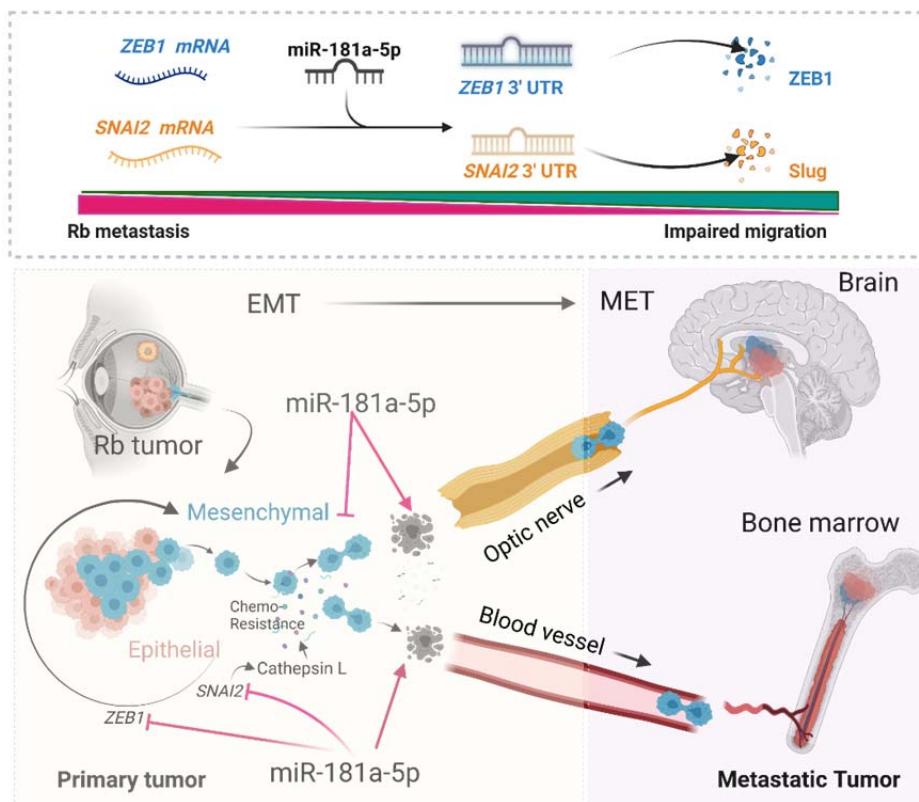
24

25

26

27

28


29

30 **Key Words:** Retinoblastoma, microarray, EMT, Drug resistance, miRNA, cancer

31

32 Graphical Abstract:

33

34 **Abstract:**

35

36 Advanced retinoblastoma (Rb) tumors can infiltrate distant tissues and cause a potent threat to
37 vision and life. Through transcriptomic profiling, we discovered key epithelial to mesenchymal
38 transition (EMT) and chemotherapy resistance genes at higher expression levels in advanced Rb
39 tumors. Rb-/- tumor cells acquire metastasis-like phenotype through the EMT program that
40 critically contributes to chemoresistance. We demonstrate that prolonged chemo-drug exposure
41 in Rb cells elicits an EMT program through *ZEB1* and *SNAI2* that further acquires therapeutic
42 resistance through cathepsin L and *MDR1* mediated drug efflux mechanisms. Further, 16
43 significantly differentially expressed miRNAs were identified in patient tumors, of which miR-
44 181a-5p was significantly reduced in advanced Rb tumors and associated with altered EMT and
45 drug resistance genes. Enhancing miR-181a-5p levels in Rb-/- cells and Rb-/- chemo-resistant
46 sublines controls EMT transcription factors *ZEB1* and *SNAI2* and halts the transition switch,
47 thereby reversing drug resistance. We thus identify miR-181a-5p as a potential therapeutic target
48 for EMT triggered drug-resistant cancers that can halt their invasion and sensitize them to low
49 dose chemotherapy drugs.

50 **Introduction:**

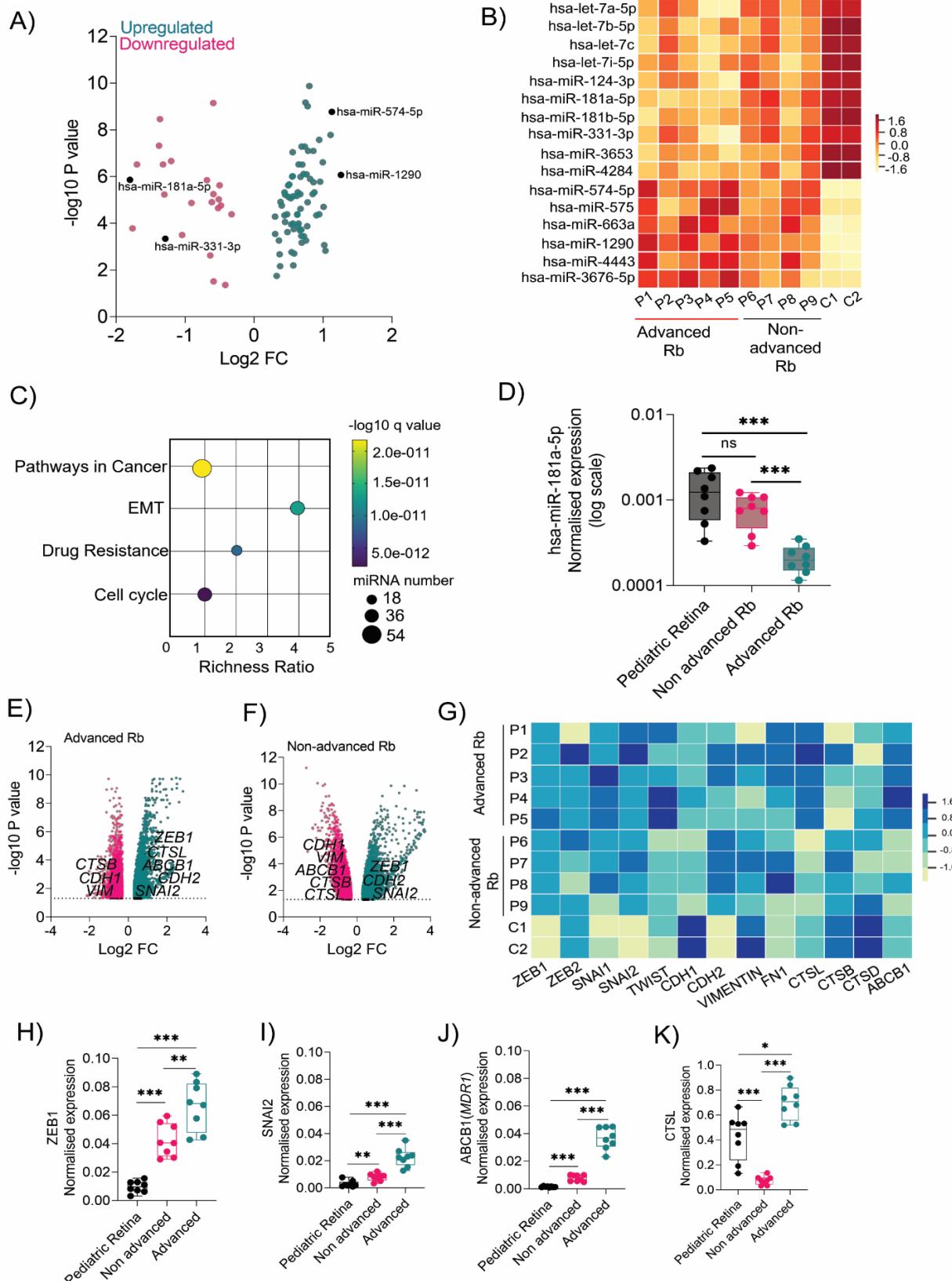
51 Retinoblastoma (Rb) is the most common intraocular malignant tumor in children.
52 Managing intraocular Rb tumors by efficient diagnosis, genetic screening and clinical procedures
53 (Ancona-Lezama et al., 2020; Gupta et al., 2021) help achieve excellent survival rates
54 worldwide. However, metastatic retinoblastoma is still a major concern in many
55 countries(Honavar et al., 2017; Vempuluru et al., 2021) (Canturk et al., 2010). Rb tumors that
56 grow rapidly have sufficient feeder arteries and drainage veins, characterized by the presence of
57 multifocal yellowish white tumor mass with floating subretinal or vitreous cancer seeds(Shields
58 & Shields, 2010). If neglected or untreated, advanced Rb tumors demonstrate massive choroidal
59 invasion (Bosaleh et al., 2012) and metastatic spread, primarily through optic nerve (Shields et
60 al., 1994) and sclera (Rootman et al., 1978), to regional lymph nodes, central nervous system
61 (CNS) and bone marrow(Finger et al., 2002) causing potent threat not only to vision, but to life
62 of the child as well. Clinically, to manage metastatic Rb tumors, an intensive multimodal
63 approach incorporating high dose systemic, intra-arterial, peri-orbital chemotherapy regimens
64 involving carboplatin, etoposide and cyclophosphamide followed by radiation are used currently
65 (Namouni et al., 1997). However, advanced tumors often evolve during successive
66 chemotherapy cycles and develop resistance to anticancer therapeutics, diminishing the efforts of
67 the clinical management procedures (Chan et al., 1991; Shields et al., 2003). Advanced Rb
68 tumors upon prolonged chemo-drug exposure, increases the expression of ATP binding cassette
69 (ABC) transporter pathway genes like *MDR1* and *MRP1* to confer resistance by chemo-drug
70 efflux mechanism (Wilson et al., 2006). Metastatic tumors acquire chemotherapy resistance
71 through trans-differentiation initiated by the epithelial to mesenchymal transition (EMT)
72 program in different cancers (Choi et al., 2019) (Saxena et al., 2011). EMT program begins with
73 the loss of epithelial phenotypes by downregulation of E-cadherin and tight junction adhesion

74 molecules. The differentiated cancer cells transit to mesenchymal phenotype with an invasive
75 dedifferentiated characteristic, which can coincide with acquiring chemo-drug resistance
76 properties.

77 MicroRNAs (miRNA) are small non-coding single strand RNAs that have emerged as
78 important modifier of plethora of biological pathways including cancers(Lin & Gregory, 2015).
79 They modify gene expression by using the RNA- induced silencing complex (RISC) that bind to
80 the 3' untranslated region (UTR) or less frequently 5' UTR region of the mRNA and cause
81 translational repression. Emerging evidences points out the role of miRNAs in controlling EMT
82 transcription factors and signaling pathways to regulate metastatic dissemination in different
83 cancers (Diaz-Lopez et al., 2014). In Rb tumors, increased expression of miR 17-92 cluster
84 (Kandalam et al., 2012), miR-25-3p (Wan et al., 2020) & miR200c (Shao et al., 2017) were
85 found to regulate EMT mediated high invasion and migration of Rb cells in-vitro, thus
86 supporting the role of EMT in Rb metastasis. However, the mechanistic link between miRNA,
87 EMT and drug resistance in Rb patient tumors remain obscure.

88 In the present study, we profiled miRNA and mRNA signatures simultaneously in the
89 same set of advanced and non-advanced Rb tumors compared to age matched healthy pediatric
90 retina. Such a coordinated analysis of expression networks in the same set of tissues and controls
91 enabled the discovery of co-regulated miRNA and mRNA targets relevant to Rb stage. Among
92 the many dysregulated genes and miRNAs, we chose to validate and investigate the functional
93 role of miR-181a-5p on the enhanced EMT and drug resistance pathways in advanced Rb
94 subjects.

95

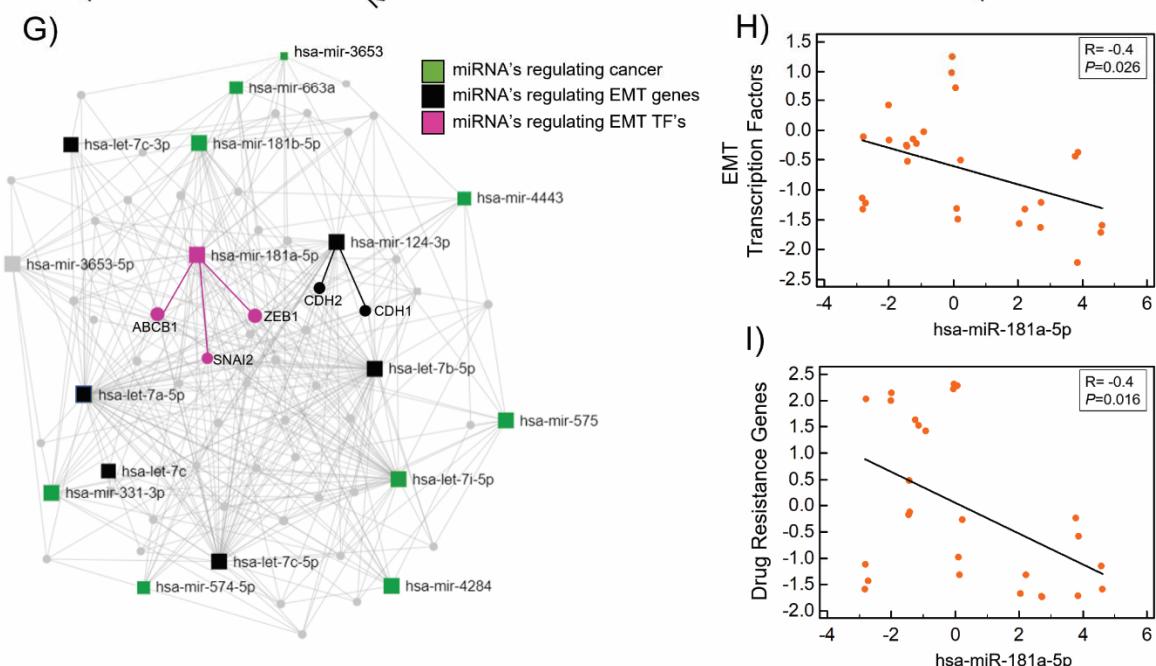
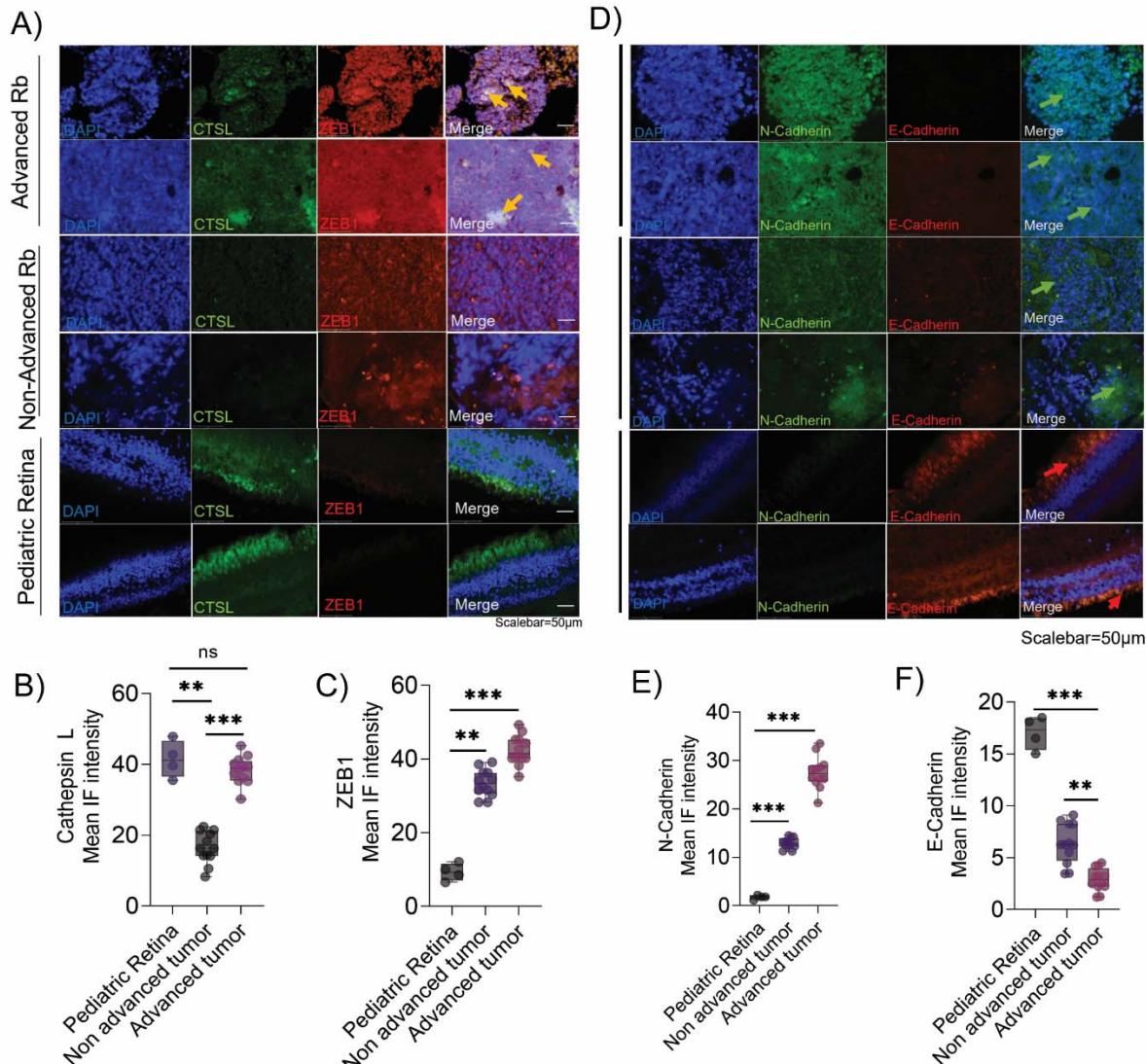


97 **Results:**

98 **Transcriptomic profiling identifies differentially regulated miRNA's, EMT, and drug-
99 resistant genes in Rb tumor subtypes.**

100 To investigate alterations to miRNA mediated regulation in Rb tumors, we generated the miRNA
101 profile from patient tumors. The Rb tumor sample cohort (Table 1) comprised of enucleated
102 tumor tissues of five advanced (defined by AJCC staging- cT3(Mallipatna et al., 2017), IIRC-
103 Group E (Linn Murphree, 2005) and four non advanced (defined by AJCC staging- cT2, IIRC-
104 Group D) subjects. Two age matched pediatric retina (age range from 2-3 months) obtained from
105 donors without ocular complications were used as controls. We identified sixteen highly
106 significant, differentially regulated miRNAs unique to Rb tumors ($P<0.05$, $FC>2$) compared to
107 pediatric retina (Figure 1A). Notably, miR-181a-5p and miR-3653 were significantly
108 downregulated in advanced Rb compared to non-advanced Rb tumors (Figure 1B). We applied
109 KEGG pathway enrichment analysis to the miRNAs data obtained by microarray and identified
110 miRNAs regulating genes belonging to cell cycle pathway, EMT program, drug resistance and
111 pathways in cancer (Figure 1C). We performed RT-PCR validation experiments in a secondary
112 cohort (Table S1) comprising of eight Rb tumor tissues (4 advanced, 4 non advanced) and four
113 pediatric retina controls, that confirmed the downregulated of miR-181a-5p in Rb tumors, with
114 significant downregulation in advanced subjects ($P<0.001$) (Figure 1D). RT-PCR quantification
115 of miR-331-3p, miR-574-5p and miR-1290 in advanced and non-advanced Rb tumors
116 corroborated with the expression profiles identified in miRNA microarray (Figure S1A, B, C).
117 The findings prompted us to elucidate the EMT and drug resistance signatures in advanced and
118 non-advanced Rb tumors. We have previously performed total mRNA profiling using gene
119 expression microarray in the primary Rb cohort (Babu et al., 2022). We identified distinct

120 clustering of differentially regulated EMT and drug resistance genes in advanced (Figure 1E) and
121 non-advanced Rb tumors (Figure 1F) compared to pediatric controls ($P<0.05$, $FC>2$). Notably,
122 EMT transcription factors like *ZEB1* ($FC=92$, $P<0.05$), *SNAI2* ($FC=5.57$, $P<0.05$) and drug
123 resistance genes like *ABCB1* (MDR1) ($FC=5.84$, $P<0.05$), *CTSL* (Cathepsin L) ($FC=20.03$,
124 $P<0.05$) were significantly upregulated in advanced tumors (Figure 1G). However, *ZEB1*
125 ($FC=77.2$, $P<0.05$), *SNAI2* ($FC=3.32$, $P<0.05$), *ABCB1* ($FC=4.4$, $P<0.05$) were low and *CTSL*
126 ($FC= -3.8$, $P<0.05$) expressions was significantly downregulated in non-advanced Rb tumors.
127 RT-PCR validations of these genes in a secondary cohort confirmed the findings of the
128 microarray (Figure 1H-K).

