

1 **Evolutionary responses to acquiring a multidrug resistance plasmid are dominated by
2 metabolic functions across diverse *Escherichia coli* lineages**

3 Laura Carrilero^{1,2,*}, Steven Dunn^{3,*}, Alan McNally³, Michael Brockhurst¹

4 *Equal contribution

5 ¹Division of Evolution, Infection and Genomics, School of Biological Sciences, University of
6 Manchester, Manchester, United Kingdom

7 ²School of Biosciences, University of Sheffield, Sheffield, United Kingdom

8 ³Institute of Microbiology and Infection, College of Medical and Dental Science, University of
9 Birmingham, Birmingham, United Kingdom

10 **Abstract**

11 Multidrug resistance (MDR) plasmids drive the spread of antibiotic resistance between bacterial
12 lineages. The immediate impact of MDR plasmid acquisition on fitness and cellular processes
13 varies among bacterial lineages, but how the evolutionary processes enabling the genomic
14 integration of MDR plasmids vary is less well understood, particularly in clinical pathogens.

15 Using diverse *Escherichia coli* lineages experimentally evolved for ~700 generations, we show
16 that the evolutionary response to gaining the MDR plasmid pLL35 was dominated by
17 chromosomal mutations affecting metabolic and regulatory functions, with both strain-specific
18 and shared mutational targets. The expression of several of these functions, such as anaerobic
19 metabolism, is known to be altered upon acquisition of pLL35. Interactions with resident mobile
20 genetic elements, notably several IS-elements, potentiated parallel mutations, including
21 insertions upstream of *hns* that were associated with its upregulation and the downregulation of
22 the plasmid-encoded extended-spectrum beta-lactamase gene. Plasmid parallel mutations
23 targeted conjugation-related genes, whose expression was also commonly downregulated in
24 evolved clones. Beyond their role in horizontal gene transfer, plasmids can be an important
25 selective force shaping the evolution of bacterial chromosomes and core cellular functions.

26 **Introduction**

27 *Escherichia coli* is a common cause of human and animal infections. In particular, multidrug
28 resistant (MDR) lineages cause serious invasive diseases and pose significant challenges for
29 effective treatment (Mathers et al., 2015). The emergence of these MDR lineages is typically
30 associated with the acquisition of one or more multidrug resistance plasmids (Dunn et al.,
31 2019). Such plasmids often encode resistances against multiple antibiotic classes, including
32 clinically important frontline treatments (Cantón and Coque, 2006). In particular, the acquisition
33 and dissemination of extended spectrum beta-lactamase (ESBL) genes in *E. coli* is largely
34 mediated by the transfer of MDR plasmids (Dunn et al., 2019). The ESBL CTX-M-15 confers
35 resistance to cephalosporins and has been widely disseminated by ISEcp1, which serves to
36 both mobilise this gene among plasmids, and increase its expression by replacing its native
37 promoter (Lartigue et al., 2006). The abundance and diversity of ESBL plasmids in *E. coli*
38 makes controlling their spread incredibly challenging. Understanding the factors that determine
39 the successful integration of these plasmids into bacterial genomes is therefore a high priority.

40

41 The response of bacterial cells to plasmid acquisition can vary extensively between bacterial
42 lineages. For example, multiple studies report that the immediate growth or fitness impact of
43 acquiring an identical plasmid ranges from negative to positive between different lineages of a
44 species (Alonso-del Valle et al., 2021; Dunn et al., 2021; Gama et al., 2020). These differences
45 have been linked to gene content variation among the bacterial genomes in some cases
46 (Alonso-del Valle et al., 2021). In addition, the transcriptional response to plasmid acquisition
47 can also vary between bacterial lineages in terms of the identity of differentially expressed
48 chromosomal genes, the numbers of bacterial genes affected, and the magnitude of their
49 change in expression level (Dunn et al., 2021). Collectively, these comparative experimental
50 data suggest that there will be lineage-specific or perhaps even genotype-specific responses to

51 MDR plasmid acquisition that are contingent upon genetic variation among the recipient
52 bacterial genomes.

53

54 In lineages where plasmid acquisition imposes high fitness costs and/or causes appreciable
55 disruption to cellular function(s), we would expect plasmid carriage to be rare because plasmid-
56 bearing cells will be selected against in antibiotic-free environments, where the benefits of
57 plasmid encoded traits do not outweigh the fitness cost of plasmid carriage (Bergstrom et al.,
58 2000; Harrison and Brockhurst, 2012; San Millan, 2018; San Millan and Maclean, 2017).

59 However, an emerging theme in evolutionary studies of plasmid-host interactions is that plasmid
60 acquisition often acts as a catalyst for evolutionary changes in the bacterial chromosome and/or
61 the plasmid itself, which enable the stable genomic integration of newly acquired plasmid
62 replicon(s) even when these are at first costly (Brockhurst and Harrison, 2022). Such
63 evolutionary responses to plasmid acquisition can take the form of compensatory mutation(s)
64 that resolve specific genetic conflicts between plasmid and chromosomal genes to ameliorate
65 the cellular disruption these cause (Hall et al., 2021; Loftie-Eaton et al., 2017; Millan et al., 2015;
66 Porse et al., 2016). Alternatively, these evolutionary responses can be more extensive, involving
67 coadaptation of the chromosome and plasmid, whereby multiple mutations occurring on both
68 replicons are necessary to assimilate the plasmid into the genome (Bottery et al., 2019, 2017;
69 Jordt et al., 2020). To date, few studies have compared the evolutionary responses of diverse
70 lineages to acquiring a new plasmid at the genomic level (Benz and Hall, 2022; Jordt et al.,
71 2020; Porse et al., 2016). As such little is known about how the evolutionary processes of
72 genomic integration of an MDR plasmid varies between genetically diverse bacterial lineages.

73

74 Here we take a comparative experimental evolution approach to test how the evolutionary
75 response to acquisition of the MDR plasmid pLL35 varies between genetically diverse lineages
76 of *E. coli*. pLL35 was obtained from a *Klebsiella* clinical isolate and encodes multiple antibiotic

77 resistance genes, including the extended-spectrum beta-lactamase CTX-M-15 (Dunn et al.,
78 2021). Replicate populations of five *E. coli* strains, including both environmental and clinical
79 isolates and the lab strain MG1655, carrying pLL35 were serially-passaged with or without
80 cefotaxime for ~700 bacterial generations, alongside plasmid-free controls propagated without
81 cefotaxime. Bacterial population density and plasmid frequency was monitored over time by
82 selective plating and colony PCR. At the end of the experiment, we compared the growth and
83 cefotaxime resistance of evolved clones and obtained their whole genome sequences and, for
84 MG1655, the ancestral and evolved transcriptomes. The growth response to selection varied
85 between lineages and according to cefotaxime treatment, but no change in cefotaxime
86 resistance was observed between treatments. We observed parallel mutations in evolved
87 plasmid-carriers at loci or within operons associated with a range of functions including cellular
88 metabolism, regulation of MGEs, and plasmid conjugation.

89

90 **Results**

91 *Growth kinetic and resistance responses to selection*

92 To test for the initial effect of plasmid acquisition on bacterial growth we compared growth
93 kinetic parameters for each of the ancestral *E. coli* strains with or without pLL35. Acquisition of
94 pLL35 reduced growth in the ancestral *E. coli* strains (Figure S1; statistical tables provided in
95 Table S1) indicating that plasmid carriage imposed a fitness cost in all strain genetic
96 backgrounds used here. Despite this initial fitness cost of the plasmid, however, we observed no
97 appreciable plasmid loss in any of the plasmid-containing populations during the ~700
98 generations selection experiment either with or without cefotaxime (Figure S2), indicating that
99 pLL35 was stably maintained regardless of positive selection for the encoded CTX-M-15
100 extended-spectrum beta-lactamase.

101

102 We next quantified the change in growth kinetic parameters and cefotaxime resistance for a
103 randomly chosen evolved clone per replicate population from the end of the selection
104 experiment relative to their ancestor (these evolved clones were also used in subsequent
105 genome sequencing). The response of growth kinetic parameters to selection varied among
106 strains and between treatments (Figure 1; statistical tables provided in Table S2). Notably, the
107 strains MG1655 and F022 showed higher growth rates and maximum densities relative to their
108 ancestors than did strains EL39, F104 and F054. Moreover, plasmid bearing clones evolved
109 with cefotaxime tended to show higher performance across a range of growth kinetic
110 parameters than evolved plasmid-free control clones. However, the level of resistance to
111 cefotaxime in evolved plasmid carriers did not vary with strain or cefotaxime selection (ART
112 ANOVA strain $F_{4,60} = 1.4161$ P = 0.24; cefotaxime selection $F_{2,60} = 2.8666$ P = 0.06), although
113 high variability was observed among evolved clones for some strains, suggestive of divergence
114 between replicate populations (Figure S3).

115

116 *Genetic responses to selection*

117 To determine the genetic response to selection and how this varied among strains and
118 treatments we obtained whole genome sequences for a randomly chosen evolved clone per
119 replicate population. Evolved clones had gained between 0-45 mutations, including mutations
120 located both on the chromosome (range = 4 – 43 mutations) and the plasmid (range = 0 - 21
121 mutations) in the evolved plasmid-carrying clones. 4-out-of-50 evolved plasmid-carrying clones
122 were hypermutators, having acquired mutations in mismatch repair, whilst none of the evolved
123 clones from control populations were hypermutators. Excluding hypermutator clones, of all the
124 observed SNVs, 12.1% (n=23) were synonymous, 22.2% (n=42) were intergenic, and the
125 remaining (n=124) 65.6% were nonsynonymous. There were also 18 instances of IS movement

126 and 4 deletions. The number of nonsynonymous mutations per evolved clone did not vary
127 among *E. coli* strains ($P=0.0931$ ANOVA) or between treatments ($P=0.6603$ ANOVA). Next, to
128 distinguish mutations putatively associated with an evolved response to plasmid-acquisition, we
129 identified the subset of chromosomal loci acquiring mutations that were exclusive to plasmid-
130 carriers (i.e., loci that never acquired mutations in the corresponding plasmid-free controls) for
131 further analysis (Figure 2). This subset contained 14 loci that were mutated in more than one
132 independently evolved clone. Such parallel evolution is suggestive of selection having acted
133 upon the mutations at these loci, which were then analysed further. Functional analysis of these
134 loci revealed enrichment for transcriptional regulators (*rpoS*, *putA*, *norR*, *nhaR*, *fadR*) and
135 inorganic ion transport and metabolism (*putP*, *mgtA*, *artP*, *nanT*), with the remaining loci
136 representing singleton COG categories.

137
138 At a number of chromosomal loci and operons we observed parallel evolution occurring
139 between strains (~22% of SNVs, $n=78$; Figure 2, S4), suggesting a common evolved response
140 to the plasmid among the divergent *E. coli* genetic backgrounds. The most commonly mutated
141 locus was the arginine transporter gene *artP*, with mutations affecting 9 evolved clones across
142 multiple replicates of F022 and ELU39 both with and without cefotaxime selection, and a single
143 replicate of F054. Several of these mutations were clustered within a similar region of the *ArtP*
144 protein, which encodes the main ABC transporter domain and may therefore affect arginine
145 transport. Other transporters affected by mutations in multiple strains were the sialic acid
146 transporter gene *nanT* and magnesium transporting ATPase gene *mgtA*. Several other
147 metabolic functions also displayed between strain parallelism. These included key components
148 of anaerobic metabolism including fatty acid metabolism and anaerobic respiration: *fadR* a
149 multifunctional regulator of fatty acid metabolism, was mutated in 4 evolved clones of strains
150 ELU39 and F104 where mutations clustered between amino acid residues 29-35. In both cases,
151 these residues occur in the turn between an alpha helix and beta strand of a putative HTH *gntR*

152 type conserved domain, which may therefore have some transcriptional impact. In F104 a
153 variant was detected in *fadl* from the same operon which catalyses the final step in fatty acid
154 oxidation. Mutations were observed in *norR* (A418A, A448V), an anaerobic nitric oxide
155 reductase transcriptional regulator, in both MG1655 and F022. The sodium/proline metabolism
156 *put* operon also exhibited between strain parallelism, with *putP* containing an identical D55G
157 mutation across two replicates of F022, and a single MG1655 isolate. In the F022 isolates, *putA*
158 gained mutations at two separate amino acid residues (L213P, Y1073H). Other functions
159 displaying between strain parallelism included: the transcriptional regulator *nhaR* controlling
160 expression of the NhaA Na⁺/H⁺ antiporter protein in strains MG1655 and ELU39; the stress
161 response sigma factor *rpoS* in strains MG1655 and F104; the mismatch repair gene *mutS*
162 resulting in hypermutability in 4 evolved plasmid-carrying clones of strains MG1655, F104, and
163 F022; and the glycerol metabolism operon *glp*.

