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ABSTRACT 
 

BACKGROUND 

Oncogenes are commonly amplified on extrachromosomal DNA (ecDNA) contributing to poor outcomes for 

patients. Currently, the chronology of ecDNA development is not known. We studied the origination and 

evolution of ecDNA in patients with Barrett’s esophagus (BE) who progressed to esophageal adenocarcinoma 

(EAC).  

 

METHODS 

We analyzed whole-genome sequencing (WGS) data from a BE surveillance cohort and EAC patients at 

Cambridge University UK (n=206 patients). We also analyzed WGS data from biopsies taken at two time points 

from multiple sites in the esophagus from 80 patients enrolled in a case-control study at the Fred Hutchinson 

Cancer Center (FHCC) - 40 BE patients who progressed to EAC and 40 who did not. 

  

RESULTS 

ecDNA was detected in 24% and 43% of BE patients with BE-associated early and late-stage EAC, respectively, 

in the Cambridge cross-sectional cohort. ecDNA was found in 33% of all FHCC BE patients who developed 

cancer, either prior to, or at EAC diagnosis. ecDNA was strongly associated with patients who developed cancer, 

in contrast with FHCC BE patients who did not progress (odds ratio, 18.8, CI – 2.3-152, p=3.3x10-4). ecDNAs 

were enriched for oncogenes and immunomodulatory genes and could be detected early in the transition from 

high-grade dysplasia to cancer and increased in copy number and complexity over time. 

  

CONCLUSIONS 

ecDNAs can develop before a diagnosis of cancer in BE patients and are strongly selected for during the evolution 

to EAC. ecDNAs promote diverse oncogene and immunomodulatory gene amplification during EAC 

development and progression. 
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INTRODUCTION 
EAC is a highly lethal cancer that can arise from BE, a 
relatively common, pre-cancerous metaplastic condition 
(1.6% of the U.S. population)1. In addition to 
epidemiological and clinical features such as chronic 
gastroesophageal reflux disease, patient age or BE lesion 
size2,3, genomic copy number changes have also been 
implicated in the transformation to EAC1,4–9. Such 
changes include oncogene amplifications, which 
frequently occur on circular extrachromosomal DNA 
(ecDNA) particles10. The non-chromosomal inheritance 
and highly accessible chromatin architecture of ecDNA 
contributes to aggressive tumor growth, accelerated 
evolution, and drug-resistance11–14. Computational tools 
can detect ecDNA in sequencing (WGS) data from 
biopsies15–17.  However, the relative lack of pre-cancer to 
cancer longitudinal studies, plus the challenges of 
interpreting clonality in the face of non-Mendelian 
genetics, have made it difficult to determine if ecDNAs 
arise early in tumorigenesis and contribute to the 
transformation of dysplasia into cancer. Two carefully 
curated surveillance studies of BE patients, including a 
longitudinal case-control study with multi-regional WGS 
sampling, and a completely independent cross-sectional 
surveillance cohort, with full histological correlatives, 
provided an unprecedented opportunity to study the role 
of ecDNA in the transition of BE to EAC.  
 

METHODS 
Study samples 
We analyzed WGS data from 206 patients in a cross-
sectional BE surveillance Cambridge cohort with biopsy-
validated BE, including 42 patients with metaplasia or 
low-grade dysplasia (LGD) who never developed HGD 
or EAC during follow-up, 25 patients with high-grade 
dysplasia (HGD), 51 patients with early-stage EAC 
(AJCC stage I), and 88 patients with late-stage EAC 
(AJCC stage II-IV) (Figure 1a). Histology and WGS 
sequencing were performed on the same biopsies 
(Supplementary Appendix – “Cambridge sample 

selection”). We also analyzed 20 EAC tumors from The 
Cancer Genome Atlas (TCGA) esophageal carcinoma 
study18 (ESCA), composed of 6 early-stage and 14 late-
stage tumors. 
 
We analyzed WGS data from esophageal biopsies in an 
independent, prospectively collected case-control study 
conducted at the Fred Hutchinson Cancer Center (FHCC) 
of patients with BE (Figure 1b.)8, including 40 patients 
with a cancer outcome (CO) and 40 patients who did not 
develop cancer (NCO) during the study period. At least 
two biopsies for WGS were obtained by isolating 
epithelial tissue (Figure 1c) of the BE at each of the two 
primary study time points - timepoint 1 (TP-1) and 
timepoint 2 (TP-2). Histology samples were also 
collected independently of the sequencing biopsies, 
including from the same, or close to the same, level in 
the esophagus (Figure 1d). At TP-2, biopsies from the 
same level of the esophagus (or as close as possible) as 
the EAC were used for sequencing (Supplementary 
Appendix), except for patient 391 for whom resected 
tumor sequencing was available. 
 
ecDNA detection and characterization 
DNA copy number alterations were detected using 
CNVKit19 (FHCC, TCGA cohorts) and ASCAT20 
(Cambridge cohort) with PrepareAA 
(https://github.com/jluebeck/PrepareAA) to identify 
candidate seed regions for ecDNA detection and 
characterization using AmpliconArchitect15 (AA) and 
AmpliconClassifier (Supplementary Appendix – 
“Amplicon classification and ecDNA detection”) (Figure 
1e). An amplicon complexity score was computed based 
on the diversity of amplicon structure decompositions 
output by AmpliconArchitect (Supplementary Appendix 
- “Amplicon complexity score”). 
 
Statistical analysis 
We used SciPy21 (version 0.19.1) to conduct all statistical 
tests in the study, with the exception of the ecDNA 
region/oncogene overlap significance test which utilized 
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ISTAT22 (version 1.0.0). When computing odds ratios, if 
any cell in the two-by-two table was zero, the Haldane 
correction23 was applied to every cell in the table. 
Significance of odds ratios and differences in event 
frequencies between groups were assessed by Fisher’s 
exact test. The default alternate hypothesis used was 
“two-sided” in relevant statistical tests, unless otherwise 
specified as Ha=greater or less. 