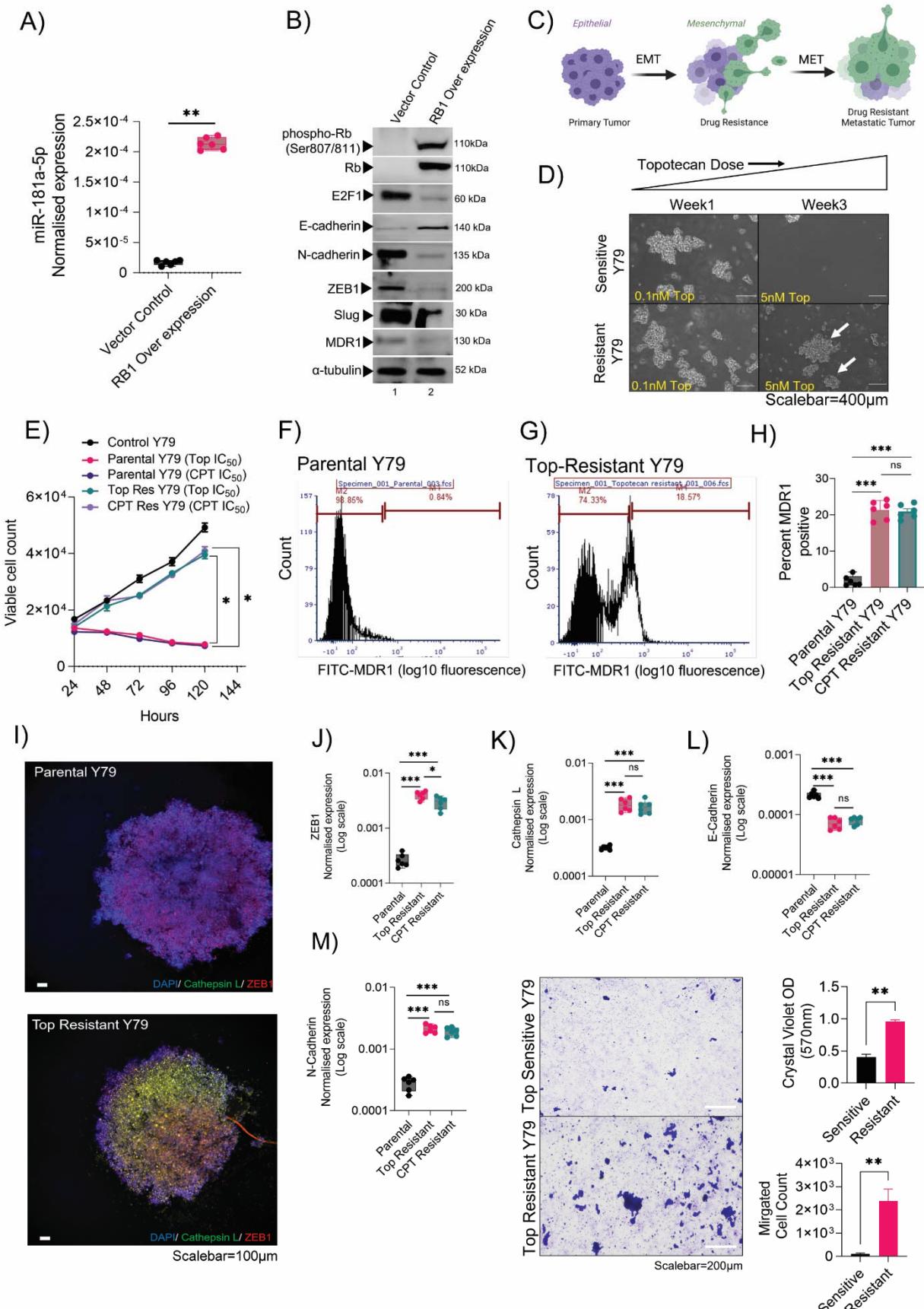


130 **Figure 1: Transcriptomic profiling identifies differentially regulated miRNA's, EMT, and drug-
131 resistant genes in Rb tumor subtypes.** (A) Volcano plot showing differentially regulated miRNA's in
132 Rb subjects (n=9) compared to pediatric retina (n=2) identified using microarray. (B) Heatmap showing
133 differential expression of miRNAs in 9 Rb subjects and 2 pediatric controls identified using microarray.
134 (C) Bubble scatter plot showing top enriched KEGG pathways regulated by miRNAs in Rb tumors. (D)
135 RT-PCR results showing normalised expression of miR-181a-5p in control retina (n=4), advanced Rb (n=4)
136 and non-advanced Rb (n=4). Volcano plot showing differentially regulated EMT and chemotherapy
137 resistant genes identified using microarray in (E) Advanced Rb tumors (F) Non-advanced Rb tumors. (G)
138 Heatmap showing expression of EMT and chemotherapy resistant genes in 9 Rb subjects and 2 pediatric
139 controls. RT-PCR showing normalized expression of (H) *ZEB1* (I) *SNAI2* (J) *ABCB1* and (K) *CTSL* in
140 control pediatric retina (n=4), advanced (n=4) and non-advanced (n=4) Rb tumors. Values represents
141 mean \pm s.d. Two tailed Mann-Whitney was used for statistical analysis. *p < 0.05, **p < 0.01, ***p <
142 0.001, ****p < 0.0001.

143

144 **Validation of epithelial to mesenchymal transition (EMT) and chemo-drug resistance
145 proteins in Rb tumors and their interaction with miR-181a-5p.**

146 Immunofluorescence analysis on FFPE specimens of Rb tumors detected strong *ZEB1* and
147 Cathepsin L positivity in advanced Rb tumor tissues compared to non-advanced Rb (Figure 2A,
148 B & C). However, we observed cathepsin L positivity in photoreceptor layers of control tissues,
149 in line with its known lysosomal functions in the retina (Sharif et al., 2019) unlike its metastatic
150 role in cancers (Dykes et al., 2019). Notably, advanced Rb tumors demonstrated high expression
151 of N-cadherin and low expression of E-cadherin (Figure 2D, E & F) indicative of the EMT
152 process (Loh et al., 2019). RT-PCR validations further confirmed the downregulation of *CDH1*
153 (E-cadherin) in advanced and non-advanced tumors ($P<0.001$) (Figure S1D) while *CDH2* (N-
154 cadherin) maintained an elevated expression profile in advanced tumors ($P<0.001$) (Figure S1E).
155 We also detected increased MDR1 levels in advanced tumors compared to the non-advanced
156 tumors and controls, indicating resistance to drug therapy (Figure S1F). For comprehensive
157 functional analysis of miRNAs, we developed a miRNA-target interaction network map using
158 miRNet by integrating the microarray data with microRNA databases like miRanda, miRbase

159 and TargetScan. Out of the sixteen miRNAs identified in Rb tumor microarray, nine miRNAs
160 were associated with different cancer related pathways while five miRNAs were predicted to
161 specifically regulate EMT pathway genes in the interaction map. We identified miR-181a-5p as a
162 regulator of EMT transcription factors like *ZEB1* and *SNAI2*, while miR-124-3p was identified as
163 a regulator of EMT facilitators like *CDH1* (E-cadherin) and *CHD2* (N-cadherin) (Figure 2G).
164 However, miR-3653 did not display any interaction with KEGG identified enriched pathways
165 (Figure 2G). We speculate that advanced tumors maintain high expression of EMT and drug
166 resistance genes due to low expression of miR-181a-5p, thus promoting invasion and metastasis
167 (Figure 2H, I).


169 **Figure 2: Validation of epithelial to mesenchymal transition (EMT) and chemo-drug resistance**
170 **proteins in Rb tumors and their interaction with miR-181a-5p.** Immunofluorescence showing
171 expression of (A) ZEB1 and CTSL. IF mean intensity of (B) ZEB1 and (C) Cathepsin L staining in
172 advanced (n=12), non-advanced (n=12) and control pediatric retina (n=4). Immunofluorescence showing
173 expression of (D) N-Cadherin and E-Cadherin, IF mean intensity of (E) N-Cadherin and (F) E-Cadherin
174 in advanced (n=12), non-advanced (n=12) and control pediatric retina tissues (n=4). Scale bar=50 μ m. (G)
175 Network map showing predicted interaction of miRNA-mRNA targets using miRNet. Correlation plot
176 showing (H) negative correlation of EMT genes (ZEB1, SNAI2, TWIST) with miR-181a-5p in Rb
177 tumors, (I) negative correlation of drug-resistant genes (MDR1, MRP1 and CTSL) with miR-181a-5p in
178 Rb tumors. Values represents mean \pm s.d. Two tailed Mann-Whitney was used for statistical analysis. *p
179 < 0.05, **p < 0.01, ***p < 0.001.

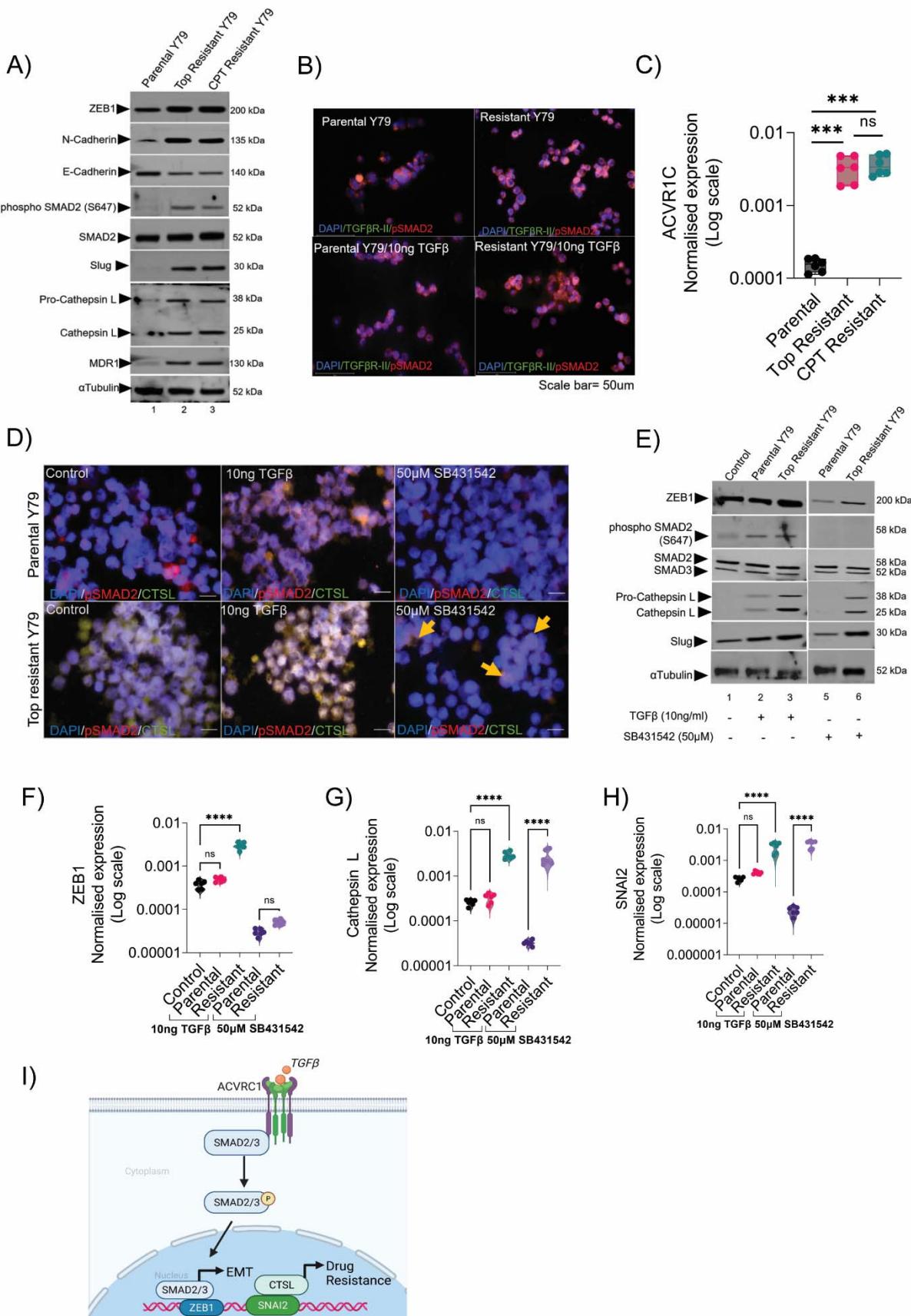
180

181 **Chemotherapy resistant Rb cells confer enhanced EMT and invasion**

182 Initial regression of the Rb tumors post treatment is followed by an orbital relapse or recurrence
183 of a more aggressive chemo-resistant tumors composed of tumor cells with a much higher tumor
184 initiating ability than the original tumor (Cicinelli & Kaliki, 2019). EMT program through *ZEB1*
185 is known to drive cellular mobility and tumor dissemination in other types of cancer (Drapela et
186 al., 2020), however their role in EMT driven drug resistance in Rb tumors are unknown. To
187 extend our study of the consequences of *RB1* downregulation in Rb tumors and its influence on
188 miRNA and EMT signatures, we overexpressed *RB1* gene in Rb null Y79 cells. In real time gene
189 expression assays, we found miR-181a-5p to be significantly upregulated in the presence of Rb
190 compared to Rb null cells ($P=0.002$) (Figure 3A). Rb over expression decreased key EMT
191 factors like ZEB1, Slug, N-cadherin and drug resistant MDR1 proteins (Figure 3B). However,
192 Rb over expression increased E-cadherin expression indicating a halt in the EMT switch (Figure
193 3B). These findings strongly suggest that Rb mediates the suppression of EMT and in absence of
194 Rb, EMT drives a mesenchymal phenotype and drug resistance to further promote invasion and
195 migration (Figure 3C). To further elucidate the mechanism, we developed Y79 cells resistant to
196 topotecan and carboplatin by exposing them to increasing concentrations of the drugs for 3

197 weeks (Figure 3C). After each week, the surviving cells that reached >60% confluence were
198 passaged in fresh media with increased concentration of topotecan or carboplatin. The procedure
199 was performed repeatedly until the cells display low sensitivity to IC50 doses of topotecan or
200 carboplatin (Figure 3D), resistance to DNA damage defined by low λ H2A.X foci count under an
201 IC50 dose therapy for 48hours (Figure S2A, B, C), shift in IC50 values of topotecan and
202 carboplatin (Figure S2D, E) and high surface expression of MDR1 proteins (Figure 3F, G, H,
203 S2F, G, H), marking a resistant phenotype. We developed tumor spheroids for parental and
204 resistant Y79 cells, and we observed high ZEB1 and cathepsin L expression in resistant
205 spheroids by immunofluorescence. However, parental spheroids displayed strong ZEB1
206 expression and no cathepsin L expression (Figure 3I). We further confirmed the findings using
207 RT-PCR that revealed a mesenchymal transition trend for resistant lines compared to parental
208 lines (Figure 3, J, K, L, M, S2I). Likewise, using transwell assay, we found increased invasion
209 and migration of resistant Y79 cells compared to sensitive Y79 cells, under high dose topotecan
210 (100nM) therapy (Figure 2N, O, P). In line with the above results, in human Rb tumors, miR-
211 181a-5p was significantly downregulated in EMT-high/ drug resistant advanced tumors. Our
212 results point to miR-181a-5p as a potential negative regulator of the EMT and drug resistance
213 mechanisms that could possibly influence tumor metastasis (Figure S2J).

215 **Figure 3. Chemotherapy resistant Rb cells confer enhanced EMT and invasion.** (A) RT-PCR
216 showing normalized expression of miR-181a-5p in Vector control (*RB1* null) and *RB1* over expressed
217 Y79 retinoblastoma cells. (B) Immunoblot showing expression of EMT and chemoresistant markers in
218 Vector control (*RB1* null) and *RB1* over expressed Y79 cells. (C) Schematic showing EMT program and
219 drug resistance induction in metastatic tumors. (D) Phase contrast microscopy images showing
220 morphology of parental and resistant Y79 cells under increasing dose of topotecan treatments from week1
221 to week3. Scalebar=400 μ m. (E) Cell viability of parental, topotecan resistant and carboplatin resistant
222 Y79 cells at 24hr, 48hr, 72hr and 96hr. MDR1 surface expression analysis in (F) parental and (G)
223 topotecan resistant Y79 cells by flow cytometry. (H) Bar graph showing the percentage of cells positive
224 for MDR1 surface expression in parental, topotecan resistant and carboplatin resistant Y79 cells. (I)
225 Parental and resistant Y79 spheroids showing expression of ZEB1 and Cathepsin L. Scale bar= 100 μ m.
226 RT-PCR showing expression of (J) ZEB1 (K) Cathepsin L (L) E-cadherin and (M) N-cadherin in
227 parental, topotecan resistant and carboplatin resistant Y79 cells. (N) Transwell invasion and migration
228 assay to assess the migratory capacity of resistant cells compared to sensitive cells under 10nM topotecan
229 treatment for 48hours. (O) Crystal violet OD reading at 570nm to assess invasiveness (P) Trypan blue
230 count to assess migrated cells in the lower compartment of the transwell chamber. N=3, Two-tailed
231 Student's *t*-test (for 2< group) and one-way ANOVA with Dunnett's multiple comparisons tests (for >2
232 group) were used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001.


233

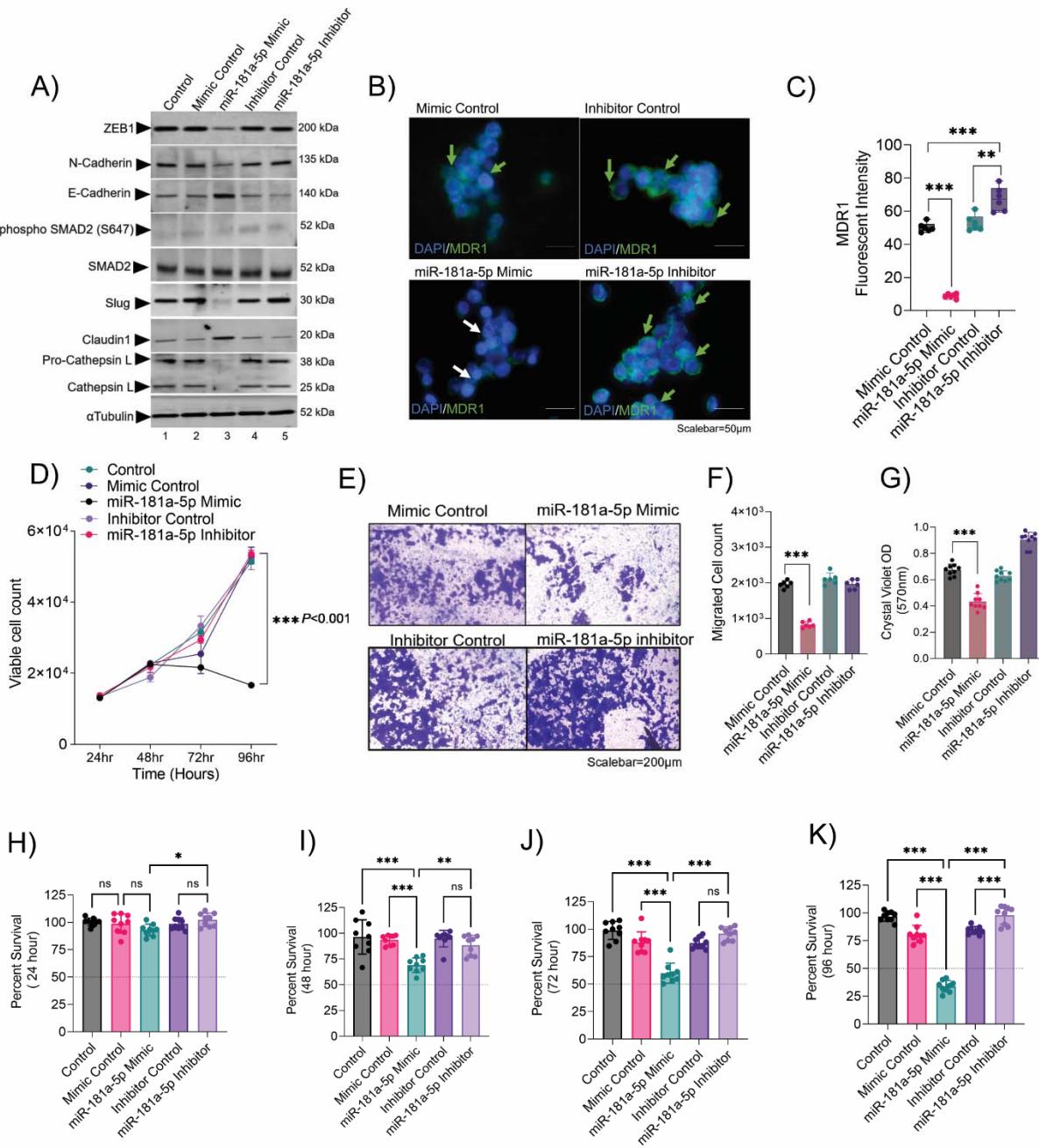
234 **Resistant cells undergo transition mediated by *ZEB1* and acquire resistance through**
235 **Cathepsin L**

236 To identify the critical downstream signaling pathways that regulate EMT and chemo-resistance
237 in the context of Rb, we evaluated the TGF β pathway, as it was highlighted by the pathway
238 analysis from the transcriptomic profile of advanced Rb tumors (Figure S3A). SMAD2
239 phosphorylation was enhanced in resistant Y79 compared to the parental (Figure 4A) line. The
240 resistant cells showed more pronounced expression of EMT markers such as ZEB1, Slug, N-
241 cadherin and drug resistance markers like MDR1 and Cathepsin L (Figure 4A) suggestive of
242 advanced tumor cells with metastatic potential. In agreement to a previous report that
243 retinoblastoma cells lack functional TGF β receptor I and II (Horie et al., 1998) (Figure 4B, S3B),
244 we identified the *ACVR1C* receptor (Activin A Receptor Type 1C), a member of the TGF β
245 family, known to activate SMAD2 in advanced retinoblastoma (Asnaghi et al., 2019) (Figure

246 S3C). Resistant cells had increased expression of *ACVR1C*, indicating its likely role in activating
247 SMAD2 dependent TGF β signaling. To evaluate if TGF β modulation affects chemoresistance,
248 we used TGF β ligand activation (10ng) and TGF β inhibitor (50 μ M SB43152) for 48hours in
249 parental and resistant lines and assessed the changes in EMT and drug resistance markers. We
250 found, by immunofluorescence, enhanced levels of phospho- SMAD2 and cathepsin L levels
251 upon TGF β activation in resistant cells (Figure 4D), while TGF β activated parental cells showed
252 lesser induction of phospho-SMAD2 and Cathepsin L levels compared to controls. Likewise,
253 TGF β activation also increased ZEB1 expression in resistant and parental cells compared to
254 controls (Figure S3D). TGF β inhibition in parental lines shows complete reduction of phospho-
255 SMAD2, ZEB1 and cathepsin L proteins, however resistant cells upon TGF β inhibition shows
256 partial reduction of cathepsin L and ZEB1 in the nucleus (Figure 4D, S3D). Consistently, lower
257 levels of ZEB1, Slug and Cathepsin L proteins were observed upon TGF β /phospho-SMAD2
258 inhibition in resistant lines (Figure 4E). In contrast to the resistant phenotype, TGF β /SMAD2
259 inhibition drastically reduced ZEB1, slug and depleted cathepsin L proteins in parental lines.
260 TGF β inhibition showed significant downregulation of *SMAD2* (Figure S3E) and *ZEB1* genes in
261 the resistant lines (Figure 4F), while TGF β inhibition did not affect *SNAI2* and *CTSL* (Cathepsin
262 L) expressions in resistant cells (Figure 4G, H). Thus, TGF β transcriptionally regulates *ZEB1*,
263 but not *SNAI2* and *CTSL* in resistant lines (Figure 4F, G, H). Using in silico promoter sequence
264 analysis, we found that *ZEB1* promoter has direct binding sites for *SMAD2* located in close
265 proximity to the cognate TSS (transcriptional start site), suggestive of its potential for
266 transcriptional activation of *ZEB1* (Figure S3F). However, *SMAD2* binding sites in *SNAI2*
267 promoter are relatively distant from the TSS (Figure S3F), a potential reason for its poor
268 sensitivity to TGF β inhibitors. Notably, *SNAI2* also has binding sites in the *CTSL* promoter,

269 therefore, it is possible that the transcriptional activation of *CTSL* is mediated via *SNAI2* and not
270 *SMAD2* or *ZEB1* (Figure S3F). In support to our results, we observed enhanced nuclear
271 localization of cathepsin L in resistant lines indicating its transcriptional activity independent of
272 TGF β /SMAD2 signals (Figure S3G). We speculate that resistant cells have nuclear localization
273 of *CTSL* due to the lack of cystatin B (*CSTB*), that is known to inhibits *CTSL* nuclear localization
274 (Ceru et al., 2010) and low expression of *CTSB* was also evidenced in the advanced tumor
275 microarray profile. This indicates that *ZEB1* triggers EMT through TGF β and the activated EMT
276 program through *SNAI2* regulates *CTSL* mediated chemo resistance in advanced Rb tumors
277 (Figure 4I). Hence, identifying a common regulator like miR-181a-5p that governs the
278 mechanisms of both transition and resistance is both reasonable and promising for effective
279 management of metastatic dissemination.