164
165 In contrast, at several other loci we observed parallel evolution occurring only within evolved
166 lines from a single strain, suggesting certain strain specific evolutionary responses to plasmid
167 acquisition. In MG1655 several genes in the multidrug resistance operon *mdt* contained non-
168 synonymous mutations, though no change in resistance to cefotaxime was detected in the
169 clones carrying these mutations. Mutations were also observed in multiple MG1655 replicates in
170 the *ydh* operon, including the monooxygenase *ydhR* which is involved in the metabolism of
171 aromatic compounds, as well as ABC transporter *yjj*. Other examples of within strain parallelism
172 affected hypothetical genes without known functions. Of the ~78% of SNVs occurring as
173 singletons amongst replicates, the majority related to transcriptional control or metabolic
174 functions.

175
176 We observed multiple insertion sequence mediated mutations in evolved clones, suggesting
177 that this was an important mutational mode for some strains in our study, although the

178 propensity for IS-mediated mutations varied substantially among the *E. coli* strains. Whereas
179 multiple IS-mediated mutations were observed in evolved clones of MG1655 (n=8), F022 (n=3),
180 and ELU39 (n=5), only a single IS-mediated mutation occurred in F104, and none were
181 observed in F054. In MG1655, we observed a common insertion of two separate insertion
182 sequences (IS1 & IS3) upstream of *hns*, and thymidine kinase gene *tdk*, all within a 33 bp
183 window [IS1 EPC = 2,587,180, IS1 EXA = 2,587,192, IS3 EPA = 2,587,213] in 3 evolved clones
184 (with and without cefotaxime selection). The 26 amino acids adjacent to *hns* were unaffected,
185 suggesting that the *hns* promoter is likely intact, but the transposon may form a discretely
186 transcribed unit. In F104 and MG1655 we observed movement of IS1380, originating on pLL35
187 and encompassing the CTX-M-15 gene. In MG1655 the entire transposon integrated
188 successfully into the chromosome, but in F104 the CTX-M gene was truncated. The successful
189 duplication of IS1380 in MG1655 does not appear to have altered the cefotaxime MIC of the
190 evolved clone. In ELU39 we observed a common truncation of Mannose-1-phosphate
191 guanylyltransferase gene *cpsB*, mediated by two different IS elements, and an IS-element
192 insertion affecting the Phosphoglucosamine mutase protein *GlmM* that does not interrupt the
193 protein, but rather occupies the sequence immediately adjacent. Across two different replicates
194 of ELU39, we observed an insertion of IS3 in the two-component regulatory element *dcuR*, and
195 a non-synonymous mutation in the second component of that system, *dcuS*. This two
196 component regulator controls anaerobic fumarate metabolism, and also weakly regulates the
197 fumarate transporter encoded by *dctA*, in which we observed an insertion of IS1 causing
198 truncation of this gene. This suggests multiple routes likely to alter fumarate uptake and
199 metabolism, and alongside mutations targeting other aspects of anaerobic metabolism across
200 multiple strains (e.g., fatty acid metabolism and anaerobic respiration), indicates that anaerobic
201 metabolism was a key target of selection in plasmid-carriers.

202

203 Few mutations were observed in the pLL35 plasmid sequence in the evolved clones, with
204 observed variants frequently targeting genes involved in plasmid conjugation (Figure S5). Two
205 evolved clones of F054 contained pLL35 with nonsynonymous mutations affecting *traD*
206 encoding the coupling protein and *traI* encoding the multifunctional conjugation protein, and an
207 evolved clone of MG1655 contained pLL35 with a nonsynonymous mutation affecting *traI*. In
208 F104 an evolved clone from the cefotaxime selected treatment contained pLL35 with a complete
209 deletion of the conjugational machinery that rendered the plasmid conjugation deficient.
210 Excluding this deletion, all other replicates were able to conjugate. Additionally, we observed
211 that pLL35 from an evolved MG1655 had acquired an IS-element inserted intergenically
212 between a hypothetical protein and putative fimbrial subunit gene *filmA*.
213
214 Parallel mutations accounted for ~22% (n=78) of SNVs across our dataset, with the remaining
215 78% occurring as singletons amongst replicates. Of these genes, the majority also related to
216 transcriptional control or metabolic functions.
217

218 *Transcriptional responses to selection in MG1655*
219 Given that MG1655 showed the strongest phenotypic responses to selection and contained a
220 combination of strain-specific and shared mutational targets in evolved plasmid carriers,
221 hereafter we focused our analyses on better understanding the evolutionary responses of this
222 strain across treatments and replicate populations. We performed RNAseq on the ancestral
223 genotype with or without pLL35 and on each of the evolved clones. In the ancestral MG1655,
224 acquisition of pLL35 caused a total of 17 chromosomal genes to be moderately differentially
225 expressed (Log_2 fold change ≥ 1 , FDR ≤ 0.05), with functions primarily related to metabolism
226 (e.g. *dcuB*, *fumB*, *malK*, *gadX*, *hycD*; Figure S6). Three genes in the L-threonine degradation
227 operon *tdc* showed a common signature of upregulation. This modest transcriptional impact of

228 the plasmid is consistent with the small but significant reduction in ancestral growth we
229 observed in this strain, and more broadly is similar to the scale of transcriptional disruption
230 caused by pLL35 in the other strains previously reported, albeit affecting largely different genes.

231

232 Next, we analysed differential expression in the evolved clones relative to their ancestor to
233 detect evolved transcriptional responses. A large fraction of significantly differentially transcribed
234 genes (Log_2 fold change ≥ 1.5 , FDR ≤ 0.05) were common to all treatments, that is occurring in
235 both evolved plasmid-free and evolved plasmid-containing clones ($n = 1450$ genes; 59%),
236 presumably representing general adaptation to the lab environment. In contrast, the remainder
237 of differentially transcribed genes were only observed in evolved plasmid carrying clones,
238 potentially representing evolved transcriptional changes driven by the plasmid (Figure 3).
239 Among this subset, we focused on those significant differentially transcribed in parallel in at
240 least 3 replicate populations per treatment ($n=452$) to identify those most likely to represent
241 adaptive evolved responses. In general, most of these evolved changes led to downregulation
242 (~80%, $n=363$). Several functions exhibited plasmid-associated parallel transcriptional
243 responses, including fimbriae (*fimCFGHI yehC, yqiL*), flagellar (*flgK, flgL, yfiR*), cellular adhesion
244 (*ycbU*), DNA damage (*ybaZ, recG, uspC*), efflux (*envR, mdtB, ybhR*), LPS (*waaU, rfaBJ, rfaZ*),
245 outer membrane (*dsbB, ompN, htrE, lpxA, qmcA*) and biofilm (*ycgZ, pgaBC*). In addition,
246 several plasmid genes were significantly downregulated across both treatments. Many of these
247 were hypothetical genes, however several members of the *tra* operon were among the
248 commonly downregulated genes, although this downregulation did not result in complete
249 ablation of conjugational ability (Table S3).
250

251 Three plasmid-containing evolved clones exhibited a transcriptional response distinct from the
252 others. This response was characterised by strong upregulation of *Hns* and strong
253 downregulation of *CTX-M-15* and was associated with insertions of *IS1* or *IS3* between *hns* and

254 *tdk*. Notably, the evolved clones with these IS-element insertions and consequently
255 downregulated CTX-M-15 expression tended to show reduced resistance to cefotaxime
256 compared to the ancestral MG1655 (pLL35) strain (Figure 4).

257

258 **Discussion**

259 As plasmids transmit between bacterial lineages in microbial communities, they encounter
260 diverse genomic backgrounds, wherein a given plasmid can have different fitness effects and
261 cause varying levels and types of cellular disruption among strains (Alonso-del Valle et al.,
262 2021; Dunn et al., 2021). The evolutionary response to plasmid acquisition in bacteria has been
263 studied in a range of plasmid-host systems, providing evidence of evolutionary mechanisms
264 which explain the widespread existence of plasmids in bacterial genomes (Brockhurst and
265 Harrison, 2022; San Millan, 2018). However relatively few of these studies have compared
266 evolutionary responses to gaining the same plasmid between genetically divergent strains, nor
267 done so for a multi-drug resistance plasmid in clinically relevant bacteria. In this study we
268 examined the evolutionary response to plasmid acquisition after 700 generations by
269 experimentally evolving genetically divergent *E. coli* lineages—including environmental, clinical
270 and lab strains—with the MDR plasmid pLL35 in the presence and absence of antibiotic
271 selection pressure.

272

273 We show that pLL35 acquisition imposed a small initial fitness cost in all the divergent *E. coli*
274 strains we used. However, in only some of these strains did evolved clones show improved
275 growth relative to their ancestor, notably strains MG1665 and F022, and such improvements
276 were strongest in replicates evolved with cefotaxime. In addition, no consistent evolved changes
277 to cefotaxime resistance were observed among strains, albeit with high divergence among
278 replicates in some strains (e.g., MG1655). Nevertheless, by filtering for mutations that occurred
279 exclusively in evolved plasmid carriers (i.e., those that did not occur in the corresponding

280 plasmid-free control) and focusing on loci mutated in multiple replicate lines, we identified a
281 range of chromosomal mutations putatively associated with adapting to plasmid carriage, some
282 of which were common to multiple strains. These chromosomal mutations affected a wide range
283 of operons but were enriched for metabolic and regulatory cellular functions. Plasmid mutations
284 were less numerous and most commonly affected conjugation-related genes. On both the
285 chromosome and the plasmid, we observed an important role for IS-mediated mutations in
286 some strains, including insertion mutations impacting global regulatory systems (e.g. HNS) with
287 effects on cefotaxime resistance unique to these evolved clones.

288

289 The majority of parallel chromosomal mutations associated with adapting to the plasmid
290 occurred in genes involved in metabolism or its regulation. Several of these genes and operons
291 include those that showed a transcriptional response in our previous RNAseq study of the
292 immediate impact pLL35 acquisition in these strains, including *artP*, *nha*, and *put* (Dunn et al.,
293 2021). A notable finding of our previous study was a consistent low-level upregulation of genes
294 involved in anaerobic metabolism caused by pLL35 across all the genetically divergent strains
295 (Dunn et al., 2021). Consistent with this conserved transcriptional response, here we observed
296 parallel mutations in a wide range of genes associated with anaerobic metabolism, including
297 anaerobic respiration (*norR*), fatty acid metabolism (*fad*) and fumarate metabolism (*dct*) in
298 evolved plasmid carriers from multiple strains. This adds to a growing body of evidence
299 suggesting that metabolism and the evolution of MDR *E. coli* are intrinsically linked. A
300 pangenomic analysis of the MDR clone of *E. coli* ST131 showed that the MDR clone was
301 enriched in allelic variation in core anaerobic metabolism genes (McNally et al., 2019).
302 Additionally, a study of diverse *E. coli* lineages grown under sub-inhibitory antibiotic selection
303 pressure resulted in parallel adaptations in metabolism genes which potentiated resistance
304 (Lopatkin et al., 2021), and recent modelling studies have shown that evolution of AMR is
305 strongly coupled to the evolution of major metabolic pathways (Pinheiro et al., 2021). More

306 generally, transcriptional and metabolomic studies suggest that a wide range of plasmids impact
307 cellular metabolism in diverse bacterial taxa (Vial and Hommais, 2020). Why plasmids
308 commonly alter cellular metabolism is currently unclear, but this may reflect a plasmid strategy
309 designed to remodel bacterial metabolism in ways that are niche adaptive and boost plasmid
310 vertical transmission (Billane et al., 2022). Our data suggest that, over the longer term, bacterial
311 hosts may respond to plasmid metabolic manipulation through compensatory mutations in the
312 affected metabolic pathways.

313

314 Although plasmid mutations were less commonly observed than those affecting chromosomal
315 genes, plasmid mutations did arise in three of the *E. coli* strain backgrounds and almost all
316 occurred in genes linked to conjugation. In one case, we observed the complete deletion of the
317 conjugation operon, rendering the plasmid non-conjugative. Additionally, our RNAseq data
318 showed that evolved MG1655 plasmid carriers near universally downregulated genes encoding
319 components of the plasmid conjugation machinery. The evolution of reduced conjugation is a
320 common mechanism by which plasmids adapt to long-term association with a given bacterial
321 host (Dahlberg and Chao, 2003; Porse et al., 2016; Turner et al., 2014), and this is likely to
322 reflect the burden of expressing the conjugative machinery for host cells and the absence of
323 horizontal transmission fitness benefits for plasmids in populations without a supply of plasmid-
324 free recipients cells (Hall et al., 2017a). Notably, loss of conjugation was one of several possible
325 routes of compensatory evolution for p-OXA-48 plasmids in *E. coli* that have been observed to
326 occur within patient infections (DelaFuente et al., 2022).

