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Abstract

The hallmark amyloid-f and tau deposition of Alzheimer’s disease (AD) represents only a fraction
of its diverse pathophysiology. Molecular subtyping using large-scale -omic strategies can help
resolve this biological heterogeneity. Using quantitative mass spectrometry, we measured ~8,000
proteins across >600 dorsolateral prefrontal cortex tissues from Religious Orders Study and Rush
Memory and Aging Project participants with clinical diagnoses of no cognitive impairment, mild
cognitive impairment (MCI), and AD dementia. Unbiased classification of MCI and AD cases
based on individual proteomic profiles resolved three classes with expression differences across
numerous cell types and biological ontologies. Two classes displayed molecular signatures
atypical of those previously observed in AD neurodegeneration, such as elevated synaptic and
decreased inflammatory markers. In one class, these atypical proteomic features were associated
with clinical and pathological hallmarks of cognitive resilience. These results promise to better
define disease heterogeneity within AD and meaningfully impact its diagnostic and therapeutic
precision.
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Introduction

The pathological hallmarks of Alzheimer’s disease (AD), the most common cause of
dementia in the elderly [1], include extracellular amyloid-B (AP) deposits and intracellular tau
neurofibrillary tangles (NFTs) [2, 3]. The long-standing amyloid cascade hypothesis casts AP as
an early molecular driver of disease, prompting NFT formation, neurodegeneration, and ultimately
cognitive decline [4, 5]. While this linear series of pathological events may hold true for rare
familial forms of early-onset AD [6], it is now well-recognized that AP and tau represent only a
fraction of the complex and heterogeneous pathophysiology linked to sporadic late onset AD
(LOAD) [7]. Several studies have confirmed that those with AD dementia commonly harbor brain
pathologies beyond A plaques and NFTs, including cerebrovascular disease, neocortical Lewy
body inclusions, and TAR DNA-binding protein 43 (TDP-43) aggregates [8-12]. Yet, combined
with amyloid and tau, these co-pathologies still account for less than half of the variance in
cognitive trajectory [13]. Accordingly, genome wide association studies (GWAS) have linked
LOAD pathogenesis to a variety of biological mechanisms beyond aberrant protein accumulation
and neuronal death, such as glial-mediated inflammation and endothelial integrity [14-21]. These
findings highlight the vast pathophysiological heterogeneity underlying cognitive impairment in
the elderly.

Molecular subtyping using large-scale -omic strategies promises to resolve this complex
biological heterogeneity. Recent genomic clustering of AD based on risk-associated SNP burden
revealed disease subgroups linked to distinct biological mechanisms [22]. Subsequent
transcriptome-wide studies of the AD brain have identified molecular subtypes corresponding to
different combinations of multiple dysregulated pathways [23, 24], including neuroinflammation,
synaptic signaling, immune activity, mitochondria organization, and myelination [23]. These
studies highlight the utility of large “-omic” datasets in the molecular reclassification of AD and
related dementias. Further advancements in such subtyping approaches promise to not only impact
diagnostic guidelines, but also enhance the precision of clinical trial recruitment, prognostication,
and therapeutic targeting.

To date, large-scale molecular subtyping of AD has primarily focused on genomic and
transcriptomic profiles, while protein-based classification remains in its infancy. Yet, marked
spatial, temporal, and quantitative differences between mRNA and protein expression make
proteomic subtyping a potential source of unique biological insights [25, 26]. Furthermore,
compared to RNA differences, protein changes associate more strongly with AD clinical and
pathological phenotypes, consistent with their being more proximate mediators of disease
manifestations [27-29]. Using unbiased co-expression network analysis, we have demonstrated
that the cortical brain regions of those with pathologically defined early- and late-stage LOAD
feature a wide range of altered protein systems not observed in the transcriptome [30-33]. These
protein alterations correlate strongly with clinical symptoms, biofluid markers, and pathological
traits [30-33]. However, it remains unclear whether these protein levels drive distinct molecular
subtypes of AD.

To this end, we performed an unbiased proteomic subtyping analysis of mild cognitive
impairment (MCI) and AD brain tissues. All samples were derived from the Religious Orders
Study or Rush Memory and Aging Project (ROSMAP) longitudinal cohorts, which feature
community-based recruitment strategies designed to ensure heterogenous, ‘real-world”
representations of cognitive impairment within the general population [34-36]. Using tandem mass
tag mass spectrometry (TMT-MS), we quantified nearly 8,000 proteins across 610 brain tissues
from individuals with clinical diagnoses of no cognitive impairment (NCI), MCI, and AD.
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Unbiased clustering of the nearly 400 MCI and AD tissues by individual proteomic profiles
resolved three major classes of cognitive impairment. Here, we thoroughly examine how these
classes differ across cell types and biological ontologies. We highlight how two of the three classes
harbor proteomic features atypical of molecular trends previously observed in AD
neurodegeneration. We also explore how these divergent molecular signatures impact genetic risk
and clinicopathologic phenotypes. In sum, our results underscore the biological heterogeneity
present among elderly individuals with cognitive impairment and how this translates into
differences in cognitive resilience, pathological burden, and genetic risk. Further investigation of
these distinct disease subtypes promises to meaningfully impact diagnostic, prognostic, and
therapeutic precision in AD.

Results

Unbiased classification of the human brain proteome yields three distinct classes of
cognitively impaired individuals

The main objective of this study was to classify the brains of those with MCI and AD
dementia based on individual proteomic profiles and examine the molecular, genetic, and
clinicopathologic features of the resultant subtypes (Fig. 1). Using multiplex tandem mass tag
mass spectrometry (TMT-MS), we analyzed a total of 610 postmortem dorsolateral prefrontal
cortex (DLPFC) tissues from 604 unique individuals enrolled in the Religious Orders Study or
Rush Memory and Aging Project (ROSMAP) (Fig. 1). These cohorts recruit older individuals
without known dementia from United States religious orders, lay retirement centers, senior and
subsidized housing communities, and church groups. These participants are then followed
longitudinally with cognitive batteries, biospecimen collection, and finally brain autopsy [34-36].
The community-based procedures of ROSMAP were designed to ensure a heterogenous, “real-
world” representation of the dementia population found outside of tertiary care centers.
Accordingly, clinical diagnoses of NCI, MCI, AD dementia, or other dementia were determined
by study experts based principally on clinical history and detailed neuropsychological evaluation
[37]. These study procedures have generated cohorts with well-described clinical and pathological
heterogeneity, including among participants who ultimately meet neuropathological criteria for
AD [12, 35]. To preserve this authentic heterogeneity, we included cases based principally on their
clinical consensus cognitive diagnosis (cogdx), a final clinical diagnosis imparted at death by study
physicians blinded to neuropathological results. All clinical diagnoses of AD met criteria for
possible or probable AD based on National Institute of Neurological and Communicative
Disorders and Stroke and Alzheimer’s Disease and Related Disorders Association (NINCDS-
ADRDA) guidelines [37, 38].

TMT-MS quantified 7,814 proteins across 610 ROSMAP tissues with cogdx classifiers of
NCI, MCI, or AD dementia. Outlier removal resulted in 597 tissues for subsequent analysis,
including 220 NCI, 173 MCI, and 204 AD cases. After adjustments for age, sex, post-mortem
interval (PMI), and batch, we clustered the 377 MCI and AD cases into proteomic classes using
the statistical algorithm MONET M1 [39]. MONET MI offers an innovative graph theory
approach to module clustering, distinguishing it from more traditional hierarchical algorithms [39,
40]. The parameters of MONET M1 were optimized using a grid search (Fig. S1, Table S1) to
minimize the percentage of cases not assigned to a unique class. Ultimately, 95% (n=357) of the
377 cases were assigned to one of three classes, termed A, B, and C (Fig. 1, Table S2). Class A
(n=128) comprised 80 MCI (62%) and 48 AD (38%) cases. Class B (n=71) harbored 27 MCI
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(38%) and 44 AD (62%) cases. Finally, Class C (n=158), the largest group, contained 56 MCI
(35%) and 102 AD (65%) cases. Given each class comprised a mixture of both MCI and AD cases,
we immediately concluded symptom severity was not the only driver of class structure. There were
no significant differences in the average age and sex of each class (Table S3).