281 **Figure 4. Resistant cells undergo transition mediated by *ZEB1* and acquire resistance through**
282 **Cathepsin L** (A) Immunoblot showing the expression of EMT and drug resistance markers in parental,
283 topotecan resistant and carboplatin resistant Y79 cells. (B) Immunofluorescence showing expression of
284 TGF β R-II and phospho- SMAD2 in parental and topotecan resistant Y79 cells with and without TGF β
285 induction. Scale bar=50 μ m. (C) RT-PCR results showing expression of ACVR1C in parental, topotecan
286 resistant and carboplatin resistant cells. (D) Immunofluorescence showing expression of phospho-
287 SMAD2 and cathepsin L (CTSL) upon TGF β induction (10ng for 48 hours) and TGF β inhibition (50 μ M
288 SB431542 for 48 hours) in parental and topotecan resistant Y79 cells. Scalebar=50 μ m. (E) Immunoblot
289 showing EMT and drug resistance pathway protein levels upon TGF β induction and inhibition for 48
290 hours. RT-PCR results showing normalized expression of (F) *ZEB1* (G) *SNAI2* (H) *CTSL* (Cathepsin L)
291 upon TGF β induction and inhibition for 48hours. (I) Schematic showing the novel regulation of EMT and
292 drug resistance mechanism in Rb tumors. N=3, Two-tailed Student's *t*-test (for 2< group) and one-way
293 ANOVA with Dunnett's multiple comparisons tests (for >2 group) were used for statistical analysis. *p <
294 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001


295

296 **Augmenting miR-181a-5p levels confers sensitivity to chemotherapy**

297

298 To evaluate if miR-181a-5p can directly regulate EMT and chemoresistance in resistant Y79
299 lines, we measured *ZEB1*, Slug and Cathepsin L proteins. Using bioinformatic tools, we also
300 predicted the binding sites of miR-181a-5p in *ZEB1* and *SNAI2* 3' UTR regions (Figure S3 H, I).
301 In contrast to a non-targeting mimic control, transfection of miR-181a-5p drastically reduced
302 *ZEB1*, Slug and Cathepsin L protein levels (Figure 5A). Conversely, miR-181a-5p inhibition
303 shows increased expression of *ZEB1*, Slug and Cathepsin L, mimicking an EMT high, drug
304 resistant advanced tumor phenotype (Figure 5A). Cell surface expression of MDR1 was altered
305 in resistant cells complemented with miR-181a-5p (Figure 5B, C), that were partly explained by

306 changes in levels of Slug and Cathepsin L. Notably, augmenting miR-181a-5p reduced cell
307 proliferation (Figure 5D), invasion and migration of resistant cells (Figure 4E, F, G), while its
308 inhibition showed opposite results in resistant lines (Figure 5D, E, F, G). These findings suggest
309 that enhancing miR-181a-5p in resistant lines could sensitize them to low dose chemotherapy.
310 We compared the response of miR-181a-5p modulated resistant lines to IC50 dose of topotecan
311 (parental Y79_{IC50}=10nM) for 96 hours. Following topotecan treatment, miR-181a-5p mimic
312 transfected resistant lines show no significant response at 24hour and 48hour (Figure 5H, I),
313 while they showed an increased sensitivity and low survival to topotecan_{IC50} by 72 hours (Figure
314 J) and 96 hours (Figure K). Together, the results suggest that the miR-181a-5p plays a major role
315 in the depletion of EMT and drug resistance phenotype by sensitizing the cells to low dose
316 chemotherapy.

317

318 **Figure 5. Augmenting miR-181a-5p levels confers sensitivity to chemotherapy** (A) Immunoblot
319 showing expression of key EMT factors and drug resistance markers upon miR-181a-5p overexpression
320 and inhibition in topotecan resistant Y79 cells. (B) Immunofluorescence showing MDR1 surface
321 expression in topotecan resistant Y79 cells upon miR-181a-5p overexpression and inhibition.
322 Scalebar=50μm. (C) Bar graphs showing MDR1 fluorescent intensity in topotecan resistant Y79 cells
323 upon miR-181a-5p overexpression and inhibition. (D) Trypan blue cell count showing proliferation of
324 topotecan resistant cells at 24hr, 48hr, 72hr and 96hr upon miR-181a-5p overexpression and inhibition.
325 (E) Transwell invasion and migration assay to assess the invasive and migratory capacity of topotecan

326 resistant cells upon miR-181a-5p overexpression and inhibition (F) Crystal violet OD measurement at
327 570nm to assess the invasiveness of resistant Y79 cells. (G) Trypan blue cell count shows migrated cells
328 in the lower compartment of the transwell chamber. Chemosensitivity of miR-181a-5p modulated
329 topotecan resistant Y79 cells upon 10nM topotecan treatment for (H) 24 hours (I) 48hours (J) 72 hours
330 (K) 96 hours. Control represents untreated topotecan-resistant Y79 cells. N=3, Two-tailed Student's *t*-test
331 (for 2< group) and one-way ANOVA with Dunnett's multiple comparisons tests (for >2 group) were used
332 for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001.

333

334 **Discussion:**

335 The present study identifies miR-181a-5p as a previously unrecognized regulator of EMT
336 transcription factors and chemotherapy resistance. While the study focuses on intraocular
337 advanced and non-advanced retinoblastoma tumors, our findings can be extended to other cancer
338 systems that have persistent EMT associated chemotherapy resistance. We found miR-181a-5p
339 to be significantly downregulated in advanced Rb tumors and provide evidence that
340 mesenchymal transition and chemoresistance in tumors are likely sensitive to chemotherapy
341 when miR-181a-5p is complemented.

342 Context dependent tumor promoting (Xue et al., 2020; Yang et al., 2018) and tumor suppressing
343 (Li et al., 2015; Liu et al., 2020) roles have been reported for miR-181-5p. However, we report
344 the downregulation of miR-181a-5p in retinoblastoma tumor tissues from patients when
345 compared to healthy pediatric retina. It should be noted that the significantly reduced miR-181-
346 5p levels in tumors observed in our study is likely due to the use of pediatric healthy retina as
347 controls. The miRNA 181a-5p also plays a functional role in retina (Chen et al., 2020), hence the
348 consistent low expression of miR-181a-5p expression in advanced and non-advanced retinal
349 tumors is important in the context of the dedifferentiated tumor tissue.

350 The control of EMT and chemotherapy resistance by miR-181a-5p evidenced here could provide
351 an explanation for the apparent complex roles of miR-181a-5p in advanced tumors. Recent
352 evidence indicates that EMT occurs through intermediate states rather than being a binary
353 process (Pastushenko et al., 2018) and is partially reactivated in various cancers (Zhang &
354 Weinberg, 2018). We propose that dynamic reduction in miR-181a-5p levels in tumor,
355 particularly between the different stages of Rb progression may contribute to the context
356 dependent EMT plasticity from cancer initiation to metastasis. Differences in EMT and drug

357 resistance transcripts between control and tumor tissues and different stages of Rb further
358 contribute to this complexity, as miR-181a-5p may control EMT in a tissue and function specific
359 manner. In this study, advanced Rb tumors showed increased expression of EMT signatures, a
360 consequence of miR-181a-5p downregulation, as an EMT trigger. We propose that the EMT
361 genes like *ZEB1* and *SNAI2* acquires transcript stability in advanced tumors, at least partly, due
362 to reduced miR-181a-5p based degradation (Baek et al., 2008). Furthermore, we have identified
363 chemotherapy resistance pathway genes like *ABCB1* (MDR1) (Krech et al., 2012) and *CTSL*
364 (Cathepsin L)(Zheng et al., 2009) as EMT targets in Rb tumors. Likewise, the miR-181a-5p
365 clusters located on chromosome 1 are known to repress E2F transcription factors (Lin et al.,
366 2018), G1/S cell cycle regulators (Shen et al., 2018) and proto-oncogenes (Ouyang et al., 2022).
367 We have found that miR-181a-5p negatively controls EMT and chemoresistance through
368 regulation of *SNAI2* and *CTSL* transcripts invitro. Collectively, our work reveals an emerging
369 and intriguing feature of miR-181a-5p and its association with a variety of distinct signaling
370 pathways in Rb tumors.

371 We identified the balance between EMT driven metastasis in Rb tumors to be influenced by
372 TGF β in the tumor microenvironment, which is a known promoter of EMT in Rb depleted
373 tumors (Joseph et al., 2014). Previous studies have highlighted the lack of canonical TGF β
374 receptors in Rb cells (Horie et al., 1998) and in agreement with recent reports (Asnaghi et al.,
375 2019), we show that TGF β signals acts through *ACVR1C* receptors and activates SMAD2/3
376 effectors in Rb. Mechanistically, we show that the presence of TGF β ligand mediates a
377 mesenchymal shift in Rb cells and is associated with enhanced migration and invasion capacity.
378 Conversely, treatment with TGF β signaling inhibitor reduced *ZEB1*, *SNAI2* levels and prevented
379 mesenchymal marker expression and morphological changes, thus linking mesenchymal

380 differentiation in Rb with enhanced tumor cell invasion through the TGF β /ZEB1/SNAI2 axis.
381 Interestingly, in line with our observations regarding miRNA mediated regulation of EMT and
382 chemoresistance, a recent report highlights that the miR-200c-ZEB1 feedback loop is involved in
383 invasion, migration and chemoresistance in advanced glioblastoma tumors (Siebzehnrubl et al.,
384 2013). We have found that TGF β signals can drive an EMT program in Rb-/- cells, while they do
385 not necessarily lead to chemoresistance. We observed that Rb cells acquire chemotherapy
386 resistance through enhanced EMT program orchestrated by SNAI2 by regulating CTSL. This
387 concept is further supported by our observations with ectopic expression of miR-181a-5p, that
388 repress SNAI2 at its 3' UTR region and targets the SNAI2-CTSL signaling cascade, inhibiting
389 transition and resistance.

390 The tumor suppressor properties of miRNA in various cancers have prompted the development
391 of various potent inhibitors of pharmacological targeting in clinical settings (Bonci et al., 2008).
392 Although our study was limited to *in vitro* models, our findings on miR-181a-5p raises hopes for
393 therapeutic strategies for the management of advanced Rb tumors. In conclusion, our work
394 reveals a unique mechanistic link between EMT and chemoresistance in Rb tumors, illustrating
395 miR-181a-5p as a potential therapeutic target.

396

397

398 **Materials & Methods**

399

400 **Clinical samples**

401 The study was conducted in accordance to the principles outlined in the Declaration of Helsinki under a
402 protocol approved by the institutional ethics committee of Narayana Nethralaya (EC Ref no:
403 C/2013/03/02). Informed written consents were received from all parents before inclusion in the study.
404 Histology confirmed Rb tumors (n=9) comprising of Group E and Group D of the age range 0.2 -4years
405 and pediatric controls (n=2) of the age range (0.2-0.3 years) were used for the miRNA and mRNA
406 microarray study. The details of clinical samples including age, gender, laterality, tumor viability,
407 clinical and histopathology details are mentioned in Table 1. For immunohistochemistry validations, we
408 have used additional subset of Rb subjects comprising of Group E (n=4) and Group D (n=4) and
409 pediatric retina (n=4) of the age range 0.2-4 years. The details of clinical and histopathology details of
410 additional Rb subjects are mentioned in Table S1.

411 Table 1: Clinical and histopathological details of samples used in the study

ID	Sex	Laterality	Age at presentation	Clinical Risk	ICRB Group	AJCC Staging
P1	M	Bilateral	15 months	Advanced	Group E	cT3b
P2	F	Unilateral	20 months	Advanced	Group E	cT3b
P3	M	Unilateral	24 months	Advanced	Group E	cT3a
P4	F	Bilateral	4 months	Advanced	Group E	cT3b
P5	M	Bilateral	30 months	Advanced	Group E	cT3b
P6	F	Bilateral	21 months	Non-advanced	Group D	cT2b
P7	F	Unilateral	28 months	Non-advanced	Group D	cT2b
P8	M	Unilateral	20 months	Non-advanced	Group D	cT2b
P9	M	Unilateral	21 months	Non-advanced	Group D	cT2a
Control 1	F	NA	3 months	Cardiac Arrest (no ocular complications)	NA	NA
Control 2	F	NA	2 months	Multiple organ dysfunction (No ocular complications)	NA	NA

412

413 Tumor miRNA and mRNA profiling:

414 Total RNA was isolated from 9 Rb tumors and 2 control pediatric retina samples using Agilent
415 Absolutely RNA miRNA kit (cat# 400814) according to the manufacturer's instructions. The quality of
416 isolated RNA was determined on an Agilent 2200 TapeStation system (G2964AA) using an Agilent
417 RNA ScreenTape assay (5067-5576). mRNA labeling and microarray processing was performed as
418 detailed in the "One-Color Microarray-Based Gene Expression Analysis" (v 6.9, cat# G4140-90040).
419 miRNA labeling was done using an Agilent miRNA Complete Labeling and Hyb Kit (Cat# 5190-
420 0456). The gene expression and miRNA data were extracted using Agilent Feature Extraction Software
421 (11.5.1.1) and analyzed using Agilent GeneSpring GX 13.1. Statistical analysis was carried out using a
422 t-test unpaired statistical method with Benjamini Hochberg FDR method. In both mRNA and miRNA
423 analyses, transcripts exhibiting $P \leq 0.05$ and fold changes greater than or equal to two were
424 differentially expressed.

425

426 Cell lines:

427 Y79 cells were obtained from American Type Culture Collection (ATCC, Manassas, VA). The Y79
428 cells were cultured in RPMI 1640 medium (Gibco, Cat #11875093) supplemented with 10% FBS and
429 1% Pen Strep (Penicillin –Streptomycin) and maintained at 37°C in a humidified atmosphere of 5%
430 CO₂, with intermittent shaking in an upright T25 flask. To generate chemotherapy-resistant lines, Y79
431 cells were exposed to media containing a low dose (1/100th of IC50) of topotecan or carboplatin for
432 48hours and replenished with fresh media without drugs for the next 48hours and vice versa. At the end
433 of each week, we increased the dose of topotecan and carboplatin by 10folds for 3-4 weeks, till the cells
434 display tight large clusters and no sensitivity to chemo-drugs. The cells were further analysed for
435 MDR1 surface expression and IC50 shift to confirm the resistant phenotype.

436

437 Gene expression analysis:

438 Total RNA extracted from the second cohort of clinical subjects was used for RT PCR validation for
439 mRNA and miRNA microarray. RT-PCR was performed with Agilent Brilliant III Ultra-Fast RT-PCR
440 reagent (cat# 600884), using Agilent AriaMX real-time PCR instruments. Relative mRNA expression
441 was quantified using the $\Delta\Delta C(t)$ method (Livak & Schmittgen, 2001). For in-vitro assays, total RNA
442 was isolated from cells using the Trizol reagent (Invitrogen, Carlsbad, CA) according to the
443 manufacturer's protocol. 1 μ g of RNA was reverse transcribed using Bio-Rad iScript cDNA synthesis
444 kit (cat# 1708890) and quantitative real-time PCR was performed using Kappa Sybr Fast qPCR kit
445 (cat# KK4601) using Bio-rad CFX96 system. Relative mRNA expression levels were quantified using
446 the $\Delta\Delta C(t)$ method. Results were normalized to housekeeping human β -actin. Details of primers used
447 are described in the Table 2 below.

448 Table 2: Details of qPCR primers used in the study

Gene	Forward	Tm	Reverse	Tm
ZEB1	GCCTCCTATAGCTCACACATA AG	56.6	TGCTGGAAGAGACGGTGA A	56.8
SNAI2	GTGATTATTCCCCGTATCTCT AT	55.64	TCAATGGCATGGGTCTG A	60.2
CDH1 (E-cadherin)	GAAGGTGACAGAGCCTCTGGA T	57.2	GATCGGTTACCGTGATCA A	58.4
CDH2 (N-cadherin)	CGAGCCGCCTGCGCTGCCAC	56.5	CGCTGCTCTCCGCTCCCCG C	57.3
ACVR1C	AGGAGTTCGACCCCAGTAA	57.9	GTAGCACTTACCGTAGCA CC	58
CTSL	AGGCCTGGACTCTGAGGAAT	57.8	AGCCGGTGTCAATTAGCAA CA	57
SMAD2	CCGCCAGTTGTGAAGAGACT	59.97	CTGCCCATCTGCTCTCCT C	60.1

449

450 For qPCR of miRNAs, miRNA was converted to cDNA using the reverse transcription kit, miRCURY
451 LNA Universal RT microRNA PCR (cat#339306, Qiagen). Briefly, RNA was polyadenylated with
452 ATP by poly(A) polymerase at 37°C for 1 hr and reverse transcribed using 0.5 µg of poly(T) adapter
453 primer. Each miRNA was detected by the mature DNA sequence as the forward primer and a 3'
454 universal reverse primer provided in the QuantiMir RT kit. Human small nuclear U6 RNA was
455 amplified as an internal control. qPCR was performed using Power SYBR Green PCR Master Mix
456 (Applied Biosystems). All qPCR performed using SYBR Green was conducted at 50°C for 2 min,
457 95°C for 10 min, and then 45 cycles of 95°C for 10 s and 60°C for 1 min. The specificity of the
458 reaction was verified by melt curve analysis. The details of miRNA primers used are mentioned in
459 Table 3.

460 Table 3: Details of miRNA qPCR primers

S	Systematic	Regu	mirbase accession	Active Sequence
1	hsa-let-7c	down	MIMAT0000064	AACCATACAACCTACT
2	hsa-miR-33	down	MIMAT0000760	TTCTAGGATAGGCCCA
3	hsa-miR-18	down	MIMAT0000256	ACTCACCGACAGCGT
4	hsa-miR-574	up	MIMAT0004795	ACACACTCACACACAC
5	hsa-miR-129	up	MIMAT0005880	TCCCTGATCCAAAAAT

461
462 Histopathology & light microscopy
463 Paraffin-embedded specimens of Rb tumor and control retina were used. 4µm paraffin sections were
464 dewaxed at 60°C, rehydrated in decreasing concentration of ethanol. Slides were stained with
465 hematoxylin & eosin according to standard procedures. Brightfield images were captured using
466 Olympus CKX53 microscope.

467 Immunofluorescence:

468 For IF, 4 μ m sections of Rb tumor and pediatric retina were deparaffinized, rehydrated & were
469 subjected to heat-induced epitope retrieval using citrate buffer for 20 min at 100 °C. After 2% BSA
470 block, tissues were incubated overnight at 4°C with antibodies for ZEB1 (1:1000; cat#70512, Cell
471 Signaling Technology), Cathepsin L (1:500; cat#ab6314, Abcam), E-cadherin (1:500; cat#3195, Cell
472 Signaling Technology), N-cadherin (1:1000; cat#14215, Cell Signaling Technology), MDR1 (1:1000,
473 cat#13342, Cell Signaling Technology). For in-vitro experiments, 2x10³ parental and topotecan
474 resistant Y79 cells were seeded on 8-chamber glass slides, precoated with poly-L-lysine. The cells were
475 stained with phospho λ -H2A.x (ser139) (1:500; cat#9718, Cell Signaling Technology), ZEB1 (1:500;
476 cat#70512, Cell Signaling Technology), Cathepsin L (1:500; cat#ab6314, Abcam), MDR1 (1:500,
477 cat#13342, Cell Signaling Technology) phospho-SMAD2 (1:1000, cat#ab53100, Abcam) and TGFBR2
478 (1:1000, cat#ab78419, Abcam). Secondary antibodies used include goat anti-mouse Alexa Fluor 488
479 (1:5000, cat# ab150113, Abcam) and donkey anti-rabbit Cy3 (1:5000, cat# 711-1650152, Jackson
480 ImmunoResearch Laboratories). Hoechst 33342 (1:5000) was used for nuclear staining. Images were
481 analyzed and captured using EVOS M7000 imaging systems (ThermoFisher Scientific). The
482 fluorescent intensity was measured using ImageJ software (NIH Image, Bethesda, MD).

483 Western blotting:

484 For Western blot analysis, cells were lysed in RIPA buffer (20mM Tris pH 8.0, 0.1% SDS, 150 mM
485 NaCl, 0.08% Sodium Deoxycholate, 1% NP40 supplemented with 1 tablet of protease inhibitor
486 (Complete ultra mini-tablet, Roche) and phosphatase inhibitor (PhosphoStop tablet, Roche). 20 μ g of
487 total protein was loaded per lane and were separated by SDS-PAGE. The separated proteins on the gel
488 were transferred onto PVDF membrane and were probed for specific antibodies against Rb (cat# 9309;
489 Cell signaling) phospho-Rb (cat# 8516, Cell signaling), E2F1 (1:500, cat#sc-251, SantaCruz
490 Biotechnology), ZEB1 (1:1000; cat#3396, Cell Signaling Technology), Cathepsin L (1:1000;

491 cat#ab6314, Abcam), Slug (1:1000; cat#9585, Cell Signaling Technology), E-cadherin (1:1000;
492 cat#3195, Cell Signaling Technology), N-cadherin (1:1000; cat#14215, Cell Signaling Technology),
493 MDR1 (1:1000, cat#13342, Cell Signaling Technology), Total smad2/3 (1:1000, cat#ab207447,
494 Abcam), phospho-SMAD2 (1:1000, cat#ab53100, Abcam), TGFBR1 (1:1000, cat#PA1731, Boster
495 Bio), TGFBR2 (1:1000, cat#ab78419, Abcam), α -Tubulin (1:1000, cat# 3873; Cell signaling) and
496 GAPDH (1:1000, cat#5174; Cell signaling) in 5%BSA in 1xTBST, overnight at 4°C. For nuclear-
497 cytoplasmic fractionation, the cytoplasmic fraction was extracted using a hypotonic buffer for 30min on
498 ice and the nuclear fraction was extracted using a lysis buffer solution containing 10 mM Tris at pH 8,
499 170 mM NaCl, 0.5% NP40 with protease inhibitors. The respective cellular fractions were incubated
500 with respective primary antibodies for immunoprecipitations. LaminA/C (1:1000, sc-6215, SantaCruz
501 Biotechnology) was used as a nuclear fraction loading control and α -Tubulin as a cytoplasmic fraction
502 loading control (1:1000, cat# 3873; Cell signaling).

