

1 **Genetic architecture of creativity and extensive genetic**

2 **overlap with psychiatric disorders revealed from genome-**

3 **wide association analyses of 241,736 individuals**

4 Hyejin Kim^{1†}, Yeeun Ahn^{1†}, Joohyun Yoon^{2†}, Kyeongmin Jung^{1,2}, Soyeon Kim¹, Injeong
5 Shim¹, Tae Hwan Park³, Hyunwoong Ko^{4,5,6}, Sang-Hyuk Jung¹, Jaeyoung Kim^{1,2}, Sanghyeon
6 Park¹, Dong June Lee⁷, Sunho Choi⁸, Soojin Cha¹, Beomsu Kim¹, Min Young Cho¹, Hyunbin
7 Cho¹, Dan Say Kim¹, Hong Kyu Ihm², Woong-Yang Park⁹, Hasan Bakhshi¹⁰, Kevin S
8 O`Connell¹¹, Ole A Andreassen¹¹, Jonathan Flint¹², Kenneth S. Kendler¹³, Woojae Myung^{2,8*},
9 and Hong-Hee Won^{1,9*}

10

11 [†]These individuals contributed equally to this work as co-first authors.

12 ^{*}These individuals contributed equally to this work as co-corresponding authors.

13 **Author affiliations:**

14

15 ¹ Department of Digital Health, Samsung Advanced Institute for Health Sciences and
16 Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South
17 Korea

18 ² Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam,
19 South Korea

20 ³ Department of Plastic Surgery, Dongtan Sacred Heart Hospital, Hallym University College
21 of Medicine, Hwasung, South Korea

22 ⁴ Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, South
23 Korea

24 ⁵ Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul National University

25 College of Medicine, Seoul, South Korea

26 ⁶ Dental Research Institute, Seoul National University School of Dentistry, Seoul, South Korea

27 ⁷ Department of Health Sciences and Technology, Samsung Advanced Institute for Health

28 Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea

29 ⁸ Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South

30 Korea

31 ⁹ Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of

32 Medicine, Seoul, South Korea

33 ¹⁰ Creative Industries Policy and Evidence Centre, Nesta, London, United Kingdom

34 ¹¹ Norwegian Center for Mental Disorders Research (NORMENT), Institute of Clinical

35 Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University

36 Hospital, Oslo, Norway

37 ¹² Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior,

38 University of California Los Angeles, CA, USA

39 ¹³ Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA

40

41 Correspondence to:

42 Hong-Hee Won, Ph.D.

43 Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan

44 University, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.

45 Phone: +82-(2)-2148-7566; Fax: +82-(2)-3410-0534; E-mail: wonhh@skku.edu

46 Woojae Myung, M.D., Ph.D.

47 Department of Neuropsychiatry, Seoul National University Bundang Hospital, Department of
48 Psychiatry, Seoul National University, College of Medicine, 29 Gumi-ro, 173 Beon-gil,
49 Bundang-gu, Seongnam-si, Gyeonggi-do 13619, South Korea.
50 Phone: +82-(31)-787-7430; Fax: +82-(31)-787-4058; E-mail: wmyung@snu.ac.kr

51

52 Abstract

53 Creativity is heritable and exhibits familial aggregation with psychiatric disorders, but its
54 genomic basis and genetic relationship with psychiatric disorders remain largely unknown.
55 Here, we conducted a genome-wide association study (GWAS) using an expanded, machine
56 learning-based definition of creativity in individuals of European ancestry from the UK
57 Biobank ($n = 241,736$) and identified 25 creativity-associated loci. Extensive genetic overlap
58 with psychiatric disorders, including schizophrenia, major depression, bipolar I disorder,
59 attention deficit/hyperactivity disorder, and anorexia nervosa, was demonstrated by the genetic
60 correlation, polygenic risk score, and MiXeR analyses. The condFDR and conjFDR analyses
61 identified additional loci for creativity and psychiatric disorders, as well as shared genetic loci
62 between creativity and psychiatric disorders. This GWAS showed significant correlations with
63 GWASs using traditional definitions of creativity and GWASs adjusted for educational
64 attainment. Our findings contribute to the understanding of the genetic architecture of creativity
65 and reveal its polygenic relationships with psychiatric disorders.

66 **Keywords:** creativity; genome-wide association study; psychiatric disorder; polygenic risk
67 score; pleiotropy; common genetic variants

68

69

70 **Introduction**

71 Creativity is a multi-dimensional construct that encompasses aspects of cognitive processes,
72 personality traits, and environmental factors^{1, 2}. Creativity can be generally described as having
73 novel ideas or alternatives to problems, exhibiting cognitive flexibility, and possessing the
74 ability to synthesize as well as organize information. It is important to investigate creativity, as
75 it is a significant trait that impacts individuals, businesses, and society. Artistic and literary
76 professions, which were traditionally considered to be highly creative, have often been
77 associated with psychopathology, which adds to the significance of creativity as a clinically
78 relevant trait³.

79 The association between creativity and psychopathology has been theorized from
80 ancient times, prompted by the anecdotal reports of artistic individuals exhibiting psychiatric
81 symptoms^{4, 5}. Reports of creative geniuses, such as Wolfgang Amadeus Mozart, Vincent van
82 Gogh, and Edgar Allan Poe, exhibiting symptoms that seem to align with the diagnostic criteria
83 of psychiatric illnesses has garnered attention from the public as well as academia. Since then,
84 numerous researchers have attempted to provide empirical evidence of such association.
85 Previous studies have utilized various methods to evaluate this link⁶, including assessing the
86 rates of psychiatric disorders in individuals with creative occupations and their relatives,
87 determining the likelihood of holding creative professions in psychiatric patients and their
88 relatives, measuring creativity in relatives of psychiatric patients using interview-based scales⁷,
89 and using polygenic risk scores (PRSs) of psychiatric illnesses to predict creativity⁸. The
90 association between creativity and psychopathology has also been supported and summarized
91 in large empirical reviews, with evidence for the co-segregation and polygenic relationship of
92 creativity with mental illnesses^{6, 9, 10}.

93 Nevertheless, there is a paucity of literature elucidating the genomic basis of creativity
94 and its genetic relationship with psychiatric disorders. Although previous studies have shown
95 that heritability of creativity is moderate to high³, the genetic architecture of creativity has not
96 been revealed yet. Li *et al.*¹¹ have examined the genetic architecture of creativity through a
97 genome-wide association study (GWAS) but were not able to find any genome-wide significant
98 loci due to a small sample size of 4,664 individuals. In addition, Li *et al.*¹¹ did not perform
99 single-nucleotide polymorphism (SNP)-based heritability and pathway analysis, nor analyses
100 of genetic correlations and polygenic overlaps between creativity and psychiatric disorders.

101 In the present study, we conducted a GWAS of creativity using a large number of
102 individuals to clarify the genetic architecture of creativity and its polygenic relationship with
103 mental illnesses. To utilize the pre-existing information from the UK Biobank (UKB), we
104 adapted a machine learning (ML) method developed by Bahkshi *et al.*¹² to assign a probability
105 of creativity to each occupation. The aims of this study are as follows: 1) to identify creativity-
106 associated genetic variants and molecular mechanisms using the UKB data via GWAS and
107 post-GWAS analyses; 2) to investigate the relationships between creativity and various traits,
108 including psychiatric disorders, by using linkage disequilibrium score regression (LDSC), PRS
109 analyses, and bivariate causal mixture modeling (MiXeR); 3) to explore the shared genetic
110 basis of creativity and psychiatric disorders using the conditional and conjunctional false
111 discovery rate (cond/conjFDR) approach; and 4) to validate our initial GWAS, which utilizes
112 a novel definition of creativity, in comparison to those using traditional definitions of creativity
113 and/or controlling for genetic effects of educational attainment.

114

115 **Results**

116 **Creativity phenotyping**

117 Various methods have been developed to measure the creativity of individuals¹, one of them
118 being the use of the individual's occupation to define them as creative or not. Such method has
119 been utilized in previous epidemiological^{4, 6} and genetic studies⁸. Therefore, we also sought to
120 use occupation to assess creativity. To estimate creativity using pre-existing data from the UKB,
121 we utilized the creativity probability dataset that was obtained via an ML-based method
122 described by Bakhshi *et al.*¹². In brief, Bakhshi *et al.*¹² initially labeled 59 occupations as
123 'creative' and 61 occupations as 'non-creative', guided by the list of creative occupations
124 specified by the Department of Digital, Culture, Media and Sport of the UK and detailed job
125 descriptions of US Standard Occupational Classification (SOC) 2010 occupations provided by
126 the O*Net database (<https://www.onetcenter.org>). Then, Bakhshi *et al.*¹² developed a
127 probabilistic classification algorithm using this training set and predicted the probability of
128 creativity of all occupations in the US SOC 2010. After that, by matching US SOC 2010 codes
129 with UK SOC 2010 codes, Bakhshi *et al.*¹² predicted the creative probability of each UK SOC
130 2010 occupation. This ML-based method showed robust sensitivity and specificity (area under
131 the receiver-operating characteristic curve range = [0.881, 0.958]) in various fields of
132 research¹³⁻¹⁵.

133 A total of 241,736 individuals of European ancestry who answered the baseline
134 occupation question in the UKB were included in our analysis (**Supplementary Table 1**). We
135 matched the creative probability of each occupation in the UK SOC 2010 to occupations in the
136 UK SOC 2000, according to the guidelines from the UK Office for National Statistics¹⁶. Using
137 one-to-one and many-to-one matching approaches, we estimated the creative probability for
138 each of the 351 occupation categories in the UKB and used it as the phenotype in this study
139 (ranging from 0 to 1). Two UK SOC 2000 codes (1171, officers in armed forces; 3311, non-

140 commissioned officers and other ranks) were excluded due to the lack of corresponding data
141 in the UK SOC 2010. The creative probability of each occupation in the UKB is shown in
142 **Supplementary Table 2**. The distribution of the probabilities in nine different occupational
143 categories is presented in **Supplementary Fig. 1**.

144 In most previous studies using occupation to define creativity, rather than defining
145 creativity as a continuous variable as we did for our main outcome, researchers utilized a
146 dichotomous system of defining individuals who hold traditional artistic or scientific
147 professions as creative and others as non-creative. We sought to evaluate whether our GWAS
148 results using the ML-based method would mirror the GWAS results of the traditionally defined
149 creativity. Thus, two more dichotomous variables were added to the participants' data:
150 traditionally creative occupations (narrowly defined artistic professions) and broadly defined
151 artistic or scientific professions based on previous studies⁶. These creative classifications are
152 also shown in **Supplementary Table 2**. We additionally adjusted for education years to
153 evaluate the effect of educational attainment on creativity in our main model.

154

155 **Genetic architecture of creativity**

156 **Genome-wide significant association signals for creativity**

157 We performed a GWAS for creativity of 241,736 European participants in the UKB (**Fig. 1**). A
158 total of 25 lead SNPs at a genome-wide significant level ($P < 5 \times 10^{-8}$) were identified via
159 linkage disequilibrium (LD) clumping ($r^2 < 0.2$) with the 1000 Genomes Project European
160 reference panel (hg19; **Table 1**). Regional plots of significant loci are presented in
161 **Supplementary Fig. 2**. The quantile-quantile (Q-Q) plot of the GWAS demonstrates genomic
162 inflation ($\lambda = 1.30$; **Supplementary Fig. 3**), which is attributable to their polygenicity (LDSC

163 intercept = 1.077; *s.e.* = 0.009).

164

165 **Functional annotation and biological pathways**

166 We performed functional annotation using the Genotype-Tissue Expression (GTEx) database
167 to explore relevant genes for the identified variants. Through expression quantitative trait loci
168 (eQTL) analysis, a total of 25 cis-eQTL genes were mapped to the lead SNPs in the 13 brain
169 tissue types (**Supplementary Table 3**). Based on the mapped eQTL genes, eight lead SNPs
170 were identified, including rs6661921, rs11691869, rs1653301, rs7613875, rs73078357,
171 rs10876864, rs4149398, and rs6519190 (**Table 1**). We also conducted biological pathway
172 analysis, and found that a total of 678 biological pathways related to creativity were enriched
173 (FDR-corrected $P < 0.05$; **Supplementary Table 4**). Pathways of forebrain neuron
174 differentiation, forebrain generation of neurons, and guanosine diphosphate binding were
175 significantly enriched.

176

177 **SNP heritability and partitioned heritability analysis**

178 We estimated SNP-based and partitioned heritability to explore the effect of total SNPs on
179 creativity and to evaluate the enrichment of 53 genomic annotations. The total SNP heritability
180 of creativity was estimated to be 8.62% (*s.e.* = 0.4%). Among the 53 annotations, only that of
181 conserved genomic regions defined in the study by Lindblad-Toh *et al.*¹⁷ was significant for
182 creativity at an FDR < 0.05 (**Fig. 2a** and **Supplementary Table 5**). The proportion of SNP
183 heritability for the conserved regions was 2.6% and the estimated enrichment value was >15
184 (coefficient $P = 4.56 \times 10^{-9}$).