To assess reproducibility of these classes, we employed a bootstrap approach to repeatedly
cluster the samples an additional 100 times (Fig. S2A-B). On each of these iterations, we applied
MONET M1 to a randomly selected 80% (n~300) of MCI and AD cases. The resultant clusters
generated in each bootstrap iteration were analogous to the original clustering as assessed by strong
levels of overlapping class-specific samples (Fig. S2C) and highly preserved protein signatures
(Fig. S2D). Thus, our unbiased classification was highly reproducible, supporting the robustness
of MONET M1 in defining consistent patterns of protein expression across cases.

We then independently validated these proteomic classes by applying a second high-
performance clustering algorithm to our ROSMAP dataset termed Uniform Manifold
Approximation and Projection (UMAP). In recent studies, UMAP has proven capable of
effectively reinforcing sample heterogeneity within bulk -omic datasets with clustering structures
that maintain biological and clinical meaning [41]. Furthermore, its nonlinear dimension reduction
technique has demonstrated meaningful clustering advantages when visualizing high dimensional
data compared to traditional linear approaches, such as principal component analysis (PCA) and
multidimensional scaling (MDS) [41, 42]. We employed a supervised approach to our UMAP
analysis, specifying an output of three distinct clusters. This independent clustering analysis
generated three proteomic groups nearly identical to those formed by MONET M1, reinforcing the
structure of the original classes (Fig. S3). Only one of the 357 cases clustered differently between
the algorithms, segregating into Class B with MONET M1 and Class C with UMAP. These results
further supported the validity of our three proteomic classes of cognitive impairment.

Classes differ across a diverse range of disease-associated biological ontologies

We previously showed that the AD cortex features a network of highly reproducible groups
or “modules” of co-expressed proteins that reflect disease-associated alterations in a wide range
of cell types and molecular functions [30-33]. These network analyses have established a
biological framework for the AD brain proteome and its diverse pathophysiology. To provide such
biological context to the three classes, we organized their proteomic profiles by the 44 co-
expression modules of our deepest AD consensus network, derived from hundreds of tissues in the
early and late stages of disease [32]. Approximately 68% of the nearly 8,000 proteins identified
among our ROSMAP cases (n=5290) mapped to one of these 44 modules. This mirrored previous
analyses, which have shown that ~70% of proteins in any given dataset segregate into modules
[30-33, 43-48]. The resultant heat map highlights module expression across the three proteomic
classes (Fig. 2A). Many modules with distinct alterations across classes demonstrated strong
associations to specific molecular functions (Fig. 2A), cell types (Fig. 2B), and clinicopathological
traits (Fig. 2B-C). See Table S4 for module correlations to all traits provided for our ROSMAP
cohort. Overall, these results showcased differences between classes across a diverse range of
disease-relevant biological systems.

Module abundance levels (z-scores) across all cases revealed Class A proteomic signatures
most closely matched those of cognitively intact (NCI) individuals, distinguishing this class as the
most “control-like” of the three (Fig. 3A-B, Table S5). Compared to B and C, Class A featured
significantly elevated levels of modules involved in protein synthesis and transport, including M6
(ribosome), M9 (Golgi transport), and M29 (glycosylation / endoplasmic reticulum) (Fig. 2A and
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3A). Modules linked to RAS signaling (M10) and the post-synaptic density (M5, M22) were also
significantly increased in Class A. On the other hand, several modules featured unique decreases
in Class A relative to B and C, including those linked to mitogen-activated protein kinase (MAPK)
and other kinase-associated pathways (M7, M15) (Fig. 2A and 3B).

Class C featured proteomic changes most consistent with the neurodegenerative trends we
have previously observed in pathologically defined AD [31, 32, 45]. Compared to A and B, Class
C demonstrated significantly elevated levels of numerous glial-mediated modules linked to
inflammation (M26), immune function (M3, M21), and the extracellular matrix (M11, M42) (Fig.
2A and 3C). Class C was also the only class that demonstrated significant decreases in M1, a large
module linked to synaptic transmission that is consistently depleted in the AD brain (Fig. 3D) [30-
33, 45]. In contrast, Class B was distinguished from A and C by significant elevations in M1 and
several other neuronal modules, including M4 (synapse / GTPase activity), M36 (neurotransmitter
transport), and M23 (GTPase activity) (Fig. 2A and 3D). These modules were largely associated
with the pre-synaptic region and its associated functions (Fig. 3D). Meanwhile, post-synaptic
modules (M5, M22) were significantly decreased in Classes B and C and remained relatively
preserved in Class A. Collectively, these results revealed that in this heterogenous, clinically
diagnosed cohort, the proteomic profiles of two-thirds of cognitively impaired cases diverged in
key respects from the typical degenerative proteomic changes we have observed previously in
pathologically defined tissues.

Individual protein signatures distinguish classes with high sensitivity and specificity

To identify individual proteins that best discriminate the three classes, we first performed
pairwise differential expression analyses. Figure 4 depicts these volcano plots with individual
proteins colored by module membership. As expected, Classes A and C diverged the most with
3,251 significantly altered proteins (p<0.05) between them (Fig. 4A, Table S6). The “control-like”
Class A featured higher levels of several M5 post-synaptic markers (VGF, SYT12, NPTX2), M10
RAS signaling molecules (RASGRF1, ARFGAP2), and M6 mitochondrial ribosome proteins
(DAP3, MRPS7, MRPS9, MRPS33, MRPS34). On the other hand, Class C featured increases in
numerous proteins from kinase-oriented modules (M7, M15), including MAP kinases (MAPKI,
MAP2K6, MAPK3), ribosomal kinases (RPS6KAS), and diacylglycerol kinases (DGKG) (Fig.
4A). Large-fold increases in proteins linked to sugar metabolism (M25) and the extracellular
matrix (M42) also distinguished Class C from A. These included several highly conserved M42
hubs (SMOC1, MDK, NTN1) repeatedly linked to amyloid burden and APOE-associated risk in
prior studies [31, 32]. Meanwhile, Class B pairwise analyses (Fig. 4B-C) underscored its unique
elevations in neuronal proteins. Several M1 and M4 members (SYN2, NPTXR, SYT17, SYNPR)
were significantly increased in Class B compared to A and C.

A Venn diagram of significantly altered markers (p<0.001) across pairwise class
comparisons revealed 66 proteins with significant changes across all three comparisons (Fig. 4D,
Table S7). These 66 markers included VGF nerve growth factor inducible (VGF), whose levels
dropped significantly from Class A to B and then again from B to C (Fig. 4E). This M5 neuronal
protein is a well-described neuroprotective biomarker with decreased expression in AD brain
tissues [49, 50]. Evidence suggests homeostatic VGF signaling promotes cognitive stability,
neurogenesis, and synaptic plasticity [49-54]. Thus, its abundance trends in the current study
suggested declining neuropreservation from Class A to B to C. Neuronal pentraxin 2 (NPTX2),
another contributor to synaptic plasticity with diminished levels in the AD brain [55-57], was also
among the 66 markers significantly altered between all three classes. Like VGF, NPTX2 featured
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steep declines from Classes A to B and B to C (Fig. 4E). Trends in these well-described
neuroprotective markers underscored the robust proteomic hallmarks of neuropreservation in Class
A. In contrast, there were many proteins among these 66 targets that had no known links to AD or
neurodegeneration, such as adenosylmethionine decarboxylase 1 (AMD1) which significantly
increased from Class A to B to C (Fig. 4E).

Our Venn diagram also revealed hundreds of markers significantly altered (p<0.001) across
two of the three pairwise class comparisons (Fig. 4D, Table S7). We referred to these proteins as
“classifiers”, as each was uniquely altered in one class relative to the other two. Class A featured
554 classifiers, including platelet activating factor acetylhydrolase 1b catalytic subunit 3
(PAFAH1B3) which displayed markedly decreased levels in Class A relative to B and C (Fig. 4F).
Decreases in PAFAH1B3 and other members of the kinase associated M7 and M15 comprised
nearly 30% of the Class A classifiers. The remaining signatures prominently reflected the
increased ribosome (M6), Golgi (M9), and Ras signaling (M10) molecules. Class B was
distinguished by 342 classifiers that largely represented increases in several pre-synaptic modules
(M1, M4, M23), such as synapsin (SYN1) (Fig. 4G). This neuronal protein associates closely with
synaptic vesicles and plays a critical role in synaptogenesis and axon development [58]. Finally,
Class C classifiers comprised 445 proteins that strongly reflected increases in proteins linked to
myelin (M3) and the extracellular matrix (M11), such as osteoclast stimulating factor 1 (OSTF1)
(Fig. 4H). Decreases in pre- and post-synaptic proteins (M1, M5) were also prominently featured
among these Class C signatures.