RESULTS 
ecDNA is significantly associated with EAC in 
patients with BE  
 ecDNA was not detected in any of the non-dysplastic 
Barrett’s esophagus (NDBE) samples in the cross-
sectional BE surveillance Cambridge cohort 
(Supplemental Figure 1). By contrast, ecDNA was found 

 
Figure 1. Study designs. a) Breakdown of the types of BE patients in the Cambridge cross-sectional study, 
segregated into cohorts by histology of the sample sequenced, which was also the highest-disease state for that 
patient. b) The FHCC cohort consists of 80 patients for whom biopsies were collected prospectively and later 
separated in two groups of 40 patients who had cancer outcomes (CO) and non-cancer outcomes (NCO) c) Sample 
collection at timepoints TP-1 and TP-2 to collect sequencing biopsies and histology biopsies. Two sequencing 
biopsies were collected from each timepoint. d) WGS biopsies and histology biopsies were taken independently. 
Some histology and sequencing biopsies were taken at the same level of the esophagus (on-level), and some 
histology biopsies fell within a +/- 1cm window of the measured height of the sequencing biopsy (windowed 
histology). e)  Workflow for analyzing the WGS samples. A brief overview of the process by which biopsies were 
selected, sequenced, and characterized by AmpliconArchitect is shown. 
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in tumors from 13/51 patients (25%) with early-stage 
(AJCC stage I) EAC and in tumors from 38/88 patients 
(43%) with late-stage tumors (AJCC stage II-IV) (Figure 
2a).  ecDNA occurrence was significantly enriched in 
early-stage EAC versus NDBE (Figure 2b, p=1.8x10-4) 
with significantly increased ecDNA frequency in late-
stage tumors compared to early-stage (odds ratio 
(OR)=2.2, C.I.=1.0-4.7, Fisher’s exact test, p=0.027, 
Ha=greater). ecDNA was detected in a nearly identical 
fraction of an independent cohort of late-stage EAC 
tumors from TCGA (6/14 tumors – 43%).  
 
The FHCC study featured multi-regional, longitudinal 
sampling from before and at cancer diagnosis. We 
examined the development of ecDNA over time in 
patients who progressed to EAC endpoint versus those 
who maintained benign BE. At cancer diagnosis (TP-2), 
ecDNA was detected in samples from 11/40 CO patients 
with EAC (28%) (Figure 2c, Supplemental Figure 2), 
consistent with the 25% ecDNA frequency found in the 
Cambridge cohort of patients with early-stage cancer 
(Fisher’s exact test, p=1.0). ecDNA was detected in only 
1/40 non-cancer outcome (NCO) patients (Supplemental 
Figure 3). Notably for this sample, KRAS was amplified 
(Supplementary Figure 4), and the patient died of causes 
unrelated to BE only 2.84 years after TP-2. We 
additionally analyzed 20 long-term follow-up samples 
collected from 10 NCO patients (median 9.6 years after 
TP-2) who maintained NDBE status and remained 
ecDNA-negative (Supplemental Figure 5). These data 
demonstrate a highly significant association of ecDNA 
with the development of EAC (Figure 2d).  
 
ecDNA can be detected in esophageal biopsies 
associated with high-grade dysplasia 
The longitudinal case-control FHCC study enabled 
determination of the timing of ecDNA development in 
BE patients with a cancer outcome. Remarkably, ecDNA 
was found at TP-1, prior to development of cancer, in 
biopsy tissues from 7/40 CO patients (18%) who 
subsequently developed EAC.. Also, at TP-1, HGD was 

detected in at least one histology biopsy for 27/40 
patients (67.5%). Six TP-1 samples having ecDNA could 
be matched to an on-level histology biopsy, all showing 
HGD (Figure 2e). By contrast, 46% (21/46) of the 
ecDNA-negative TP-1 sequencing biopsies could be 
matched to on-level HGD, indicating a significant 
association of ecDNA and HGD in the pre-cancer 
samples (p-value=0.015, Figure 2e). 
 
In CO patient samples collected at TP-2, where cancer 
was first diagnosed, we associated 54 sequencing 
biopsies to on-level histology. ecDNAs were identified in 
11 of these sequencing biopsies, nine of which (82%) 
associated with on-level EAC, with the remaining 2/11 
associated with on-level HGD (Figure 2f). In contrast, 
among the remaining 43 ecDNA-negative biopsies, only 
20/43 (47%) were associated with on-level EAC, with 
the remaining 23/43 (53%) associated with on-level BE 
or HGD (Figure 2f). The specificity of ecDNA 
association with worsened pathological status at both 
timepoints suggests that ecDNA are enriched in BE 
clones that become cancer. In the Cambridge cohort, 
ecDNA was detected in only one of the 25 patients with 
HGD (Supplemental Figure 1). However, in that cohort, 
HGD was treated immediately upon detection, so it was 
not possible to determine if the HGD samples would 
have subsequently progressed to cancer. 

TP53 loss and ecDNA formation 
Prior loss of TP53 enables genomic instability7,8,24,25, and 
we found a strong association in both FHCC and 
Cambridge cohorts between TP53 disruption 
(Supplementary Appendix) and ecDNA-positive status 
(Supplemental Figure 6a-b). In the FHCC cohort, all 
eight samples in which ecDNA was found prior to cancer 
diagnosis (TP-1) showed biallelic disruption of TP53. 
The appearance of ecDNA as a subset of TP53 disrupted 
cases points to the prior loss of TP53 enabling ecDNA 
formation. 
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Ongoing ecDNA formation associates with the 
malignant transformation 
To better understand the potential relationship between 
ecDNA and the transition from HGD to EAC, we studied 

an individual patient in the FHCC CO cohort (patient 
391) for whom WGS data were collected at four 
endoscopies over a seven-year period (Figure 3a). 
Initially, HGD was detected at two different locations 