327

328 Other resident mobile genetic elements (MGE), notably several insertion sequences, caused
329 parallel mutations at a range of sites affecting both the chromosome and the plasmid in evolved
330 plasmid carriers across multiple strains. We posit two non-mutually exclusive explanations for
331 this pattern: First, MGE mobilisation and expansion may be triggered by plasmid acquisition.

332 Interactions between conjugative plasmids and resident MGEs have been observed for
333 chromosomal transposons that respond and relocate to plasmids (Hall et al., 2021, 2017b), and
334 have been implicated in the mobilisation and spread of IS-encoded ARGs by plasmids (Che et
335 al., 2021). Second, IS expansions may be a faster route to adaptation than point mutations. This
336 is consistent with previous *E. coli* experimental evolution studies, including the Long Term
337 Evolution Experiment where an appreciable fraction of early beneficial mutations were caused
338 by IS elements in non-mutator lineages (Consuegra et al., 2021), and coevolution of *E. coli* with
339 MDR plasmids where adaptive mutations have been associated with IS element disruptions of
340 chromosomal and plasmid genes (Bottery et al., 2019, 2017; Porse et al., 2016).

341
342 The mobilization of IS1 and IS3 into the region upstream of *hns* occurred in parallel lines of
343 MG1655 resulting in upregulation of *hns* and consequent down-regulation of the CTX-M-15
344 gene on pLL35 and a reduction in phenotypic resistance to cefotaxime. H-NS has been shown
345 to play a key role in the controlled acquisition and integration of a number of virulence encoding
346 MGEs such as *Salmonella* Pathogenicity Islands (Ali et al., 2014) and the Locus of Enterocyte
347 Effacement in *E. coli* O157 (Sperandio et al., 1999), with H-NS silencing transcription of operons
348 on those MGEs to minimize their impact on fitness when acquired. To our knowledge, a role for
349 H-NS silencing during MDR plasmid acquisition has not previously been shown in *E. coli*. Our
350 data suggest H-NS may offer a regulatory route by which *E. coli* adapts to MDR plasmids,
351 occurring here via the insertion of an IS element into the regulatory region of *hns* upregulating
352 H-NS and in turn down regulating the newly acquired plasmid.

353
354 Using a comparative experimental evolution approach our study reveals a range of evolutionary
355 pathways taken by genetically divergent *E. coli* lineages following acquisition of an MDR
356 plasmid. In contrast to some studies of compensatory evolution to ameliorate plasmid fitness
357 costs, we did not see evidence for a major genetic conflict between chromosome and plasmid

358 that could be fixed by single point mutations (cf. (Hall et al., 2021)). Rather we observed a more
359 complex evolutionary process targeting a wide range of functions, including cellular metabolic
360 pathways impacted by plasmid carriage, plasmid conjugation, and global regulatory systems
361 controlling expression of foreign DNA. Our results highlight the importance of interactions
362 between incoming plasmids and MGEs already resident in the cell, both in terms of IS elements
363 relocating to plasmids and their expansion causing parallel mutations, an emerging theme in
364 plasmid-host evolution (Bottery et al., 2019, 2017; Porse et al., 2016). The key challenge for
365 future work will be to understand how these evolutionary processes translate from the lab into
366 more infection-relevant conditions to better understand the success of specific plasmid-host
367 combinations in clinical settings.

368

369 **Materials and methods**

370 *Bacterial strains and plasmids*

371 Five genetically diverse *E. coli* strains were used as hosts for the multidrug resistance plasmid
372 pLL35 (Dunn et al., 2021). Specifically, these included clinical isolates (F022, sequence type
373 ST-131 A; F054, sequence type ST-131 B; F104, sequence type ST-131 C) an environmental
374 isolate (ELU39, sequence type ST-1122) and the lab strain MG1655. Five independent colonies
375 were isolated per strain for use as ancestral genotypes in the evolution experiments and stored
376 cryogenically for subsequent use (plasmid-free ancestrals). For use in plasmid-containing
377 treatments, pLL35 was conjugated into each of these ancestral genotypes from its natural host
378 (*Klebsiella pneumoniae*), generating five independent transconjugants per strain (plasmid-
379 carrying ancestrals). Specifically, each single colony was inoculated into 5 ml of nutrient broth
380 (NB; Oxoid, United Kingdom) and incubated at 37°C for 2 h with shaking (180 rpm). *K.*
381 *pneumoniae* donor and *E. coli* recipient cultures were mixed at a ratio of 1:3, and 50 µl was
382 used to inoculate 6 ml of brain heart infusion (BHI) broth. These were then incubated as static

383 cultures at 37°C for 24 h. The conjugation mixture was plated onto 4 µg/ml of cefotaxime UTI
384 Chromagar (Sigma-Aldrich, United Kingdom) and incubated at 37°C overnight. Pink *E. coli*
385 transconjugant colonies were then subcultured onto UTI Chromagar with 4 µg/ml of cefotaxime
386 and stored cryogenically for subsequent use.

387

388 *Selection experiment*

389 We isolated five independent plasmid-free and plasmid-carrying ancestral clones per strain.
390 Each of these was re-streaked onto a nutrient agar plate, incubated at 37°C for 24 h, and a
391 single colony from each plate was then used to inoculate an overnight liquid culture in 6 ml of
392 NB. To establish replicate populations for the selection experiment, 60 µl of the respective
393 overnight culture was used per treatment. Plasmid-carriers were propagated by 1% daily serial
394 transfer in 6 ml NB liquid cultures under two treatments: Specifically, replicate plasmid-carrier
395 populations were propagated either with (evolved with plasmid plus cefotaxime treatment; EX)
396 or without (evolved with plasmid treatment; EP) 4 µg/ml of cefotaxime supplementation. In
397 addition, plasmid-free controls were propagated under equivalent conditions without cefotaxime
398 supplementation (control treatment; C). This experimental design resulted in 75 independently
399 evolving lines that were maintained for 84 days. For all treatments, every 14 days serial dilutions
400 of each population were plated out onto nutrient agar plates ± 4 µg/ml of cefotaxime to quantify
401 the total population density and the density of cefotaxime resistance. For the EX and EP
402 treatments, every 28 days 24 colonies from the cefotaxime supplemented agar plates were
403 picked and tested for the presence of the plasmid and the CTX-M-15 gene by PCR using a
404 previously published protocol (Dunn et al., 2021).

405

406 *Growth kinetics assays*

407 Growth kinetics were obtained for each plasmid-free and plasmid-carrying ancestral clone and
408 for a single colony randomly chosen from each evolving line at the end point of the selection

409 experiment (i.e., day 84). Triplicate cultures of each clone were grown in 200 μ l NB per well in
410 96 well plates incubated at 37 °C for 24 h. Optical density (OD) at 600nm was recorded every
411 30 minutes for 24 hours using an automated absorbance plate reader (Tecan Spark 10). Prior to
412 each reading, plates were shaken for 5s at 180rpm orbital shaking with a movement amplitude
413 of 3 mm. A humidity cassette was used to minimize evaporation.

414

415 *Cefotaxime resistance assays*

416 MIC assays for each plasmid-free and plasmid-carrying ancestral clone and for a single colony
417 randomly chosen from each evolving line at the end point of the selection experiment (i.e., day
418 84) were conducted according to the CLSI guidelines (Wikler et al., 2006), using nutrient broth
419 and cefotaxime. Shaking (180 rpm) overnight cultures in 6 ml nutrient broth were established
420 from independent colonies previously grown on agar plates. The following day, 0.5 McFarland
421 cell suspensions were prepared and further diluted 1/500 to inoculate 200 μ l of nutrient broth in
422 96-well plates. The final cefotaxime concentrations tested were 2-fold increases from 64 to
423 8192 μ g/ml, and the final volume per well was 200 μ l (100 μ l bacterial inoculum plus 100 μ l
424 antibiotic solution). The OD₆₀₀ was recorded after 24 h of static incubation at 37°C and
425 normalized by subtracting the OD₆₀₀ of a blank well. As working with positive OD₆₀₀ values
426 facilitates further data analysis and interpretation, we linearly transformed OD₆₀₀ estimates by
427 adding 0.0819 to all data. For each strain and plasmid combination, the relative growth at each
428 antibiotic concentration was obtained by dividing OD₆₀₀ values in the presence of antibiotic by
429 the OD₆₀₀ of the corresponding parental strain grown in the absence of antibiotic. The relative
430 growth values were used to calculate the area under the curve (AUC) with the auc function from
431 the R package flux (flux_0.3-0). Statistical analyses were performed on Box Cox transformed
432 data to fulfil ANOVA assumptions.

433

434 *Statistical Analysis*

435 RStudio was used to perform statistical analysis. The bacterial densities from the evolution
436 experiment were analysed in a linear mixed-effects model (LMM) with the R package “nlme”.
437 Strain, treatment and transfer were introduced in the model as fixed effects, whereas population
438 was used as a random effect to account for the repeated samplings. Data required a Box-Cox
439 transformation to meet model assumptions. We reduced the model by performing likelihood
440 ratio tests on nested models. We found a significant interaction effect between strain and
441 transfer.

442

443 The impact of strain and evolution treatment on growth kinetic parameters including the area
444 under the curve, the maximum growth rate, the maximum optical density and the lag time of the
445 evolved strains relative to their corresponding ancestral were assessed. These relative growth
446 parameters were analysed using ANOVA, art ANOVA or Scheirer-Ray-Hare test depending on
447 the data characteristic and if the assumptions of the tests were met. A Box-Cox transformation
448 was applied when required. The impact of treatment for each of strains was also studied due to
449 the impact that the strain had on the growth parameters.

450

451 For MIC analysis, an art ANOVA for MIC analysis regarding the area under the curve and an
452 ANOVA for resistance fold change were performed to study the impact of strain and treatment
453 during the experimental evolution in relation to the corresponding ancestral. Further statistical
454 analyses were performed for each strain individually.

455

456 *Genomics and bioinformatics*

457 We obtained whole genome sequences for one randomly chosen colony per evolving line taken
458 from the end point of the selection experiment (i.e., day 84) using both Illumina and Oxford
459 Nanopore Technology platforms. Sequencing data is available under BioProject accession
460 number PRJNA848631, and a list of isolate accession numbers is provided in Table S4.

461 Ancestral WGS data are available under Bioproject Accession number PRJNA667580, and are
462 described in (Dunn et al., 2021).

463

464 The long reads were processed with FiltLong (V 0.2.0) to remove short or low quality reads
465 (<1000 bp, <Q6), and chimeric reads were removed using Unicycler's (V 0.4.7) scrub module.
466 The distributions of qualities and lengths of reads were assessed and visualised using NanoPlot
467 (V 1.20.0). Where there was an abundance of reads, the data was subsampled to 100X
468 coverage to reduce computational cost. Assemblies were constructed using Unicycler (V 0.4.7)
469 using normal bridging mode. In a minor number of instances, small repetitive elements were not
470 fully resolved, to address this, we also assembled our isolates with Trycycler (V 0.4.1), which
471 uses iterative subsampling and assembly of differential read sets, and obtains a consensus.
472 These assemblies were then polished using Racon (V1.4.10) , Medaka (V 1.0.3), and Pilon (V
473 1.23) (implemented through unicycler_polish), using both long and short reads respectively. The
474 genomes were annotated using Prokka (V 1.14.6). Assemblies were screened for insertion
475 sequences using isescan (V 1.7.2), which identified a number of novel IS movements. These
476 movements were further investigated using Artemis Comparison Tool, and adjacent sections of
477 sequence were identified using both the annotation files and BLAST against the non-redundant
478 bacterial protein database.

479

480 Variants were called against fully resolved and annotated assemblies using Breseq (V 0.35.4),
481 using additional flags to ensure a minimum variant base depth of 10, quality of 20, and allele
482 frequency of 0.9. We also assessed structural variation using Sniffles (V 1.0.12) and
483 Asemblytics (commit #58fb525). Any deletions were verified by mapping the Illumina read sets
484 against the assembly using Bowtie2 (V 4.8.2) and identifying regions of missing coverage. For
485 our final list of variants, we masked any variants that occurred in the evolved no plasmid (E0)
486 lines, as these represent basal adaptation to the media and laboratory conditions. Protein

487 annotations in which a variant was detected were confirmed using BLAST, and where possible
488 hypothetical proteins were assigned putative functions or families. Data visualisation as
489 conducted using R (V 3.4.3) and ggplot (V 3.3.3), and GraphPad Prism (V 7).

