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» Abstract

20 LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association
2 study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present
» interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for
3 interactions between genetic variants. By studying a wide range of generative models in simulations, and
2 by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and
s up to 159,095 individuals in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e.,
2 interactions between a focal variant and proximal variants) recovers genetic variance that is not captured

2z by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects
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s additional variation contributed by genetic interactions. The i-LDSC software and its application to
2 these biobanks represent a step towards resolving further genetic contributions of sources of non-additive

o genetic effects to complex trait variation.

+ Introduction

3 Heritability is defined as the proportion of phenotypic trait variation that can be explained by genetic
5 effects! 3. Until recently, studies of heritability in humans have been reliant on typically small sized family
s studies with known relatedness structures among individuals*®. Due to advances in genomic sequencing
3 and the steady development of statistical tools, it is now possible to obtain reliable heritability estimates

1,3,6,7 - Computational and privacy considerations

3 from biobank-scale data sets of unrelated individuals
s with genome-wide association studies (GWAS) in these larger cohorts have motivated a recent trend
s to estimate heritability using summary statistics (i.e., estimated effect sizes and their corresponding
s standard errors). In the GWAS framework, additive effect sizes and standard errors for individual single
w0 nucleotide polymorphisms (SNPs) are estimated by regressing phenotype measurements onto the allele
s counts of each SNP independently. Through the application of this approach over the last two decades,
» it has become clear that many traits have a complex and polygenic basis—that is, hundreds to thousands
. of individual genetic loci across the genome often contribute to the genetic basis of variation in a single
w  trait®.

5 Many statistical methods have been developed to improve the estimation of heritability from GWAS
w summary statistics'3919 The most widely used of these approaches is linkage disequilibrium (LD) score
# regression and the corresponding LDSC software!, which corrects for inflation in GWAS summary statistics
s by modeling the relationship between the variance of SNP-level effect sizes and the sum of correlation
w0 coefficients between focal SNPs and their genomic neighbors (i.e., the LD score of each variant). The
s formulation of the LDSC framework relies on the fact that the expected relationship between chi-square test
si statistics (i.e., the squared magnitude of GWAS allelic effect estimates) and LD scores holds when complex
s traits are generated under the infinitesimal (or polygenic) model which assumes: (i) all causal variants
53 have the same expected contribution to phenotypic variation and (i7) causal variants are uniformly
s« distributed along the genome. Initial simulations in Bulik-Sullivan et al.' showed that violations of these

s assumptions can be tolerated to a point, but begin to affect the estimation of narrow-sense heritability
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s once a certain proportion of variants have nonzero effects. Importantly, the estimand of the LDSC model
sz is the proportion of phenotypic variance attributable to additive effects of genotyped SNPs. The main
ss motivation behind the LDSC model is that, for polygenic traits, many marker SNPs tag nonzero effects.
so This may simply arise because some of these SNPS are in LD with causal variants! or because their
6 statistical association is the product of a confounding factor such as population stratification.

61 As of late, there have been many efforts to build upon and improve the LDSC framework. For example,
62 recent work has shown that it is possible to estimate the proportion of phenotypic variation explained
ss by dominance effects!’ and local ancestry'? using extensions of the LDSC model. One limitation of
e LDSC is that, in practice, it only uses the diagonal elements of the squared LD matrix in its formulation
es which, while computationally efficient, does not account for information about trait architecture that is
e captured by the off-diagonal elements. This tradeoff helps LDSC to scale genome-wide, but it has also
&7 been shown to lead to heritability estimates with large standard error '%:314, Recently, newer approaches
e have attempted to reformulate the LDSC model by using the eigenvalues of the LD matrix to leverage
e more of the information present in the correlation structure between SNPs310,

70 In this paper, we show that the LDSC framework can be extended to estimate greater proportions of
7 genetic variance in complex traits (i.e., beyond the variance that is attributable to additive effects) when
2 a subset of causal variants is involved in a gene-by-gene (GxG) interaction. Indeed, recent association
7 mapping studies have shown that GxG interactions can drive heterogeneity of causal variant effect
u  sizes'®. Importantly, non-additive genetic effects have been proposed as one of the main factors that
7 explains “missing” heritability—the proportion of heritability not explained by the additive effects of
7 variants'C.