 
Figure 2. a) Characterization of the ecDNA status and cancer stage of patient samples from the Cambridge early- 
and late-stage EAC cohorts. b) Comparison of patient ecDNA status and cancer outcome status reveals association 
of ecDNA with EAC (Fisher’s exact test, p=1.8x10-4, Ha=greater). c) Characterization of the ecDNA status and on-
level histology of samples collected for FHCC cancer outcome (CO) patients across timepoints TP-1 and TP-2 for 
the two esophageal sequencing samples (“upper” and “lower”). Maximum histology of any biopsy from that 
timepoint is also shown. Asterisk indicates cancer diagnosis made at next endoscopy (1.44 and 8.16 months after 
TP-2 for patients 568 and 772, respectively). d) Comparison of patient ecDNA status and cancer outcome status 
reveals association of ecDNA with cancer outcome (odds ratio = 18.8, C.I. = 2.3-152, Fisher’s exact test, p=3.3x10-

4, Ha=greater). e) The proportion of FHCC TP-1 samples without EAC or HGD in on-level histology, versus with 
HGD in on-level histology for CO patients (before developing cancer), segregated by ecDNA status, shows 
enrichment for ecDNA with advanced disease status (OR=15.4, Fisher’s exact test, p-value=0.015, Ha=greater). f) 
The proportion of FHCC TP-2 samples without HGD or EAC in on-level histology (BE only) versus with HGD or 
EAC in on-level histology in CO patients (cancer first detected), segregated by ecDNA status shows association 
with HGD/EAC status OR=5.2, Fisher’s exact test, p-value=0.037, Ha=greater. 
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within the BE segment. Chromosomal ERBB2 
amplification via breakage fusion bridge cycles 
(Supplemental Figure 7a) and TP53 loss were present in 
these biopsies (Figure 3b). An ecDNA (ecDNA-1), 
bearing AP2B1, GAS2L2 and RASL10B, was only 
detected (Figure 3b-c, Supplemental Figure 7b) after 5.6 
years. The lesions did not progress to EAC for another 
6.5 months, at which point a second ecDNA (ecDNA-2) 
containing SOCS1, CIITA, and RMI2 was detected 
(Figure 3b-c, Supplemental Figure 7c). SOCS1 is a 
suppressor of cytokine signaling, including interferon 
gamma26 that may foster escape from cytotoxic T-cells27. 
CIITA is an immunomodulatory master transcription 

factor for antigen presentation28, whose translocation is 
immunosuppressive29. RMI2 is a component of the 
Bloom Helicase complex involved in homologous 
recombination that has been suggested to play a role in 
lung cancer metastases30. A subsequent surgical resection 
of the tumor confirmed both ecDNA-1 and ecDNA-2, 
whereas the tissue containing only ecDNA-1, TP53 loss 
and chromosomal ERBB2 amplification, remained HGD. 
These results suggest that multiple and ongoing focal 
amplification events occur in dysplastic tissues31,32, 
enhancing a clone’s fitness during malignant 
transformation. 
 

 
Figure 3. a) Timeline of sample collection in FHCC CO patient 391 relative to patient age. Summary of the 
ecDNA status and windowed histology status for four endoscopies with time interval between each also indicated. 
Biopsy distances from the gastroesophageal junctions (GEJ) are indicated. Two distinct species of ecDNA are 
labeled as ecDNA-1 and ecDNA-2. b) Inferred phylogeny of patient 391 WGS samples across the four 
endoscopies, starting from TP53 loss, with branching reporting the ecDNA formation events, annotated by 
histological status of sample (windowed). c) The structure of ecDNA-1, first detected in endoscopy-2 where HGD 
was detected within +/- 1cm, and the structure of ecDNA-2, first detected in endoscopy-3 where EAC was 
diagnosed and present within +/- 1cm. 
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Genomically overlapping ecDNAs reidentified at 
multiple timepoints share a common origin 
To compare ecDNA fine structure across multiple time 
points in the same individual, we developed an amplicon 
similarity score ranging from 0 to 1 (Supplemental 
Figure 8a-e, Supplementary Appendix – “Amplicon 
similarity score”). Genomically overlapping ecDNAs 
from multiple samples from the same patient shared high 
similarity, consistent with a common origin 
(Supplemental Figure 8e). All ten genomically 
overlapping ecDNA pairs from within the same FHCC 
patients reidentified between TP-1 and TP-2 showed 
significant similarity (p<0.05) (Supplemental Table 2). 
Thus, ecDNAs detected in pre-cancer are frequently 
maintained through the transition to cancer, and 
genomically overlapping ecDNA identified from multi-
region sampling likely have a common origin. Taken 
together, these data suggest that ecDNA can be a truncal 
event in the formation and evolution of EAC. 
 
ecDNAs are selected for and evolve during the 
transformation of BE to EAC 
We detected a marked increase in ecDNA frequency in 
cancer-outcome patients prior to clinical detection of 
cancer, and even more elevated levels in later-stage 
cancers (Figure 4a). To better understand these 
observations, we characterized 137 ecDNA across all 
samples from 75 ecDNA-positive BE, BE-derived HGD, 
and BE-adjacent EAC patients. ecDNA copy number 
was significantly higher in EAC samples than in pre-
cancer samples (Figure 4b). Moreover, the complexity of 
structural rearrangements in ecDNA-derived regions 
increased between pre-cancer and EAC (Figure 4c), 
suggesting a significant increase in the heterogeneity of 
ecDNA structures with the evolution of tumors. We next 
investigated CN changes in 8 pairs of clonal ecDNA 
where the same ecDNAs (based on amplicon similarity 
score) reappeared in different sequencing samples from 
the same patient, and for which the samples had 
windowed histology data available (Supplementary 
Table 2).  When both ecDNA occurrences were 

associated with the same histology, the ecDNA CNs 
were highly similar. However, if one sample associated 
with a more severe histological status than the other, the 
ecDNA copy number was significantly higher in that 
sample (Figure 4d). These data suggest that ecDNA 
confer a strong selective advantage to the BE clones that 
eventually progress to EAC, and pre-cancer ecDNA are 
subject to continued evolution during malignant 
transformation and progression, leading to increased 
heterogeneity and copy number. 
 