490

491 *Transcriptomics and bioinformatics*

492 We obtained transcriptomes for MG1655 plasmid-free and plasmid-carrying ancestral clones
493 and for each sequenced MG1655 evolved clone taken from the end point of the selection
494 experiment (i.e., day 84). Triplicate shaken cultures were grown at 37°C to an OD600 of 0.6 in
495 10 ml of nutrient broth and centrifuged. Residual media was discarded, and the cell pellet was
496 snap-frozen. Samples were shipped to GeneWiz, who performed the RNA extractions, and
497 sequenced the purified RNA on an Illumina NovaSeq configured to 2 x 150bp cycles.

498

499 Kallisto (V 0.46.0) was used to quantify differential gene expression, with the high-quality hybrid
500 *de novo* assemblies of the relevant ancestral strain was used as a reference. Input files were
501 prepared using Prokka (V 1.13.3) for annotation, genbank_to_kallisto.py
502 (https://github.com/AnnaSyme/genbank_to_kallisto.py) to convert the annotation files for use
503 with Kallisto, and GNU-Parallel (V 20180922) for job parallelization. Differential gene expression
504 was analyzed using Voom/Limma in Degust (V 3.20), with further processing of the resulting
505 differential counts in R (V 3.5.3). Functional categories (COG, GO-terms) were assigned to
506 genes using eggNOG-mapper (V 2).

507

508 **Funding statement**

509 This work was funded by Biotechnology and Biological Sciences Research Council grants
510 BB/R006261/1, BB/R006253/1 and BB/R006253/2.

511

512 **Open access statement**

513 For the purpose of open access, the author has applied a Creative Commons Attribution (CC
514 BY) licence to any Author Accepted Manuscript version arising.

515

516 **Data Access Statement**

517 All experimental data sets are provided in the Supplementary Information of this article.
518 Sequencing data is available under BioProject accession number PRJNA848631, and a list of
519 isolate accession numbers is provided in Table S4. Ancestral WGS data are available under
520 Bioproject Accession number PRJNA667580, and are described in (Dunn et al., 2021).

521 **References**

522 Ali SS, Soo J, Rao C, Leung AS, Ngai DH-M, Ensminger AW, Navarre WW. 2014. Silencing by
523 H-NS potentiated the evolution of *Salmonella*. *PLoS Pathog* **10**:e1004500.
524 doi:10.1371/journal.ppat.1004500

525 Alonso-del Valle A, Leon-Sampedro R, Rodriguez-Beltran J, DelaFuente J, Hernandez-Garcia
526 M, Ruiz-Garbazosa P, Canton R, Pena-Miller R, San Millan A. 2021. Variability of
527 plasmid fitness effects contributes to plasmid persistence in bacterial communities.
528 *NATURE COMMUNICATIONS*. doi:10.1038/s41467-021-22849-y

529 Benz F, Hall AR. 2022. Host-specific plasmid evolution explains the variable spread of clinical
530 antibiotic-resistance plasmids. doi:10.1101/2022.07.06.498992

531 Bergstrom C, Lipsitch M, Levin B. 2000. Natural selection, infectious transfer and the existence
532 conditions for bacterial plasmids. *GENETICS*.

533 Billane K, Harrison E, Cameron D, Brockhurst MA. 2022. Why do plasmids manipulate the
534 expression of bacterial phenotypes? *PHILOSOPHICAL TRANSACTIONS OF THE*
535 *ROYAL SOCIETY B-BIOLOGICAL SCIENCES*. doi:10.1098/rstb.2020.0461

536 Bottery MJ, Wood AJ, Brockhurst MA. 2019. Temporal dynamics of bacteria-plasmid
537 coevolution under antibiotic selection. *ISME JOURNAL*. doi:10.1038/s41396-018-0276-9

538 Bottery MJ, Wood AJ, Brockhurst MA. 2017. Adaptive modulation of antibiotic resistance
539 through intragenomic coevolution. *NATURE ECOLOGY & EVOLUTION*.
540 doi:10.1038/s41559-017-0242-3

541 Brockhurst MA, Harrison E. 2022. Ecological and evolutionary solutions to the plasmid paradox.
542 *TRENDS IN MICROBIOLOGY*. doi:10.1016/j.tim.2021.11.001

543 Cantón R, Coque TM. 2006. The CTX-M beta-lactamase pandemic. *Curr Opin Microbiol* **9**:466–
544 475. doi:10.1016/j.mib.2006.08.011

545 Che Y, Yang Y, Xu X, Břinda K, Polz MF, Hanage WP, Zhang T. 2021. Conjugative plasmids
546 interact with insertion sequences to shape the horizontal transfer of antimicrobial
547 resistance genes. *Proc Natl Acad Sci USA* **118**:e2008731118.
548 doi:10.1073/pnas.2008731118

549 Consuegra J, Gaffé J, Lenski RE, Hindré T, Barrick JE, Tenaillon O, Schneider D. 2021.
550 Insertion-sequence-mediated mutations both promote and constrain evolvability during a
551 long-term experiment with bacteria. *Nat Commun* **12**:980. doi:10.1038/s41467-021-
552 21210-7

553 Dahlberg C, Chao L. 2003. Amelioration of the cost of conjugative plasmid carriage in
554 *Escherichia coli* K12. *Genetics* **165**:1641–1649. doi:10.1093/genetics/165.4.1641

555 DelaFuente J, Toribio-Celestino L, Santos-Lopez A, Leon-Sampedro R, Valle AA, Costas C,
556 Hernandez-Garcia M, Cui L, Rodriguez-Beltran J, Bikard D, Canton R, Millan AS. 2022.
557 Within-patient evolution of plasmid-mediated antimicrobial resistance.
558 doi:10.1101/2022.05.31.493991

559 Dunn S, Carrilero L, Brockhurst M, McNally A. 2021. Limited and Strain-Specific Transcriptional
560 and Growth Responses to Acquisition of a Multidrug Resistance Plasmid in Genetically
561 Diverse *Escherichia coli* Lineages. *MSYSTEMS*. doi:10.1128/mSystems.00083-21

562 Dunn SJ, Connor C, McNally A. 2019. The evolution and transmission of multi-drug resistant
563 *Escherichia coli* and *Klebsiella pneumoniae*: the complexity of clones and plasmids.
564 *CURRENT OPINION IN MICROBIOLOGY*. doi:10.1016/j.mib.2019.06.004

565 Gama JA, Kloos J, Johnsen PJ, Samuelsen O. 2020. Host dependent maintenance of a
566 bla(NDM-1)-encoding plasmid in clinical *Escherichia coli* isolates. *SCIENTIFIC
567 REPORTS*. doi:10.1038/s41598-020-66239-8

568 Hall JPJ, Brockhurst MA, Dytham C, Harrison E. 2017a. The evolution of plasmid stability: Are
569 infectious transmission and compensatory evolution competing evolutionary trajectories?
570 *PLASMID*. doi:10.1016/j.plasmid.2017.04.003

571 Hall JPJ, Williams D, Paterson S, Harrison E, Brockhurst MA. 2017b. Positive selection inhibits
572 gene mobilization and transfer in soil bacterial communities. *NATURE ECOLOGY &*
573 *EVOLUTION*. doi:10.1038/s41559-017-0250-3

574 Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, Brockhurst MA. 2021.
575 Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by
576 compensatory mutation. *PLOS BIOLOGY*. doi:10.1371/journal.pbio.3001225

577 Harrison E, Brockhurst MA. 2012. Plasmid-mediated horizontal gene transfer is a coevolutionary
578 process. *TRENDS IN MICROBIOLOGY*. doi:10.1016/j.tim.2012.04.003

579 Jordt H, Stalder T, Kosterlitz O, Ponciano JM, Top EM, Kerr B. 2020. Coevolution of host-
580 plasmid pairs facilitates the emergence of novel multidrug resistance. *Nat Ecol Evol*
581 **4**:863–869.

582 Lartigue M-F, Poirel L, Aubert D, Nordmann P. 2006. In vitro analysis of ISEcp1B-mediated
583 mobilization of naturally occurring beta-lactamase gene blaCTX-M of *Kluyvera*
584 *ascorbata*. *Antimicrob Agents Chemother* **50**:1282–1286. doi:10.1128/AAC.50.4.1282-
585 1286.2006

586 Loftie-Eaton W, Bashford K, Quinn H, Dong K, Millstein J, Hunter S, Thomason MK, Merrikh H,
587 Ponciano JM, Top EM. 2017. Compensatory mutations improve general permissiveness
588 to antibiotic resistance plasmids. *NATURE ECOLOGY & EVOLUTION*.
589 doi:10.1038/s41559-017-0243-2

590 Lopatkin AJ, Bening SC, Manson AL, Stokes JM, Kohanski MA, Badran AH, Earl AM, Cheney
591 NJ, Yang JH, Collins JJ. 2021. Clinically relevant mutations in core metabolic genes
592 confer antibiotic resistance. *Science* **371**:eaba0862. doi:10.1126/science.aba0862

593 Mathers AJ, Peirano G, Pitout JDD. 2015. The role of epidemic resistance plasmids and
594 international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae.
595 *Clin Microbiol Rev* **28**:565–591. doi:10.1128/CMR.00116-14

596 McNally A, Kallonen T, Connor C, Abudahab K, Aanensen DM, Horner C, Peacock SJ, Parkhill
597 J, Croucher NJ, Corander J. 2019. Diversification of Colonization Factors in a Multidrug-
598 Resistant *Escherichia coli* Lineage Evolving under Negative Frequency-Dependent
599 Selection. *MBIO*. doi:10.1128/mBio.00644-19

600 Millan AS, Toll-Riera M, Qi Q, MacLean RC. 2015. Interactions between horizontally acquired
601 genes create a fitness cost in *Pseudomonas aeruginosa*. *NATURE
602 COMMUNICATIONS*. doi:10.1038/ncomms7845

603 Pinheiro F, Warsi O, Andersson DI, Lässig M. 2021. Metabolic fitness landscapes predict the
604 evolution of antibiotic resistance. *Nat Ecol Evol* **5**:677–687. doi:10.1038/s41559-021-
605 01397-0

606 Porse A, Schønning K, Munck C, Sommer MOA. 2016. Survival and Evolution of a Large
607 Multidrug Resistance Plasmid in New Clinical Bacterial Hosts. *Mol Biol Evol* **33**:2860–
608 2873.

609 San Millan A. 2018. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context.
610 *TRENDS IN MICROBIOLOGY*. doi:10.1016/j.tim.2018.06.007

611 San Millan A, Maclean RC. 2017. Fitness Costs of Plasmids: a Limit to Plasmid Transmission.
612 *MICROBIOLOGY SPECTRUM*. doi:10.1128/microbiolspec.MTBP-0016-2017

613 Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB. 1999. Quorum sensing controls
614 expression of the type III secretion gene transcription and protein secretion in
615 enterohemorrhagic and enteropathogenic *Escherichia coli*. *Proc Natl Acad Sci U S A*
616 **96**:15196–15201. doi:10.1073/pnas.96.26.15196

617 Turner PE, Williams ESCP, Okeke C, Cooper VS, Duffy S, Wertz JE. 2014. Antibiotic resistance
618 correlates with transmission in plasmid evolution. *EVOLUTION*. doi:10.1111/evo.12537

619 Vial L, Hommais F. 2020. Plasmid-chromosome cross-talks. *ENVIRONMENTAL
620 MICROBIOLOGY*. doi:10.1111/1462-2920.14880

621 Wikler M, Cockerill F, Craig W. 2006. Method for Dilution Antimicrobial Test for Bacteria that
622 Grow Aerobically; Approved Standard.

623

624 **Figure legends**

625 **Figure 1 | Growth kinetics of evolved bacterial clones relative to their ancestor**

626 Boxplots represent the change in growth kinetic parameters for evolved clones relative to their
627 ancestor. Each strain is shown in a separate row and each growth kinetic parameter is shown in
628 a different column, as indicated by the labels. Each evolution treatment is denoted by a colour
629 (grey, plasmid-free control, C; red, plasmid-carrier without cefotaxime, EP; blue plasmid-carrier
630 with cefotaxime, EX). Datapoints show the mean of technical replicates for each individual
631 evolved clone.

632

633 **Figure 2 | Chromosomal loci targeted by mutations in evolved plasmid-carriers**

634 Each circular track represents the chromosome of an independently evolved clone. A single
635 randomly chosen clone was genome sequenced per evolving line. As such the five replicate
636 evolved clones per strain (as labelled) per treatment (Blue for plasmid-carriers evolved with
637 cefotaxime, EX; Red for plasmid-carriers evolved without cefotaxime, EP) are shown as

638 concentric tracks. Loci that acquired mutations during evolution in plasmid-carriers but not in the
639 corresponding plasmid-free control are shown by markers denoting the type of mutation (see
640 visual key). Loci that acquired parallel mutations in multiple independently evolving lines per
641 strain per treatment have been labelled with the corresponding gene name or locus tag.

