

1 KSHV infection of endothelial precursor cells with lymphatic characteristics as a novel 2 model for translational Kaposi's sarcoma studies

3

4 Krista Tuohinto^{1¶}, Terri A. DiMaio^{2¶}, Elina A. Kiss¹, Pirjo Laakkonen^{1,3}, Pipsa Saharinen¹, Tara Karnezis⁴,
5 Michael Lagunoff^{2*} and Päivi M. Ojala^{1*}

6

⁷ ¹Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki.
⁸ Finland.

9 ²Department of Microbiology, University of Washington. Seattle WA, United States of America.

¹⁰ ³ Wihuri Research Institute, Biomedicum Helsinki, Finland.

11 ⁴Gertrude Biomedical Pty Ltd., Melbourne, Queensland, Australia.

12

13

14

15

16

17

18

19 ¶ These authors contributed equally to this work

20 **Abstract**

21

22 Kaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), a
23 hyperplasia consisting of enlarged malformed vasculature and spindle-shaped cells, the main
24 proliferative component of KS. While spindle cells express markers of lymphatic and blood
25 endothelium, the origin of spindle cells is unknown. Endothelial precursor cells have been proposed as
26 the source of spindle cells. We previously identified two types of circulating endothelial colony forming
27 cells (ECFCs), ones that expressed markers of blood endothelium and ones that expressed markers of
28 lymphatic endothelium. Here we examined both blood and lymphatic ECFCs infected with KSHV.
29 Lymphatic ECFCs are significantly more susceptible to KSHV infection than the blood ECFCs and
30 maintain the viral episomes during passage in culture while the blood ECFCs lose the viral episome.
31 Only the KSHV-infected lymphatic ECFCs grew to small multicellular colonies in soft agar whereas the
32 infected blood ECFCs and all uninfected ECFCs failed to proliferate. The lymphatic ECFCs express high
33 levels of SOX18, which supported the maintenance of high copy number of KSHV genomes. When
34 implanted subcutaneously into NSG mice, the KSHV-infected lymphatic ECFCs persisted in vivo and
35 recapitulated the phenotype of KS tumor cells with high number of viral genome copies and spindling
36 morphology. These spindle cell hallmarks were significantly reduced when mice were treated with
37 SOX18 inhibitor, SM4. These data suggest that KSHV-infected lymphatic ECFCs can be utilized as a KSHV
38 infection model for in vivo translational studies to test novel inhibitors representing potential treatment
39 modalities for KS.

40

41 **Keywords:**

42 KSHV; HHV-8; lymphatic endothelium; ECFCs; Endothelial precursor cells; Kaposi's sarcoma; SOX18

43 **Author summary:**

44 Kaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). The main
45 proliferative component of KS, spindle cells, express markers of lymphatic and blood endothelium.
46 Endothelial precursor cells, which are circulating endothelial colony forming cells (ECFCs), have been
47 proposed as the source of spindle cells. Here we examined both blood and lymphatic ECFCs infected
48 with KSHV. Lymphatic ECFCs are readily infected by KSHV, maintain the viral episomes and show
49 minimal transformation of the cells, which the infected blood ECFCs and all uninfected ECFCs failed to
50 show. The lymphatic ECFCs express SOX18, which supported the maintenance of high copy numbers of
51 KSHV genomes. The KSHV-infected lymphatic ECFCs persisted in vivo and recapitulated the phenotype
52 of KS tumor cells such as high number of viral genome copies and spindling morphology. These KS tumor
53 cell hallmarks were significantly reduced by SOX18 chemical inhibition using a small molecule SM4
54 treatment. These data suggest that KSHV-infected lymphatic ECFCs could be the progenitors of KS
55 spindle cells and are a promising model for the translational studies to develop new therapies for KS.
56

57 **Introduction**

58 Kaposi's sarcoma herpesvirus (KSHV) is a gamma herpesvirus and the etiologic agent of Kaposi's
59 sarcoma (KS) as well as rare B-cell proliferative diseases primary effusion lymphoma and AIDS-
60 associated Castleman's disease. KS is a hyperplasia consisting of enlarged malformed vasculature and
61 spindle-shaped cells which are the main proliferative component of KS. Spindle cells express markers
62 consistent with an endothelial cell origin [1–5].

63 Endothelial cells are largely divided into blood vascular and lymphatic endothelial cells. While
64 closely related, the cells making up the blood and lymphatic vasculatures have distinct functions and
65 express specific markers. KS spindle cells express several markers specific to lymphatic endothelium
66 though they also express markers of blood endothelium. However, it has been shown that KSHV
67 infection of endothelial cells in culture induce changes in endothelial cell marker expression.
68 Specifically, KSHV infection of blood vascular endothelial cells (BEC) induces changes consistent with
69 lymphatic differentiation including induction of PROX1 and vascular endothelial growth factor 3,
70 VEGFR3 expression [6–8]. However, infection of lymphatic endothelial cells (LEC) induces the
71 expression of VEGFR1, consistent with its expression in BEC. Therefore, the contribution of these cell
72 types to development of KS tumors is unclear. Another feature of spindle cells is the expression of
73 mesenchymal cell markers, an observation that has prompted the idea that undifferentiated
74 mesenchymal cells might be a cell type of origin [9]. This hypothesis remains elusive since the
75 mesenchymal phenotypes could also emerge due to Endothelial-to-Mesenchymal-Transition (EndMT)
76 induced by KSHV-infection of LECs [10,11].

77
78 KS tumors develop primarily in the skin of patients with classic KS. More aggressive AIDS-associated KS
79 can infiltrate internal organs. However, KS is not found in tissues lacking lymphatic vasculature, such as
80 parenchyma and retina. This suggests that LECs are a necessary component of KS development.
81 Furthermore, we and others have previously found that LECs are more susceptible than BECs to KSHV
82 infection [8,12–15]. The KSHV-infected primary human LECs (K-LECs) display a unique infection program
83 characterized by maintenance of high KSHV genome copies, spontaneous lytic gene expression and
84 release of significant amounts of infectious virus [12,13]. This is in striking contrast to BECs and other

85 KSHV-infected *in vitro* cell models. KSHV infection of neonatal LECs but not BECs allows them to bypass
86 replicative senescence [14]. However, KSHV-infected LECs, like KS spindle cells, are not fully
87 immortalized. Whether LECs are a reservoir for KSHV *in vivo* has yet to be determined.

88

89 Endothelial colony forming cells (ECFCs) are circulating cells thought to be endothelial precursors.
90 Previous studies have shown that circulating endothelial precursor cells home to sites of
91 neoangiogenesis [16,17]. However, the contribution of precursor cells to neoangiogenesis is unclear.
92 Previous investigations suggest that circulating endothelial precursors could be important for the
93 development of KS lesions. One study found that KS lesion formation following kidney transplant
94 occurred in distal extremities [18]. Importantly, the spindle cells of the KS tumors were gender matched
95 to the transplanted tissue, not the recipient, suggesting the presence of circulating cells harboring
96 KSHV. Further studies have isolated ECFCs from patients with classic KS, which were found to be positive
97 for KSHV DNA [19]. Interestingly, KSHV infection of endothelial progenitor cells isolated from umbilical
98 cord blood reduces their angiogenic potential [20]. It has been previously proposed that KSHV infected
99 ECFCs could be the source of spindle cells seeding the KS tumors [19–21].

100

101 We previously isolated ECFCs from whole blood and found that there are two types of ECFCs [22]. The
102 predominant ECFC expressed markers of blood endothelial cells as has been previously described [23–
103 25]. Importantly, we identified rare ECFC isolates expressing markers of the lymphatic vasculature. Our
104 recent results show that the key developmental lymphatic transcription factor (TF), SOX18, is expressed
105 in KS tumors and needed to support a unique KSHV infection program with high number of intracellular
106 KSHV genome copies in infected human LECs. SOX18 binds to the origins of KSHV replication and

107 increases the intracellular viral DNA genome copies [12]. Depletion by RNAi or specific inhibition of
108 SOX18 homo- and heterodimerization by a small molecule inhibitor SM4 or R-propranolol [26,27]
109 dramatically decreases both intracellular viral genome copies and release of infectious virus, suggesting
110 SOX18 as an attractive therapeutic target for KS.

111

112 Here, we show that similar to LECs, lymphatic ECFCs are more susceptible to KSHV infection and
113 maintain the viral episome in contrast to blood ECFCs. KSHV infection of lymphatic ECFCs allowed
114 proliferation, albeit limited, of these cells in soft agar, suggesting that KSHV may promote enhanced
115 survival of lymphatic ECFCs. We further utilized the SOX18-expressing lymphatic ECFCs as a
116 physiologically relevant KSHV infection model for testing the translational potential of SOX18 small
117 molecule inhibitor SM4 in vitro and in vivo. Together, these data suggest that circulating lymphatic
118 ECFCs could potentially represent virus reservoirs and putative precursors as the source for the
119 initiation of KS tumors.

120

121 **Results**

122 **Lymphatic ECFCs are more permissive to KSHV infection than blood ECFCs**

123 We have previously shown that neonatal LECs are more susceptible to KSHV infection than BECs
124 [12,14]. Also, we previously identified two types of ECFCs, ones that expressed markers of BEC and ones
125 that expressed markers of LEC. To determine whether also these lymphatic ECFCs are more susceptible
126 to KSHV-infection than blood ECFCs, we seeded both cell types onto 6-well plates, allowed them to
127 adhere, and followed by infection with identical dilutions of KSHV at either a high or low MOI. After two

128 days, we harvested the cells and performed immunofluorescence for viral latency-associated nuclear
129 antigen (LANA) expression and counted the percentage of cells that were latently infected. As shown
130 in Fig 1A, at high MOI, 98% of lymphatic ECFCs are infected, while only 87% of the blood ECFCs are
131 infected. At high MOI, each cell may have multiple instances of infection, therefore counting the
132 percentage of LANA+ cells may miss cases of superinfection. To address this, we performed the same
133 experiment with a low MOI. Fig 1B shows that lymphatic ECFCs are infected at almost three times the
134 rate of blood ECFCs.

135

136 We also isolated ECFCs using a different protocol where the cells were isolated from the whole blood
137 of four, additional healthy donors, but as an adherent subpopulations rather than from single cell
138 colonies. By fluorescence associated cell sorting (FACS) analyses these cells expressed substantial levels
139 of CD34, VEGFR3, podoplanin, CD31/PECAM1, PROX1 and SOX18, suggesting that they also represent
140 predominantly lymphatic ECFCs (S1 Fig), not blood vascular endothelial ECFCs. Next, we analyzed if
141 these lymphatic ECFCs could support spontaneous lytic replication and production of new infectious
142 viruses, unique to KSHV-infected LECs, but not seen in BECs [12,13]. To this end, we compared the
143 infection of primary human LECs, BECs and the lymphatic ECFCs with recombinant rKSHV.219 [28] on
144 6-well plates and the infection was followed up for 2 weeks. Fig 1C shows latent infection (indicated by
145 GFP expression) in all cell types, however, the spindling phenotype became visible in 7 days post
146 infection only in lymphatic ECFCs (K-ECFCLY) and K-LECs, but not in K-BECs. Spontaneous lytic
147 replication (indicated by RFP expression) was observed both in K-ECFCLYs and K-LECs, albeit more
148 prominent in K-LECs but not seen in K-BECs. Accordingly, as shown in Fig 1D, in addition to GFP and the
149 latent protein LANA, K-ECFCLY expressed the viral lytic protein K8.1. We have previously shown that

150 K8.1 is prominently expressed by K-LECs, but not in K-BECs [12]. Accordingly, K-BECs did not produce
151 infectious virus, whereas K-ECFCLYs did albeit significantly less than K-LECs (Fig 1E). Similar results
152 showing that K-ECFCLYs can produce infectious virus were obtained when using lymphatic ECFCs from
153 three additional donors (S2 Fig). This indicates that lymphatic ECFCs are permissive to KSHV infection
154 and capable to support productive, lytic replication.

155

156 **Lymphatic ECFCs maintain the KSHV viral episome**

157 The KSHV genome is maintained as an episome in dividing cells, though this process is not
158 robust, and the episome is lost over time in cultured endothelial cells [29–32]. Our previous data with
159 neonatal ECs showed that LECs were able to maintain the KSHV episome but BECs lost the genome
160 relatively rapidly over the course of cell passaging [12,14]. To test whether the rate of loss is different
161 between blood and lymphatic ECFCs, we infected cells with KSHV and harvested them every two days
162 for immunofluorescence for LANA expression. Because lymphatic ECFCs are more susceptible to KSHV
163 infection, we used higher MOI to the blood ECFCs to achieve similar initial infection rates. By using LANA
164 staining as a surrogate marker for genome copies, Fig 1F shows that, although in the beginning very
165 similar infection rates were observed for both blood and lymphatic ECFCs, the blood ECFCs gradually
166 lose the episome and by ten days post infection fewer than 40% of cells exhibited punctate LANA
167 staining. In contrast, the lymphatic ECFCs maintained infection at almost 100%.

168

169 Additionally, primary LECs and BECs and the lymphatic ECFCs isolated as subpopulation were infected
170 with KSHV using low MOI and harvested for total DNA isolation at days 3, 7, 10 and 14 post infection.
171 Quantification of KSHV genome copies demonstrates that lymphatic ECFCs, similar to LECs, maintain

172 the viral episomes (Fig 1G). Interestingly, K-ECFCLYs and K-LECs show even an increase in genome copies
173 until day 14. In contrast, by using low MOI, K-BECs achieve a lower number of genome copies which are
174 gradually lost within two weeks after infection (Fig 1G).

