

1 Highly pathogenic avian influenza H5N1 virus infections in wild red foxes (*Vulpes vulpes*) show
2 neurotropism and adaptive virus mutations

3

4

5 Luca Bordes,^a Sandra Vreman,^a Rene Heutink,^a Marit Roose,^a Sandra Venema,^a Sylvia B E Pritz-
6 Verschuren,^a Jolianne M Rijks,^b José L Gonzales,^a Evelien A Germeraad,^a Marc Engelsma,^a
7 Nancy Beerens^a#

8

9 ^aWageningen Bioveterinary Research, Lelystad, the Netherlands

10 ^bDutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands

11

12 Running head: HPAI H5N1 infections in wild red foxes

13

14 Word count abstract: 389

15 Word count main text: 5000

16

17 #Address correspondence to Nancy Beerens, nancy.beerens@wur.nl

18

19

20 **ABSTRACT**

21 During the 2020-2022 epizootic of highly pathogenic avian influenza virus (HPAI) several
22 infections of mammalian species were reported in Europe. In the Netherlands, HPAI H5N1 virus
23 infections were detected in three wild red foxes (*Vulpes vulpes*) that were submitted with
24 neurological symptoms between December 2021 and February 2022. Histopathological analysis
25 demonstrated the virus was mainly present in the brain, with limited or no detection in the
26 respiratory tract and other organs. Phylogenetic analysis showed the three fox viruses were not
27 closely related, but were related to HPAI H5N1 clade 2.3.4.4b viruses found in wild birds. In
28 addition, limited virus shedding was detected suggesting the virus was not transmitted between
29 the foxes. Genetic analysis demonstrated the presence of mammalian adaptation E627K in the
30 polymerase basic two (PB2) protein of the two fox viruses. In both foxes the avian (PB2-627E)
31 and the mammalian (PB2-627K) variant were present as a mixture in the virus population, which
32 suggests the mutation emerged in these specific animals. The two variant viruses were isolated
33 and virus replication and passaging experiments were performed. These experiments showed
34 mutation PB2-627K increases replication of the virus in mammalian cell lines compared to the
35 chicken cell line, and at the lower temperatures of the mammalian upper respiratory tract. This
36 study showed the HPAI H5N1 virus is capable of adaptation to mammals, however more
37 adaptive mutations are required to allow efficient transmission between mammals. Therefore,
38 surveillance in mammals should be expanded to closely monitor the emergence of zoonotic
39 mutations for pandemic preparedness.

40

41 **IMPORTANCE**

42 Highly pathogenic avian influenza (HPAI) viruses caused high mortality amongst wild birds in
43 2021-2022 in the Netherlands. Recently three wild foxes were found to be infected with HPAI
44 H5N1 viruses, likely by feeding on infected birds. Although HPAI is a respiratory virus, in these
45 foxes the viruses were mostly detected in the brain. Two viruses isolated from the foxes
46 contained a mutation that is associated with adaptation to mammals. We show the mutant virus
47 replicates better in mammalian cells than in avian cells, and at the lower body temperature of
48 mammals. More mutations are required before viruses can transmit between mammals, or can be
49 transmitted to humans. However, the infections in mammalian species should be closely
50 monitored to swiftly detect mutations that may increase the zoonotic potential of the HPAI H5N1
51 viruses as these may threaten public health.

52

53 **INTRODUCTION**

54 Since the introduction of highly pathogenic avian influenza virus (HPAI) H5 clade 2.3.4.4b in
55 2016, this virus clade caused repeated outbreaks in wild birds and poultry in Europe. Where low
56 pathogenic avian influenza viruses replicate mostly in the digestive and respiratory epithelium
57 with often mild disease in poultry and wild birds, these HPAI viruses can cause severe systemic
58 disease including viremia leading to diffuse infection of several internal organs. Gallinaceous
59 species are especially vulnerable to HPAI infection and high mortality is observed rapidly after
60 infection. Infections with HPAI viruses of subtypes H5 and H7 are a notifiable disease in poultry
61 and after detection of this virus a poultry flock is generally culled to prevent further spread. The
62 2020-2021 epizootic was a devastating outbreak for poultry and was followed by the 2021-2022
63 epizootic, which has become the largest HPAI outbreak in number of culled animals that ever
64 occurred in Europe. In addition, high mortalities in an increasing number of species of wild birds

65 was observed during both epizootics. Sporadically, HPAI H5 clade 2.3.4.4.b infections of free-
66 living wild carnivore species were reported besides the infections in wild birds and poultry. Late
67 2020, a disease and mortality event involving four juvenile common seals (*Phoca vitulina*), one
68 juvenile grey seal (*Halichoerus grypus*) and a red fox (*Vulpes vulpes*) at a wildlife rehabilitation
69 center in the United Kingdom was reported to be associated with HPAI H5N8 infection (1). In
70 May 2021, HPAI H5N1 infection was reported in two cubs of red foxes in the Netherlands (2). In
71 August 2021, HPAI H5N8 infection was detected in three adult harbor seals (*Phoca vitulina*)
72 found at the German North Sea coast (3). Interestingly, neurological signs were reported for
73 several of these mammals and virus was detected in brain tissue. For mammals the most probable
74 route of infection is ingestion of contaminated water, feces or infected bird carcasses. Foxes were
75 infected experimentally via consumption of chicken carcasses infected with clade 2.2 HPAI
76 H5N1, which underlines the possibility to infect wild mammals with HPAI via infected bird
77 carcasses (4). Similarly, experimentally infected cats were also susceptible to HPAI H5N1
78 (A/Vietnam/1194/2004) via infected bird carcasses. Both the gut and myenteric plexus (5) and
79 the olfactory bulb (6) were suggested as potential sites of virus entry into the central nervous
80 system after consumption of infected birds.

81
82 The species barrier between birds and mammals is considerable. Therefore, adaptation of HPAI
83 virus is needed for efficient replication and transmission in mammals. Current studies suggest at
84 least three requirements for (efficient) airborne transmission of HPAI viruses between mammals:
85 (i) efficient attachment of the viral hemagglutinin (HA) glycoprotein to α 2,6-linked sialic acid
86 receptors, which are present in the upper respiratory tract of mammals. Mutations in HA are
87 required to change the HA binding properties from the avian-type α 2,3-linked sialic acid

88 receptors to the mammalian-type receptor (7). (ii) Optimal stability of HA protein in mammalian
89 airways. Mutations in HA are required to optimize fusion of the viral and endosomal membranes
90 and the subsequent release of the viral genome in the cytoplasm (8). (iii) Increased virus
91 replication through mammalian adaptation substitutions in the polymerase complex (9, 10).
92 Although these adaptations favored airborne transmission of the studied HPAI H5N1 strain
93 A/Vietnam/1204/2004, it remains to be elucidated whether these findings can be extrapolated to
94 other clades of HPAI H5N1 viruses, such as the current HPAI H5N1 clade 2.3.4.4b virus.
95 However, mutation E627K has also been detected in the polymerase basic protein 2 (PB2) of
96 HPAI H5 clade 2.3.4.4b viruses isolated from mammals in 2021. Two out of three seals infected
97 with HPAI H5N8, detected in August 2021 in Germany, contained the PB2-E627K mutation (3).
98 The PB2-627K variant has been identified as an adaptation of the virus polymerase machinery,
99 that likely stimulates virus replication at lower temperatures of the upper respiratory tract in
100 mammals (9, 10). For HPAI H5 viruses enhanced virus replication caused by PB2-E627K has
101 been shown to increase pathogenicity *in vitro* and *in vivo* in mice (11-13). Furthermore, the
102 recently discovered mammalian infections of the fox and seals in the UK late 2020 contained the
103 PB2-D701N adaptation, which was also suggested to increase virus replication (9, 14). These
104 findings may suggest the current HPAI H5 clade 2.3.4.4b viruses have an increased zoonotic
105 potential and are able to infect mammals resulting in adaptations in the PB2 gene segment.
106
107 The previously described cases of HPAI H5 clade 2.3.4.4b infections in seals and foxes and the
108 three infected foxes detected in the Netherlands between December 2021 and February 2022
109 suggest the incidence of infections in mammals might be increasing. In this study, we analyzed
110 virus localization in tissues from the three foxes with related histopathology and showed the virus

111 is mainly present in the brain, with limited detection in the respiratory tract. Phylogenetic
112 analysis showed the three fox viruses were not closely related, but were related to viruses found
113 in wild birds. Genetic analysis demonstrated the presence of mutation PB2-E627K in two out of
114 three fox viruses. From one of these foxes two virus variants were isolated, one containing the
115 avian PB2-627E variant and one containing the mammalian PB2-627K variant. Virus replication
116 and stability of both isolates was studied over time and showed increased replication for the PB2-
117 627K variant in human and dog cell lines compared to the chicken cell line and at the temperature
118 of the mammalian upper respiratory tract compared to the temperature of the avian respiratory
119 tract, indicating more efficient replication *in vitro* in mammals compared to birds.