We assessed the strength of these classifiers by plotting the individual receiver operating
characteristic (ROC) curve for each signature in relationship to its associated class. Each curve
represented a graphical plot of the true positive rate (sensitivity) against the false positive rate (1-
specificity) at various threshold settings. The resultant area under the curve (AUC), a measure of
overall classifier performance between values 0 and 1, was then used to identify the strongest
signatures for each class (Fig. 41-K, Table S7). Kinase-associated proteins (e.g., PAFAH1B3,
PALM3, DKK3) were among those most sensitive and specific for Class A (Fig. 4I), while Class
B was best distinguished by synaptic classifiers (e.g., SYN1, SYN2, GPRIN1, NPTXR) (Fig. 4)).
Proteins with the highest AUCs for Class C reflected a more diverse set of modules, underscoring
the diversity of biological dysregulation in this group. Yet, these Class C signatures still
highlighted its prominent synaptic and myelin dysfunction (e.g., CDHS8, TLN2, OSTF1, GABBRI,
HNRNPF) (Fig. 4K). Overall, we concluded that each class featured unique protein signatures
capable of distinguishing its members with high sensitivity and specificity.

Classes demonstrate distinct clinicopathological phenotypes

Given their robust differences in modules linked to clinicopathological traits, we
hypothesized our classes would exhibit distinct clinical and pathological phenotypes. To
characterize these phenotypic differences, we compared available ROSMAP disease traits directly
across classes (Table S3). As expected, all three classes demonstrated significant cognitive
impairment compared to NCI (Fig. SA). Yet, Class A featured the most preserved cognition among
impaired individuals. Class A also displayed the most positive cognitive slopes, indicating a slower
rate of decline in these cases (Fig. SB). Accordingly, individual proteins highly correlated to
cognitive measures demonstrated starkly different levels in Class A compared to B and C (Fig.
SA-B). Post-synaptic markers of M5 (NRN1, NPTX2, OLFM1) were among those most strongly
correlated to cognition and displayed precipitous declines from Class A to B and C. Several kinase-
associated markers of M7 and M15 (MAP2K6, RPS6KA2, PAFAH1B3, PALM3, TMEM30A)
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also correlated strongly to cognitive measures but in the opposite direction, with expression levels
that sharply increased from Class A to B and C. Table S8 provides a complete list of proteins
significantly correlated to each trait provided for our ROSMAP cohort.

ROSMAP offers detailed pathological scoring of brain tissues using a variety of semi-
quantitative scales [36]. Fig. SC-G showcases the levels of several pathologies across classes,
including amyloid plaques, NFTs, cerebral amyloid angiopathy, TDP-43, and Lewy body
inclusions. Global pathology scores were also plotted across classes in Fig. SH. As expected, all
cognitively impaired cases maintained higher levels of neuropathology compared to NCI. Yet,
Class A featured the smallest neuropathological burden of the three subtypes. Its levels of amyloid,
tau, and several other pathological features were notably decreased compared to Classes B and C.
This was reflected in the global pathology scores of Class A, which were the lowest of all
cognitively impaired cases. In contrast, Class C featured the highest burden of global pathology
among the three subtypes, surpassing A and B in average levels of NFTs, Lewy body inclusions,
and CAA. Proteins highly correlated to neuropathological measures were generally most altered
in Class C compared to all other groups (Fig. SC-H, Table S8). Post-synaptic (M5) and matrisome
(M42) markers were most consistently reflected among pathology-associated markers.
Accordingly, global pathology trends were most strongly correlated to post-synaptic (e.g., NRNI,
NPTX2, RPH3A, VGF) and matrisome markers (e.g., SPOCK3, SMOCI1, MDK, NTNI1, FLTTI)
(Fig. SH).

Overall, these findings highlighted distinct clinicopathological phenotypes across our
proteomic classes. Most notably, these results highlighted greater levels of cognitive stability in
Class A, consistent with the robust neuroprotective trends in its proteomic profile. Meanwhile,
Class C demonstrated the highest levels of neuropathology, aligning with its prominent
neurodegenerative proteomic signatures.

Class C proteomic signatures strongly mirror those of high-risk ApoE4 carriers

Polymorphic alleles in the APOE gene are the strongest known genetic determinants of
LOAD risk [59-61]. Individuals carrying the E4 allele are at increased risk for AD development
compared to those with the more common E3 allele. Meanwhile, a copy of the E2 allele is
neuroprotective and decreases the risk of LOAD. We have previously demonstrated that APOE
genotype and its associated risk strongly correlate with a variety of protein modules in the human
AD brain, spanning metabolism, inflammation, synaptic activity, and other molecular functions
[43]. We have also shown that the expression patterns of certain modules, such as the matrisome-
associated M42, are genetically regulated by the APOE locus [32]. Therefore, we hypothesized
that our proteomic classes would differ in levels of APOE-related risk and associated protein
signatures.

Analysis of genotype composition across classes revealed a mixture of high-risk (E3/4,
E4/4), risk-neutral (E3/3), and low-risk (E2/2, E2/3) genotypes in each class. E3/3 was the most
abundant genotype present throughout the dataset, comprising 60-70% of cases in each class (Fig.
6A). High-risk E4 carriers (E3/4, E4/4) were second most abundant, though less evenly distributed.
Class C featured over twice as many E4 carriers (n=46, 29%) as Classes A (n=21, 16%) and B
(n=17, 24%). Low-risk E2 carriers (E2/2, E2/3) were notably less abundant than high-risk cases,
accounting for only 12% (n=16) of Class A, 10% (n=8) of Class B, and 6% (n=10) of Class C.
Finally, E2/4 cases were rare and comprised no more than 3% of any class. A comparison of overall
APOE-associated risk revealed all three classes featured higher risk levels compared to NCI cases.
Yet, Class C displayed significantly higher risk compared to Classes A and B (Fig. 6B).


https://doi.org/10.1101/2022.07.22.501017
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.22.501017; this version posted July 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Collectively, these results suggested that class structure was not solely determined by APOE
genotype. Yet, the three classes did meaningfully differ in their proportions of high-risk E4 carriers
and average levels of genetic risk.

We then sought to compare risk-associated protein signatures across classes. First, we
identified those protein alterations most strongly linked to APOE carrier status, regardless of class
(Table S9). Fig. 6C showcases proteins significantly altered in E2 carriers (E2/2, E2/3) versus
other cognitively impaired cases. E2 carriers demonstrated stark decreases in kinase related (M7,
M15) proteins and increases in post-synaptic (M5), Golgi (M9), and Ras signaling (M10) markers.
In contrast, E4 carriers (E3/4, E4/4) featured decreases in post-synaptic (M5) and Ras signaling
(M10) proteins when compared to other cognitively impaired cases (Fig. 6D), as well as significant
increases in proteins linked to sugar metabolism (M25), immune function (M26), and the
matrisome (M42). As expected, hub proteins of M42 (SMOC1, MDK, NTN1) were among those
markers most elevated in E4 carriers, consistent with our previous findings that this module is
under control of the APOE locus [32]. Accordingly, LDL receptor related protein 1 (LRP1),
another M42 member and known APOE interactor [62, 63], was also significantly elevated in E4
carriers.

To examine these risk-associated protein signatures across classes, we then correlated the
proteomic profiles of E2 and E4 carriers with those of each class. E2-associated module expression
was positively correlated to module expression in both Classes A and B (Fig. 6E, Table S10).
However, only its correlation with Class B reached statistical significance (bicor=0.27, p=0.038).
E2 module expression also significantly correlated to that of Class C, but in the negative direction
(bicor=-0.47, p=0.0013). In stark contrast, E4 module expression featured remarkably strong
negative correlations to Class A (bicor=-0.85, p=1.6E-13) and positive correlations to Class C
module expression (bicor=0.89, p=5.1E-16) (Fig. 6E). E4 expression demonstrated no significant
correlation to that of Class B (bicor=0.20, p=0.20). To ensure that these results were not driven by
a minority of E2 or E4 carriers in each class, we repeated all six correlations using the module
expression of only E3/3 cases in each class (Fig. 6F, Table S10). These results were nearly
identical to those of the initial correlations. Notably, the strong positive association between E4
and Class C module expression was maintained (bicor=0.84, p=8.7E-13). Thus, we concluded that
irrespective of their individual genotypes, Class C cases harbored proteomic profiles highly similar
to those of high-risk E4 carriers. This supported the conclusion that with its heightened
inflammatory signatures, steep cognitive slopes, and exceptionally elevated neuropathological
burden, Class C reflected a high-risk state of cognitive impairment.