642

643 **Figure 3 | Transcriptional changes in evolved *E. coli* MG1655**

644 Genes that were significantly differentially expressed ($\text{Log}_2 \text{ FC} \geq 1.5$, $\text{FDR} \leq 0.05$) in evolved
645 clones relative to their ancestor. A) Number of significantly differentially transcribed genes in
646 each evolution treatment. B) Expression values of significantly differentially expressed genes
647 that are common to both the EX and EP treatments. Only genes that are present in ≥ 3 evolved
648 clones per treatment are displayed to prioritise genes that were under parallel selection. C)
649 Expression of genes that were uniquely differentially expressed in the EP treatment. D)
650 Expression of genes that are uniquely differentially expressed in the evolved EX treatment. Red
651 cells indicate increased expression, blue cells indicate decreased expression relative to their
652 ancestor. Plasmid genes are demarcated with green squares. A number of plasmid genes are
653 downregulated across several replicates of both treatment conditions, including a number of
654 genes from the *tra* operon.

655

656 **Figure 4 | Transcriptional and resistance effects of IS insertions upstream of HNS**

657 Orientation and location of IS-element insertions between *hns* and *tdk* in 3 *E. coli* MG1655
658 plasmid-carrier evolved clones. A) The reference configuration of the region, and the insertion
659 position and orientation of IS-elements in evolved clones. B) Differential expression of *hns*, *tdk*
660 and *bla*_{CTX-M-15} for all MG1655 plasmid-carrier evolved clones relative to their ancestor. Red cells
661 indicate increased expression, blue cells indicate decreased expression relative to their
662 ancestor. C) Minimum inhibitory concentration curves against cefotaxime showing variation
663 between the individual evolved and ancestral clones for the EP and EX treatments (different

664 evolving lines denoted by colours; see visual key). D) Normalised transcript counts of *bla*_{CTX-M-15}
665 (counts per million) with the different evolving lines denoted by colours (see visual key).

666

667 **Figure S1 | Effects of pLL35 acquisition on the growth kinetics of ancestral strains**

668 Boxplots represent the growth kinetic parameters for the ancestral plasmid-free (grey) and
669 ancestral plasmid-carrier (purple) clones per strain. Each strain is shown in a separate row and
670 each growth kinetic parameter is shown in a different column, as indicated by the labels.

671 Datapoints show the mean of technical replicates for each individual evolved clone.

672

673 **Figure S2 | Total and cefotaxime resistant population densities**

674 Boxplots show cumulative colony forming unit counts from nutrient agar plates (red) indicating
675 total bacterial population density or nutrient agar plates supplemented with cefotaxime (blue)
676 indicating the cefotaxime resistant bacterial population density calculated as area under the
677 curve of densities over time. Strains are shown in separate panels as indicated by labels.

678

679 **Figure S3 | Cefotaxime resistance of evolved bacterial clones relative to their ancestor**

680 Boxplots represent the change in cefotaxime resistance following evolution as area under the
681 minimum inhibitory concentration curve for evolved clones relative to their ancestor. Each strain
682 is shown in a separate panel as indicated by the label. Each evolution treatment is denoted by a
683 colour (grey, plasmid-free control, C; red, plasmid-carrier without cefotaxime, EP; blue plasmid-
684 carrier with cefotaxime, EX). Datapoints show the mean of technical replicates for each
685 individual evolved clone.

686

687 **Figure S4 | Loci and operons evolving in parallel among plasmid-carriers across strains**

688 Chromosomal operons or genes in which mutations were detected in at least 2 independent
689 evolved plasmid carrier clones but not in the corresponding evolved plasmid-free control. In

690 instances where more than one gene within a given operon contained variants, the operon is
691 listed. Where no other genes within an operon contain variants, the individual gene is listed,
692 identifiable by the capitalised suffix.

693

694 **Figure S5 | Plasmid loci targeted by parallel mutations in evolved plasmid-carriers**

695 Each circular track represents the plasmid of an independently evolved clone. A single randomly
696 chosen clone was genome sequenced per evolving line. As such the five replicate evolved
697 clones per strain (as labelled) per treatment (Blue for plasmid-carriers evolved with cefotaxime,
698 EX; Red for plasmid-carriers evolved without cefotaxime, EP) are shown as concentric tracks.
699 Loci that acquired mutations during evolution in plasmid-carriers but not in the corresponding
700 plasmid-free control are shown by markers denoting the type of mutation (see visual key). Loci
701 that acquired parallel mutations in multiple independently evolving lines per strain per treatment
702 have been labelled with the corresponding gene name or locus tag.

703

704 **Figure S6 | Transcriptional effect of pLL35 acquisition in ancestral *E. coli* MG1655**

705 Genes that were significantly differentially expressed ($\text{Log}_2 \text{ FC} \geq 1.5$, $\text{FDR} \leq 0.05$) in ancestral
706 plasmid carrier relative to ancestral plasmid-free *E. coli* MG1655. Red cells indicate increased
707 expression, blue cells indicate decreased expression relative to their ancestor.

708

709

710 **Table S1 | Statistical tables for ancestral growth kinetic parameters**

711 **Table S2 | Statistical tables for evolved growth kinetic parameters**

712 **Table S3 | Conjugational abilities of evolved clones**

713 Evolved plasmid-carrier clones were tested for their ability to conjugate pLL35 into an *E. coli* J53
714 recipient strain as previously described (Dunn et al. 2021). Conjugation positive strains are
715 demoted with “+” and conjugation deficient strains are denoted with “-”.

716 **Table S4 | Short Read Archive accession numbers**

Area Under Curve		
Test type	ANOVA on boxcox transformed data (lambda= 3.8)	
Model	Integral ~ Strain * Plasmid	
Dependant Variable	Integral	
Factors	F	Pr(>F)
Strain	F 4, 40 = 64.6835	2.20E-16
Plasmid	F 1, 40 = 22.2692	2.89E-05
Strain:Plasmid	F 4, 40= 0.4869	0.7452
Post hoc test for Strain		p. value
F022-EL39		<0.0000001
F054-EL39		0.0085768
F104-EL39		<0.0000001
MG1655-EL39		<0.0000001
F054-F022		0.0000001
F104-F022		0.9999965
MG1655-F022		0.0375463
F104-F054		0.0000001
MG1655-F054		<0.0000001
MG1655-F104		0.0322286

Maximum Growth Rate		
Test type	A ^r t ANOVA	
Model	Maximum Growth Rate ~ Strain * Plasmid	
Dependant Variable	Maximum Growth Rate	
Factors	F	Pr(>F)
Strain	F 4, 40 = 77.73954	< 2.22e-16
Plasmid	F 1, 40 = 52.46363	8.62E-09
Strain:Plasmid	F 4, 40= 0.54873	0.70098
Post hoc test for Strain		p. value
F022-EL39		<.0001
F054-EL39		<.0001
F104-EL39		<.0001
MG1655-EL39		<.0001
F054-F022		<.0001
F104-F022		<.0001
MG1655-F022		0.0005
F104-F054		0.9991
MG1655-F054		<.0001
MG1655-F104		<.0001

	Maximum OD	
Test type	ANOVA	
Model	Maximum OD ~ Strain * Plasmid	
Dependant Variable	Maximum OD	
Factors	F	Pr(>F)
Strain	F 4, 40 = 40.201	1.65E-13
Plasmid	F 1, 40 = 17.787	0.000137
Strain:Plasmid	F 4, 40= 0.728	0.577999
Post hoc test for Strain		p. value
F022-EL39		<0.0000001
F054-EL39		0.558092
F104-EL39		<0.0000001
MG1655-EL39		0.0000001
F054-F022		<0.0000001
F104-F022		0.9898725
MG1655-F022		0.1265125
F104-F054		<0.0000001
MG1655-F054		0.000011
MG1655-F104		0.2990559

	Lag Time	
Test type	ANOVA	
Model	Lag Time ~ Strain * Plasmid	
Dependant Variable	Lag Time	
Factors	F	Pr(>F)
Strain	F 4, 40 = 26.21450	1.03E-10
Plasmid	F 1, 40 = 13.48520	0.00070342
Strain:Plasmid	F 4, 40= 0.16571	0.95454182
Post hoc test for Strain		p. value
F022-EL39		0.9687
F054-EL39		0.069
F104-EL39		0.0249
MG1655-EL39		<.0001
F054-F022		0.2468
F104-F022		0.0045
MG1655-F022		<.0001
F104-F054		<.0001
MG1655-F054		0.0029
MG1655-F104		<.0001

Relative Area Under Curve

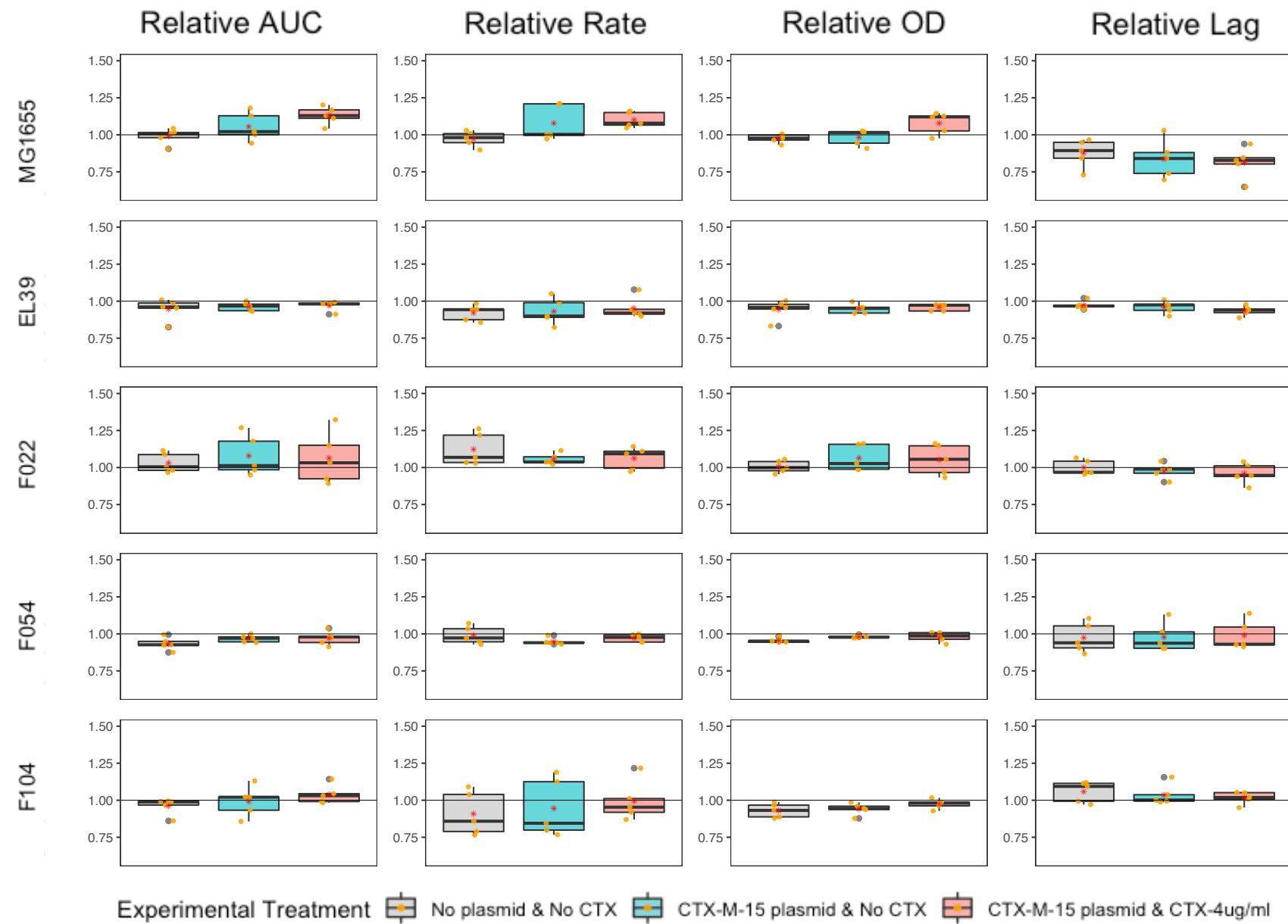
Test type	ANOVA on boxcox transformed data (lambda= -2)	
Model	Relative Integral ~ Strain * Treatment	
Dependant Variable	Relative Integral	
Factors		
Strain	F	Pr(>F)
	F 4, 60 = 5.178	0.00119
Treatment		0.03561
Strain:treatment	F 8, 60 = 0.514	0.84134
Post hoc test for Strain		
F022-EL39		p. value
		0.0299521
F054-EL39		0.9999939
F104-EL39		0.7194856
MG1655-EL39		0.0130825
F054-F022		0.0247471
F104-F022		0.4075375
MG1655-F022		0.9981577
F104-F054		0.6761348
MG1655-F054		0.010648
MG1655-F104		0.2514688
Post hoc test for Treatment		
CTX-M-15 plasmid & No CTX-No plasmid & No CTX		p. value
		0.2276579
CTX-M-15 plasmid & CTX-4ug/ml-No plasmid & No CTX		0.0291361
CTX-M-15 plasmid & CTX-4ug/ml-CTX-M-15 plasmid & No CTX		0.6037601