120

121 **RESULTS**

122 **Virological analysis of infected foxes**

123 Three foxes were found in the Netherlands at the municipality Dorst, Heemskerk and Oosterbeek
124 showing abnormal behavior. Clinical signs in fox-Dorst were apparent blindness, head shaking,
125 falling over and opisthotonus. This animal was euthanized on 3/12/2021. Fox-Heemskerk showed
126 convulsions, as reported, and was euthanized on 1/1/2022. Fox-Oosterbeek showed lethargy,
127 crouched down with convex back and legs tucked under. The animal lacked fleeing behavior but
128 was alert and did turn its head to look when approached. This fox was humanely dispatched on
129 7/2/2022. The distance between the different locations was 80km to 105km (Figure 1).

130

131 The foxes were submitted for testing on avian influenza virus, tracheal and rectal swabs were
132 taken and brain tissue was collected. Interestingly, the brain samples from two different locations
133 (amnion horn and medulla oblongata, cerebrum and cerebellum) tested positive for avian

134 influenza virus by M-PCR with high virus genome loads, whereas no virus was detected in rectal
135 swabs, and considerably lower virus loads were detected in the throat swabs of two foxes. Only
136 for fox-Heemskerk comparable virus loads were detected in the brain samples and throat swab
137 (Table 1). The viruses were subtyped as HPAI H5N1 using Sanger sequencing. Virus isolation
138 was performed successfully on brain tissue of all three foxes, showing the presence of infectious
139 virus in the brain.

140

141 **Pathological examination of infected foxes**

142 All three foxes were adult males with a moderate to poor body condition. Two foxes had a shiny
143 coat and one fox (Oosterbeek) was covered with mud. The most prominent gross finding were
144 poorly collapsed lungs with a marbled red aspect, which was present with a slight variation in all
145 three foxes. Histology revealed a subacute chronic purulent to granulomatous broncho-interstitial
146 pneumonia with large numbers of parasitic structures (*Angiostrongylus vasorum*) in two foxes.
147 These pulmonary changes were not associated with virus protein expression (Figure 2A and B
148 and Table S1). The upper respiratory tract (trachea and nasal conchae) displayed a mild to
149 moderate suppurative inflammation with presence of parasitic structures (*Capillaria spp.*). In
150 fox-Heemskerk virus protein expression was observed in the olfactory epithelial cells of the nasal
151 conchae (Figure 2C), while there was no protein expression in the trachea and nasal conchae of
152 the other foxes (Figure 2D). In all three foxes strong virus protein expression was present in the
153 brain, which was most prominent in the cerebrum (Figure 2E and F). Virus protein was expressed
154 in neurons and microglia cells in the neuropil and was associated with non-suppurative
155 polioencephalitis with perivascular cuffing. There was no virus expression or significant
156 histopathology in the olfactory bulb (Figure 2G). A subacute lymphoplasmacytic myocarditis

157 with myocardial degeneration and necrosis with virus protein expression in cardiomyocytes was
158 detected only in fox-Heemskerk (Figure 2H). No virus protein expression was observed in the
159 other investigated organs (intestinal tract (Figure 2I), pancreas, spleen, liver and kidney (Table
160 S1)).

161

162 **Phylogenetic and genetic analysis of fox viruses**

163 Full genome sequencing was performed on brain samples and throat swabs to study the genetic
164 relationship between the viruses. Phylogenetic analysis showed that the viruses belonged to H5
165 clade 2.3.4.4b, and clustered with viruses found in wild birds during the HPAI H5N1 2021-2022
166 epizootic in the Netherlands. The viruses had the same genetic constitution as the HPAI H5N1
167 viruses found in the Netherlands during the 2020-2021 epizootic. Closest related wild bird
168 viruses differed between 17 and 42 nucleotide positions from the fox viruses and were found
169 between 39 and 149 km distance, 5 to 37 days before the infected foxes were detected (Table S2).
170 The viruses isolated from the foxes were not closely related based on the phylogenetic analysis
171 and differed between 127 and 176 nucleotides from each other (Figure 3 & Figure S1). Therefore,
172 the three foxes were likely infected by independent introductions from wild birds.

173

174 Genetic analysis was performed to investigate whether mutations implicated in adaptation to
175 mammalian hosts occurred in the virus genomes. Mutation screening identified the previously
176 described E627K mutation in the PB2 segment of the fox-Dorst virus. A minority variant analysis
177 of the next-generation sequencing data from three samples of fox-Dorst showed a mixture of the
178 avian (627E) and mammalian (627K) PB2 variant. The percentage of the 627K mutation varied
179 between 37.4% of the virus population in the trachea swab, 46.1% in the amnion horn and
180 medulla oblongata and 19.5% in the cerebrum and cerebellum (Table 1). Fox-Heemskerk carried

181 only the avian 627E-variant, and fox-Oosterbeek carried the avian 627E-variant with 28.8% of
182 the 627K-variant in the throat swab. Further in-depth analysis of the sequencing data did not
183 reveal other known or previously described host shift adaptations in the fox viruses (results not
184 shown).

185

186 **The role of mutation E627K in replication of the fox-Dorst virus**

187 A limited dilution series of the amnion horn and medulla oblongata sample derived from fox-
188 Dorst was inoculated into embryonated eggs for virus isolation. Full genome sequencing of the
189 viruses was performed for the viruses isolated from the individual eggs. This showed we isolated
190 a HPAI H5N1 virus with the mammalian PB2-627K variant (100%), and a virus with the avian
191 PB2-627E variant (98,2%) containing only one additional mutation (G485R) in the nucleoprotein
192 (NP) (99%). To study the effect of PB2-E627K on virus replication, the virus titre was measured
193 at specific time points after infection of mammalian A549 and MDCK cell lines and the avian
194 DF-1 cell line.

195

196 The mean virus titre appears to increase from 48h post infection (p.i.) onwards due to the PB2-
197 E627K mutation on the mammalian cells (A549, MDCK) but not the avian cells (DF-1) at 37°C
198 (Figure 4). The putative differences between the two virus variants were statistically assessed
199 using fitted linear mixed models (LMM), with post hoc analysis. Due to sample size limitations,
200 three way interactions containing time, virus and cell type as a variable could not be analyzed.
201 Thus, differences between cell types could not be investigated using the LMM. However, the two
202 way interactions of time with virus, and time with temperature, could be assessed using the
203 LMM. The differences between the two virus variants were statistically significant from 48h p.i.
204 onwards ($p < 0.05$)(Table S3). To assess the apparent absence of differences between the PB2-

205 627E and PB2-627K virus replication curves on DF-1 cells at 37°C virus titre was compared by
206 performing pair-wise comparisons between both viruses at each time point and ignoring the data
207 dependency (no random effects introduced in the model) due to replicated measures. This
208 pairwise comparisons showed no significant difference ($p > 0.05$) between the two viruses from
209 48h p.i. onwards. These results may indicate that PB2-E627K enhances virus replication in
210 mammalian cells but not avian cells at the temperature of the avian upper respiratory tract (37°C).

211

212 The PB2-E627K mutation is likely an adaptation of the polymerase to the lower body
213 temperature of mammals compared to birds. Therefore, virus replication was also studied at
214 33°C, which is the approximate temperature of the mammalian upper respiratory tract. The LMM
215 analysis of the variables time and temperature indicated virus replication was significantly lower
216 at 24h p.i. ($p < 0.0001$) and 48h p.i. ($p < 0.05$) but significantly higher at 72h p.i. ($p < 0.05$)
217 indicating the replication of both virus variants is delayed but not impaired (Figure 4 and Table
218 S4). In contrast with our findings at 37°C virus titre was significantly higher for the PB2-627K
219 variant than the PB2-627E variant on DF-1 cells cultured at 33°C (Figure 4 and Table S3). Thus,
220 PB2-E627K increases virus replication on mammalian cells and avian cells at the temperature of
221 the upper respiratory tract of mammals (33°C).