175

176 **KSHV inhibits proliferation but not tube formation of ECFCs**

177 To determine if KSHV confers a growth advantage to ECFCs, we mock-or KSHV-infected blood
178 and lymphatic ECFCs and seeded 3×10^4 cells 48 hours post infection in 6-well plates and monitored their
179 confluence over time using the live-cell Essen Bioscience IncuCyte imaging system. Fig 2A shows that
180 mock-infected blood ECFCs proliferated at a slightly higher rate than mock-infected lymphatic ECFCs.
181 Interestingly, KSHV infection significantly reduced proliferation of both blood and lymphatic ECFCs.
182 However, there are no significant differences in the reduction of proliferation between these two cell
183 types suggesting that KSHV has a mild inhibitory effect on cell proliferation, but this is not dependent
184 on blood versus lymphatic cell origin. We then also compared the proliferation rate of KSHV-infected
185 and non-infected lymphatic ECFCs that had been isolated as a subpopulation by seeding cells to 96-well
186 plates and subjected them to an EdU pulse for 4h before fixation. The Click-IT EdU staining, measured
187 only from LANA+ cells, indicated only slight difference between the percentage of uninfected and the
188 KSHV-infected lymphatic ECFCs undergoing proliferation (Fig 2B), confirming the mild inhibitory effect
189 on cell proliferation.

190

191 To determine if KSHV-infection supports viability of lymphatic ECFCs under limited growth factor
192 conditions, mock and KSHV-infected cells were seeded on 96-well plates. The cells were grown either
193 in normal media containing all the supplements, growth factor reduced media or media without any

194 supplements or serum for 7-day period (media replenished at day 4). As shown in Fig 2C, KSHV-infected
195 lymphatic ECFCs survived better than the mock cells under both the growth factor reduced and serum
196 deprived conditions, indicating increased viability in limiting growth media.

197

198 KS tumors are highly vascularized with irregular, enlarged vascular slits, indicating increased
199 neovascularization. We have previously shown that KSHV infection of ECs promotes the stability of
200 capillary networks in a Matrigel model of endothelial cell migration [33]. To measure whether KSHV
201 alters the ability of blood or lymphatic ECFCs to undergo angiogenesis, we mock- or KSHV-infected
202 blood and lymphatic ECFCs. Cells were plated on a Matrigel matrix 48 hours post infection. Fig 2D shows
203 that both blood and lymphatic ECFCs organized into networks on Matrigel at 4 hours post plating (top
204 panels). Interestingly, unlike mature endothelial cells, both blood and lymphatic ECFCs maintained the
205 cord structures at 24 hours post plating (bottom panels). Under these conditions, KSHV had little effect
206 on the ability of ECFCs to organize on Matrigel and maintain their capillary stability.

207

208 **KSHV confers a survival advantage to lymphatic ECFCs grown in soft agar**

209 We next examined if KSHV promotes anchorage independent growth of ECFCs in soft agar, an
210 indicator of cell transformation. We mock- or KSHV-infected blood and lymphatic ECFCs and, after 48
211 hours, embedded a single cell suspension in a soft agar matrix which was overlaid by normal growth
212 media. We then monitored the growth and formation of small colonies of cells over the course of four
213 weeks. Fig 3A shows images of cell suspensions following four to five weeks of growth. We could not
214 find any evidence of multicellular colonies in the uninfected blood nor lymphatic ECFCs. Only single cells
215 could be visualized even when incubated 36 days indicating these cells are unable to proliferate in the

216 absence of attachment to a solid surface. Additionally, KSHV-infected blood ECFCs (K-ECFCBL) showed
217 no indication of multicellular colonies in soft agar. Interestingly, after four weeks in soft agar culture,
218 many multi-cellular colonies were found in the wells containing K-ECFCLYs indicating the ability of KSHV
219 infected lymphatic ECFCs to grow in an anchorage independent fashion. Scanning and quantifying
220 multiple experiments indicated that approximately 10% of the KSHV infected ECFCLYs formed
221 multicellular colonies (Fig 3B).

222

223 The capacity of KSHV-infected cells to grow in soft agar was also addressed using the lymphatic ECFCs
224 isolated as an adherent subpopulation. To this end, non-infected and KSHV-infected lymphatic ECFCs
225 from four different donors were embedded as single cells to soft agar seven days post infection. Fully
226 transformed renal cell carcinoma cell line stably infected with KSHV, iSLK.219 [34], was used as a
227 positive control. We then monitored the growth and formation of small colonies of cells over the course
228 of four weeks. Fig 3C shows images of cells from donor 1 after four weeks of growth. The colonies were
229 calculated and quantified as shown in Fig 3D-E. We could not detect any evidence of multicellular
230 colonies in the non-infected samples, however, after four weeks in soft agar, many colonies were
231 observed in the wells containing K-ECFCLYs. These results further support the ability of KSHV infected
232 lymphatic ECFCs to proliferate in an anchorage independent fashion.

233

234 Together, this suggests that KSHV may promote the survival and proliferation of lymphatic ECFCs but
235 not blood ECFCs in soft agar. However, this effect was limited to small colonies containing
236 approximately 3-17 cells. Fully transformed cells like iSLK.219 form robust colonies with 100s of cells
237 (Fig 3C-D). Therefore, KSHV allows significant but limited proliferation of cells in soft agar indicating

238 minimal transformation of the cells. The slow expansion of K-ECFCLYs in soft agar as compared to the
239 iSLK.219 cell line would be consistent with the slower growth of KS tumors compared to many more
240 aggressive tumors like renal cell carcinoma.

241

242 **Gene expression changes induced by KSHV infection of lymphatic ECFCs**

243 To determine the effects of KSHV infection on blood and lymphatic ECFCs, we measured the
244 global gene expression differences between these cells upon primary KSHV infection. mRNA from blood
245 and lymphatic ECFCs that were mock- or KSHV-infected, was analyzed by high throughput RNA
246 sequencing 48 hours post infection. We also compared these gene expression profiles to previous data
247 we generated from mature BECs and LECs [14]. S3A Fig shows a Venn diagram comparing all genes
248 upregulated during KSHV infection by at least 2-fold in all cell types. Approximately 125 genes are
249 specific to KSHV-infected BECs (both mature and ECFCs), while 52 genes were specific to LECs. To
250 validate the RNA-sequencing results, we analyzed selected genes that had differential expression
251 between blood and lymphatic ECFCs using custom PrimePCR plates (S3B Fig). These data are consistent
252 with the gene expression changes identified by high-throughput sequencing.

253

254 Using Cytoscape software and the Gene Ontology classification application BINGO, we determined the
255 Gene Ontology terms that were highly enriched among the K-ECFCBLs and K-ECFCLYs. The most highly
256 enriched categories for blood ECFCs are listed in S1 Table. Interestingly, these include many immune
257 response categories. The individual genes for some of these categories are listed in S2 Table. In contrast,
258 lymphatic ECFCs were not enriched in immune response categories, but were enriched in genes
259 involved in cell differentiation and signaling (S3 & S4 Tables). To confirm whether genes involved in the

260 innate immune response are upregulated in KSHV-infected blood ECFCs but not lymphatic ECFCs, we
261 performed real-time quantitative RT-PCR on RNA from mock and KSHV infected blood and lymphatic
262 ECFCs. S3C Fig shows that several genes involved in innate immunity, such as viperin and IFI6, are
263 induced by KSHV in blood ECFCs but not in lymphatic ECFCs. This suggests that lymphatic and blood
264 ECFCs may have differential innate immune responses to KSHV infection.

265

266 High-throughput RNA sequencing was repeated with lymphatic ECFCs, isolated as a subpopulation from
267 a different donor. Cells were mock- or KSHV-infected for seven days before total RNA was harvested
268 for sequencing. The gene expression profiles were compared to the data obtained from lymphatic
269 ECFCs infected with KSHV for 48h as described above. S3D Fig shows a Venn diagram of 1444 shared
270 gene expression changes between the two infected ECFCLY-isolates, also listed in S6 Table. The higher
271 number of differentially expressed genes with ECFCLYs infected for seven days is most likely due to the
272 longer exposure to virus thus allowing more phenotypic changes to occur.

273

274 S3E Fig shows a Volcano blot of differentially expressed genes between mock and KSHV-infected ECFCLY
275 after 7 days of infection. Interestingly, significantly upregulated genes include those involved in
276 lymphatic endothelial specification, such as LYVE1, Podoplanin, and VEGFC. Also, some mesenchymal
277 genes implicated in EndMT were moderately, but significantly, upregulated. Selected genes were
278 validated with RT-qPCR shown in S3F Fig, and they are consistent with the gene expression changes
279 identified by high-throughput sequencing.

280

281 **SOX18 inhibition reduces the hallmarks of KSHV infection in lymphatic ECFCs in vitro and in vivo**

282 Our recent data demonstrated that SOX18, expressed abundantly in KS tumors and K-LECs,
283 binds to the origins of KSHV replication and increases the intracellular viral DNA genome copies [12].
284 To address the SOX18 role in K-ECFCLYs the cells were treated with siRNA targeting SOX18 or non-
285 targeting control siRNA (siNeg) after five days of infection and analyzed three days later for KSHV
286 genome copies, number of LANA positive cells and infectious virus release on naïve U2OS cells (Fig 4A-
287 D). Similar to K-LECs, depletion of SOX18 significantly reduced the intracellular viral genome copies,
288 number of LANA-positive cells and the virus titers (Fig 4A-D). To measure the effect of SOX18 inhibition
289 by the SM4 inhibitor on lymphatic K-ECFCLYs, GFP and RFP positive cells (to monitor latent and lytic
290 infection), spindling phenotype of the cells, in addition to the above-mentioned phenotypes were
291 measured as the hallmarks of KSHV infection. K-ECFCLYs (at 5 days p.i.) were treated with SM4 at
292 concentrations 1 μ M, 25 μ M and 50 μ M for 6 days and DMSO was used as a control. Fig 4E shows that
293 similarly to depletion of SOX18 by siRNA, 25 μ M of SM4 was sufficient to reduce the GFP positive cells,
294 spindling phenotype and RFP signal indicating cells undergoing lytic cycle. Furthermore, SM4
295 significantly, and in a dose-dependent manner, reduced the number of KSHV genome copies, LANA
296 positive cells and released infectious virus from the infected lymphatic ECFCs (Fig 4F-H). These data
297 demonstrate that SOX18 is required to maintain the high number of intracellular KSHV genomes and
298 viral titers in the K-ECFCLYs, similar to K-LECs [12].
299
300 By using a three-dimensional (3D), organotypic cell model for KSHV infection we have previously shown
301 that KSHV promotes the ability of mature lymphatic endothelial cells to invade into 3D cross-linked
302 fibrin [10]. Next, we tested if KSHV infection would induce the 3D sprouting growth of the lymphatic
303 ECFCs and if it was dependent on SOX18 function. To this end, mock- and KSHV-infected lymphatic

304 ECFCs cells were first allowed to form spheroids overnight and then embedded in 3D fibrin. As shown
305 in Fig 4I KSHV induced outgrowth of sprouting cells from the lymphatic ECFC spheroids, which was
306 completely abolished during the 6-day 50 μ M SM4 treatment. The mock infected lymphatic ECFC
307 spheroids did not sprout and SM4 did not have any effect on their morphology (Fig 4J). Together these
308 data support that the lymphatic ECFC represent a viable model for KSHV infection and testing of the
309 translational potential of novel targets for KS.

310

311 **SOX18 inhibition reduces the hallmarks of KSHV infection *in vivo***

312 As the KSHV-infected lymphatic ECFCs support the complete lytic replication program,
313 proliferate, and show emerging transformation, we decided to test their long-term persistence *in vivo*
314 in NSG mice when implanted subcutaneously. Mock and KSHV-infected lymphatic ECFCs were
315 implanted subcutaneously in Matrigel after seven days of infection (7 d.p.i.). After a 30-day period,
316 visible cell plugs were collected and analyzed for the presence of KSHV DNA and intensity of GFP (from
317 the rKSHV.219 latent infection) and LANA by IFA from the paraffin embedded sections (Fig 5A). Fig 5B
318 shows that the K-ECFCLYs recapitulate the spindling phenotype of KS tumor cells in the lesions and
319 express LANA suggesting that they represent a promising *in vivo* model to investigate the potential
320 treatment modalities for KS.

321

322 We next tested the effect of SM4 on similar model (Fig 5A). To this end, 4×10^6 mock- or KSHV infected
323 lymphatic ECFCs, mixed with K-LECs, were injected subcutaneously into NGS mice 7 d.p.i. K-LECs were
324 included to provide more spontaneously lytic cells that can contribute to the inflammatory
325 microenvironment and produce more infectious virus. The final proportions of cells were 90-95% of K-

326 ECFCLYs and 5-10% of K-LECs. The next day SM4 or vehicle (80% PEG-400, 10% Solutol HS-15, 10%
327 dH2O) was administered orally at a dose of 25mg/kg of body weight daily for 10 sequential days as
328 described in [27], after which the cell plugs were collected and analyzed by IHC for cell morphology, IFA
329 for KSHV infection, and qPCR for KSHV DNA.