26/83 (31%) of combined ecDNA-positive samples with 
definite or associated histology contained more than one 
species of ecDNA (Figure 4e), enabling multiple 
oncogene amplifications.  However, there were no 
significant differences between pre-cancer (3/14, 21% 
having multiple ecDNA species) and EAC samples 
(23/69, 33% having multiple ecDNA species) (p-
value=0.53), suggesting that tumors may achieve 
subclonal ecDNA heterogeneity early on, and that 
competition between multiple distinct ecDNAs may play 
a role in EAC evolution. 
 
ecDNAs promote diverse oncogene and 
immunomodulatory gene amplifications during EAC 
development and progression 
Oncogenes known to drive EAC, including ERBB2, 
KRAS, and MYC33,34, were recurrently detected on 
ecDNAs found in BE and EAC across multiple cohorts 
(Figure 4f-g; Supplemental Table 3), suggesting that 
distinct ecDNA amplify similar oncogenes. Furthermore, 
many ecDNA-borne oncogenes were not detected on 
focal, non-ecDNA amplifications (Supplemental Figure 
10). ecDNA carried 0.76 unique oncogenes per amplicon 
(97 oncogenes in 127 ecDNA), compared to 0.52 
(192/373) unique oncogenes per amplicon in non-
extrachromosomal focal somatic copy number 
amplifications (fsCNAs), suggesting ecDNA may permit 
a wider variety of oncogene amplifications. 
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ecDNA amplification was associated with a greater 
maximum oncogene copy number than other fsCNAs 
(distribution mean CN 11.6 and 21.3 for non-ecDNA and 
ecDNA respectively) (Figure 4h), with some ecDNA 
genes surpassing 100 copies. ecDNA also permitted 
greater diversity in maximum CN than non-ecDNA 

fsCNA (CN variance = 687.9 versus 122.2 in non-
ecDNA fsCNA, p-value=1.5x10-4). Notably, many (79 
total) ecDNA genes were associated with 
immunomodulation35 (Supplemental Table 4, 
Supplemental Figure 11a), with only 25 of the 79 already 
present in the set of canonical oncogenes. The ecDNA-

 
Figure 4. a) The proportion of patients with ecDNA in all study cohorts. b) The maximum genomic copy number 
of each ecDNA in pre-cancer samples and EAC (or EAC-linked for FHCC) samples, colored by sample study 
source. c) The complexity score of focally amplified ecDNA-positive genomic regions for pre-cancer and EAC 
samples. d) For clonal ecDNA identified across multiple FHCC samples (determined by amplicon similarity 
scoring), the increase in ecDNA copy number for each pair of clonal ecDNA, separated by difference in associated 
histology of the two samples – showing an association of increasing copy number with increasing histological 
severity (Mann-Whitney U test, p-value=0.030, test statistic=1.0). e) The number of distinct ecDNA per sample 
identified in ecDNA-positive samples from all combined sources of data. f) Comparative overlap of BE-associated 
oncogenes found on ecDNA in the four cohorts. g) For oncogenes recurrently detected on ecDNA in different 
patients, the number of ecDNA-positive patients having the oncogene listed on ecDNA. h) Oncogene copy number 
for the highest copy number focally amplified oncogene on each unique focal amplification (ecDNA or non-
ecDNA fsCNA) shows significantly higher oncogene copy number on ecDNA versus non-ecDNA fsCNA (Mann-
Whitney U test, p-value=5.9x10-5, test statistic=5020.5). 
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amplified immunomodulatory genes achieved a 
significantly higher CN compared to those on other 
fsCNAs (p-value=4.1x10-3, Supplemental Figure 11b). 
 
Comparing genomic regions predicted to be on ecDNA 
to oncogene intervals known to associate specifically 
with BE and EAC8,33,34 (Supplemental Table 5), 
demonstrated a statistically significant overlap 
(p=3.1x10-5, Supplemental Figure 12), suggesting that, 
despite the high diversity of ecDNA-borne oncogenes, 
ecDNAs are positively selected in a manner specific to 
cancer type.  
 

DISCUSSION 
Oncogene amplification on ecDNA enables tumors to 
evolve at an accelerated rate, driving rapid therapeutic 
resistance and contributing to shorter survival for 
patients10,13,36. It has been unclear whether ecDNA can 
contribute to the transformation of pre-cancer to cancer, 
or whether it is a later manifestation of tumor genome 
instability. In multiple cohorts of BE patients, we 
demonstrate that ecDNA appear in HGD, and their 
presence is strongly associated with EAC progression. 
 
Typical phylogenetic approaches to track cancer 
clonality assume chromosomal inheritance. 
Consequently, it has been challenging to infer the 
clonality and evolution of ecDNA-driven cancers. Our 
results demonstrate that in tumor evolution from pre-
cancer to cancer, ecDNA confers a strong selective 
advantage to the BE clones that eventually progress to 
EAC. The remarkable heterogeneity in ecDNA-
containing cancers may promote rapid and frequent 
branching of the phylogenetic tree, fostered by the non-
chromosomal inheritance of ecDNA during cell division. 
Further, the increased prevalence and complexity of 
ecDNA structures in esophageal cancer samples suggests 
ongoing selection and evolution during tumor formation 
and progression37. 
 

Our results strongly suggest that ecDNAs usually arise in 
regions of HGD in BE patients, and nearly always in the 
context of TP53 loss. These results complement the 
recent finding that TP53 alteration and altered copy 
number may drive the transition from metaplasia to 
dysplasia4,7,8,38, showing the cooperative nature of 
various genetic and epigenetic alterations, and suggesting 
that ecDNA formation may represent a particularly 
potent driver of transformation and an opportunity for 
specific therapeutic intervention.   
 
