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Abstract 

The hallmark amyloid-β and tau deposition of Alzheimer’s disease (AD) represents only a fraction 

of its diverse pathophysiology. Molecular subtyping using large-scale -omic strategies can help 

resolve this biological heterogeneity. Using quantitative mass spectrometry, we measured ~8,000 

proteins across >600 dorsolateral prefrontal cortex tissues from Religious Orders Study and Rush 

Memory and Aging Project participants with clinical diagnoses of no cognitive impairment, mild 

cognitive impairment (MCI), and AD dementia. Unbiased classification of MCI and AD cases 

based on individual proteomic profiles resolved three classes with expression differences across 

numerous cell types and biological ontologies. Two classes displayed molecular signatures 

atypical of those previously observed in AD neurodegeneration, such as elevated synaptic and 

decreased inflammatory markers. In one class, these atypical proteomic features were associated 

with clinical and pathological hallmarks of cognitive resilience. These results promise to better 

define disease heterogeneity within AD and meaningfully impact its diagnostic and therapeutic 

precision.   
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Introduction 

The pathological hallmarks of Alzheimer’s disease (AD), the most common cause of 

dementia in the elderly [1], include extracellular amyloid-β (Aβ) deposits and intracellular tau 

neurofibrillary tangles (NFTs) [2, 3]. The long-standing amyloid cascade hypothesis casts Aβ as 

an early molecular driver of disease, prompting NFT formation, neurodegeneration, and ultimately 

cognitive decline [4, 5]. While this linear series of pathological events may hold true for rare 

familial forms of early-onset AD [6], it is now well-recognized that Aβ and tau represent only a 

fraction of the complex and heterogeneous pathophysiology linked to sporadic late onset AD 

(LOAD) [7]. Several studies have confirmed that those with AD dementia commonly harbor brain 

pathologies beyond Aβ plaques and NFTs, including cerebrovascular disease, neocortical Lewy 

body inclusions, and TAR DNA-binding protein 43 (TDP-43) aggregates [8-12]. Yet, combined 

with amyloid and tau, these co-pathologies still account for less than half of the variance in 

cognitive trajectory [13]. Accordingly, genome wide association studies (GWAS) have linked 

LOAD pathogenesis to a variety of biological mechanisms beyond aberrant protein accumulation 

and neuronal death, such as glial-mediated inflammation and endothelial integrity [14-21]. These 

findings highlight the vast pathophysiological heterogeneity underlying cognitive impairment in 

the elderly.  

Molecular subtyping using large-scale -omic strategies promises to resolve this complex 

biological heterogeneity. Recent genomic clustering of AD based on risk-associated SNP burden 

revealed disease subgroups linked to distinct biological mechanisms [22]. Subsequent 

transcriptome-wide studies of the AD brain have identified molecular subtypes corresponding to 

different combinations of multiple dysregulated pathways [23, 24], including neuroinflammation, 

synaptic signaling, immune activity, mitochondria organization, and myelination [23]. These 

studies highlight the utility of large “-omic” datasets in the molecular reclassification of AD and 

related dementias. Further advancements in such subtyping approaches promise to not only impact 

diagnostic guidelines, but also enhance the precision of clinical trial recruitment, prognostication, 

and therapeutic targeting.  

To date, large-scale molecular subtyping of AD has primarily focused on genomic and 

transcriptomic profiles, while protein-based classification remains in its infancy. Yet, marked 

spatial, temporal, and quantitative differences between mRNA and protein expression make 

proteomic subtyping a potential source of unique biological insights [25, 26]. Furthermore, 

compared to RNA differences, protein changes associate more strongly with AD clinical and 

pathological phenotypes, consistent with their being more proximate mediators of disease 

manifestations [27-29]. Using unbiased co-expression network analysis, we have demonstrated 

that the cortical brain regions of those with pathologically defined early- and late-stage LOAD 

feature a wide range of altered protein systems not observed in the transcriptome [30-33]. These 

protein alterations correlate strongly with clinical symptoms, biofluid markers, and pathological 

traits [30-33]. However, it remains unclear whether these protein levels drive distinct molecular 

subtypes of AD.  

To this end, we performed an unbiased proteomic subtyping analysis of mild cognitive 

impairment (MCI) and AD brain tissues. All samples were derived from the Religious Orders 

Study or Rush Memory and Aging Project (ROSMAP) longitudinal cohorts, which feature 

community-based recruitment strategies designed to ensure heterogenous, “real-world” 

representations of cognitive impairment within the general population [34-36]. Using tandem mass 

tag mass spectrometry (TMT-MS), we quantified nearly 8,000 proteins across 610 brain tissues 

from individuals with clinical diagnoses of no cognitive impairment (NCI), MCI, and AD. 
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Unbiased clustering of the nearly 400 MCI and AD tissues by individual proteomic profiles 

resolved three major classes of cognitive impairment. Here, we thoroughly examine how these 

classes differ across cell types and biological ontologies. We highlight how two of the three classes 

harbor proteomic features atypical of molecular trends previously observed in AD 

neurodegeneration. We also explore how these divergent molecular signatures impact genetic risk 

and clinicopathologic phenotypes. In sum, our results underscore the biological heterogeneity 

present among elderly individuals with cognitive impairment and how this translates into 

differences in cognitive resilience, pathological burden, and genetic risk. Further investigation of 

these distinct disease subtypes promises to meaningfully impact diagnostic, prognostic, and 

therapeutic precision in AD.  

Results 

Unbiased classification of the human brain proteome yields three distinct classes of 

cognitively impaired individuals 

The main objective of this study was to classify the brains of those with MCI and AD 

dementia based on individual proteomic profiles and examine the molecular, genetic, and 

clinicopathologic features of the resultant subtypes (Fig. 1). Using multiplex tandem mass tag 

mass spectrometry (TMT-MS), we analyzed a total of 610 postmortem dorsolateral prefrontal 

cortex (DLPFC) tissues from 604 unique individuals enrolled in the Religious Orders Study or 

Rush Memory and Aging Project (ROSMAP) (Fig. 1). These cohorts recruit older individuals 

without known dementia from United States religious orders, lay retirement centers, senior and 

subsidized housing communities, and church groups. These participants are then followed 

longitudinally with cognitive batteries, biospecimen collection, and finally brain autopsy [34-36]. 

The community-based procedures of ROSMAP were designed to ensure a heterogenous, “real-

world” representation of the dementia population found outside of tertiary care centers. 

Accordingly, clinical diagnoses of NCI, MCI, AD dementia, or other dementia were determined 

by study experts based principally on clinical history and detailed neuropsychological evaluation 

[37]. These study procedures have generated cohorts with well-described clinical and pathological 

heterogeneity, including among participants who ultimately meet neuropathological criteria for 

AD [12, 35]. To preserve this authentic heterogeneity, we included cases based principally on their 

clinical consensus cognitive diagnosis (cogdx), a final clinical diagnosis imparted at death by study 

physicians blinded to neuropathological results. All clinical diagnoses of AD met criteria for 

possible or probable AD based on National Institute of Neurological and Communicative 

Disorders and Stroke and Alzheimer’s Disease and Related Disorders Association (NINCDS-

ADRDA) guidelines [37, 38].  

TMT-MS quantified 7,814 proteins across 610 ROSMAP tissues with cogdx classifiers of 

NCI, MCI, or AD dementia. Outlier removal resulted in 597 tissues for subsequent analysis, 

including 220 NCI, 173 MCI, and 204 AD cases. After adjustments for age, sex, post-mortem 

interval (PMI), and batch, we clustered the 377 MCI and AD cases into proteomic classes using 

the statistical algorithm MONET M1 [39]. MONET M1 offers an innovative graph theory 

approach to module clustering, distinguishing it from more traditional hierarchical algorithms [39, 

40]. The parameters of MONET M1 were optimized using a grid search (Fig. S1, Table S1) to 

minimize the percentage of cases not assigned to a unique class. Ultimately, 95% (n=357) of the 

377 cases were assigned to one of three classes, termed A, B, and C (Fig. 1, Table S2). Class A 

(n=128) comprised 80 MCI (62%) and 48 AD (38%) cases. Class B (n=71) harbored 27 MCI 
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(38%) and 44 AD (62%) cases. Finally, Class C (n=158), the largest group, contained 56 MCI 

(35%) and 102 AD (65%) cases. Given each class comprised a mixture of both MCI and AD cases, 

we immediately concluded symptom severity was not the only driver of class structure. There were 

no significant differences in the average age and sex of each class (Table S3).  

