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Abstract

Motivation: Genes which are involved in the same biological processes tend to co-evolve. Thus,
metabolic pathways, protein complexes, and other kinds of protein-protein interactions can be
inferred by looking for correlated patterns of gene retention and loss across the tree of life—a
technique called phylogenetic profiling. Recent methodological developments on phylogenetic
profiling have focused on scalability improvements to take advantage of the rapidly accumulating
genomic data. However, state-of-the-art methods assume that the correlation resulting from
co-evolving proteins is uniform across all species considered. This is reasonable for interactions
already present at the root of the species considered, but less so for ones that emerge in more
recent lineages. To address this challenge and take advantage of recent developments in deep
learning methods, we introduce a phylogenetic profiling method which processes large gene
co-phylogenies using neural networks.

Results: We show that post-processing conventional phylogenetic profiles using deep neural
networks can improve predictions, but requires onerous training on specific phylogenies.
Overcoming this limitation by taking the topology of the species tree as an input, Graph Neural
Networks are shown to outperform all other methods when interaction detection is not centered on
just one species of interest, while also predicting when interactions appeared and in which taxa they
are present.

Conclusion: Graph Neural Networks constitute a promising new approach for phylogenetic profiling.
Our work is a first foray into “dynamic phylogenetic profiling” —the reconstruction of pairwise protein
interaction across time.

Availability: All of the code is available on the project Git at
https://github.com/DessimozLab/HogProf/tree/master/pyprofiler/notebooks/Graphnet. Datasets
used are hosted at http://humap?2.proteincomplexes.org/download and

https://string-db.org/cgi/download.
Contact: dmoi@unil.ch

No protein is an island. All of the complexity we can
observe in biological life is due to the emergent properties
1 Introduction of the sum of all the molecular interactions within an
organism. To represent the sum total of these interactomes
succinctly we can model them as protein interaction
networks whose nodes represent a given protein and


https://doi.org/10.1101/2022.07.21.501014
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.21.501014; this version posted July 22, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

D. Moi et al.

whose edges represent an interaction affinity. Different
regions ofg a protein interaction network will Ke enriched
in interactions specific to certain biological processes such
as photosynthesis or signalin% Fathways necessary for the
development of a multicellular organism. Throughout
evolution, organisms speciate and adapt to new niches
through incremental random changes at the gene and gene
content level. Genes may be lost or become inactivated,
duplicated and neofunctionalised or even gained as
de-novo (Gabaldén and Koonin, 2013). These changes at
the gene level, if kept, will also have an impact on the
network level over time. For example, if the loss of one
gene renders a particular biological process defunct, its
grotein interaction network neighborhood will also lar%ely
e rendered irrelevant and slowly these genes will be
inactivated or lost over successive generations or
repurposed for other functions in other networks.

Phylogenetic profiling methods (Pellegrini et al.,
1999; Tabach et al., 2013; Franceschini et al., 2016;
Sherill-Rofe et al., 2019; Moi et al., 2020) seek to exploit
this correlated evolutionary signal between genes involved
in the same biological processes in order to reconstruct the
underlying pairwise interactions, interaction network
neighborhoods and global interactomes.

To correlate the evolutionary histories between
these gene families, a first step of reconstructing each
family’s history is necessary. This can either be done by
comgaring the extant distribution of a homologous gene
family using a simple presence/absence approach for each
taxon of interest, or more complex pipel[l)nes designed to
reconstruct the full history of a gene’s evolutionary
trajectory from its emergence to its extant distribution. In
this work, we do the latter by using as input the
comprehensive gene family 1E)/RKlog.;enetic reconstructions
from the well-established O database (Zahn-Zabal et
al., 2020; Altenhoff et al., 2021).

Typically, the evolutionary information for each
protein family is encoded in either a tree-like or vector
object. A distance between the phylogenetic profiles
representing the evolutionary signatures of protein
families can be established using any number of methods
appropriate for either vectors or trees. The methods that
have currently been explored using vector based
approaches are commonly used distances between pairs of
binary or continuous vectors. Some metrics capture
information on the evolutionary distance between
members of a gene family in relation to the species
containing the interactions that are being represented by
the profiles. Using probabilistic data structures in the
HOGPROF pipeline (Moi et al., 2020) we were able to
create a fast, editable and tunable framework for profile
comparison. The minhash signatures of profiles allow for
the comparison and searching within sets of profiles using
an approximation of the Jaccard distance (a vector based
distance which had been previously established as a
profile comparison metric). Other vector based distances
that have been used include the Pearson correlation,
empirical covariance, Euclidean distance and Hamming
distance.