Freed from Mendelian constraints, ecDNA amplifies a 
broader range of oncogenes, and their copy numbers 
increase rapidly and dramatically in EAC, consistent 
with strong positive selection. Increased ecDNA 
heterogeneity may also foster adaptation to changing 
conditions. Importantly, the clonal selection and 
maintenance of immunomodulatory genes on ecDNA 
prior to cancer development may aid in immune evasion. 
Taken together, these results raise the possibility that 
ecDNA may contribute to the development of cancer 
through multiple mechanisms. 
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Supplemental Figure 1 
Oncoprint table for Cambridge BE and EAC patients segregated by histology type showing ecDNA status, cancer 
stage (if applicable) TP53 disruption (via mutational analysis, involving at least one copy), BFB status, other 
fsCNA (non-BFB, non-ecDNA) status, and prior therapy (chemotherapy or radiation) on the tumors in cancer 
patients. 
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Supplemental Figure 2 
Oncoprint tables of FHCC CO patient WGS samples encoding ecDNA status, BFB status, other fsCNA (non-
BFB, non-ecDNA) status, TP53 disruption (at least one gene copy affected), whole-genome duplication (WGD) 
status (from Paulson et al., 2022), chromothripsis status (Paulson et al., 2022), as well as on-level and windowed 
histology for each time point and both upper and lower esophageal samples for timepoints TP-1 and TP-2. 
Maximum histology from any histology biopsy is shown at the bottom of each time-point. Asterisk indicates 
cancer diagnosis made at next endoscopy since biopsies from the diagnostic ESAD endoscopy were unavailable 
for CO patient ID 772 and lacked sufficient DNA for CO patient ID 568, so biopsies from the penultimate 
endoscopy were substituted (occurring 1.44 and 8.16 months after TP-2 for patients 568 and 772, respectively). 
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Supplemental Figure 3 
Oncoprint tables of FHCC NCO patient WGS samples encoding ecDNA status, BFB status, other fsCNA (non-
BFB, non-ecDNA) status, TP53 disruption (at least one gene copy affected), whole-genome duplication (WGD) 
status (from Paulson et al., 2022), chromothripsis status (Paulson et al., 2022), as well as on-level and windowed 
histology for each time point and both upper and lower esophageal samples for timepoints TP-1 and TP-2. 
Maximum histology from any histology biopsy is shown at the bottom of each time-point. 
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Supplemental Figure 4 
The KRAS-bearing ecDNA focal amplification detected in FHCC NCO patient 303 at timepoint TP-1 and 
timepoint TP-2. Amplicon similarity analysis suggests a common origin of the ecDNA, and ecDNA copy number 
and complexity increased during the 1.61 years between samples. 
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Supplemental Figure 5 
Oncoprint tables of FHCC NCO long-term follow-up patients (collected median 9.6 years after TP-2). 
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Supplemental Figure 6 
a) Association of ecDNA presence and TP53 status for FHCC cohort patients. b) Association of ecDNA presence 
and TP53 status for Cambridge cohort patients. Fisher’s exact test, p-values 1.1x10-4 and 6.3x10-3, respectively for 
FHCC and Cambridge, Ha=greater. 
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Supplemental Figure 7 
a) Patient 391 conserved focal amplification of breakage-fusion-bridge and emergence of ecDNA between 
timepoints TP-1 and TP-2. b) The structure of patient 391’s ecDNA-1, detected in the lower pre-cancer sample 
from TP-2, where HGD was in the histology window, and an identical structure derived from the adenocarcinoma 
resection. c) The structure of ecDNA-2, detected in the upper sample from TP-2 where EAC was present in the 
histology window, and an identical structure derived from the adenocarcinoma resection. Amplicon similarity 
analysis of ecDNA-1 and -2 reveals common origins of the structures. 
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Supplemental Figure 8 
a) Cartoon representation of two overlapping focal amplifications (A1, A2) consisting of a collection of genomic 
intervals (Gi) and breakpoints (Bi). Genomic location is shown on the x-axis and copy number on the y-axis. b) 
(Top) Representation of the relative locations of B1, B2 and G1, G2 and the resulting union of those elements, 
(Bottom) representation of the intersection of the elements in B1, B2 and G1, G2 highlighted in purple and green, 
respectively. c) (Top) Definition of the asymmetric similarity score function Asym for two overlapping amplicons. 
(Bottom) Definition of the symmetric similarity score, Sym for two overlapping amplicons, which is the average 
of the asymmetric scores. d) The distribution of maximum asymmetric similarity scores for overlapping 
amplicons derived from different patients (left) and for overlapping amplicons derived from the same patient 
(right) in FHCC NCO and CO patients shows significantly higher similarity scores for amplicons derived from 
the same patients (Mann-Whitney U test, p-value=7.2x10-39, test statistic=13463.0). e) Probability density plot of 
amplicon similarity scores from a collection of unrelated samples with overlapping focal amplifications (blue), a 
beta distribution maximum-likelihood estimate of the empirical amplicon similarity score distribution (black), and 
the similarity scores of overlapping ecDNA amplicons from the same FHCC patients (red). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.25.501144doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.25.501144
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 21 of 31 
 

 
Supplemental Figure 9 
The length of predicted genomic intervals captured on ecDNA, visualized on log10 scale, for each distinct ecDNA 
in the combined cohorts, segregated by pre-cancer versus EAC shows no significant difference in length of 
intervals captured on ecDNA between pre-cancer and EAC ecDNA (Mann-Whitney U test, p-value=0.23). 
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Supplemental Figure 10 
a) For oncogenes detected on ecDNA in at least one patient, the number of ecDNA-positive patients having the 
oncogene listed on ecDNA, and the frequency of that gene on other focal amplifications.  
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Supplemental Figure 11 
a) For immunomodulatory-associated genes detected on ecDNA in at least one patient, the number of ecDNA-
positive patients having the gene listed on ecDNA, and the frequency of that gene on other focal amplifications. 
b) Distributions of copy numbers for the highest copy number focally amplified immunomodulatory-associated 
gene in each unique amplicon which was carried on ecDNA or non-ecDNA fsCNA show significantly higher 
copy number of immunomodulatory-associated genes on ecDNA versus non-ecDNA fsCNA (Mann-Whitney U 
test, p-value=4.1x10-3, test statistic=1490.0). 
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Supplemental Figure 12 
ecDNA and oncogene overlap computation annotated diagram showing how intervals were selected, and the 
methodology used to compute the overlap statistical significance. ecDNA regions were derived from any ecDNA-
positive sample identified in our study. The lower part illustrates the overlap between ecDNA regions and 
canonical BE- and EAC-associated oncogenes for chr17. 
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SUPPLEMENTARY APPENDIX 