To assess reproducibility of these classes, we employed a bootstrap approach to repeatedly 

cluster the samples an additional 100 times (Fig. S2A-B). On each of these iterations, we applied 

MONET M1 to a randomly selected 80% (n~300) of MCI and AD cases. The resultant clusters 

generated in each bootstrap iteration were analogous to the original clustering as assessed by strong 

levels of overlapping class-specific samples (Fig. S2C) and highly preserved protein signatures 

(Fig. S2D). Thus, our unbiased classification was highly reproducible, supporting the robustness 

of MONET M1 in defining consistent patterns of protein expression across cases. 

We then independently validated these proteomic classes by applying a second high-

performance clustering algorithm to our ROSMAP dataset termed Uniform Manifold 

Approximation and Projection (UMAP). In recent studies, UMAP has proven capable of 

effectively reinforcing sample heterogeneity within bulk -omic datasets with clustering structures 

that maintain biological and clinical meaning [41]. Furthermore, its nonlinear dimension reduction 

technique has demonstrated meaningful clustering advantages when visualizing high dimensional 

data compared to traditional linear approaches, such as principal component analysis (PCA) and 

multidimensional scaling (MDS) [41, 42]. We employed a supervised approach to our UMAP 

analysis, specifying an output of three distinct clusters. This independent clustering analysis 

generated three proteomic groups nearly identical to those formed by MONET M1, reinforcing the 

structure of the original classes (Fig. S3). Only one of the 357 cases clustered differently between 

the algorithms, segregating into Class B with MONET M1 and Class C with UMAP. These results 

further supported the validity of our three proteomic classes of cognitive impairment.  

Classes differ across a diverse range of disease-associated biological ontologies 

We previously showed that the AD cortex features a network of highly reproducible groups 

or “modules” of co-expressed proteins that reflect disease-associated alterations in a wide range 

of cell types and molecular functions [30-33]. These network analyses have established a 

biological framework for the AD brain proteome and its diverse pathophysiology. To provide such 

biological context to the three classes, we organized their proteomic profiles by the 44 co-

expression modules of our deepest AD consensus network, derived from hundreds of tissues in the 

early and late stages of disease [32]. Approximately 68% of the nearly 8,000 proteins identified 

among our ROSMAP cases (n=5290) mapped to one of these 44 modules. This mirrored previous 

analyses, which have shown that ~70% of proteins in any given dataset segregate into modules 

[30-33, 43-48]. The resultant heat map highlights module expression across the three proteomic 

classes (Fig. 2A). Many modules with distinct alterations across classes demonstrated strong 

associations to specific molecular functions (Fig. 2A), cell types (Fig. 2B), and clinicopathological 

traits (Fig. 2B-C). See Table S4 for module correlations to all traits provided for our ROSMAP 

cohort. Overall, these results showcased differences between classes across a diverse range of 

disease-relevant biological systems.  

 Module abundance levels (z-scores) across all cases revealed Class A proteomic signatures 

most closely matched those of cognitively intact (NCI) individuals, distinguishing this class as the 

most “control-like” of the three (Fig. 3A-B, Table S5). Compared to B and C, Class A featured 

significantly elevated levels of modules involved in protein synthesis and transport, including M6 

(ribosome), M9 (Golgi transport), and M29 (glycosylation / endoplasmic reticulum) (Fig. 2A and 
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3A). Modules linked to RAS signaling (M10) and the post-synaptic density (M5, M22) were also 

significantly increased in Class A. On the other hand, several modules featured unique decreases 

in Class A relative to B and C, including those linked to mitogen-activated protein kinase (MAPK) 

and other kinase-associated pathways (M7, M15) (Fig. 2A and 3B).  

 Class C featured proteomic changes most consistent with the neurodegenerative trends we 

have previously observed in pathologically defined AD [31, 32, 45]. Compared to A and B, Class 

C demonstrated significantly elevated levels of numerous glial-mediated modules linked to 

inflammation (M26), immune function (M3, M21), and the extracellular matrix (M11, M42) (Fig. 

2A and 3C). Class C was also the only class that demonstrated significant decreases in M1, a large 

module linked to synaptic transmission that is consistently depleted in the AD brain (Fig. 3D) [30-

33, 45]. In contrast, Class B was distinguished from A and C by significant elevations in M1 and 

several other neuronal modules, including M4 (synapse / GTPase activity), M36 (neurotransmitter 

transport), and M23 (GTPase activity) (Fig. 2A and 3D). These modules were largely associated 

with the pre-synaptic region and its associated functions (Fig. 3D). Meanwhile, post-synaptic 

modules (M5, M22) were significantly decreased in Classes B and C and remained relatively 

preserved in Class A. Collectively, these results revealed that in this heterogenous, clinically 

diagnosed cohort, the proteomic profiles of two-thirds of cognitively impaired cases diverged in 

key respects from the typical degenerative proteomic changes we have observed previously in 

pathologically defined tissues.  

Individual protein signatures distinguish classes with high sensitivity and specificity 

To identify individual proteins that best discriminate the three classes, we first performed 

pairwise differential expression analyses. Figure 4 depicts these volcano plots with individual 

proteins colored by module membership. As expected, Classes A and C diverged the most with 

3,251 significantly altered proteins (p<0.05) between them (Fig. 4A, Table S6). The “control-like” 

Class A featured higher levels of several M5 post-synaptic markers (VGF, SYT12, NPTX2), M10 

RAS signaling molecules (RASGRF1, ARFGAP2), and M6 mitochondrial ribosome proteins 

(DAP3, MRPS7, MRPS9, MRPS33, MRPS34). On the other hand, Class C featured increases in 

numerous proteins from kinase-oriented modules (M7, M15), including MAP kinases (MAPK1, 

MAP2K6, MAPK3), ribosomal kinases (RPS6KA5), and diacylglycerol kinases (DGKG) (Fig. 

4A). Large-fold increases in proteins linked to sugar metabolism (M25) and the extracellular 

matrix (M42) also distinguished Class C from A. These included several highly conserved M42 

hubs (SMOC1, MDK, NTN1) repeatedly linked to amyloid burden and APOE-associated risk in 

prior studies [31, 32]. Meanwhile, Class B pairwise analyses (Fig. 4B-C) underscored its unique 

elevations in neuronal proteins. Several M1 and M4 members (SYN2, NPTXR, SYT17, SYNPR) 

were significantly increased in Class B compared to A and C.  

A Venn diagram of significantly altered markers (p<0.001) across pairwise class 

comparisons revealed 66 proteins with significant changes across all three comparisons (Fig. 4D, 

Table S7). These 66 markers included VGF nerve growth factor inducible (VGF), whose levels 

dropped significantly from Class A to B and then again from B to C (Fig. 4E). This M5 neuronal 

protein is a well-described neuroprotective biomarker with decreased expression in AD brain 

tissues [49, 50]. Evidence suggests homeostatic VGF signaling promotes cognitive stability, 

neurogenesis, and synaptic plasticity [49-54]. Thus, its abundance trends in the current study 

suggested declining neuropreservation from Class A to B to C. Neuronal pentraxin 2 (NPTX2), 

another contributor to synaptic plasticity with diminished levels in the AD brain [55-57], was also 

among the 66 markers significantly altered between all three classes. Like VGF, NPTX2 featured 
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steep declines from Classes A to B and B to C (Fig. 4E). Trends in these well-described 

neuroprotective markers underscored the robust proteomic hallmarks of neuropreservation in Class 

A. In contrast, there were many proteins among these 66 targets that had no known links to AD or 

neurodegeneration, such as adenosylmethionine decarboxylase 1 (AMD1) which significantly 

increased from Class A to B to C (Fig. 4E).  

 Our Venn diagram also revealed hundreds of markers significantly altered (p<0.001) across 

two of the three pairwise class comparisons (Fig. 4D, Table S7). We referred to these proteins as 

“classifiers”, as each was uniquely altered in one class relative to the other two. Class A featured 

554 classifiers, including platelet activating factor acetylhydrolase 1b catalytic subunit 3 

(PAFAH1B3) which displayed markedly decreased levels in Class A relative to B and C (Fig. 4F). 

Decreases in PAFAH1B3 and other members of the kinase associated M7 and M15 comprised 

nearly 30% of the Class A classifiers. The remaining signatures prominently reflected the 

increased ribosome (M6), Golgi (M9), and Ras signaling (M10) molecules. Class B was 

distinguished by 342 classifiers that largely represented increases in several pre-synaptic modules 

(M1, M4, M23), such as synapsin (SYN1) (Fig. 4G). This neuronal protein associates closely with 

synaptic vesicles and plays a critical role in synaptogenesis and axon development [58]. Finally, 

Class C classifiers comprised 445 proteins that strongly reflected increases in proteins linked to 

myelin (M3) and the extracellular matrix (M11), such as osteoclast stimulating factor 1 (OSTF1) 

(Fig. 4H). Decreases in pre- and post-synaptic proteins (M1, M5) were also prominently featured 

among these Class C signatures. 