330

331 Interestingly, IHC of cell plugs from mice treated with SM4 displayed several necrotic areas in the grafts,
332 whereas the vehicle group showed cells with a spindle-like, elongated morphology, often found in
333 clusters (Fig 5C, left panels). IFA was performed for sections to distinguish the GFP-expressing, KSHV-
334 infected cells with spindle-like morphology. Stained sections imaged with a confocal microscope are
335 shown in Fig 5C (right panels). The intensity of GFP signal and the coverage of spindling cells in the
336 sections differed significantly between the treatment groups (Fig 5D). While GFP signal in spindling cells
337 was observed in the Vehicle group, the overall GFP signal in the SM4 group was weak, having also
338 significantly less cells with spindling morphology. Quantification showed that the Vehicle group had
339 higher GFP intensity and more spindling cells, when normalized to the section area, and when
340 compared to the SM4 treatment group (Fig 5D). The mock infected lymphatic ECFCs did not express
341 GFP and were used to subtract the autofluorescence for quantification. These results indicate strong
342 potential of SOX18 inhibition to reduce the hallmarks of KSHV infection in this novel *in vivo* KSHV
343 infection model.

344

345 We next measured the KSHV genome copy numbers by qPCR from the extracted total DNA of the
346 grafted samples. The human repetitive ALU-sequences as an internal control were used as a highly
347 sensitive and specific quantification for the human cells among the abundant rodent cells. The KSHV

348 genome copies were quantified using primers specific for LANA. Fig 5E shows that SM4 significantly
349 decreased the relative KSHV genome copy numbers compared to the Vehicle control group further
350 supporting the potential of SOX18 inhibition as a viable therapeutic modality for KS.

351

352 Discussion

353 Studies of KS tumors are limited by the lack of a clear understanding of the source of the main
354 proliferating tumor cell, the spindle cell. While spindle cells express markers of lymphatic endothelium
355 and most closely align to the gene expression pattern of lymphatic endothelial cells, they also express
356 blood vascular endothelial and mesenchymal cell markers. However, in contrast to angiogenic
357 endothelial cells, quiescent endothelial cells in mature vessels generally do not migrate. There is
358 evidence that the cells that seed KS tumors are able to traffic from the kidney as KS of donor origin
359 formed to the lower extremities of the recipient following a kidney transplant from a KSHV-positive
360 donor [18]. Interestingly, endothelial precursor cells traffic throughout the body through the blood and
361 are known to traffic to sites of angiogenesis. Thus, it has been proposed by multiple groups that
362 endothelial precursor cells are a likely source of KS spindle cells [19–21]. Therefore, we sought to isolate
363 the precursor ECFCs and characterize KSHV infection in those cells. When isolating ECFCs from human
364 blood, we found that the standard endothelial colony forming cells could be separated into isolates that
365 expressed blood endothelial markers and isolates that expressed lymphatic specific markers. We also
366 isolated ECFCs from four donors as an adherent subpopulation without clonal expansion of individual
367 colonies. Interestingly, these isolates represented uniform cultures of predominantly lymphatic ECFCs.

368 This might indicate that lymphatic ECFCs have a growth advantage over the blood ECFCs and take over
369 the culture when cells proliferate during colony formation.

370

371 Similar to the neonatal blood and lymphatic endothelial cells isolated from foreskins, the lymphatic
372 ECFCs were more permissive to KSHV infection and the viral episomes were maintained over multiple
373 passages at higher levels as compared to the blood ECFCs. KSHV infection did not alter the ability of
374 either cell type to form capillary-like structures in Matrigel indicating that KSHV does not dramatically
375 alter the angiogenic potential of either cell type. However, infection with KSHV slightly decreased the
376 proliferation rate of both blood and lymphatic ECFCs. We have also noted a decrease in proliferation of
377 neonatal and adult endothelial cells [12], so this appears to be a common phenotype of KSHV infection
378 of endothelial cells in general (DiMaio and Lagunoff, unpublished).

379

380 To determine if there was any evidence of transformation of the ECFCs despite the reduced
381 proliferation, we examined the proliferation of non-infected and infected blood and lymphatic ECFCs
382 following detachment from a solid matrix. Interestingly, neither non-infected or infected blood ECFCs
383 proliferated in soft agar nor did the uninfected lymphatic ECFCs. However, in a large number of studies
384 using six different isolates of KSHV-infected ECFCs, approximately 10% of the cells formed small
385 colonies following incubation of over four weeks in soft agar. While the colonies did not expand beyond
386 the small 3-17 cell colonies, in all the experiments performed we did not detect any colony formation
387 in the non-infected blood or lymphatic ECFCs or the infected blood ECFCs indicating that this
388 proliferation only occurred in the KSHV-infected lymphatic ECFCs and was reproducible. While there
389 were numerous colonies formed, not every cell formed a colony. Thus, the transformation phenotype

390 was limited while a similar assay with iSLK.219, a renal cell carcinoma cell line stably infected with a
391 recombinant KSHV, led to very large colonies in soft agar of hundreds of cells or more. The iSLK.219
392 cells also formed colonies more rapidly. Of note, in line with our findings, KS tumors are fairly indolent
393 and do not grow rapidly.

394

395 To begin to decipher why there are differences in the behavior of lymphatic and blood ECFCs following
396 KSHV infection we performed RNAseq analysis of non-infected and KSHV-infected lymphatic and blood
397 ECFCs. We identified 758 genes that are enriched in KSHV-infected blood ECFCs compared to lymphatic
398 ECFCs (S5 Table). In contrast, 1,395 genes are enriched in lymphatic ECFCs. Interestingly, when we
399 analyzed the lists of genes for enrichment of Gene Ontology categories, we found that many of the
400 genes induced by KSHV in blood ECFCs were involved in the innate immune response. These include
401 MX1 and MX2, which are interferon-induced genes that are viral restriction factors. MX2 in particular
402 has been shown to be effective at inhibiting herpesviruses, including KSHV [35,36]. Other interferon
403 response genes are also enriched in KSHV-infected blood ECFCs such as IFI6 and RSAD2. It is unclear
404 what effect this enhanced interferon response has on blood ECFCs. However, it could play a role in the
405 reduced susceptibility of blood ECFCs to KSHV infection or the increased rate of episome loss. We
406 previously found that in neonatal LECs STING was not activated [37]. Further work is necessary to
407 determine if the same is true for lymphatic ECFCs. In contrast to the blood ECFCs, genes upregulated
408 by KSHV in lymphatic ECFCs were found to be involved in lymph vessel development and intracellular
409 signaling. What role these genes have on KSHV infection of lymphatic ECFCs remains to be elucidated.

410

411 We recently reported high SOX18 expression in KS tumors and that was required to maintain the high
412 number of intracellular KSHV genome copies in infected LECs, suggesting SOX18 as an attractive
413 therapeutic target for KS [12]. Similar to K-LECs we found that KSHV-infected lymphatic ECFCs express
414 high levels of SOX18 and inhibition of SOX18 by a specific small molecule inhibitor SM4 significantly
415 reduced the intracellular viral genome copies also in KSHV-infected EFCFLYs. Since K-LECs do not
416 support long-term growth in culture and do not show even emerging signs of transformation they
417 cannot be used in preclinical in vivo studies to test the efficacy of SOX18 inhibitors. Therefore, we
418 investigated whether KSHV-infected lymphatic ECFCs engrafted into NSG mice could serve as a
419 physiologically relevant infection model to test the potential of SOX18 inhibition as a therapeutic
420 modality for KS. The KSHV-infected EFCFLYs survived as xenografts in mice for at least a month and
421 recapitulated the hallmarks of KSHV infection, which were significantly reduced upon SOX18 inhibition
422 by SM4.

423
424 Together our data suggest that lymphatic ECFCs are more susceptible to KSHV infection and may have
425 increased survival and proliferation capabilities during infection. While this does not definitively solve
426 the issue of the source of spindle cells, it shows that infected lymphatic ECFCs are certainly a possible
427 source. Moreover, our data supports that lymphatic ECFCs represent a viable new in vivo model for
428 KSHV infection, suitable for translational studies testing new therapeutic approaches for KS. Further
429 work to analyze KSHV infection of lymphatic ECFCs is warranted.

430
431

432 Materials and Methods

433 Cells

434 For isolation of ECFCs the blood samples were obtained from the Puget Sound Blood Bank (Seattle, WA,
435 USA) as either outdated whole blood (approximately 500 ml per unit) or leukocyte reduction filters,
436 which yielded between $4-7 \times 10^8$ leukocytes after elution. Whole blood was mixed 1:2 with phosphate-
437 buffered saline (PBS) containing 10,000 units per liter heparin and 0.02% EDTA. Cells from leukocyte
438 reduction filters were eluted with 200 ml PBS containing 10,000 units per liter heparin and 0.02% EDTA.
439 ECFCs were then isolated and cultured as previously described [38]. Individual colonies of cells were
440 clonally expanded. All experiments were performed on cells between passage 8 and 15.

441

442 For isolation of an adherent subpopulation of ECFCs fresh blood samples were obtained from the
443 Finnish Red Cross Blood Services (Helsinki, Finland) as buffy coat concentrates devoid of platelets. After
444 dilution of 1:2 in PBS, the cells were isolated according to manufacturer's instructions suing SepMate
445 tubes (STEMCELL Technologies, Cambridge, UK) and Ficoll-Paque density gradient media (GE
446 Healthcare, Uppsala, Sweden). The final number of mononuclear cells separated from each donor's
447 blood bag was approximately 1.5×10^7 cells/mL, yielding a total of 200 million cells. The cells were
448 transferred onto a fibronectin 25 $\mu\text{g}/\text{mL}$ (Sigma-Aldrich, St.Louis, USA) and 15 $\mu\text{g}/\text{mL}$ rat tail collagen
449 (Merck, St.Louis, USA) pre-coated cell culture 6-well plate with EBM-2 endothelial media supplemented
450 with 10% FBS and a growth factor bullet kit (Lonza, Walkersville, USA) 3 mL/well. Cultures were followed
451 up to three weeks, washing away any non-adherent cells and changing fresh supplemented EBM-2
452 media every other day. When populations of adherent, cobblestone-like cells resembling endothelial
453 cells formed, they were split onto pre-coated 10 cm culture dishes without colony selection. These cells

454 were then frozen in Cryo-SFM freezing media (Promocell, Heidelberg, Germany) and stored in a liquid
455 nitrogen tank prior to the phenotype analyses and using as an infection model. All experiments were
456 performed on cells between passage 3 and 8.

457

458 Primary human dermal lymphatic and blood endothelial cells (LEC C-12216 and BEC C-12211; Promocell,
459 Heidelberg, Germany) and neonatal dermal microvascular endothelial cells (hDMVEC) were maintained
460 as monolayer cultures in EBM-2 medium (Lonza, Walkersville, USA) supplemented with 5% fetal bovine
461 serum, vascular endothelial growth factor, basic fibroblast growth factor, insulin-like growth factor 3,
462 epidermal growth factor, and hydrocortisone (EGM-2 media). Human osteosarcoma cell line U2OS
463 (ATCC: HTB-96) was used as a naïve cell line to study KSHV infection kinetics and efficacy of infection in
464 the virus release assays. This cell line is highly susceptible to KSHV infection. iSLK.219 [34] is an RTA -
465 inducible renal-cell carcinoma SLK cell line, stably infected with a recombinant KSHV.219. U2OS and
466 iSLK.219 were grown in DMEM (Lonza), supplemented with 10% FCS (Gibco), 1% L-glutamate (Gibco),
467 and 1% penicillin/streptomycin (Gibco). iSLK.219 cells were also supplied with 10 µg/mL puromycin
468 (Sigma), 600 µg/mL hygromycin B (Invitrogen), and 400 µg/mL G418 (Invitrogen). All cells were
469 propagated in a humified incubator at standard conditions and primary cells were used until passage
470 five. Cells were regularly tested negative for *Mycoplasma* (MycoAlert Mycoplasma Detection Kit, Lonza,
471 Walkersville, USA).

472

473 **FACS analysis**

474 The ECFCs isolated as an adherent subpopulation were analyzed by FACS using the following
475 fluorescently conjugated antibodies for endothelial surface markers: A647-Podoplanin, PE-VEGFR3,

476 A647-CD34 and PE-CD31 (Biolegend, San Diego, USA). For the nuclear EC markers, cells were fixed and
477 permeabilized with MetOH and stained with antibodies against PROX1 (rabbit) (Proteintech, Rosemont,
478 USA) and SOX18 (mouse) (Santa Cruz Biotechnology, Dallas, USA), followed by staining with secondary
479 antibodies conjugated to Alexa Fluor 488 and 594 stains (Life Technologies). All samples were analysed
480 with BD Accuri C6 flow cytometer using unstained cells or secondary antibody only treated controls.