When using sets of closely coevolving profiles,
approaches using direct coupling analysis or DCA
(Morcos et al, 2011) may become appropriate to
disentangle the conditional dependencies. Typically, in
bioinformatics, these methods are used on multiple
alignments (MSAs) of homologous protein sequences to
find coevolving sites. These often correspond to contact
points within the either tertiary or quaternary structures of
the proteins which are necessary for their biological
function. In a similar fashion, DCyA has been applied to
groups of closely coevolving profiles, either directly on
the profiles themselves or on the pairs of MSAs
corresponding to both families (Marmier et al, 2019;
Fukunaga and Iwasaki, 2021). Unfortunately, however, the
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coevolution signal between profiles may be restricted to
specific clades of species (Sherill-Rofe ef al., 2019). Since
DCA is phylogeny naive, finding the sparse inverse of the
correlation matrix between proﬁ%es (within an improperly
selected taxonomic subset or with a set of mismatched
profiles) will result in low values with the correlation
matrix. Taking its inverse will result in large eigenvalues
that do not reflect the strength of interaction within a
species of interest. In this work we are considering the set
of all interactions and comparing metrics that can be
applied to profiles which are only weakly correlated,
making the application of DCA limited in its utility.

Tree-based distances are an alternative to these
phylogeny naive approaches, leveraging the species tree or
the phylogeny of each protein family to establish a score
reflecting the coevolutionary signature of two protein
families (Ta et al., 2011; Ruano-Rubio et al., 2009).

In this work, we will investigate the PPI
prediction capabilities of two neural network architectures
adapted to the vector and tree representation of
phy o%enetic profiles: deep neural network (DNN) and
convolutional graph networks (CGN) respectively. To
illustrate the strengths and shortcomings of each
architecture we prepared two PPI datasets, one where
interactions are known to be present or absent within a
single species (human) and another between protein
families without any restrictions on which species the
interactions are found in. Designing and benchmarking
methods to infer networks in the context of substantial
incomplete data (Ogen—world assumption, e.g. Dessimoz
et al., 2013) can be challenging, particularly when no
ground truth is known that can provide true negatives for
either biological functions or interactions between
proteins within a subnetwork (Drew et al., 2021).

For the human-specific interactions we chose to
use the high fidelity Hu.Map dataset (Drew et al., 2021).
Hu.Map offers a gold standard dataset to measure our
methods’ efficacy in retrieving interactions in humans, but
phylogenetic profiling is also of particular interest in
non-model organisms. Since ancestral interactomes
diverge differentially in each clade after speciation events,
interactions may be Preserved in some lineages while
being lost or ‘rewired’ in others (Medina et al., 2016). To
effectively develop methods to detect these phenomena of
clade specific coevolutionary signals within specific
neighborhoods of the interactome, we also require a
dataset spanning many eukaryotic clades. For this we
chose the dataset with the broadest taxonomic range of
interaction data. The STRING (Szklarczyk et al., 2019)
database contains interaction data for protein families
(co-occurring groups or COGs in their database) as well
as the individual interactions contributing to the
interaction score between two COGs. Using this dataset, it
is possible to train classifiers to identify interactions
between profiles corresponding to two COGs (in the case
of the DNN) or to label a species tree to show where an
interaction between two COGs may have emerged and in
which extant species the interaction can be found (in the
case of the CGII\)I).

2 Methods

2.1 OMA database and HOG input data

The OMA database organizes 2500 genomes into an
evolutionary data structure known as hierarchical
orthologous groups—HOGs (reviewed in Zahn-Zabal et
al., 2020). The sequence based comparison of all proteins
in the OMA database is used in conjunction with the
canonical NCBI taxonomic tree to derive orthology
relationships for each orthogroup, the main assumption
being that genes emerge at one point in the tree and are
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inherited by vertical descent, undergoing occasional
duplications and losses.