We assessed the strength of these classifiers by plotting the individual receiver operating 

characteristic (ROC) curve for each signature in relationship to its associated class. Each curve 

represented a graphical plot of the true positive rate (sensitivity) against the false positive rate (1-

specificity) at various threshold settings. The resultant area under the curve (AUC), a measure of 

overall classifier performance between values 0 and 1, was then used to identify the strongest 

signatures for each class (Fig. 4I-K, Table S7). Kinase-associated proteins (e.g., PAFAH1B3, 

PALM3, DKK3) were among those most sensitive and specific for Class A (Fig. 4I), while Class 

B was best distinguished by synaptic classifiers (e.g., SYN1, SYN2, GPRIN1, NPTXR) (Fig. 4J). 

Proteins with the highest AUCs for Class C reflected a more diverse set of modules, underscoring 

the diversity of biological dysregulation in this group. Yet, these Class C signatures still 

highlighted its prominent synaptic and myelin dysfunction (e.g., CDH8, TLN2, OSTF1, GABBR1, 

HNRNPF) (Fig. 4K). Overall, we concluded that each class featured unique protein signatures 

capable of distinguishing its members with high sensitivity and specificity. 

Classes demonstrate distinct clinicopathological phenotypes 

Given their robust differences in modules linked to clinicopathological traits, we 

hypothesized our classes would exhibit distinct clinical and pathological phenotypes. To 

characterize these phenotypic differences, we compared available ROSMAP disease traits directly 

across classes (Table S3). As expected, all three classes demonstrated significant cognitive 

impairment compared to NCI (Fig. 5A). Yet, Class A featured the most preserved cognition among 

impaired individuals. Class A also displayed the most positive cognitive slopes, indicating a slower 

rate of decline in these cases (Fig. 5B). Accordingly, individual proteins highly correlated to 

cognitive measures demonstrated starkly different levels in Class A compared to B and C (Fig. 

5A-B). Post-synaptic markers of M5 (NRN1, NPTX2, OLFM1) were among those most strongly 

correlated to cognition and displayed precipitous declines from Class A to B and C. Several kinase-

associated markers of M7 and M15 (MAP2K6, RPS6KA2, PAFAH1B3, PALM3, TMEM30A) 
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also correlated strongly to cognitive measures but in the opposite direction, with expression levels 

that sharply increased from Class A to B and C. Table S8 provides a complete list of proteins 

significantly correlated to each trait provided for our ROSMAP cohort.   

 ROSMAP offers detailed pathological scoring of brain tissues using a variety of semi-

quantitative scales [36]. Fig. 5C-G showcases the levels of several pathologies across classes, 

including amyloid plaques, NFTs, cerebral amyloid angiopathy, TDP-43, and Lewy body 

inclusions. Global pathology scores were also plotted across classes in Fig. 5H. As expected, all 

cognitively impaired cases maintained higher levels of neuropathology compared to NCI. Yet, 

Class A featured the smallest neuropathological burden of the three subtypes. Its levels of amyloid, 

tau, and several other pathological features were notably decreased compared to Classes B and C. 

This was reflected in the global pathology scores of Class A, which were the lowest of all 

cognitively impaired cases. In contrast, Class C featured the highest burden of global pathology 

among the three subtypes, surpassing A and B in average levels of NFTs, Lewy body inclusions, 

and CAA. Proteins highly correlated to neuropathological measures were generally most altered 

in Class C compared to all other groups (Fig. 5C-H, Table S8). Post-synaptic (M5) and matrisome 

(M42) markers were most consistently reflected among pathology-associated markers. 

Accordingly, global pathology trends were most strongly correlated to post-synaptic (e.g., NRN1, 

NPTX2, RPH3A, VGF) and matrisome markers (e.g., SPOCK3, SMOC1, MDK, NTN1, FLT1) 

(Fig. 5H).  

Overall, these findings highlighted distinct clinicopathological phenotypes across our 

proteomic classes. Most notably, these results highlighted greater levels of cognitive stability in 

Class A, consistent with the robust neuroprotective trends in its proteomic profile. Meanwhile, 

Class C demonstrated the highest levels of neuropathology, aligning with its prominent 

neurodegenerative proteomic signatures. 

Class C proteomic signatures strongly mirror those of high-risk ApoE4 carriers 

Polymorphic alleles in the APOE gene are the strongest known genetic determinants of 

LOAD risk [59-61]. Individuals carrying the E4 allele are at increased risk for AD development 

compared to those with the more common E3 allele. Meanwhile, a copy of the E2 allele is 

neuroprotective and decreases the risk of LOAD. We have previously demonstrated that APOE 

genotype and its associated risk strongly correlate with a variety of protein modules in the human 

AD brain, spanning metabolism, inflammation, synaptic activity, and other molecular functions 

[43]. We have also shown that the expression patterns of certain modules, such as the matrisome-

associated M42, are genetically regulated by the APOE locus [32]. Therefore, we hypothesized 

that our proteomic classes would differ in levels of APOE-related risk and associated protein 

signatures.  

Analysis of genotype composition across classes revealed a mixture of high-risk (E3/4, 

E4/4), risk-neutral (E3/3), and low-risk (E2/2, E2/3) genotypes in each class. E3/3 was the most 

abundant genotype present throughout the dataset, comprising 60-70% of cases in each class (Fig. 

6A). High-risk E4 carriers (E3/4, E4/4) were second most abundant, though less evenly distributed. 

Class C featured over twice as many E4 carriers (n=46, 29%) as Classes A (n=21, 16%) and B 

(n=17, 24%). Low-risk E2 carriers (E2/2, E2/3) were notably less abundant than high-risk cases, 

accounting for only 12% (n=16) of Class A, 10% (n=8) of Class B, and 6% (n=10) of Class C. 

Finally, E2/4 cases were rare and comprised no more than 3% of any class. A comparison of overall 

APOE-associated risk revealed all three classes featured higher risk levels compared to NCI cases. 

Yet, Class C displayed significantly higher risk compared to Classes A and B (Fig. 6B). 
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Collectively, these results suggested that class structure was not solely determined by APOE 

genotype. Yet, the three classes did meaningfully differ in their proportions of high-risk E4 carriers 

and average levels of genetic risk.  

We then sought to compare risk-associated protein signatures across classes. First, we 

identified those protein alterations most strongly linked to APOE carrier status, regardless of class 

(Table S9). Fig. 6C showcases proteins significantly altered in E2 carriers (E2/2, E2/3) versus 

other cognitively impaired cases. E2 carriers demonstrated stark decreases in kinase related (M7, 

M15) proteins and increases in post-synaptic (M5), Golgi (M9), and Ras signaling (M10) markers. 

In contrast, E4 carriers (E3/4, E4/4) featured decreases in post-synaptic (M5) and Ras signaling 

(M10) proteins when compared to other cognitively impaired cases (Fig. 6D), as well as significant 

increases in proteins linked to sugar metabolism (M25), immune function (M26), and the 

matrisome (M42). As expected, hub proteins of M42 (SMOC1, MDK, NTN1) were among those 

markers most elevated in E4 carriers, consistent with our previous findings that this module is 

under control of the APOE locus [32]. Accordingly, LDL receptor related protein 1 (LRP1), 

another M42 member and known APOE interactor [62, 63], was also significantly elevated in E4 

carriers.  

To examine these risk-associated protein signatures across classes, we then correlated the 

proteomic profiles of E2 and E4 carriers with those of each class. E2-associated module expression 

was positively correlated to module expression in both Classes A and B (Fig. 6E, Table S10). 

However, only its correlation with Class B reached statistical significance (bicor=0.27, p=0.038). 