481

482 **Immunoblotting**

483 Cell lysis, SDS-PAGE and immunoblot were performed as described in [39]. The following primary
484 antibodies were used: Mouse monoclonal anti-actin (Santa Cruz Biotechnology, sc-8432;
485 RRID:AB_626630); Mouse monoclonal anti- SOX18 (D-8) (Santa Cruz Biotechnology, sc-166025;
486 RRID:AB_2195662); Rat monoclonal anti- HHV-8 (LN-35) LANA (Abcam, ab4103; RRID:AB_304278);
487 Mouse monoclonal anti- KSHV K8.1 (Santa Cruz Biotechnology sc-65446; RRID:AB_831825); rabbit
488 monoclonal anti- GFP (a kind gift from J. Mercer; UCL, London, United Kingdom). Following HRP-
489 conjugated secondary antibodies were used: anti-mouse, anti-rabbit and anti-rat IgG HRP conjugated
490 (Cell Signaling Technology, 7076, 7074, 7077; RRID:AB_330924; RRID:AB_2099233;
491 RRID:AB_10694715).

492

493 **Viruses and infection**

494 wtKSHV inoculum was obtained from BCBL-1 cells (5×10^5 cells/ml) induced with 20 ng of TPA (12-O-
495 tetradecanoylphorbol-13-acetate; Sigma, St.Louis, USA)/ml. After 5 days, cells were pelleted, and the
496 supernatant was run through a 0.45 μ m pore-size filter (Whatman, China). Virions were pelleted at
497 30,000xg for 2 h in a JA-14 rotor, Avanti-J-25 centrifuge (Beckman Coulter, Palo Alto, USA). The viral

498 pellet was resuspended in EBM-2 without supplements. wtKSHV infections were performed in serum-
499 free EBM-2 supplemented with 8 μ g/ml polybrene for 3 h, after which the medium was replaced with
500 complete EBM-2 with supplements. Mock infections were performed identically except that
501 concentrated virus was omitted from the inoculum.

502

503 The concentrated virus preparation of recombinant KSHV.219 virus was produced from iSLK.219 [34]
504 as described in [12] and stored at -80°C. Cells infected with rKSHV.219 express green fluorescent protein
505 (GFP) from the constitutively active human elongation factor 1- α (EF-1 α) promoter and red fluorescent
506 protein (RFP) under the control of RTA-responsive polyadenylated nuclear (PAN) promoter, expressed
507 only during lytic replication. Cells were infected at low MOI 1-2 in EBM-2 media with supplements in
508 the presence of 8 μ g/mL polybrene (Sigma-Aldrich, St.Louis, USA) and spinoculation at 450g for 30 min,
509 RT. Mock infections were performed identically except that concentrated virus was omitted from the
510 inoculum.

511

512 **Virus release assay**

513 One day prior to titration, 8×10^3 naïve U2OS cells/well were plated on viewPlate-96black (Perkin Elmer,
514 Waltham, USA). Cells were spinoculated in the presence of 8 μ g/mL of polybrene with serial dilution of
515 precleared supernatant from infected LEC, BEC or ECFC cells. Cells were stained with antibodies against
516 GFP (a kind gift from J. Mercer; UCL, London, United Kingdom) to detect the rKSHV.219-infected cells
517 or LANA (ab4103; Abcam, Cambridge, UK) and Hoechst 33342 (Sigma-Aldrich, St.Louis, USA). Images
518 were taken using automated cell imaging system ImageXpress Pico (Molecular Devices, San Jose, USA)
519 and KSHV+ cells were quantified using pipeline created in CellProfiler (Broad Institute, Cambridge, USA).

520

521 **siRNA transfections**

522 Transient transfection of siRNA of a semi-confluent culture of KSHV-infected lymphatic ECFCs was done
523 using 3 μ l of Lipofectamine RNAiMAX (Invitrogen, Lithuania) and 150 pmol siRNA in a 6-well plate
524 according to manufacturer's instructions. Next day cells were supplied with fresh media. The following
525 siRNAs were used: ON-TARGETplus SOX18 siRNA (L-019035-00); ON-TARGETplus Nontargeting pool
526 siRNA (D-001810-10) from Dharmacon (Lafayette, USA).

527

528 **Cell proliferation and viability**

529 Blood and lymphatic ECFCs were mock- or KSHV-infected. 48 hours post infection, 3×10^4 cells/well were
530 seeded in 6-well dishes and imaged using an IncuCyte live cell imaging system (Essen Bioscience). Cell
531 confluence of 3 replicate wells was determined every hour for the duration of the experiment and 2
532 biological replicate experiments were performed.

533

534 To compare the proliferation rates of mock- and KSHV-infected lymphatic ECFCs, 5×10^3 cells/well were
535 plated 5 days post infection on viewPlate-96black and the next day the cells were treated with 10 μ M
536 5-ethynyl-2'-deoxyuridine EdU (Thermo Fisher, Eugene, OR) for 4 h and fixed in 4% paraformaldehyde
537 in PBS. The proliferating cells were visualized using EdU ClickIT (Invitrogen) staining according to
538 manufacturer's instructions, and Hoechst 33342. Images were taken using automated cell imaging
539 system ImageXpress Pico and the portion of EdU-containing cells was quantified with CellProfiler
540 software.

541

542 For measuring the viability of infected cells in serum and/or growth factor deprived media over time,
543 CellTiter-Glo (Promega) assay was performed on 96-well plates for 20 min seeded with 5×10^3 cells/well
544 of each cell type in 8 corresponding wells and the luminescence from live cells were measured with
545 FLUOstar Omega microplate reader (BMG Labtech, Mölndal, Sweden). The viability was calculated as
546 an average of luminescent signal from 8 wells and presented as relative values.

547

548 **Tube formation of endothelial cells**

549 Matrigel (10 mg/ml; BD Biosciences, Bedford, MA) was applied at 0.5 ml/35 mm in a tissue culture dish
550 and incubated at 37°C for at least 30 min to harden. Mock- or KSHV-infected cells were removed using
551 trypsin-EDTA and resuspended at 1.5×10^5 cells /ml in EBM-2 with supplements. Cells (1 ml) were gently
552 added to Matrigel (Corning) -coated dish. Cells were incubated at 37°C, monitored for 4-24 h, and
553 photographed in digital format using a Nikon microscope. Capillaries were defined as cellular processes
554 connecting two bodies of cells. Ten fields of cells were counted for each condition and the mean and
555 standard deviations were determined.

556

557 **Soft-agar assay**

558 Cells (3×10^4 /well) were mixed with 0.4% agarose as single cell suspension in growth medium and plated
559 on top of a solidified layer of 0.5% agarose in EBM-2 with supplements in 6-well dishes. Fresh media
560 was replenished every 2-3 days and wells were imaged each week using a BZ-X800 (Keyence) or Eclipse
561 Ts2 (Nikon) fluorescent microscopes.

562

563 **RNA-sequencing**

564 Total RNA was isolated from mock- and KSHV-infected blood or lymphatic ECFCs using the NucleoSpin
565 RNA kit (Macherey-Nagel, Düren, Germany). RNA was further concentrated and purified using the RNA
566 Clean and Concentrator kit (Zymo Research, Irvine, CA). Purified RNA samples were processed at the
567 Fred Hutchison Cancer Research Center Genomic Resources core facility (Seattle, WA) and sequenced
568 using an Illumina HiSeq 2000. Image analysis and base calling were performed using RTA v1.17 software
569 (Illumina, San Diego, CA). Reads were aligned to the Ensembl's GRCh37 release 70 reference genome
570 using TopHat v2.08b and Bowtie 1.0.0 [40,41]. Counts for each gene were generated using htseq-count
571 v0.5.3p9. Differentially expressed genes were determined using the R package EdgeR (Bioconductor).
572 Genes were called significant with a $|\log_{2}FC| > 0.585$ and a false discovery rate (FDR) of <0.05 . Gene
573 Ontology enrichment was performed using Cytoscape and BINGO [42]. Using cytoscape software and
574 the Gene Ontology classification application BINGO, we determined the Gene Ontology terms that were
575 highly enriched among the blood and lymphatic specific expressed genes. The most highly enriched
576 categories for each cell type are listed in S1 & S3 Tables. Additionally, the data discussed in this
577 publication have been deposited in NCBI's Gene Expression Omnibus [43] and are accessible through
578 GEO Series accession number GSE54416 and GSE207589
579 (<http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54416>
580 <http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207589>).
581
582 Total RNA was isolated from three independent experiments of the mock- and KSHV-infected lymphatic
583 ECFCs isolated as an adherent subpopulation from donor 1 using the NucleoSpin RNA extraction kit
584 (Macherey-Nagel), after which purity and concentration was determined with NanoDrop
585 spectrophotometer (Thermo Scientific). The RNA was sequenced in an Illumina Novaseq 6000 (150

586 bases, paired end) by Novogene (Cambridge, UK). Original image data was transformed to sequenced
587 reads by CASAVA base recognition. Raw data were cleaned from low quality reads and reads containing
588 adapter and poly-N-sequences in FASTP. Clean reads were mapped to the human genome
589 (GRCh38.p12) using HISAT2 with parameters—dta—phred33. Read counts were generated by
590 FeatureCounts [44]. Differentially expressed genes were determined using the R package DESeq2. The
591 resulting P values were adjusted using Benjamini and Hochberg's approach for controlling FDR. Genes
592 with adjusted P value <0.05 were assigned as differentially expressed. Raw data are deposited in NCBI's
593 Gene Expression Omnibus [43] and are accessible through GEO Series accession number GSE207657
594 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207657>).

595

596 **Quantitative RT-PCR**

597 Total RNA was isolated from cells using the RNeasy Plus Minikit (Qiagen, Maryland, USA) or NucleoSpin
598 RNA extraction kit (Macherey-Nagel) and used in quantitative reverse transcription PCR (RT-PCR;
599 Invitrogen, Van Allen Way Carlsbad, US) according to manufacturer's protocols. Real time quantitative
600 Polymerase chain reaction (RT-qPCR) and PrimePCR plates (Bio-Rad, Hercules, CA) or LightCycler480
601 PCR 384 multiwell plates (4titude FrameStar, Wotton, UK) were used to validate the RNA-Seq results.
602 Primer sequences used to amplify the indicated targets are listed in Table 1. Relative abundances of
603 viral mRNA were normalized by the delta threshold cycle method to the abundance of GAPDH or actin.

604

605 Table 1. Primers used in this study.

Primer	Forward primer	Reverse primer
LANA	ACTGAACACACGGACACGG	CAGGTTCTCCATCGACGA

K8.1	<i>AAAGCGTCCAGGCCACACAGA</i>	<i>GGCAGAAAATGGCACACGGTTAC</i>
ALU	<i>GGTGAACCCCGTCTCTACT</i>	<i>GGTCAAGCGATTCTCCTGC</i>
genomic actin	<i>AGAAAATCTGGCACACACACC</i>	<i>AACGGCAGAAGAGAGAACCA</i>
CD31	<i>AACAGTGGTACATGAAGAGCC</i>	<i>TGTAAAACAGCACGTCATCCTT</i>
VEGFC	<i>GCCAATCACACTCCTGCCGA</i>	<i>AGGTCTTGTTCGCTGCCTGAC</i>
LYVE1	<i>CTGCATGACACCTGGATGGA</i>	<i>AAGGGCTGAAACAAGGACA</i>
Podoplanin	<i>CGAAGATGATGTGGTGAETC</i>	<i>CGATGCGAATGCCTGTTAC</i>
CD44	<i>CCCATCCCAGACGAAGACAG</i>	<i>ACCATGAAAACCAATCCCAGG</i>
CD90 THY1	<i>TCGCTCTCCTGCTAACAGTCT</i>	<i>CTCGTACTGGATGGGTGAAC</i>
aSMA	<i>GACCCCTGAAGTACCCGATAGAAC</i>	<i>GGGCAACACGAAGCTCATTG</i>
ZEB1	<i>GATGATGAATGCGAGTCAGATGC</i>	<i>ACAGCAGTGTCTTGTGTTGAG</i>
SNAI1	<i>GCATTCTTCACTCCGAAGC</i>	<i>TGAATTCCATGCTCTGCAG</i>
ETS1	<i>GAGCTTTCCCTCCCCGGAT</i>	<i>TGCCGGGGTCTTTGGAT</i>
ETS2	<i>AGGAGTTTCAGATGTTCCCC</i>	<i>GTCCCAGAATTGTTGGTGAG</i>
MMP1	<i>AGTCGGTTTTCAAAGGGAA</i>	<i>CCTTGGGGTATCCGTGTAGC</i>
CXCR4	<i>GCCAACGTCAGTGAGGCAGA</i>	<i>GCCAACCATGATGTGCTGAAAC</i>
IL6	<i>GAACCTTCCAAAGATGGCTGA</i>	<i>CAAACCTAAAAGACCAGTGATG</i>
TGFB3	<i>TGAGCACATTGCCAACAGC</i>	<i>ACTCAGTGGCAAAGCTAGGG</i>
actin	<i>TCACCCACACTGTGCCATCTACGA</i>	<i>CAGCGGAACCGCTCATTGCCAATGG</i>
GAPDH	<i>AAGGTGAAGGTCGGAGTCAAC</i>	<i>TGGAAGATGGTGTGGGATTT</i>
Viperin	<i>GTGAGCAATGGAAGCCTGATC</i>	<i>GCTGTCACAGGAGATAGCGAGAA</i>
IFI6	<i>CCTCGCTGATGAGCTGGTCT</i>	<i>CTATCGAGATACTTGTGGGTGGC</i>
IL1R1	<i>AGAGGAAAACAAACCCACAAGG</i>	<i>CTGGCCGGTGACATTACAGA</i>
MyD88	<i>GCACATGGGCACATACAGAC</i>	<i>GACATGGTTAGGCTCCCTCA</i>

606

607 Quantification of intracellular viral genome copies

608 Total DNA was isolated from cells using NucleoSpin Tissue Kit 192 (Macherey-Nagel) and the KSHV
609 genome copies were quantified by qPCR using primers specific for LANA, K8.1, and genomic actin, listed
610 in Table 1.