185 In the LDSC applied to specifically expressed gene (LDSC-SEG) analysis for

186 creativity across multiple tissues, we found that the GWAS signals were strongly enriched in
187 the hippocampus and cerebral cortex in the central nervous system (CNS) (**Fig. 2b** and
188 **Supplementary Table 6** for all other significant tissues). In the multi-tissue chromatin results,
189 we observed strong enrichment of dorsolateral prefrontal cortex, angular gyrus, and inferior
190 temporal lobe in the CNS (**Fig. 2c** and **Supplementary Table 7** for all other significant tissues).
191 The CD4⁺ T cell gene set (T.4int8+.Th; genes expressed in T-helper cells with CD4⁺,
192 intermediate CD8, and high T-cell receptors) and neurons were also strongly enriched among
193 immune cell types and CNS tissues, respectively, at an FDR < 0.05 (**Supplementary Tables 8**
194 and **9**).

195

196 **Genetic relationships between creativity and other traits**

197 **Genetic correlation of creativity with other traits**

198 We examined the genetic correlations between creativity and health-related traits (**Fig. 3** and
199 **Supplementary Table 10**). A significant positive correlation was observed between creativity
200 and traits of high-density lipoprotein (HDL) cholesterol ($r_g = 0.25$, $P_{FDR} = 6.31 \times 10^{-27}$),
201 testosterone ($r_g = 0.10$, $P_{FDR} = 3.37 \times 10^{-5}$), never smoking ($r_g = 0.32$, $P_{FDR} = 1.18$
202 $\times 10^{-42}$), sleep duration ($r_g = 0.17$, $P_{FDR} = 2.47 \times 10^{-10}$), eveningness chronotype ($r_g = 0.12$,
203 $P_{FDR} = 0.0004$), miscarriage ($r_g = 0.35$, $P_{FDR} = 0.0233$), worry too long after
204 embarrassment ($r_g = 0.18$, $P_{FDR} = 4.56 \times 10^{-9}$), fluid intelligence test-related score and sub-
205 types (r_g range = [0.50, 0.78], P_{FDR} range = [1.98×10^{-223} , 1.70×10^{-16}]), Parkinson's
206 disease ($r_g = 0.14$, $P_{FDR} = 0.0003$), anorexia nervosa (AN, $r_g = 0.22$, $P_{FDR} = 2.59 \times 10^{-6}$),
207 and bipolar I disorder (BD I, $r_g = 0.12$, $P_{FDR} = 0.0003$). A significant negative correlation
208 was observed with vitamin D ($r_g = -0.11$, $P_{FDR} = 8.46 \times 10^{-7}$), obesity ($r_g = -0.44$, P_{FDR}

209 = 2.63×10^{-34}), time spent watching television ($r_g = -0.67, P_{FDR} = 194 \times 10^{-228}$), duration
210 of walks ($r_g = -0.70, P_{FDR} = 4.86 \times 10^{-131}$), sleep disorders ($r_g = -0.19, P_{FDR} = 0.0003$),
211 urinary tract infection ($r_g = -0.57, P_{FDR} = 3.47 \times 10^{-10}$), loneliness ($r_g = -0.30, P_{FDR} =$
212 7.22×10^{-26}), fed-up feelings ($r_g = -0.43, P_{FDR} = 3.03 \times 10^{-62}$), ever
213 unenthusiastic/disinterested for a whole week ($r_g = -0.19, P_{FDR} = 7.29 \times 10^{-5}$), anxiety
214 disorders ($r_g = -0.37, P_{FDR} = 9.19 \times 10^{-11}$), financial situation satisfaction ($r_g = -0.44,$
215 $P_{FDR} = 5.92 \times 10^{-24}$), Alzheimer's disease ($r_g = -0.23, P_{FDR} = 0.0068$), major depression
216 (MD, $r_g = -0.20, P_{FDR} = 1.17 \times 10^{-13}$), and attention deficit/hyperactivity disorder (ADHD,
217 $r_g = -0.48, P_{FDR} = 7.96 \times 10^{-40}$). These results suggest that various health-related traits share
218 genetic bases with creativity.

219 We also conducted LDSC to estimate the genetic correlation between creativity and
220 neuroimaging traits, such as brain volume and diffusion tensor imaging (DTI) measures
221 (**Supplementary Table 11**). After FDR correction, we observed that only the total brain
222 volume demonstrated a significant positive association with creativity ($r_g = 0.19$).

223

224 **Polygenic risk scores for psychiatric disorders and associations with creativity**

225 With the PRS analyses, we investigated associations of creativity with psychiatric disorders
226 using the summary statistics of GWAS results (**Supplementary Table 12 and Fig. 4**). PRSs for
227 nine psychiatric disorders were significantly associated with creativity. Of them, PRS of ADHD
228 showed the largest R^2 , explaining approximately 0.25% of the variance of creativity. We also
229 observed positive relationships between creativity and the PRSs for BD I (coefficient = 96.43,
230 $s.e. = 13.30, P = 4.22 \times 10^{-13}$), autism spectrum disorder (ASD; coefficient = 50.62, $s.e. = 6.81,$
231 $P = 1.07 \times 10^{-13}$), AN (coefficient = 177.11, $s.e. = 18.77, P = 3.93 \times 10^{-21}$), and obsessive
232 compulsive disorder (OCD; coefficient = 47.75, $s.e. = 5.83, P = 2.51 \times 10^{-16}$) and negative

233 relationships between creativity and the PRSs for SCZ (coefficient = -65.09 , *s.e.* = 19.34 , $P = 0.001$), MD (coefficient = -687.83 , *s.e.* = 38.44 , $P = 1.42 \times 10^{-71}$), bipolar II disorder (BD II; coefficient = -0.04 , *s.e.* = 0.02 , $P = 0.037$), ADHD (coefficient = -361.94 , *s.e.* = 14.74 , $P = 5.11 \times 10^{-133}$), and Tourette syndrome (TS; coefficient = -13.95 , *s.e.* = 3.85 , $P = 0.0003$).

237

238 **Polygenic overlap between creativity and psychiatric disorders**

239 We estimated the polygenic overlap between creativity and psychiatric disorders using MiXeR
240 (**Supplementary Fig. 4** and **Supplementary Tables 13** and **14**). Based on the positive value
241 of the Akaike Information Criterion (AIC), the results of SCZ, MD, BD I, ADHD, and AN
242 were determined to be reliable (**Fig. 5a**). MD showed the most genetic overlap with creativity
243 (Dice coefficient; DC = 0.94), sharing approximately 11,100 out of 12,600 causal variants. This
244 indicates that most of the SNPs affecting creativity also affect MD. Similarly, BD I (DC = 0.74),
245 ADHD (DC = 0.67), and AN (DC = 0.78) shared approximately 59% (7,000 out of 11,800),
246 50% (5,800 out of 11,500), and 64% (7,400 out of 11,600) of SNPs with creativity, respectively,
247 demonstrating considerable polygenic overlap between creativity and the three disorders.
248 Interestingly, it was found that SCZ (DC = 0.89) also shared a substantial portion of SNPs with
249 creativity (approximately 9,300 out of 11,700) despite the weak genetic correlation found in
250 the LDSC analysis.

251

252 **Conditional and conjunctional FDR and functional annotation**

253 **Conditional FDR for psychiatric disorders and creativity**

254 For the condFDR analyses of SCZ, MD, BD I, ADHD, and AN conditional on creativity, we
255 used a conditional Manhattan plot to illustrate the localization of the genetic variants (**Fig. 5b**).

256 We identified 236 SCZ-related genomic loci conditional on its associations with creativity. Of
257 these loci, 88 were additionally identified for SCZ compared with a previous study¹⁸. In the
258 condFDR analysis of MD, we identified 101 MD-associated loci, of which 48 were additional¹⁹.
259 In the condFDR analysis of BD I, we identified 66 BD I-related loci, of which 25 were
260 additional compared to those identified in a previous GWAS²⁰. The condFDR analysis of
261 ADHD and AN identified 29 and 19 loci, respectively, of which 18 and 12 loci were additional
262 in comparison to previous GWAS results^{21, 22} (**Fig. 5c** and **Supplementary Tables 15–19**).
263 Furthermore, we examined whether the additional 88 loci associated with SCZ were replicated
264 in the latest cross-ancestry GWAS analysis of Ripke *et al.*²³ Of the 88 loci, 39 satisfied the
265 genome-wide significant level in the GWAS analysis of Ripke *et al.* and the other 49 were not
266 reported. We also examined whether the additional 48 loci associated with MD were replicated
267 in the two recent GWAS analyses of Levey *et al.*²⁴ and Giannakopoulou *et al.*²⁵. Among the 48
268 loci, 13 were genome-wide significant in the two studies and the other 35 were not reported.

269 For these additionally identified loci of each psychiatric disorder in our study (88 loci
270 for SCZ, 48 loci for MD, 25 loci for BD I, 18 loci for ADHD, and 12 loci for AN), 100, 27, 29,
271 14, and 5 genes were mapped to the loci by eQTL analysis, respectively (**Supplementary**
272 **Tables 20–24**). The 100 mapped genes for SCZ were enriched in two specific tissue types,
273 namely the cerebellar hemispheres and cerebellum (**Supplementary Fig. 5.1**). The 29 mapped
274 genes associated with BD I were enriched in four brain tissue types including the cortex and
275 cerebellum (**Supplementary Fig. 5.3**). However, for the MD, ADHD, and AN mapped genes,
276 there was no significant enrichment in brain tissue (**Supplementary Figs. 5.2, 5.4, and 5.5**).

277 We also sought to identify additional loci associated with creativity beyond our initial
278 GWAS using the condFDR analyses conditional on psychiatric disorders (**Supplementary Fig.**
279 **6** and **Supplementary Table 25**). We discovered 42, 48, 43, 40, and 42 creativity-associated

280 genomic loci using SCZ, MD, BD I, ADHD, and AN as the associated phenotypes, respectively.
281 Of these loci, 17, 24, 18, 18, and 15 loci, respectively, were not detected by our initial GWAS.
282 Overall, 69 additional loci for creativity were identified.

283 For the additional loci of creativity given psychiatric disorders (**Supplementary Table**
284 **25**), eQTL mapping was performed (**Supplementary Table 26**). We identified 56, 44, 61, 42,
285 and 11 genes mapped to the creativity-associated additional loci using SCZ, MD, BD I, ADHD,
286 and AN, respectively. The 56 mapped genes given SCZ were significantly and differentially
287 expressed in the brain cerebellum. The 61 mapped genes using BD I were enriched in two
288 specific tissue types, including the cerebellum and cerebellar hemispheres. However, there
289 were no enriched brain tissues associated with the mapped genes using MD, ADHD, and AN
290 (**Supplementary Fig. 7**).

291

292 **Conjunctional FDR between creativity and psychiatric disorders**

293 For the conjFDR analyses between creativity and psychiatric disorders, we used a
294 conjunctional Manhattan plot to present the distribution of significant genetic variants
295 (**Supplementary Fig. 8**). We identified 50 shared genomic loci between creativity and SCZ,
296 80 loci between creativity and MD, 26 loci between creativity and BD I, 33 loci between
297 creativity and ADHD, and 21 loci between creativity and AN (**Supplementary Table 27**).

298 For these jointly associated genomic loci between creativity and psychiatric disorders,
299 119 genes between creativity and SCZ, 100 genes between creativity and MD, 34 genes
300 between creativity and BD I, 32 genes between creativity and ADHD, and 38 genes between
301 creativity and AN were mapped using eQTL analysis (**Supplementary Table 28**). The 119
302 mapped genes for creativity and SCZ were enriched in three brain tissue types, including the

303 cerebellum, putamen, and basal ganglia. Brain tissues were also enriched for the mapped genes
304 between creativity and other psychiatric disorders, except for the genes mapped for AN
305 (**Supplementary Fig. 9**).

306

307 **Comparison with GWAS of dichotomous definitions of creativity and GWAS adjusted for**
308 **educational attainment**

309 For sensitivity analyses, we additionally performed two GWASs using dichotomous definitions
310 of creativity: narrowly defined artistic professions and broadly defined artistic or scientific
311 professions (**Supplementary Table 2** and **Supplementary Figs. 10 and 11**). The initial GWAS
312 showed strong positive genetic correlations with the two GWASs of dichotomous creative
313 phenotypes: narrowly defined artistic professions ($r_g = 0.73$) and broadly defined artistic or
314 scientific professions ($r_g = 0.90$). In line with the results of genetic correlation, the effect size
315 correlation of the significant SNPs between the initial GWAS and GWASs of traditionally
316 defined creativity were high (ρ range = [0.87, 0.94], $P < 2.2 \times 10^{-16}$; **Supplementary Figs.**
317 **13.1-13.3**). In the PRS analysis using the GWAS of narrowly defined artistic professions
318 (**Supplementary Table 29**), the direction of most association signals with psychiatric disorders
319 was consistent with those using the initial GWAS except for SCZ, based on the largest R^2 and
320 P value.

321 The initial GWAS for ML-based definition of creativity adjusted for education years
322 is depicted in Manhattan and Q-Q plots (**Supplementary Figs. 12.1 and 12.2**), indicating a
323 complete concordance with the initial GWAS ($r_g = 1.00$ and $\rho = 1.00$, $P < 2.2 \times 10^{-16}$ in effect
324 size correlation analysis). The two GWASs using dichotomous creative phenotypes were also
325 additionally adjusted for education years (**Supplementary Figs. 12.3-12.6**) and showed a
326 complete concordance of significant SNPs with the two GWASs before adjusting for education

327 years (**Supplementary Figs. 13.4-13.5**), along with a perfect genetic correlation ($r_g = 1.00$).