2.2 Deriving evolutionary histories using pyHam

The pyHam (Train et al., 2018) python package allows a
user to recover the evolutionary events that explain the
extant distribution of the gene families contained in
HOGs. Using orthology information and the NCBI
taxonomic tree, pyHam outputs an annotated tree
containing information on the copy number of the gene
family at each taxon as well as the duplication, loss and
gain events describing the gene’s evolutionary history.

2.3 HOGPROF-based phylogenetic profiles

The HOGPROF method efficiently identifies gene families
which have similar patterns of gene gain, retention,
duplication, and loss events across the tree of life (Moi et
al., 2020). It works by encoding vectors representing the
evolutionary histories extracted from HOGs by pyHam
and storing these as minhash signatures (Wu et al., 5018).
These signatures are then compiled into searchable
locality sensitive hashing databases using the LSH forest
algorithm (Bawa et al., 2005). In the context of this work,
we use the explicit representation of the profile as an input
for machine learning methods or vector-based distance
metrics.The neural network approaches Eresented in this
work are ideal to couple to HOGPROF as a post
processing step but are too computationally intensive to
exhaustively screen for interaction pairs across all HOGs.

2.4 Vector-based profile distance metrics

While representing phylogenetic profiles as minhash
signatures with HOGPROF is useful for large-scale
searching and comparison between HOGs, it may not be
the best method to detect pairwise interactions or pinpoint
where the interaction may be happening within the species
tree. The HOGPROF method allows a user to approximate
the Jaccard score between two profiles or searcllqj a profile
database. The coevolutionary signal measured is an
approximation of the explicitly calculated Jaccard score
between two profile vectors. This signal is a good
reﬁresentation of the similarity between both vectors
which may reflect coevolutionary signal, but direct
interactions can be confounded by conditional
dependencies between interaction and the score also
provides no information relative to where in the profiles
the coevolutionary signal is coming from. Taking into
mind these limitations, using vector representations of the
annotated species trees produced by pyHam we can
employ strategies using the explicit vector representations
of the phylogenetic profiles without calculating their
minhash representation to explicitly measure profile
distances or train machine learning algorithms.

Vector distance metrics that have previously been
validated as relevant for describing phylogenetic profiling
linkage are compared to neural network approaches in this
work. Euclidean distance, Pearson correlation or
Hamming distance are used alongside the explicit
calculation of the Jaccard distance.

2.5 Deep feed forward neural network for assigning
interaction probabilities

) Establishing a function to classify objects—in
this case pairs of profiles—into categories of interacting

vs. non-interacting pairs is a classic machine learning
problem. Our input data can either take the form of trees
or vectors as discussed previously. In this work we explore
neural network architectures that are able to solve this
classification problem in order to compare them to
classical distance metric based approaches. Each
representation of the data has its own associated
architecture which is most appropriate to take on a
classification task. In the case ofp vector representation, it
is fairly straightforward to see that a deep feed forward
neural network is an appropriate architecture. This net can
be trained to output a continuous value representing the
probability of an interaction given the data. By training
this type of architecture, we fix the input size of the net at
its creation.

By training a DNN to output a prediction score
between 0 and 1 on a set of positive and negative pairwise
interactions, we can use it to predict the probability of
interaction based on any two profiles for proteins that
could be participating in the set of interactomes used to
train the network.

The network will learn to output predictions on
the probability of a given PPI based on pairs of
evolutionary histories for one particular clade or organism
of interest. Deciding the taxonomic composition of the
PPI pairs included in the training set thus presents a
tradeoff between specificity and versatility. Also, as new
genomes are sequenced and their orthology relationships
are derived, the input set of species (and taxa in the
species tree) will change. This change in the input
requires the network to be retrained to use this approach to
predict PPIs.

In this work, we implement a fully connected
feed-forward network architecture with 21048 input units
corresponding to the number of possible loss and
duplication events or presence for two labeled taxonomies
corresponding to two profiles), 200 hidden units in the
first layer and 100 hidden units in the second layer with
sigmoid activation functions feeding into a final layer with
one unit. This network is implemented using Tensorflow
(Abadi et al.,, 2016) and Keras (Chollet, 2015). The
network was trained on the binary vector representation of
the phylogenetic profiles constructed with HOGPROF as
detailed in Sect. 2.3 to predict a binary output of
interaction presence or absence between two HOGs.
Preparation of Training and testing sets with STRING and
Hu.Map is explained in Sect. 2.8. Full parameters for both
trained models are available in the git repository
associated with this manuscript.