611

612 **SOX18 inhibitor treatments *in vitro***

613 For the *in vitro* studies, small molecule SOX18 inhibitor SM4 (Sigma-Aldrich / or a kind gift from
614 Gertrude Biomedical Pty Ltd.) was solubilized in DMSO (Sigma-Aldrich) to obtain a stock solution of 50
615 μM and stored in 4°C.

616

617 For SOX18 inhibition in 3D spheroid cultures mock- or KSHV-infected lymphatic ECFCs were seeded into
618 0.5% agarose precoated, round-bottom 96-well plates (Corning, NY, USA) at 4x10³ cells per well. After
619 16-24 h incubation at 37°C, the preformed spheroids were transferred into the fibrin gel consisting of
620 plasminogen-free human fibrinogen (final concentration 3 mg/ml; Calbiochem, USA) and human
621 thrombin (final concentration 2 U/ml; Sigma) in 50 μl Hank's Balanced Salt Solution supplemented with
622 400 μg/ml aprotinin (Sigma). The gels were cast onto the bottom of 12-well plates and incubated for
623 1 h at 37°C to allow complete gelling followed by addition of EC culture medium. The next day, SM4 or
624 DMSO as a control was added to the culture media, replenished at day 3 and followed until day 6.
625 Images were taken and the spheroids were fixed with 4% PFA for 1 h RT. The spheroids were stained
626 by anti-rabbit GFP, and Hoechst 33342 as described in [10] and analyzed by confocal microscopy.

627

628 **In vivo model development and SOX18 inhibition**

629 Female NSG mice (Nonobese diabetic (NOD)/severe combined immunodeficiency (SCID); NOD.Cg-

630 Prkdc^{scid} Il2rg^{tm1Wjl}/SzJ) used in this study were provided by Jackson Laboratory and acquired through
631 Scanbur (Germany). The mice were acclimatized for 7 days in isolation. After the isolation period, mice
632 were trained for handling, weighing and finally to oral gavage tube feeding with clean water to reduce
633 stress for the animals during the experimental procedures. The maintenance and all procedures with
634 the mice were performed in authorized facilities, at the Laboratory Animal Center University of Helsinki
635 (Finland), by trained certified researchers, and under a license approved by the national Animal
636 Experiment Board, Finland (license number ESAVI/10548/2019 for tumor growth and
637 ESAVI/22896/2020 for the oral gavage administration).

638

639 When the majority (about 90%) of the KSHV-infected lymphatic ECFCs expressed GFP, with some (about
640 5%) expressing RFP, the cells were collected and mixed with K-LECs, almost fully infected with
641 rKSHV.219, with a substantial part (20-30%) expressing RFP. The combined cell preparation consisted
642 of 90-95% of KSHV-infected lymphatic ECFCs and 5-10% of K-LECs. K-LECs were included to provide the
643 more spontaneously lytic cells that can contribute to the inflammatory microenvironment and produce
644 more infectious virus than the ECFCs. 5x10⁶ cells/ 100 µL of cells were embedded in media containing
645 ice-cold growth-factor reduced Matrigel (Corning, NY, USA) at 3 mg/mL concentration. 100 µL of the
646 cell-Matrigel suspension was injected subcutaneously to the flanks of NSG mice, using total of 14 mice/
647 group.

648

649 For in vivo studies, SM4 was freshly prepared in the vehicle solution of 80% Kollisolv PEG-400 (Sigma-
650 Aldrich), 10% MilliQ water and 10% Kolliphor ELP/Solutol HS-15 (Sigma-Aldrich) for each treatment
651 dosing day at a concentration of 8 mg/mL. One day after subcutaneous implanting of the cell-Matrigel

652 suspension a dose of 25 mg/kg of body weight was administered to mice daily for 10 sequential days as
653 described in [27] using disposable polypropylene 20 ga, 38 mm feeding tubes (Instech, Philadelphia,
654 USA) optimal for safe intragastric (IG) administration. After the 10-day SM4 or Vehicle control
655 treatment, and 24h after the last dose, the mice were euthanized under anesthesia by cervical
656 dislocation. The injected cells (appearing as visible/palpable Matrigel plugs) were quickly removed for
657 either histological sampling and embedded in 10% neutral buffered formalin solution (Sigma) or stored
658 in -80C for DNA extraction performed by NucleoSpin Tissue Kit (Macherey-Nagel) according to
659 manufacturer's instructions.

660

661 **Immunohistochemistry**

662 Deparaffination, rehydration and epitope revealing were done before staining as described in [38].
663 Sections were stained with Hematoxylin (Merck Millipore) and Eosin (Sigma-Aldrich) and with and
664 Immunofluorescence using anti-rabbit GFP antibody (a gift from Jason Mercer, University of
665 Birmingham, UK) and secondary anti-rabbit Alexa Fluor 488 antibody (Invitrogen). Nuclear staining was
666 done by incubating the sections in Hoechst 33342 (Sigma-Aldrich).

667

668 **Imaging and analysis**

669 H&E sections were imaged with automatic Panoramic250 slide scanner with 20x microscope through
670 services from Genome Biology Unit (GBU, University of Helsinki, Finland). Immunofluorescence images
671 from whole mount sections were taken with Zeiss Confocal LSM 780 microscope provided by
672 Biomedicum Imaging Unit (BIU, University of Helsinki, Finland). The images were taken as a Z-stack and
673 tiling was chosen to image the whole section area. Hoechst and GFP were imaged with 20x objective

674 using lasers Diode 405nm and Argon 488nm, respectively. The images were quantified by integrated
675 ZEN 3.5 analysis program (Zeiss, Germany) and a pipeline was generated for the images to measure the
676 relative GFP intensity normalized with the section area and the comparable coverage of the GFP signal
677 in the cells showing an elongated spindling phenotype.

678

679 **Statistical analysis**

680 Graphical presentations and statistical analysis were generated with GraphPad Prism Software v8.0
681 (Dotmatics, San Diego, USA). For statistical evaluation of the RT-qPCR data for relative KSHV genome
682 copies, the logarithmic values were converted to linear log2 scale values by using the double delta CT
683 ($2^{-\Delta\Delta CT}$) method. Human ALU-sequences were used as internal control and accounted in the
684 calculations to correct differences in the DNA amount, quality, and PCR synthesis efficacy between the
685 samples. The data is presented as individual values \pm standard deviation (SD) between biological
686 replicates. Statistical differences between groups were evaluated with Student's *t*-test (two-tailed).
687 Mean \pm SD was shown and a p-value of ≤ 0.05 was considered significant and indicated by asterisk.

688

689 **Figure Legends**

690 **Figure 1. Lymphatic ECFCs are more permissive to KSHV infection than blood ECFCs and maintain the**
691 **KSHV viral episome. A.** Lymphatic and blood ECFCs were infected with KSHV (K-ECFCLY and K-ECFCBL
692 respectively) at either a high MOI (upper panel) or **B.** a low MOI (lower panel). At 48 h.p.i cells were
693 harvested and stained with anti-LANA antibody for the number of infected cells and DAPI for the
694 number of total cells. Cells were counted and the percentage of LANA+ cells was determined. These
695 experiments were performed with cells isolated from at least two different donors for each cell type.

696 **C.** KSHV-infection of lymphatic ECFCs, LECs and BECs was compared over 14 days and pictures shown
697 at 7 d.p.i of spindling phenotype, latent infection (GFP) and spontaneous lytic replication (indicated by
698 RFP expression). **D.** Expression of KSHV latent (LANA) and lytic (K8.1) proteins, in addition to GFP and
699 SOX18 were analysed from mock- and infected lymphatic ECFCs. **E.** KSHV titers were measured by a
700 virus release assay on naïve U2OS cells. **F.** Lymphatic (squares) and blood (circles) ECFCs were infected
701 with KSHV and harvested every 2 days and stained for LANA expression. The percentage of LANA+ cells
702 was determined. **G.** Lymphatic ECFCs (squares), K-LECs (triangles) and K-BECs (circles) were KSHV-
703 infected at similar MOI and total DNA was collected at 3, 7, 10 and 14 d.p.i. Relative KSHV genome
704 copies were determined. Experiments were performed three times with similar results. * p < 0.05, **
705 p < 0.001, *** p < 0.0001.

706

707 **Figure 2. KSHV inhibits proliferation but not capillary morphogenesis. A.** 48 hours after infection with
708 KSHV, ECFCLY (squares), ECFCBL (circles), K-ECFCLY (upside down triangles) and K-ECFCBL (triangles),
709 were seeded in 6-well dishes and placed in an Essen Biosciences IncuCyte. Pictures were taken every 2
710 hours and percentage confluence was determined. **B, C.** Mock- or KSHV-infected lymphatic ECFCs were
711 seeded 5 d.p.i on 96-well dishes and **B.** treated with EdU for 4h before fixing. EdU-positive cells were
712 stained, and percentages of proliferating cells were determined. **C.** Relative viability after 7 days in full
713 or serum and/or growth factor deprived media was measured with CellTiter-Glo luminescence assay.
714 **D.** Blood and lymphatic ECFCs were mock- or KSHV-infected. 48 h.p.i cells were plated on Matrigel and
715 monitored for capillary morphogenesis at 4 and 24 hours post plating. * p < 0.05.

716

717 **Figure 3. KSHV confers a survival advantage to lymphatic ECFCs grown in soft agar. A.** Mock or KSHV-
718 infected lymphatic and blood ECFCs were embedded 48 h.p.i in soft agar overlaid with 0.5ml growth
719 media, and media was replenished every 2-4 days. **B.** The number of colonies with two or more cells at
720 36 days post plating were quantified. These experiments were performed up to eight times with similar
721 results. **C.** Lymphatic ECFCs mock- or KSHV- infected were embedded 5 d.p.i. in soft agar. iSLK.219 was
722 used as a positive control cell line. Quantification of number of colonies of at least 3 cells (**D**) and
723 number of cells in colonies from 4 different donors (**E**). Experiments were performed at least three
724 times with similar results. ** p < 0.01.

725

726 **Figure 4. SM4 inhibit the hallmarks of KSHV infection in lymphatic ECFCs in vitro.** Lymphatic ECFCs
727 were infected with KSHV for 5 days, and treated with **A-E.** siRNA targeting SOX18, or control siRNA
728 (siNeg) transfected for 72h or **E-H.** with indicated concentrations of SM4 inhibitor or DMSO control for
729 6 days, replenished at day 3. The effect of treatments is shown as quantified **A, F.** KSHV genome copies
730 from total DNA, **B, G.** percent of LANA positive cells on 96-well plates and **C, H.** KSHV titers measured
731 from virus release assay on naïve U2OS cells. **D.** The efficiency of SOX18 silencing shown at a protein
732 level. **E.** Changes in spindling morphology, GFP (latent) and RFP (lytic) cells shown with siRNA targeting
733 SOX18 or 25 µM of SM4 and DMSO control. **I-J.** Lymphatic ECFCs were either mock or KSHV-infected,
734 allowed to form spheroids overnight and then embedded in 3D fibrin. Spheroids were treated for 6-
735 days with 50 µM of SM4 or DMSO control, and fixed. Phase contrast and confocal images are shown at
736 treatment day 6. * p < 0.05, ** p < 0.01, *** p < 0.001.

737

738 **Figure 5. SM4 inhibit the hallmarks of KSHV infection in lymphatic ECFCs in vivo. A.** Schematic of the
739 experimental in vivo layout of SOX18 inhibition on ECFCLY KSHV-infection model and sample collection.
740 **B.** Lymphatic ECFCs infected with KSHV for 7 days, or left uninfected, were implanted subcutaneously
741 to NSG mice. Long-term persistence of K-ECFCLY seen as expression of spindling GFP-positive cells and
742 staining of nuclear LANA dots, not seen with uninfected ECFCLY, from grafts extracted 30 days post
743 implantation. **C-E.** Lymphatic ECFCs and LECs, infected with KSHV for 7 days, or left uninfected, were
744 implanted subcutaneously to NSG mice with ratio of 90-95% of K-ECFCs and 5-10% of K-LECs. 24h post
745 implantation the mice were treated with either SM4 or Vehicle control daily for 10 days after which
746 mice were sacrificed and grafts were collected for total DNA and IHC. **C.** H&E staining imaged with slide
747 scanner and GFP imaged with confocal microscope. Quantification of **D.** overall GFP intensity, GFP
748 intensity only in spindling cells and spindling morphology (n = 12/ SM4 and 13/ Vehicle group) and **E.**
749 normalized KSHV genome copies from total DNA measured with RT-qPCR between SM4 or Vehicle
750 treated mice (n = 14/group). ** p < 0.01, *** p < 0.001.

751

752 **Supporting information**

753 **S1 Fig. Subpopulation of characterized ECFC isolates express markers of lymphatic vasculature.**
754 Comparison of adherent ECFCs isolate to mature LECs and BECs **A.** of the morphology, **B.** and expression
755 of surface and intracellular endothelial markers by FACS, **C.** measured also from isolates from 4 different
756 donors.