328

329 **Discussion**

330 In this study, we performed the largest GWAS investigating creativity to date in which we
331 utilized the creativity probability dataset that was obtained via an ML-based method to measure
332 the creativity of individuals from the UKB. We performed various genomic analyses to clarify
333 the genetic basis of creativity and its relationship with psychiatric disorders. Our initial GWAS
334 identified 25 lead variants associated with creativity in the UKB participants (**Fig. 1** and **Table**
335 **1**). The heritability of all SNPs was estimated to be 8.62%, indicating that the analyzed
336 creativity phenotype had a significant genetic component. Through eQTL and LDSC-SEG
337 analyses, we discovered that creativity was strongly associated with the CNS, specifically
338 neurons (**Fig. 2b, 2c, Supplementary Tables 6 and 9**). Additionally, we revealed significant
339 genetic correlations between creativity and various health-related traits as well as cognitive
340 function, neurological diseases, and psychiatric traits and disorders using LDSC analysis (**Fig.**
341 **3**). Genetic associations between creativity and psychiatric disorders were supported by the
342 results of PRS (**Fig. 4**) and MiXeR analyses (**Fig. 5a**), specifically emphasizing the polygenic
343 overlap of creativity with SCZ, MD, BD I, ADHD, and AN. The condFDR and conjFDR
344 analyses provided further insights into the genetic overlap between creativity and psychiatric
345 disorders by identifying additional and shared SNPs (**Fig. 5b, 5c, Supplementary Tables 15-**
346 **19 and 27**). Moreover, our initial GWAS showed strong positive genetic correlations with
347 GWASs of narrowly and broadly defined creative professions, demonstrating that our novel
348 definition of creativity (ML-based creative probability) can be considered as an expanded,
349 validated measure of creativity that can provide more robust results. The GWASs adjusted for

350 education years also showed a complete concordance with the GWASs before educational
351 adjustment, confirming that educational attainment did not largely affect the GWAS results.

352 A recent GWAS conducted by Li *et al.*¹¹ defined creativity based on a self-report
353 questionnaire using 4,664 Han Chinese subjects. However, it is practically difficult to obtain
354 creativity scores through questionnaires or evaluations in a large sample. Since occupations
355 have been frequently used to define creativity^{4-6, 8} and we aimed to conduct our genomic
356 analyses with the large, pre-existing data of the UKB, we utilized the creativity probability
357 dataset obtained via an ML-method by Bakhshi *et al.*¹² as an alternative way to define creativity.
358 Using this method, we identified 25 lead variants that reached a genome-wide significance
359 level (**Fig. 1, Table 1**). In addition, eight lead SNPs were identified as eQTLs associated with
360 25 genes in 13 brain tissue types: rs6661921, rs11691869, rs1653301, rs7613875, rs73078357,
361 rs10876864, rs4149398, and rs6519190. Both rs73078357 and rs6519190 loci are located in
362 the intron regions of *RBM6* and *SYNGR1*, respectively, which are associated with overall
363 cognitive performance²⁶ and SCZ²⁷. *NEGR1*, which is located near the rs6661921 locus, is
364 associated with MD and ADHD^{28, 29}. *AFF3*, located near the rs11691869 locus, is a
365 transcription activator that binds to double-stranded DNA, and has been previously associated
366 with SCZ²⁷ as well as intellectual disability³⁰, and is predictive of general cognitive
367 functioning²⁶. *FTCDNL1*, positioned near the rs1653301 locus, is related to SCZ³¹. *IP6K2*,
368 located near the rs7613875 locus, was reported to be involved in the physiology of SCZ³² and
369 ADHD³³. *RPS26* and *SULT1A2*, adjacent to the rs10876864 and rs4149398 loci, are associated
370 with AN³⁴ and ASD³⁵, respectively. Several of these genes are also associated with risk-taking
371 and psychiatric disorders, which is in accordance with previous studies^{4, 6, 36}.

372 LDSC-SEG analysis, in addition to eQTL analysis that demonstrated the involvement
373 of eQTL genes and brain tissues in creativity, revealed that brain tissues and neurons are

374 significantly enriched for creativity. The enrichment analysis showed a broad involvement of
375 brain tissues, including the hippocampus, cerebral cortex, and limbic system, compared to other
376 types of tissues (**Fig. 2b**, **Fig. 2c**, and **Supplementary Table 6**), and exhibited enrichment
377 within neurons rather than within oligodendrocytes and astrocytes (**Supplementary Table 9**).
378 Conserved genomic regions defined by Lindblad-Toh *et al.*¹⁷, which were the only significant
379 annotation among the 53 functional genomic annotations, contributed to approximately 2.57%
380 of the total SNP heritability (8.62%, **Fig. 2a**, **Supplementary Table 5**), consistent with
381 previous studies investigating SCZ, BD, AN, and educational attainment³⁷. Our findings
382 suggest that the brain is profoundly involved in the biological mechanisms of creativity, which
383 aligns with previous studies on creativity and brain activity^{38,39}. Moreover, in accordance with
384 findings of previous studies⁴⁰⁻⁴², our genetic correlation analysis not only identified positive
385 correlations between creativity and educational years, cognitive ability, as well as BD I (**Fig. 3**
386 and **Supplementary Tables 10** and **11**), but also identified positive correlations between
387 creativity and ASD, AN, and OCD as well as negative correlations with MD, ADHD, and TS.
388 However, the LDSC analysis did not detect any significant correlations between creativity and
389 SCZ or BD II.

390 The genetic correlations between creativity and psychiatric disorders were further
391 supported by the results of PRS (**Fig. 4** and **Supplementary Table 12**) and MiXeR analyses
392 (**Fig. 5a** and **Supplementary Tables 13** and **14**). The genetic relationships between creativity
393 and psychiatric disorders based on the LDSC, PRS, MiXeR, condFDR, and conjFDR
394 approaches are summarized in **Supplementary Table 30**. Based on the significant thresholds
395 from PRS analyses, the coefficients of each PRS for psychiatric disorders generally showed
396 the same trends with the results from the LDSC analyses, except for ASD (**Fig. 4**). The PRS
397 for ADHD demonstrated the most significant association with creativity, explaining a
398 maximum of 0.25% of the variance. Previous findings on the relationship between creativity

399 and ADHD have been mixed⁴³; however, our results indicate that ADHD may have the
400 strongest, negative genetic influences on creativity among the nine psychiatric disorders
401 analyzed. Consistent with a previous study⁸, our results showed that BD I PRS was positively
402 associated with creativity, but not BD II PRS. This might be due to the differential effects of
403 BD I and BD II symptoms on creativity⁴². While an association between creativity and the
404 PRSs of SCZ and MD has previously been reported by Li *et al.*¹¹, these associations were found
405 to be mixed in our results; Li *et al.*¹¹ showed a positive association of creativity with SCZ PRS
406 as well as MD PRS while we identified these PRSs to be negatively associated with creativity
407 when using the ML-based definition (**Supplementary Table 12**), but not when using narrowly
408 defined artistic professions (**Supplementary Table 29**). Our speculation is that individuals who
409 work in artistic occupations with higher creative probability (*i.e.*, those who are more creative)
410 may have different potential risks for psychiatric disorders than those who work in scientific
411 or other occupations with relatively lower creative probability (*i.e.*, those who are less creative).
412 Low genetic correlation but extensive genetic overlap between creativity and SCZ may also
413 reflect the existence of numerous genetic variants with different directional effects,
414 complicating the shared genetic architecture between them. Furthermore, creativity measured
415 via different methods could derive differential associations with psychiatric disorders,
416 particularly SCZ. Nevertheless, further studies are necessary to clarify the nature of the
417 associations between creativity and SCZ PRS and MD PRS. The MiXeR analysis indicated
418 that SCZ, MD, BD I, ADHD, and AN showed reliable genetic overlap with creativity
419 (**Supplementary Fig. 4** and **Supplementary Tables 13 and 14**). Interestingly, while SCZ did
420 not demonstrate a significant genetic correlation with creativity in the LDSC analysis and SCZ
421 PRS was only weakly associated with creativity, a considerable polygenic overlap (DC = 0.89)
422 was suggested by the MiXeR analysis. Other psychiatric disorders such as MD, BD I, and AN,
423 which showed weak genetic correlations with creativity in the LDSC analysis, also exhibited

424 considerable polygenic overlap in the MiXeR analysis (DC = 0.94, 0.74, and 0.78, respectively).
425 These results suggest that a substantial portion of genetic variants shared between creativity
426 and these psychiatric disorders may have opposite effects. Although research on ASD, TS, and
427 AN is limited and results are mixed for MD and ADHD, associations between creativity and
428 various psychopathologies have previously been reported, especially between mood disorders
429 and SCZ⁴⁻⁹. The current findings supplement these previous studies and offer new and deeper
430 insight into genetic relationships between creativity and psychiatric disorders.

431 Based on polygenic overlap findings, additional and shared genetic variants between
432 creativity and SCZ, MD, BD I, ADHD, and AN were identified via condFDR and conjFDR
433 approaches. We identified 69 additional loci for creativity that were not detected in our initial
434 GWAS using psychiatric disorders as conditional phenotypes. Moreover, using creativity as a
435 conditional phenotype, additional loci were found for SCZ (number of SNPs [n] = 49), MD (n
436 = 35), BD I (n = 25), ADHD (n = 18), and AN (n = 12) in comparison to their respective
437 GWASs (**Fig. 5c** and **Supplementary Tables 15-19**). Our findings regarding the additional
438 loci identified using creativity or psychiatric disorders as associated phenotypes suggest that
439 there may be a common genetic basis between creativity and the five psychiatric disorders.
440 With conjFDR analysis, shared genomic loci between creativity and SCZ (n = 50), MD (n =
441 80), BD I (n = 26), ADHD (n = 33), and AN (n = 21) were identified (**Supplementary Table**
442 **27**), highlighting the shared genetic structure between creativity and these five psychiatric
443 disorders.

444 We found that using an ML-based continuous phenotype of creativity could identify
445 more robust and significant results than using a dichotomous phenotype of creativity. GWASs
446 using a continuous phenotype may have higher statistical power than those using a
447 dichotomous phenotype⁴⁴. As our results indicated, creativity, likewise other psychological

448 traits, is a polygenic trait with a continuum of phenotypes rather than a dichotomous phenotype.
449 It is also noteworthy that our ML-based GWAS found a strong correlation with the GWASs
450 using traditional, dichotomous definitions of creativity (**Supplementary Figs. 10–13**).

451 Although this study provides an insight into the biological background of creativity
452 and its related traits, it has limitations. First, we used the baseline occupation of the UKB
453 participants to define their creativity. While using occupation to assess one's creativity has
454 been reliably used in previous studies^{4–6, 8}, various other methods to measure creativity, such
455 as divergent thinking tests, self-report questionnaires, and product-based assessments, are also
456 available^{1, 7}. Since creativity is a complex construct that encompasses aspects of cognition,
457 personality, and external factors, other methods of measuring creativity could be utilized in the
458 future to validate our findings. Second, creativity is a polygenic trait that is influenced not only
459 by genes, but also the environment. As our study was focused on investigating the genetic basis
460 of creativity, there was a limited exploration of environmental factors. Thus, our results should
461 not be used to predict the creativity of individuals, but instead should be comprehended as
462 additional evidence for the genetic basis of creativity. However, it is noteworthy that our results
463 remained identical after adjustment for education years, one of the important environmental
464 factors. Third, we only studied European individuals from the UKB cohort; thus, future studies
465 involving more diverse ancestries are warranted. As culture can impact the development of
466 creativity in a society, additional GWASs should attempt to replicate our findings with cohorts
467 of various ancestries and identify additional genetic variants associated with creativity to
468 provide greater insight into its biological underpinnings.

469 In summary, creativity is a polygenic trait that has a complex underlying genetic
470 architecture. SCZ, MD, BD I, ADHD, and AN showed the most significant genetic associations
471 with creativity across five analyses (LDSC, PRS, MiXeR, condFDR, and conjFDR). Although

472 previous literature on the relationship between creativity and ADHD and AN is limited and
473 conveys mixed results, our results indicate a significant genetic association of creativity with
474 ADHD and AN. These comprehensive results suggest that it is necessary to analyze and
475 consider the genetic architecture of psychiatric disorders from various perspectives. Our results
476 are also clinically relevant, as psychiatric patients could be educated about this association
477 between creativity and psychiatric disorders and use it to their advantage. Although patients
478 who are creative may experience more severe symptoms of psychiatric disorders, they can be
479 made aware of the beneficial elements of creativity. Activities utilizing their creativity (e.g., art
480 therapy or book clubs) can provide benefits of rehabilitation and improve their quality of life.
481 Additionally, the findings of overlapping biological mechanisms between creativity and
482 psychiatric disorders can be useful for understanding traits that are related to both phenotypes.
483 Lastly, the investigation of the biological underpinnings of creativity is also important for
484 understanding genetic influences in everyday human behavior.