Discussion

The diagnosis, monitoring, and treatment of AD are currently limited by biomarker tools
that fail to capture its vast pathophysiological heterogeneity. Large-scale molecular subtyping
promises to resolve this heterogeneity and enhance diagnostic and therapeutic precision in AD. To
this end, we used an unbiased proteomic approach to subtype nearly 400 ROSMAP brain tissues
from clinically diagnosed MCI and AD cases. We resolved three classes among these cognitively
impaired individuals, each driven by proteomic changes across a variety of cell types and
biological ontologies. All classes featured a mix of mildly impaired and demented individuals,
indicating clusters driven by more than clinical severity at death. Accordingly, further examination
of these classes highlighted distinct genetic, clinical, and pathological phenotypes.

Class C featured the most neurodegenerative proteomic profile of the three groups.
Synaptic loss and heightened glial activation were among its most distinct proteomic signatures.
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Glial-enriched modules associated with myelin (M3), immune function (M21), complement
pathways (M26), and the matrisome (M42, M11) were distinctly elevated in Class C compared to
A and B. These glial signatures strongly correlated to the exceptionally high neuropathological
burden of Class C. Hub proteins of M42 and M11 were among those most strongly correlated to
neuropathology. We and others have previously linked many of these matrisome markers (e.g.,
SMOCI1, NTN1, MDK) to AP accumulation [31-33, 64]. Yet, the current study also showcased
their strong associations to various non-amyloid pathologies, including NFT, CAA, and TDP-43
deposition. Accordingly, Class C demonstrated distinctly elevated levels of mixed global
neuropathology, extending beyond amyloid and tau accumulation. This high pathological burden
aligned with the overall aggressive phenotype of Class C, which also featured steep cognitive
slopes and elevated levels of genetic risk. In fact, our results suggested that a Class C proteomic
profile was nearly equivalent to that of a high-risk E4 carrier.

In contrast, Class A featured the most neurologically preserved proteomic profile, closely
mirroring NCI cases in synaptic, metabolic, and inflammatory signatures. Class A was best
distinguished from B and C by decreases in kinase-associated modules (M7, M15) and increases
in RAS signaling proteins (M10). RAS signaling molecules are known to regulate various aspects
of the MAP kinase (MAPK) pathway [65-67], indicating biologically meaningful links between
these Class A signatures. The proteomic hallmarks of Class A correlated strongly to cognitive
trajectory. Of all 44 modules, M7 demonstrated the most robust correlations to cognitive slope,
with lower protein levels indicating increased cognitive stability. Thus, the cognitive slope of Class
A was significantly more stable compared to Classes B and C. Class A, while demonstrating higher
amyloid and tau deposition relative to NCI, also displayed the smallest burden of global
neuropathology among those with cognitive impairment. In addition, its average APOE risk was
significantly lower than that of Classes B and C, and its protein expression strongly anti-correlated
to that of high-risk E4 carriers. Collectively, these findings showcased the milder, less aggressive
disease phenotype of Class A. Accordingly, its most highly sensitive and specific classifiers
included various proteins linked to neurologic resilience, such as Ras protein specific guanine
nucleotide releasing factor 1 (RASGRF1), an important regulator of neural plasticity with links to
hippocampus-dependent memory [68-73]. Also among Class A classifiers was neuritin (NRN1),
an M5 synaptic protein that has strongly associated with cognitive resilience in prior proteomic
studies [74] and has known roles in synaptic maturation and stability [75-77].

Class B displayed a proteomic profile largely intermediate to the extremes of Classes A
and C. Class B demonstrated clear degenerative changes relative to Class A, including increases
in kinase modules (M7, M15) and decreases in RAS signaling proteins (M10). Yet, Class B lacked
many of the hallmarks of glial activation observed in Class C. The expression of known
neuroprotective markers underscored Class B as an intermediate state. Levels of VGF and NPTX2,
neuroprotective markers that typically decrease in the degenerating brain [49-57], were highest in
Class A and lowest in Class C, leaving B in between. However, the proteomic profile of Class B
was not entirely transitional in nature. Class B was distinguished by its markedly elevated levels
of select neuronal modules (M1, M4, M23, M36) compared to both Classes A and C. These Class
B neuronal signatures strongly reflected pre-synaptic functions, including neurotransmitter
transport, GTPase activity, and signal transmission. These neuronal modules did not correlate
strongly to any genetic, clinical, or pathological traits. Therefore, it is unclear what function these
synaptic signatures serve for Class B and whether they comprise a hallmark of neuronal resilience
or dysfunction. In addition, what impact these heightened levels of pre-synaptic proteins have on
the marked decreases in post-synaptic modules (M5, M22) also observed in Class B is unclear.
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Overall, these results revealed only a third of cognitively impaired individuals with clinical
MCI and AD harbor characteristic proteomic signatures of neurodegeneration. The remaining
cases displayed atypical molecular signatures, which in some cases were strongly correlated to
cognitive resilience. These results align to some extent with recent transcriptomic analyses, which
also identified “atypical” RNA profiles in over half of MCI and AD brains [23, 24]. However,
several key protein modules differentially expressed across classes are not observed in the AD
transcriptomic network [32]. One example is M7, a module strongly linked to cognitive trajectory
and whose hubs are strong Class A classifiers. Despite these robust disease associations, this
module is not preserved in the AD network transcriptome [32, 33, 45]. Another such module not
reflected in the AD transcriptomic network is M42 [32], which demonstrated remarkably strong
neuropathologic associations and comprises hubs sensitive and specific for Class C.

Genetic risk did not exclusively dictate proteomic classification, as cases with low- and
high-risk APOE genotypes were scattered throughout all classes. The proteomic profile of Class
C strongly mirrored that of E4 carriers, but this robust association persisted regardless of whether
individuals in Class C carried an E4 allele. The strong anti-correlations observed between Class A
and E4 module expression were also independent of individual Class A genotypes. Meanwhile,
Class B module expression was not correlated at all to that of E4 carriers and only weakly to that
of E2 carriers. Of note, it is possible that given our generally low numbers of E2 carriers among
cognitively impaired cases (n=34), we were simply underpowered to detect more robust
correlations to low-risk protein signatures. This would explain why E2 proteomic signatures
mirrored several trends observed in Class A (e.g., elevated RAS signaling and post-synaptic
proteins) but the two failed to demonstrate statistically significant correlations.

Other limitations of the current study included a lack of racial diversity among analyzed
cases. Using a community-based, clinically diagnosed cohort ensured clinical and pathological
heterogeneity. Yet, our analyses were limited largely to non-Hispanic white individuals. Thus, it
is unclear if the same classes would be detected in a more racially diverse analysis. Growing
evidence indicates that cerebrospinal fluid (CSF) tau and other molecular markers of AD require
adjustments for race [78, 79], suggesting this variable could significantly impact
pathophysiological classification of disease. In addition, because we regressed for age and sex
prior to clustering, we have a limited understanding of how these variables might also influence
subtyping results. Thus, it will be important for future investigations to examine the effects of these
demographic factors on proteomic clustering.