757

758 **S2 Fig. Comparison of infected lymphatic ECFCs from different donors.** ECFCLY isolated from 4
759 different donors, were infected with KSHV. **A.** Pictures taken at 7 d.p.i show spindling phenotype, latent
760 infection (GFP) and spontaneous lytic replication (indicated by RFP expression). **B.** Expression of KSHV
761 latent (LANA) and lytic (K8.1) proteins and SOX18 and **C.** KSHV titers were measured from virus release
762 assay on naïve U2OS cells.

763

764 **S3 Fig. Gene expression changes induced by KSHV infection of lymphatic ECFCs.**

765 **A.** Venn diagram showing overlapping gene expression profiles of uninfected BEC and LEC along with
766 blood and lymphatic ECFCs. **B, C.** Blood (black bars) and lymphatic (white bars) ECFCs were mock- or
767 KSHV-infected. At 48 h.p.i, RNA was isolated and analyzed for gene expression of **B.** a selection of genes
768 and of **C.** immune response genes identified as changed by RNA-sequencing. **D-F.** Lymphatic ECFCs were
769 mock or KSHV-infected, and 7 d.p.i RNA was isolated and analyzed for gene expression by RNA-
770 sequencing. Common gene expression changes between different isolates of ECFCLY after KSHV-
771 infection are shown as Venn diagram (**D**). Volcano blot with at least 2-fold up- (orange) and
772 downregulated (black) genes with adjusted P value < 0.05 (**E**), and validation of selection of genes by
773 qPCR (**F**). RNA-sequencing was done with biological triplicates of each sample.

774

775 **S Table 1. Gene Ontology categories enriched in KSHV-infected blood ECFCs.**

776 **S Table 2. Gene Ontology category genes enriched in KSHV-infected blood ECFCs.**

777 **S Table 3. Gene Ontology categories enriched in KSHV-infected lymphatic ECFCs.**

778 **S Table 4. Gene Ontology category genes enriched in KSHV-infected lymphatic ECFCs.**

779 **S Table 5. Differentially expressed genes between blood and lymphatic ECFCs.**

780 **S table 6. Shared differentially expressed genes between K-ECFCLYs 7d and 48h post infection.**

781

782 **Author Contributions:**

783 K.T. and T.A.D. designed the study, performed experiments, analyzed the data, and wrote the
784 manuscript. E.A.K., P.S., and P.L. provided research material, technical advice and contributed to the
785 writing of the manuscript. T.K. provided expert advice, funding and contributed to the writing of the
786 manuscript. M.L. and P.M.O. designed the study, analyzed the data, contributed to the writing of the
787 manuscript, and provided funding.

788

789 **Acknowledgements**

790 We thank the Laboratory Animal Center (LAC), Biomedicum Imaging Unit (BIU), and Genome Biology
791 Unit (GBU) at the University of Helsinki for support in animal care and imaging. We are also extremely
792 grateful to Nadezhda Zinovkina, Hector Monzo, Shadi Azam and Vadim Le Joncour (University of
793 Helsinki) for the valuable technical help. Mathias Francoís (The Centenary Institute, University of
794 Sydney, Australia) is acknowledged for valuable comments for the manuscript.
795

796 **References**

- 797 1. Jussila L, Valtola R, Partanen TA, Salven P, Heikkilä P, Matikainen MT, et al. Lymphatic
798 endothelium and Kaposi's sarcoma spindle cells detected by antibodies against the vascular
799 endothelial growth factor receptor-3. *Cancer Res.* 1998 Apr 15;58(8):1599–604.
- 800 2. Skobe M, Brown LF, Tognazzi K, Ganju RK, Dezube BJ, Alitalo K, et al. Vascular Endothelial
801 Growth Factor-C (VEGF-C) and its Receptors KDR and β -t-4 are Expressed in AIDS-Associated
802 Kaposi's Sarcoma.
- 803 3. Weninger W, Partanen TA, Breiteneder-Geleff S, Mayer C, Kowalski H, Mildner M, et al.
804 Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a

805 lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. *Lab Invest.* 1999
806 Feb;79(2):243–51.

807 4. Reis RM, Reis-Filho JS, Filho AL, Tomarev S, Silva P, Lopes JM. Differential Prox-1 and CD 31
808 expression in mucousae, cutaneous and soft tissue vascular lesions and tumors. *Pathology*
809 *Research and Practice.* 2005 Dec 14;201(12):771–6.

810 5. Regezi JA, Macphail LA, Daniels TE, Desouza YG, Greenspan JS, Greenspan D. Human
811 Immunodeficiency Virus-Associated Oral Kaposi's Sarcoma A Heterogeneous Cell Population
812 Dominated by Spindle-Shaped Endothelial Cells. *Vol. 143, American Journal of Pathology.* 1993.

813 6. Carroll PA, Brazeau E, Lagunoff M. Kaposi's sarcoma-associated herpesvirus infection of blood
814 endothelial cells induces lymphatic differentiation. *Virology.* 2004 Oct 15;328(1):7–18.

815 7. Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, et al. Lymphatic reprogramming
816 of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. *Nature Genetics.*
817 2004 Jul;36(7):683–5.

818 8. Wang HW, Trotter MWB, Lagos D, Bourboulia D, Henderson S, Mäkinen T, et al. Kaposi sarcoma
819 herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene
820 expression in Kaposi sarcoma. *Nature Genetics.* 2004 Jul;36(7):687–93.

821 9. Li Y, Zhong C, Liu D, Yu W, Chen W, Wang Y, et al. Evidence for Kaposi sarcoma originating from
822 mesenchymal stem cell through KSHV-induced mesenchymal-to-endothelial transition. *Cancer*
823 *Research.* 2018 Jan 1;78(1):230–45.

824 10. Cheng F, Pekkonen P, Laurinavicius S, Sugiyama N, Henderson S, Günther T, et al. KSHV-
825 initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent
826 lymphatic endothelial-to-mesenchymal transition. *Cell Host and Microbe.* 2011 Dec
827 15;10(6):577–90.

828 11. Gasperini P, Espigol-Frigole G, McCormick PJ, Salvucci O, Maric D, Uldrick TS, et al. Kaposi
829 sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through notch-
830 dependent signaling. *Cancer Research.* 2012 Mar 1;72(5):1157–69.

831 12. Gramolelli S, Elbasani E, Tuohinto K, Nurminen V, Günther T, Kallinen RE, et al. Oncogenic
832 Herpesvirus Engages Endothelial Transcription Factors SOX18 and PROX1 to Increase Viral
833 Genome Copies and Virus Production. *Cancer Research.* 2020 Aug 1;80(15):3116–29.

834 13. Choi D, Park E, Kim KE, Jung E, Seong YJ, Zhao L, et al. The Lymphatic Cell Environment
835 Promotes Kaposi Sarcoma Development by Prox1-Enhanced Productive Lytic Replication of
836 Kaposi Sarcoma Herpes Virus. *Cancer Res.* 2020;80(15):3130–44.

837 14. DiMaio TA, Vogt DT, Lagunoff M. KSHV requires vCyclin to overcome replicative senescence in
838 primary human lymphatic endothelial cells. *PLOS Pathogens.* 2020 Jun 18;16(6):e1008634.

839 15. Chang HH, Ganem D. A Unique Herpesviral Transcriptional Program in KSHV-Infected Lymphatic
840 Endothelial Cells Leads to mTORC1 Activation and Rapamycin Sensitivity. *Cell Host & Microbe.*
841 2013 Apr;13(4):429–40.

842 16. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative
843 progenitor endothelial cells for angiogenesis. *Science*. 1997 Feb 14;275(5302):964–7.

844 17. Le Ricousse-Roussanne S, Barateau V, Contreres JO, Boval B, Kraus-Berthier L, Tobelem G. Ex
845 vivo differentiated endothelial and smooth muscle cells from human cord blood progenitors
846 home to the angiogenic tumor vasculature. *Cardiovasc Res*. 2004 Apr 1;62(1):176–84.

847 18. Barozzi P, Luppi M, Facchetti F, Mecucci C, Alù M, Sarid R, et al. Post-transplant Kaposi sarcoma
848 originates from the seeding of donor-derived progenitors. *Nat Med*. 2003 May;9(5):554–61.

849 19. Della Bella S, Taddeo A, Calabro ML, Brambilla L, Bellinvia M, Bergamo E, et al. Peripheral blood
850 endothelial progenitors as potential reservoirs of Kaposi's sarcoma-associated herpesvirus.
851 *PLoS One*. 2008 Jan 30;3(1):e1520.

852 20. Yoo S, Kim S, Yoo S, Hwang IT, Cho H, Lee MS. Kaposi's sarcoma-associated herpesvirus
853 infection of endothelial progenitor cells impairs angiogenic activity in vitro. *J Microbiol*. 2011
854 Apr;49(2):299–304.

855 21. Cancian L, Hansen A, Boshoff C. Cellular origin of Kaposi's sarcoma and Kaposi's sarcoma-
856 associated herpesvirus-induced cell reprogramming. *Trends Cell Biol*. 2013 Sep;23(9):421–32.

857 22. DiMaio TA, Wentz BL, Lagunoff M. Isolation and characterization of circulating lymphatic
858 endothelial colony forming cells. *Experimental Cell Research*. 2016 Jan;340(1):159–69.

859 23. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, et al. Redefining endothelial
860 progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. *Blood*.
861 2007 Mar 1;109(5):1801–9.

862 24. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S. VEGFR-3 and CD133 identify a population of
863 CD34+ lymphatic/vascular endothelial precursor cells. *Blood*. 2003 Jan 1;101(1):168–72.

864 25. Tan Y zhen, Wang H jie, Zhang M hua, Quan Z, Li T, He Q zhi. CD34+ VEGFR-3+ progenitor cells
865 have a potential to differentiate towards lymphatic endothelial cells. *J Cell Mol Med*. 2014
866 Mar;18(3):422–33.

867 26. Fontaine F, Overman J, Moustaqil M, Mamidyala S, Salim A, Narasimhan K, et al. Small-
868 Molecule Inhibitors of the SOX18 Transcription Factor. *Cell Chem Biol*. 2017 Mar 16;24(3):346–
869 59.

870 27. Overman J, Fontaine F, Moustaqil M, Mittal D, Sierecki E, Sacilotto N, et al. Pharmacological
871 targeting of the transcription factor SOX18 delays breast cancer in mice. *Elife*. 2017;6.

872 28. Vieira J, O'Hearn PM. Use of the red fluorescent protein as a marker of Kaposi's sarcoma-
873 associated herpesvirus lytic gene expression. *Virology*. 2004 Aug 1;325(2):225–40.

874 29. Aluigi MG, Albini A, Carlone S, Repetto L, de Marchi R, Icardi A, et al. KSHV sequences in
875 biopsies and cultured spindle cells of epidemic, iatrogenic and Mediterranean forms of Kaposi's
876 sarcoma. *Research in Virology*. 1996 Sep;147(5):267–75.

877 30. Lebbé C, de Crémoux P, Millot G, Podgorniak MP, Verola O, Berger R, et al. Characterization of
878 in vitro culture of HIV-negative Kaposi's sarcoma-derived cells. *In vitro responses to alfa*
879 *interferon*. *Arch Dermatol Res*. 1997 Jun;289(7):421–8.

880 31. Lagunoff M, Bechtel J, Venetsanakos E, Roy AM, Abbey N, Herndier B, et al. De novo infection
881 and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells.
882 *J Virol.* 2002 Mar;76(5):2440–8.

883 32. Grundhoff A, Ganem D. Inefficient establishment of KSHV latency suggests an additional role
884 for continued lytic replication in Kaposi sarcoma pathogenesis. *J Clin Invest.* 2004
885 Jan;113(1):124–36.

886 33. DiMaio TA, Gutierrez KD, Lagunoff M. Kaposi's sarcoma-associated herpesvirus downregulates
887 transforming growth factor β 2 to promote enhanced stability of capillary-like tube formation. *J*
888 *Virol.* 2014 Dec;88(24):14301–9.

889 34. Myoung J, Ganem D. Generation of a doxycycline-inducible KSHV producer cell line of
890 endothelial origin: maintenance of tight latency with efficient reactivation upon induction. *J*
891 *Virol Methods.* 2011 Jun;174(1–2):12–21.

892 35. Crameri M, Bauer M, Caduff N, Walker R, Steiner F, Franzoso FD, et al. MxB is an interferon-
893 induced restriction factor of human herpesviruses. *Nat Commun.* 2018;9(1):1980.

894 36. Schilling M, Bulli L, Weigang S, Graf L, Naumann S, Patzina C, et al. Human MxB Protein Is a Pan-
895 herpesvirus Restriction Factor. *J Virol.* 2018;92(17).