Cambridge sample selection 
The Cambridge cohort consists of Barrett’s Esophagus (BE) cases with 42 patients having low grade disease, 25 
with high grade disease, and 50 early-stage (T1) esophageal adenocarcinoma (EAC). Patients with low grade BE 
and high grade BE underwent surveillance at Cambridge University Hospitals NHS Trust and consented 
prospectively to a biomarker and genomic characterization study (Cell Determinants Biomarker, REC no. 01/149, 
BEST2 REC no. 10/H0308/71). For all samples, strict pathology consensus review was carried out, with 30% of 
pathological cellularity required for Barrett’s samples and 70% percent for early-stage cancers. BE research 
samples were collected every 2cm of the BE segment at endoscopy and snap-frozen. A snap frozen section was 
taken from each BE sample to determine the grade of dysplasia. If more than one grade was present in a sample, it 
was classified according to the highest grade. In cases which progressed to multiple different disease stages, the 
highest grade of dysplasia in the case’s follow-up was used for sequencing. Patients in the pre-cancer categories 
who received prior ablative treatment were excluded. Samples with squamous contamination were excluded. 
 
Early-stage EAC patients were recruited for the EAC International Cancer Genome Consortium (ICGC) study, for 
which samples were collected through the UK-wide Oesophageal Cancer Classification and Molecular 
Stratification (OCCAMS, Rec. no. 10-H0305-1) consortium. Ethical approvals for these trials were from the East 
of England-Cambridge Central Research Ethics Committee. Early-stage EAC samples were prospectively 
collected as endoscopic biopsies or resection specimens. All tissue samples were snap frozen and blood or normal 
squamous epithelium (at least 5cm from the tumor) were used as germline reference as previously described1. 
 
Cambridge sequencing data 
Sequencing was carried out for cases with an estimated tumour purity of >70% determined by expert pathologist 
review. Whole genome sequencing by Illumina (100-150bp paired end reads) was carried out with 50-fold 
coverage for the tumour and 30-fold coverage for the matched germline control. Reads were then aligned with 
BWA-MEM2 to GRCh37 (1000 Genomes Project human_g1k_v37 with decoy sequences hs37d5). 
 
Cambridge focal amplification detection. 
Both Cambridge BAM files were aligned to GRCh37 (1000 Genomes Project human_g1k_v37 with decoy 
sequences hs37d5) using BWA-mem (v0.7.17). Absolute copy number (CN) profiles were generated using 
ASCAT3 (v2.3). Genomic regions with a total CN > 4.5 and interval size > 10kbp were identified, merged, and 
refined with the amplified_intervals.py script. Each seed region was given to AA separately to improve runtime 
on each sample. AA was run in the default explore mode to reconstruct amplicon structures and amplicons formed 
by the same regions were deduplicated based on genomic overlap such that the highest-level classification 
amplicon was kept (ranked by ecDNA, BFB, complex non-cyclic, and then linear), ties being broken by largest 
amplicon size. 
 
TCGA focal amplification detection 
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We utilized the Dockerized PrepareAA wrapper to detect focal amplifications in the TCGA cohort. The wrapper 
pipeline for seed detection incorporated CNVKit4 (version 0.9.7) run in unpaired mode to detect CNVs. The CNV 
calls were then provided the amplified_intervals.py script and filtered based on regions having CN > 4.5 and size 
> 50kbp to produce a set of seed regions. We used AmpliconArchitect5 (version 1.2) to infer the architecture of 
amplicons, The pipeline was run on 20 TCGA-ESCA EAC tumor whole genome sequencing BAMs, aligned to 
GRCh37, through the Institute for Systems Biology Cancer Genomics Cloud (https://isb-cgc.appspot.com/) which  
provides a cloud-based platform for TCGA data analysis. 
 
FHCC sequencing data and annotations 
Sequencing data for the FHCC study was previously published in Paulson et al.6. All research participants 
contributing clinical data and biospecimens to this study provided written informed consent, subject to oversight 
by the Fred Hutchinson Cancer Research Center IRB Committee D (Reg ID 5619). Reads were then aligned with 
BWA-MEM (version 0.6.2-r126)2 to GRCh37 (1000 Genomes Project human_g1k_v37 with decoy sequence 
hs37d5). BAM files went subsequent indel realignment with GATK IndelRealigner7 (version 3.4-0-g7e26428). 
Chromothripsis calls were derived from Hadi et al.8. Genome doubling (WGD) calls were derived from Paulson et 
al.6. 
 
FHCC cohort focal amplification detection 
We utilized the PrepareAA wrapper to detect focal amplifications in the FHCC cohort. The wrapper pipeline for 
seed detection incorporated CNVKit4 (version 0.96) run in tumor-normal mode to call somatic CNVs against the 
matched normal WGS samples for each patient (when multiple normal samples were available, one was selected 
arbitrarily). Normal samples also underwent the same pipeline in unpaired mode for standalone CNV detection. 
The CNV calls were then provided the amplified_intervals.py script and filtered based on regions having CN > 
4.3 (4.0 for normals) and size > 50kbp (10kbp for normals) to produce a set of seed regions. The wrapper then 
invoked AmpliconArchitect (version 1.2) in default mode on the WGS bam files to examine seed regions and 
profile the architecture of the focal amplifications. The resulting graph and cycles output files were provided to 
AmpliconClassifier (AC) (version 0.4.5) to produce classifications of the AA amplicons for ecDNA, BFB, 
complex non-cyclic and linear focal amplifications (Supplementary Appendix - “Amplicon classification and 
ecDNA detection”). AC also specified bed files corresponding to the classified regions and annotated the identity 
of genes on the focal amplifications. 
 