7 The key insight we highlight in this manuscript is that SNP-level GWAS summary statistics can pro-
7 vide evidence of non-additive genetic effects contributing to trait architecture if there is a nonzero correla-
7 tion between individual-level genotypes and their statistical interactions. We present the “interaction-LD
s score” regression model or i-LDSC: an extension of the LDSC framework which recovers “missing” heri-
a1 tability by leveraging this “tagged” relationship between linear and nonlinear genetic effects. To validate
e the performance of i-LDSC in simulation studies, we focus on synthetic trait architectures that have
s been generated with contributions stemming from second-order and cis-acting statistical SNP-by-SNP

s interaction effects; however, note that the general concept underlying 1-LDSC can easily be extended to

s other sources of non-additive genetic effects (e.g., gene-by-environment interactions). The main difference
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s between i-LDSC and LDSC is that the i-LDSC model includes an additional set of “cis-interaction” LD
a7 scores in its regression model. These scores measure the amount of phenoytpic variation contributed by
e genetic interactions that can be explained by additive effects. In practice, these additional scores are
s efficient to compute and require nothing more than access to a representative pairwise LD map, same as
o the input required for LD score regression.

0 Through extensive simulations, we show that i-LDSC recovers substantial non-additive heritability
oo that is not captured by LDSC when genetic interactions are indeed present in the generative model for a
03 given complex trait. More importantly, i-LDSC has a calibrated type I error rate and does not overesti-
« mate contributions of genetic interactions to trait variation in simulated data when only additive effects
os are present. While analyzing 25 complex traits in the UK Biobank and BioBank Japan, we illustrate
o that pairwise interactions are a source of “missing” heritability captured by additive GWAS summary
o7 statistics—suggesting that phenotypic variation due to non-additive genetic effects is more pervasive in
¢ human phenotypes than previously reported. Specifically, we find evidence of tagged genetic interac-
o tion effects contributing to heritability estimates in all of the 25 traits in the UK Biobank, and 23 of
w0 the 25 traits we analyzed in the BioBank Japan. We believe that i-LDSC, with our development of a
w1 new cis-interaction score, represents a significant step towards resolving the true contribution of genetic

102 interactions.

«» Results

w  Overview of the interaction-LD score regression model

105 Interaction-LD score regression (i-LDSC) is a statistical framework for estimating heritability (i.e., the
s proportion of trait variance attributable to genetic variance). Here, we will give an overview of the
w7 1-LDSC method and its corresponding software, as well as detail how its underlying model differs from
s that of LDSC!. We will assume that we are analyzing a GWAS dats set D = {X,y} where X is an N x .J
100 matrix of genotypes with J denoting the number of SNPs (each of which is encoded as {0, 1,2} copies of
uo a reference allele at each locus j) and y is an N-dimensional vector of measurements of a quantitative
m  trait. The 1-LDSC framework only requires summary statistics of individual-level data: namely, marginal
n2  effect size estimates for each SNP E and a sample LD matrix R (which can be provided via reference

us  panel data).
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5
114 We begin by considering the following generative linear model for complex traits
115 y=byo+ X3+ W80 +¢, e ~N(0,(1—HI), (1)
us where by is an intercept term; 3 = (B1,...,0s) is a J-dimensional vector containing the true additive

ur  effect sizes for an additional copy of the reference allele at each locus on y; W is an N x M matrix
us of (pairwise) cis-acting SNP-by-SNP statistical interactions between some subset of causal SNPs, where
uo  columns of this matrix are assumed to be the Hadamard (element-wise) product between genotypic vectors
1o of the form x; oxy, for the j-th and k-th variants; @ = (61, ...,0,s) is an M-dimensional vector containing
11 the interaction effect sizes; € is a normally distributed error term with mean zero and variance scaled
122 according to the proportion of phenotypic variation not explained by genetic effects'?, which we will refer
13 to as the broad-sense heritability of the trait denoted by H?; and I denotes an N x N identity matrix.
e For convenience, we will assume that the genotype matrix (column-wise) and the trait of interest have
s been mean-centered and standardized 1820, Lastly, we will let the intercept term by be a fixed parameter
12s  and we will assume that the effect sizes are each normally distributed with variances proportional to their

17 individual contributions to trait heritability 172023

o Effectively, we say that V[X3] = w% is the proportion of phenotypic variation contributed by additive SNP
o effects under the generative model, while VW8] = 4,03 makes up the proportion of phenotypic variation
11 contributed by genetic interactions. While the appropriateness of treating genetic effects as random
;2 variables in analytical derivations has been questioned??, later, we will justify the theory presented here
13 with simulation results showing that i-LDSC accurately recovers non-additive genetic variance in Eq. (1)
13« under a broad range of conditions.