Additional studies examining the representation of these brain-derived classes in the CSF
and plasma proteomes will also be critical to clinical translation. Recent studies integrating the AD
brain and biofluid proteomes have revealed that many key disease-associated brain modules are
highly represented in CSF [30, 31]. In fact, we have shown that alterations in the AD CSF proteome
reflect a diverse range of brain-based pathophysiology, including synaptic, vascular,
inflammatory, and metabolic dysfunction [30]. Thus, the AD CSF proteome promises to mirror
the brain with distinct classes featuring unique protein signatures and clinicopathological
phenotypes. A recent subtyping analysis of AD CSF based on the levels of ~700 proteins identified
subtypes of disease with distinct molecular signatures [80]. Yet, larger-scale integration studies of
the brain and CSF proteomes are required to identify biofluid subtypes that best reflect cortical
hallmarks of cognitive resilience and global pathology. Such efforts to refine classes with close
links to brain-based pathophysiology will be key to meaningfully advancing diagnostic and
therapeutic precision in AD.
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Figure Legends

Figure 1. Study Approach. This study classified the brain-derived proteomic profiles of
cognitively impaired individuals and characterized these distinct classes using a systems-based
biological framework. We first used TMT-MS to analyze >600 DLPFC tissues from ROSMAP
participants with clinical diagnoses of NCI (n=220), MCI (n=173), and AD dementia (n=204). We
then applied the clustering algorithm MONET M1 to the MCI and AD cases, resolving three
proteomic classes termed A, B, and C. We explored biological differences between classes by
applying a systems-based organization to these proteomic profiles that was informed by prior
network analyses of the AD brain. Finally, we examined genetic, clinical, and pathological
differences between NCI and the three classes. Abbreviations: NCI, No Cognitive Impairment;
MCI, Mild Cognitive Impairment; AD, Alzheimer’s Disease; TMT-MS, Tandem Mass Tag Mass
Spectrometry; DLPFC, Dorsolateral Prefrontal Cortex; ROSMAP, Religious Orders Study and
Rush Memory and Aging Project.

Figure 2. MONET M1 yields three disease-relevant proteomic classes of cognitive
impairment. (A) Heat map of protein expression across the three proteomic classes generated by
MONET M1 analysis. Classes were termed A (n=128), B (n=71), and C (n=158) and each featured
a mixture of MCI and AD cases. To provide biological context to the proteomic differences across
classes, proteins were organized by modules (M) of co-expression informed by prior AD network
analyses. Red boxes highlight modules with relatively elevated levels (yellow shading) in select
classes. (B) Diagram depicting the associations of each module to cell type and ROSMAP
clinicopathological traits. Modules bolded in red (n=10) demonstrated exceptionally strong
correlations to cognitive slope and/or global pathology (bicor>0.25; p<0.001). (C) Correlation
plots of module abundance (z-score) to cognitive slope or global pathology across all analyzed
cases (n=610) for select modules with remarkably strong clinicopathological correlations. M5 and
M10 demonstrated highly significant positive correlations to cognitive slope and negative
correlations to global pathology. In contrast, M7 and M42 were negatively correlated to cognitive
slope and positively correlated to global pathology. Bicor correlation coefficients with associated
p values are shown for each correlation plot. Abbreviations: MCI, Mild Cognitive Impairment;
AD, Alzheimer’s Disease; FDR, False Discovery Rate; Post-Syn Dens, Post-Synaptic Density.

Figure 3. Module abundances highlight class differences across a diverse range of biological
ontologies. Abundance levels (z-score) of select modules across NCI cases and the three proteomic
classes. ANOVA p values are provided for each abundance plot. All modules depicted were
significantly altered (p<0.001) across the four groups. Box plots represent the median and 25th
and 75th percentiles, while box hinges depict the interquartile range of the two middle quartiles
within a group. Data points up to 1.5 times the interquartile range from the box hinge define the
extent of error bar whiskers. Modules relatively increased in NCI and Class A included M5, M6,
M9, and MI10, corresponding to post-synaptic density, ribosome, Golgi, and Ras signaling
proteins, respectively (A). Kinase-associated M7 and M15 were among modules significantly
decreased in NCI and Class A compared to the other two classes (B). Numerous modules were
uniquely increased in Class C, most notably several linked to glial-mediated processes (M3, M11,
M21, M26, M42) (C). Several synaptic modules (M1, M4, M23, M36) were increased in Class B
relative to all other cases (D). Abbreviations: NCI, No Cognitive Impairment; MCI, Mild
Cognitive Impairment; AD, Alzheimer’s Disease.
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Figure 4. Differential expression of individual proteins reveals highly sensitive and specific
classifiers. A-C) Volcano plots displaying the log> fold change (x-axis) against the -logio statistical
p value (y-axis) for proteins differentially expressed between pairwise class comparisons. All p
values across pairwise comparisons were derived by ANOVA with Bonferroni post-hoc
correction. Proteins are shaded according to color of module membership. (D) Venn diagram of
significantly altered proteins (p<0.001) across pairwise class comparisons. There were 66 proteins
with significant changes across all three pairwise comparisons, while hundreds of proteins were
significantly altered across two of the three pairwise comparisons. The latter were deemed
“classifiers”, as each was uniquely altered in one class relative to the other two. There were 554
Class A classifiers, 342 Class B classifiers, and 445 Class C classifiers. (E-H) Abundance levels
(z-score) of select proteins across NCI cases and the three classes. ANOVA p values are provided
for each abundance plot. Box plots represent the median and 25th and 75th percentiles, while box
hinges depict the interquartile range of the two middle quartiles within a group. Data points up to
1.5 times the interquartile range from the box hinge define the extent of error bar whiskers. The
66 proteins altered across all pairwise class comparisons included neuroprotective markers with
well-described links to AD (VGF, NPTX2) and those without known associations to disease
(AMD1) (E). Classifiers altered in two of the three pairwise class comparisons included
PAFAHI1B3 for Class A, SYNI1 for Class B, and OSTF1 for Class C (F-H). (I-K) ROC curves of
the 10 most sensitive and specific proteins for each class by AUC values, which are included in
parentheses. Proteins are shaded according to color of module membership. Abbreviations: Post-
Syn Dens, Post-Synaptic Density.

Figure 5. Classes demonstrate different cognitive and pathological features. Cognitive (A-B)
and neuropathological (C-H) characteristics were compared across NCI cases and the three
proteomic classes. For each trait, two plots are provided. The first depicts the average scores of
each trait across the four groups. The ANOVA p value across groups is provided with asterisks
indicating statistically significant Tukey post hoc pairwise comparisons (*, p<0.05; **, p<0.01;
*#*% p<0.001). Box plots represent the median and 25th and 75th percentiles, while box hinges
depict the interquartile range of the two middle quartiles within a group. Data points up to 1.5
times the interquartile range from the box hinge define the extent of error bar whiskers. The second
plot in each panel showcases the abundance levels (z-scores) across groups of individual proteins
highly correlated to that particular trait. The z-scores of the top 10 positively trait-correlated and
top 10 negatively trait-correlated proteins are shown. Proteins are shaded according to color of
module membership. Proteins without a module assignment are not shaded. Abbreviations: Prot
Folding, Protein Folding; Post-Syn Dens, Post-synaptic Density; Glycosyl, Glycosylation; ER,
Endoplasmic Reticulum; Prot Transport, Protein Transport; Adh, Adhesion; ECM, Extracellular
Matrix.

Figure 6. Class C protein expression strongly mirrors that of ApoE4 carriers. (A) Table
showcasing the percentages of different APOE genotypes within each class. The corresponding
number of cases with each genotype is also provided in parentheses. Cases considered low-risk E2
carriers or high-risk E4 carriers are indicated. Class C comprised twice as many high-risk E4
carriers compared to Classes A and B. (B) Comparison of average APOE risk scores across NCI
and the three proteomic classes. Individual risk scores for each case were calculated by assigning
-1 points to each E2 allele, O points to each E3 allele, and +1 points to each E4 allele. The ANOVA
p value across groups is provided with asterisks indicating statistically significant Tukey post hoc
pairwise comparisons (¥, p<0.05; **, p<0.01; *** p<0.001). (C-D) Volcano plots displaying the
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log» fold change (x-axis) against the ¢ test-derived -logio statistical p value (y-axis) for proteins
differentially expressed in E2 carriers or E4 carriers when compared to all other cases, excepting
those with E2/4 genotypes which were excluded from these analyses. Thus, (C) is a comparison
of protein expression in the 34 cases with E2/2 and E2/3 genotypes to the 313 cases with E3/3,
E3/4, and E4/4 genotypes, while (D) is a comparison of protein expression in the 84 cases with
E3/4 and E4/4 genotypes to the 263 cases with E2/2, E2/3, and E3/3 genotypes. Proteins are shaded
according to color of module membership. (E-F) Correlation plots of module abundance levels (z-
scores) in E2 (E2/2, E2/3) or E4 (E3/4, E4/4) carriers to those of each proteomic class. Class-
specific z-scores in (E) reflect all members of each class, while those in (F) reflect only individuals
with E3/3 genotypes in each class. Bicor correlation coefficients with associated p values are
shown for each correlation plot. Abbreviations: Post-Syn Dens, Post-Synaptic Density; Metab,
Metabolism.