485

486 **Materials and Methods**

487

488 **Study population**

489 The UKB was constructed as a large prospective cohort study of approximately 500,000
490 individuals aged 40-69 years recruited from 2006 to 2010 across the UK. All participants
491 provided electronically signed informed consent. The UKB was approved by the National
492 Research Ethnic Committee (REC reference 11/NW/0382), and this secondary research was
493 conducted in accordance with the principles of the Declaration of Helsinki and its later

494 amendments. The details of the UKB project can be found elsewhere
495 (<https://www.ukbiobank.ac.uk/about-biobank-uk.>)

496

497 **Genotyping and quality control**

498 A total of 487,409 samples were genotyped using the Affymetrix UK BiLEVE Axiom or
499 Affymetrix UKB Axiom arrays (Santa Clara, CA, USA), comprising more than 800,000
500 genetic variants. For imputation, phasing and imputation processes were centrally performed
501 by the UKB using SHAPEIT3⁴⁵ and IMPUTE2⁴⁶, respectively, based on the combination
502 reference panels of the 1000 Genomes Project Phase 3 and UK 10K. The variant-level quality
503 control (QC) was applied for exclusion metrics, such as variants with a call rate < 95%, minor
504 allele frequency (MAF) < 1 × 10⁻⁴, and Hardy–Weinberg equilibrium $P < 1 \times 10^{-6}$. After
505 imputation, we performed a stringent QC using the PLINK 1.90 software⁴⁷, applying three
506 filters as follows: 1) call rate < 95% (missingness > 5%), 2) MAF < 0.5%, or 3) imputation
507 quality scores (INFO) < 0.4. Genotypes with a posterior call probability < 0.90 were considered
508 missing. A total of 9,575,249 SNPs met the QC criteria. Five sample-level QC exclusion criteria,
509 including non-Europeans, samples with sex discordance between reported and genetically
510 inferred sex, putative sex chromosome aneuploidy, no sex information, and participants who
511 withdrew from the UKB were applied to the imputed data.

512

513 **Genome-wide association analysis**

514 We performed a genome-wide association analysis using an ML-based method called
515 REGENIE v2.2.4 for the creative probability⁴⁸, using a ridge regression method with a leave-
516 one-out cross-validation scheme to prevent overfitting. Based on a previous study²⁶, birth year,

517 squared birth year, cubic birth year, sex, the interaction of sex with birth year, squared birth
518 year, and cubic birth year, batch, array, and ten principal components (PCs) of genetic ancestry
519 were adjusted for in the association analysis. A genome-wide significant threshold of $P < 5 \times$
520 10^{-8} was used to identify variants associated with creativity. A Manhattan plot was generated
521 using a code obtained from Github (<https://github.com/kbsssu/ManhattanGG>). Regional plots
522 were generated using LocusZoom v1.3.0 (<http://locuszoom.sph.umich.edu/locuszoom>)⁴⁹.

523 Independent significant SNPs with $r^2 < 0.2$ and $P < 5 \times 10^{-8}$ were identified through
524 LD clumping in PLINK⁴⁷. Among the 37 identified significant SNPs, we selected the most
525 significant SNP per locus (within 1 mega-base pairs) as the lead SNP. The SNP annotation was
526 performed using ANNOVAR⁵⁰ and implemented in FUMA v1.3.7⁵¹.

527

528 **Gene mapping, functional annotation, and pathway analysis**

529 The eQTL analysis and functional annotation were performed using FUMA⁵¹. eQTL analysis
530 was performed using the GTEx (<https://www.gtexportal.org/home/datasets>) database v8⁵². An
531 FDR < 0.05 was used to define significant eQTL associations. The gene-based analysis was
532 carried out to find biological pathways based on the GO Consortium⁵³ using MAGMA
533 implemented in FUMA⁵¹.

534

535 **SNP-based heritability and cell type-specific analyses**

536 LDSC v1.0.1⁵⁴ was used to estimate the SNP-based heritability of creativity. The European LD
537 scores of the 1000 Genomes Project v3 were obtained from GitHub
538 (<https://github.com/bulik/ldsc>). The variants at the MHC region were excluded and common

539 autosomal variants with an MAF > 1% in the European population were included. Using
540 LDSC-SEG⁵⁵, cell type-specific analyses were conducted to prioritize phenotype-associated
541 tissues or cell types.

542

543 **Genetic correlation**

544 The cross-trait genetic correlation (r_g) of creativity probability with other phenotypes was
545 estimated using LDSC⁵⁴. We downloaded publicly available European GWAS summary
546 statistics of 117 health-related phenotypes (**Supplementary Table 10**). GWAS summary
547 statistics for nine psychiatric disorders were additionally used to find shared genetic
548 backgrounds with creativity. The summary statistics were controlled for quality; their INFO
549 was > 0.8 and MAF was > 0.5%. The FDR correction was used for multiple test correction
550 (117 traits). For neuroimaging phenotype data, we used GWAS results for volumes of the
551 region of interest (ROI) in the brain and GWAS results for DTI of ROI (**Supplementary Table**
552 **11**)^{56, 57}. The details of the different data, including brain volume and DTI measure, are
553 provided as follows: https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. We
554 applied the FDR correction for ROI and each DTI scalar (FA, MD, AD, RD, and MO).

555

556 **Polygenic risk scoring analysis**

557 We calculated the PRS for creativity based on the GWAS summary statistics of nine psychiatric
558 disorders using PRSice-2 v2.3.3⁵⁸ (**Supplementary Table 31**). Independent SNPs with $r^2 <$
559 0.1 within 1 mega-base pairs were extracted based on LD clumping. The PRS of each
560 psychiatric trait was calculated based on the pruned SNPs identified per trait. A total of 13
561 different clump P -value thresholds (5×10^{-8} , 1×10^{-7} , 1×10^{-6} , 1×10^{-5} , 1×10^{-4} , 0.001, 0.05,

562 0.1, 0.2, 0.3, 0.4, 0.5, and 1) were tested to examine the association between the PRS and
563 creativity across different SNP sets. The R^2 value indicates the explained variance in the
564 creativity of UKB individuals as a function of the PRS of each psychiatric disorder.

565

566 **Polygenic overlap**

567 The shared polygenic overlaps between creativity and nine psychiatric disorders were
568 quantified using MiXeR v1.2.0⁵⁹ (<http://github.com/precimed/mixer>) (**Supplementary Tables**
569 **13 and 14**). The univariate analysis provides the number of causally associated SNPs with each
570 trait (polygenicity), the average magnitude of additive genetic associations across causal
571 variants (discoverability), and model fit criteria such as AIC and Bayesian Information
572 Criterion (BIC) based on log-likelihood optimization of GWAS z-scores. Since MiXeR models
573 additive genetic effects on two traits as a mixture of four bivariate Gaussian components
574 (variants with no effect on both traits, variants with an effect on either trait, and variants with
575 an effect on both traits), the bivariate analysis calculates a ratio of shared variants to the total
576 number of variants (DC) and model fit (AIC and BIC). Conditional Q-Q plots were generated
577 to depict the cross-phenotype polygenic enrichment between creativity and the nine psychiatric
578 disorders analyzed.

579

580 **Conditional and conjunctional false discovery rate analysis**

581 The condFDR analysis⁶⁰ was employed (<https://github.com/precimed/pleiofdr>) to identify
582 additional loci associated with psychiatric disorders that satisfies the model selection criteria
583 (AIC) conditional on creativity in MiXeR and to find loci associated with creativity conditional
584 on each psychiatric disorder. The SNP detection ability for a trait was improved based on

585 substantial genetic association with a conditional trait. We selected the original GWAS of
586 SCZ¹⁸, MD¹⁹, BD I²⁰, ADHD^{21,22}, and AN^{21,22}, which had excluded UKB samples or included
587 only UKB samples of less than 10% to minimize the inflation from sample overlap. Additional
588 loci that were not detected in the original GWAS analysis were identified as well. We also
589 applied the conjFDR analysis⁶⁰ to identify shared genetic loci between psychiatric disorders
590 and creativity. The maximum of the two condFDR values, which were calculated for every
591 SNP, was taken as the conjFDR value between two traits⁶⁰. Both condFDR and conjFDR
592 approaches were applied by excluding SNPs within an intricate LD structure where the four
593 regions are as follows: (MHC region, chromosome 6:25,119,106–33,854,733 base-pairs [bps];
594 8p23.1, chromosome 8:7,200,000–12,500,000 bps; microtubule associated protein tau region,
595 chromosome 17:40,000,000–47,000,000 bps; and apolipoprotein E region, and chromosome
596 19:44,909,039–45912,650 bps). The FUMA⁵¹ was used to define independent genetic loci with
597 condFDR < 0.01 or conjFDR < 0.05, with the default settings. To identify additional loci related
598 to psychiatric disorders in the condFDR analyses, we examined the variants within 1 mega-
599 base pairs of the lead SNPs from the original GWAS results. Finally, independent genetic loci
600 defined by both condFDR and conjFDR analyses were mapped to the genes in brain tissue via
601 eQTL mapping, and tissue specificity was subsequently tested for the mapped genes
602 considering differentially expressed genes (both up-regulated and down-regulated) based on
603 the GTEx databases v8⁵² in FUMA⁵¹. The additionally identified loci for each trait were used
604 in functional annotations for both psychiatric disorders and creativity using the condFDR
605 approach. The default settings were applied for the remaining options in the functional
606 annotation step, and the MHC region was excluded.

607

608 **Comparison with GWASs using narrow or broad definitions of creativity**

609 We additionally performed GWASs on traditionally creative occupations (narrowly defined
610 artistic professions) and broadly defined artistic or scientific professions (**Supplementary**
611 **Table 2**), adjusting for the same covariates as the initial GWAS, using REGENIE v2.2.4⁴⁸.
612 Among 40 broadly defined artistic or scientific professions, seven professions (architects,
613 draughtspersons, artists, authors/writers, actors/entertainers, dancers and choreographers, and
614 musicians) were also categorized as narrowly defined artistic professions. The remaining 33
615 professions were therefore considered as creative proxies and excluded from the GWAS
616 analysis for narrowly defined creative occupations. The education years were also included as
617 a covariate in the initial association analysis for creative probability as well as the association
618 models of dichotomous creative phenotypes to evaluate the effect of educational attainment on
619 creativity. The genetic correlation between GWASs using continuous and dichotomous creative
620 phenotypes was calculated using LDSC⁵⁴. Furthermore, we extracted significant SNPs with P
621 $< 5 \times 10^{-8}$ from the results of each GWAS to compare the direction of effect sizes. Based on
622 the initial GWAS of ML-based creative probability, we estimated Spearman correlation
623 coefficients and standard errors of the effect sizes obtained from GWASs of narrowly defined
624 artistic professions, broadly defined artistic or scientific professions, and ML-based creative
625 probability adjusted for education years. We also calculated the PRS for creativity using the
626 GWAS of narrowly defined artistic professions based on the GWAS summary statistics of nine
627 psychiatric disorders using PRSice-2 v2.3.3⁵⁸ to compare the direction of their associations
628 with the initial GWAS.

629

630 **Data availability**

631 The GWAS summary statistics for creativity can be downloaded from the GWAS Catalog. The
632 data including brain region phenotypes are available from the UKB

633 (https://www.ukbiobank.ac.uk) upon project application. The GWAS summary statistics for
634 genetic correlation analysis are available from several different sources such as GWAS ATLAS
635 (https://atlas.ctglab.nl/traitDB), GWAS Catalog (https://www.ebi.ac.uk/gwas/studies/),
636 Psychiatric Genomics Consortium (PGC) (https://www.med.unc.edu/pgc/download-results/),
637 International Sleep Genetic Epidemiology Consortium (ISGEC)
638 (https://www.kp4cd.org/dataset_downloads/sleep), and MEGASTROKE
639 (http://www.megastroke.org/acknowledgments.html). The UKB summary statistics data from
640 Ben Neale Group, CTGlab, and Lee Lab analyzed using Scalable and Accurate Implementation
641 of Generalized mixed model (SAIGE) can be downloaded freely from
642 http://www.nealelab.is/uk-biobank, https://ctg.cncr.nl/software/summary_statistics, and
643 https://www.leelabsg.org/resources, respectively. The GWAS summary statistics for body mass
644 index, education years, triglycerides, low-density lipoprotein cholesterol, and total cholesterol
645 are available via previous studies (**Supplementary Table 10**).

646

647 **Acknowledgements**

648 None

649

650 **Funding**

651 This research was conducted using the UK Biobank Resource under Application Number
652 33002. This study was supported by a National Research Foundation of Korea grant funded by
653 the Ministry of Science and Information and Communication Technologies, South Korea (grant
654 numbers NRF-2021R1A2C4001779 to W.M. and NRF-2022R1A2C2009998 to H.H.W.), and
655 a grant from the Korea Health Technology R&D Project through the Korea Health Industry

656 Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of
657 Korea (HU22C0042 to H.H.W.).

658

659

660 **Competing interest**

661 Woong-Yang Park was employed by a commercial company, GENINUS. Ole A. Andreassen
662 is a consultant for HealthLytix. Other authors state that they have no competing interests to
663 declare.