222

223 **Serial passaging of the two virus variants**

224 Serial passages on the mammalian A549 and MDCK cell lines and the avian DF-1 cell line
225 cultured at 37°C and 33°C were performed to assess the stability of the obtained virus isolates.
226 The 100% isolate of PB2-627K was stable on all experimental conditions for 10 passages in all
227 cell lines at both temperatures tested (data not shown). However, passaging of the PB2-627K
228 virus isolate, which contains 1.8% PB2-627K showed the 627K mutant has a replication benefit

229 in all three cell lines at both temperatures tested. However, whereas the 627K-mutation is
230 selected in the mammalian cell lines within six passages at 37°C, selection in the avian DF-1 cell
231 line takes more than 10 passages. These results suggest the PB2-E627K mutation increases
232 replication capacity of the virus in mammalian cells compared to avian cells. Furthermore, PB2-
233 627K was selected faster (within 3 or 4 passages) on cells incubated at 33°C compared to cells
234 incubated at 37°C. Thus, the lower temperatures of the mammalian upper respiratory tract (33°C)
235 could be involved in the selection of the PB2-E627K mutation.

236

237 **DISCUSSION**

238 Here we investigated three cases of HPAI H5N1 infections in wild foxes in the Netherlands to
239 assess tissue tropism in wild mammals and screen for adaptive mutations. All three foxes
240 showed unusual tissue tropism and evidence was found for mammalian adaptation. Full genome
241 sequencing of the fox viruses followed by phylogenetic analysis demonstrate they belong to clade
242 2.3.4.4b and are related to viruses detected in wild birds. The fact that the three fox-viruses were
243 not closely related, and the large distance between the locations at which the three foxes were
244 found suggest these were separate virus introductions likely originating from wild birds.

245 Experimental infection by consumption of infected bird carcasses has indicated foxes are
246 susceptible to AIV infections, which is also the most probable route of infection for free-living
247 foxes (4). Virus RNA was most abundant in the brain of all three foxes and was associated with
248 positive IHC staining for virus protein in brain tissue of all three foxes. This finding is novel, as
249 previous HPAI H5 virus infections in foxes showed a diffuse tropism with high virus replication
250 in the respiratory system similar to HPAI infection in poultry (1, 4). However, it is unclear how
251 the virus infected the brain without clear viremia and systemic replication. Fox-Heemskerk

252 showed mild positive staining by IHC of the olfactory epithelium of the nasal conchae. We also
253 detected high viral RNA loads in the throat swab of this fox most likely originating from the
254 olfactory epithelium since all other respiratory organs were tested negative by IHC. The olfactory
255 epithelium is connected to the brain via the olfactory bulb and has been previously described as a
256 point of entry for AIV (5, 6). However, we found no evidence of AIV replication in the olfactory
257 bulb based on IHC and absence of histopathologic changes, while in other parts of the brain,
258 virus expression was always associated with histopathologic changes. The olfactory epithelium
259 could play a role in virus entry but the exact route of infection remains to be elucidated. Fox-
260 Heemskerk also showed mild positive virus staining of cardiomyocytes. Infection of
261 cardiomyocytes normally indicates a systemic disease and viremia. Currently, we have no
262 information on the early stages of infection, or infections that may occur without display of
263 neurological symptoms in wild foxes. Thus, we cannot exclude virus replication also occurred in
264 the respiratory tract or other organs at a particular stage of the infection. However, in these foxes
265 showing neurological symptoms exclusive neurotropism of the virus was observed. Neurological
266 symptoms have also been reported for avian species. For example, HPAI disease in chickens is
267 short and results in sudden death however, in domestic ducks and wild birds disease is longer and
268 often neurological symptoms like partial paralysis and tremors can be observed (15-17).
269 However, HPAI is generally considered to be a respiratory disease with high virus genomic RNA
270 concentration in the respiratory system (18). Thus, the lack of virus replication in the respiratory
271 system of these foxes is interesting and suggests the current HPAI H5N1 2021-2022 viruses have
272 an increased neurotropism in mammals.

273

274 In two of the three foxes, a minority population of viruses was identified containing the zoonotic
275 mutation PB2-E627K. The fact that this mutation was not detected in any of the wild bird
276 sequences during the 2021-2022 epizootic in the Netherlands suggests this mutation quickly
277 arises upon infection of mammals. Furthermore, as both the PB2-627E and PB2-627K variants
278 were detected in these two foxes, it appears likely that this mammalian adaptation emerged
279 within these specific animals. A similar event has occurred in two seals infected with HPAI
280 H5N8 virus in August 2021 in Germany, and indicates selection pressure for this adaptation in
281 mammals (3). Histopathology revealed distinct virus protein expression and associated brain
282 histopathology with no virus replication found by IHC in the lungs in these seals, similar to the
283 foxes that were investigated in this study. We also showed mutation PB2-E627K increased
284 replication in the mammalian cell lines at both 33°C and 37°C, whereas for the avian DF-1 cell
285 line this was not observed at 37°C. Furthermore, in passaging experiments mutation PB2-627K
286 was found to have a strong replication benefit in the tested mammalian cell lines at 37°C,
287 whereas this effect was smaller on the avian cell line at this temperature. At 33°C the mutation
288 PB2-627K was found to increase the replication capacity of the virus in all three cell lines to
289 similar levels. Thus, mutation PB2-E627K increases replication speed on mammalian cells but
290 not avian cells at relevant temperatures of the upper respiratory tract (33°C). This finding is
291 supported by previous reports on the PB2-E627K mutation (9, 10). Therefore, the lower
292 temperatures of the mammalian upper respiratory tract could be a driving factor for emergence of
293 the PB2-E627K mutation. Although PB2-E627K improves virus replication in mammalian cells,
294 the mutation appears not essential for virus replication on mammalian cells, which is in
295 agreement with the initial introduction of the HPAI H5N1 virus carrying the PB2-627E variant
296 from wild birds. The additional mutation G485R in the NP that is present in the isolated PB2-
297 627E virus could be associated with adaptation to mammals as described in a previous study (19),

298 however its effect on virus replication is not known. Although a relatively small increase in
299 replication capacity was measured on mammalian cells due to the PB2-E627K mutation, previous
300 studies have indicated small increases in HPAI virus replication coincided with increased
301 pathogenicity in mammals (11, 12). Increased virus replication may also stimulate the emergence
302 of further mammalian adaptations as more genomic copies are produced per introduction.

303

304 It is currently unclear which factors have contributed to the increase of infections observed in red
305 foxes in nature. The HPAI H5N1 clade 2.3.4.4b virus may be more capable of infecting
306 mammals, the virus may be more infectious or there may be a higher prevalence of the virus in
307 wild birds during the 2021-2022 epizootic compared to previous epizootics. Alternatively, the
308 increased neurotropism of the virus may have contributed to the infection of wild red foxes.

309 Limited virus shedding and virus replication was observed in the respiratory system and digestive
310 tract of the investigated foxes, which likely limits transmission between mammals. Consistent
311 with this, no evidence for transmission between foxes was found based on the phylogenetic
312 analysis of the viruses. Genetic analysis suggests that the zoonotic mutation PB2-E627K may
313 arise in infected mammals. Although PB2-E627K is an important mammalian adaption, previous
314 research has indicated several further adaptations are required for efficient air-borne transmission
315 of AIV between mammals. For example, the PB2-E627K, HA-Q222L and HA-G224S
316 mammalian adaptations were required before ten serial passages in ferrets to eventually produce
317 airborne variants of HPAI (20). In particular adaptations in the viral HA glycoprotein, which
318 affects the stability in the mammalian airways and receptor binding specificity to the α 2,6-linked
319 sialic acid receptors in the mammalian upper respiratory tract, should be monitored closely to
320 prevent potential spread between mammals. Unfortunately, infections of mammalian carnivorous
321 wild-life are difficult to prevent during HPAI epizootics when large numbers of wild birds are

322 affected. Clearing of wild bird carcasses could help limit these HPAI introductions into wild
323 mammals, but may not be feasible during large outbreaks and at remote sites in nature.
324 Awareness should be raised for the potential transmission of HPAI viruses from wild birds to pet
325 animals. Dogs and cats may be at risk when interacting with or feeding on infected wild birds or
326 their carcasses. The observed tissue tropism in these foxes and the lack of evidence for further
327 spreading between wild mammals indicates that it is unlikely HPAI H5N1 clade 2.3.4.4b spreads
328 to humans. However, surveillance for HPAI viruses in wild mammals should be expanded to
329 closely monitor the emergence of zoonotic mutations for pandemic preparedness.