503 After 4 washes with 1x TBST for 10 minutes, membranes were incubated HRP-conjugated anti-mouse
504 (cat#7076; Cell signaling) or anti-rabbit antibodies (cat#7074; Cell signaling) at 1:2000 dilution for 2 h.
505 Images were visualized using the Image Quant LAS 500 system (GE Healthcare Life Sciences, USA).

506 FACS analysis of MDR1 surface staining:
507 The cells surface expression of MDR1 in parental and resistant Y79 cells was detected using an anti-
508 MDR1 antibody (1:500, cat#13342, Cell Signaling Technology). Parental and resistant Y79 cells post-
509 drug exposure was incubated in 200 μ l of PBS containing 1% FBS and 2ug of MDR1 antibody at 4°C
510 for 1hour in an intermittent shaker. After three washes with ice-cold PBS, the cells were further
511 incubated in goat anti-rabbit Alexa Fluor 488 secondary antibody for 30minutes at RT. The cells were
512 then washed in ice-cold PBS and analyzed with FACS apparatus equipped with FACSDiva software.

513 The fluorescent intensity of the FL1 channel was plotted to compare the cell surface expression of
514 MDR1 in parental and resistant lines.

515 Cell proliferation assay:

516 Parental Y79, Topotecan resistant Y79, and Carboplatin resistant Y79 cells were used for the
517 proliferation assay. 10000 Y79 cells were seeded in 24 well plates for proliferation assay. Cell viability
518 was determined once every 24hours for 4 consecutive days using trypan blue cell staining and cell
519 counting using a hemocytometer. In miRNA transfected models, 10000 cells were seeded onto 24 well
520 plates post 48hours of transfection, and proliferation was assessed from 24 hours to 96hours. The cell
521 viability was determined using a trypan blue assay. The experiments were performed in three
522 experimental repeats in triplicates for different experimental conditions. Data were expressed as
523 mean± SD of triplicate experiments.

524 Cell migration & invasion assays:

525 Cell migration & invasion assays were performed in 24-well transwell plates with cell culture inserts
526 (BD Falcon). 15000 parental and resistant Y79 cells in 150µl 0% RPMI media were seeded in transwell
527 insert coated with 1% matrigel & incubated for 48 hours. The bottom chamber was filled with 600µl of
528 10% RPMI media. After 48-hour incubation, cells on the insert were removed using a cotton swab.
529 Migrated cells on the lower surface of the insert membrane were fixed with 4% PFA and stained with
530 0.1% crystal violet. Images were captured at brightfield using Olympus CKX53 microscope. Cells were
531 further lysed using 10% SDS and absorbance of crystal violet was measured at 595 nm using a
532 microplate reader. For migration assay, the cells that migrated to the bottom chamber at 48hours were
533 counted using trypan blue cell staining and cell counting using a hemocytometer.

534 For miRNA transfection experiments 15000 topotecan resistant Y79 cells were seeded in 0% RPMI
535 media in the transwell insert coated with 1% matrigel for 48hours. Invasive and migrated cells were
536 quantified using a 0.1% crystal violet staining protocol. Data were expressed as replicate data
537 points ± SD of triplicate experiments.

538 Colony formation/ Tumor spheroid assay:

539 The spheroid formation assays were carried out on a low attachment U-bottom 96 well plate
540 (BRAND® 96-well microplate, Sigma Aldrich). Single-cell suspension of 500 parental and topotecan
541 resistant Y79 cells in 10% RPMI medium was loaded in each well of a 96 well plate followed by
542 centrifugation for 1000rpm for 1 min to facilitate cell aggregation. The cells were cultured at 37°C in a
543 90% humidified incubator with 5% CO₂ for 7 days for the generation of tight and regular tumor
544 spheroids. Spheroids were imaged using the EVOS FL imaging system, Invitrogen. ImageJ 2.1
545 software was used for spheroid area measurements. Data were expressed as replicate data points ± SD
546 of triplicate experiments.

547 Chemosensitivity assay:

548 Cell viability of topotecan resistant Y79 cells post miRNA transfections and exposure to topotecan
549 IC₅₀ (10nM) treatment for 48hours was determined by Presto Blue cell viability reagent (Invitrogen) as
550 per manufactures protocol. In brief, topotecan-resistant Y79 (5x10³) were plated into 96-well plates
551 (Eppendorf, Sigma Aldrich) and incubated overnight. Cells were treated with topotecan IC₅₀ for 48
552 hours. Untreated Y79 resistant cells were considered as control. Four hours before the end of treatment,
553 presto-blue reagent (Invitrogen) was added and incubated for 2 hours followed by measurement of
554 fluorescence (540 nm excitation/590 nm emissions). The chemo-sensitivity of all treated cells was

555 determined across conditions and compared against control mock-treated cells (considered as 100%
556 viable). Data were expressed as mean \pm SD of triplicate experiments.

557 Pathway analysis:

558 The KEGG functional enrichment of the gene expression microarray and miRNA microarray was
559 carried out using the GeneSpring GX 13.1, NetworkAnalyst 3.0, and miRNet 2.0 packages; and the
560 pathways with $p < 0.05$ and fold-change > 2.0 were considered significantly enriched. The construction
561 of gene-miRNA interactions was performed and interactions network were constructed using miRNet
562 2.0.

563

564 Statistical analysis:

565 Statistical analysis was performed using GraphPad Prism 8. Data are presented as mean \pm s.d unless
566 indicated otherwise, and $P < 0.05$ was considered statistically significant. For all representative images,
567 results were reproduced at least three times in independent experiments. For all quantitative data, the
568 statistical test used is indicated in the legends. A statistical ‘decision tree’ is provided as Figure S4.
569 Heatmaps of the Z transformed gene expression level of mRNA microarray were created using Python
570 3.7 Seaborn 0.11.0. Bubble weighed plots with calculated q-values were created using Python 3.6.2,
571 circlize library.

572

573 **Author contributions:** VSB and AG designed the experiments and wrote the manuscript. VSB
574 performed cell line experiments. AM, GD and RS provided human tissue samples and helped
575 interpret correlations with clinical data. DSA, AB, RK and NG performed the omics experiments,
576 analyses and assisted with figure preparation and wrote relevant methods. SH edited the manuscript,
577 helped with data analysis and scientific guidance.

578

579 **Acknowledgements:** The authors thank Dr G Kumarmanickavel, Dr Swaminathan Sethu and
580 Archana Padmanabhan Nair for their expertise and assistance throughout all aspects of our study. The
581 authors thank Narayana Nethralaya Foundation for funding research support to VSB, AB, RK, AG.
582 The funders had no role in design, data collection, analysis, decision to publish, or preparation of the
583 manuscript.

584

585 **Competing interests:** SH receives personal fees for scientific advice to Astra-Zeneca, Cellprothera
586 and Merck; unrestricted research grant from Pfizer, outside the content of this work. The other authors
587 have no competing interests.

588

589 **Additional information:** Supplementary data figures and tables are available for this paper.

590

591 **Data availability statement:** Gene and miRNA expression datasets are deposited in Gene Expression
592 Omnibus (GEO) and their accession numbers are; Gene expression microarray (GSE208143) and
593 miRNA expression microarray (GSE208677). All data generated or analysed during this study are
594 included in the manuscript and supporting supplementary files.

595

596

597 References:

598

599 1. Ancona-Lezama, D., Dalvin, L. A., & Shields, C. L. (2020). Modern treatment of retinoblastoma:
600 A 2020 review. *Indian J Ophthalmol*, 68(11), 2356-2365. https://doi.org/10.4103/ijo.IJO_721_20

601 2. Asnaghi, L., White, D. T., Key, N., Choi, J., Mahale, A., Alkatan, H., Edward, D. P., Elkhamary,
602 S. M., Al-Mesfer, S., Maktabi, A., Hurtado, C. G., Lee, G. Y., Carcaboso, A. M., Mumm, J. S.,
603 Safieh, L. A., & Eberhart, C. G. (2019). ACVR1C/SMAD2 signaling promotes invasion and
604 growth in retinoblastoma. *Oncogene*, 38(12), 2056-2075. <https://doi.org/10.1038/s41388-018-0543-2>

605 3. Babu, V. S., Mallipatna, A., Sa, D., Dudeja, G., Kannan, R., Shetty, R., Nair, A. P., Gundimeda,
606 S., Chaurasia, S. S., Verma, N. K., Lakshminarayanan, R., Heymans, S., Barathi, V. A., Guha, N.,
607 & Ghosh, A. (2022). Integrated Analysis of Cancer Tissue and Vitreous Humor from
608 Retinoblastoma Eyes Reveals Unique Tumor-Specific Metabolic and Cellular Pathways in
609 Advanced and Non-Advanced Tumors. *Cells*, 11(10). <https://doi.org/10.3390/cells11101668>

610 4. Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., & Bartel, D. P. (2008). The impact of
611 microRNAs on protein output. *Nature*, 455(7209), 64-71. <https://doi.org/10.1038/nature07242>

612 5. Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., D'Urso, L.,
613 Pagliuca, A., Biffoni, M., Labbaye, C., Bartucci, M., Muto, G., Peschle, C., & De Maria, R.
614 (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic
615 activities. *Nat Med*, 14(11), 1271-1277. <https://doi.org/10.1038/nm.1880>

616 6. Bosaleh, A., Sampor, C., Solernou, V., Fandino, A., Dominguez, J., de Davila, M. T., &
617 Chantada, G. L. (2012). Outcome of children with retinoblastoma and isolated choroidal invasion.
618 *Arch Ophthalmol*, 130(6), 724-729. <https://doi.org/10.1001/archophthalmol.2012.567>

619 7. Canturk, S., Qaddoumi, I., Khetan, V., Ma, Z., Furmanchuk, A., Antoneli, C. B., Sultan, I.,
620 Kebudi, R., Sharma, T., Rodriguez-Galindo, C., Abramson, D. H., & Chantada, G. L. (2010).
621 Survival of retinoblastoma in less-developed countries impact of socioeconomic and health-
622 related indicators. *Br J Ophthalmol*, 94(11), 1432-1436. <https://doi.org/10.1136/bjo.2009.168062>

623 8. Ceru, S., Konjar, S., Maher, K., Repnik, U., Krizaj, I., Bencina, M., Renko, M., Nepveu, A.,
624 Zerovnik, E., Turk, B., & Kopitar-Jerala, N. (2010). Stefin B interacts with histones and cathepsin
625 L in the nucleus. *J Biol Chem*, 285(13), 10078-10086. <https://doi.org/10.1074/jbc.M109.034793>

626 9. Chan, H. S., Thorner, P. S., Haddad, G., & Gallie, B. L. (1991). Multidrug-resistant phenotype in
627 retinoblastoma correlates with P-glycoprotein expression. *Ophthalmology*, 98(9), 1425-1431.
628 [https://doi.org/10.1016/s0161-6420\(91\)32134-1](https://doi.org/10.1016/s0161-6420(91)32134-1)

629

630 10. Chen, X., Yao, Y., Yuan, F., & Xie, B. (2020). Overexpression of miR-181a-5p inhibits retinal
631 neovascularization through endocan and the ERK1/2 signaling pathway. *J Cell Physiol*, 235(12),
632 9323-9335. <https://doi.org/10.1002/jcp.29733>

633 11. Choi, H. S., Kim, Y. K., & Yun, P. Y. (2019). Upregulation of MDR- and EMT-Related
634 Molecules in Cisplatin-Resistant Human Oral Squamous Cell Carcinoma Cell Lines. *Int J Mol
635 Sci*, 20(12). <https://doi.org/10.3390/ijms20123034>

636 12. Cicinelli, M. V., & Kaliki, S. (2019). Orbital relapse of retinoblastoma in patients with high-risk
637 histopathology features. *Ther Adv Ophthalmol*, 11, 2515841419844080.
638 <https://doi.org/10.1177/2515841419844080>

639 13. Diaz-Lopez, A., Moreno-Bueno, G., & Cano, A. (2014). Role of microRNA in epithelial to
640 mesenchymal transition and metastasis and clinical perspectives. *Cancer Manag Res*, 6, 205-216.
641 <https://doi.org/10.2147/CMAR.S38156>

642 14. Drapela, S., Bouchal, J., Jolly, M. K., Culig, Z., & Soucek, K. (2020). ZEB1: A Critical
643 Regulator of Cell Plasticity, DNA Damage Response, and Therapy Resistance. *Front Mol Biosci*,
644 7, 36. <https://doi.org/10.3389/fmemb.2020.00036>

645 15. Dykes, S. S., Fasanya, H. O., & Siemann, D. W. (2019). Cathepsin L secretion by host and
646 neoplastic cells potentiates invasion. *Oncotarget*, 10(53), 5560-5568.
647 <https://doi.org/10.18632/oncotarget.27182>

648 16. Finger, P. T., Harbour, J. W., & Karcio glu, Z. A. (2002). Risk factors for metastasis in
649 retinoblastoma. *Surv Ophthalmol*, 47(1), 1-16. [https://doi.org/10.1016/s0039-6257\(01\)00279-x](https://doi.org/10.1016/s0039-6257(01)00279-x)

650 17. Gupta, H., Malaichamy, S., Mallipatna, A., Murugan, S., Jeyabalan, N., Suresh Babu, V., Ghosh,
651 A., Ghosh, A., Santhosh, S., Seshagiri, S., Ramprasad, V. L., & Kumaramanickavel, G. (2021).
652 Retinoblastoma genetics screening and clinical management. *BMC Med Genomics*, 14(1), 188.
653 <https://doi.org/10.1186/s12920-021-01034-6>

654 18. Honavar, S. G., Manjandavida, F. P., & Reddy, V. A. P. (2017). Orbital retinoblastoma: An
655 update. *Indian J Ophthalmol*, 65(6), 435-442. https://doi.org/10.4103/ijo.IJO_352_15

656 19. Horie, K., Yamashita, H., Mogi, A., Takenoshita, S., & Miyazono, K. (1998). Lack of
657 transforming growth factor-beta type II receptor expression in human retinoblastoma cells. *J Cell
658 Physiol*, 175(3), 305-313. [https://doi.org/10.1002/\(SICI\)1097-4652\(199806\)175:3<305::AID-JCP8>3.0.CO;2-S](https://doi.org/10.1002/(SICI)1097-4652(199806)175:3<305::AID-JCP8>3.0.CO;2-S)

660 20. Joseph, J. V., Conroy, S., Tomar, T., Eggens-Meijer, E., Bhat, K., Copray, S., Walenkamp, A. M.,
661 Boddeke, E., Balasubramanyan, V., Wagemakers, M., den Dunnen, W. F., & Kruyt, F. A.
662 (2014). TGF-beta is an inducer of ZEB1-dependent mesenchymal transdifferentiation in

663 glioblastoma that is associated with tumor invasion. *Cell Death Dis*, 5, e1443.
664 <https://doi.org/10.1038/cddis.2014.395>

665 21. Kandalam, M. M., Beta, M., Maheswari, U. K., Swaminathan, S., & Krishnakumar, S. (2012).
666 Oncogenic microRNA 17-92 cluster is regulated by epithelial cell adhesion molecule and could
667 be a potential therapeutic target in retinoblastoma. *Mol Vis*, 18, 2279-2287.
668 <https://www.ncbi.nlm.nih.gov/pubmed/22969266>

669 22. Krech, T., Scheuerer, E., Geffers, R., Kreipe, H., Lehmann, U., & Christgen, M. (2012).
670 ABCB1/MDR1 contributes to the anticancer drug-resistant phenotype of IPH-926 human lobular
671 breast cancer cells. *Cancer Lett*, 315(2), 153-160. <https://doi.org/10.1016/j.canlet.2011.09.038>

672 23. Li, Y., Kuscu, C., Banach, A., Zhang, Q., Pulkoski-Gross, A., Kim, D., Liu, J., Roth, E., Li, E.,
673 Shroyer, K. R., Denoya, P. I., Zhu, X., Chen, L., & Cao, J. (2015). miR-181a-5p Inhibits Cancer
674 Cell Migration and Angiogenesis via Downregulation of Matrix Metalloproteinase-14. *Cancer Res*, 75(13), 2674-2685. <https://doi.org/10.1158/0008-5472.CAN-14-2875>

676 24. Lin, H. M., Nikolic, I., Yang, J., Castillo, L., Deng, N., Chan, C. L., Yeung, N. K., Dodson, E.,
677 Elsworth, B., Spielman, C., Lee, B. Y., Boyer, Z., Simpson, K. J., Daly, R. J., Horvath, L. G., &
678 Swarbrick, A. (2018). MicroRNAs as potential therapeutics to enhance chemosensitivity in
679 advanced prostate cancer. *Sci Rep*, 8(1), 7820. <https://doi.org/10.1038/s41598-018-26050-y>

680 25. Lin, S., & Gregory, R. I. (2015). MicroRNA biogenesis pathways in cancer. *Nat Rev Cancer*,
681 15(6), 321-333. <https://doi.org/10.1038/nrc3932>

682 26. Linn Murphree, A. (2005). Intraocular retinoblastoma: the case for a new group classification.
683 *Ophthalmol Clin North Am*, 18(1), 41-53, viii. <https://doi.org/10.1016/j.ohc.2004.11.003>

684 27. Liu, Y., Cheng, T., Du, Y., Hu, X., & Xia, W. (2020). LncRNA LUCAT1/miR-181a-5p axis
685 promotes proliferation and invasion of breast cancer via targeting KLF6 and KLF15. *BMC Mol
686 Cell Biol*, 21(1), 69. <https://doi.org/10.1186/s12860-020-00310-0>

687 28. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-
688 time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*, 25(4), 402-408.
689 <https://doi.org/10.1006/meth.2001.1262>

690 29. Loh, C. Y., Chai, J. Y., Tang, T. F., Wong, W. F., Sethi, G., Shanmugam, M. K., Chong, P. P., &
691 Looi, C. Y. (2019). The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal
692 Transition: Signaling, Therapeutic Implications, and Challenges. *Cells*, 8(10).
693 <https://doi.org/10.3390/cells8101118>

694 30. Mallipatna, A., Gallie, B., Chévez-Barrios, P., Rouic, L., Chantada, G., Doz, F., Brisson, H.,
695 Munier, F., Albert, D., Català, J., Desjardins, L., Suzuki, S., Carroll, W., & Finger, P. (2017).
696 Retinoblastoma. In (pp. 819-831). https://doi.org/10.1007/978-3-319-40618-3_68

697 31. Namouni, F., Doz, F., Tanguy, M. L., Quintana, E., Michon, J., Pacquement, H., Bouffet, E.,
698 Gentet, J. C., Plantaz, D., Lutz, P., Vannier, J. P., Validire, P., Neuenschwander, S., Desjardins,
699 L., & Zucker, J. M. (1997). High-dose chemotherapy with carboplatin, etoposide and
700 cyclophosphamide followed by a haematopoietic stem cell rescue in patients with high-risk
701 retinoblastoma: a SFOP and SFGM study. *Eur J Cancer*, 33(14), 2368-2375.
702 [https://doi.org/10.1016/s0959-8049\(97\)10019-3](https://doi.org/10.1016/s0959-8049(97)10019-3)

703 32. Ouyang, M., Liu, G., Xiong, C., & Rao, J. (2022). microRNA-181a-5p impedes the proliferation,
704 migration, and invasion of retinoblastoma cells by targeting the NRAS proto-oncogene. *Clinics*
705 (*Sao Paulo*), 77, 100026. <https://doi.org/10.1016/j.climsp.2022.100026>

706 33. Pastushenko, I., Brisebarre, A., Sifrim, A., Fioramonti, M., Revenco, T., Boumahdi, S., Van
707 Keymeulen, A., Brown, D., Moers, V., Lemaire, S., De Clercq, S., Minguijon, E., Balsat, C.,
708 Sokolow, Y., Dubois, C., De Cock, F., Scozzaro, S., Sopena, F., Lanas, A., . . . Blanpain, C.
709 (2018). Identification of the tumour transition states occurring during EMT. *Nature*, 556(7702),
710 463-468. <https://doi.org/10.1038/s41586-018-0040-3>

711 34. Rootman, J., Ellsworth, R. M., Hofbauer, J., & Kitchen, D. (1978). Orbital extension of
712 retinoblastoma: a clinicopathological study. *Can J Ophthalmol*, 13(2), 72-80.
713 <https://www.ncbi.nlm.nih.gov/pubmed/647466>

714 35. Saxena, M., Stephens, M. A., Pathak, H., & Rangarajan, A. (2011). Transcription factors that
715 mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC
716 transporters. *Cell Death Dis*, 2, e179. <https://doi.org/10.1038/cddis.2011.61>

717 36. Shao, X. L., Chen, Y., & Gao, L. (2017). MiR-200c suppresses the migration of retinoblastoma
718 cells by reversing epithelial mesenchymal transition. *Int J Ophthalmol*, 10(8), 1195-1202.
719 <https://doi.org/10.18240/ijo.2017.08.02>

720 37. Sharif, U., Mahmud, N. M., Kay, P., Yang, Y. C., Harding, S. P., Grierson, I., Kamalden, T. A.,
721 Jackson, M. J., & Paraoan, L. (2019). Advanced glycation end products-related modulation of
722 cathepsin L and NF-kappaB signalling effectors in retinal pigment epithelium lead to augmented
723 response to TNFalpha. *J Cell Mol Med*, 23(1), 405-416. <https://doi.org/10.1111/jcmm.13944>

724 38. Shen, H., Weng, X. D., Liu, X. H., Yang, D., Wang, L., Guo, J., Wang, M., Wang, X., & Diao, C.
725 H. (2018). miR-181a-5p is downregulated and inhibits proliferation and the cell cycle in prostate
726 cancer. *Int J Clin Exp Pathol*, 11(8), 3969-3976.
727 <https://www.ncbi.nlm.nih.gov/pubmed/31949785>

728 39. Shields, C. L., Shelil, A., Cater, J., Meadows, A. T., & Shields, J. A. (2003). Development of new
729 retinoblastomas after 6 cycles of chemoreduction for retinoblastoma in 162 eyes of 106

730 consecutive patients. *Arch Ophthalmol*, 121(11), 1571-1576.