664

665 **Figure legends**

666

667 **Fig 1. Manhattan plot for GWAS of creativity.**

668 The x -axis shows genomic positions and y -axis shows statistical significance as $-\log_{10}(P)$
669 values. The threshold for significance, which accounts for multiple tests, is indicated by the red
670 horizontal line ($P = 5 \times 10^{-8}$). The blue dot indicates the nearest mapped gene from the lead
671 SNPs.

672

673 **Fig 2. Partitioned heritability analyses using LDSC.**

674 **a.** Enrichment estimates for 53 functional annotations. Annotations are ordered by their P
675 values. The dashed line indicates the significance at an FDR-corrected $P < 0.05$.

676 **b.** Results of multiple-tissue analysis using gene expression data. Each circle represents a tissue
677 or cell type from either the GTEx dataset or Franke lab dataset. The dashed line indicates the
678 cutoff of FDR, which is $<5\%$ at a $-\log_{10}(P) = 2.22$.

679 **c.** Results of multiple-tissue analysis using chromatin data. Each circle represents a peak for
680 DNase I hypersensitivity (DHS) or histone marks in a tissue or cell type. The dashed line
681 indicates the cutoff of FDR, which is $<5\%$ at a $-\log_{10}(P) = 2.37$.

682

683 **Fig 3. Genetic correlation estimates between creativity and other phenotypes using LDSC.**

684 This figure includes significant genetic correlations where FDR values are $<5\%$ (see
685 **Supplementary Table 10** for all results).

686 Two traits (schizophrenia and bipolar II disorder) were not significant, but are included in this
687 figure as an exception for psychiatric disorders.

688 Abbreviations: HDL, high-density lipoprotein; GERD, gastroesophageal reflux disease; FIT,
689 fluid intelligence test; TMT, trail making test.

690

691 **Fig 4. Polygenic risk scores for psychiatric disorders associated with creativity (ML-based**
692 **creative probability).**

693 Polygenic risk scores for psychiatric disorders associated with creativity. Nagelkerke's pseudo-
694 R^2 (y-axis) is shown for scores derived using 13 thresholds ranging from 5×10^{-8} to 1 (x-axis).
695 The significance increases from blue to red, and grey represents non-significance. The *P*-value
696 is specified above each bar.

697 **a. SCZ PRS associated with creativity**

698 **b. MD PRS associated with creativity**

699 **c. BD I PRS associated with creativity**

700 **d. BD II PRS associated with creativity**

701 **e. ADHD PRS associated with creativity**

702 **f. ASD PRS associated with creativity**

703 **g. TS PRS associated with creativity**

704 **h. AN PRS associated with creativity**

705 **i. OCD PRS associated with creativity**

706 Abbreviations: PRS, polygenic risk score.

707

708 **Fig 5. Polygenic overlap between creativity and psychiatric disorders (schizophrenia,**
709 **major depression, bipolar I disorder, attention deficit/hyperactivity disorder, and**
710 **anorexia nervosa).**

711 **a.** Venn diagrams depicting the estimated number of trait-influencing variants shared (grey)
712 between creativity (left circle) and psychiatric disorders (right circle; schizophrenia, major
713 depression, bipolar I disorder, attention deficit/hyperactivity disorder, and anorexia nervosa)
714 and unique (colors) to either of them (see **Supplementary Fig. 4** for all results). The number
715 of trait-influencing variants in thousands is shown, with the standard error in thousands given
716 in parentheses. The estimated genetic correlation for each pair is indicated below the
717 corresponding Venn diagram, with an accompanying directional scale (blue shades for negative
718 scale and red shades for positive scale).

719 **b.** Conditional Manhattan plots of $-\log_{10}$ scale of condFDR values for psychiatric disorders
720 alone and psychiatric disorders given creativity. SNPs with $-\log_{10}(\text{condFDR}) > 2$ (*i.e.*, FDR <
721 0.01) are indicated by large circles. A black line around the large circle indicates the most
722 significant SNP in each linkage disequilibrium block.

723 **c.** Significant condFDR variants stratified and compared with previously reported variants. A
724 total of 88 variants for SCZ, 48 variants for MD, 25 variants for BD I, 18 variants for ADHD,
725 and 12 variants for AN were identified in addition to those obtained from the GWAS summary
726 statistics used in this study (see **Supplementary Tables 15, 16 and 17**). Among the 88 SCZ
727 variants, 39 were replicated in the latest GWAS by Ripke *et al.*²³. Among the 48 MD variants,
728 13 were replicated in two GWAS results by Levey *et al.*²⁴ and Giannakopoulou *et al.*²⁵.

729

730 **Supplementary Materials**

731 **1. Supplementary Figures**

732 **Supplementary Figure 1:** Creative probability distribution by job category.

733 **Supplementary Figure 2:** Regional association plots for GWAS of creativity.

734 **Supplementary Figure 3:** Quantile-quantile plots for GWAS of creativity ($n = 241,736$).

735 **Supplementary Figure 4:** Shared polygenicity underlying creativity and psychiatric disorders.

736 **Supplementary Figure 5:** Tissue specificity associated with mapped genes for additional loci
737 from the conditional FDR results for psychiatric disorders (schizophrenia, major depression,
738 bipolar I disorder, attention deficit/hyperactivity disorder, and anorexia nervosa) given
739 creativity.

740 **Supplementary Figure 6:** Manhattan plots of $-\log_{10}$ scale of conditional FDR values for
741 creativity given psychiatric disorders (schizophrenia, major depression, bipolar I disorder,
742 attention deficit/hyperactivity disorder, and anorexia nervosa).

743 **Supplementary Figure 7:** Tissue specificity associated with mapped genes for additional loci
744 from the conditional FDR results for creativity given psychiatric disorders (schizophrenia,
745 major depression, bipolar I disorder, attention deficit/hyperactivity disorder, and anorexia
746 nervosa).

747 **Supplementary Figure 8:** Manhattan plots of $-\log_{10}$ scale of conjunctional FDR values
748 between psychiatric disorders (schizophrenia, major depression, bipolar I disorder, attention
749 deficit/hyperactivity disorder, and anorexia nervosa) and creativity.

750 **Supplementary Figure 9:** Tissue specificity associated with genes mapped for loci from the
751 conjunctional FDR results between psychiatric disorders (schizophrenia, major depression,
752 bipolar I disorder, attention deficit/hyperactivity disorder, and anorexia nervosa) and creativity.

753 **Supplementary Figure 10:** Manhattan and quantile-quantile plots for GWAS of narrowly
754 defined artistic professions ($n = 219,722$).

755 **Supplementary Figure 11:** Manhattan and quantile-quantile plots for GWAS of broadly
756 defined artistic or scientific professions ($n = 241,736$).

757 **Supplementary Figure 12:** Manhattan and quantile-quantile plots for the GWASs with

758 additional adjustment for education years ($n = 241,736$).

759 **Supplementary Figure 13:** Scatter plots comparing effect sizes from the GWASs based on the
760 significant SNPs.

761 **Supplementary Figure 14:** Polygenic risk scores for psychiatric disorders associated with
762 creativity using narrowly defined artistic professions.

763

764 **2. Supplementary Tables**

765 **Supplementary Table 1:** Participant demographic characteristics

766 **Supplementary Table 2:** Creative probability of each occupational group and narrowly and
767 broadly defined creative professions

768 **Supplementary Table 3:** eQTL results for creativity

769 **Supplementary Table 4:** Gene set analysis

770 **Supplementary Table 5:** Enrichment for heritability partitioned based on 53 functional
771 genomic annotations

772 **Supplementary Table 6:** Results from the multiple-tissue of gene expression analysis using
773 LDSC-SEG

774 **Supplementary Table 7:** Results from the multiple-tissue analysis of chromatin data
775 (validation) using LDSC-SEG

776 **Supplementary Table 8:** Results from the immune cell type of gene expression using LDSC-
777 SEG

778 **Supplementary Table 9:** Results from the central nervous system (Cahoy) cell type of gene
779 expression using LDSC-SEG

780 **Supplementary Table 10:** Genetic correlation between creativity and other traits (non-
781 neuroimaging traits)

782 **Supplementary Table 11:** Genetic correlation between creativity and neuroimaging traits

783 **Supplementary Table 12:** Polygenic risk score for psychiatric disorders associated with
784 creativity using ML-based creative probability

785 **Supplementary Table 13:** Univariate analysis (MiXeR)

786 **Supplementary Table 14:** Bivariate analysis between creativity and psychiatric phenotypes
787 (MiXeR)

788 **Supplementary Table 15:** Independent genomic loci associated with schizophrenia given
789 creativity at condFDR < 0.01

790 **Supplementary Table 16:** Independent genomic loci associated with major depression given
791 creativity at condFDR < 0.01

792 **Supplementary Table 17:** Independent genomic loci associated with bipolar I disorder given
793 creativity at condFDR < 0.01

794 **Supplementary Table 18:** Independent genomic loci associated with attention
795 deficit/hyperactivity disorder given creativity at condFDR < 0.01

796 **Supplementary Table 19:** Independent genomic loci associated with anorexia nervosa given
797 creativity at condFDR < 0.01

798 **Supplementary Table 20:** eQTL mapping of additional genomic loci from the condFDR
799 results for schizophrenia conditional on creativity

800 **Supplementary Table 21:** eQTL mapping of additional genomic loci from the condFDR
801 results for major depression conditional on creativity

802 **Supplementary Table 22:** eQTL mapping of additional genomic loci from the condFDR
803 results for bipolar I disorder conditional on creativity

804 **Supplementary Table 23:** eQTL mapping of additional genomic loci from the condFDR
805 results for attention deficit/hyperactivity disorder conditional on creativity

806 **Supplementary Table 24:** eQTL mapping of additional genomic loci from the condFDR
807 results for anorexia nervosa conditional on creativity

808 **Supplementary Table 25:** Independent genomic loci associated with creativity given
809 psychiatric disorders at condFDR < 0.01

810 **Supplementary Table 26:** eQTL mapping to of additional genomic loci from the condFDR
811 results for creativity conditional on psychiatric disorders

812 **Supplementary Table 27:** Independent genomic loci jointly associated with creativity and

813 psychiatric disorders at conjFDR < 0.05

814 **Supplementary Table 28:** eQTL mapping to genomic loci from the conjFDR results for
815 creativity and psychiatric disorders

816 **Supplementary Table 29:** Polygenic risk score for psychiatric disorders associated with
817 creativity using narrowly defined artistic professions

818 **Supplementary Table 30:** Relation matrix between creativity and psychiatric disorders

819 **Supplementary Table 31:** Summary of psychiatric disorder datasets

820

821

822 References

823 1. Said-Metwaly, S., Van den Noortgate, W. & Kyndt, E. Approaches to measuring
824 creativity: A systematic literature review. *Creativity. Theories–Research–Applications* **4**, 238–
825 275 (2017).

826 2. Guilford, J.P. (1950). Creativity. *Am Psychol* **5**, 444-454.

827 3. Kyaga, S., *et al.* Creativity and mental disorder: family study of 300 000 people with
828 severe mental disorder. *The British Journal of Psychiatry* **199**, 373-379 (2011).

829 4. Ludwig, A.M. Creative achievement and psychopathology: Comparison among
830 professions. *American journal of psychotherapy* **46**, 330-354 (1992).

831 5. Andreasen, N.C. Creativity and mental illness: prevalence rates in writers and their
832 first-degree relatives. *The American Journal of Psychiatry* (1987).

833 6. Kyaga, S. *Creativity and psychopathology* (Karolinska Institutet (Sweden), 2014).

834 7. Kinney, D.K., *et al.* Creativity in offspring of schizophrenic and control parents: An
835 adoption study. *Creativity Research Journal* **13**, 17-25 (2001).

836 8. Power, R.A., *et al.* Polygenic risk scores for schizophrenia and bipolar disorder predict
837 creativity. *Nature neuroscience* **18**, 953-955 (2015).

838 9. Ourtani, T. The relationship between creativity and mental illness: a systematic review.
839 *ScienceOpen Preprints* (2021).

840 10. Kendler, K.S., Ohlsson, H., Sundquist, J. & Sundquist, K. Is an elevated family-genetic
841 risk for major psychiatric disorders specific to creative occupations? *Psychological Medicine*,
842 1-13 (2022).

843 11. Li, H., *et al.* Genome-wide Association Study of Creativity Reveals Genetic Overlap
844 With Psychiatric Disorders, Risk Tolerance, and Risky Behaviors. *Schizophr Bull* (2020).

845 12. Bakhshi, H., Frey, C.B. & Osborne, M. Creativity vs. robots. *The Creative Economy*

846 and *The Future of Employment*. Nesta, London (2015).

847 13. Kaviarasi, R. & Gandhi, R.R. Accuracy Enhanced Lung Cancer Prognosis for
848 Improving Patient Survivability Using Proposed Gaussian Classifier System. *Journal of*
849 *Medical Systems* **43**, 1-9 (2019).

850 14. Nyman, R. & Ormerod, P. Predicting economic recessions using machine learning
851 algorithms. *arXiv preprint arXiv:1701.01428* (2017).

852 15. Oh, J., Yun, K., Hwang, J.H. & Chae, J.H. Classification of Suicide Attempts through
853 a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales. *Front*
854 *Psychiatry* **8**, 192 (2017).

855 16. Statistics, O.f.N. Standard Occupational Classification 2000, volume 1: Structure and
856 descriptions of unit groups. (The Stationery Office London, 2000).