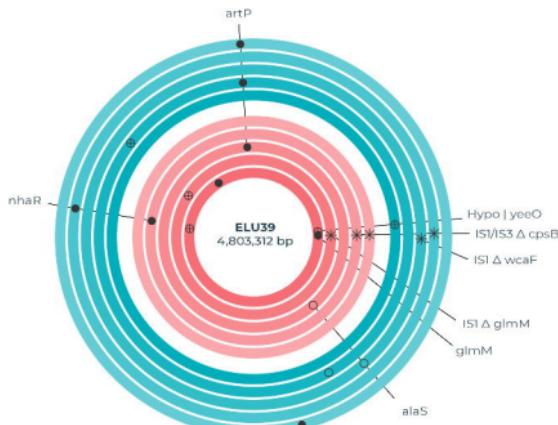
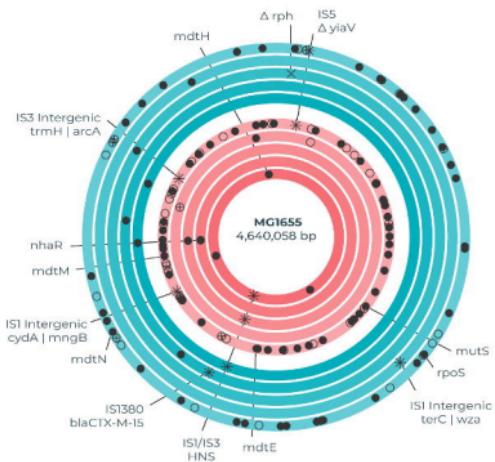
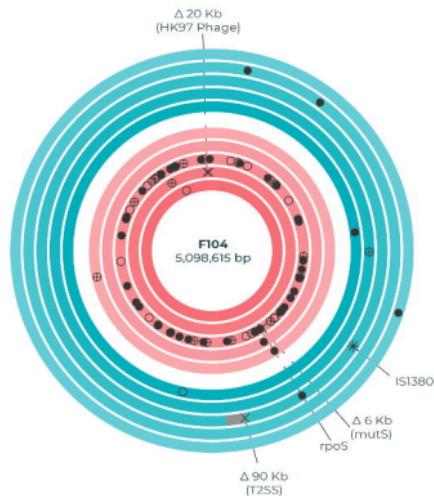
Relative Maximum Growth Rate		
Test type	Art ANOVA	
Model	Relative Maximum Growth Rate ~ Strain * Treatment	
Dependant Variable	Relative Maximum Growth Rate	
Factors	F	Pr(>F)
Strain	F 4, 60 = 7.99949	3.09E-05
Treatment	F 2, 60 = 1.13362	0.32866
Strain:treatment	F 8, 60 = 0.94548	0.4867
Post hoc test for Strain		p. value
F022-EL39		0.0002
F054-EL39		0.7932
F104-EL39		0.9551
MG1655-EL39		0.0038
F054-F022		0.0091
F104-F022		0.0025
MG1655-F022		0.9191
F104-F054		0.9932
MG1655-F054		0.0824
MG1655-F104		0.0289

Relative Maximum OD		
Test type	ScheirerRayHare	
Model	Relative Maximum OD ~ Strain * Treatment	
Dependant Variable	Relative Maximum OD	
Factors	F	Pr(>F)
Strain	F 4, 60 = 20.5844	0.00038
Treatment	F 2, 60 = 3.3723	0.18523
Strain:treatment	F 8, 60 = 5.1069	0.7461
Post hoc test for Strain		p. value
F022-EL39		0.003156039
F054-EL39		0.353808729
F104-EL39		0.973269237
MG1655-EL39		0.025746009
F054-F022		0.028881641
F104-F022		0.001794228
MG1655-F022		0.386805343
F104-F054		0.32704726
MG1655-F054		0.219311267
MG1655-F104		0.021320954

Relative Lag Time

Test type	ANOVA	
Model	Relative Lag Time ~ Strain * Treatment	
Dependant Variable	Relative Lag Time	
Factors	F	Pr(>F)
Strain	F 4, 60 = 12.632	1.62E-07
Treatment	F 2, 60 = 1.131	0.33
Strain:treatment	F 8, 60 = 0.191	0.991
Post hoc test for Strain		p. value
F022-EL39		0.9292865
F054-EL39		0.9070232
F104-EL39		0.0492193
MG1655-EL39		0.0016214
F054-F022		0.999995
F104-F022		0.2701929
MG1655-F022		0.0001053
F104-F054		0.3031418
MG1655-F054		0.0000825
MG1655-F104		0.0000001


Isolate	Biosample	Illumina	Nanopore
F022_E0A	SAMN29006941	SRR19633518	SRR19634252
F022_E0B	SAMN29006942	SRR19633517	SRR19634251
F022_E0C	SAMN29006943	SRR19633506	SRR19634240
F022_E0D	SAMN29006944	SRR19633495	SRR19634229
F022_E0E	SAMN29006945	SRR19633484	SRR19634218
F022_EPA	SAMN29006946	SRR19633473	SRR19634207
F022_EPB	SAMN29006947	SRR19633462	SRR19634196
F022_EPC	SAMN29006948	SRR19633451	SRR19634185
F022_EPD	SAMN29006949	SRR19633445	SRR19634179
F022_EPE	SAMN29006950	SRR19633444	SRR19634178
F022_EXA	SAMN29006951	SRR19633516	SRR19634250
F022_EXB	SAMN29006952	SRR19633515	SRR19634249
F022_EXC	SAMN29006953	SRR19633514	SRR19634248
F022_EXD	SAMN29006954	SRR19633513	SRR19634247
F022_EXE	SAMN29006955	SRR19633512	SRR19634246
F054_E0A	SAMN29006956	SRR19633511	SRR19634245
F054_E0B	SAMN29006957	SRR19633510	SRR19634244
F054_E0C	SAMN29006958	SRR19633509	SRR19634243
F054_E0D	SAMN29006959	SRR19633508	SRR19634242
F054_E0E	SAMN29006960	SRR19633507	SRR19634241
F054_EPA	SAMN29006961	SRR19633505	SRR19634239
F054_EPB	SAMN29006962	SRR19633504	SRR19634238
F054_EPC	SAMN29006963	SRR19633503	SRR19634237
F054_EPD	SAMN29006964	SRR19633502	SRR19634236
F054_EPE	SAMN29006965	SRR19633501	SRR19634235
F054_EXA	SAMN29006966	SRR19633500	SRR19634234
F054_EXB	SAMN29006967	SRR19633499	SRR19634233
F054_EXC	SAMN29006968	SRR19633498	SRR19634232
F054_EXD	SAMN29006969	SRR19633497	SRR19634231
F054_EXE	SAMN29006970	SRR19633496	SRR19634230
F104_E0A	SAMN29006971	SRR19633494	SRR19634228
F104_E0B	SAMN29006972	SRR19633493	SRR19634227
F104_E0C	SAMN29006973	SRR19633492	SRR19634226
F104_E0D	SAMN29006974	SRR19633491	SRR19634225
F104_E0E	SAMN29006975	SRR19633490	SRR19634224
F104_EPA	SAMN29006976	SRR19633489	SRR19634223
F104_EPB	SAMN29006977	SRR19633488	SRR19634222
F104_EPC	SAMN29006978	SRR19633487	SRR19634221
F104_EPD	SAMN29006979	SRR19633486	SRR19634220
F104_EPE	SAMN29006980	SRR19633485	SRR19634219
F104_EXA	SAMN29006981	SRR19633483	SRR19634217
F104_EXB	SAMN29006982	SRR19633482	SRR19634216

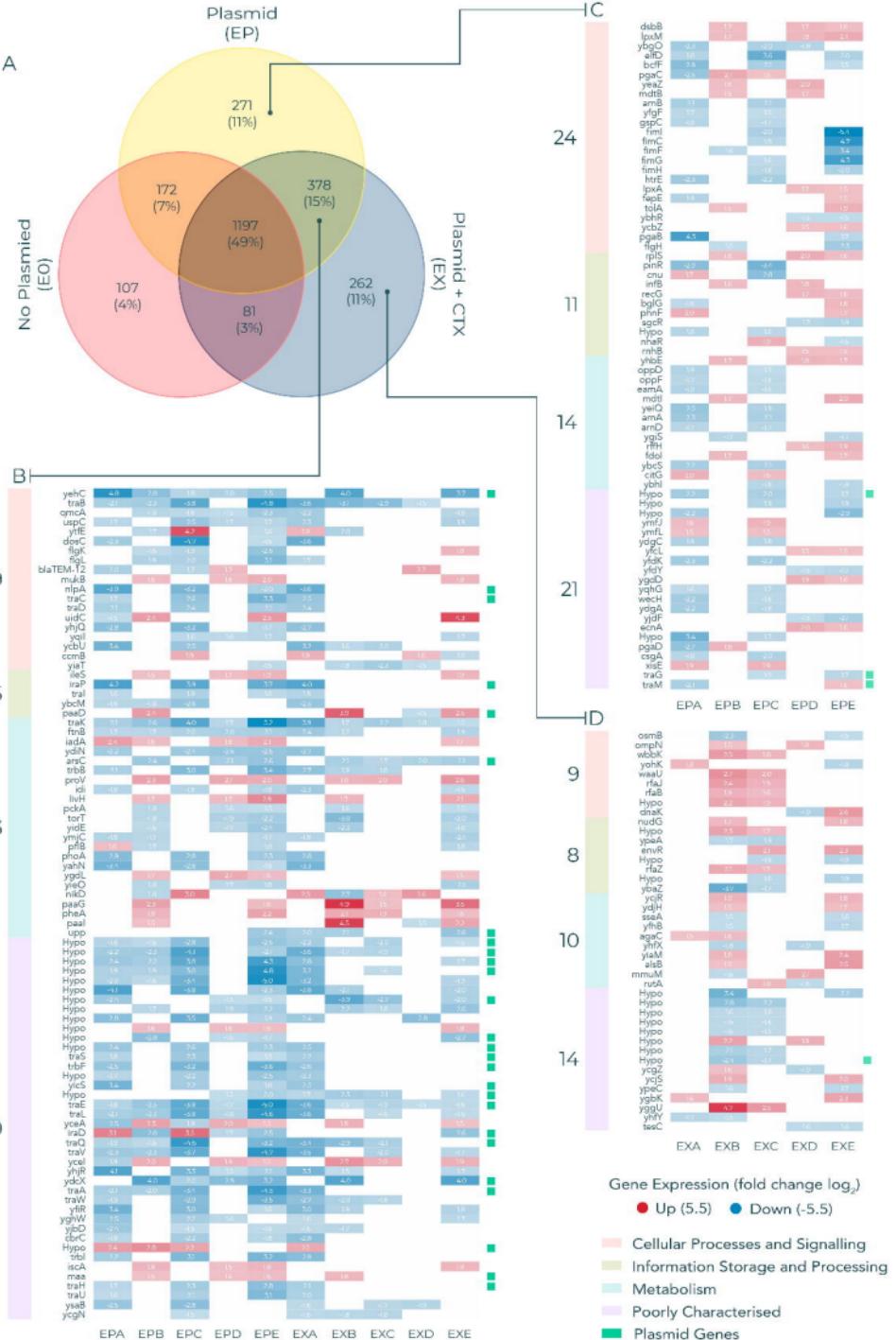




F104_EXC	SAMN29006983	SRR19633481	SRR19634215
F104_EXD	SAMN29006984	SRR19633480	SRR19634214
F104_EXE	SAMN29006985	SRR19633479	SRR19634213
MG1655_E0A	SAMN29006986	SRR19633478	SRR19634212
MG1655_E0B	SAMN29006987	SRR19633477	SRR19634211
MG1655_E0C	SAMN29006988	SRR19633476	SRR19634210
MG1655_E0D	SAMN29006989	SRR19633475	SRR19634209
MG1655_E0E	SAMN29006990	SRR19633474	SRR19634208
MG1655_EPA	SAMN29006991	SRR19633472	SRR19634206
MG1655_EPB	SAMN29006992	SRR19633471	SRR19634205
MG1655_EPC	SAMN29006993	SRR19633470	SRR19634204
MG1655_EPD	SAMN29006994	SRR19633469	SRR19634203
MG1655_EPE	SAMN29006995	SRR19633468	SRR19634202
MG1655_EXA	SAMN29006996	SRR19633467	SRR19634201
MG1655_EXB	SAMN29006997	SRR19633466	SRR19634200
MG1655_EXC	SAMN29006998	SRR19633465	SRR19634199
MG1655_EXD	SAMN29006999	SRR19633464	SRR19634198
MG1655_EXE	SAMN29007000	SRR19633463	SRR19634197
ELU39_E0A	SAMN29007001	SRR19633461	SRR19634195
ELU39_E0B	SAMN29007002	SRR19633460	SRR19634194
ELU39_E0C	SAMN29007003	SRR19633459	SRR19634193
ELU39_E0D	SAMN29007004	SRR19633458	SRR19634192
ELU39_E0E	SAMN29007005	SRR19633457	SRR19634191
ELU39_EPA	SAMN29007006	SRR19633456	SRR19634190
ELU39_EPB	SAMN29007007	SRR19633455	SRR19634189
ELU39_EPC	SAMN29007008	SRR19633454	SRR19634188
ELU39_EPD	SAMN29007009	SRR19633453	SRR19634187
ELU39_EPE	SAMN29007010	SRR19633452	SRR19634186
ELU39_EXA	SAMN29007011	SRR19633450	SRR19634184
ELU39_EXB	SAMN29007012	SRR19633449	SRR19634183
ELU39_EXC	SAMN29007013	SRR19633448	SRR19634182
ELU39_EXD	SAMN29007014	SRR19633447	SRR19634181
ELU39_EXE	SAMN29007015	SRR19633446	SRR19634180