731 <https://doi.org/10.1001/archopht.121.11.1571>

732 40. Shields, C. L., & Shields, J. A. (2010). Retinoblastoma management: advances in enucleation,
733 intravenous chemoreduction, and intra-arterial chemotherapy. *Curr Opin Ophthalmol*, 21(3), 203-
734 212. <https://doi.org/10.1097/ICU.0b013e328338676a>

735 41. Shields, C. L., Shields, J. A., Baez, K., Cater, J. R., & De Potter, P. (1994). Optic nerve invasion
736 of retinoblastoma. Metastatic potential and clinical risk factors. *Cancer*, 73(3), 692-698.
737 [https://doi.org/10.1002/1097-0142\(19940201\)73:3<692::aid-cncr2820730331>3.0.co;2-8](https://doi.org/10.1002/1097-0142(19940201)73:3<692::aid-cncr2820730331>3.0.co;2-8)

738 42. Siebzehnrabl, F. A., Silver, D. J., Tugertimur, B., Deleyrolle, L. P., Siebzehnrabl, D., Sarkisian,
739 M. R., Devers, K. G., Yachnis, A. T., Kupper, M. D., Neal, D., Nabilsi, N. H., Kladde, M. P.,
740 Suslov, O., Brabertz, S., Brabertz, T., Reynolds, B. A., & Steindler, D. A. (2013). The ZEB1
741 pathway links glioblastoma initiation, invasion and chemoresistance. *EMBO Mol Med*, 5(8),
742 1196-1212. <https://doi.org/10.1002/emmm.201302827>

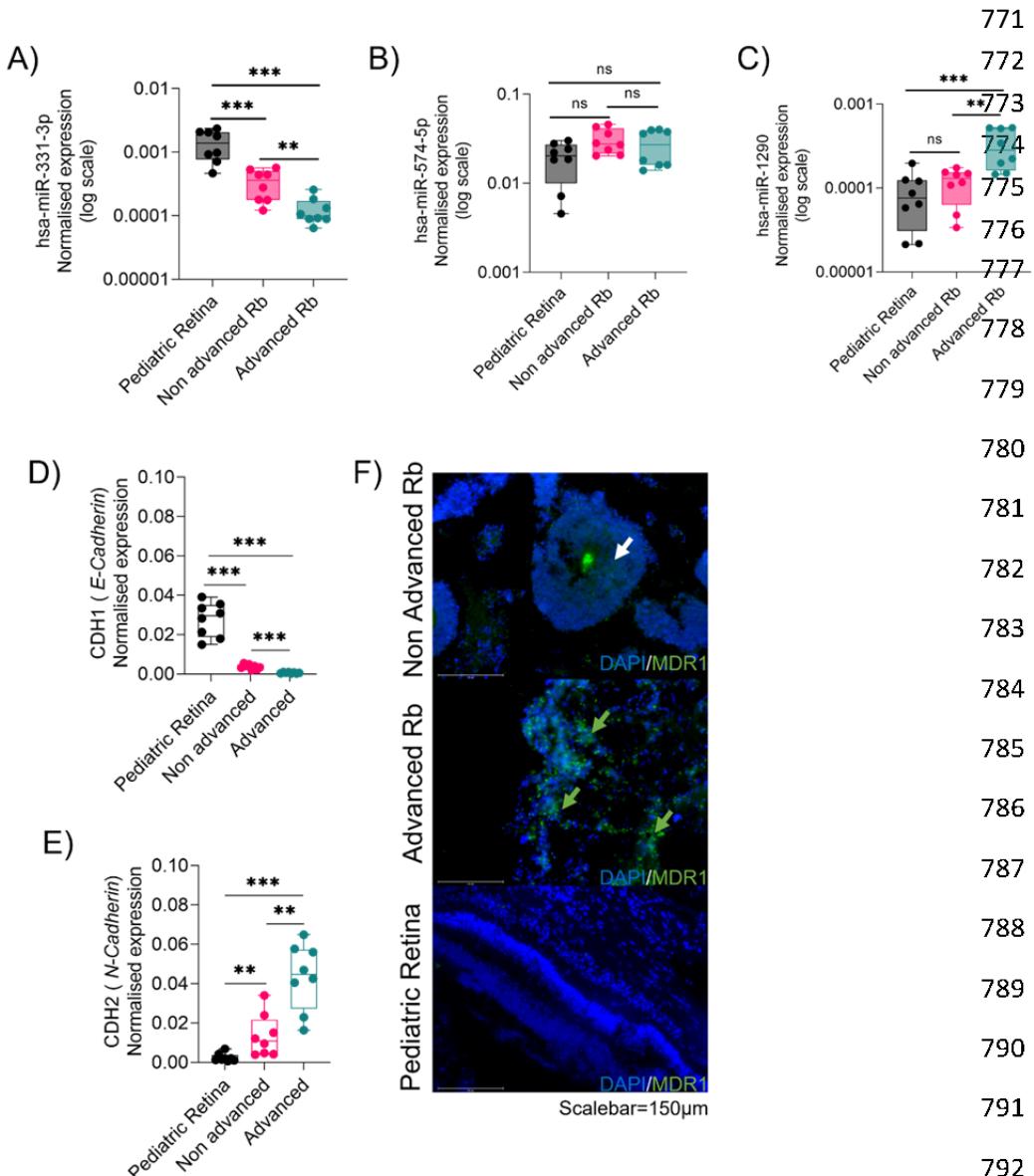
743 43. Vempuluru, V. S., Jakati, S., & Kaliki, S. (2021). Delayed metastasis in patients with intraocular
744 retinoblastoma: A review of three cases. *Eur J Ophthalmol*, 31(4), 2042-2047.
745 <https://doi.org/10.1177/1120672120946285>

746 44. Wan, W., Wan, W., Long, Y., Li, Q., Jin, X., Wan, G., Zhang, F., Lv, Y., Zheng, G., Li, Z., &
747 Zhu, Y. (2020). Corrigendum to "MiR-25-3p promotes malignant phenotypes of retinoblastoma
748 by regulating PTEN/Akt pathway" [Biomed. Pharmacother. 118 (2019) 109111]. *Biomed
749 Pharmacother*, 131, 110842. <https://doi.org/10.1016/j.bioph.2020.110842>

750 45. Wilson, M. W., Fraga, C. H., Fuller, C. E., Rodriguez-Galindo, C., Mancini, J., Hagedorn, N.,
751 Leggas, M. L., & Stewart, C. F. (2006). Immunohistochemical detection of multidrug-resistant
752 protein expression in retinoblastoma treated by primary enucleation. *Invest Ophthalmol Vis Sci*,
753 47(4), 1269-1273. <https://doi.org/10.1167/iovs.05-1321>

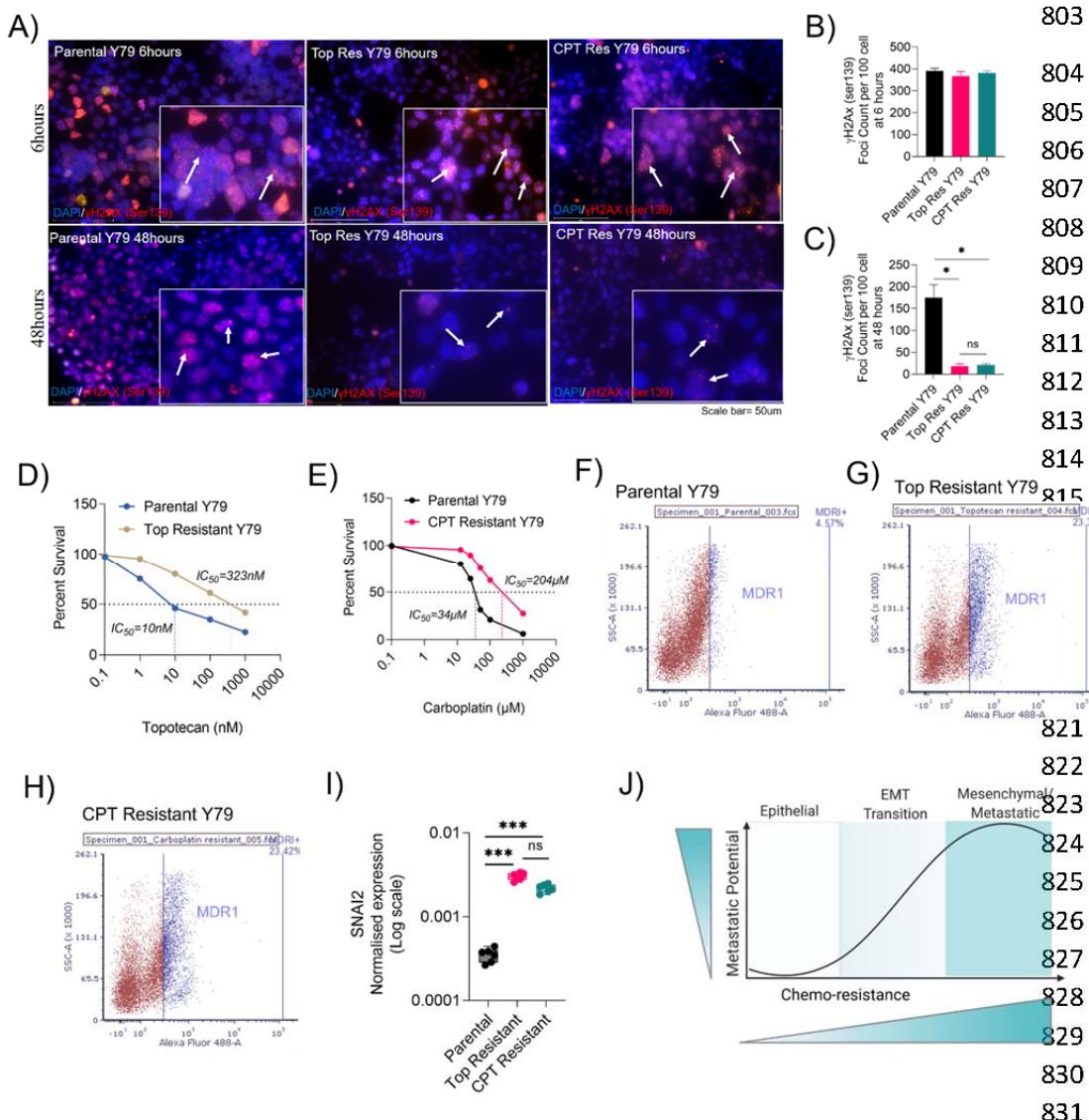
754 46. Xue, W. X., Zhang, M. Y., Rui, L., Liu, X., Yin, Y. H., & Qu, Y. Q. (2020). Serum miR-1228-3p
755 and miR-181a-5p as Noninvasive Biomarkers for Non-Small Cell Lung Cancer Diagnosis and
756 Prognosis. *Biomed Res Int*, 2020, 9601876. <https://doi.org/10.1155/2020/9601876>

757 47. Yang, M., Zhai, X., Ge, T., Yang, C., & Lou, G. (2018). miR-181a-5p Promotes Proliferation and
758 Invasion and Inhibits Apoptosis of Cervical Cancer Cells via Regulating Inositol Polyphosphate-
759 5-Phosphatase A (INPP5A). *Oncol Res*, 26(5), 703-712.
760 <https://doi.org/10.3727/096504017X14982569377511>


761 48. Zhang, Y., & Weinberg, R. A. (2018). Epithelial-to-mesenchymal transition in cancer:
762 complexity and opportunities. *Front Med*, 12(4), 361-373. <https://doi.org/10.1007/s11684-018-0656-6>

764 49. Zheng, X., Chu, F., Chou, P. M., Gallati, C., Dier, U., Mirkin, B. L., Mousa, S. A., & Rebbaa, A.
765 (2009). Cathepsin L inhibition suppresses drug resistance in vitro and in vivo: a putative
766 mechanism. *Am J Physiol Cell Physiol*, 296(1), C65-74.
767 <https://doi.org/10.1152/ajpcell.00082.2008>

768


769 **Supplementary Figure S1-S4:**

770

794 **Figure S1. Transcriptomic profiling identifies differentially regulated miRNA's, EMT, and drug-
795 resistant genes in Rb tumor subtypes.** RT-PCR validations of microarray identified miRNAs (A) has-
796 miR-331-3p (B) has-miR-574-5p (C) has-miR-1290 in advanced (n=4), non-advanced (n=4) and control
797 pediatric retina (n=4). RT-PCR validations for microarray identified mRNAs (D) CDH1 and (E) CDH2 in
798 advanced (n=4), non-advanced (n=4) and control pediatric retina (n=4) (F) Immunofluorescence showing
799 MDR1 expression in advanced Rb (n=4), non-advanced Rb (n=4) and pediatric retina tissues (n=4). Scale
800 bar =150μm. Values represents mean ± s.d. Two tailed Mann-Whitney was used for statistical analysis.
801 *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

802

832 parental, topotecan resistant and carboplatin resistant cells upon IC₅₀ dose treatment using topotecan or
 833 carboplatin for 6 hours to 48hours. λ H2A.x foci count at (B) 6 hours and (C) 48hours of topotecan and
 834 carboplatin therapy. Survival assay to determine the IC₅₀ shift in resistant lines with increasing
 835 concentration of (D) topotecan (E) carboplatin. MDR1 surface staining analysed by flow cytometry in (F)
 836 Parental Y79 cells (G) Topotecan resistant Y79 cells (H) Carboplatin resistant Y79 cells. (I) RT-PCT
 837 results showing expression of SNAI2 in parental, topotecan resistant and carboplatin resistant cells. (J)
 838 Schematic showing EMT trans-differentiation and induction of drug resistance transit the cells to a
 839 dedifferentiated mesenchymal/ drug resistant metastatic phenotype. Two-tailed Student's *t*-test (for 2<
 840 group) and one-way ANOVA with Dunnett's multiple comparisons tests (for >2 group) were used for
 841 statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001.

842

803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831

Figure S2. Characterization of drug resistance and EMT in Y79 cells.

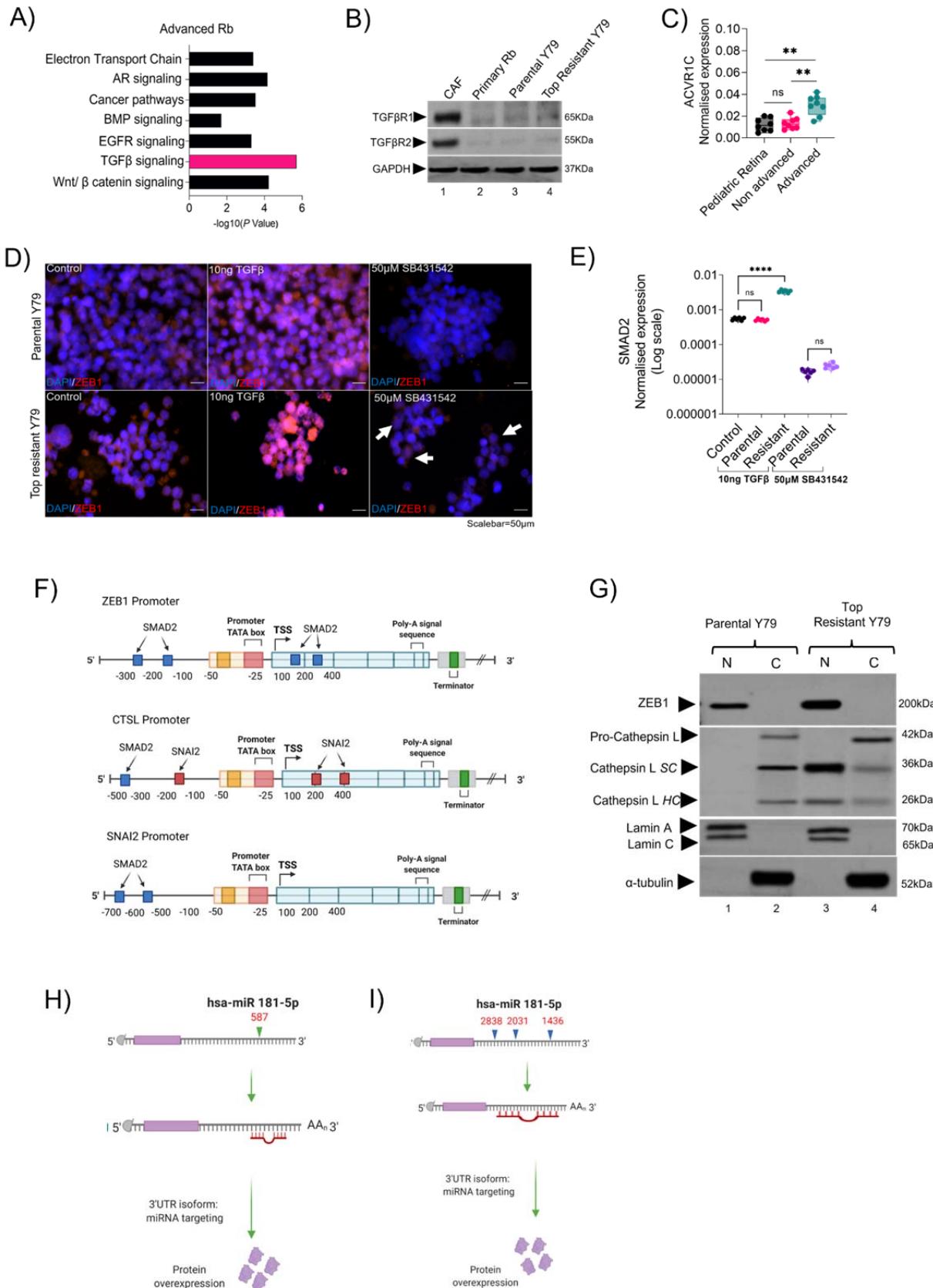
(A) Immunofluorescence images showing H2AX foci (red) and nuclei (DAPI, blue) in Parental Y79, Top Resistant Y79, and CPT Resistant Y79 cells at 6 and 48 hours. White arrows indicate H2AX foci. Scale bar = 50 μm.

(B) Bar graph showing the number of ^γH2AX foci per 100 cells at 6 hours for Parental Y79, Top Resistant Y79, and CPT Resistant Y79. *p < 0.05.

(C) Bar graph showing the number of ^γH2AX foci per 100 cells at 48 hours for Parental Y79, Top Resistant Y79, and CPT Resistant Y79. *p < 0.05, ns = not significant.

(D) Survival curve showing Percent Survival vs Topotecan (nM) for Parental Y79 and Top Resistant Y79. IC₅₀ values are indicated: Parental Y79 (10 nM), Top Resistant Y79 (323 nM).

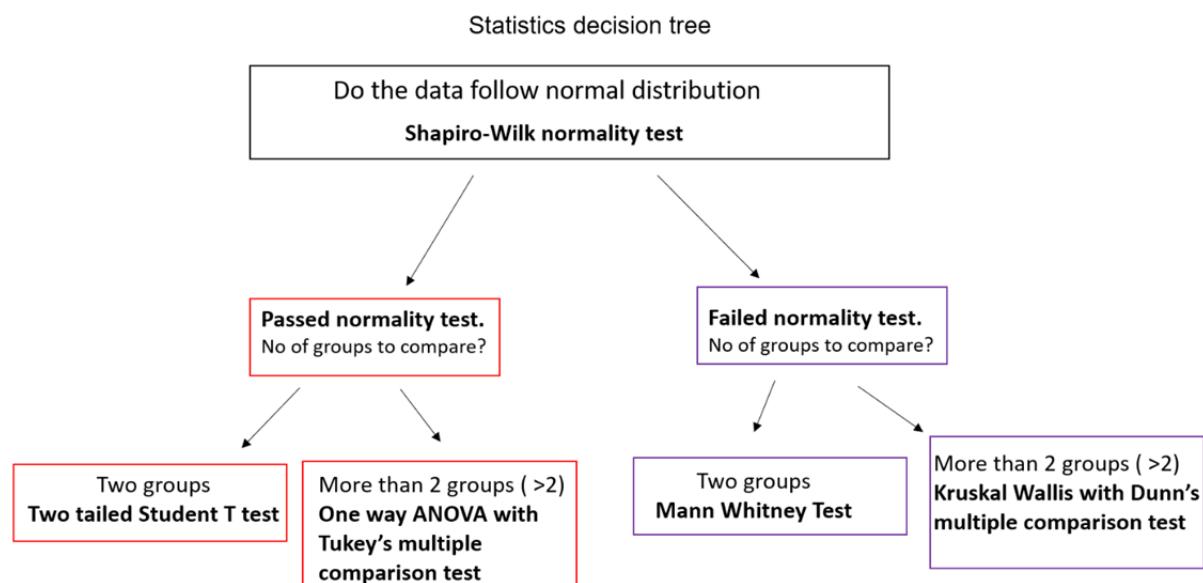
(E) Survival curve showing Percent Survival vs Carboplatin (μM) for Parental Y79 and CPT Resistant Y79. IC₅₀ values are indicated: Parental Y79 (34 μM), CPT Resistant Y79 (204 μM).


(F) Flow cytometry plot for Parental Y79 showing SSC-A vs Alexa Fluor 488-A. MDR1 expression is indicated by a blue gate. MDR1% = 4.57%.

(G) Flow cytometry plot for Top Resistant Y79 showing SSC-A vs Alexa Fluor 488-A. MDR1 expression is indicated by a blue gate. MDR1% = 23.37%.

(H) Flow cytometry plot for CPT Resistant Y79 showing SSC-A vs Alexa Fluor 488-A. MDR1 expression is indicated by a blue gate. MDR1% = 23.42%.