135 There are two key takeaways from the generative model specified above. First, Eq. (2) implies that
136 the additive and non-additive components in Eq. (1) are orthogonal to each other. In other words,
w E[BTXTWO| = E[BT|XTWE[] = 0. This is important because it means that there is a unique par-
s titioning of genetic variance when studying a trait of interest. The second key takeaway is that the
130 genotype matrix X and the matrix of genetic interactions W themselves are correlated despite being

1o linearly independent (see Material and Methods). This property stems from the fact that the pairwise
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1 interaction between two SNPs is encoded as the Hadamard product of two genotypic vectors in the form
w2 W, =X, oX (which is a nonlinear function of the genotypes).

143 A central objective in GWAS studies is to infer how much phenotypic variation can be explained by
s genetic effects. To achieve that objective, a key consideration involves incorporating the possibility of
s non-additive sources of genetic variation to be explained by additive effect size estimates obtained from
us  GWAS analyses?®. If we assume that the genotype and interaction matrices are correlated, then X and
1w W are not completely orthogonal (i.e., such that XTW # 0) and the following relationship between the
s moment matrix XTy, the observed marginal GWAS summary statistics ,5, and the true coefficient values

1o 3 from the generative model in Eq. (1) holds in expectation (see Materials and Methods)

EXTy] = (X™X)8+ (XTW)0 <=  E[3|=RB+V6 (3)
151 where R is a sample estimate of the LD matrix, and V represents a sample estimate of the correlation
152 between the individual-level genotypes X and the span of genetic interactions between causal SNPs in W.
153 Intuitively, the term VO can be interpreted as the subset of pairwise interaction effects that are tagged
15« by the additive effect estimates from the GWAS study. Note that, when (¢) non-additive genetic effects
155 do not contribute to the overall architecture of a trait (i.e., such that @ = 0) or (i7) the genotype and
156 interaction matrices X and W are uncorrelated, the equation above simplifies to a relationship between
157 LD and summary statistics that is assumed in many GWAS studies and methods 26732,

158 The goal of 1-LDSC is to increase estimates of genetic variance by accounting for sources of non-additive
19 genetic effects that can be explained by additive GWAS summary statistics. To do this, we extend the LD
w0 score regression framework and the corresponding LDSC software!”. Here, according to Eq. (3), we note
w6 that ,@ ~ N(RB+VO,\R) where ) is a scale variance term due to uncontrolled confounding effects 10:33,

12 Next, we condition on ® = (3, 0) and take the expectation of chi-square statistics x* = N ,@,@T to yield

E[BAT =E[E[3F7|0]] =E[v[|e] +E[5e|E[le]]
=E[MR+ (RB+ VO)(RB+VO)T]

) 4
” =E[AR + RBB™R + 2RBOTVT + VOOTVT] @

%5 5
= —= 2 Rt V2'
AR+<J>R +(M>
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16s We define £; = 37, 7% as the LD score for the additive effect of the j-th variant'?, and f; = > v

jm
165 represents the “cis-interaction” LD score which encodes the pairwise interaction between the j-th variant
s and all other variants within a genomic window that is a pre-specified number of SNPs wide?3, respec-

167 tively. By considering only the diagonal elements of LD matrix in the first term, similar to the original

h10’17

s LDSC approac , we get the following simplified regression model

169 E[x?] < 1+ €7 + f0 (5)
o where x% = (x3,...,x%) is a J-dimensional vector of chi-square summary statistics, and £ = (¢1,...,0 )
wm and f = (f1,...,fs) are J-dimensional vectors of additive and cis-interaction LD scores, respectively.