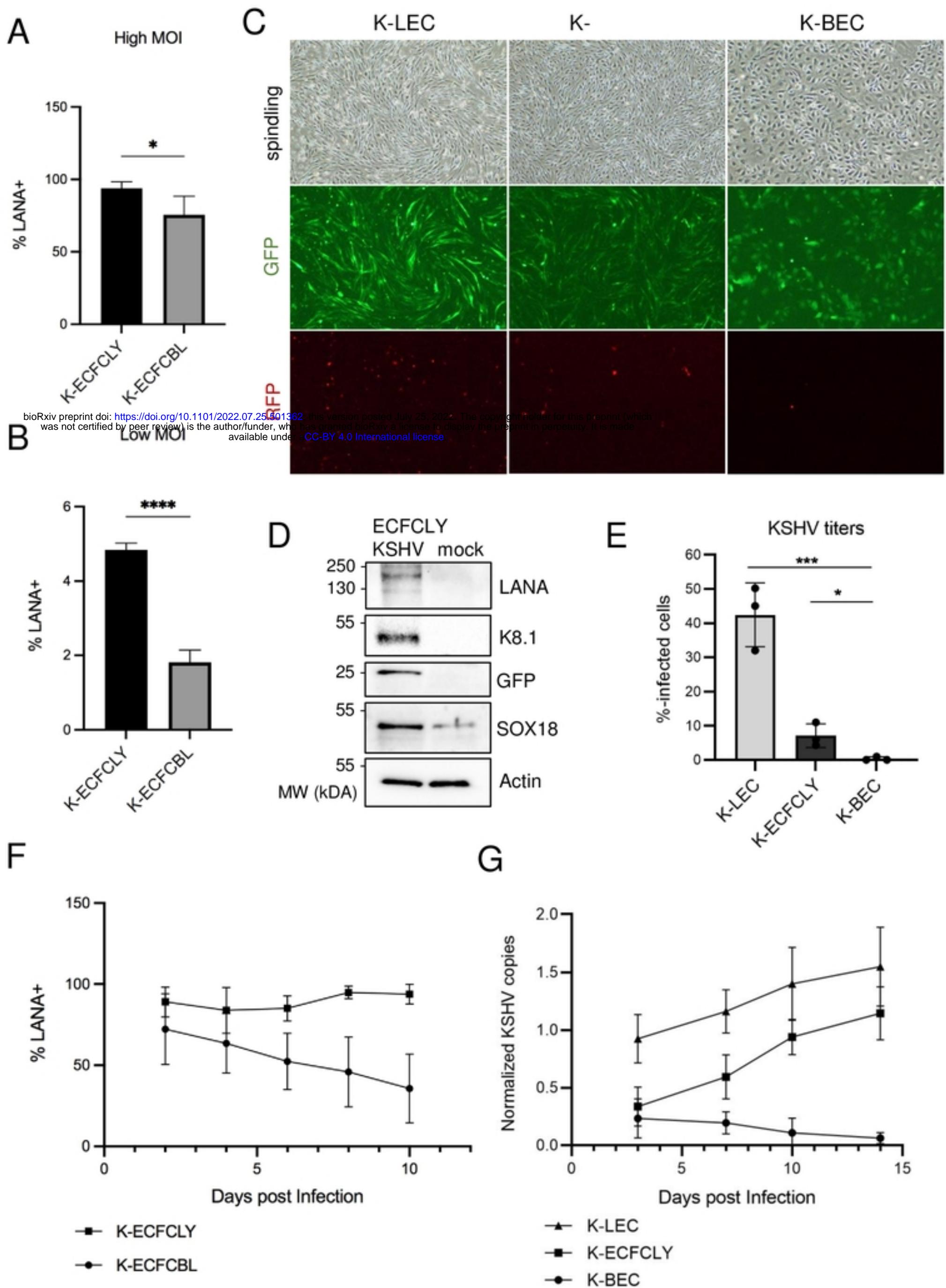
896 37. Vogt D, Zaver S, Ranjan A, DiMaio T, Gounder AP, Smith JG, et al. STING is dispensable during
897 KSHV infection of primary endothelial cells. *Virology.* 2020;540:150–9.

898 38. Mead LE, Prater D, Yoder MC, Ingram DA. Isolation and characterization of endothelial
899 progenitor cells from human blood. *Curr Protoc Stem Cell Biol.* 2008 Jul;Chapter 2:Unit 2C.1.

900 39. Gramolelli S, Cheng J, Martinez-Corral I, Vähä-Koskela M, Elbasani E, Kaivanto E, et al. PROX1 is
901 a transcriptional regulator of MMP14. *Scientific Reports.* 2018 Dec 1;8(1).

902 40. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq.
903 *Bioinformatics.* 2009 May 1;25(9):1105–11.

904 41. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short
905 DNA sequences to the human genome. *Genome Biology.* 2009;10(3):R25.

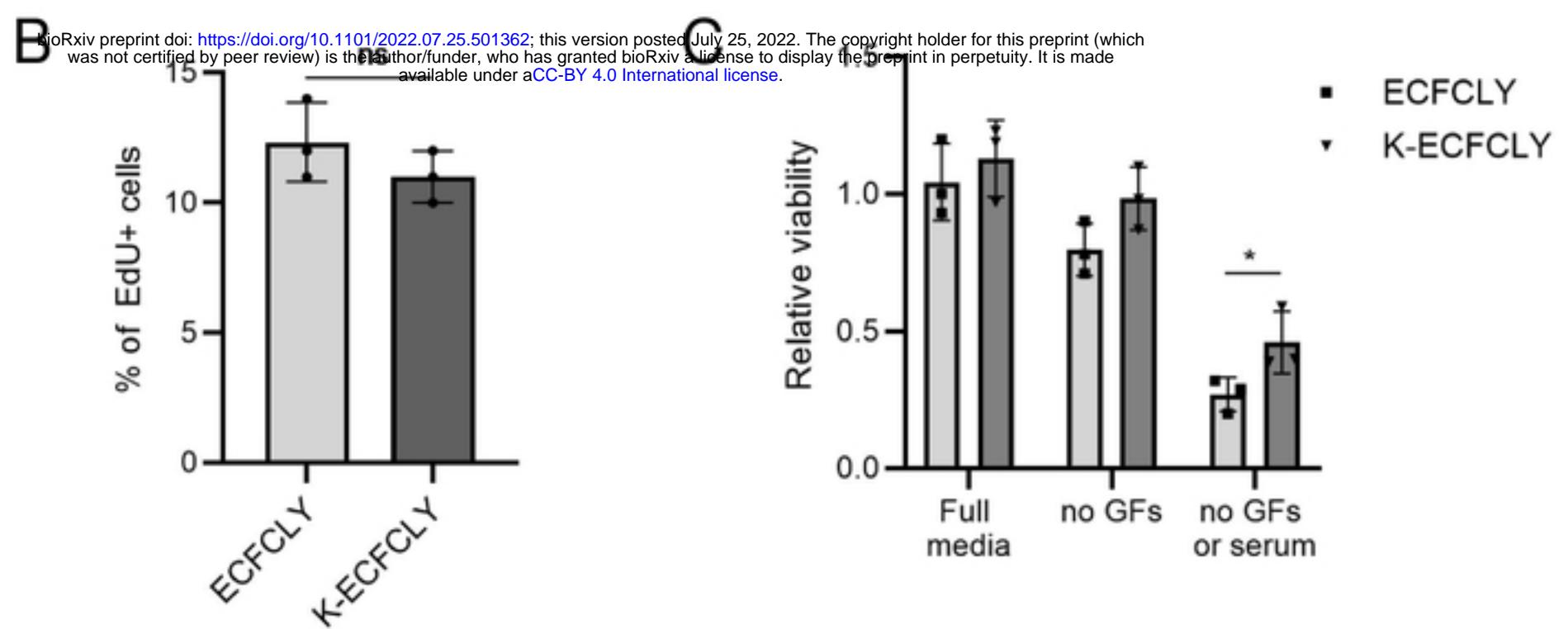

906 42. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, et al. A travel guide to Cytoscape
907 plugins. *Nature Methods.* 2012 Nov 6;9(11):1069–76.

908 43. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and
909 hybridization array data repository. *Nucleic Acids Res.* 2002 Jan 1;30(1):207–10.

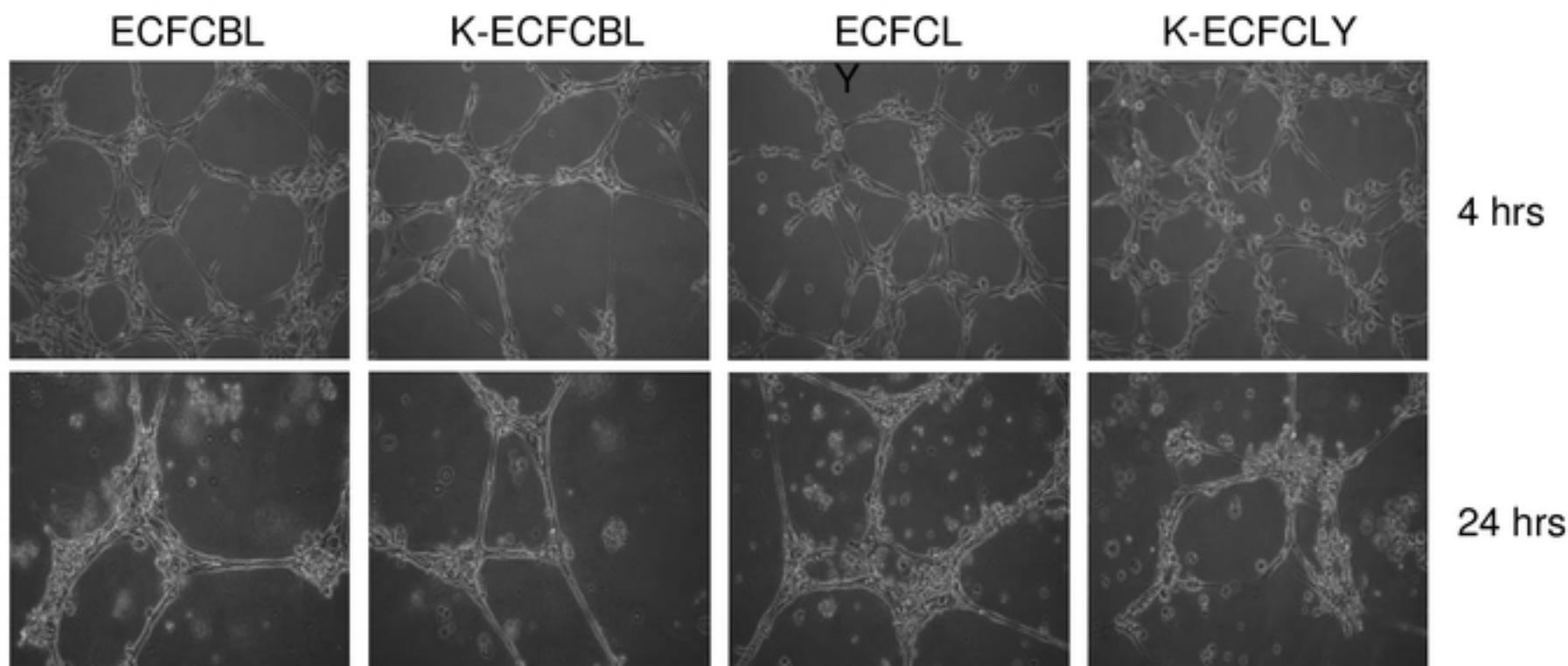
910 44. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning
911 sequence reads to genomic features. *Bioinformatics.* 2014 Apr 1;30(7):923–30.

912

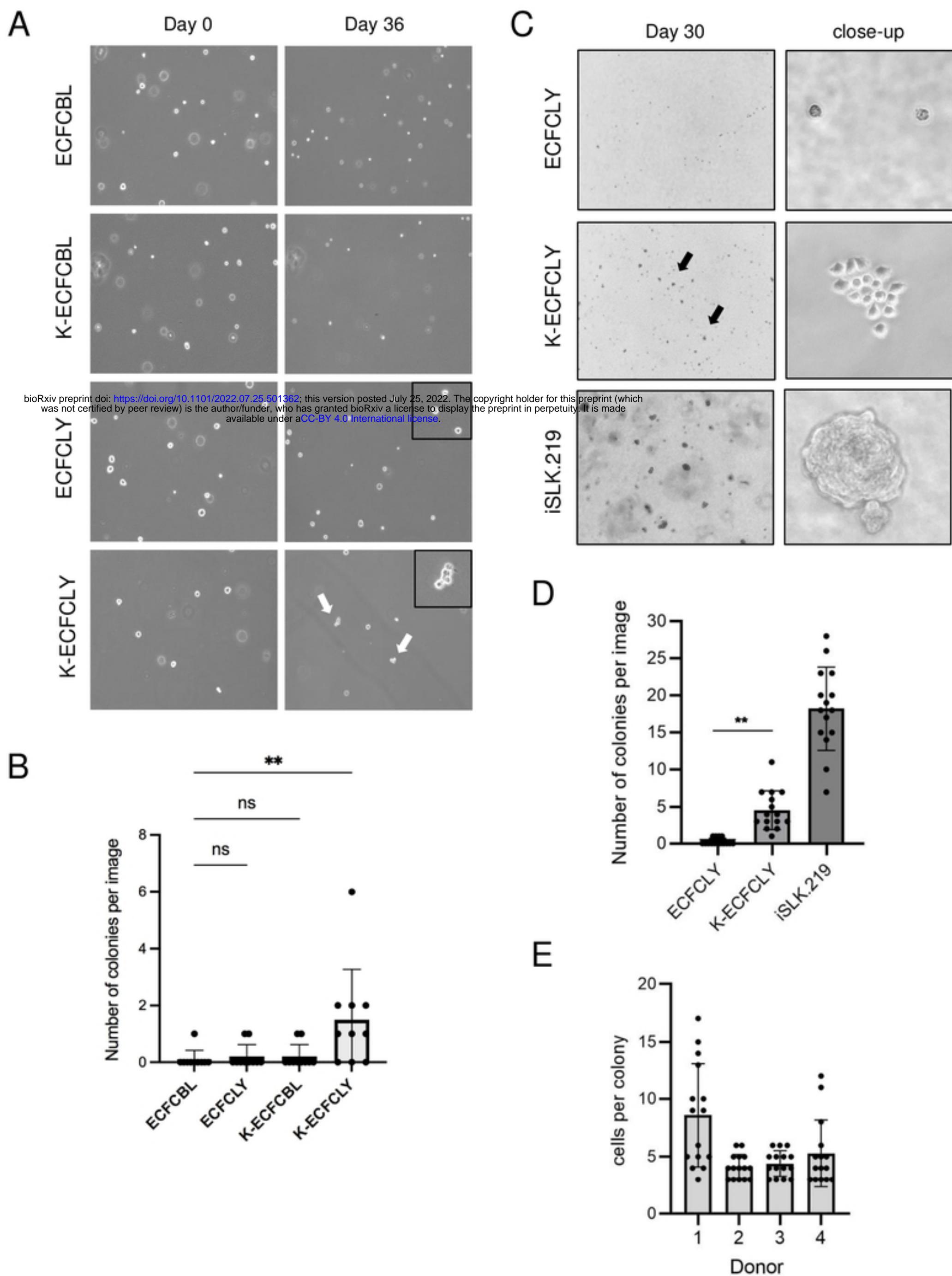
Figure 1.