FHCC cohort histology 
In the FHCC cohort histology and sequencing biopsies were collected separately. If a sequencing biopsy had a 
histology biopsy from the same level along the esophagus (measured from the gastroesophageal junction), then it 
was denoted as having on-level histology. If a sequencing biopsy had a histology biopsy from within +/- 1cm of 
the same level, it was denoted as having windowed histology. When multiple histology samples could be paired 
with the sequencing, the histology biopsy with most severe disease state was assigned. 
 
TP53 disruption analysis 
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In the FHCC cohort, TP53 status was determined from Paulson et al.6 and we defined TP53 disruption where 
either single (+/-) or double (-/-) loss of TP53 was detected. In brief, for the FHCC cohort, mutations were defined 
as any moderate- to high-impact SNV or indel as reported by SNPeff9. Deletions of at least one exon, or SVs 
affecting the TP53 coding sequence or splice sites were also considered to disrupt TP53, as were copy number 
alterations affecting at least half of exonic regions. All alterations were verified manually using IGV10 or Partek®. 
For the Cambridge cohort, TP53 status was determined by identifying somatic coding variants (missense, 
frameshift, stop gain or splice site variants), using Strelka11 v2.0.15 and Variant Effect Predictor12 (VEP) version 
78. Disruption was defined as one or more copies of TP53 being affected by a mutational event. 
 
Selection of gene lists 
Oncogenes were derived from a combination of the ONGene database13, as well as BE & EAC driver genes listed 
from Frankell et al.1, Stachler et al.14, and Paulson et al.6. The complete list is given in Supplemental Table 5. 
Immunomodulatory genes were derived from the HisgAtlas database15. When evaluating the presence of genes on 
ecDNA, the average gene copy number was required to be 4.5 or higher and the 5’ end intact. 
 
Amplicon classification and ecDNA detection 
We utilized AmpliconClassifier (AC) (version 0.4.9, available at https://github.com/jluebeck/AmpliconClassifier) 
to perform classification of AA outputs into different types of focal amplifications and to extract coordinates of 
the genomic regions corresponding to those classifications.  
 
AC takes two primary inputs - the AA breakpoint graph file encoding genomic segment copy numbers and SV 
breakpoint junctions, as well as the AA cycles file encoding decompositions of the AA graph file into overlapping 
cyclic and/or non-cyclic paths weighted by the portion of the genomic CN they represent. AmpliconClassifier 
uses multiple heuristics to perform the classifications. First AC 
filters the paths <10kbp, paths which significantly overlap low-complexity or repetitive regions, paths which 
overlap regions of the genome never exceeding CN 4.5 (not focally amplified), or which have a decomposed CN 
< δ (too low-frequency relative to other decompositions for reliable classification as focal amplifications). The 
decomposed CN (cp) threshold, δ, for a path p, having a maximum genomic CN of mp is defined as 

𝛿𝛿 =

⎩
⎪
⎨

⎪
⎧  |𝑝𝑝| = 1:       min (1,

𝑚𝑚𝑝𝑝

10
)

 𝑚𝑚𝑝𝑝 > 7:       min (3,
 𝑚𝑚𝑝𝑝

8
)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒:       2.5

 

For each remaining path, AC computes a length-weighted CN, called W, which is the product of the length of the 
path (in kbp) and the decomposed path’s assigned copy number.   
 
AC first assess non-filtered paths for the presence of BFB cycles using heuristics determined from manual 
examination of BFB-like focal amplifications in the FHCC cohort and focal amplifications in previous studies5,16. 
AC computes the fraction of breakpoint graph discordant edges which are foldback, f, – i.e., inverted orientation 
having a genomic distance < 25kbp. AC then identifies decomposed paths containing foldback junctions between 
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segments, and using all paths computes the set of consecutive segment pairs in the paths where the two 
boundaries of the segments together form a foldback junction. Each segment pair is assigned its own weight equal 
to the decomposed copy count of the path. If the proportion of BFB-like segment pairs over all segment pairs in 
all paths is less than 0.295, then the amplicon is not considered to contain a BFB. Furthermore, if the total weights 
of pairs which are “distal” (not foldback and > 5kbp jump between endpoints) divided by the total weight of all 
pairs is greater than 0.5, the amplicon is not considered to contain BFB. Lastly, if the total decomposed CN of all 
pairs is < 1.5, or if the total number of foldback segment pairs is < 3, or f < 0.25, or the decomposed CN weight of 
all BFB-like paths divided by the CN weight of all paths < 0.6, or the maximum genomic copy number of any 
region in the candidate BFB region is < 4, the amplicon is not considered to contain a BFB. If the amplicon has 
not failed any of these criteria, a BFB-positive status is assigned, and the BFB-like cycles (decomposed paths with 
a BFB foldback) are put into a set and kept separate from additional fsCNA detection inside the amplicon region. 
 
Next, AC assess non-filtered, non-BFB paths for the presence of ecDNA cycles. If there is any cyclic path with 
decomposed CN > 5 and length > 100kbp, an ecDNA-positive status is assigned. If the total fraction of length-
weighted CN, W, assigned to cycles exceeds 12% of the total length-weighted CN in the cycles file and more than 
10kbp are inside the filtered cyclic paths, an ecDNA-positive status is assigned. Lastly, if the total length of 
complex cycles (cyclic paths with interior rearrangements > 5kbp) exceeds 50kbp and the region has CN > 4.5 an 
ecDNA-positive status is assigned. The ecDNA-like cyclic paths are then stored for subsequent analysis, 
including reporting of the genomic coordinates as a bed file and annotation of genes. 
 
If the amplicon is not classified as BFB-positive and/or ecDNA-positive, and has paths consistent with focal 
amplification, then two other classifications are checked.  If the fraction of W assigned to non-cyclic paths with 
rearrangements > 5kbp plus W assigned to cyclic paths is greater than 0.3 of total W in all paths, a complex non-
cyclic label is assigned. If the ratio of W assigned to non-cyclic paths without rearrangements to W assigned to 
non-amplified paths is greater than 0.25, then the path is labeled complex non-cyclic if the breakpoint graph has > 
4 discordant edges in amplified regions, otherwise a linear amplification label is assigned. If not resolved by these 
heuristics, the path type with the highest fraction of W is assigned. 
 