330

331 **MATERIALS AND METHODS**

332 **Tissue sampling, virus detection and histopathology**

333 Three foxes showing neurologic signs were submitted for necropsy to exclude rabies and
334 influenza A virus infection according to governmental surveillance guidelines. A post-mortem
335 examination was performed within two days after euthanasia. Various tissue samples were taken
336 for histopathology and immunohistochemistry (IHC) and fixed in 10% neutral buffered formalin.
337 Tissues were processed and evaluated for histopathologic changes with haematoxylin and eosin
338 stain (HE) and for influenza A nucleoprotein expression with IHC as described previously (15).
339 From all animals an anal swab, throat swab and brain sections (amnion horn and medulla
340 oblongata, cerebrum and cerebellum) were collected for viral RNA isolation. Swabs collected
341 during post-mortem examination were placed in 2 ml of Tryptose Phosphate Broth (TFB)
342 supplemented with 2.95% gentamycin. Avian influenza virus (AIV) RNA was subsequently
343 extracted using the MagNA Pure 96 system (Roche, Basel, Switzerland). AIV was detected by a
344 quantitative real-time RT-PCR targeting the matrix gene (M-PCR), as described previously (21).
345 Positive samples were subtyped using H5-and N1-specific real time RT-PCRs as recommended

346 by the European Union reference laboratory (22, 23). For at least one sample of each fox the HA
347 cleavage site sequence and the N subtype were determined by Sanger sequencing as described
348 elsewhere (21).

349

350 **Complete genome sequencing and analysis**

351 All virus genome sequences were determined directly on the swab or tissue samples. Virus RNA
352 was purified using the High Pure Viral RNA kit (Roche, Basel, Switzerland), amplified using
353 universal eight-segment primers and directly sequenced, as described previously (21). Purified
354 amplicons were sequenced at high coverage (average > 1000 per nucleotide position) using the
355 Illumina DNA Prep method and Illumina MiSeq 150PE sequencing. The reads were mapped
356 using the ViralProfiler-Workflow, an extension of the CLC Genomics Workbench (Qiagen,
357 Germany). Consensus sequences were generated by a reference-based method. Reads were first
358 mapped to a reference set of genomes, and subsequently remapped to the closest reference
359 sequence. Finally, the consensus sequence of the complete virus genome was extracted and
360 minority variants were called using a cutoff of 1%.

361

362 **Phylogenetic analysis**

363 In addition to the virus sequences obtained from foxes and wild birds in the Netherlands in this
364 study, the top-5 BLAST results for related sequences in Eurasia were included in the
365 phylogenetic analysis. These H5N1 genome sequences were downloaded from the GISAID
366 database (24). Phylogenetic analysis of the complete genome sequences was performed for each
367 genome segment separately, aligning the virus sequences using MAFFT v7.475 (25),
368 reconstructing the phylogeny using maximum likelihood (ML) analysis with IQ-TREE software

369 v2.0.3 and 1000 bootstrap replicates (26). ML tree was visualized using the R package ggtree
370 (27). The GISAID sequences used in the phylogenetic analysis are listed in Table S5, in which
371 we acknowledge all contributors to the GISAID database.

372

373 **Cell cultures**

374 Madin-Darby Canine Kidney (MDCK) cells obtained from Philips-Duphar (Weesp,
375 the Netherlands), chicken embryo fibroblasts (DF-1)(ATCC, Wesel, Germany) and human lung
376 alveolar epithelial cells (A549)(ATCC, Wesel, Germany) were maintained in cell culture medium
377 consisting of Dulbecco's Modified Eagle Medium GlutaMAX (DMEM)(Thermo Fisher
378 Scientific, Bleiswijk, Netherlands) supplemented with 5% fetal calf serum (Capricorn scientific,
379 Germany) and 0.1% penicillin-streptomycin (Thermo Fisher Scientific, Bleiswijk, Netherlands)
380 at 37°C, 5% CO₂. Cells were passaged when confluent using 0.05% Trypsin-EDTA (Thermo
381 Fischer Scientific, Bleiswijk, Netherlands).

382

383 **Virus isolation, titration and propagation**

384 Tissue homogenates from brain tissue (Amnion horn and medulla oblongata, cerebrum and
385 cerebellum) were incubated for 1 hour with 1% penicillin and 1% gentamycin at room
386 temperature. The tissue homogenates were filtered and injected in 9-day-old specific pathogen
387 free (SPF) embryonated chicken eggs (ECE), as described previously (28). Allantoic fluid was
388 harvested from deceased eggs, aliquoted, stored at -80°C and sequenced using Illumina
389 sequencing as described above. Subsequently, a serial dilution of the amnion horn and medulla
390 oblongata homogenate was injected in fresh 9-day-old SPF ECE's. Allantoic fluid was harvested
391 from all eggs and individually sequenced. The median tissue culture infective dose (TCID₅₀) of
392 the isolated viruses was determined by end-point titration on MDCK cells. In short, 2.5x10⁴

393 cells per well of a 96-well plate were seeded overnight in cell culture medium. Monolayers were
394 infected with ten-fold serial dilutions in infection medium consisting of DMEM glutaMAX
395 supplemented with 0.1% penicillin-streptomycin and 0.3% bovine serum albumin. Each dilution
396 was tested in eight-fold and each titration was diluted in triplicate. After two days of incubation at
397 37°C, 5% CO₂ the monolayers were stained by immunoperoxidase monolayer assay (IPMA).
398 Monolayers were fixed with 10% neutral-buffered formalin, primary antibody was produced in-
399 house from HB 65 mouse anti-nucleoprotein and diluted 1:2500 followed by HRP-conjugated
400 rabbit anti-mouse diluted 1:500 (Dako, Glostrup, Denmark). The titration was repeated on a
401 different day and TCID50 titres were calculated using Reed and Muench (29).
402

403 **Virus replication**

404 The multiplicity of infection (MOI) was optimized for each cell line by selecting a dilution,
405 which caused limited cell death but sufficient virus replication. MDCK, DF-1 and A549 cells
406 were seeded in duplo on a 24-well plate at a density of 2.5x10⁵ cells per well in cell culture
407 medium. The next day, cells were infected with 1.5 ml of virus diluted in infection medium at a
408 multiplicity of infection of 0.01 (A549), 0.001(MDCK) or 0.0005(DF-1) and incubated at 37°C,
409 5% CO₂ or 33°C, 5% CO₂. At indicated time points, 150 µl of medium was harvested and stored
410 at -80°C. 150 µl of fresh infection medium was added after each harvest. Infectious virus titre of
411 the collected medium was determined in triplo using the TCID50 protocol described above.
412

413 **Passaging of viruses and sequence analysis**

414 Stability of the virus isolates was determined by passaging ten times on A549, MDCK and DF-1
415 cells at identical temperatures and MOI as the replication experiment described above. In short,
416 cells were seeded at a density of 2.5x10⁶ cells per T-25 flask. The next day, cells were infected

417 with diluted virus in 3 ml infection medium. Cells were incubated either at 37°C, 5% CO₂ or
418 33°C, 5% CO₂ for three days before the medium was collected. The medium was diluted 1000x
419 and added to a fresh T-25 flask of A549, MDCK or DF-1 cells. The remaining undiluted medium
420 was stored at -80°C for sequencing. Viral RNA was isolated with the Zymo Quick-RNA Viral 96
421 Kit (BaseClear, Leiden, Netherlands). A region of 168 base pairs on the PB2 protein was
422 amplified by RT-PCR using custom primers (Table S6)(Eurogentec, Maastricht, Netherlands)
423 and the QIAGEN OneStep RT-PCR Kit (Qiagen, Venlo, Netherlands). Amplicon length and
424 concentration was analysed using HS DNA 1000 with TapeStation 2200 (Agilent) and Quanti-IT
425 (ThermoFisher) with ClarioStar (BMG). Region specific amplicons were individually barcoded
426 using Illumina's Nextera XT Index V2 kit with limit cycle PCR and PE150 sequenced on
427 Illumina's Miseq. The reads were mapped using the ViralProfiler-Workflow, an extension of the
428 CLC Genomics Workbench (Qiagen, Germany). Consensus sequences were generated by a
429 reference-based method and minority variants were called using a cut-off of 1%. Minimal
430 coverage at position PB2-627K was 2000 reads.

431

432 **Statistics**

433 For statistical analysis of the virus replication curves, we considered two levels of dependency in
434 the generated data: repeated measures nested within a replicate and replicate nested within a
435 virus-cell combination. To account for these dependencies we fitted linear mixed models (LMM),
436 where this nested structure and repeated measures were included as random effects. The virus
437 titer (TCID₅₀/ml) was the response variable, the variables Time (time of harvest post infection),
438 Virus (two isolates PB2-627E and PB2-627K), Cell (MDCK, A549 or DF-1) and Temperature
439 (37°C or 33°C) as well as their interactions were assessed to evaluate their significance. If an

440 interaction was not significant, it was excluded from the final model. Significant interactions ($p <$
441 0.05) kept in the final model were Time:Virus, Time:Temperature and Time:Cell. Variable
442 significance was assessed using the Likelihood Ratio test. This analysis was done using the
443 statistical software R (30), the LMM was fitted using the package lmer (31), and post hoc test for
444 pairwise comparisons were done using the package emmeans (32). Further assessments were
445 done for the data generated from the cell line DF-1. Because of the limited number of
446 observations, this analysis was done by fitting linear models assuming observations were
447 independent (see Results).