Supplementary Table 1 – Whole genome sequencing data generated for this work is available under Bioproject Accession number PRJNA848631. Isolate suffixes relate to treatment condition; E0 = Evolved without plasmid, EP = Evolved with plasmid, EX = Evolved with plasmid in the presence of cefotaxime. Ancestral WGS data are available under Bioproject Accession number PRJNA667580, and are described in Dunn *et al.*, 2021 (<https://doi.org/10.1128/mSystems.00083-21>).

Isolate	Biosample	RNA Replicate 1	RNA Replicate 2	RNA Replicate 3
MG1655_A0	SAMN29009610	SRR19635002	SRR19635000	SRR19634998
MG1655_AP	SAMN29009611	SRR19635001	SRR19634999	SRR19634997
MG1655_E0A	SAMN29006986	SRR19646225	SRR19646218	SRR19646201
MG1655_E0B	SAMN29006987	SRR19646224	SRR19646217	SRR19646200
MG1655_E0C	SAMN29006988	SRR19646213	SRR19646216	SRR19646199
MG1655_E0D	SAMN29006989	SRR19646202	SRR19646215	SRR19646198
MG1655_E0E	SAMN29006990	SRR19646191	SRR19646214	SRR19646197
MG1655_EPA	SAMN29006991	SRR19646185	SRR19646212	SRR19646196
MG1655_EPB	SAMN29006992	SRR19646184	SRR19646211	SRR19646195
MG1655_EPC	SAMN29006993	SRR19646183	SRR19646210	SRR19646194
MG1655_EPD	SAMN29006994	SRR19646182	SRR19646209	SRR19646193
MG1655_EPE	SAMN29006995	SRR19646181	SRR19646208	SRR19646192
MG1655_EXA	SAMN29006996	SRR19646223	SRR19646207	SRR19646190
MG1655_EXB	SAMN29006997	SRR19646222	SRR19646206	SRR19646189
MG1655_EXC	SAMN29006998	SRR19646221	SRR19646205	SRR19646188
MG1655_EXD	SAMN29006999	SRR19646220	SRR19646204	SRR19646187
MG1655_EXE	SAMN29007000	SRR19646219	SRR19646203	SRR19646186

Supplementary Table 2 – Accession numbers for all MG1655 transcriptomic data. Samples were sequenced in triplicate, and include ancestral isolate without plasmid (A0), ancestral isolate with plasmid (AP), and experimentally evolved isolates with 5 evolution replicates (A-E), and 3 RNAseq replicates (1-3). E0 = evolved without plasmid, EP = evolved with plasmid, EX = evolved with plasmid in the presence of cefotaxime.