E2 module expression also significantly correlated to that of Class C, but in the negative direction 

(bicor=-0.47, p=0.0013). In stark contrast, E4 module expression featured remarkably strong 

negative correlations to Class A (bicor=-0.85, p=1.6E-13) and positive correlations to Class C 

module expression (bicor=0.89, p=5.1E-16) (Fig. 6E). E4 expression demonstrated no significant 

correlation to that of Class B (bicor=0.20, p=0.20). To ensure that these results were not driven by 

a minority of E2 or E4 carriers in each class, we repeated all six correlations using the module 

expression of only E3/3 cases in each class (Fig. 6F, Table S10). These results were nearly 

identical to those of the initial correlations. Notably, the strong positive association between E4 

and Class C module expression was maintained (bicor=0.84, p=8.7E-13). Thus, we concluded that 

irrespective of their individual genotypes, Class C cases harbored proteomic profiles highly similar 

to those of high-risk E4 carriers. This supported the conclusion that with its heightened 

inflammatory signatures, steep cognitive slopes, and exceptionally elevated neuropathological 

burden, Class C reflected a high-risk state of cognitive impairment.  

Discussion 

The diagnosis, monitoring, and treatment of AD are currently limited by biomarker tools 

that fail to capture its vast pathophysiological heterogeneity. Large-scale molecular subtyping 

promises to resolve this heterogeneity and enhance diagnostic and therapeutic precision in AD. To 

this end, we used an unbiased proteomic approach to subtype nearly 400 ROSMAP brain tissues 

from clinically diagnosed MCI and AD cases. We resolved three classes among these cognitively 

impaired individuals, each driven by proteomic changes across a variety of cell types and 

biological ontologies. All classes featured a mix of mildly impaired and demented individuals, 

indicating clusters driven by more than clinical severity at death. Accordingly, further examination 

of these classes highlighted distinct genetic, clinical, and pathological phenotypes.  

Class C featured the most neurodegenerative proteomic profile of the three groups. 

Synaptic loss and heightened glial activation were among its most distinct proteomic signatures. 
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Glial-enriched modules associated with myelin (M3), immune function (M21), complement 

pathways (M26), and the matrisome (M42, M11) were distinctly elevated in Class C compared to 

A and B. These glial signatures strongly correlated to the exceptionally high neuropathological 

burden of Class C. Hub proteins of M42 and M11 were among those most strongly correlated to 

neuropathology. We and others have previously linked many of these matrisome markers (e.g., 

SMOC1, NTN1, MDK) to Aβ accumulation [31-33, 64]. Yet, the current study also showcased 

their strong associations to various non-amyloid pathologies, including NFT, CAA, and TDP-43 

deposition. Accordingly, Class C demonstrated distinctly elevated levels of mixed global 

neuropathology, extending beyond amyloid and tau accumulation. This high pathological burden 

aligned with the overall aggressive phenotype of Class C, which also featured steep cognitive 

slopes and elevated levels of genetic risk. In fact, our results suggested that a Class C proteomic 

profile was nearly equivalent to that of a high-risk E4 carrier.   

In contrast, Class A featured the most neurologically preserved proteomic profile, closely 

mirroring NCI cases in synaptic, metabolic, and inflammatory signatures. Class A was best 

distinguished from B and C by decreases in kinase-associated modules (M7, M15) and increases 

in RAS signaling proteins (M10). RAS signaling molecules are known to regulate various aspects 

of the MAP kinase (MAPK) pathway [65-67], indicating biologically meaningful links between 

these Class A signatures. The proteomic hallmarks of Class A correlated strongly to cognitive 

trajectory. Of all 44 modules, M7 demonstrated the most robust correlations to cognitive slope, 

with lower protein levels indicating increased cognitive stability. Thus, the cognitive slope of Class 

A was significantly more stable compared to Classes B and C. Class A, while demonstrating higher 

amyloid and tau deposition relative to NCI, also displayed the smallest burden of global 

neuropathology among those with cognitive impairment. In addition, its average APOE risk was 

significantly lower than that of Classes B and C, and its protein expression strongly anti-correlated 

to that of high-risk E4 carriers. Collectively, these findings showcased the milder, less aggressive 

disease phenotype of Class A. Accordingly, its most highly sensitive and specific classifiers 

included various proteins linked to neurologic resilience, such as Ras protein specific guanine 

nucleotide releasing factor 1 (RASGRF1), an important regulator of neural plasticity with links to 

hippocampus-dependent memory [68-73]. Also among Class A classifiers was neuritin (NRN1), 

an M5 synaptic protein that has strongly associated with cognitive resilience in prior proteomic 

studies [74] and has known roles in synaptic maturation and stability [75-77].  

Class B displayed a proteomic profile largely intermediate to the extremes of Classes A 

and C. Class B demonstrated clear degenerative changes relative to Class A, including increases 

in kinase modules (M7, M15) and decreases in RAS signaling proteins (M10). Yet, Class B lacked 

many of the hallmarks of glial activation observed in Class C. The expression of known 

neuroprotective markers underscored Class B as an intermediate state. Levels of VGF and NPTX2, 

neuroprotective markers that typically decrease in the degenerating brain [49-57], were highest in 

Class A and lowest in Class C, leaving B in between. However, the proteomic profile of Class B 

was not entirely transitional in nature. Class B was distinguished by its markedly elevated levels 

of select neuronal modules (M1, M4, M23, M36) compared to both Classes A and C. These Class 

B neuronal signatures strongly reflected pre-synaptic functions, including neurotransmitter 

transport, GTPase activity, and signal transmission. These neuronal modules did not correlate 

strongly to any genetic, clinical, or pathological traits. Therefore, it is unclear what function these 

synaptic signatures serve for Class B and whether they comprise a hallmark of neuronal resilience 

or dysfunction. In addition, what impact these heightened levels of pre-synaptic proteins have on 

the marked decreases in post-synaptic modules (M5, M22) also observed in Class B is unclear.   
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Overall, these results revealed only a third of cognitively impaired individuals with clinical 

MCI and AD harbor characteristic proteomic signatures of neurodegeneration. The remaining 

cases displayed atypical molecular signatures, which in some cases were strongly correlated to 

cognitive resilience. These results align to some extent with recent transcriptomic analyses, which 

also identified “atypical” RNA profiles in over half of MCI and AD brains [23, 24]. However, 

several key protein modules differentially expressed across classes are not observed in the AD 

transcriptomic network [32]. One example is M7, a module strongly linked to cognitive trajectory 

and whose hubs are strong Class A classifiers. Despite these robust disease associations, this 

module is not preserved in the AD network transcriptome [32, 33, 45]. Another such module not 

reflected in the AD transcriptomic network is M42 [32], which demonstrated remarkably strong 

neuropathologic associations and comprises hubs sensitive and specific for Class C.  

Genetic risk did not exclusively dictate proteomic classification, as cases with low- and 

high-risk APOE genotypes were scattered throughout all classes. The proteomic profile of Class 

C strongly mirrored that of E4 carriers, but this robust association persisted regardless of whether 

individuals in Class C carried an E4 allele. The strong anti-correlations observed between Class A 

and E4 module expression were also independent of individual Class A genotypes. Meanwhile, 

Class B module expression was not correlated at all to that of E4 carriers and only weakly to that 

of E2 carriers. Of note, it is possible that given our generally low numbers of E2 carriers among 

cognitively impaired cases (n=34), we were simply underpowered to detect more robust 

correlations to low-risk protein signatures. This would explain why E2 proteomic signatures 

mirrored several trends observed in Class A (e.g., elevated RAS signaling and post-synaptic 

proteins) but the two failed to demonstrate statistically significant correlations.  

Other limitations of the current study included a lack of racial diversity among analyzed 

cases. Using a community-based, clinically diagnosed cohort ensured clinical and pathological 

heterogeneity. Yet, our analyses were limited largely to non-Hispanic white individuals. Thus, it 

is unclear if the same classes would be detected in a more racially diverse analysis. Growing 

evidence indicates that cerebrospinal fluid (CSF) tau and other molecular markers of AD require 

adjustments for race [78, 79], suggesting this variable could significantly impact 

pathophysiological classification of disease. In addition, because we regressed for age and sex 

prior to clustering, we have a limited understanding of how these variables might also influence 

subtyping results. Thus, it will be important for future investigations to examine the effects of these 

demographic factors on proteomic clustering.  