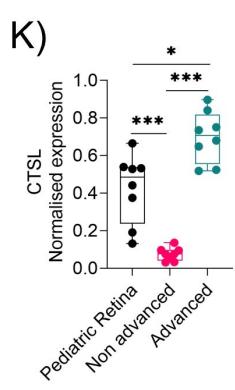
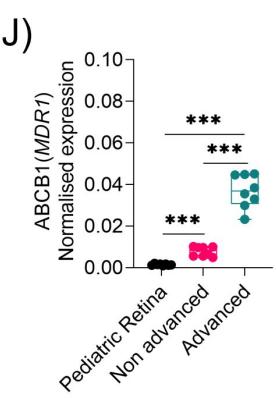
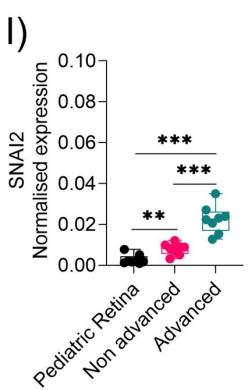
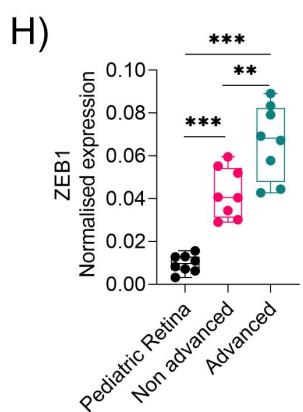
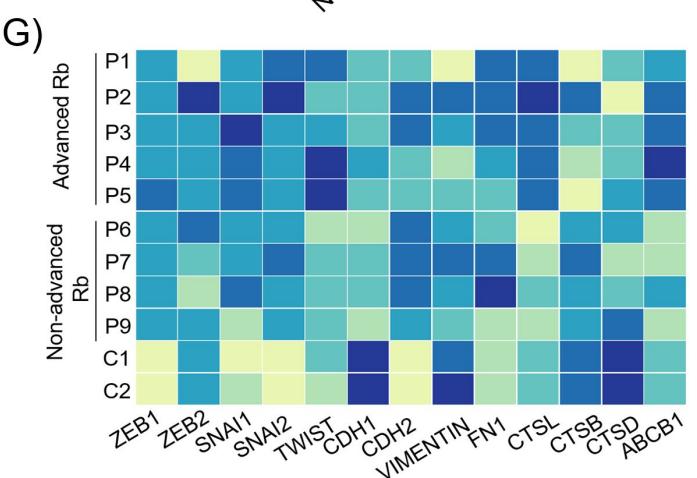
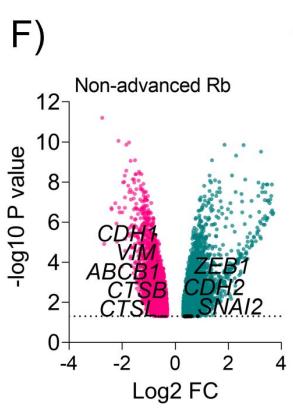
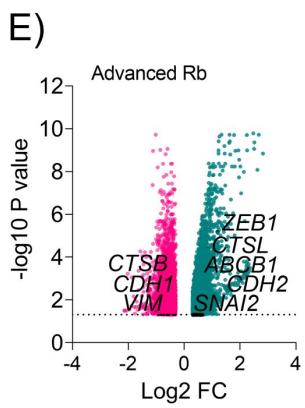
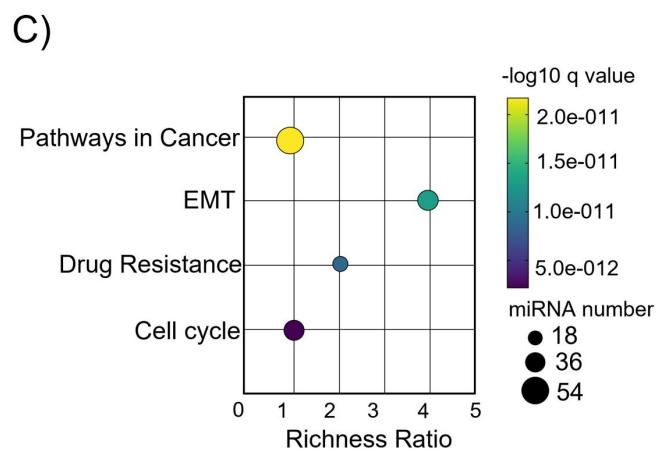
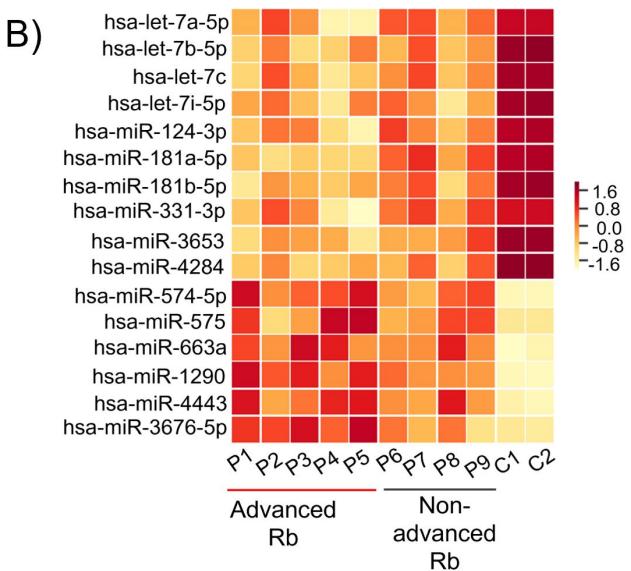
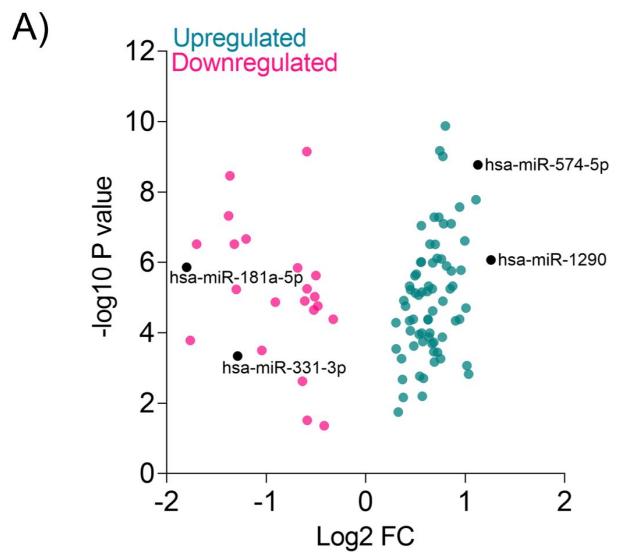
(I) Scatter plot showing Normalised expression (Log scale) of SNAI2 for Parental, Top Resistant, and CPT Resistant cells. ***p < 0.001, ns = not significant.


(J) Schematic diagram showing the transition from Epithelial to Mesenchymal/Metastatic phenotype, including EMT, Chemo-resistance, and Metastatic Potential.

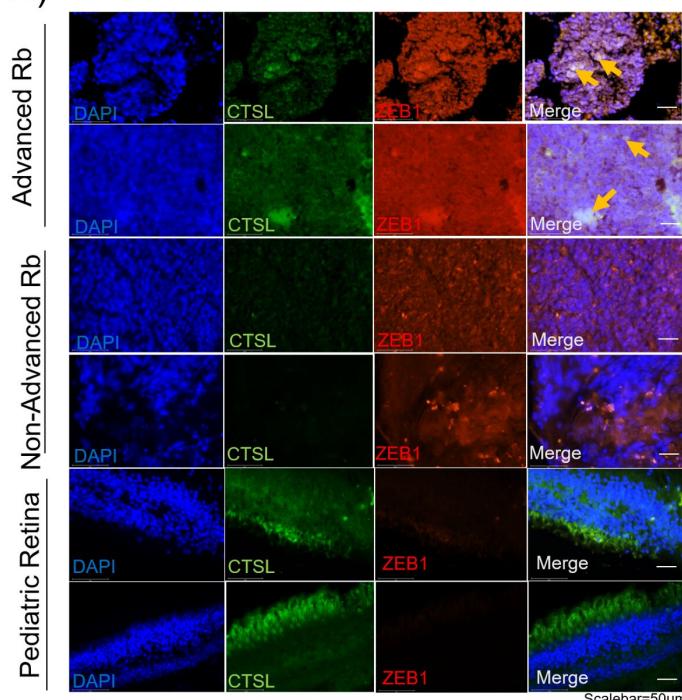
844 **Figure S3. Resistant cells undergo transition mediated by ZEB1 and acquire resistance through**
845 **Cathepsin L.** (A) KEGG pathway enrichment analysis showing differentially regulated pathways in
846 advanced Rb tumors. (B) Immunoblot showing the expression of canonical TGF β receptors I and II in
847 retinoblastoma associated fibroblast (CAF) primary culture, T4a stage Rb tumor primary culture, parental
848 Y79 and topotecan resistant Y79. (C) RT-PCR results showing normalized expression of ACVR1C
849 receptors in pediatric retina (n=4), advanced (n=4) and non-advanced Rb tumors(n=4). (D)
850 Immunofluorescence showing ZEB1 expression upon TGF β induction and TGF β inhibition in parental
851 and topotecan resistant Y79 cells for 48hours. Scalebar=50 μ m. (E) RT-PCR showing normalized
852 expression of SMAD2 upon TGF β induction and TGF β inhibition in parental and topotecan resistant Y79
853 cells for 48hours. (F) Schematic showing promoter binding regions of SMAD2 in ZEB1 promoter,
854 SMAD2 and SNAI2 in CTSL promoter and SMAD2 in SNAI2 promoter. The binding sites in each
855 promoter were curated using eukaryotic promoter database. (G) Nuclear-cytoplasmic fraction
856 immunoblot showing the subcellular localization of ZEB1 and CTSL in parental and resistant Y79 cells.
857 MicroRNA target prediction database (miRDB) predicted binding regions of miR-181a-5p in (H) ZEB1
858 3'UTR (I) SNAI2 3'UTR. Two-tailed Student's *t*-test (for 2< group) and one-way ANOVA with
859 Dunnett's multiple comparisons tests (for >2 group) were used for statistical analysis. *p < 0.05, **p <
860 0.01, ***p < 0.001, ****p < 0.0001.

861

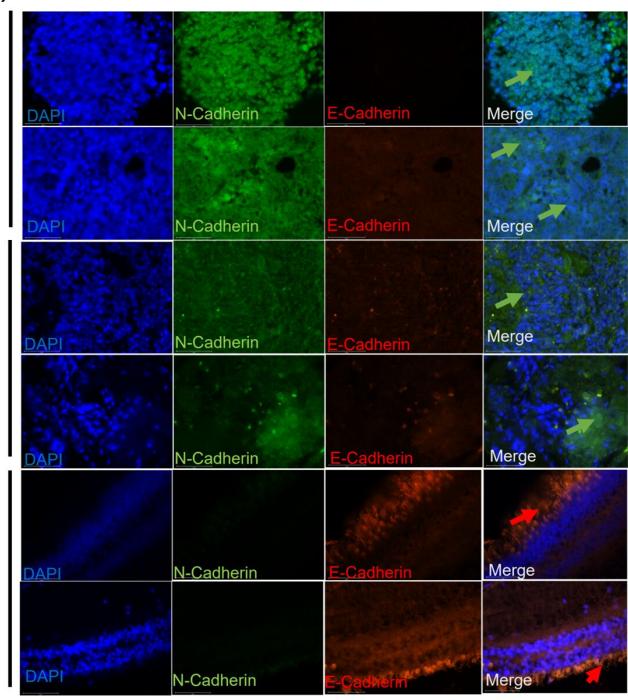
862

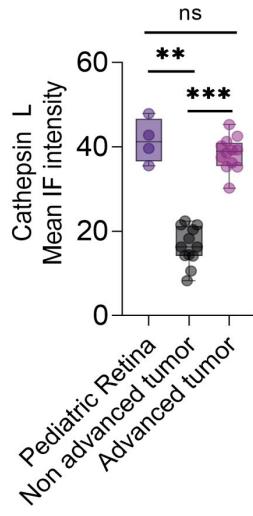











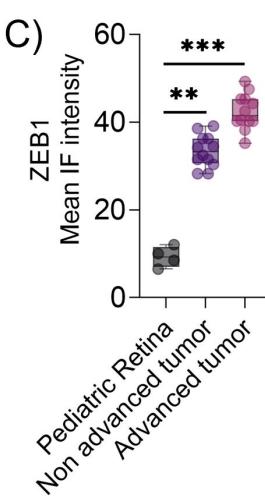
863 **Figure S4: Statistical decision tree**

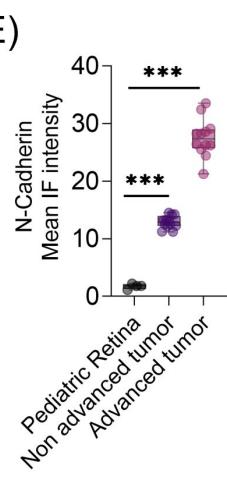

864 **Table S1:** Clinical and histopathological details of samples used for validation

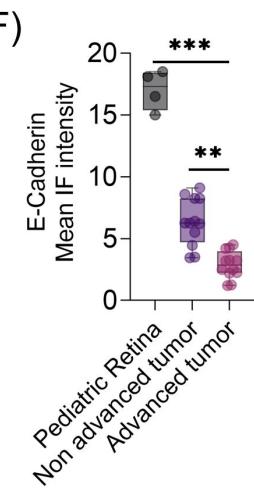
ID	Sex	Age at presentation	Laterality	Clinical Risk	IIRC Group	AJCC staging
P10	F	23 months	Bilateral	Advanced	Group E	cT3b
P11	F	24month	Unilateral	Advanced	Group E	cT3b
P12	M	36 months	Bilateral	Advanced	Group E	cT3b
P13	F	33 months	Unilateral	Advanced	Group E	cT3a
P14	M	7 months	Bilateral	Non-advanced	Group D	cT2a
P15	M	30 months	Bilateral	Non-advanced	Group D	cT2b
P16	F	14months	Unilateral	Non-advanced	GroupD	cT2b
P17	M	11 months	Unilateral	Non-advanced	Group D	cT2b
C1	M	2 months		Multiple organ dysfunction (No ocular complications)		
C2	F	12 months		No ocular complications		
C3	M	3 months		No ocular complications		
C4	M	6 months		No ocular complications		

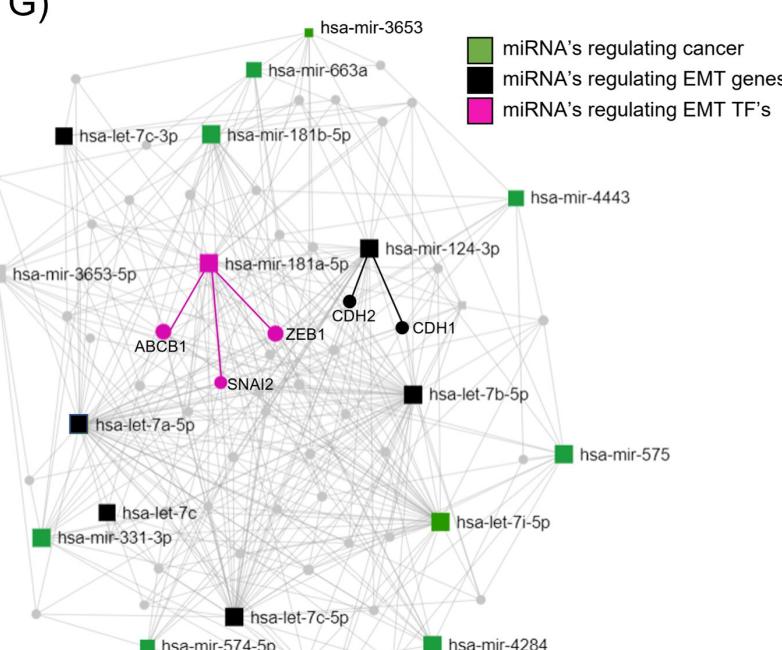

865

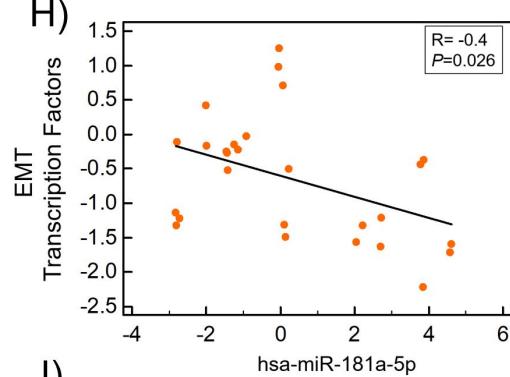

A)

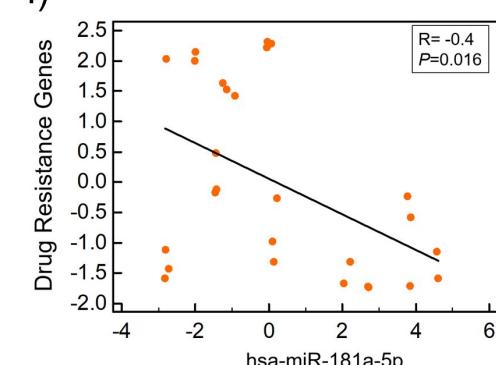

D)

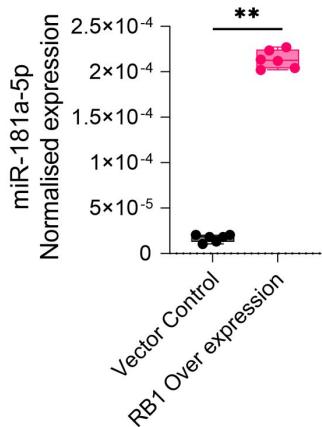

B)

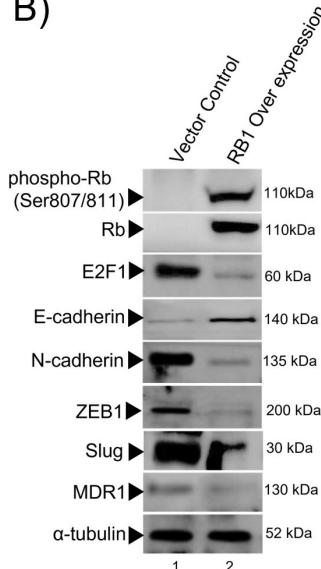

C)

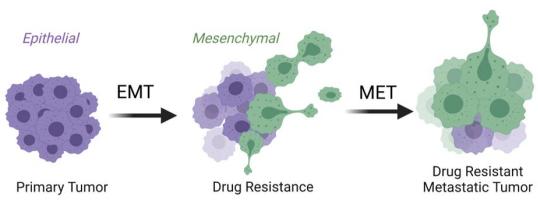

E)

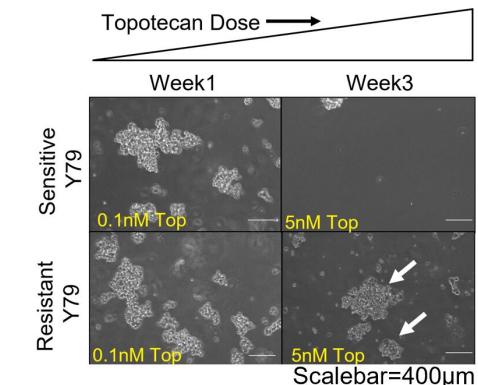

F)

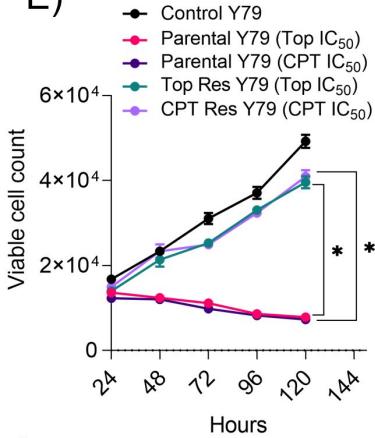

G)

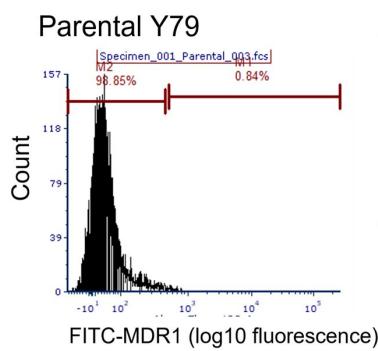

H)

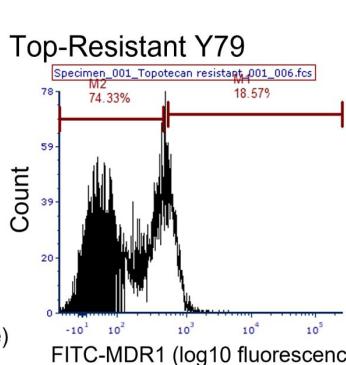

I)

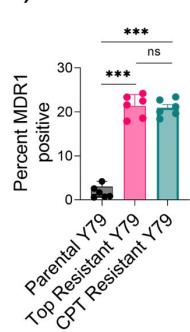

A)

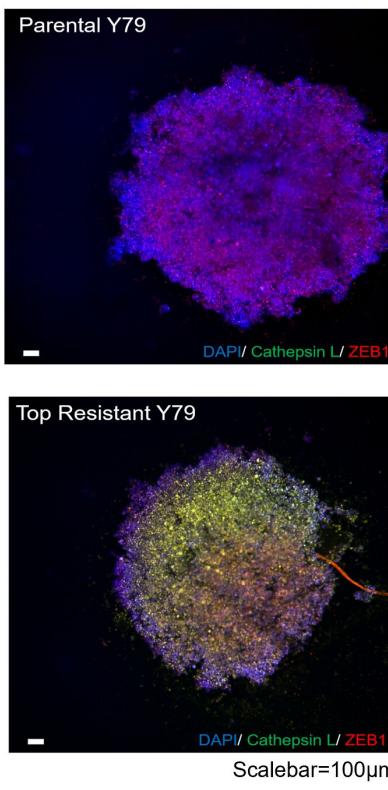

B)

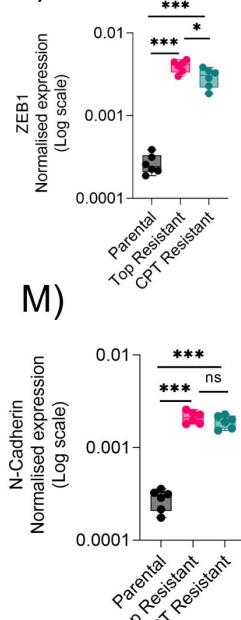

C)

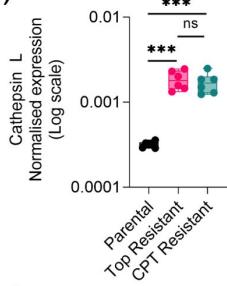

D)

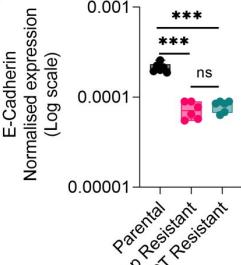

E)

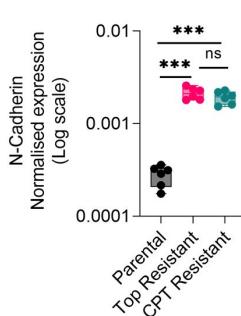

F)

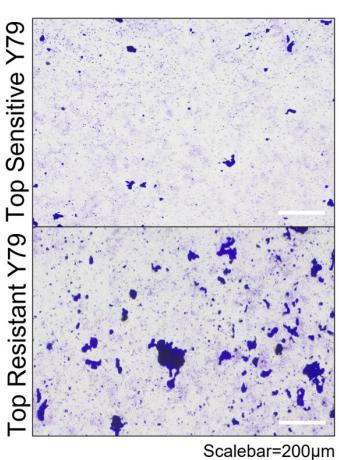

G)

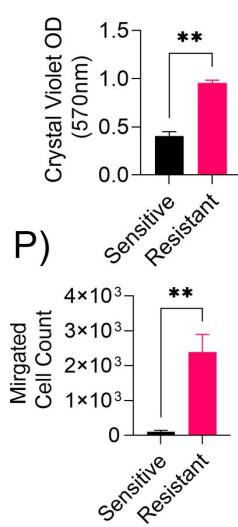

H)