448

449 **Accession numbers of viruses**

450 The virus sequences generated in this study were submitted to the GISAID database, and
451 accession numbers are listed in Table S2.

452

453 **ACKNOWLEDGEMENTS**

454 We acknowledge Albert G de Boer, Arno-Jan Feddema, Corry H Dolstra, Eline Verheij and
455 Frank Harders for technical assistance. We acknowledge Latoya Siemons VRC Zundert, St.
456 Dierenambulance Kennemerland, Dierenkliniek Castricum, Faunabeheer Middachten, and the
457 Netherlands Food and Consumer Product Safety Authority (NVWA) for notifying and submitting
458 the foxes. We thank Wim H M van der Poel for critical reading of the manuscript. This research
459 was funded by the Dutch Ministry of Agriculture, Nature and Food Quality (project WOT-01-
460 003-096 and KB-37-003-039).

461

462 **REFERENCES**

- 463 1. Floyd T, Banyard AC, Lean FZ, Byrne AM, Fullick E, Whittard E, Mollett BC, Bexton S, Swinson V, Macrelli M. 2021. Encephalitis and Death in Wild Mammals at a Rehabilitation Center after Infection with Highly Pathogenic Avian Influenza A (H5N8) Virus, United Kingdom. *Emerging infectious diseases* 27:2856.
- 467 2. Rijks JM, Hesselink H, Lollinga P, Wesselman R, Prins P, Weesendorp E, Engelsma M, Heutink R, Harders F, Kik M. 2021. Highly pathogenic avian influenza A (H5N1) virus in wild red foxes, the Netherlands, 2021. *Emerging infectious diseases* 27:2960.
- 470 3. Postel A, King J, Kaiser FK, Kennedy J, Lombardo MS, Reineking W, de le Roi M, Harder T, Pohlmann A, Gerlach T. 2022. Infections with highly pathogenic avian influenza A virus (HPAIV) H5N8 in harbor seals at the German North Sea coast, 2021. *Emerging microbes & infections* 11:725-729.
- 474 4. Reperant LA, Van Amerongen G, Van De Bildt MW, Rimmelzwaan GF, Dobson AP, Osterhaus AD, Kuiken T. 2008. Highly pathogenic avian influenza virus (H5N1) infection in red foxes fed infected bird carcasses. *Emerging Infectious Diseases* 14:1835.
- 477 5. Rimmelzwaan GF, van Riel D, Baars M, Bestebroer TM, van Amerongen G, Fouchier RA, Osterhaus AD, Kuiken T. 2006. Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts. *The American journal of pathology* 168:176-183.
- 481 6. Van Riel D, Verdijk R, Kuiken T. 2015. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. *The Journal of pathology* 235:277-287.
- 484 7. de Graaf M, Fouchier RA. 2014. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. *The EMBO journal* 33:823-841.

486 8. Galloway SE, Reed ML, Russell CJ, Steinhauer DA. 2013. Influenza HA subtypes
487 demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications
488 for host range and adaptation. *PLoS pathogens* 9:e1003151.

489 9. Steel J, Lowen AC, Mubareka S, Palese P. 2009. Transmission of influenza virus in a
490 mammalian host is increased by PB2 amino acids 627K or 627E/701N. *PLoS pathogens*
491 5:e1000252.

492 10. Subbarao EK, London W, Murphy BR. 1993. A single amino acid in the PB2 gene of
493 influenza A virus is a determinant of host range. *Journal of virology* 67:1761-1764.

494 11. Peng X, Liu F, Wu H, Peng X, Xu Y, Wang L, Chen B, Sun T, Yang F, Ji S. 2018. Amino
495 acid substitutions HA A150V, PA A343T, and PB2 E627K increase the virulence of
496 H5N6 influenza virus in mice. *Frontiers in microbiology* 9:453.

497 12. Yu Z, Cheng K, Sun W, Zhang X, Xia X, Gao Y. 2018. PB2 and HA mutations increase
498 the virulence of highly pathogenic H5N5 clade 2.3. 4.4 avian influenza virus in mice.
499 *Archives of virology* 163:401-410.

500 13. Zhang H, Li X, Guo J, Li L, Chang C, Li Y, Bian C, Xu K, Chen H, Sun B. 2014. The
501 PB2 E627K mutation contributes to the high polymerase activity and enhanced replication
502 of H7N9 influenza virus. *Journal of General Virology* 95:779-786.

503 14. Taft AS, Ozawa M, Fitch A, Depasse JV, Halfmann PJ, Hill-Batorski L, Hatta M,
504 Friedrich TC, Lopes TJ, Maher EA. 2015. Identification of mammalian-adapting
505 mutations in the polymerase complex of an avian H5N1 influenza virus. *Nature
506 communications* 6:1-12.

507 15. Vreman S, Bergervoet SA, Zwart R, Stockhove-Zurwieden N, Beerens N. 2022. Tissue
508 tropism and pathology of highly pathogenic avian influenza H5N6 virus in chickens and
509 Pekin ducks. *Research in Veterinary Science* 146:1-4.

510 16. Grund C, Hoffmann D, Ulrich R, Naguib M, Schinköthe J, Hoffmann B, Harder T,
511 Saenger S, Zscheppang K, Tönnies M. 2018. A novel European H5N8 influenza A virus
512 has increased virulence in ducks but low zoonotic potential. Emerging microbes &
513 infections 7:1-14.

514 17. Caliendo V, Leijten L, van de Bildt M, Germeraad E, Fouchier RA, Beerens N, Kuiken T.
515 2022. Tropism of Highly Pathogenic Avian Influenza H5 Viruses from the 2020/2021
516 Epizootic in Wild Ducks and Geese. Viruses 14:280.

517 18. Beerens N, Germeraad EA, Venema S, Verheij E, Pritz-Verschuren SB, Gonzales JL.
518 2021. Comparative pathogenicity and environmental transmission of recent highly
519 pathogenic avian influenza H5 viruses. Emerging microbes & infections 10:97-108.

520 19. Luk GS, Leung CY, Sia SF, Choy K-T, Zhou J, Ho CC, Cheung PP, Lee EF, Wai CK, Li
521 PC. 2015. Transmission of H7N9 influenza viruses with a polymorphism at PB2 residue
522 627 in chickens and ferrets. Journal of Virology 89:9939-9951.

523 20. Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM,
524 Bestebroer TM, Burke DF, Smith DJ. 2012. Airborne transmission of influenza A/H5N1
525 virus between ferrets. science 336:1534-1541.

526 21. Bouwstra R, Koch G, Heutink R, Harders F, Van Der Spek A, Elbers A, Bossers A. 2015.
527 Phylogenetic analysis of highly pathogenic avian influenza A (H5N8) virus outbreak
528 strains provides evidence for four separate introductions and one between-poultry farm
529 transmission in the Netherlands, November 2014. Eurosurveillance 20:21174.

530 22. Slomka M, Pavlidis T, Banks J, Shell W, McNally A, Essen S, Brown I. 2007. Validated
531 H5 Eurasian real-time reverse transcriptase–polymerase chain reaction and its application
532 in H5N1 outbreaks in 2005–2006. Avian diseases 51:373-377.

533 23. IZSVe. 2021. HA and NA subtyping of avian influenza virus by real-time RT-PCR.
534 <https://www.izsvenezie.com/documents/reference-laboratories/avian->
535 [influenza/diagnostic-protocols/sop-vir-1004.pdf](https://www.izsvenezie.com/documents/reference-laboratories/avian-influenza/diagnostic-protocols/sop-vir-1004.pdf). Accessed 19 april.

536 24. Shu Y, McCauley J. 2017. GISAID: Global initiative on sharing all influenza data-from
537 vision to reality. 590 Euro surveillance: bulletin Europeen sur les maladies
538 transmissibles= European communicable disease 591 bulletin. 2017; 22 (13): 30494. doi:
539 10.2807/1560-7917. ES.

540 25. Katoh K, Toh H. 2010. Parallelization of the MAFFT multiple sequence alignment
541 program. Bioinformatics 26:1899-1900.