Additional studies examining the representation of these brain-derived classes in the CSF 

and plasma proteomes will also be critical to clinical translation. Recent studies integrating the AD 

brain and biofluid proteomes have revealed that many key disease-associated brain modules are 

highly represented in CSF [30, 31]. In fact, we have shown that alterations in the AD CSF proteome 

reflect a diverse range of brain-based pathophysiology, including synaptic, vascular, 

inflammatory, and metabolic dysfunction [30]. Thus, the AD CSF proteome promises to mirror 

the brain with distinct classes featuring unique protein signatures and clinicopathological 

phenotypes. A recent subtyping analysis of AD CSF based on the levels of ~700 proteins identified 

subtypes of disease with distinct molecular signatures [80]. Yet, larger-scale integration studies of 

the brain and CSF proteomes are required to identify biofluid subtypes that best reflect cortical 

hallmarks of cognitive resilience and global pathology. Such efforts to refine classes with close 

links to brain-based pathophysiology will be key to meaningfully advancing diagnostic and 

therapeutic precision in AD. 
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Figure Legends  

Figure 1. Study Approach. This study classified the brain-derived proteomic profiles of 

cognitively impaired individuals and characterized these distinct classes using a systems-based 

biological framework. We first used TMT-MS to analyze >600 DLPFC tissues from ROSMAP 

participants with clinical diagnoses of NCI (n=220), MCI (n=173), and AD dementia (n=204). We 

then applied the clustering algorithm MONET M1 to the MCI and AD cases, resolving three 

proteomic classes termed A, B, and C. We explored biological differences between classes by 

applying a systems-based organization to these proteomic profiles that was informed by prior 

network analyses of the AD brain. Finally, we examined genetic, clinical, and pathological 

differences between NCI and the three classes. Abbreviations: NCI, No Cognitive Impairment; 

MCI, Mild Cognitive Impairment; AD, Alzheimer’s Disease; TMT-MS, Tandem Mass Tag Mass 

Spectrometry; DLPFC, Dorsolateral Prefrontal Cortex; ROSMAP, Religious Orders Study and 

Rush Memory and Aging Project.  

Figure 2. MONET M1 yields three disease-relevant proteomic classes of cognitive 

impairment. (A) Heat map of protein expression across the three proteomic classes generated by 

MONET M1 analysis. Classes were termed A (n=128), B (n=71), and C (n=158) and each featured 

a mixture of MCI and AD cases. To provide biological context to the proteomic differences across 

classes, proteins were organized by modules (M) of co-expression informed by prior AD network 

analyses. Red boxes highlight modules with relatively elevated levels (yellow shading) in select 

classes. (B) Diagram depicting the associations of each module to cell type and ROSMAP 

clinicopathological traits. Modules bolded in red (n=10) demonstrated exceptionally strong 

correlations to cognitive slope and/or global pathology (bicor>0.25; p<0.001). (C) Correlation 

plots of module abundance (z-score) to cognitive slope or global pathology across all analyzed 

cases (n=610) for select modules with remarkably strong clinicopathological correlations. M5 and 

M10 demonstrated highly significant positive correlations to cognitive slope and negative 

correlations to global pathology. In contrast, M7 and M42 were negatively correlated to cognitive 

slope and positively correlated to global pathology. Bicor correlation coefficients with associated 

p values are shown for each correlation plot. Abbreviations: MCI, Mild Cognitive Impairment; 

AD, Alzheimer’s Disease; FDR, False Discovery Rate; Post-Syn Dens, Post-Synaptic Density. 

Figure 3. Module abundances highlight class differences across a diverse range of biological 

ontologies. Abundance levels (z-score) of select modules across NCI cases and the three proteomic 

classes. ANOVA p values are provided for each abundance plot. All modules depicted were 

significantly altered (p<0.001) across the four groups. Box plots represent the median and 25th 

and 75th percentiles, while box hinges depict the interquartile range of the two middle quartiles 

within a group. Data points up to 1.5 times the interquartile range from the box hinge define the 

extent of error bar whiskers. Modules relatively increased in NCI and Class A included M5, M6, 

M9, and M10, corresponding to post-synaptic density, ribosome, Golgi, and Ras signaling 

proteins, respectively (A). Kinase-associated M7 and M15 were among modules significantly 

decreased in NCI and Class A compared to the other two classes (B). Numerous modules were 

uniquely increased in Class C, most notably several linked to glial-mediated processes (M3, M11, 

M21, M26, M42) (C). Several synaptic modules (M1, M4, M23, M36) were increased in Class B 

relative to all other cases (D). Abbreviations: NCI, No Cognitive Impairment; MCI, Mild 

Cognitive Impairment; AD, Alzheimer’s Disease. 
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Figure 4. Differential expression of individual proteins reveals highly sensitive and specific 

classifiers. A-C) Volcano plots displaying the log2 fold change (x-axis) against the -log10 statistical 

p value (y-axis) for proteins differentially expressed between pairwise class comparisons. All p 

values across pairwise comparisons were derived by ANOVA with Bonferroni post-hoc 

correction. Proteins are shaded according to color of module membership. (D) Venn diagram of 

significantly altered proteins (p<0.001) across pairwise class comparisons. There were 66 proteins 

with significant changes across all three pairwise comparisons, while hundreds of proteins were 

significantly altered across two of the three pairwise comparisons. The latter were deemed 

“classifiers”, as each was uniquely altered in one class relative to the other two. There were 554 

Class A classifiers, 342 Class B classifiers, and 445 Class C classifiers. (E-H) Abundance levels 

(z-score) of select proteins across NCI cases and the three classes. ANOVA p values are provided 

for each abundance plot. Box plots represent the median and 25th and 75th percentiles, while box 

hinges depict the interquartile range of the two middle quartiles within a group. Data points up to 

1.5 times the interquartile range from the box hinge define the extent of error bar whiskers. The 

66 proteins altered across all pairwise class comparisons included neuroprotective markers with 

well-described links to AD (VGF, NPTX2) and those without known associations to disease 

(AMD1) (E). Classifiers altered in two of the three pairwise class comparisons included 

PAFAH1B3 for Class A, SYN1 for Class B, and OSTF1 for Class C (F-H). (I-K) ROC curves of 

the 10 most sensitive and specific proteins for each class by AUC values, which are included in 

parentheses. Proteins are shaded according to color of module membership. Abbreviations: Post-

Syn Dens, Post-Synaptic Density.  

Figure 5. Classes demonstrate different cognitive and pathological features. Cognitive (A-B) 

and neuropathological (C-H) characteristics were compared across NCI cases and the three 

proteomic classes. For each trait, two plots are provided. The first depicts the average scores of 

each trait across the four groups. The ANOVA p value across groups is provided with asterisks 

indicating statistically significant Tukey post hoc pairwise comparisons (*, p<0.05; **, p<0.01; 

***, p<0.001). Box plots represent the median and 25th and 75th percentiles, while box hinges 

depict the interquartile range of the two middle quartiles within a group. Data points up to 1.5 

times the interquartile range from the box hinge define the extent of error bar whiskers. The second 

plot in each panel showcases the abundance levels (z-scores) across groups of individual proteins 

highly correlated to that particular trait. The z-scores of the top 10 positively trait-correlated and 

top 10 negatively trait-correlated proteins are shown. Proteins are shaded according to color of 

module membership. Proteins without a module assignment are not shaded. Abbreviations: Prot 

Folding, Protein Folding; Post-Syn Dens, Post-synaptic Density; Glycosyl, Glycosylation; ER, 

Endoplasmic Reticulum; Prot Transport, Protein Transport; Adh, Adhesion; ECM, Extracellular 

Matrix. 

Figure 6. Class C protein expression strongly mirrors that of ApoE4 carriers. (A) Table 

showcasing the percentages of different APOE genotypes within each class. The corresponding 

number of cases with each genotype is also provided in parentheses. Cases considered low-risk E2 

carriers or high-risk E4 carriers are indicated. Class C comprised twice as many high-risk E4 

carriers compared to Classes A and B. (B) Comparison of average APOE risk scores across NCI 

and the three proteomic classes. Individual risk scores for each case were calculated by assigning 

-1 points to each E2 allele, 0 points to each E3 allele, and +1 points to each E4 allele. The ANOVA 

p value across groups is provided with asterisks indicating statistically significant Tukey post hoc 

pairwise comparisons (*, p<0.05; **, p<0.01; ***, p<0.001). (C-D) Volcano plots displaying the 
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log2 fold change (x-axis) against the t test-derived -log10 statistical p value (y-axis) for proteins 

differentially expressed in E2 carriers or E4 carriers when compared to all other cases, excepting 

those with E2/4 genotypes which were excluded from these analyses. Thus, (C) is a comparison 

of protein expression in the 34 cases with E2/2 and E2/3 genotypes to the 313 cases with E3/3, 

E3/4, and E4/4 genotypes, while (D) is a comparison of protein expression in the 84 cases with 

E3/4 and E4/4 genotypes to the 263 cases with E2/2, E2/3, and E3/3 genotypes. Proteins are shaded 

according to color of module membership. (E-F) Correlation plots of module abundance levels (z-

scores) in E2 (E2/2, E2/3) or E4 (E3/4, E4/4) carriers to those of each proteomic class. Class-

specific z-scores in (E) reflect all members of each class, while those in (F) reflect only individuals 

with E3/3 genotypes in each class. Bicor correlation coefficients with associated p values are 

shown for each correlation plot. Abbreviations: Post-Syn Dens, Post-Synaptic Density; Metab, 

Metabolism.  