2.6 Reconstructing the evolutionary history of an interaction
pair using the Fitch parsimony algorithm

The physical interaction between two protein sequences
can be thought of as a phylogenetically inherited trait.
Across extant species we can perform experiments to
derive which sequences are in interaction. By combining
this interaction data with orthology information, linking
each of these interactors to a protein family, we can derive
in which species two families have experimental evidence
of interaction. By assuming vertical inheritance of this
trait along the species tree, we can reconstruct the
ancestral binary states representing the presence or
absence of this interaction using the Fitch algorithm
(Fitch, 1971). This approach presupposes that the most
parsimonious explanation for the extant distribution of
nteractions is the correct one. For the purposes of training
graph neural networks to label species trees with binar,

interaction states, we will assume that our Fitc

reconstruction of interaction state is the ground truth.
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2.7 Convolutional graph neural networks and reformulation
of PPI detection as a graph labeling problem.

Phylogenetic trees can be represented as graphs
and the problem of classifying pairs of profiles into
interacting or non-interacting categories can be turned into
a graph labeling task. Fortunately, neural network
architectures have been designed for precisely this type of
task. One such architecture is a C (Li et al., %815),
which can be used to either classify entire graphs or label
nodes within a graph. As orthology datasets expand and
more species are included in phylogenetic profiles, it is
indeed useful to have a network architecture that can adapt
to new tree topologies without needing to be retrained for
a new input set. Also, training a DNN to recognize
interacting profile pairs which correspond to interactions
within one species is a fairly straightforward task, with
evolutionary events present indicating this interaction
confined to the same branches of the tree of life. These
should appear across many samples of the dataset and
provide a reliable signal for the DNN to classify profile
pairs. However, protein families may only be interactin
within a subset of species of the species tree. A DN
architecture will generalize poorly to this type of problem
since features which may be informative for finding
interaction in one species will be totally irrelevant for
another. In contrast, a CGN will be able to generalize to
label all species using information about the structure of
the species tree graph and the events that happened
leading to each node.

While explaining the principles behind graph
neural networks is Eeyond the scope of this work, it can be
useful to think of them in similar terms as recurrent neural
networks (which could be thought of as a subset of CGNs
designed to work with a graph where nodes are only
connected to the nodes representing the previous and next
points in a given sequence). Each node receives a set of
messages from its neighbors and performs a
transformation on a permutation invariant aggregation of
the messages. This confers a learned context dependent
embedding to each node which can be used by
downstream functions to infer outputs such as node or
graph labels.

In our use case, by representing the species tree
as a directed graph, profiles can be reformulated as
annotated grapl% objects by storing the evolutionary
information derived with pyham in each node. Additional
information related to the topology of the species tree
relative to each specific node (e.g. the number of child
nodes or sister nodes) can be addeg to the node annotation
as well. Now, instead of comparing two trees with a
vector or tree based metric we define the problem as a
graph labeling exercise, either labeling the entire
aggregated graph as indicative of global coevolution
between two families, or locally at each node, indicating
regions which show signs of coevolutionary signal. Since
the species tree is a directed acyclic graph, we can exploit
this property of directionality in a directed graph, creating
two layers of taxonomic nodes, one for passing
information up the graph and another for passing it
downward.

The CGN network presented in this work is
implemented in the pytorch geometric package (Fey and
Lenssen, 2019). A convolutional ~graph network
architecture was used with 3 layers comprising 50 hidden
units each connected to an output layer using a tanh
activation and a bias term. The convolution layers first
used in (Duvenaud et al., 2015) were used for the
convolution layers for the phylogenetic graph to allow for
the adaptive weighting of evolutionary events relative to
their distance to a target node. A transformer convolution

4

layer (Shi et al., 2020) was used to input all of the HOG
nodes to a single node representing the overall state of the
graph (global presence or absence of interaction) to make
use of an attention mechanism. The choice of using an
attention mechanism was made to selectively weigh
informative HOG nodes as input for this prediction.