542 26. Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and
543 effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular
544 biology and evolution 32:268-274.

545 27. Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. 2017. ggtree: an R package for
546 visualization and annotation of phylogenetic trees with their covariates and other
547 associated data. Methods in Ecology and Evolution 8:28-36.

548 28. OIE. May 2021 2021. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals.
549 [https://www.oie.int/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-](https://www.oie.int/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/)
550 [online-access/](https://www.oie.int/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/). Accessed 19 April.

551 29. Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent endpoints.
552 American journal of epidemiology 27:493-497.

553 30. Team RC. 2013. R: A language and environment for statistical computing. R Foundation
554 for Statistical Computing, Vienna, Austria. <http://www.R-project.org/>.

555 31. Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models
556 using lme4. Journal of Statistical Software 67: 1–48.

557 32. Lenth R, Singmann H, Love J, Buerkner P, Herve M. 2020. emmeans: estimated marginal
558 means, aka least-squares means, R package version 1. 5. 1.

559

560

561

562

563 **Figure 1:** Locations of the three infected foxes and wild birds from which closely related viruses
564 were isolated during the 2021-2022 HPAI H5N1 epizootic in the Netherlands.

565

566 **Table 1: Virus detection, Hemagglutinin/Neuraminidase-subtyping and sequencing.^a**

	Sample type	Ct M PCR	Ct H5 PCR	Ct N1 PCR	PB2-627 consensus ^b	PB2-627 minority ^b	Cleavage site ^c
Fox-Dorst	Throat swab	30.31	31.3	31.73	E	K: 37.4%	PLREKRRKR/GLF
	Anal swab	34.95	35.57	34.78	ND	ND	
	Amnion horn and medulla oblongata	24.13	25.81	ND	E	K: 46.1%	PLREKRRKR/GLF
	Cerebrum and cerebellum	26.23	27.19	ND	E	K: 19.5%	PLREKRRKR/GLF

Fox- Heemskerk	Throat swab	23.33	25.06	23.84	E	-	PLKEKRRKR/GLF
	Anal swab	no Ct	ND	ND	ND	ND	
	Amnion horn and medulla oblongata	23.04	25.4	24.98	E	-	PLKEKRRKR/GLF
	Cerebrum and cerebellum	22.19	24.09	22.78	E	-	PLKEKRRKR/GLF
Fox- Oosterbeek	Throat swab	26.81	26.54	27.69	E	K: 28.8%	PLREKRRKR/GLF
	Anal swab	no Ct	ND	ND	ND	ND	
	Amnion horn and medulla oblongata	20.99	21.88	22.93	ND	ND	
	Cerebrum and cerebellum	17.77	18.12	19.19	E	-	PLREKRRKR/GLF

567 ^a Real-time RT-PCR was used for subtyping, ND: not done.

568 ^b PB2-627 consensus and minorities for the avian (E) and mammalian (K) variants were called

569 using Illumina sequencing, -: minority < 1%.

570 ^cThe HA cleavage site sequence was determined by Sanger sequencing.

571

572 **Figure 2: Histopathology and virus protein expression in tissues of foxes.**

573 Immunohistochemistry (IHC) was performed on tissue sections against influenza A
574 nucleoprotein, insets show hematoxylin and eosin stain (HE) or magnification of IHC stain A)
575 Fox-Dorst moderate purulent broncho-interstitial pneumonia (less affected area), no virus protein
576 expression; B) Fox-Oosterbeek severe purulent broncho-interstitial pneumonia with intralesional
577 larvae (*Angiostrongylus vasorum*), no virus protein expression; C) Fox-Heemskerk mild to
578 moderate purulent rhinitis with positive staining of olfactory epithelial cells; D) Fox-Dorst severe
579 necropurulent tracheitis with intralesional parasite eggs (*Capillaria spp*), no virus protein
580 expression; E) Fox-Dorst cerebrum moderate non-suppurative polioencephalitis with virus
581 protein expression in neurons and microglia cells in the neuropil; F) Fox-Heemskerk cerebellum
582 moderate non-suppurative polioencephalitis with virus protein expression in neurons and
583 microglia cells in the neuropil; G) Fox-Oosterbeek bulbus olfactorius no significant
584 histopathology and virus protein expression; H) Fox-Heemskerk moderate lymphoplasmacytic
585 myocarditis with mild myocardial degeneration and necrosis with positive virus protein staining
586 of cardiomyocytes; I) Fox-Oosterbeek colon, no significant histopathology and virus protein
587 expression; A, B, C, D , H and I magnification 20x, F- magnification 10x, E-G, original
588 magnification 2,5x – insets, magnification 40x.

589

590 **Figure 3:** Phylogenetic tree for the HA segment obtained with the Maximum Likelihood method
591 showing the viruses detected in the samples of the three foxes (orange), and closely related HA
592 sequences from other viruses detected in the Netherlands (green), Europe (blue) and relevant
593 sequences from the 2020-2021 epizootic (blue).

594

595 **Figure 4:** Virus replication curves of the PB2-627K (blue) and PB2-627E (red) H5N1 HPAI
596 viruses on A549 (human), MDCK (dog) and DF-1 (chicken) cells cultured at 37°C, the
597 temperature of the avian upper respiratory tract and 33°C, the temperature of the mammalian
598 upper respiratory tract. Differences in infectious virus titre between viruses is significant from
599 48h p.i. onwards ($p < 0.05$). No significant differences were found between infectious virus titre
600 of the two viruses on DF-1 cells at 37°C ($p > 0.05$). Virus titre on cells cultured at 33°C instead
601 of 37°C were significantly lower at 24h p.i. ($p < 0.0001$) and 48h p.i. ($p < 0.05$) but significantly
602 higher at 72h p.i. ($p < 0.05$).
603

604 **Table 2: Serial passaging of the PB2-627 variants on cell lines.^a**

Passage	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
A549 37°C	9.4%	80.7%	81.7%	94.5%	98.6%	100%	100%	100%	100%	100%
MDCK 37°C	18.1%	49.7%	95.2%	97.8%	99.0%	100%	100%	100%	100%	100%
DF-1 37°C	32.6%	87.3%	93.1%	91.4%	93.8%	94.4%	97.2%	97.9%	98.8%	98.3%
A549 33°C	13.8%	44.9%	94.0%	-	100%	-	-	-	100%	100%
MDCK 33°C	26.8%	91.7%	98.4%	100%						

DF-1	77.9%	97.7%	100%							
33°C										

605 ^a Percentage of reads containing the mammalian PB2-627K variant over serial passages on A549,
606 MDCK and DF-1 cells at 37°C and 33°C. Minority threshold is 1%, -: sample did not pass the
607 quality criteria.

608

609 **SUPPLEMENTALS**

610 **Table S1: Immunohistochemistry and histopathology.**

611

612 **Table S2: Geographical and nucleotide distance between foxes and wild birds infected with**
613 **HPAI.**