Figure S1. MONET M1 grid search and parameter selection. To select the hyperparameters 

used in the MONET M1 clustering, a grid search of varying minimum module size, maximum 

module size, and average degree was performed. The size and percent unassigned cases (grey) for 

the clusters produced in each combination are visualized as a 3D plot of minimum module size, 

maximum module size, and number of clusters produced (A desired average degree = 25 and B 

desired average degree = 50). The top performing parameter sets as determined by minimal percent 

grey are shown in panel C and D. Generally, assigning the desired average degree to 50 decreases 

the percent grey in each of the tested parameter sets. The hyperparameters selected were minimal 

module size = 5, maximum module size = 200, desired average degree = 50. The results of these 

parameters are indicated by red boxes in panel B and D.  

Figure S2. Validation of MONET M1 results using iterative bootstrapping. The rate at which 

sample pairs are assigned to the same cluster (termed the paired percentage) were calculated for 

every bootstrapped run (80-20 split). The average paired percentage per cluster and variance of the 

percentage were tracked to ensure the bootstrapping was well converged (A). A heatmap of the 

pairwise cluster rate shows three distinct clusters (B). Hypergeometric Fisher’s exact test (FET) 

and module preservation was run on each of the MONET M1 reclustering steps with the original 

MONET M1 network as a reference. FET results revealed significant class-specific sample overlap 

(FDR-corrected p<0.01) across the 100 iterations (C). A mean Zsummary score was calculated and 

demonstrates that each of the MONET M1 classes are well preserved (q < 0.05) in each of the 100 

bootstrap steps (D).  

Figure S3. UMAP analysis reinforces proteomic classes of cognitive impairment. Uniform 

Manifold Approximation and Projection (UMAP) supervised clustering algorithm segregated 

cognitively impaired ROSMAP cases into three classes nearly identical to those formed by 

MONET M1. Only one of the 357 cases clustered differently between the algorithms, segregating 

into Class B with MONET M1 and Class C with UMAP. 
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Materials and Methods  

Brain Tissue  

DLPFC tissues from Brodmann area 9 (BA9) were obtained from the autopsy collections 

of the Religious Orders Study or Rush Memory and Aging Project [34-36]. Both studies were 

approved an Institutional Review Board of Rush University Medical Center. All participants 

signed an informed consent, an Anatomic Gift Act, and a repository consent allowing their 

resources to be repurposed with appropriate inter-institutional agreements. ROSMAP features 

community-based cohorts, which recruit older individuals without known dementia from United 

States (US) religious orders, lay retirement centers, senior and subsidized housing communities, 

and church groups. These participants are then followed longitudinally with cognitive batteries, 

biospecimen collection, and finally brain autopsy [34-36]. All participants are assigned a clinical 

consensus cognitive diagnosis (cogdx) at death, derived by study experts blinded to postmortem 

neuropathology. The cogdx scale includes values of 1 (NCI), 2 (MCI and no other cause of 

cognitive impairment [in addition to AD]), 3 (MCI and another cause of cognitive impairment [in 

addition to AD]), 4 (AD and no other cause of cognitive impairment), 5 (AD and another cause of 

cognitive impairment), and 6 (other dementia). All diagnoses of AD met criteria for possible or 

probable AD based on National Institute of Neurological and Communicative Disorders and 

Stroke and Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) 

guidelines [37, 38]. Only cases with cogdx classifiers of 1-5 were included in the current study. 

Cases with cogdx classifiers of 6 were excluded. We also excluded rare cases with cogdx classifiers 

that did not align with cognitive battery scores. ROSMAP cases are richly characterized using a 

variety of clinical and pathological traits that were used to describe the case grouping generated in 

our clustering analysis [34, 36]. Postmortem neuropathological traits of interest included neuritic 

plaque distribution, which was scored according to the Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) criteria [81] and extent of neurofibrillary tangle pathology, which 

was assessed with the Braak staging system [82]. Other neuropathologic diagnoses and clinical 

traits were made in accordance with established criteria and guidelines [83]. All case metadata are 

provided in https://www.synapse.org/ADsubtype. 

Brain Tissue Homogenization and Protein Digestion  

Tissue homogenization was performed essentially as described [33, 84]. Approximately 

100 mg (wet tissue weight) of brain tissue was homogenized in 8 M urea lysis buffer (8 M urea, 

10 mM Tris, 100 mM NaH2PO4, pH 8.5) with HALT protease and phosphatase inhibitor cocktail 

(ThermoFisher) using a Bullet Blender (NextAdvance). Each Rino sample tube (NextAdvance) 

was supplemented with ~100 μL of stainless-steel beads (0.9 to 2.0 mm blend, NextAdvance) and 

500 μL of lysis buffer. Tissues were added immediately after excision and homogenized with 

bullet blender at 4 °C with 2 full 5 min cycles. The lysates were transferred to new Eppendorf 

Lobind tubes and sonicated for 3 cycles consisting of 5 s of active sonication at 30% amplitude, 

followed by 15 s on ice. Samples were then centrifuged for 5 min at 15,000 x g and the supernatant 

transferred to a new tube. Protein concentration was determined by bicinchoninic acid (BCA) 

assay (Pierce). For protein digestion, 100 μg of each sample was aliquoted and volumes normalized 

with additional lysis buffer. Samples were reduced with 1 mM dithiothreitol (DTT) at room 

temperature for 30 min, followed by 5 mM iodoacetamide (IAA) alkylation in the dark for another 

30 min. Lysyl endopeptidase (Wako) at 1:100 (w/w) was added, and digestion allowed to proceed 

overnight. Samples were then 7-fold diluted with 50 mM ammonium bicarbonate. Trypsin 
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(Promega) was then added at 1:50 (w/w) and digestion was carried out for another 16 h. The 

peptide solutions were acidified to a final concentration of 1% (vol/vol) formic acid (FA) and 0.1% 

(vol/vol) trifluoroacetic acid (TFA) and desalted with a 30 mg HLB column (Oasis). Each HLB 

column was first rinsed with 1 mL of methanol, washed with 1 mL 50% (vol/vol) acetonitrile 

(ACN), and equilibrated with 2×1 mL 0.1% (vol/vol) TFA. The samples were then loaded onto the 

column and washed with 2×1 mL 0.1% (vol/vol) TFA. Elution was performed with 2 volumes of 

0.5 mL 50% (vol/vol) ACN. An equal amount of peptide from each sample was aliquoted and 

pooled as the global pooled internal standard (GIS), which was split and labeled in each TMT 

batch as described below.  

Isobaric Tandem Mass Tag (TMT) Peptide Labeling  

The 610 ROSMAP cases included were analyzed in two separate sets, referred to as Set1 

(n=400) and Set2 (n=210) throughout the Methods. Within each set, cases were randomized prior 

to TMT labeling by select covariates (i.e., age, sex, PMI, diagnosis) into batches. For Set1 (50 

batches), peptides from each individual case and the GIS pooled standards were labeled using the 

TMT 10-plex kit (ThermoFisher 90406). For Set2 (14 batches), peptides from each individual case 

and the GIS pooled standards were labeled using the TMTpro 16-plex kit (ThermoFisher 44520). 

Each batch in Set1 comprised 2 TMT channels with labeled GIS standards with all other channels 

reserved for individual brain samples. Each batch in Set2 comprised only 1 TMT channel with a 

labeled GIS standard. Labeling was performed as previously described [44, 84, 85]. Briefly, each 

sample (containing 100 μg of peptides) was re-suspended in 100 mM TEAB buffer (100 μL). The 

TMT labeling reagents (5mg) were equilibrated to room temperature, and anhydrous ACN 

(256 μL) was added to each reagent channel. Each channel was gently vortexed for 5 min, and then 

41 μL from each TMT channel was transferred to the peptide solutions and allowed to incubate 

for 1 h at room temperature. The reaction was quenched with 5% (vol/vol) hydroxylamine (8 μl) 

(Pierce). All channels were then combined and dried by SpeedVac (LabConco) to approximately 

150 μL and diluted with 1 mL of 0.1% (vol/vol) TFA, then acidified to a final concentration of 1% 

(vol/vol) FA and 0.1% (vol/vol) TFA. Labeled peptides were desalted with a 200 mg C18 Sep-Pak 

column (Waters). Each Sep-Pak column was activated with 3 mL of methanol, washed with 3 mL 

of 50% (vol/vol) ACN, and equilibrated with 2×3 mL of 0.1% TFA. The samples were then loaded 

and each column was washed with 2×3 mL 0.1% (vol/vol) TFA, followed by 2 mL of 1% (vol/vol) 

FA. Elution was performed with 2 volumes of 1.5 mL 50% (vol/vol) ACN. The eluates were then 

dried to completeness using a SpeedVac.  