Evolved Treatments

- Plasmid
- Plasmid + Cefotaxime

Variants

- X Deletion
- + Intergenic
- * Insertion
- Non-synonymous
- Synonymous

A

Ref

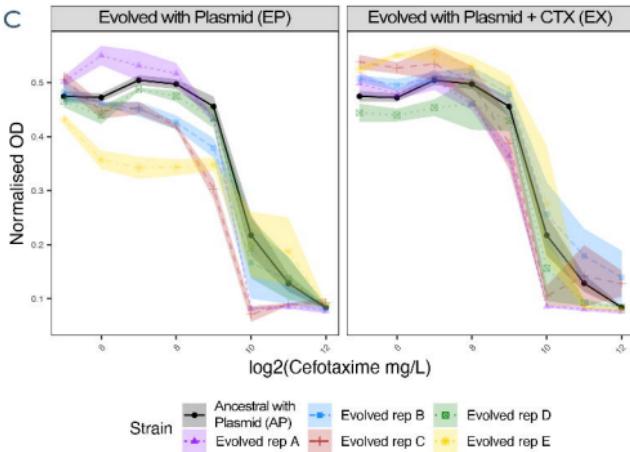
EPA - pLL35 A

tdk

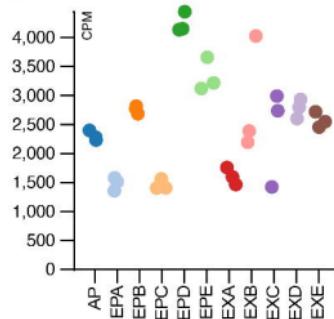
EPC - pLL35 C

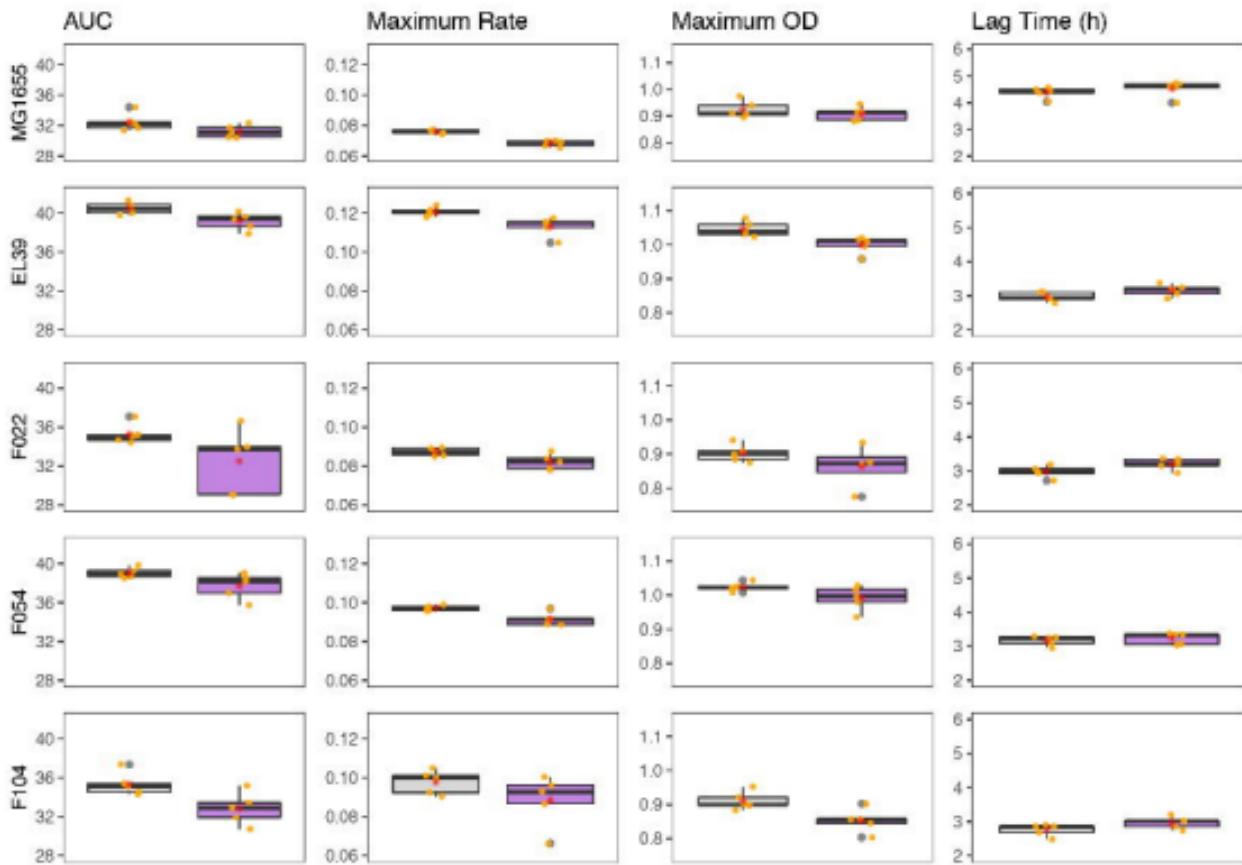
hns

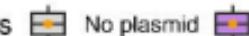
EXA - pLL35 + CTX A

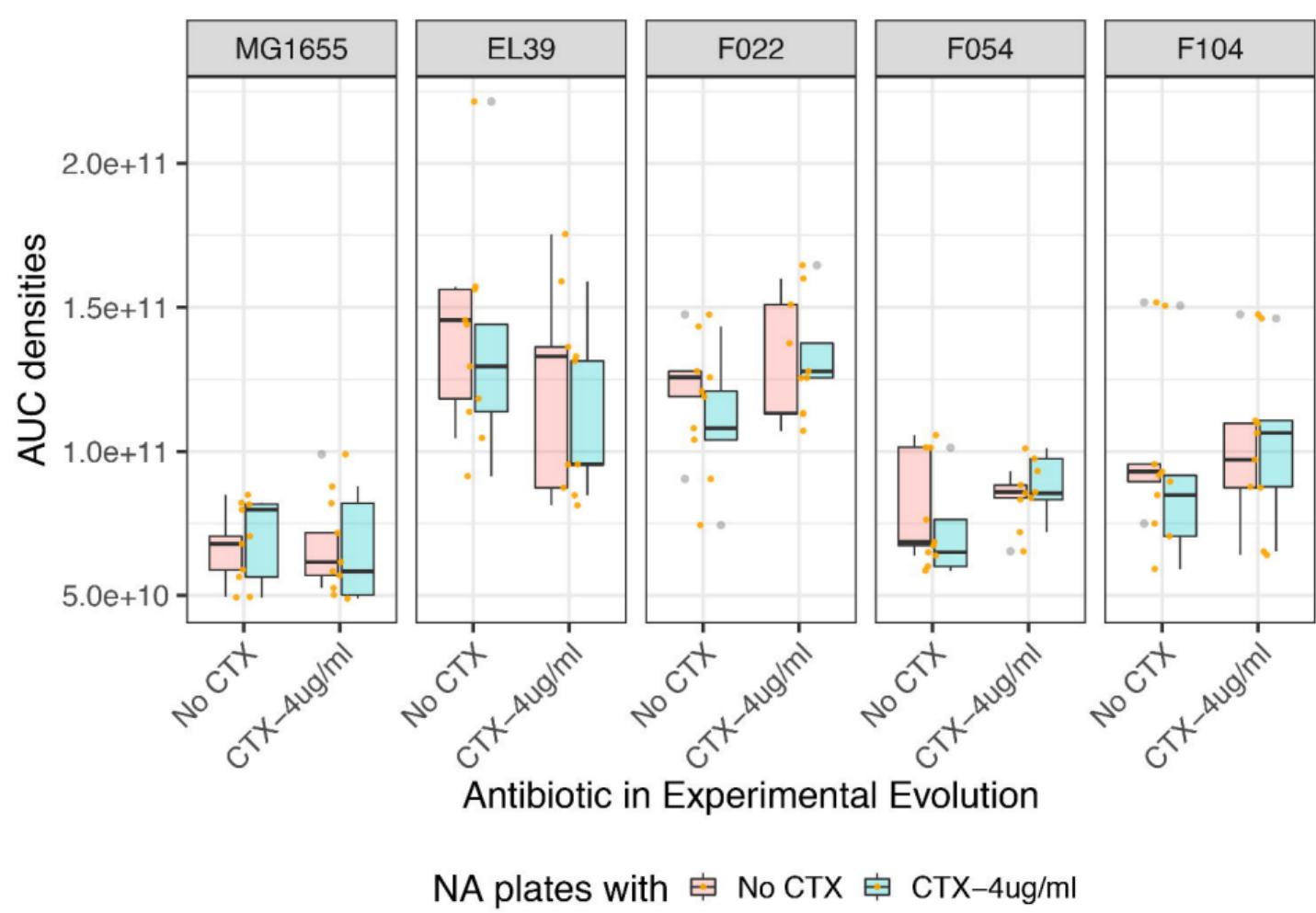

IS1

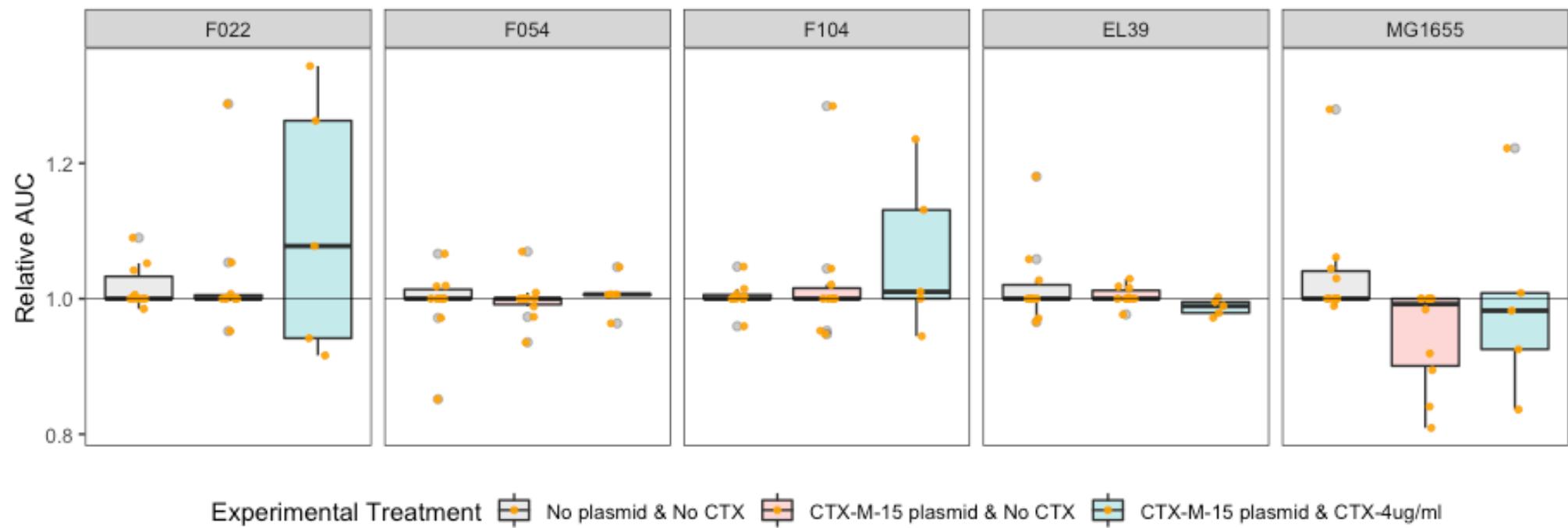
IS3

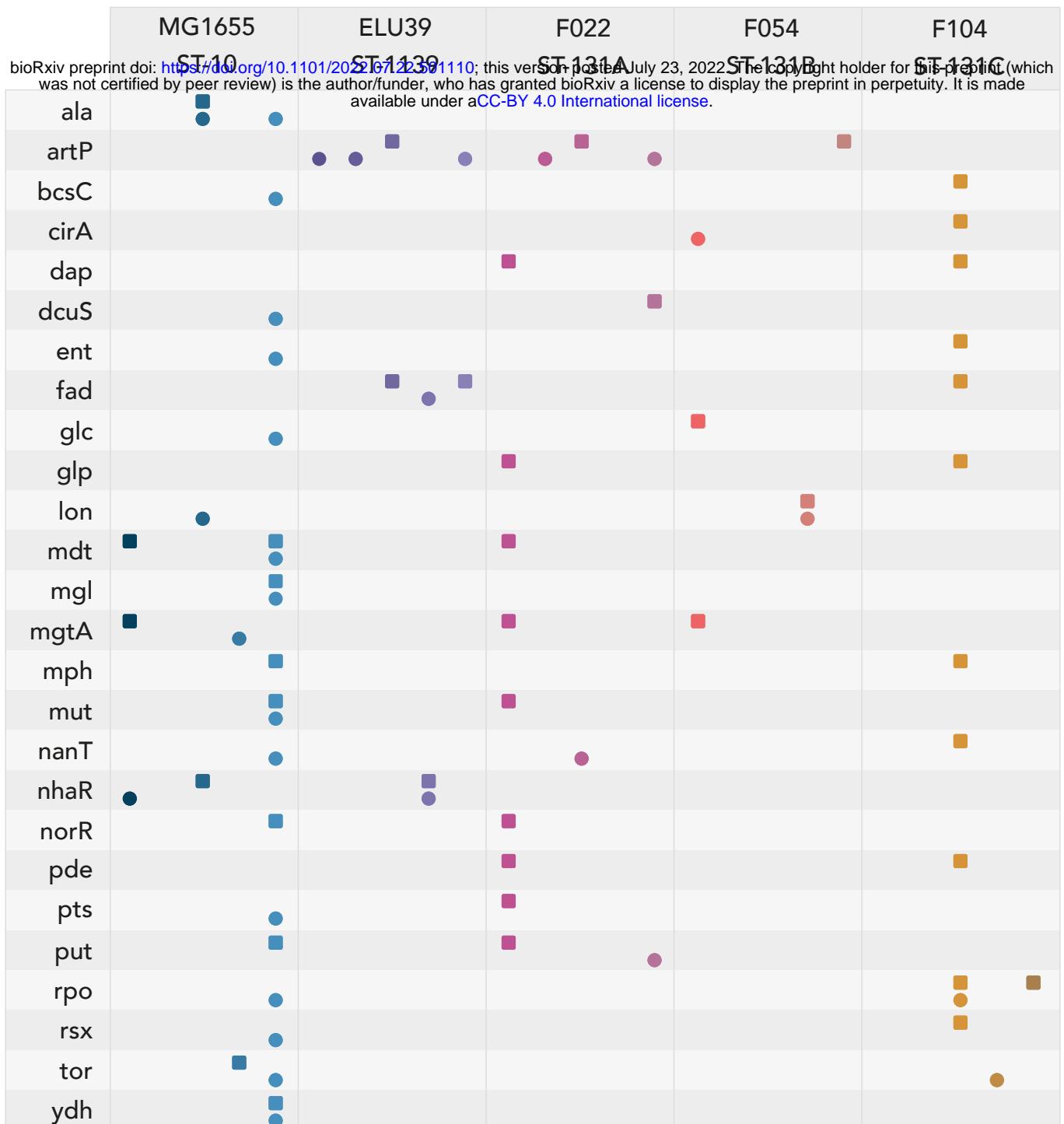

B



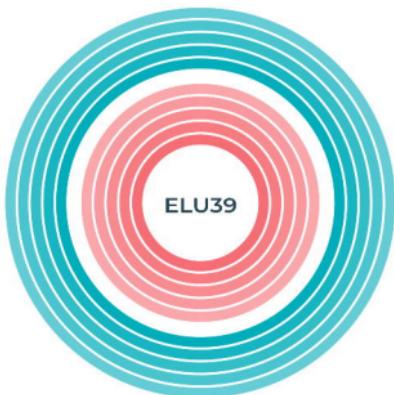
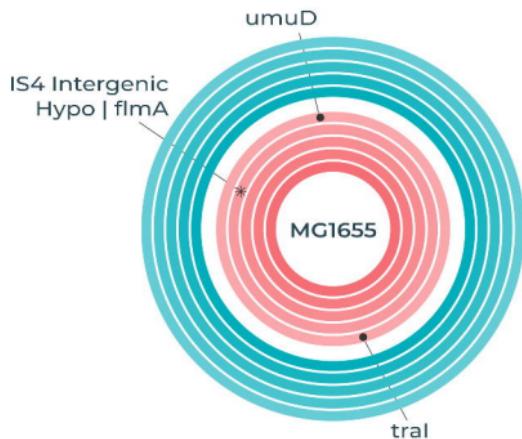
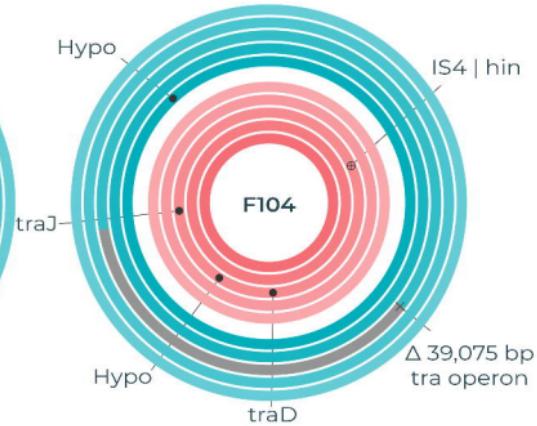
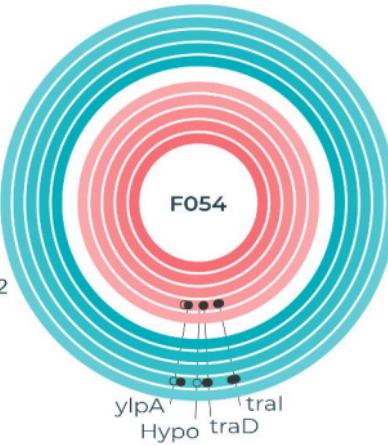
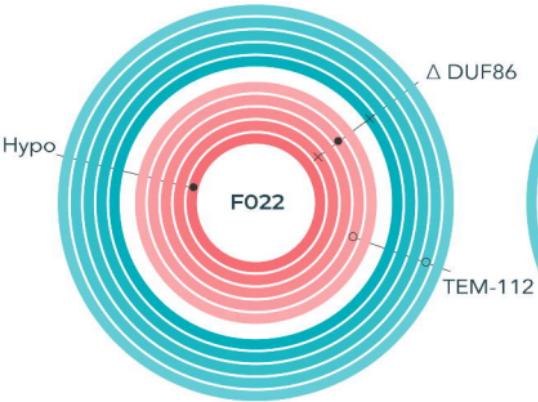

C




D



Plasmid status No plasmid CTX-M-15 plasmid

■■■■■ Plasmid replicates A-E

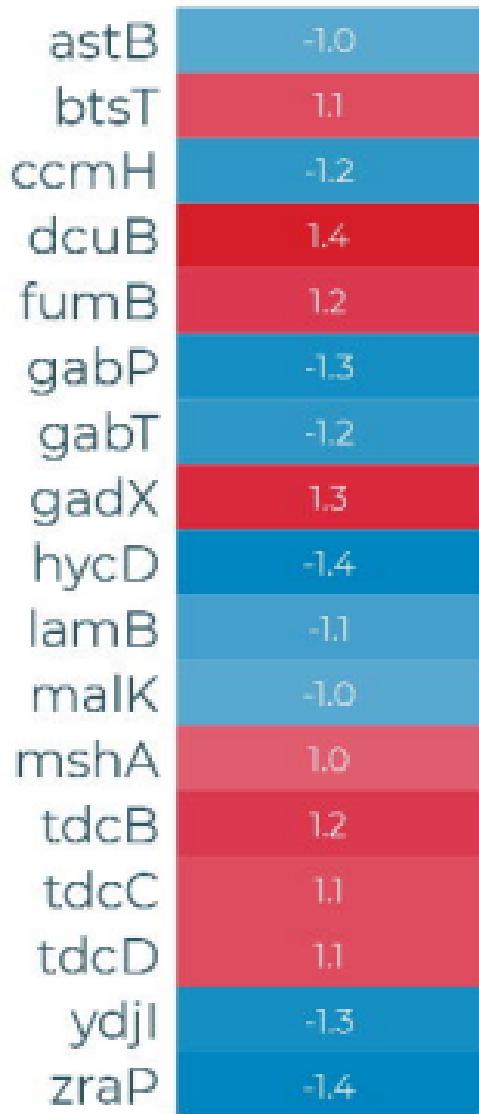
●●●●● Plasmid+ Cefotaxime replicates A-E

Evolved Treatments

■ Plasmid

■ Plasmid + Cefotaxime

Variants


× Deletion

⊕ Intergenic

* Insertion

- Non-synonymous

○ Synonymous

Gene Expression
(fold change \log_2)

● Up (1.5)

● Down (-1.5)

AP