614

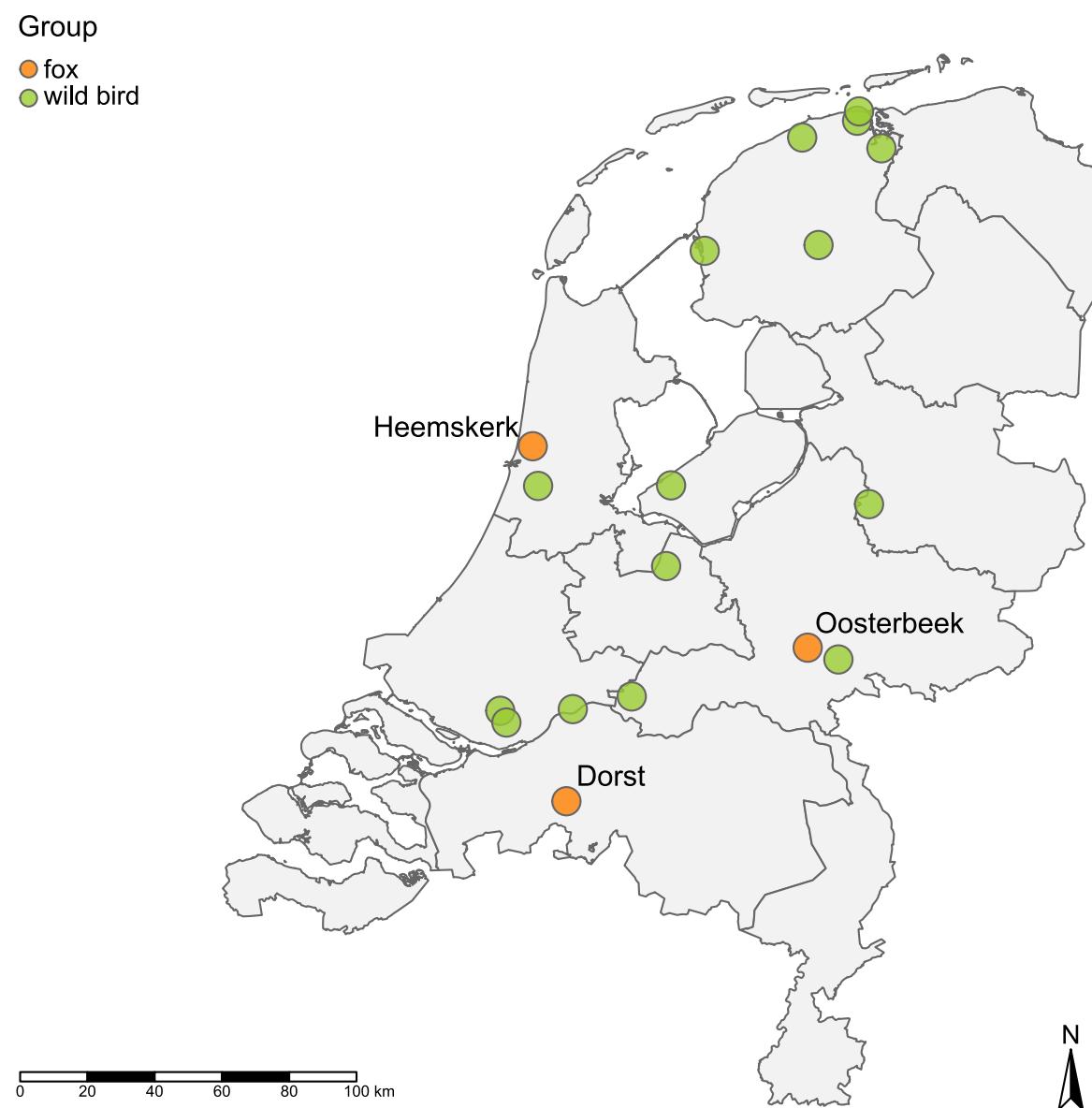
615 **Figure S1:** Phylogenetic tree for all eight virus RNA segments obtained with the Maximum
616 Likelihood method showing the viruses detected in the samples of the three foxes (orange), and
617 closely related viral RNA sequences from other viruses detected in the Netherlands (green),
618 Europe (blue) and relevant sequences from the 2020-2021 epizootic (blue).

619

620 **Table S3: MLL analysis of variables time and virus variants 627E-627K.**

621

622 **Table S4: MLL analysis of variables time and temperatures 33°C and 37°C.**


623

624 **Table S5: GISAID accession numbers.**

625

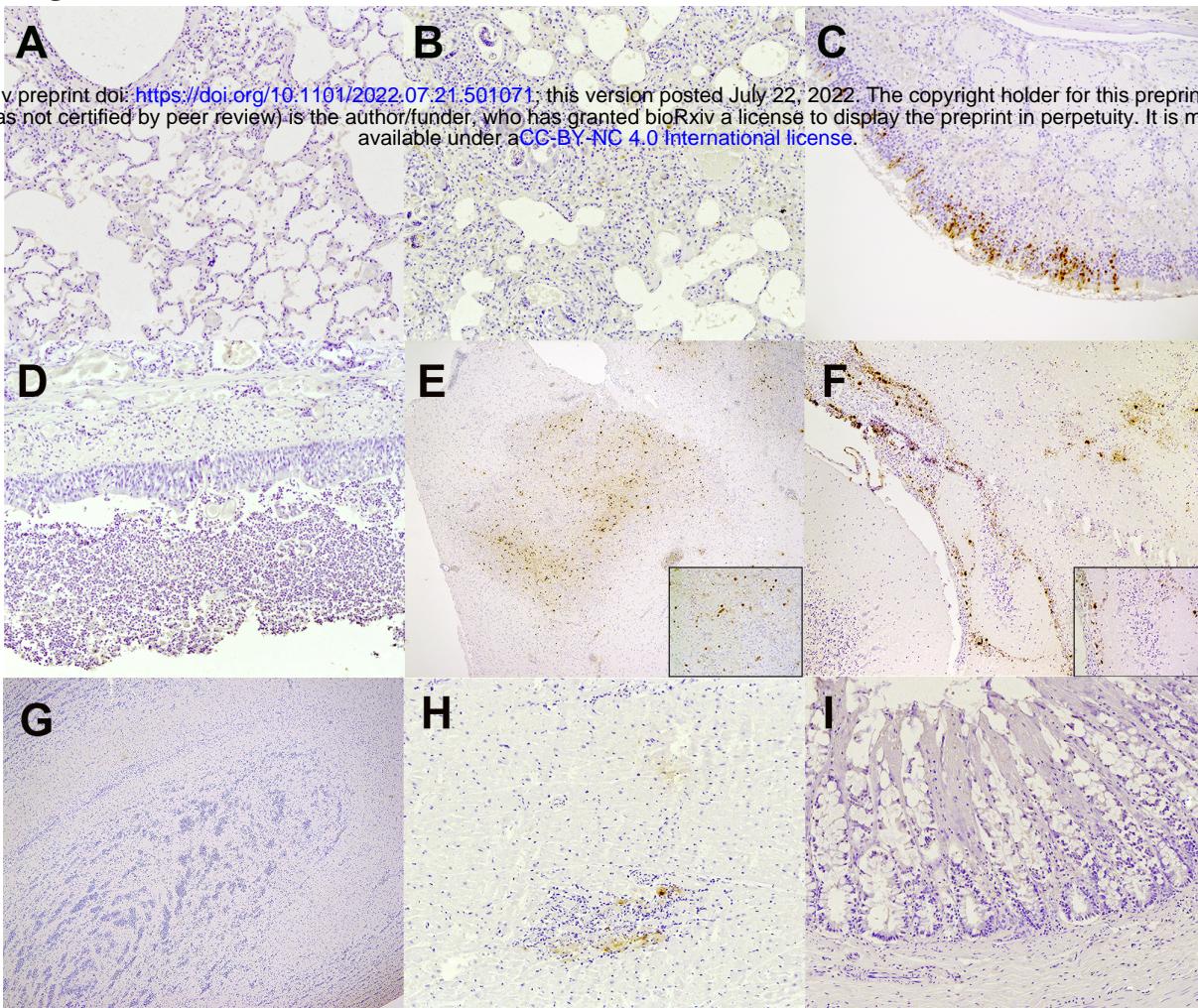

626 **Table S6: Primer sequences with Illumina tag for amplification of PB2 protein region.**

Figure 1

Figure 1: Locations of the three infected foxes and wild birds from which closely related viruses were isolated during the 2021-2022 HPAI H5N1 epizootic in the Netherlands.

Figure 2

Figure 2: Histopathology and virus protein expression in tissues of foxes. Immunohistochemistry (IHC) was performed on tissue sections against influenza A nucleoprotein, insets show hematoxylin and eosin stain (HE) or magnification of IHC stain A) Fox-Dorst moderate purulent broncho-interstitial pneumonia (less affected area), no virus protein expression; B) Fox-Oosterbeek severe purulent broncho-interstitial pneumonia with intralesional larvae (*Angiostrongylus vasorum*), no virus protein expression; C) Fox-Heemskerk mild to moderate purulent rhinitis with positive staining of olfactory epithelial cells; D) Fox-Dorst severe necropurulent tracheitis with intralesional parasite eggs (*Capillaria spp*), no virus protein expression; E) Fox-Dorst cerebrum moderate non-suppurative polioencephalitis with virus protein expression in neurons and microglia cells in the neuropil; F) Fox-Heemskerk cerebellum moderate non-suppurative polioencephalitis with virus protein expression in neurons and microglia cells in the neuropil; G) Fox-Oosterbeek bulbus olfactorius no significant histopathology and virus protein expression; H) Fox-Heemskerk moderate lymphoplasmacytic myocarditis with mild myocardial degeneration and necrosis with positive virus protein staining of cardiomyocytes; I) Fox-Oosterbeek colon, no significant histopathology and virus protein expression; A, B, C, D , H and I magnification 20x, F- magnification 10x, E-G, original magnification 2,5x – insets, magnification 40x.