Figure S1. MONET M1 grid search and parameter selection. To select the hyperparameters
used in the MONET M1 clustering, a grid search of varying minimum module size, maximum
module size, and average degree was performed. The size and percent unassigned cases (grey) for
the clusters produced in each combination are visualized as a 3D plot of minimum module size,
maximum module size, and number of clusters produced (A desired average degree = 25 and B
desired average degree = 50). The top performing parameter sets as determined by minimal percent
grey are shown in panel C and D. Generally, assigning the desired average degree to 50 decreases
the percent grey in each of the tested parameter sets. The hyperparameters selected were minimal
module size = 5, maximum module size = 200, desired average degree = 50. The results of these
parameters are indicated by red boxes in panel B and D.

Figure S2. Validation of MONET M1 results using iterative bootstrapping. The rate at which
sample pairs are assigned to the same cluster (termed the paired percentage) were calculated for
every bootstrapped run (80-20 split). The average paired percentage per cluster and variance of the
percentage were tracked to ensure the bootstrapping was well converged (A). A heatmap of the
pairwise cluster rate shows three distinct clusters (B). Hypergeometric Fisher’s exact test (FET)
and module preservation was run on each of the MONET M1 reclustering steps with the original
MONET M1 network as areference. FET results revealed significant class-specific sample overlap
(FDR-corrected p<0.01) across the 100 iterations (C). A mean Zsummary Score was calculated and
demonstrates that each of the MONET M1 classes are well preserved (q < 0.05) in each of the 100
bootstrap steps (D).

Figure S3. UMAP analysis reinforces proteomic classes of cognitive impairment. Uniform
Manifold Approximation and Projection (UMAP) supervised clustering algorithm segregated
cognitively impaired ROSMAP cases into three classes nearly identical to those formed by
MONET MI1. Only one of the 357 cases clustered differently between the algorithms, segregating
into Class B with MONET M1 and Class C with UMAP.
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Materials and Methods

Brain Tissue

DLPFC tissues from Brodmann area 9 (BA9) were obtained from the autopsy collections
of the Religious Orders Study or Rush Memory and Aging Project [34-36]. Both studies were
approved an Institutional Review Board of Rush University Medical Center. All participants
signed an informed consent, an Anatomic Gift Act, and a repository consent allowing their
resources to be repurposed with appropriate inter-institutional agreements. ROSMAP features
community-based cohorts, which recruit older individuals without known dementia from United
States (US) religious orders, lay retirement centers, senior and subsidized housing communities,
and church groups. These participants are then followed longitudinally with cognitive batteries,
biospecimen collection, and finally brain autopsy [34-36]. All participants are assigned a clinical
consensus cognitive diagnosis (cogdx) at death, derived by study experts blinded to postmortem
neuropathology. The cogdx scale includes values of 1 (NCI), 2 (MCI and no other cause of
cognitive impairment [in addition to AD]), 3 (MCI and another cause of cognitive impairment [in
addition to AD]), 4 (AD and no other cause of cognitive impairment), 5 (AD and another cause of
cognitive impairment), and 6 (other dementia). All diagnoses of AD met criteria for possible or
probable AD based on National Institute of Neurological and Communicative Disorders and
Stroke and Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA)
guidelines [37, 38]. Only cases with cogdx classifiers of 1-5 were included in the current study.
Cases with cogdx classifiers of 6 were excluded. We also excluded rare cases with cogdx classifiers
that did not align with cognitive battery scores. ROSMAP cases are richly characterized using a
variety of clinical and pathological traits that were used to describe the case grouping generated in
our clustering analysis [34, 36]. Postmortem neuropathological traits of interest included neuritic
plaque distribution, which was scored according to the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) criteria [81] and extent of neurofibrillary tangle pathology, which
was assessed with the Braak staging system [82]. Other neuropathologic diagnoses and clinical
traits were made in accordance with established criteria and guidelines [83]. All case metadata are
provided in https://www.synapse.org/ADsubtype.

Brain Tissue Homogenization and Protein Digestion

Tissue homogenization was performed essentially as described [33, 84]. Approximately
100 mg (wet tissue weight) of brain tissue was homogenized in 8 M urea lysis buffer (8 M urea,
10 mM Tris, 100 mM NaH2POys, pH 8.5) with HALT protease and phosphatase inhibitor cocktail
(ThermoFisher) using a Bullet Blender (NextAdvance). Each Rino sample tube (NextAdvance)
was supplemented with ~100 pL of stainless-steel beads (0.9 to 2.0 mm blend, NextAdvance) and
500 uLL of lysis buffer. Tissues were added immediately after excision and homogenized with
bullet blender at 4 °C with 2 full 5min cycles. The lysates were transferred to new Eppendorf
Lobind tubes and sonicated for 3 cycles consisting of 5 s of active sonication at 30% amplitude,
followed by 15 s on ice. Samples were then centrifuged for 5 min at 15,000 x g and the supernatant
transferred to a new tube. Protein concentration was determined by bicinchoninic acid (BCA)
assay (Pierce). For protein digestion, 100 pg of each sample was aliquoted and volumes normalized
with additional lysis buffer. Samples were reduced with 1 mM dithiothreitol (DTT) at room
temperature for 30 min, followed by 5 mM iodoacetamide (IAA) alkylation in the dark for another
30 min. Lysyl endopeptidase (Wako) at 1:100 (w/w) was added, and digestion allowed to proceed
overnight. Samples were then 7-fold diluted with 50 mM ammonium bicarbonate. Trypsin
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(Promega) was then added at 1:50 (w/w) and digestion was carried out for another 16 h. The
peptide solutions were acidified to a final concentration of 1% (vol/vol) formic acid (FA) and 0.1%
(vol/vol) trifluoroacetic acid (TFA) and desalted with a 30 mg HLB column (Oasis). Each HLB
column was first rinsed with 1 mL of methanol, washed with 1 mL 50% (vol/vol) acetonitrile
(ACN), and equilibrated with 2x1 mL 0.1% (vol/vol) TFA. The samples were then loaded onto the
column and washed with 2x1 mL 0.1% (vol/vol) TFA. Elution was performed with 2 volumes of
0.5 mL 50% (vol/vol) ACN. An equal amount of peptide from each sample was aliquoted and
pooled as the global pooled internal standard (GIS), which was split and labeled in each TMT
batch as described below.

Isobaric Tandem Mass Tag (TMT) Peptide Labeling

The 610 ROSMAP cases included were analyzed in two separate sets, referred to as Setl
(n=400) and Set2 (n=210) throughout the Methods. Within each set, cases were randomized prior
to TMT labeling by select covariates (i.e., age, sex, PMI, diagnosis) into batches. For Setl (50
batches), peptides from each individual case and the GIS pooled standards were labeled using the
TMT 10-plex kit (ThermoFisher 90406). For Set2 (14 batches), peptides from each individual case
and the GIS pooled standards were labeled using the TMTpro 16-plex kit (ThermoFisher 44520).
Each batch in Setl comprised 2 TMT channels with labeled GIS standards with all other channels
reserved for individual brain samples. Each batch in Set2 comprised only 1 TMT channel with a
labeled GIS standard. Labeling was performed as previously described [44, 84, 85]. Briefly, each
sample (containing 100 pg of peptides) was re-suspended in 100 mM TEAB buffer (100 uL). The
TMT labeling reagents (Smg) were equilibrated to room temperature, and anhydrous ACN
(256 uL) was added to each reagent channel. Each channel was gently vortexed for 5 min, and then
41 pL from each TMT channel was transferred to the peptide solutions and allowed to incubate
for 1 h at room temperature. The reaction was quenched with 5% (vol/vol) hydroxylamine (8 pl)
(Pierce). All channels were then combined and dried by SpeedVac (LabConco) to approximately
150 pL and diluted with 1 mL of 0.1% (vol/vol) TFA, then acidified to a final concentration of 1%
(vol/vol) FA and 0.1% (vol/vol) TFA. Labeled peptides were desalted with a 200 mg C18 Sep-Pak
column (Waters). Each Sep-Pak column was activated with 3 mL of methanol, washed with 3 mL
of 50% (vol/vol) ACN, and equilibrated with 2x3 mL of 0.1% TFA. The samples were then loaded
and each column was washed with 2x3 mL 0.1% (vol/vol) TFA, followed by 2 mL of 1% (vol/vol)
FA. Elution was performed with 2 volumes of 1.5 mL 50% (vol/vol) ACN. The eluates were then
dried to completeness using a SpeedVac.