High-pH Off-line Fractionation 

High pH fractionation was performed essentially as described [84, 86] with slight 

modification. Dried samples were re-suspended in high pH loading buffer (0.07% vol/vol 

NH4OH, 0.045% vol/vol FA, 2% vol/vol ACN) and loaded onto an Agilent ZORBAX 300 

Extend-C18 column (2.1mm x 150 mm with 3.5 µm beads). An Agilent 1100 HPLC system 

was used to carry out the fractionation. Solvent A consisted of 0.0175% (vol/vol) NH4OH, 

0.01125% (vol/vol) FA, and 2% (vol/vol) ACN; solvent B consisted of 0.0175% (vol/vol) 

NH4OH, 0.01125% (vol/vol) FA, and 90% (vol/vol) ACN. The sample elution was performed 

over a 58.6 min gradient with a flow rate of 0.4 mL/min. The gradient consisted of 100% solvent 

A for 2 min, then 0% to 12% solvent B over 6 min, then 12% to 40 % over 28 min, then 40% 

to 44% over 4 min, then 44% to 60% over 5 min, and then held constant at 60% solvent B for 

13.6 min. A total of 96 individual equal volume fractions were collected across the gradient and 
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subsequently pooled by concatenation [86] into 24 fractions for Set1 and 48 fractions for Set2. 

The fractions were then dried to completeness using a SpeedVac.  

Mass Spectrometry Analysis 

For Set1, all fractions were resuspended in an equal volume of loading buffer (0.1% FA, 

0.03% TFA, 1% ACN) and analyzed by liquid chromatography coupled to tandem mass 

spectrometry essentially as described [9], with slight modifications. Peptide eluents were separated 

on a self-packed C18 (1.9 μm, Dr. Maisch, Germany) fused silica column (25 cm × 75 μM internal 

diameter (ID); New Objective, Woburn, MA) by a Dionex UltiMate 3000 RSLCnano liquid 

chromatography system (ThermoFisher Scientific). Elution was performed over a 180 min 

gradient with flow rate at 225 nL/min. The gradient was from 3% to 7% buffer B over 5 min, then 

7% to 30% over 140 min, then 30% to 60% over 5 min, then 60% to 99% over 2 min, then held 

constant at 99% solvent B for 8 min, and then back to 1% B for an additional 20 min to equilibrate 

the column. Buffer A was water with 0.1% (vol/vol) formic acid, and buffer B was 80% (vol/vol) 

acetonitrile in water with 0.1% (vol/vol) formic acid. Peptides were monitored on an Orbitrap 

Fusion mass spectrometer (ThermoFisher Scientific). The mass spectrometer was set to acquire in 

data dependent mode using the top speed workflow with a cycle time of 3 seconds. Each cycle 

consisted of 1 full scan followed by as many MS/MS (MS2) scans that could fit within the time 

window. The full scan (MS1) was performed with an m/z range of 350-1500 at 120,000 resolution 

(at 200 m/z) with AGC set at 4x105 and maximum injection time 50 ms. The most intense ions 

were selected for higher energy collision-induced dissociation (HCD) at 38% collision energy with 

an isolation of 0.7 m/z, a resolution of 30,000, an AGC setting of 5x104, and a maximum injection 

time of 100 ms. Five of the 50 TMT batches were run on the Orbitrap Fusion mass spectrometer 

using the SPS-MS3 method as previously described [84]. All higher energy collision-induced 

dissociation (HCD) MS/MS spectra were acquired at a resolution of 60,000 (1.6 m/z isolation 

width, 35% collision energy, 5×104 AGC target, 50 ms maximum ion time). Dynamic exclusion 

was set to exclude previously sequenced peaks for 20 seconds within a 10-ppm isolation window. 

For Set2, all fractions were resuspended in an equal volume of loading buffer (0.1% FA, 

0.03% TFA, 1% ACN) and analyzed by liquid chromatography coupled to tandem mass 

spectrometry essentially as described [9], with slight modifications. Peptide eluents were separated 

on a self-packed C18 (1.9 μm, Dr. Maisch, Germany) fused silica column (15 cm × 75 μM internal 

diameter (ID); New Objective, Woburn, MA) by an EASY-nLC 1200 liquid chromatography 

system (ThermoFisher Scientific). Elution was performed over a 45 min gradient with flow rate at 

400 nL/min. The gradient was from 5% to 35% over 37 min, then 35% to 99% over 1 min, then 

held constant at 99% solvent B for 8 min, and then back to 1% B for an additional 7 min to 

equilibrate the column. Buffer A was water with 0.1% (vol/vol) formic acid, and buffer B was 

80% (vol/vol) acetonitrile in water with 0.1% (vol/vol) formic acid. Peptides were monitored on a 

Q-Exactive HFX mass spectrometer (ThermoFisher Scientific). The full scan (MS1) was 

performed with an m/z range of 410-1600 at 120,000 resolution (at 200 m/z) with AGC set at 

3x106 and maximum injection time 50 ms. The top 20 most intense ions were selected for higher 

energy collision-induced dissociation (HCD) at 32% collision energy with an isolation of 0.7 m/z, 

a resolution of 45,000, an AGC setting of 2x105, and a maximum injection time of 96 ms. Dynamic 

exclusion was set to exclude previously sequenced peaks for 20 seconds within a 10-ppm isolation 

window. 

Database Searches and Protein Quantification  
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All RAW files (1,200 RAW files from TMT-MS analysis of ROSMAP Set1 and 672 RAW 

files from TMT-MS of ROSMAP Set2) were analyzed using the Proteome Discoverer suite 

(version 2.4, ThermoFisher Scientific). MS2 spectra were searched against the UniProtKB human 

proteome database containing Swiss-Prot human reference protein sequences (20338 target 

proteins). The Sequest HT search engine was used and parameters were specified as follows: fully 

tryptic specificity, maximum of two missed cleavages, minimum peptide length of 6, fixed 

modifications for TMT tags on lysine residues and peptide N-termini (+229.162932 Da) and 

carbamidomethylation of cysteine residues (+57.02146 Da), variable modifications for oxidation 

of methionine residues (+15.99492 Da) and deamidation of asparagine and glutamine (+0.984 Da), 

precursor mass tolerance of 20 ppm, and a fragment mass tolerance of 0.05 Da for MS2 spectra 

collected in the Orbitrap (0.5 Da for the MS2 from the SPS-MS3 batches). 

Percolator was used to filter peptide spectral matches (PSMs) and peptides to a false 

discovery rate (FDR) of less than 1%. Following spectral assignment, peptides were assembled 

into proteins and were further filtered based on the combined probabilities of their constituent 

peptides to a final FDR of 1%. A multi-consensus was performed to achieve parsimonious protein 

grouping across individual batches and both sets of ROSMAP samples. In cases of redundancy, 

shared peptides were assigned to the protein sequence in adherence with the principles of 

parsimony. As default, the top matching protein or “master protein” is the protein with the largest 

number of unique peptides and with the smallest value in the percent peptide coverage (i.e., the 

longest protein). Reporter ions were quantified from MS2 or MS3 scans using an integration 

tolerance of 20 ppm with the most confident centroid setting. Only unique and razor (i.e., 

parsimonious) peptides were considered for quantification.  

Controlling for Batch-specific Variance Across Proteomics Datasets 

A tunable median polish approach (TAMPOR) was used to remove technical batch 

variance in the proteomic data, as previously described [31, 32]. Following a multi-consensus 

database search and protein quantification across two sets of ROSMAP tissues, batch effects in 

the first set (set1) of ROSMAP samples (50 TMT-10 plex batches) and the second set (set2) of 

ROSMAP samples (14 TMT-16 plex batches) were normalized iteratively in two steps essentially 

as described [32]. After removal of intra-set batch effects in set1 and set2 separately, all samples 

except set-specific GIS samples were processed jointly with TAMPOR into a single reassembled 

consensus sample–protein matrix using the median of within-cohort pathology free control cases 

as the central tendency, enforcing that the population of all log2(ratio) output for control samples 

within the final 610 ROSMAP samples would tend toward 0. Additional details on the data input 

and TAMPOR output can be found on https://www.synapse.org/#!Synapse:syn32280722. 