Figure 3

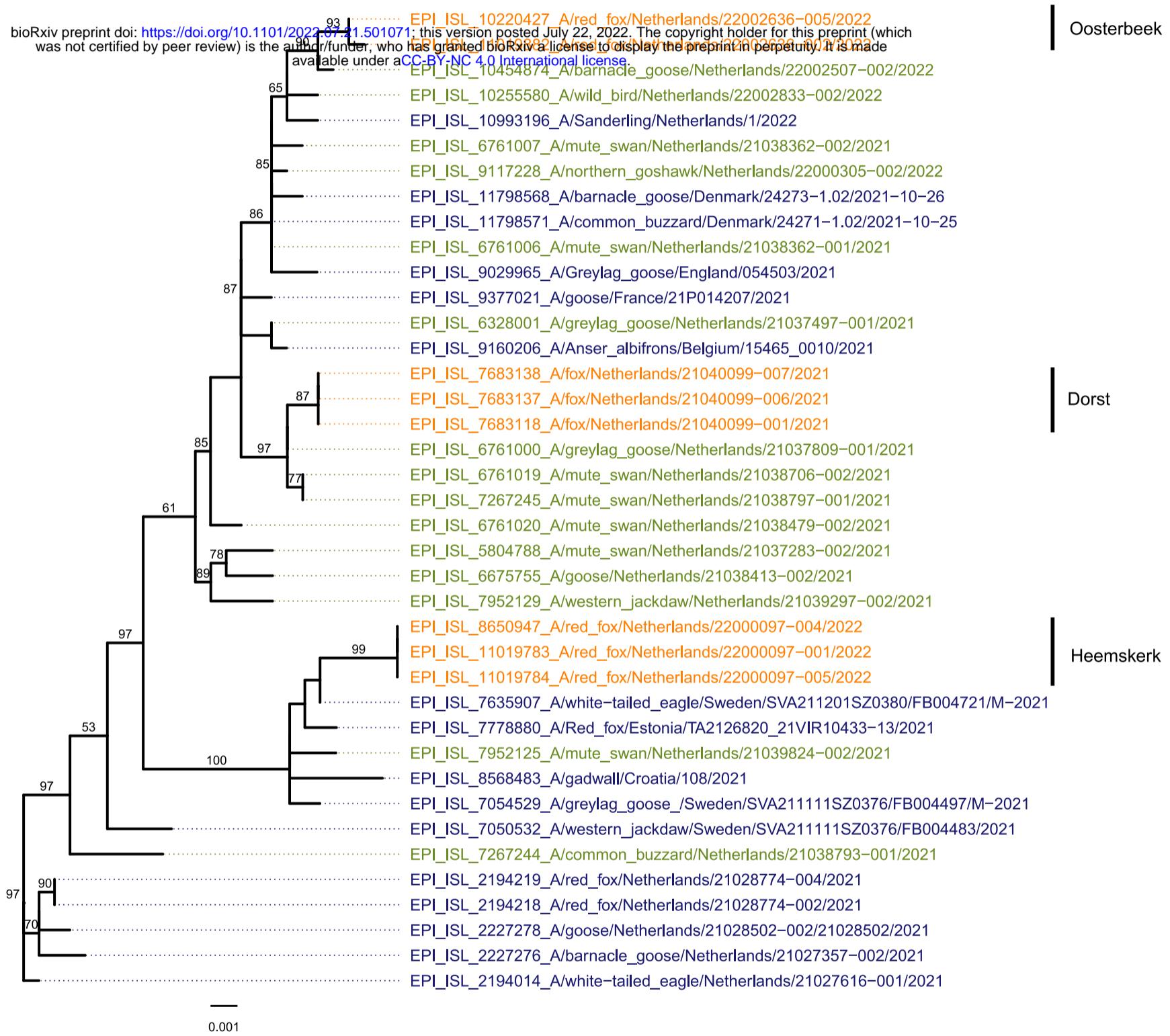
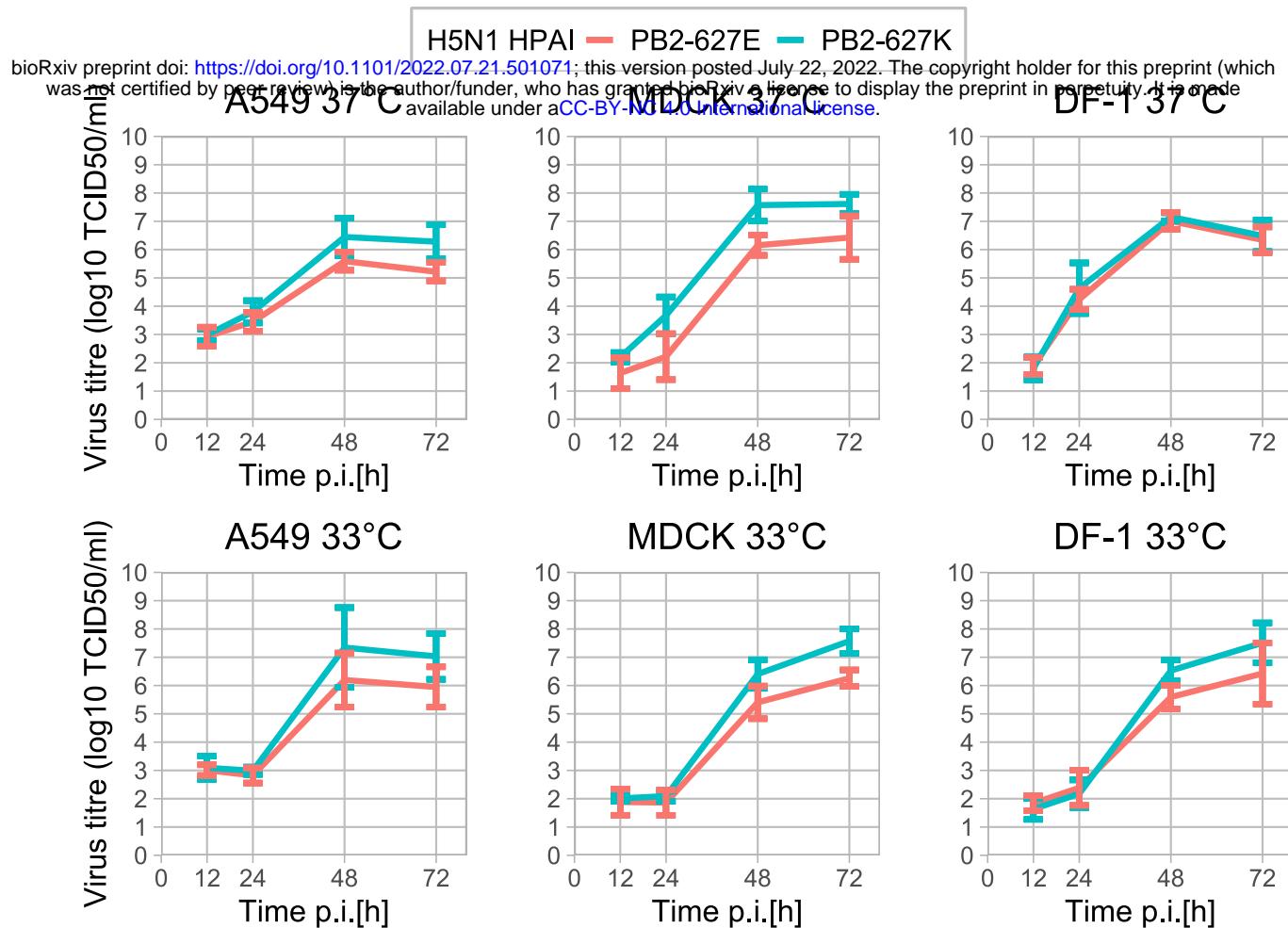



Figure 3: Phylogenetic tree for the HA segment obtained with the Maximum Likelihood

method showing the viruses detected in the samples of the three foxes (orange), and closely related HA sequences from other viruses detected in the Netherlands (green), Europe (blue) and relevant sequences from the 2020-2021 epizootic (blue).

Figure 4

Figure 4: Virus replication curves of the PB2-627K (blue) and PB2-627E (red) H5N1 HPAI viruses on A549 (human), MDCK (dog) and DF-1 (chicken) cells cultured at 37°C, the temperature of the avian upper respiratory tract and 33°C, the temperature of the mammalian upper respiratory tract. Differences in infectious virus titre between viruses is significant from 48h p.i. onwards ($p < 0.05$). No significant differences were found between infectious virus titre of the two viruses on DF-1 cells at 37°C ($p > 0.05$). Virus titre on cells cultured at 33°C instead of 37°C were significantly lower at 24h p.i. ($p < 0.0001$) and 48h p.i. ($p < 0.05$) but significantly higher at 72h p.i. ($p < 0.05$).