This net was trained using STRFNG and Hu.Map
data se(ziparately. An early stopping point was manually
selected once the net stopped showing improvement over
20 epochs. Full parameters for the construction and
training of the net are available in the git repository
associated with this manuscript.

Datasets for GNN and DNN architectures

Labeled taxonomies
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Graph Taxonomies
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Fig. 1. Pipeline for labeling pairs of tree profiles with graph neural
networks a) Species trees are annotated using STRING PPI data
showing evidence of an interaction between two HOGs in a species. The
interactions are then propagated up the tree to reconstruct the ancestral
binary state of the interactions using parsimony. Here the leaves are
shown with blue and red dots to depict a hypothetical case where
interactions are either present or absent in the STRING database between
two HOGs in each species of the taxonomy. The HOGs are used with
pyHam to create annotated species trees showing the evolutionary events
in the family’s history. b) Taxonomies are transformed to graphs. The
convolutional graph neural network is trained to annotate a species tree
graph. The pyham labeled taxonomies provide information for each node
of the and the reconstructed interaction states are the node labels to be
inferred. c¢) Each node has the pyHam information on nodes of the
species trees representing the evolution of pairs of HOGs. Pairs that have
no evidence of interaction have empty species trees with no positive
labels for interaction whereas trees with evidence have a parsimony
based reconstruction of interaction states. d) The DNNs are trained on a
binary vector representing presence, loss and duplication on each branch
of the taxonomy. The net is trained to perform a binary classification task
to decide whether or not the pair of profiles are interactors.

2.8 PPI data preparation

The Hu.Map dataset contains a total of 17,526,311 PPIs
with an associated interaction score based on different
types of evidence. The PPIs were filtered to those with a
score above 0.75 probability resulting in 8360 interaction
pairs. These were considered True positives. Then, by
shuffling the interactors of these pairs randomly, a set of
True Negatives was generated. The data was split between
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training and testing sets with a .7 and .3 split with equal
numbers of positive and negative samples.

All of the proteins in the dataset were mapped to
OMA HOGs (April 2021 version) and tree and vector
profiles were generated with HOGPROF to be used with
the profiling strategies presented in this work.

The STRING database has its own
implementation of orthologous groups called Clusters of
Orthologous GrouEs (COGs) (Szklarczyk et al., 2019). An
interaction score between COGs comprising the sum of
coexpression, experimental, database and text minin
evidence channel scores was calculated for all CO
interaction pairs. COG pairs with an interaction score
above 1000 were selected as a first true positive dataset. A
first set of Negatives for hyperparameter refinement were
generated by shuffling the initial set of True positives as
with the Hu.Map dataset. An optimal filtering of the
dataset was found by observing the effect of additional
cutoffs for each evidence channel on the dataset size and
by using jaccard distance to derive an AUC for detecting
interaction. An additional threshold of a score of 500 for
the text mining evidence channel was selected due to its
beneficial effect on AUC while maintaining a sufficiently
large dataset for training. These pairs were considered the
final set of True positives for the STRING dataset. Then,
by shuffling this final set of True positive COGs
interactions randomly, a final set of True Negatives was
generated. Each COG was then mapped to its individual
protein identifiers within STRING. The STRING dataset
contains a total of 20 billion PPIs between proteins
annotated with multiple evidence channels. To determine
in which species there was evidence for each interacting
COG pair, we checked for protein pairs within the same
%pecies from both COGs for all COG pairs within our

Itered dataset. Since looking up each pair would have
been prohibitively expensive computationally, a set of
Bloom filters (with a false positive rate of 0.01 for 10°
elements) was established containing the signatures of all
protein pairs within our COGs of interest in STRING.
After checking for the presence of interaction pairs in the
intersection of the set of species found in both COGs
using the Bloom filters, a parsimony-based reconstruction
of interaction along the taxonomy was calculated for each
COG pair as described in methods 2.6. In figure 2 below, a
single sample of two COGs that have interaction data in
some species in STRING is shown.

Fig. 2. An example of a positive phylogeny graph sample from the
STRING dataset. After checking for interaction presence between
COGO088 and COG1756 in all species present in STRING within the
bloom filters, the leaves present in the OMA taxonomy are labeled with
either 1 or O (interaction presence or absence respectively). In this graph
blue denotes the presence of an interaction and red denotes the absence.
The Fitch algorithm is then used to generate a reconstruction of the
ancestral interaction states. In this graph visualization of the taxonomy,
the node distance from the root of the tree is represented as the radius.