857 17. Lindblad-Toh, K., *et al.* A high-resolution map of human evolutionary constraint using
858 29 mammals. *Nature* **478**, 476-482 (2011).

859 18. Pardiñas, A.F., *et al.* Common schizophrenia alleles are enriched in mutation-intolerant
860 genes and in regions under strong background selection. *Nature genetics* **50**, 381-389 (2018).

861 19. Howard, D.M., *et al.* Genome-wide meta-analysis of depression identifies 102
862 independent variants and highlights the importance of the prefrontal brain regions. *Nature*
863 *neuroscience* **22**, 343-352 (2019).

864 20. Mullins, N., *et al.* Genome-wide association study of more than 40,000 bipolar
865 disorder cases provides new insights into the underlying biology. *Nature genetics* **53**, 817-829
866 (2021).

867 21. Demontis, D., *et al.* Discovery of the first genome-wide significant risk loci for
868 attention deficit/hyperactivity disorder. *Nature genetics* **51**, 63-75 (2019).

869 22. Watson, H.J., *et al.* Genome-wide association study identifies eight risk loci and
870 implicates metabo-psychiatric origins for anorexia nervosa. *Nature genetics* **51**, 1207-1214

871 (2019).

872 23. Ripke, S., Walters, J.T., O'Donovan, M.C. & Consortium, S.W.G.o.t.P.G. Mapping
873 genomic loci prioritises genes and implicates synaptic biology in schizophrenia. *MedRxiv*
874 (2020).

875 24. Levey, D.F., *et al.* Bi-ancestral depression GWAS in the Million Veteran Program and
876 meta-analysis in > 1.2 million individuals highlight new therapeutic directions. *Nature*
877 *Neuroscience*, 1-10 (2021).

878 25. Giannakopoulou, O., *et al.* The genetic architecture of depression in individuals of East
879 Asian ancestry: a genome-wide association study. *JAMA psychiatry* (2021).

880 26. Lee, J.J., *et al.* Gene discovery and polygenic prediction from a genome-wide
881 association study of educational attainment in 1.1 million individuals. *Nat Genet* **50**, 1112-1121
882 (2018).

883 27. Lam, M., *et al.* Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia
884 Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. *Am J Hum*
885 *Genet* **105**, 334-350 (2019).

886 28. Wang, X., *et al.* Integrating genome-wide association study and expression
887 quantitative trait loci data identifies NEGR1 as a causal risk gene of major depression disorder.
888 *Journal of affective disorders* **265**, 679-686 (2020).

889 29. Elia, J., *et al.* Genome-wide copy number variation study associates metabotropic
890 glutamate receptor gene networks with attention deficit hyperactivity disorder. *Nature genetics*
891 **44**, 78-84 (2012).

892 30. Lam, M., *et al.* Large-scale cognitive GWAS meta-analysis reveals tissue-specific
893 neural expression and potential nootropic drug targets. *Cell reports* **21**, 2597-2613 (2017).

894 31. Li, S., *et al.* Regulatory variants at 2q33. 1 confer schizophrenia risk by modulating
895 distal gene TYW5 expression. *Brain* (2021).

896 32. Glatt, S.J., *et al.* Similarities and differences in peripheral blood gene-expression
897 signatures of individuals with schizophrenia and their first-degree biological relatives.
898 *American Journal of Medical Genetics Part B: Neuropsychiatric Genetics* **156**, 869-887 (2011).

899 33. dela Peña, I., *et al.* Common prefrontal cortical gene expression profiles between
900 adolescent SHR/NCrl and WKY/NCrl rats which showed inattention behavior. *Behavioural*
901 *Brain Research* **291**, 268-276 (2015).

902 34. O'Brien, H.E., *et al.* Expression quantitative trait loci in the developing human brain
903 and their enrichment in neuropsychiatric disorders. *Genome biology* **19**, 1-13 (2018).

904 35. Pagan, C., *et al.* Decreased phenol sulfotransferase activities associated with
905 hyperserotonemia in autism spectrum disorders. *Translational psychiatry* **11**, 1-11 (2021).

906 36. Tyagi, V., Hanoch, Y., Hall, S.D., Runco, M. & Denham, S.L. The Risky Side of
907 Creativity: Domain Specific Risk Taking in Creative Individuals. *Front Psychol* **8**, 145 (2017).

908 37. Finucane, H.K., *et al.* Partitioning heritability by functional annotation using genome-
909 wide association summary statistics. *Nature genetics* **47**, 1228-1235 (2015).

910 38. Duff, M.C., Kurczek, J., Rubin, R., Cohen, N.J. & Tranel, D. Hippocampal amnesia
911 disrupts creative thinking. *Hippocampus* **23**, 1143-1149 (2013).

912 39. Takeuchi, H., *et al.* Regional gray matter volume of dopaminergic system associate
913 with creativity: evidence from voxel-based morphometry. *Neuroimage* **51**, 578-585 (2010).

914 40. Mirowsky, J. & Ross, C.E. Creative work and health. *Journal of Health and Social*
915 *Behavior* **48**, 385-403 (2007).

916 41. Gajda, A., Karwowski, M. & Beghetto, R.A. Creativity and academic achievement: A
917 meta-analysis. *Journal of educational psychology* **109**, 269 (2017).

918 42. Johnson, S.L., *et al.* Creativity and bipolar disorder: touched by fire or burning with
919 questions? *Clinical psychology review* **32**, 1-12 (2012).

920 43. Hoogman, M., Stolte, M., Baas, M. & Kroesbergen, E. Creativity and ADHD: A review

921 of behavioral studies, the effect of psychostimulants and neural underpinnings. *Neurosci*
922 *Biobehav Rev* **119**, 66-85 (2020).

923 44. Yang, J., Wray, N.R. & Visscher, P.M. Comparing apples and oranges: equating the
924 power of case-control and quantitative trait association studies. *Genetic Epidemiology: The*
925 *Official Publication of the International Genetic Epidemiology Society* **34**, 254-257 (2010).

926 45. O'Connell, J., *et al.* Haplotype estimation for biobank-scale data sets. *Nature genetics*
927 **48**, 817-820 (2016).

928 46. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation
929 method for the next generation of genome-wide association studies. *PLoS genetics* **5**, e1000529
930 (2009).

931 47. Purcell, S., *et al.* PLINK: a tool set for whole-genome association and population-
932 based linkage analyses. *The American journal of human genetics* **81**, 559-575 (2007).

933 48. Mbatchou, J., *et al.* Computationally efficient whole-genome regression for
934 quantitative and binary traits. *Nature genetics* **53**, 1097-1103 (2021).

935 49. Pruim, R.J., *et al.* LocusZoom: regional visualization of genome-wide association scan
936 results. *Bioinformatics* **26**, 2336-2337 (2010).

937 50. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic
938 variants from high-throughput sequencing data. *Nucleic acids research* **38**, e164-e164 (2010).

939 51. Watanabe, K., Mirkov, M.U., de Leeuw, C.A., van den Heuvel, M.P. & Posthuma, D.
940 Genetic mapping of cell type specificity for complex traits. *Nature communications* **10**, 1-13
941 (2019).

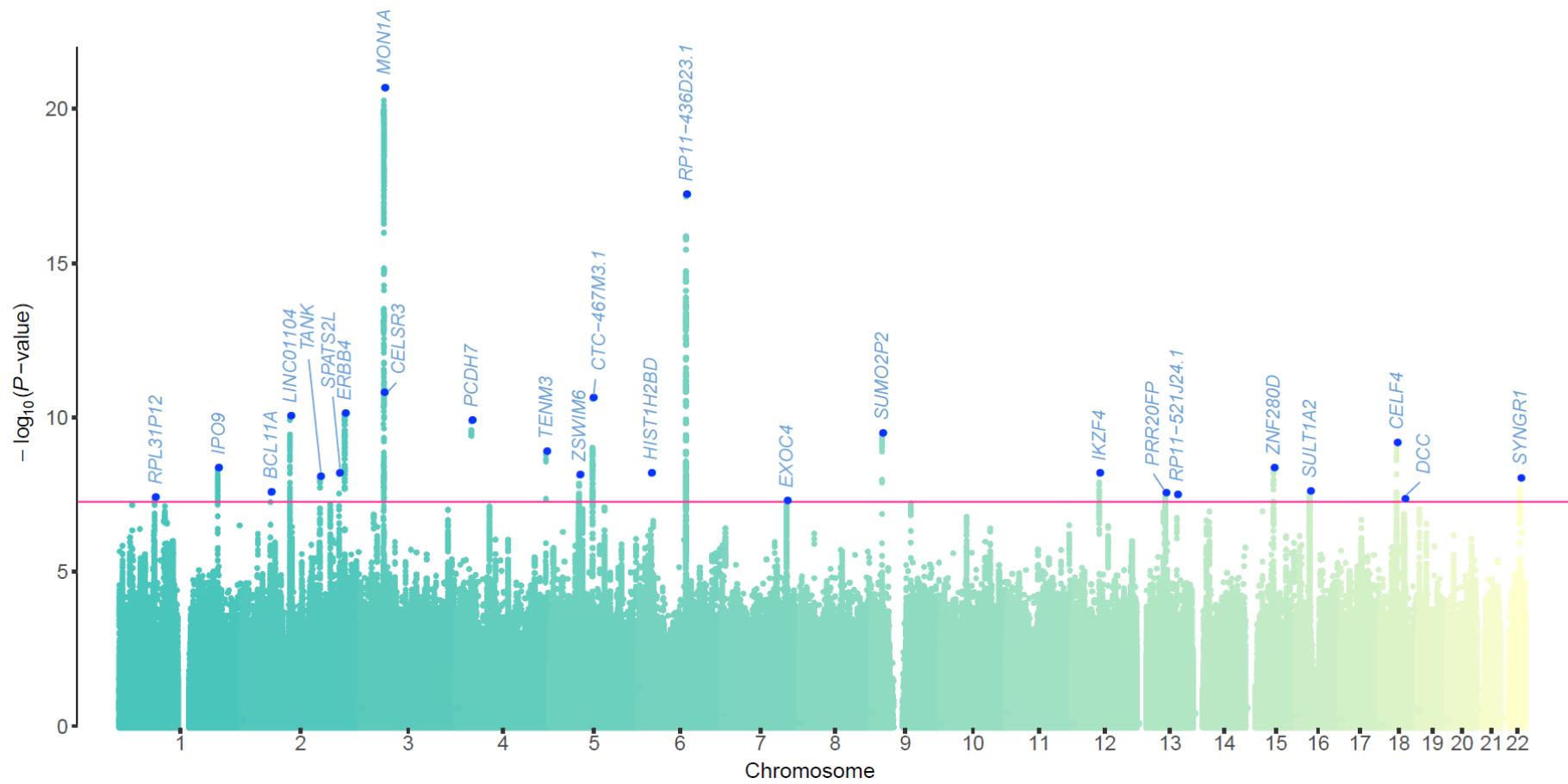
942 52. Consortium, G. The GTEx Consortium atlas of genetic regulatory effects across human
943 tissues. *Science* **369**, 1318-1330 (2020).

944 53. Consortium, G.O. Expansion of the Gene Ontology knowledgebase and resources.
945 *Nucleic acids research* **45**, D331-D338 (2017).

946 54. Bulik-Sullivan, B., *et al.* An atlas of genetic correlations across human diseases and
947 traits. *Nature genetics* **47**, 1236-1241 (2015).