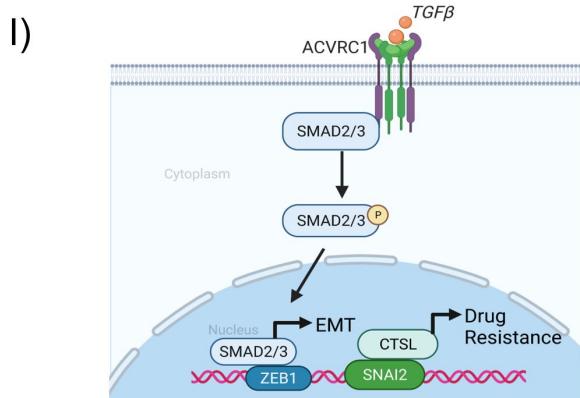
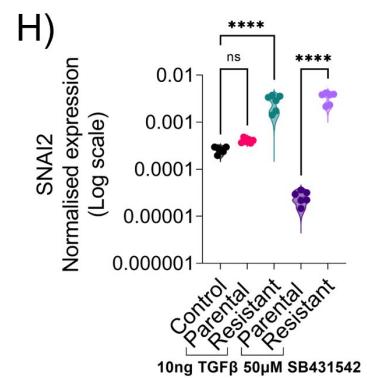
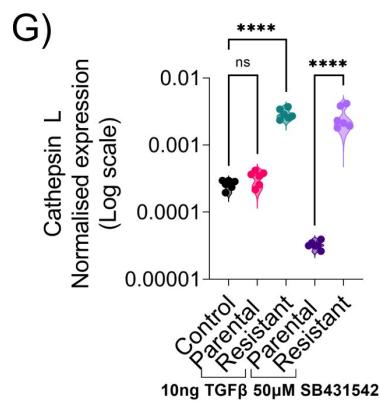
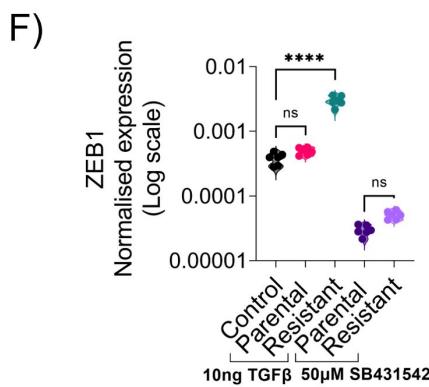
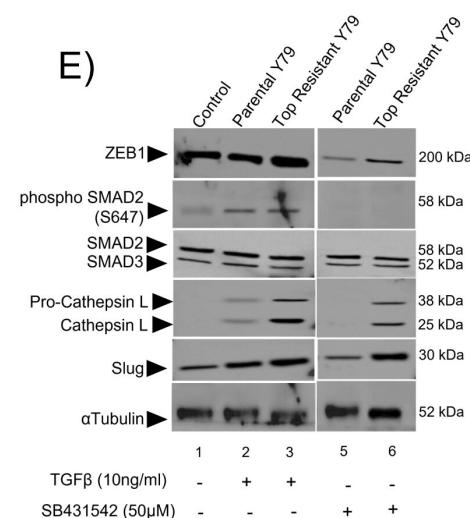
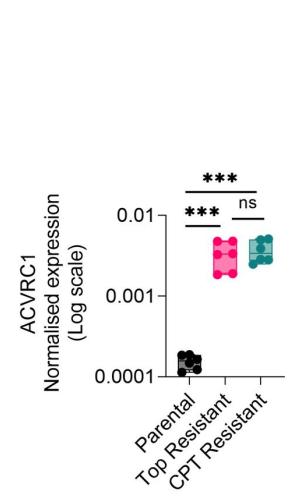
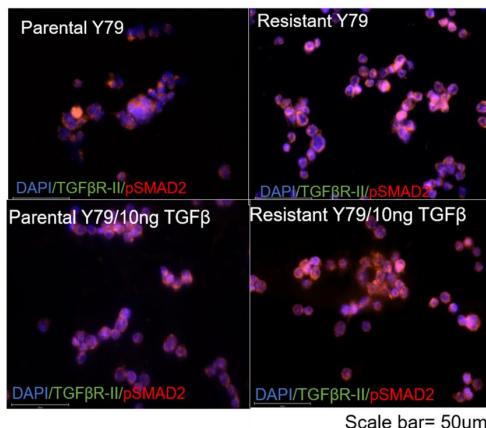
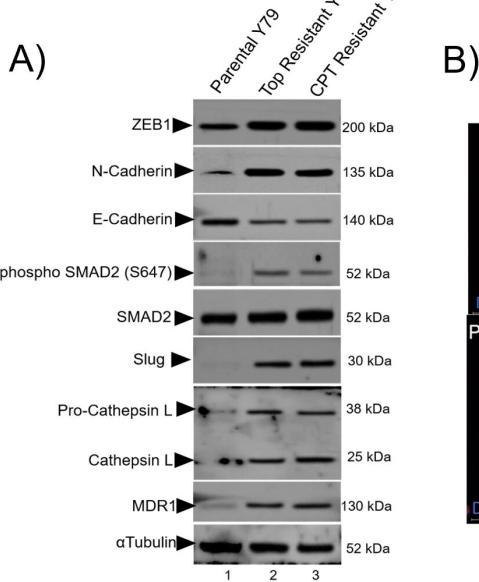

I)

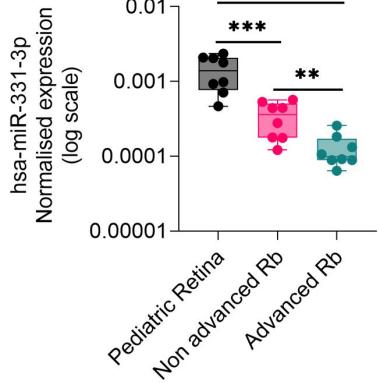
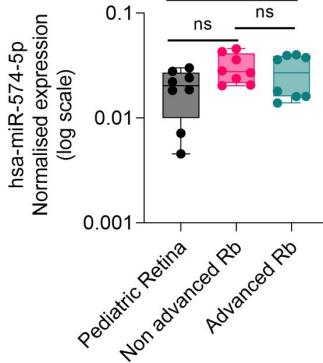
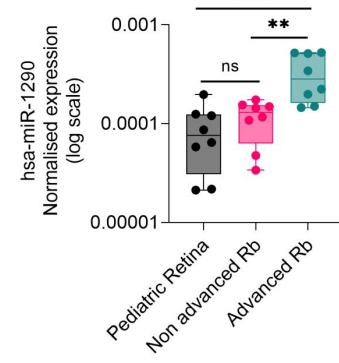
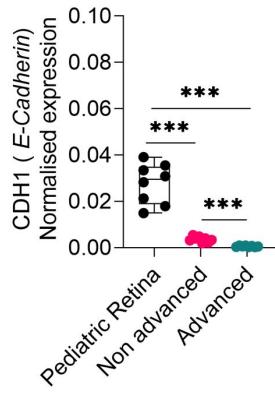
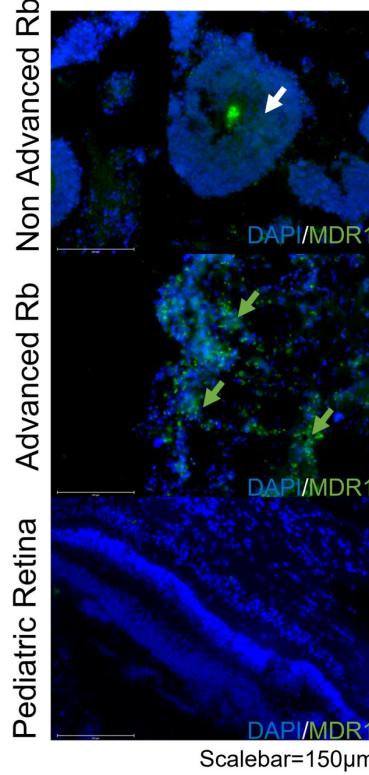
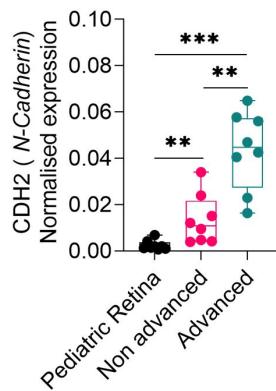

J)

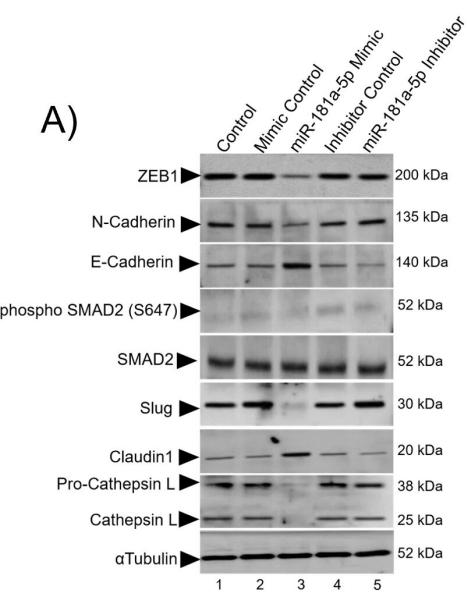
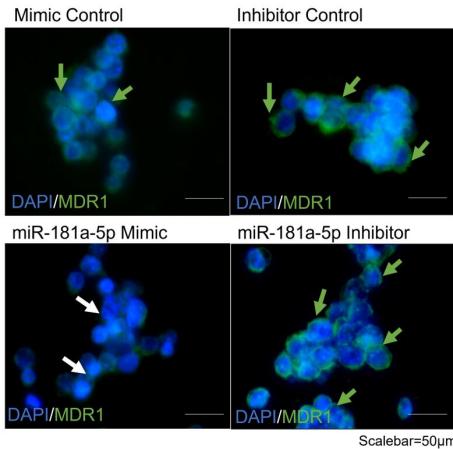
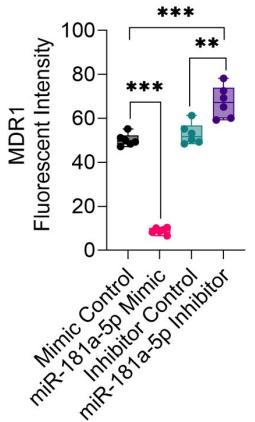
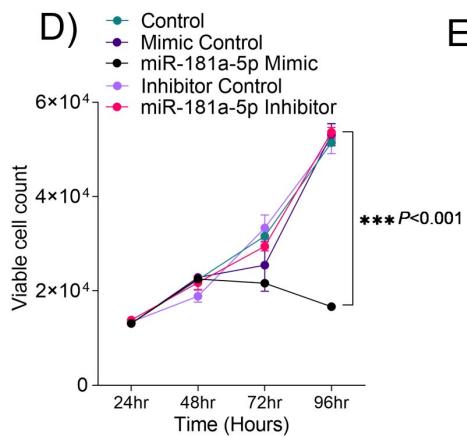
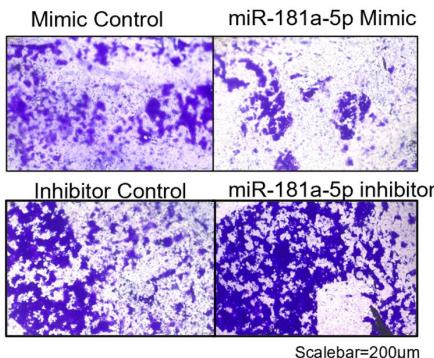
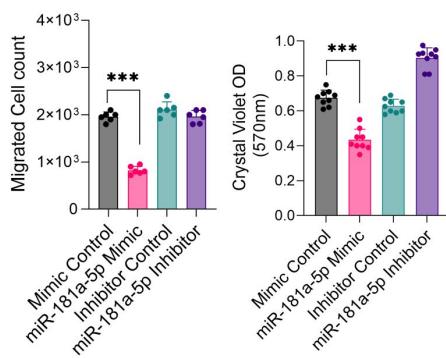
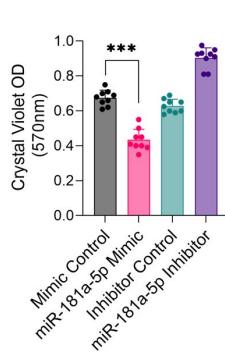
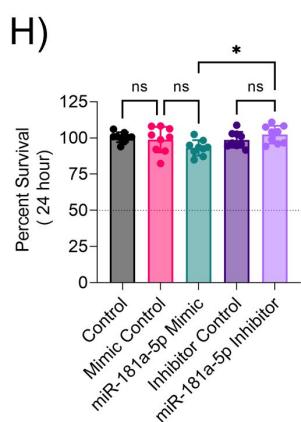
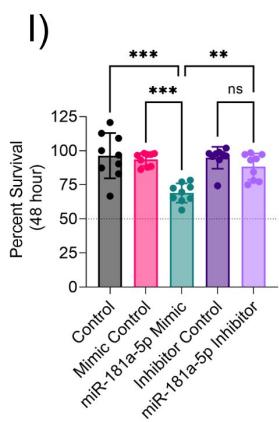
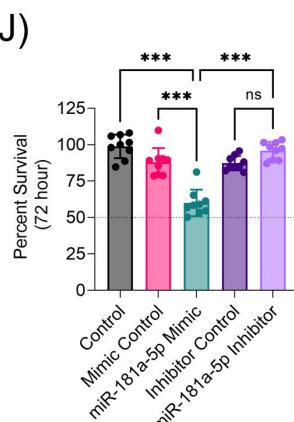
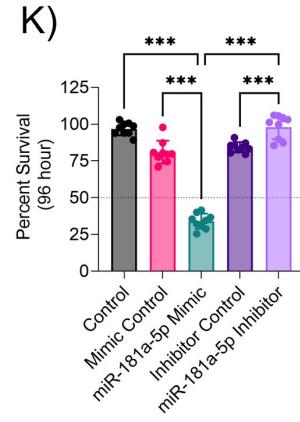

K)

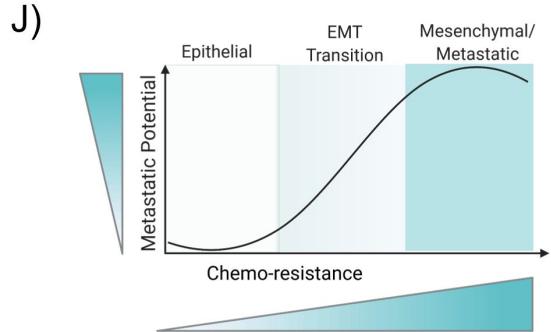
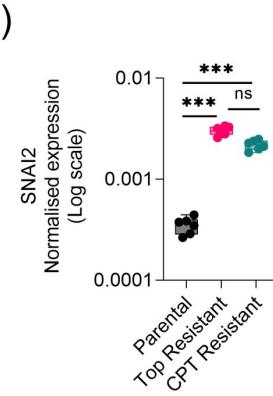
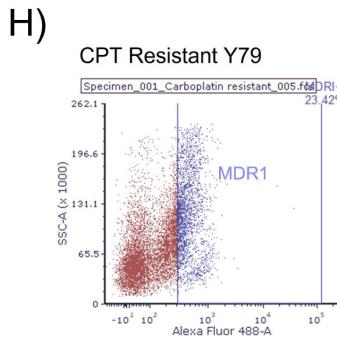
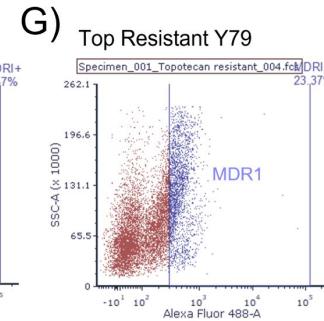
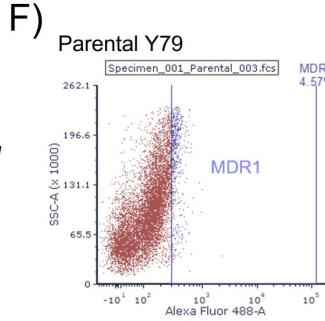
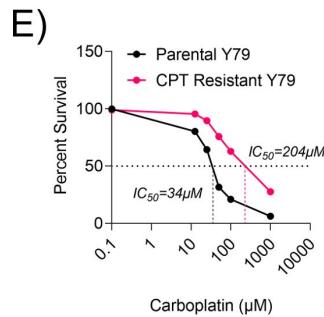
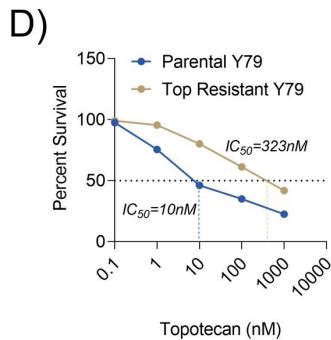
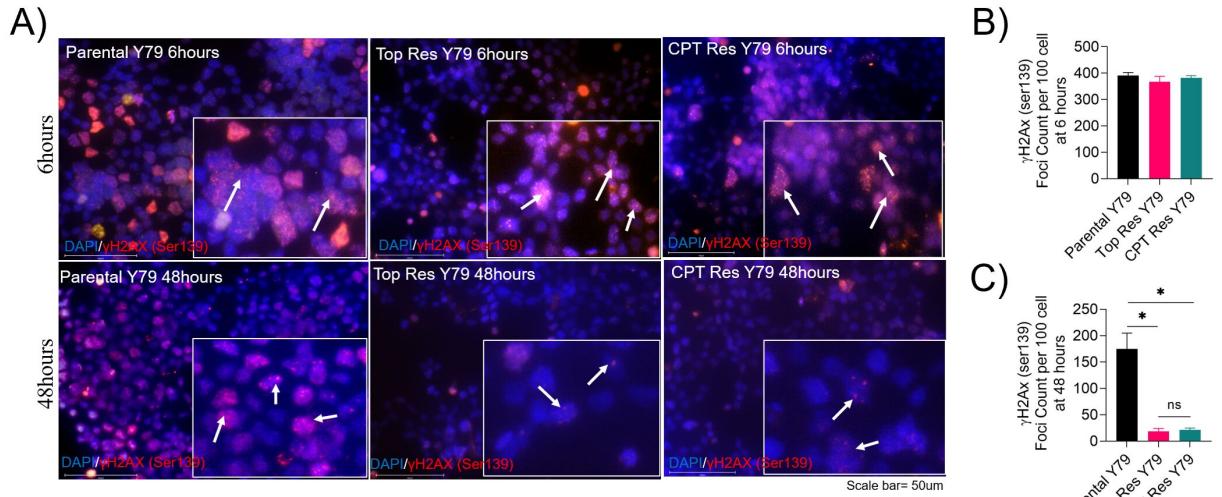

L)


M)

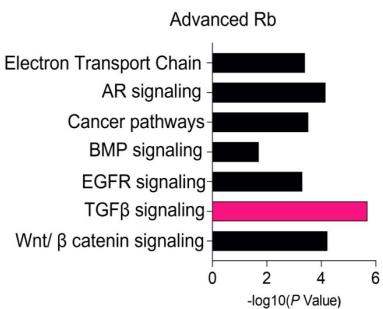








N)

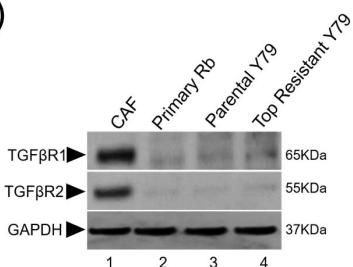











O)

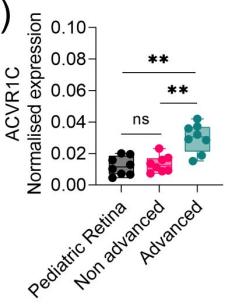









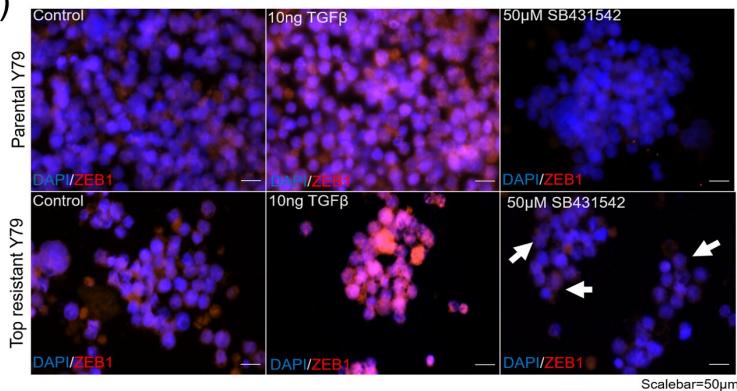
P)

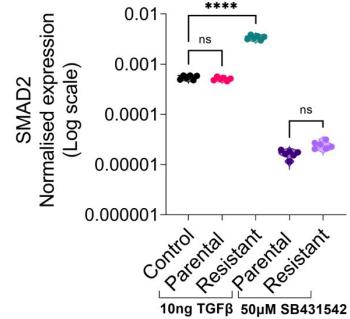


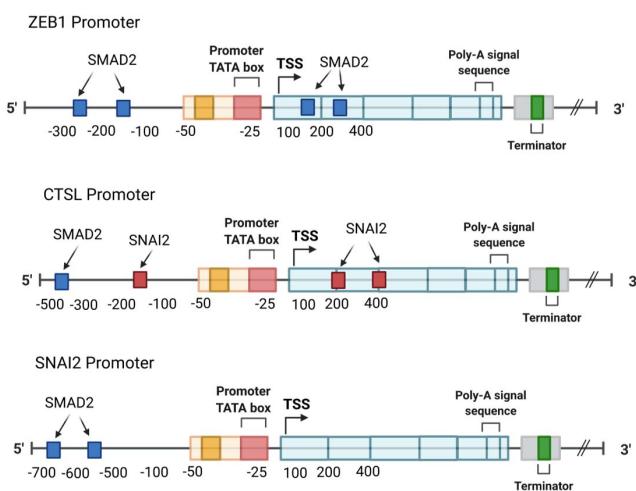
A)**B)****C)****D)****F)****E)**

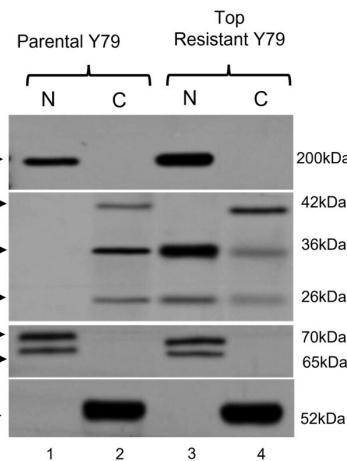

A)**B)****C)****D)****E)****F)****G)****H)****I)****J)****K)**

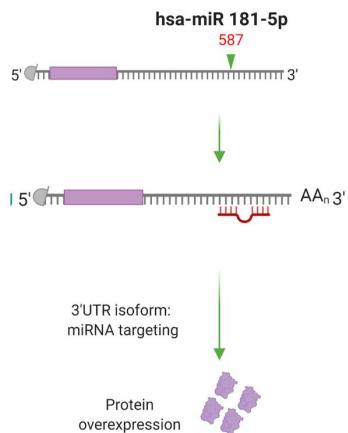

A)