High-pH Off-line Fractionation

High pH fractionation was performed essentially as described [84, 86] with slight
modification. Dried samples were re-suspended in high pH loading buffer (0.07% vol/vol
NH4OH, 0.045% vol/vol FA, 2% vol/vol ACN) and loaded onto an Agilent ZORBAX 300
Extend-C18 column (2.1mm x 150 mm with 3.5 um beads). An Agilent 1100 HPLC system
was used to carry out the fractionation. Solvent A consisted of 0.0175% (vol/vol) NH4OH,
0.01125% (vol/vol) FA, and 2% (vol/vol) ACN; solvent B consisted of 0.0175% (vol/vol)
NH4OH, 0.01125% (vol/vol) FA, and 90% (vol/vol) ACN. The sample elution was performed
over a 58.6 min gradient with a flow rate of 0.4 mL/min. The gradient consisted of 100% solvent
A for 2 min, then 0% to 12% solvent B over 6 min, then 12% to 40 % over 28 min, then 40%
to 44% over 4 min, then 44% to 60% over 5 min, and then held constant at 60% solvent B for
13.6 min. A total of 96 individual equal volume fractions were collected across the gradient and
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subsequently pooled by concatenation [86] into 24 fractions for Setl and 48 fractions for Set2.
The fractions were then dried to completeness using a SpeedVac.

Mass Spectrometry Analysis

For Setl, all fractions were resuspended in an equal volume of loading buffer (0.1% FA,
0.03% TFA, 1% ACN) and analyzed by liquid chromatography coupled to tandem mass
spectrometry essentially as described [9], with slight modifications. Peptide eluents were separated
on a self-packed C18 (1.9 um, Dr. Maisch, Germany) fused silica column (25 cm x 75 uM internal
diameter (ID); New Objective, Woburn, MA) by a Dionex UltiMate 3000 RSLCnano liquid
chromatography system (ThermoFisher Scientific). Elution was performed over a 180 min
gradient with flow rate at 225 nLL/min. The gradient was from 3% to 7% buffer B over 5 min, then
7% to 30% over 140 min, then 30% to 60% over 5 min, then 60% to 99% over 2 min, then held
constant at 99% solvent B for 8 min, and then back to 1% B for an additional 20 min to equilibrate
the column. Buffer A was water with 0.1% (vol/vol) formic acid, and buffer B was 80% (vol/vol)
acetonitrile in water with 0.1% (vol/vol) formic acid. Peptides were monitored on an Orbitrap
Fusion mass spectrometer (ThermoFisher Scientific). The mass spectrometer was set to acquire in
data dependent mode using the top speed workflow with a cycle time of 3 seconds. Each cycle
consisted of 1 full scan followed by as many MS/MS (MS2) scans that could fit within the time
window. The full scan (MS1) was performed with an m/z range of 350-1500 at 120,000 resolution
(at 200 m/z) with AGC set at 4x10° and maximum injection time 50 ms. The most intense ions
were selected for higher energy collision-induced dissociation (HCD) at 38% collision energy with
an isolation of 0.7 m/z, a resolution of 30,000, an AGC setting of 5x10%, and a maximum injection
time of 100 ms. Five of the 50 TMT batches were run on the Orbitrap Fusion mass spectrometer
using the SPS-MS3 method as previously described [84]. All higher energy collision-induced
dissociation (HCD) MS/MS spectra were acquired at a resolution of 60,000 (1.6 m/z isolation
width, 35% collision energy, 5%10* AGC target, 50 ms maximum ion time). Dynamic exclusion
was set to exclude previously sequenced peaks for 20 seconds within a 10-ppm isolation window.

For Set2, all fractions were resuspended in an equal volume of loading buffer (0.1% FA,
0.03% TFA, 1% ACN) and analyzed by liquid chromatography coupled to tandem mass
spectrometry essentially as described [9], with slight modifications. Peptide eluents were separated
on a self-packed C18 (1.9 um, Dr. Maisch, Germany) fused silica column (15 cm x 75 uM internal
diameter (ID); New Objective, Woburn, MA) by an EASY-nLC 1200 liquid chromatography
system (ThermoFisher Scientific). Elution was performed over a 45 min gradient with flow rate at
400 nL/min. The gradient was from 5% to 35% over 37 min, then 35% to 99% over 1 min, then
held constant at 99% solvent B for & min, and then back to 1% B for an additional 7 min to
equilibrate the column. Buffer A was water with 0.1% (vol/vol) formic acid, and buffer B was
80% (vol/vol) acetonitrile in water with 0.1% (vol/vol) formic acid. Peptides were monitored on a
Q-Exactive HFX mass spectrometer (ThermoFisher Scientific). The full scan (MS1) was
performed with an m/z range of 410-1600 at 120,000 resolution (at 200 m/z) with AGC set at
3x10% and maximum injection time 50 ms. The top 20 most intense ions were selected for higher
energy collision-induced dissociation (HCD) at 32% collision energy with an isolation of 0.7 m/z,
aresolution of 45,000, an AGC setting of 2x10°, and a maximum injection time of 96 ms. Dynamic
exclusion was set to exclude previously sequenced peaks for 20 seconds within a 10-ppm isolation
window.

Database Searches and Protein Quantification
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All RAW files (1,200 RAW files from TMT-MS analysis of ROSMAP Setl and 672 RAW
files from TMT-MS of ROSMAP Set2) were analyzed using the Proteome Discoverer suite
(version 2.4, ThermoFisher Scientific). MS2 spectra were searched against the UniProtKB human
proteome database containing Swiss-Prot human reference protein sequences (20338 target
proteins). The Sequest HT search engine was used and parameters were specified as follows: fully
tryptic specificity, maximum of two missed cleavages, minimum peptide length of 6, fixed
modifications for TMT tags on lysine residues and peptide N-termini (+229.162932 Da) and
carbamidomethylation of cysteine residues (+57.02146 Da), variable modifications for oxidation
of methionine residues (+15.99492 Da) and deamidation of asparagine and glutamine (+0.984 Da),
precursor mass tolerance of 20 ppm, and a fragment mass tolerance of 0.05 Da for MS2 spectra
collected in the Orbitrap (0.5 Da for the MS2 from the SPS-MS3 batches).

Percolator was used to filter peptide spectral matches (PSMs) and peptides to a false
discovery rate (FDR) of less than 1%. Following spectral assignment, peptides were assembled
into proteins and were further filtered based on the combined probabilities of their constituent
peptides to a final FDR of 1%. A multi-consensus was performed to achieve parsimonious protein
grouping across individual batches and both sets of ROSMAP samples. In cases of redundancy,
shared peptides were assigned to the protein sequence in adherence with the principles of
parsimony. As default, the top matching protein or “master protein” is the protein with the largest
number of unique peptides and with the smallest value in the percent peptide coverage (i.e., the
longest protein). Reporter ions were quantified from MS2 or MS3 scans using an integration
tolerance of 20 ppm with the most confident centroid setting. Only unique and razor (i.e.,
parsimonious) peptides were considered for quantification.

Controlling for Batch-specific Variance Across Proteomics Datasets

A tunable median polish approach (TAMPOR) was used to remove technical batch
variance in the proteomic data, as previously described [31, 32]. Following a multi-consensus
database search and protein quantification across two sets of ROSMAP tissues, batch effects in
the first set (setl) of ROSMAP samples (50 TMT-10 plex batches) and the second set (set2) of
ROSMAP samples (14 TMT-16 plex batches) were normalized iteratively in two steps essentially
as described [32]. After removal of intra-set batch effects in setl and set2 separately, all samples
except set-specific GIS samples were processed jointly with TAMPOR into a single reassembled
consensus sample—protein matrix using the median of within-cohort pathology free control cases
as the central tendency, enforcing that the population of all logx(ratio) output for control samples
within the final 610 ROSMAP samples would tend toward 0. Additional details on the data input
and TAMPOR output can be found on https://www.synapse.org/#!Synapse:syn32280722.