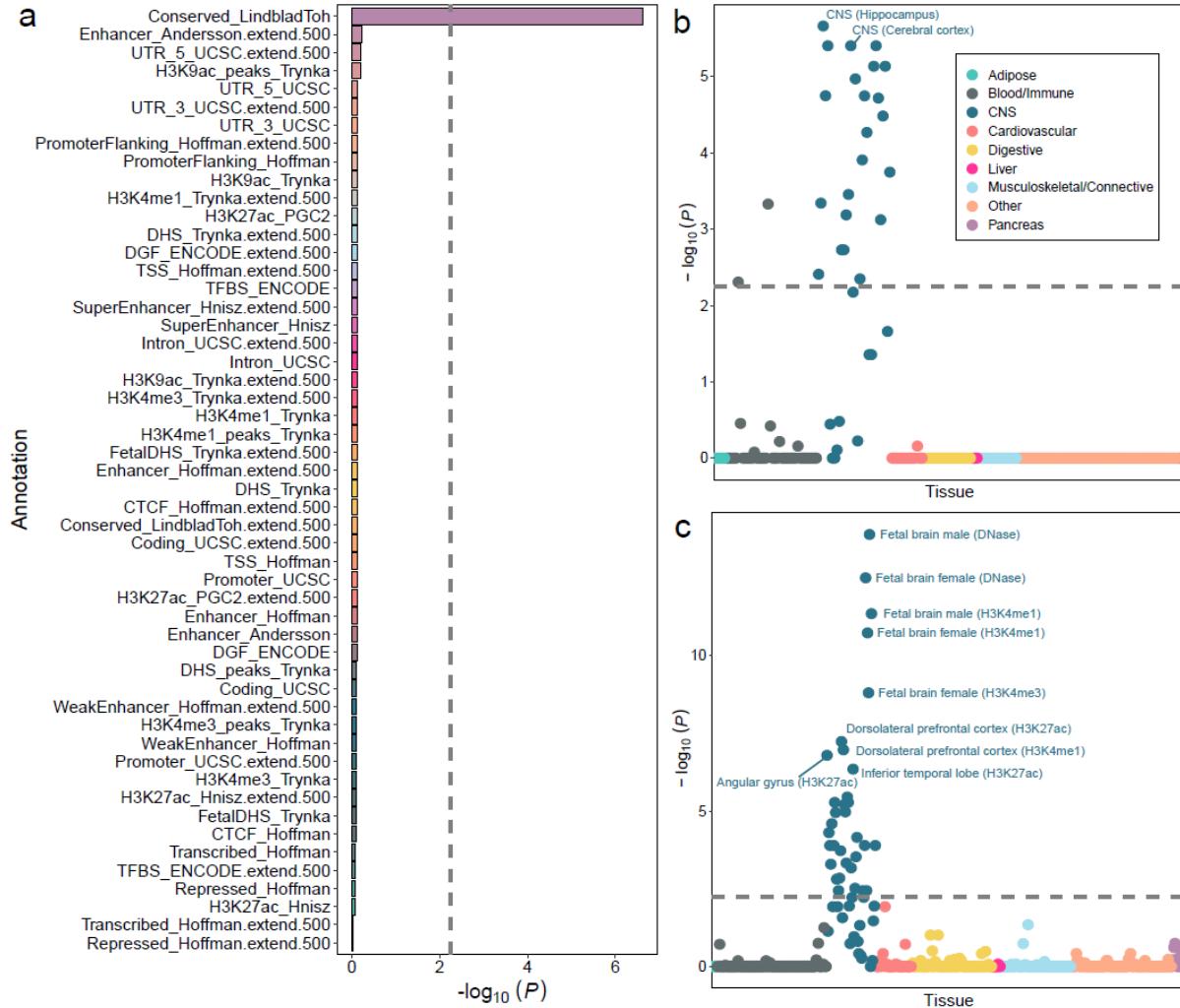
948 55. Finucane, H.K., *et al.* Heritability enrichment of specifically expressed genes identifies
949 disease-relevant tissues and cell types. *Nature genetics* **50**, 621-629 (2018).

950 56. Desikan, R.S., *et al.* An automated labeling system for subdividing the human cerebral
951 cortex on MRI scans into gyral based regions of interest. *Neuroimage* **31**, 968-980 (2006).

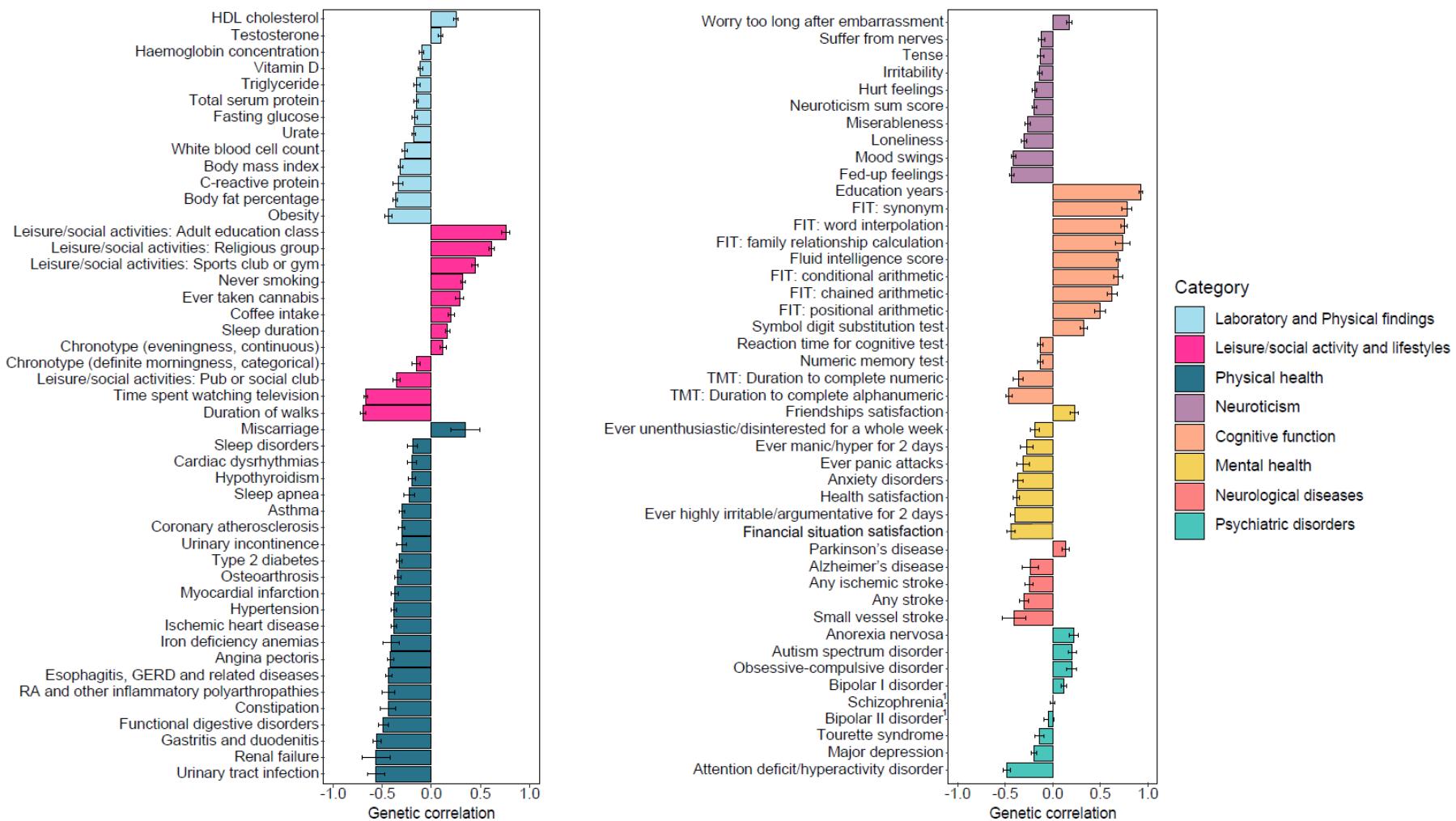

952 57. Mori, S., *et al.* Stereotaxic white matter atlas based on diffusion tensor imaging in an
953 ICBM template. *Neuroimage* **40**, 570-582 (2008).

954 58. Choi, S.W. & O'Reilly, P.F. PRSice-2: Polygenic Risk Score software for biobank-scale
955 data. *Gigascience* **8**, giz082 (2019).

956 59. Frei, O., *et al.* Bivariate causal mixture model quantifies polygenic overlap between
957 complex traits beyond genetic correlation. *Nature communications* **10**, 1-11 (2019).


958 60. Andreassen, O.A., *et al.* Improved detection of common variants associated with
959 schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. *The American
960 Journal of Human Genetics* **92**, 197-209 (2013).

961



962

963 **Fig 1. Manhattan plot for GWAS of creativity.** The x-axis shows genomic positions and y-axis shows statistical significance as $-\log_{10}(P)$ values. The threshold for significance, which accounts for multiple tests, is indicated by the red horizontal line ($P = 5 \times 10^{-8}$). The blue dot 964 indicates the nearest mapped gene from the lead SNPs.
 965

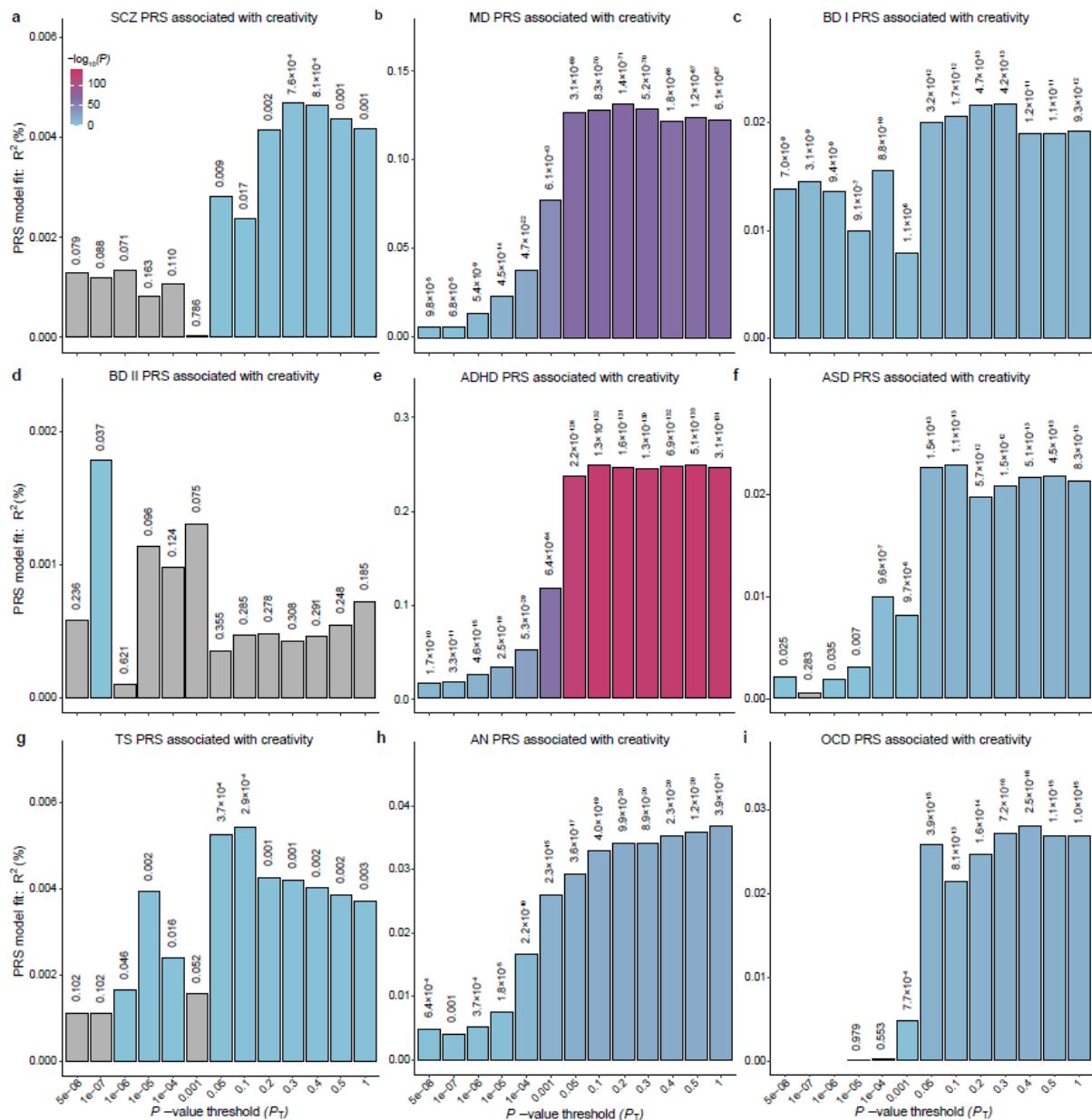
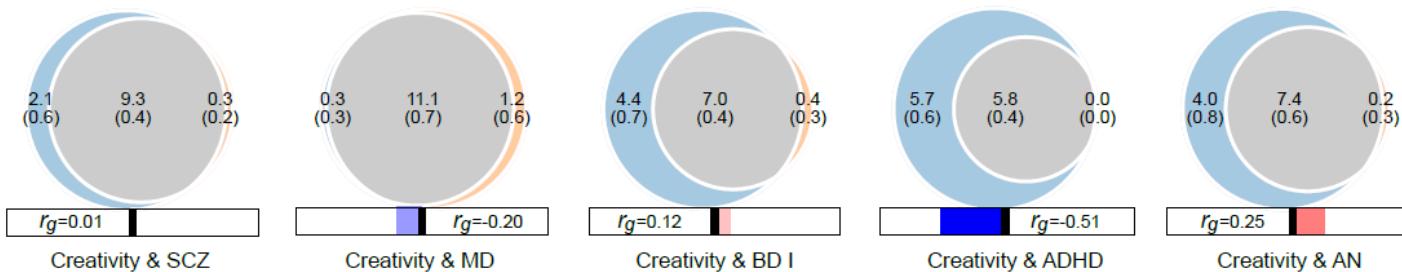
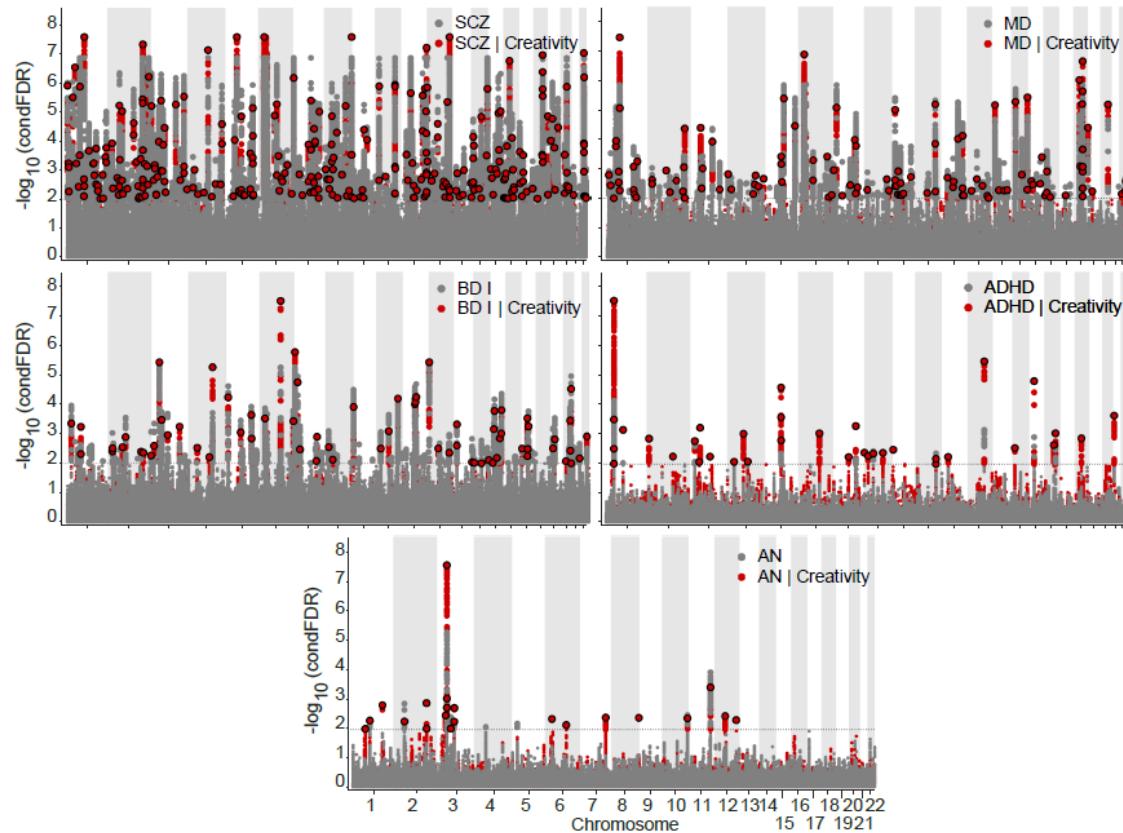
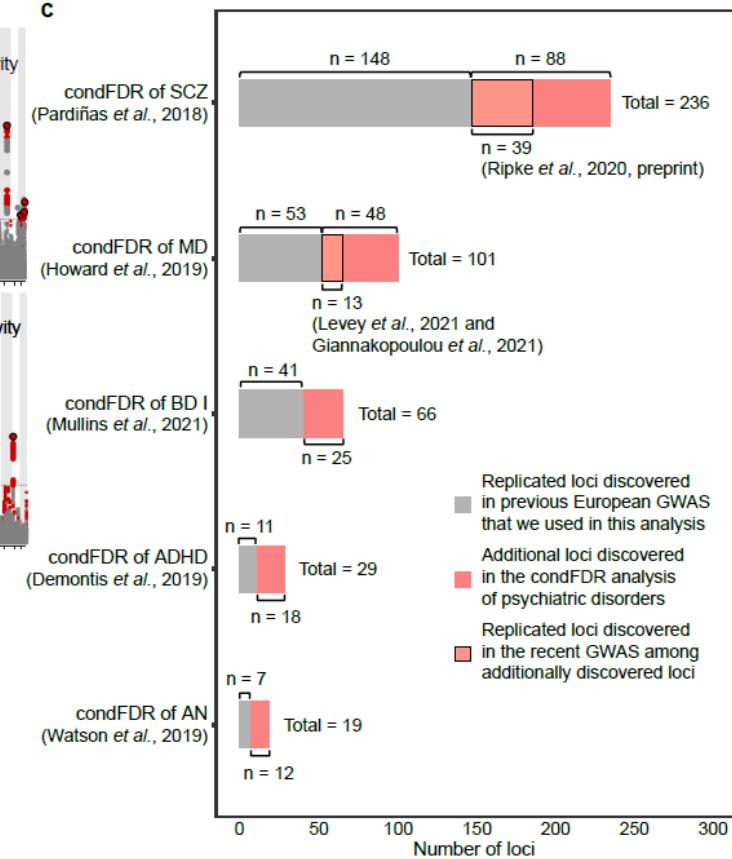