Each branch length is set to 1 since the NCBI taxonomy does not contain
branch length information.

For samples of non-interacting pairs, the ground
truth taxonomy was labeled as non-interacting in all nodes
in the intersection of the set of species where both COGs
are found. The data was split between training and testing
set with a 0.7 and 0.3 split with equal numbers of positive
and negative samples. All of the COGs in the dataset were
mapped to OMA HOGs (Aﬁril 2021 version) and profiles
were generated with HOGPROF (methods 2.2).

While the STRING database incorporates a wide
breadth of species and is ideal for this use case requiring
interaction data across all of the leaves of the NCBI
taxonomy, it is important to keep in mind its limitations
and biases. Data for 14,094 organisms are found in the
dataset, but the bulk of interaction data corresponds to
heavily studied eukaryotic (and to a lesser degree
prokaryotic) model species. This degree to which certain
clades of the tree of Ill)fe are heavily studied or ignored in
PPI studies will be reflected in the completeness of the
data and lead to false negatives in clades where interaction
data is sparse. This will in turn impact our parsimony
based reconstruction of the ancestral states. Additionally,
evidence channels in the description of the evidence for
each interaction may regroup several methods (e.g.
experimental) which may not be comparable or equally
reliable in different clades of the tree of life.

3 Results

3.1 Interaction prediction using Hu.Map data

Both CGN and DNN network architectures were trained
on STRING and Hu.Map Training datasets as detailed in
Methods. As interaction data was not available in all
species in Hu.Map only a pairwise interaction probability
between two profiles was inferred using this dataset. The
two net architectures were used to infer an interaction
score metric between profiles corresponding to two
STRING COGs or two Hu.map entries alongside vector
based distance metrics. In the use case of learning to
predict interaction in a single species, the DNN solidly
outperforms phylogeny explicit distance metrics in the
Hu.Map dataset. This is shown below in figure 3.
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Fig. 3. Graph level prediction usinﬁ Hu.Map data. The ROC
curve for the DNN based classifier shows the Best performance
in terms of AUC characteristics when compared to simple
distance metrics when trained. Interestingly, if high precision is
required, explicit distance metrics appear to perform better than
neural network approaches. Considering the ease with which
these can be calculated, they could potentially be included as
inputs to a neural network approach in tandem with the profile
features, potentially remedying this issue as the network learns
to integrate this signal.

3.2 Interaction prediction using STRING data

The results using the CGN on this dataset show that,
deapite lacking awareness of taxonomic nodes’ identities
and only having information on graph topology and
evolutionary events, it is able to detect coevolutionary
signal between profiles at a higher AUC than vector
distance metrics. While all approaches can provide a score
for the global probability of interaction, the real interest of
the CGN lies in its graph labeling capacities. It is also able
to identify clades in which the interactions are likely to be
happening. In figure 5, these predictions are shown in the
plot under the title ‘taxon level prediction’.

6

While it may be appropriate for a use case where
the interaction detection is centered in a species or clade
of interest, the DNN’s prediction ability suffers when
interactions are not always inferred in the same clades.
However, the permutation invariant character of CGNs is
ideal for dealing with this challenge. This difference in
grediction quality is reflected in the ROC curves for

TRING DNN and CGN architectures shown below in
figure 4. The DNN underperforms even explicit distance
based metrics due to overfitting the training set (despite
using dropout (Srivastava et al., 2014) during training)
whereas the CGN provides a reliable signal of global
interaction as seen below in figure 4.
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Fig. 4. Graph level prediction using STRING data. The DNN
is unable to converge to a consistent pattern due to the shifting
point of reference of the species of interest in which interactions
are found. The explicit distance metrics perform worse than in
the case with Hu.Map data pointing to a change in the
separability of the positive and negative samples in this dataset
relative to the high fidelity human interaction set. The CGN
architecture outperforms all approaches in this use case and is
'211b1e to extract informative signals despite the noisy nature of the
ataset.
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In addition to providing a way to circumvent the
permutation of the point of reference for interactions
within the graph, the CGN architecture also allows for the
user to predict interaction on individual graph nodes. As
far as we are aware, this is the first effort that has been
made using profiling data to reconstruct interaction history
over the taxonomy using phylogenetic profiles coupled to
an artificial intelﬁgence approach, although some other
approaches to reconstruction ancestral interaction states
have been proposed using PPI data as input such as (Rajan
et al., 2021), for example. Below in figure 5, the
performance of the net’s predictions compared to the
ancestral reconstructions detailed in methods 2.6 is
shown. While the quality and completeness of the data
present in STRINg is highly correlated to the clade
containing the interaction data, we nevertheless chose this
database for its breadth in order to ensure a maximum
coverage of all of the species present in OMA based
ghylogenetic profiles. In addition, OMA profiles are also