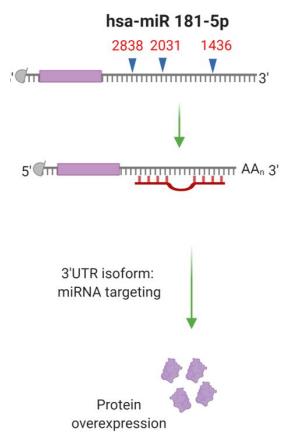

B)


C)

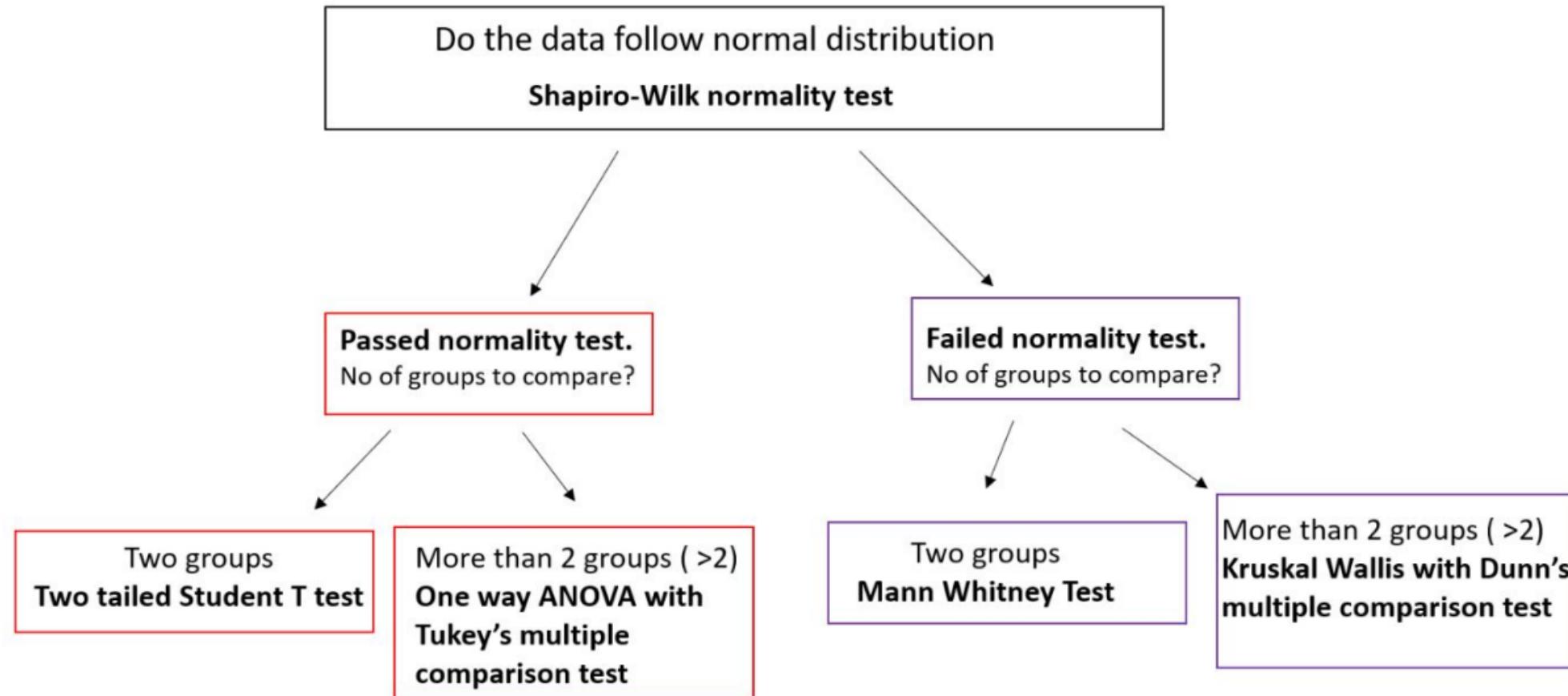

D)


E)

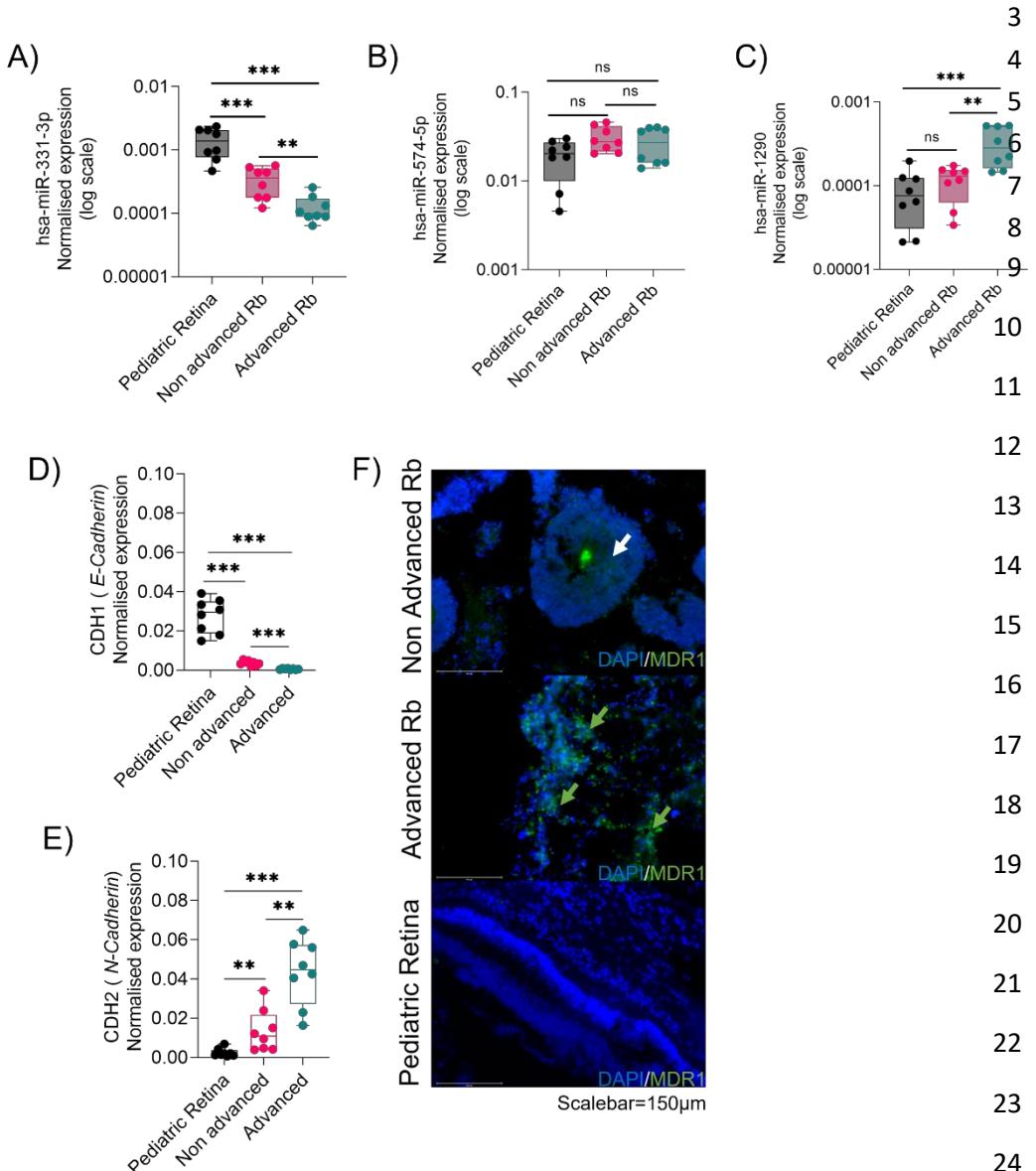

F)


G)

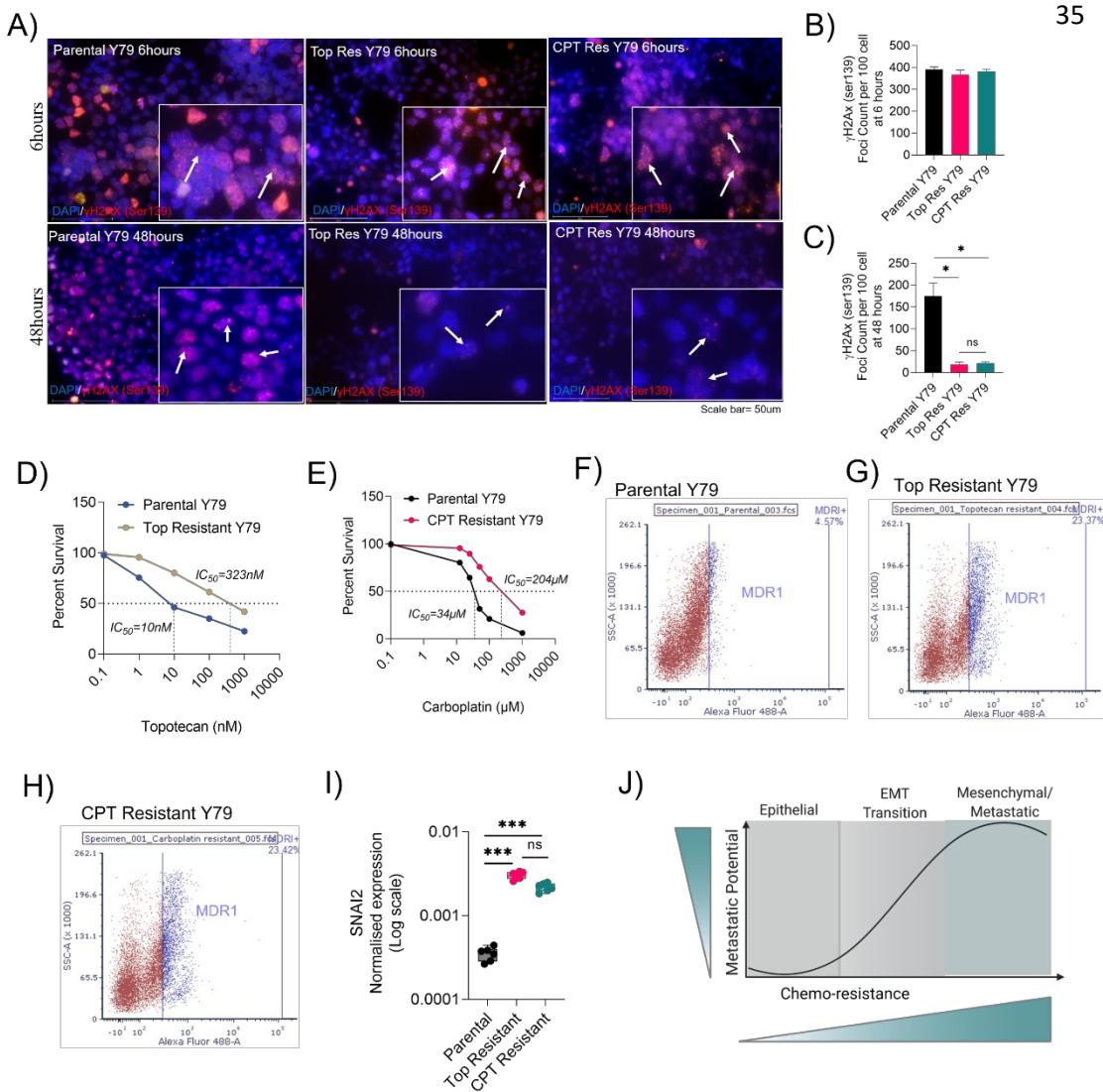
H)



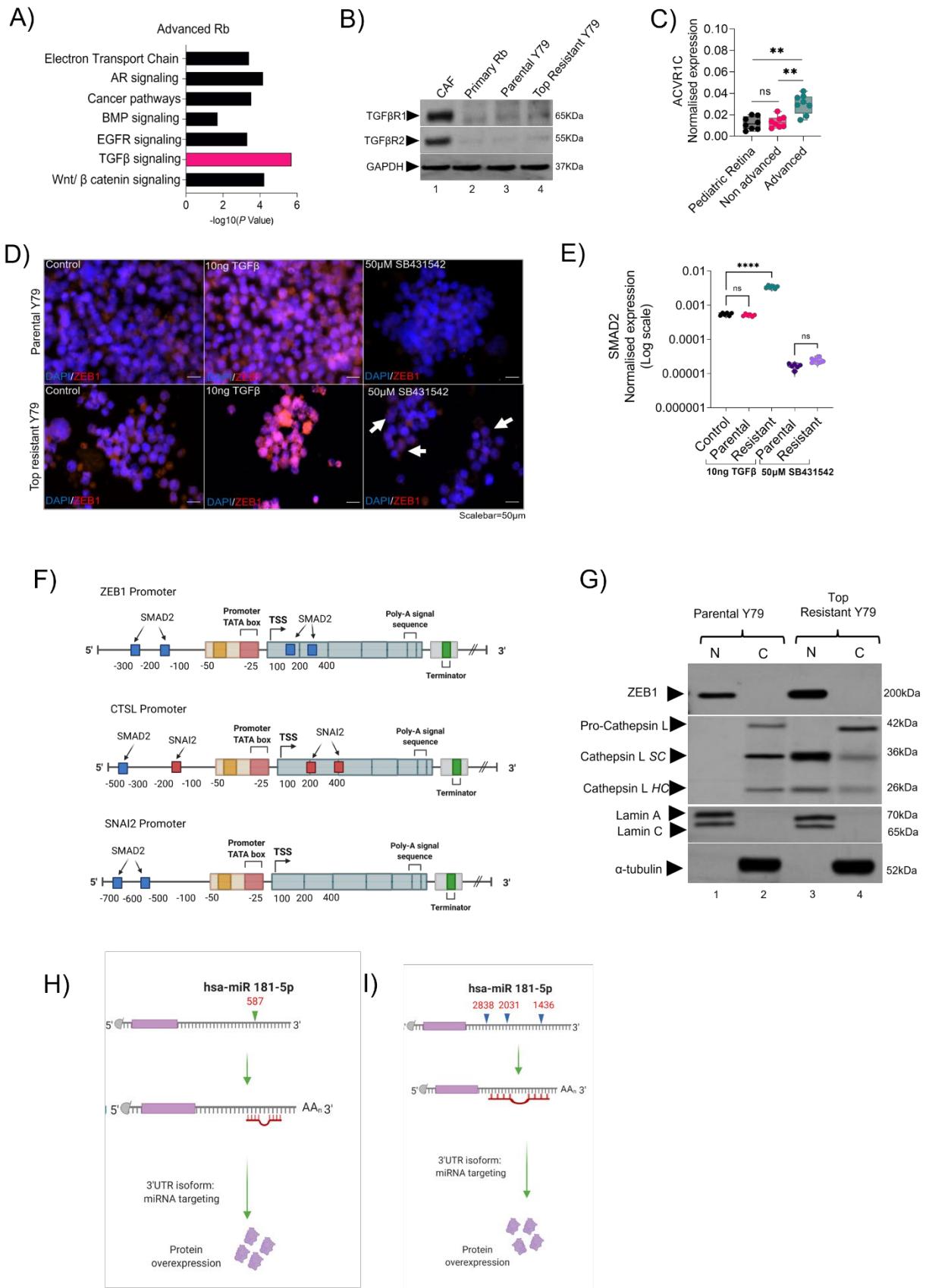
I)


Supplementary Figure 1:

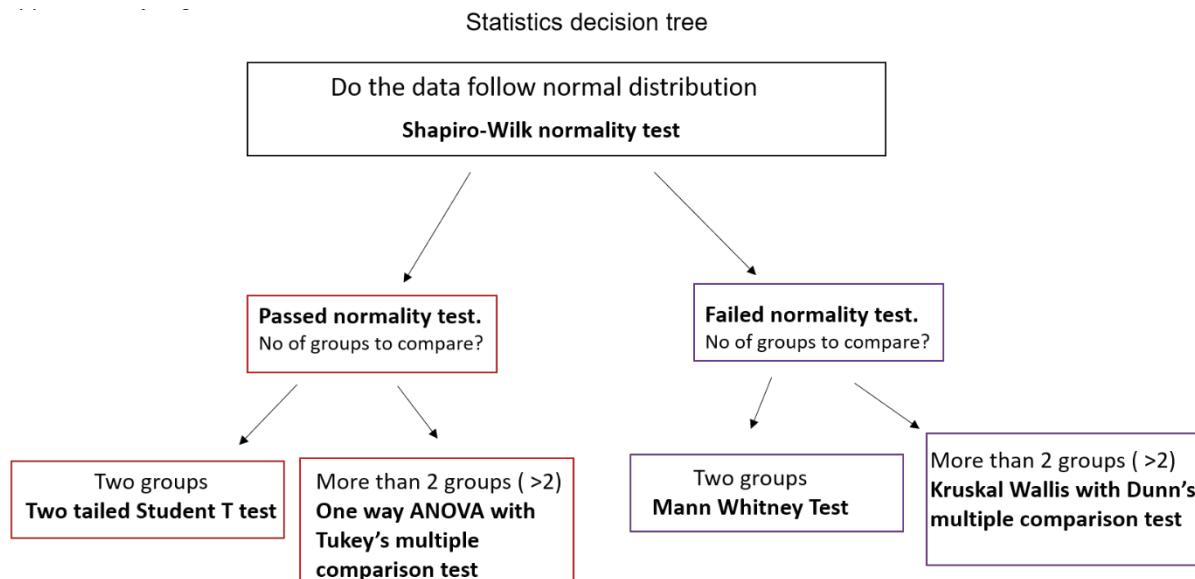
Statistics decision tree


1 **Supplementary Figures S1-S4, Table S1**

2


26 **Figure S1. Transcriptomic profiling identifies differentially regulated miRNA's, EMT, and drug-
27 resistant genes in Rb tumor subtypes.** RT-PCR validations of microarray identified miRNAs (A) has-
28 miR-331-3p (B) has-miR-574-5p (C) has-miR-1290 in advanced (n=4), non-advanced (n=4) and control
29 pediatric retina (n=4). RT-PCR validations for microarray identified mRNAs (D) CDH1 and (E) CDH2 in
30 advanced (n=4), non-advanced (n=4) and control pediatric retina (n=4) (F) Immunofluorescence showing
31 MDR1 expression in advanced Rb (n=4), non-advanced Rb (n=4) and pediatric retina tissues (n=4). Scale
32 bar =150μm. Values represents mean ± s.d. Two tailed Mann-Whitney was used for statistical analysis. *p
33 < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

34


36 **Figure S2. Chemotherapy resistant Rb cells confer enhanced EMT and invasion.** (A)
37 Immunofluorescence showing γ H2A.x foci in parental, topotecan resistant and carboplatin resistant cells
38 upon IC50 dose treatment using topotecan or carboplatin for 6 hours to 48hours. γ H2A.x foci count at (B)
39 6 hours and (C) 48hours of topotecan and carboplatin therapy. Survival assay to determine the IC50 shift
40 in resistant lines with increasing concentration of (D) topotecan (E) carboplatin. MDR1 surface staining
41 analysed by flow cytometry in (F) Parental Y79 cells (G) Topotecan resistant Y79 cells (H) Carboplatin
42 resistant Y79 cells. (I) RT-PCT results showing expression of SNAI2 in parental, topotecan resistant and
43 carboplatin resistant cells. (J) Schematic showing EMT trans-differentiation and induction of drug
44 resistance transit the cells to a dedifferentiated mesenchymal/ drug resistant metastatic phenotype. Two-
45 tailed Student's *t*-test (for 2< group) and one-way ANOVA with Dunnett's multiple comparisons tests (for
46 >2 group) were used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001.

47

49 **Figure S3. Resistant cells undergo transition mediated by *ZEB1* and acquire resistance through**
50 **Cathepsin L.** (A) KEGG pathway enrichment analysis showing differentially regulated pathways in
51 advanced Rb tumors. (B) Immunoblot showing the expression of canonical TGF β receptors I and II in
52 retinoblastoma associated fibroblast (CAF) primary culture, T4a stage Rb tumor primary culture, parental
53 Y79 and topotecan resistant Y79. (C) RT-PCR results showing normalized expression of ACVR1C
54 receptors in pediatric retina (n=4), advanced (n=4) and non-advanced Rb tumors(n=4). (D)
55 Immunofluorescence showing *ZEB1* expression upon TGF β induction and TGF β inhibition in parental and
56 topotecan resistant Y79 cells for 48hours. Scalebar=50 μ m. (E) RT-PCR showing normalized expression of
57 SMAD2 upon TGF β induction and TGF β inhibition in parental and topotecan resistant Y79 cells for
58 48hours. (F) Schematic showing promoter binding regions of SMAD2 in *ZEB1* promoter, SMAD2 and
59 SNAI2 in CTS1 promoter and SMAD2 in SNAI2 promoter. The binding sites in each promoter were
60 curated using eukaryotic promoter database. (G) Nuclear-cytoplasmic fraction immunoblot showing the
61 subcellular localization of *ZEB1* and CTS1 in parental and resistant Y79 cells. MicroRNA target prediction
62 database (miRDB) predicted binding regions of miR-181a-5p in (H) *ZEB1* 3'UTR (I) SNAI2 3'UTR. Two-
63 tailed Student's *t*-test (for 2< group) and one-way ANOVA with Dunnett's multiple comparisons tests (for
64 >2 group) were used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

65
66

67 **Figure S4: Statistical decision tree**

68 **Table S1:** Clinical and histopathological details of samples used for validation

ID	Sex	Age at presentation	Laterality	Clinical Risk	IIRC Group	AJCC staging
P10	F	23 months	Bilateral	Advanced	Group E	cT3b
P11	F	24month	Unilateral	Advanced	Group E	cT3b
P12	M	36 months	Bilateral	Advanced	Group E	cT3b
P13	F	33 months	Unilateral	Advanced	Group E	cT3a
P14	M	7 months	Bilateral	Non-advanced	Group D	cT2a
P15	M	30 months	Bilateral	Non-advanced	Group D	cT2b
P16	F	14months	Unilateral	Non-advanced	GroupD	cT2b
P17	M	11 months	Unilateral	Non-advanced	Group D	cT2b
C1	M	2 months		Multiple organ dysfunction (No ocular complications)		
C2	F	12 months		No ocular complications		
C3	M	3 months		No ocular complications		
C4	M	6 months		No ocular complications		

69

70