Fig 2. Partitioned heritability analyses using LDSC. a. Enrichment estimates for 53 functional annotations. Annotations are ordered by their P values. The dashed line indicates the significance at an FDR-corrected $P < 0.05$. **b.** Results of multiple-tissue analysis using gene expression data. Each circle represents a tissue or cell type from either the GTEx dataset or Franke lab dataset. The dashed line indicates the cutoff of FDR, which is $<5\%$ at a $-\log_{10}(P) = 2.22$. **c.** Results of multiple-tissue analysis using chromatin data. Each circle represents a peak for DNase I hypersensitivity (DHS) or histone marks in a tissue or cell type. The dashed line indicates the cutoff of FDR, which is $<5\%$ at a $-\log_{10}(P) = 2.37$.

976

977 **Fig 3. Genetic correlation estimates between creativity and other phenotypes using LDSC.** This figure includes significant genetic
 978 correlations where FDR values are <5% (see **Supplementary Table 10** for all results). Two traits (schizophrenia and bipolar II disorder)
 979 were not significant, but are included in this figure as an exception for psychiatric disorders. Abbreviations: HDL, high-density lipoprotein; GERD,
 980 gastroesophageal reflux disease; FIT, fluid intelligence test; TMT, trail making test.

981 **Fig 4. Polygenic risk scores for psychiatric disorders associated with creativity (ML-based creative probability).** Polygenic risk scores for psychiatric disorders associated with creativity. Nagelkerke's pseudo- R^2 (y-axis) is shown for scores derived using 13 thresholds ranging from 5×10^{-8} to 1 (x-axis). The significance increases from blue to red, and grey represents non-significance. The P -value is specified above each bar. **a.** SCZ PRS associated with creativity. **b.** MD PRS associated with creativity. **c.** BD I PRS associated with creativity. **d.** BD II PRS associated with creativity. **e.** ADHD PRS associated with creativity. **f.** ASD PRS associated with creativity. **g.** TS PRS associated with creativity. **h.** AN PRS associated with creativity. **i.** OCD PRS associated with creativity. Abbreviations: PRS, polygenic risk score.

a**b****c**

992 **Fig 5. Polygenic overlap between creativity and psychiatric disorders (schizophrenia, major depression, bipolar I disorder, attention**
993 **deficit/hyperactivity disorder, and anorexia nervosa).** **a.** Venn diagrams depicting the estimated number of trait-influencing variants shared
994 (grey) between creativity (left circle) and psychiatric disorders (right circle; schizophrenia, major depression, bipolar I disorder, attention
995 deficit/hyperactivity disorder, and anorexia nervosa) and unique (colors) to either of them (see **Supplementary Fig. 4** for all results). The
996 number of trait-influencing variants in thousands is shown, with the standard error in thousands given in parentheses. The estimated genetic
997 correlation for each pair is indicated below the corresponding Venn diagram, with an accompanying directional scale (blue shades for negative
998 scale and red shades for positive scale). **b.** Conditional Manhattan plots of $-\log_{10}$ scale of condFDR values for psychiatric disorders alone and
999 psychiatric disorders given creativity. SNPs with $-\log_{10}(\text{condFDR}) > 2$ (*i.e.*, $\text{FDR} < 0.01$) are indicated by large circles. A black line around the
1000 large circle indicates the most significant SNP in each linkage disequilibrium block. **c.** Significant condFDR variants stratified and compared
1001 with previously reported variants. A total of 88 variants for SCZ, 48 variants for MD, 25 variants for BD I, 18 variants for ADHD, and 12
1002 variants for AN were identified in addition to those obtained from the GWAS summary statistics used in this study (see **Supplementary Tables**
1003 **15, 16 and 17**). Among the 88 SCZ variants, 39 were replicated in the latest GWAS by Ripke *et al.*²³. Among the 48 MD variants, 13 were
1004 replicated in two GWAS results by Levey *et al.*²⁴ and Giannakopoulou *et al.*²⁵.

1005

Table 1. Summary of the lead SNPs in the 25 loci associated with creativity

SNP ID	CHR	BP	A1/A2	EAF	OR	95% C.I	Beta	s.e.	P	Nearest genes	eQTL genes
rs6661921	1	72824855	A/G	0.4048	0.9961	0.9947-0.9975	-0.0039	0.0007	3.93E-08	<i>RPL31P12</i>	<i>NEGR1</i>
rs2644107	1	201818629	C/T	0.3394	0.9957	0.9943-0.9971	-0.0043	0.0007	4.17E-09	<i>IPO9</i>	-
rs10189857	2	60713235	A/G	0.4313	0.9961	0.9947-0.9975	-0.0039	0.0007	2.63E-08	<i>BCL11A</i>	-
rs11691869	2	100805996	A/C	0.3631	1.0047	1.0033-1.0061	0.0047	0.0007	8.73E-11	<i>LINC01104</i>	<i>AFF3</i>
rs2358016	2	162007430	C/G	0.4967	0.996	0.9946-0.9974	-0.004	0.0007	8.00E-09	<i>TANK</i>	-
rs1653301	2	201076401	A/G	0.3926	0.9958	0.9944-0.9972	-0.0042	0.0007	6.13E-09	<i>SPATS2L</i>	<i>FTCDNL1</i>
rs62183028	2	212631483	G/T	0.3115	0.9951	0.9936-0.9967	-0.0049	0.0008	7.42E-11	<i>ERBB4</i>	-
rs73078357	3	48695834	T/C	0.1332	1.0072	1.0051-1.0094	0.0072	0.0011	1.58E-11	<i>CELSR3</i>	<i>IP6K2</i>
rs7613875	3	49971514	A/C	0.4509	1.0067	1.0053-1.0081	0.0067	0.0007	2.08E-21	<i>MONIA</i>	<i>RBM6, MST1R, RNF123, GMPPB, FAM212A, HYAL3</i>
rs35800293	4	31031051	A/G	0.2266	1.0054	1.0038-1.007	0.0054	0.0008	1.218E-10	<i>PCDH7</i>	-
rs62336281	4	183716283	C/T	0.0681	1.0085	1.0058-1.0113	0.0085	0.0014	1.287E-09	<i>TENM3</i>	-
rs72761442	5	60696323	A/G	0.2705	1.0046	1.003-1.0062	0.0046	0.0008	7.184E-09	<i>ZSWIM6</i>	-
rs448809	5	88005828	G/T	0.4165	1.0048	1.0034-1.0062	0.0048	0.0007	2.342E-11	<i>CTC-467M3.1</i>	-
rs9379831	6	26175852	A/C	0.3041	1.0044	1.0028-1.006	0.0044	0.0008	6.208E-09	<i>HIST1H2BD</i>	-
rs1906252	6	98550289	A/C	0.4846	1.0061	1.0047-1.0075	0.0061	0.0007	5.888E-18	<i>RP11-436D23.1</i>	-
rs6976440	7	133109116	A/G	0.1928	0.9952	0.9935-0.997	-0.0048	0.0009	4.92E-08	<i>EXOC4</i>	-
rs11793831	9	23362311	G/T	0.4157	1.0045	1.0031-1.0059	0.0045	0.0007	3.305E-10	<i>SUMO2P2</i>	-
rs10876864	12	56401085	A/G	0.4267	1.0041	1.0027-1.0055	0.0041	0.0007	6.497E-09	<i>IKZF4</i>	<i>SUOX, RPS26</i>
rs9537647	13	57749024	A/G	0.0774	1.0073	1.0048-1.0099	0.0073	0.0013	2.791E-08	<i>PRR20FP</i>	-
rs7988627	13	81631782	A/G	0.4386	1.004	1.0026-1.0054	0.004	0.0007	3.224E-08	<i>RP11-521J24.1</i>	-
rs7181745	15	56971305	A/T	0.1924	1.0052	1.0034-1.007	0.0052	0.0009	4.368E-09	<i>ZNF280D</i>	-
rs4149398	16	28608938	C/G	0.3709	0.996	0.9946-0.9974	-0.004	0.0007	2.399E-08	<i>SULT1A2</i>	<i>TUFM, SULT1A1, NPIP89, SULT1A2, NPIP7, NUPR1, SH2B1, NPIP6, EIF3C</i>
rs1557343	18	35159172	A/T	0.3163	0.9954	0.9939-0.997	-0.0046	0.0008	6.606E-10	<i>CELF4</i>	-
rs8097318	18	50549809	C/T	0.4727	1.0038	1.0024-1.0052	0.0038	0.0007	4.319E-08	<i>DCC</i>	-
rs6519190	22	39774525	A/G	0.3211	0.9957	0.9941-0.9973	-0.0043	0.0008	9.15E-09	<i>SYNGR1</i>	<i>MGAT3, SYNGR1, TAB1, RPL3</i>

Abbreviations: SNP, single nucleotide polymorphism; CHR, Chromosome; BP, genomic position in human genome assembly GRCh37 (hg19); A1, effect allele; A2, non-effect allele; EAF, effect allele frequency; OR, odds ratio; C.I, Confidence interval; Beta, regression coefficient; s.e., standard error.