Regression of Covariates 

The ROSMAP cases were subjected to nonparametric bootstrap regression by subtracting 

the trait of interest (age at death, sex, or PMI) times the median estimated coefficient from 1000 

iterations of fitting for each protein in the log2(abundance) matrix as previously described [32]. 

Ages at death used for regression were uncensored.  

Sample Network Generation with MONET M1 Algorithm 

The three top-performing methods from the DMI DREAM Challenge were compiled in the 

MONET toolbox and released to the public for use 

(https://github.com/BergmannLab/MONET.git) [40]. We selected the M1 method from this 
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toolbox to build a sample-wise network. The M1 method uses the Girvan-Newman modularity 

optimization method to group like features into modules [87]. MONET M1 has expanded on the 

traditional modularity optimization to a multiresolution approach by searching the network at 

multiple topological scales. The authors have added the resistance parameter, �, which averts genes 

from joining modules. If � = 0 the method returns to Newman and Girvan’s original modularity 

optimization; � > 0 reveals network substructure; and � < 0 network superstructure [88]. The 

parameter �, is fit to four user-provided hyperparameters: minimum module size, maximum 

module size, desired average degree, and desired average degree tolerance to produce a network 

described by the parameters.  

After batch-correction and regression as described above, � = 610 cases were split into 

two groups defined by the ROSMAP cognitive diagnosis score: cognitively impaired cases (� =

377, ��
�� ∈ �2,3,4,5�) and non-cognitively impaired/other cases (� = 233, ��
�� ∈ �1,6�). 

An expression data matrix of the cognitively impaired cases � = 377 and � =

7,723 ��
�(������� � !������) was created (proteins with greater 50% missingness in the 377 

cases were removed). The adjacency function in WeiGhted Correlation Network Analysis 

(WGCNA) was used to build the adjacency matrix with parameters: soft threshold power = 8, 

type="signed", corFnc="bicor", and the corOptions parameter set to use pairwise complete 

correlation [89]. The soft threshold power was determined using scale free topology analysis based 

on the following two guidelines: 1) The power in a plot of power (x) vs R² (y) should be where the 

R² has approached an asymptote, usually near or above 0.80, and 2) the mean and median 

connectivity at that power should not be exceedingly high, preferably around 100 or less. The 

power at which these criteria are met is a tradeoff between removing correlations due to chance 

and maintaining as many correlations in the data as possible for the clustering algorithm to 

distinguish modules. As M1 takes an edge list as input, the adjacency upper triangle correlation 

values were used to populate the weights of unique pairwise correlations in the edge list. No 

sparsification of the edge list was applied. 

The hyperparameters were optimized using a grid search by varying minimum module size, 

� ∈  �5, 10, 25, 50�, maximum module size, # ∈  �100, 150, 200, 250, 300, 350, 376�, and 

desired average degree, $ ∈  �25, 50�. The desired average degree tolerance was left at the default 

value of 0.2. The optimal parameter set was defined as the set that minimized the percentage of 

cases not assigned to a module and the maximum module size (Fig. S1, Table S1). The final 

parameters selected were � = 5, # = 200, $ = 50, which built a network with 3 modules and 

5.31% (� = 20) cases not assigned to a module. This final network was used in to define the three 

subtypes of AD observed in the ROSMAP cohort.  

Using the expression data matrix and the modules assignment list, module eigenvectors 

were defined, using the moduleEigengenes function in WGCNA. The eigenvector is the module’s 

first principal component and explains covariance of all cases within each module [citation]. Using 

the signedKME function in WGCNA, a table of bicor correlations between each case and each 

module eigenvector was obtained; this module membership measure is defined as kME. Additional 

details of the data input and MONET M1 output can be found on 

https://www.synapse.org/#!Synapse:syn32567811. 

MONET M1 Bootstrap Validation 

To validate the robustness of the clustering, we performed 100 rounds of bootstrapped 

reclustering, by withhold 20% of the samples and employing the MONET M1 method on the 

subset (Fig. S2, Table S2). Due to the decrease in sample number, the hyperparameters were 
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adjusted to � = 5, # = 160, $ = 50, where the maximum module size was decreased by 20%. If 

there are truly unique molecular subtypes, then repeated clustering should produce similar sets of 

clustered samples. To assess the probability of sample pairs clustering together, we calculated the 

rate at which each pair is assigned to them same cluster (termed the paired percentage). The 

average paired percentage per cluster and variance of the percentage were tracked for the 100 

bootstrap steps to ensure the bootstrapping was well converged. A heatmap of the paired 

percentage shows that the clustering is stable and repeated rounds of MONET M1 reproduces the 

three observed subtypes. A hypergeometric Fisher’s exact test (FET) was performed on each of 

the bootstrap steps against the original MONET M1 cluster assignments and showed class-specific 

overlap. Along with the rate that sample pairs clustered together, the reproducibility was also 

assessed using the module preservation function in WGCNA. Zsummary composite preservation 

scores were obtained using the MONET M1 network (n=377) as the template versus each bootstrap 

step, with 100 permutations. Random seed was set to 1 for reproducibility, and the quickCor option 

was set to 0. The summary z scores were then averaged across the 100 bootstrap steps and the 

standard deviation was calculated. All three subtypes were preserved across the 100 bootstrap 

replicates (above the blue line q=0.05).  

Uniform Manifold Approximation and Projection (UMAP) Dimension Reduction 

Supervised dimensionality reduction was performed using UMAP (umap-learn v0.5.2) in 

Python (v3.9) with the following settings: n_neighbors = 10, n_components = 2, metric = 

Euclidean, and min_dist=1. A supervised UMAP embedding was generated for the 357 cases in 

the MONET M1 classes using the n=7,723 log2(protein abundance) as features and the three 

MONET M1 classes as target labels. The three resultant clusters mirror those of MONET M1 

network analysis with only 1 case out of the 357 assigned to a cluster different from its original 

class.  

Biological Organization of Protein Expression Matrix 

To highlight the biological trends between the three clusters produced by MONET M1, the 

proteins used as features in the network (� = 7,723) were grouped into the protein modules 

generated in our deepest AD consensus network [32]. For each protein module, proteins were 

sorted by kME. Protein modules were then organized into relatedness order determined by 

previous WGCNA analysis. This highlighted the systems-based divergences and biological trends 

between MONET M1 classes allowing us to character the classes by their proteomic expression 

profiles. For visualization, samples within the 3 MONET M1 classes were also sorted by their 

class specific kME (Table S2). Therefore, the first sample is the “eigensample” for the MONET 

M1 class. 

ROC Analyses  

For each protein, a support vector machine classifier was used to classify individuals by 

class using one-vs-rest strategy. Due to the multi-class nature of the model, each class identifier 

was binarized prior to training. To choose the model for which predictions are made, the one-vs-

rest heuristically chooses the binary classifier with the highest confidence. After a model was 

created, the receiver operating characteristic (ROC) metric was used to evaluate each classifier. 

The area under the curve (AUC) was calculated for each peptide in each classifier. The peptides 

were then sorted based on the AUC values and the top ten were plotted for each class. 
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Protein Correlation to Traits 

To assess which proteins most strongly correlated to clinicopathological traits, the 

WGCNA R netScreen function was used. All 7,723 proteins were correlated to the provided 

ROSMAP across the 357 samples (Table S8). The top 10 positive and top 10 negatively correlated 

proteins were manually filtered from the analysis. The z-score for these proteins were plotted for 

each of the three Classes and the NCI group to visualize the expression differences of these proteins 

across the unique subtypes. 

Other Statistics 

Statistical analyses were performed in Python v3.7 and visualized using matplotlib package 

v3.5.1. Correlations were performed using the biweight midcorrelation function as implemented 

in the WGCNA R package (Tables S4 and S8). Boxplots represent the median, 25th, and 75th 

percentile extrema, the edges of a box represent the interquartile of the data within a group. 

Whiskers are drawn at the maximum and minimum value of the data set. Points greater than 1.5 

times the interquartile range are classified as outliers. Comparisons between two groups were 

performed by t test. Comparisons among three or more groups were performed with one-way 

ANOVA with Tukey or Bonferroni pairwise comparison of significance (Tables S3, S5, S6, S9). 

P values were adjusted for multiple comparisons by false discovery rate (FDR) correction where 

indicated. 
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Figure 5
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Figure 6
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