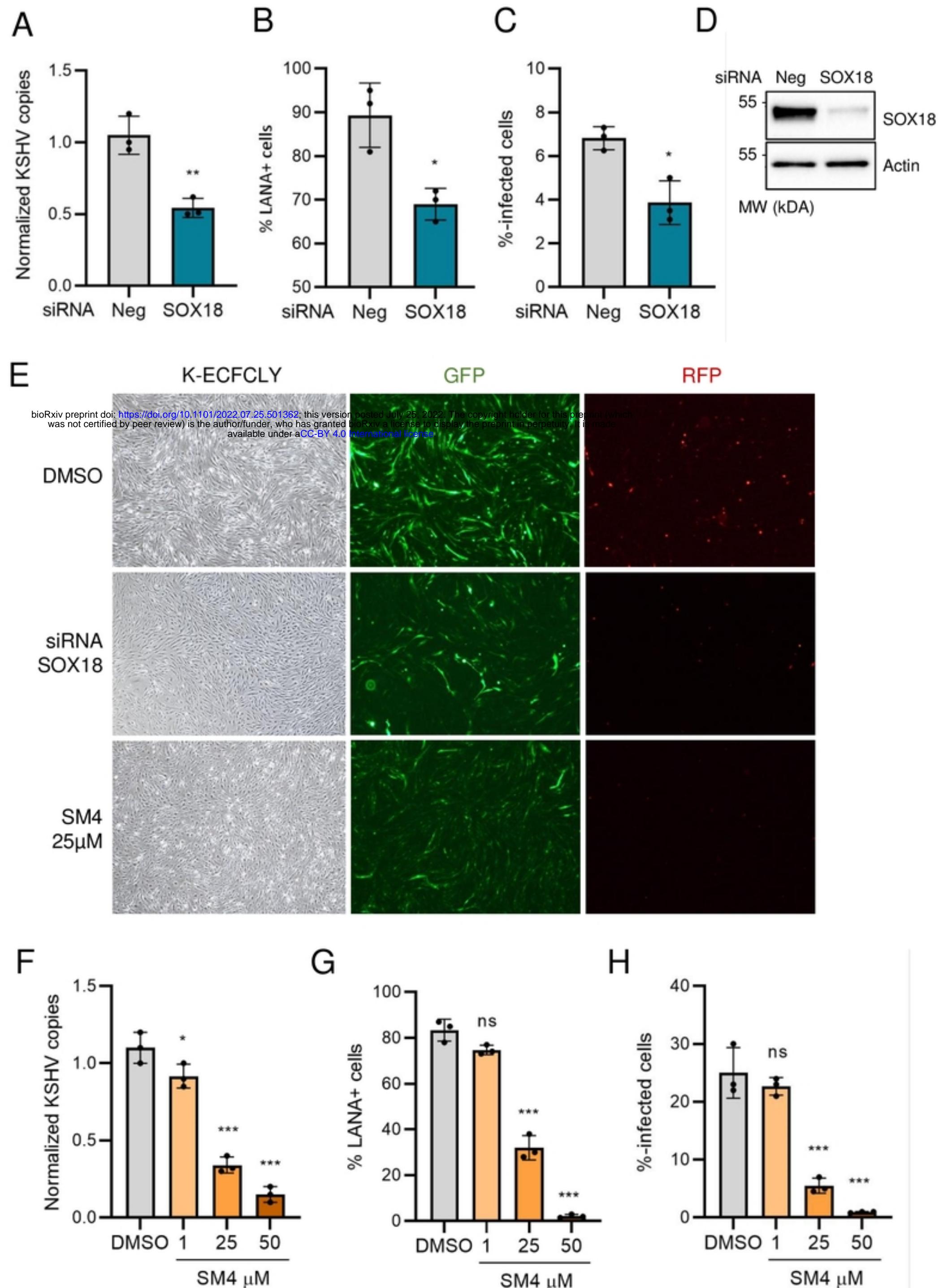

Figure 2.

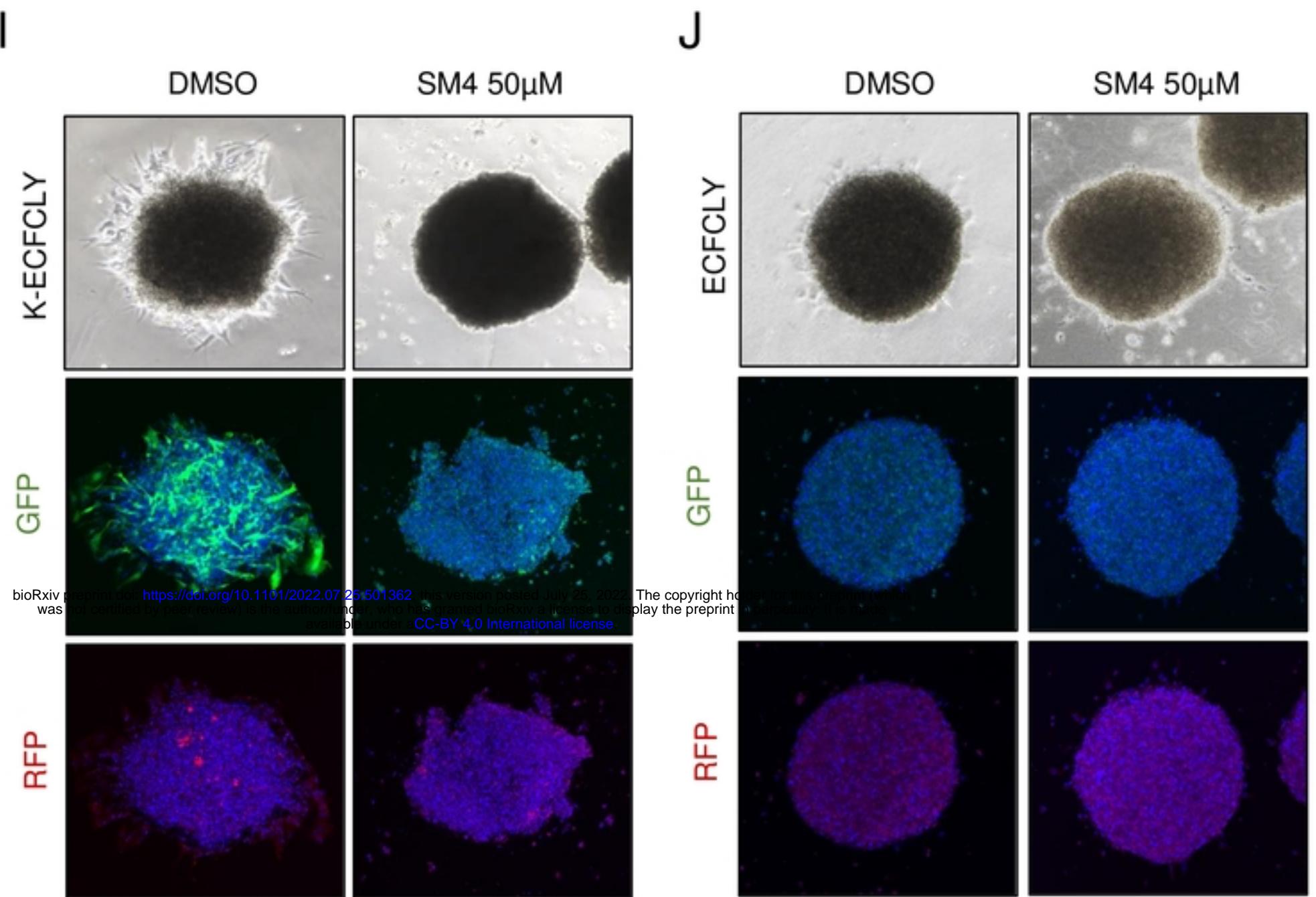
A



B


bioRxiv preprint doi: <https://doi.org/10.1101/2022.07.25.501362>; this version posted July 25, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


D


Figure 3.

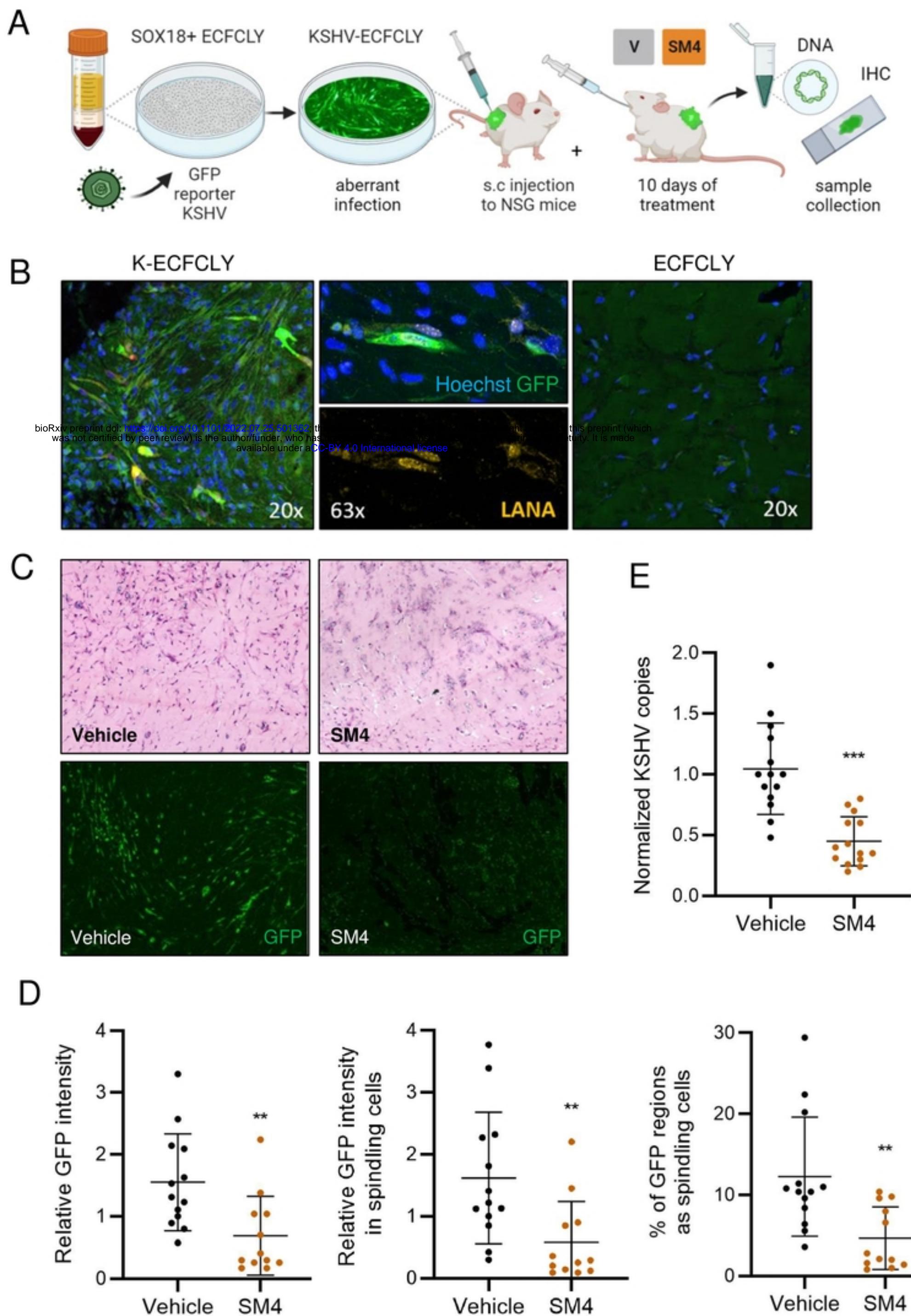

Figure 4.

Figure 4. continued...

Figure 5.