Regression of Covariates

The ROSMAP cases were subjected to nonparametric bootstrap regression by subtracting
the trait of interest (age at death, sex, or PMI) times the median estimated coefficient from 1000
iterations of fitting for each protein in the log2(abundance) matrix as previously described [32].
Ages at death used for regression were uncensored.

Sample Network Generation with MONET M1 Algorithm

The three top-performing methods from the DMI DREAM Challenge were compiled in the
MONET toolbox and released to the public for use
(https://github.com/BergmannLab/MONET.git) [40]. We selected the M1 method from this
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toolbox to build a sample-wise network. The M1 method uses the Girvan-Newman modularity
optimization method to group like features into modules [87]. MONET M1 has expanded on the
traditional modularity optimization to a multiresolution approach by searching the network at
multiple topological scales. The authors have added the resistance parameter, r, which averts genes
from joining modules. If 7 = 0 the method returns to Newman and Girvan’s original modularity
optimization; r > 0 reveals network substructure; and r < 0 network superstructure [88]. The
parameter 7, is fit to four user-provided hyperparameters: minimum module size, maximum
module size, desired average degree, and desired average degree tolerance to produce a network
described by the parameters.

After batch-correction and regression as described above, n = 610 cases were split into
two groups defined by the ROSMAP cognitive diagnosis score: cognitively impaired cases (n =
377, cogdx € {2,3,4,5}) and non-cognitively impaired/other cases (n = 233, cogdx € {1,6}).
An expression data matrix of the cognitively impaired cases n =377 and n=
7,723 log,(protein abundance) was created (proteins with greater 50% missingness in the 377
cases were removed). The adjacency function in WeiGhted Correlation Network Analysis
(WGCNA) was used to build the adjacency matrix with parameters: soft threshold power = 8,
type="signed", corFnc="bicor", and the corOptions parameter set to use pairwise complete
correlation [89]. The soft threshold power was determined using scale free topology analysis based
on the following two guidelines: 1) The power in a plot of power (x) vs R? (y) should be where the
R? has approached an asymptote, usually near or above 0.80, and 2) the mean and median
connectivity at that power should not be exceedingly high, preferably around 100 or less. The
power at which these criteria are met is a tradeoff between removing correlations due to chance
and maintaining as many correlations in the data as possible for the clustering algorithm to
distinguish modules. As M1 takes an edge list as input, the adjacency upper triangle correlation
values were used to populate the weights of unique pairwise correlations in the edge list. No
sparsification of the edge list was applied.

The hyperparameters were optimized using a grid search by varying minimum module size,
i € {5,10,25,50}, maximum module size, j € {100, 150,200,250,300,350,376}, and
desired average degree, k € {25,50}. The desired average degree tolerance was left at the default
value of 0.2. The optimal parameter set was defined as the set that minimized the percentage of
cases not assigned to a module and the maximum module size (Fig. S1, Table S1). The final
parameters selected were i = 5,j = 200,k = 50, which built a network with 3 modules and
5.31% (n = 20) cases not assigned to a module. This final network was used in to define the three
subtypes of AD observed in the ROSMAP cohort.

Using the expression data matrix and the modules assignment list, module eigenvectors
were defined, using the moduleEigengenes function in WGCNA. The eigenvector is the module’s
first principal component and explains covariance of all cases within each module [citation]. Using
the signedKME function in WGCNA, a table of bicor correlations between each case and each
module eigenvector was obtained; this module membership measure is defined as kme. Additional
details of the data input and MONET M1 output can be found on
https://www.synapse.org/#!Synapse:syn32567811.

MONET M1 Bootstrap Validation

To validate the robustness of the clustering, we performed 100 rounds of bootstrapped
reclustering, by withhold 20% of the samples and employing the MONET M1 method on the
subset (Fig. S2, Table S2). Due to the decrease in sample number, the hyperparameters were
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adjusted to i = 5,j = 160, k = 50, where the maximum module size was decreased by 20%. If
there are truly unique molecular subtypes, then repeated clustering should produce similar sets of
clustered samples. To assess the probability of sample pairs clustering together, we calculated the
rate at which each pair is assigned to them same cluster (termed the paired percentage). The
average paired percentage per cluster and variance of the percentage were tracked for the 100
bootstrap steps to ensure the bootstrapping was well converged. A heatmap of the paired
percentage shows that the clustering is stable and repeated rounds of MONET M1 reproduces the
three observed subtypes. A hypergeometric Fisher’s exact test (FET) was performed on each of
the bootstrap steps against the original MONET M1 cluster assignments and showed class-specific
overlap. Along with the rate that sample pairs clustered together, the reproducibility was also
assessed using the module preservation function in WGCNA. Zgmmary COMpoSsite preservation
scores were obtained using the MONET M1 network (n=377) as the template versus each bootstrap
step, with 100 permutations. Random seed was set to 1 for reproducibility, and the quickCor option
was set to 0. The summary z scores were then averaged across the 100 bootstrap steps and the
standard deviation was calculated. All three subtypes were preserved across the 100 bootstrap
replicates (above the blue line g=0.05).

Uniform Manifold Approximation and Projection (UMAP) Dimension Reduction

Supervised dimensionality reduction was performed using UMAP (umap-learn v0.5.2) in
Python (v3.9) with the following settings: n_neighbors = 10, n_components = 2, metric =
Euclidean, and min_dist=1. A supervised UMAP embedding was generated for the 357 cases in
the MONET M1 classes using the n=7,723 log2(protein abundance) as features and the three
MONET M1 classes as target labels. The three resultant clusters mirror those of MONET M1
network analysis with only 1 case out of the 357 assigned to a cluster different from its original
class.

Biological Organization of Protein Expression Matrix

To highlight the biological trends between the three clusters produced by MONET M1, the
proteins used as features in the network (n = 7,723) were grouped into the protein modules
generated in our deepest AD consensus network [32]. For each protein module, proteins were
sorted by kKME. Protein modules were then organized into relatedness order determined by
previous WGCNA analysis. This highlighted the systems-based divergences and biological trends
between MONET M1 classes allowing us to character the classes by their proteomic expression
profiles. For visualization, samples within the 3 MONET M1 classes were also sorted by their
class specific KME (Table S2). Therefore, the first sample is the “eigensample” for the MONET
MI class.

ROC Analyses

For each protein, a support vector machine classifier was used to classify individuals by
class using one-vs-rest strategy. Due to the multi-class nature of the model, each class identifier
was binarized prior to training. To choose the model for which predictions are made, the one-vs-
rest heuristically chooses the binary classifier with the highest confidence. After a model was
created, the receiver operating characteristic (ROC) metric was used to evaluate each classifier.
The area under the curve (AUC) was calculated for each peptide in each classifier. The peptides
were then sorted based on the AUC values and the top ten were plotted for each class.
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Protein Correlation to Traits

To assess which proteins most strongly correlated to clinicopathological traits, the
WGCNA R netScreen function was used. All 7,723 proteins were correlated to the provided
ROSMAP across the 357 samples (Table S8). The top 10 positive and top 10 negatively correlated
proteins were manually filtered from the analysis. The z-score for these proteins were plotted for
each of the three Classes and the NCI group to visualize the expression differences of these proteins
across the unique subtypes.

Other Statistics

Statistical analyses were performed in Python v3.7 and visualized using matplotlib package
v3.5.1. Correlations were performed using the biweight midcorrelation function as implemented
in the WGCNA R package (Tables S4 and S8). Boxplots represent the median, 25", and 75"
percentile extrema, the edges of a box represent the interquartile of the data within a group.
Whiskers are drawn at the maximum and minimum value of the data set. Points greater than 1.5
times the interquartile range are classified as outliers. Comparisons between two groups were
performed by ¢ test. Comparisons among three or more groups were performed with one-way
ANOVA with Tukey or Bonferroni pairwise comparison of significance (Tables S3, S5, S6, S9).
P values were adjusted for multiple comparisons by false discovery rate (FDR) correction where
indicated.
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