Amplicon similarity score 
We compared overlapping focal amplifications to quantify amplicon similarity by quantifying the relative 
amounts of shared overlap in genomic coordinates and in SV breakpoint location. These calculations are 
implemented into the amplicon_similarity.py script, available in the AmpliconClassifier repository 
(https://github.com/jluebeck/AmpliconClassifier). 
 
We defined symmetric and asymmetric amplicon similarity scores combining information from both the genomic 
interval overlap and the shared breakpoint junctions. An amplicon is defined as a collection of breakpoints (B), 
and genomic segments (G). Genomic overlap was evaluated on the basis of the number overlapping base-level 
coordinates in two intervals. Breakpoints were considered to be shared if the total distance between the two 
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endpoints of each junction was in total measured to be less than d (default = 250bp). That is, for two breakpoints x 
and y with sorted endpoints (x1,x2) and (y1,y2), respectively, they must satisfy 

|𝑥𝑥1 − 𝑦𝑦1| + |𝑥𝑥2 − 𝑦𝑦2| < 𝑑𝑑 
The asymmetric amplicon similarity score between two amplicons A1 and A2 we defined as  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴1,𝐴𝐴2) =  
𝛼𝛼(𝐺𝐺1 ∩ 𝐺𝐺2)

𝐺𝐺1
+

(1 − 𝛼𝛼)(𝐵𝐵1 ∩ 𝐵𝐵2)
𝐵𝐵1

 

and similarly, the similarity of A2 to A1 is 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴2,𝐴𝐴1) =  
𝛼𝛼(𝐺𝐺2 ∩ 𝐺𝐺1)

𝐺𝐺2
+

(1 − 𝛼𝛼)(𝐵𝐵2 ∩ 𝐵𝐵1)
𝐵𝐵2

 

Where α is set to 0.25 by default. We then define a symmetric amplicon similarity score which is the average of 
the two asymmetric scores 

𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴1,𝐴𝐴2) =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴1,𝐴𝐴2) + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴2,𝐴𝐴1)

2
 

We computed symmetric amplicon similarity scores for a panel of amplicons from unrelated origins derived from 
sequencing data published in Deshpande et al.5, deCarvalho et al.17, as well as Steele et al.18 and Moody et al.19 
(using AA amplicons reported in Bergstrom et al.20), and the amplicons from unrelated patients in the FHCC 
cohort. We used the resulting distribution of 719 similarity scores for overlapping amplicons as a background null 
distribution. We computed the percentile of each new amplicon similarity score in this null distribution to 
quantify its similarity against the panel of overlapping amplicons from unrelated origins. 
 
We also fit a beta distribution to the empirical null symmetric similarity score distribution, using a maximum 
likelihood estimation approach to fit the parameters of the model. The beta distribution was selected as it provides 
support on the interval [0, 1], provides a higher degree of flexibility in fitting various distributions given the two 
shape parameters, and enables a better estimation of small p-values than the empirical dataset. We performed 
negative log likelihood minimization using the SciPy21 (version 0.19.1) fmin function with initial parameter 
estimates (1.5, 10), and convergence occurred in 38 iterations. 
 
As AmpliconArchitect may include flanking regions which are not focally amplified as part of the amplification 
itself, the amplicon similarity script filters from the calculation regions that are not focally amplified (CN < 4.5 
default), SVs which join two elements less than 2500bp away, and it redundantly filters regions that are also 
present in the low-complexity or low-mappability database used by AmpliconArchitect. 
 
Amplicon complexity score 
AmpliconArchitect outputs a collection of (cyclic and/or non-cyclic) paths in the CN-aware breakpoint graph 
representing an approximate optimal balanced CN flow in the graph. As a result, non-trivial graphs may be 
decomposed into multiple paths, each having some copy-number assigned to the path, constrained by the total 
amount of CN flow available in the graph. Each path has a copy number c, and a length in kilobase pairs, s. The 
total length-weighted copy number of all decomposed paths we call T, and is given by  
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𝑇𝑇 = �𝑠𝑠𝑖𝑖𝑐𝑐𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Where ci (si) is the copy number (length) of the i-th path. The values of ci are pre-sorted in descending order for 
increasing i. For the decomposed paths of each amplicon graph, G, we computed a vector representing the fraction 
of total CN captured by each of the n decompositions. We denote this sorted collection as, 

𝐷𝐷 = �
𝑠𝑠1𝑐𝑐1
𝑇𝑇

, … ,
𝑠𝑠𝑛𝑛𝑐𝑐𝑛𝑛
𝑇𝑇

� 

We noted that there may be many low-weight CN paths, representing non- or weakly-amplified paths extracted 
from the graph, and thus we defined a “residual”, measured against the first percentile, p, (default = 80%) of 
weighted CN explained. We first define an index j, where j is the largest value such that 

0 ≤ 𝑗𝑗 < 𝑛𝑛 

�𝐷𝐷𝑗𝑗

𝑛𝑛

𝑗𝑗=1

<  𝑝𝑝 

This implies that j+1 represents the first index such that sum of the first j+1 entries is equal to or exceeds p. The 
residual, ϵ, we defined as the weighted CN fractions above the first j+2 entries, is then given by 

𝜖𝜖 = � 𝐷𝐷𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑗𝑗+2

 

We then defined an amplicon complexity score function H(ϵ, D, k), represented by the sum of entropies from the 
residual, the non-residual, and the total number of segments in the breakpoint graph, k. 

𝐻𝐻(𝜖𝜖,𝐷𝐷, 𝑘𝑘) =  −𝜖𝜖 ln 𝜖𝜖 −�𝐷𝐷𝑖𝑖 ln𝐷𝐷𝑖𝑖

𝑗𝑗+1

𝑖𝑖=1

 −  ln
1
𝑘𝑘
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