ased on the NCBI taxonomy, which is limited in its
topological information due to polytomies and lack of
branch lengths. With the limitations of the graph dataset
we constructed in mind, it is still exciting to note that the
net is able to provide predictions for each node solely
from the signal present in the profiles of pairs of HOGs.

ROC curve
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Fig. 5. Taxon level interaction prediction for STRING dataset.
The CGN is the only method capable of assigning an interaction
probability to each node of the taxonomic tree. In this ROC curve we see
the CGN’s ability to reconstruct interaction histories in both the positive
and negative samples (where the states are all set to 0). However, the
data the net is trained on is a parsimony based reconstruction of
incomplete and noisy data with a compositional bias (as mentioned in
methods 2.8). Despite these limitations, the net does find signal and is
able to assign clade specific interaction probabilities between HOGs and
obtains an AUC of 0.74 against the test set.

4 Discussion

In this work we explored the possibility of usinl%
phé/logenetic profiles as input to neural networks wit
CGN and DNN architectures. Using only a toy model
with a DNN approach, it is possible to extract
phylogenetic features from the gain, loss, duplication and
retention patterns that are relevant to reliably predict
protein-protein interactions within one species. These
models are lightweight to train and deploy and could be
imagined as a potential filter in online profiling
approaches such as the one currently implemented in the
OMA Dbrowser. However, these features are not
permutation invariant with regards to the graph structure
of the phylogeny and can only provide predictions for one
species or a small clade reliably.

As seen with our example using interactions
between string COGs, by changing the species or set of
species in which our interactions may be taking place, we
cannot learn features that are consistent across the dataset
to allow us to predict interactions in arbitrary clades with
DNNs. By using a CGN architecture we circumvented this
problem, creating embeddings of each node within our
graph object representing a pair of annotated taxonomies.
Each of these nodes can be labeled using its graph
neighborhood rather than a fixed set of features, allowing
for the prediction of interaction across all taxa in the tree
of life with a single model. The speed of prediction is also
comparable to a DNN approach and can also be served
online in a similar context, allowing a user to screen for
gotential interactions within a clade or species of interest

ased on orthology data alone. This approach provides a
guide to experimentalists looking for a starting point in
describing the evolution of an interaction network in a
species of interest or across the entire tree of life and can
complement other sources of interaction data. In future
work we plan on augmenting this approach using higher
quality trees including branch length information and
incorporating multiple sources of interaction data.

In addition, representing phylogenies as graphs
may aid in the detection of residue level coevolution such
as detecting contacts in protein structures from a sequence
of residue level transitions in two columns of an alignment
associated to a phylogenetic tree. This could serve to
complement approaches such as DCA or serve as input
data to other structure prediction methods. Aside from
phylogenies, many other biological datasets or objects are
easily transformable to graph representations and could
benefit from the node or graph classification as well as the
link prediction task CGN architectures lend themselves
well to. Efforts to apply them have already seen success
using protein structures (Gligorijevic et al., 2021), PPI and
coexpression networks (Xiao and Deng, 2020), metabolic
networks (Harada et al., 2020) and they may even be used
at broader scales in future projects with ecological
networks (Guo et al., 2020). It is also tempting to imagine
multigraphs incorporating a combination of objects and
links mixing phylogenetic, interaction and structural
?aphs to develop more holistic embeddings benefiting

rom orthogonal sources of information.

We will continue experimenting with novel graph
and network architectures and hope that this first
exploration will lead to further work using phylogenetic
graphs with AL
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