12 Furthermore, we define the variance components 7 = N <p?3 /J and ¥ = Np2/M as the additive and
w3 non-additive regression coefficients of the model, and 1 is the intercept meant to model the bias factor
e  due to uncontrolled confounding effects (e.g., cryptic relatedness structure). In practice, we efficiently
s compute the cis-interaction LD scores by considering only a subset of interactions between each j-th
we focal SNP and SNPs within a cis-proximal window around the j-th SNP. In our validation studies and
w77 applications, we base the width of this window on the observation that LD decays outside of a window
ws  of 1 centimorgan (cM); therefore, SNPs outside the 1 ¢M window centered on the j-th SNP will not
o significantly contribute to its LD scores. Note that the width of this window can be relaxed in the
180 1-LDSC software when appropriate. We fit the i-LDSC model using weighted least squares to estimate
11 regression parameters and derive P-values for identifying traits that have significant statistical evidence
12 of tagged cis-interaction effects by testing the null hypothesis Hy : 9 = 0. Importantly, under the null
s model of a trait being generated by only additive effects, the i-LDSC model in Eq. (5) reduces to an
1 infinitesimal model®* or, in the case some variants have no effect on the trait, a polygenic model.

185 Lastly, we want to note the empirical observation that the additive (€) and interaction (f) LD scores
16 are lowly correlated. This is important because it indicates that the presence of cis-interaction LD scores
7 in the model specified in Eq. (5) has little-to-no influence over the estimate for the additive coefficient
188 7. Instead, the inclusion of f creates a multivariate model that can identify the proportion of variance
189 explained by both additive and non-additive effects in summary statistics. In other words, we can
10 interpret ¥ as an estimate of the phenotypic variation explained by tagged cis-acting interaction effects.

11 The concept of additive genetic effects partially explaining non-additive variation has also described in
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25,35,36

12 various studies from quantitative genetics . Under Hardy-Weinberg equilibrium, it can be shown

13 that the additive variance explained by J SNPs takes on the following form (Materials and Methods)3”

2

J J
194 oh =Y 2;(1—p;) [B;+2> prbji| - (6)
j=1

195 ki‘]

s The expression for the additive variance 0% in Eq. (6) is important because it represents the theoretical
17 upper bound on the proportion of total phenotypic variance that can be recovered from GWAS summary
s statistics using the i-LDSC framework. As a result, we use the sum of coefficient estimates 7 + 0 < o
199 to construct i-LDSC heritability estimates. A full derivation of the cis-interaction regression framework
20 and details about its corresponding implementation in our software i-LDSC can be found in Materials

200 and Methods.

x» Detection of tagged pairwise interaction effects using i-LDSC in simulations

203 We illustrate the power of i-LDSC across different genetic trait architectures via extensive simulation
20 studies (Materials and Methods). We generate synthetic phenotypes using real genome-wide genotype
2s data from individuals of self-identified European ancestry in the UK Biobank. To do so, we first assume
206 that traits have a polygenic architecture where all SNPs have a nonzero additive effect. Next, we randomly
w7 select a set of causal cis-interaction variants and divide them into two interacting groups (Materials and
26 Methods). One may interpret the SNPs in group #1 as being the “hubs” in an interaction map23; while,
20 SNPs in group #2 are selected to be variants within some kilobase (kb) window around each SNP in

a0 group #1. We assume a wide range of simulation scenarios by varying the following parameters:
a1 e heritability: H? = 0.3 and 0.6;

212 e proportion of phenotypic variation that is generated by additive effects: p = 0.5, 0.8, and 1;
213 e percentage of SNPs selected to be in group #1: 1%, 5%, and 10%;

214 e genomic window used to assign SNPs to group #2: +10 and +100 kb.

x5 We also varied the correlation between SNP effect size and minor allele frequency (MAF) (as discussed
26 in Schoech et al. ®). All results presented in this section are based on 100 different simulated phenotypes

a7 for each parameter combination.

=
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218 Figure 1 demonstrates that i-LDSC robustly detects significant tagged non-additive genetic variance,
a0 regardless of the total number of causal interactions genome-wide. Instead, the power of i-LDSC depends
20 on the proportion of phenotypic variation that is generated by additive versus interaction effects (p),
a1 and its power tends to scale with the window size used to compute the cis-interaction LD scores (see
22 Materials and Methods). 1-LDSC shows a similar performance for detecting tagged cis-interaction effects
23 when the effect sizes of causal SNPs depend on their minor allele frequency and when we varied the
24 number of SNPs assigned to be in group #2 within 10 kb and 100kb windows, respectively (Figure 1 —
25 figure supplement 1-5).

226 Importantly, i-LDSC does not falsely identify putative non-additive genetic effects in GWAS summary
2 statistics when the synthetic phenotype was generated by only additive effects (p = 1). Figure 2 illustrates
28 the performance of i-LDSC under the null hypothesis Hy : ¥ = 0, with the type I error rates for different
29 estimation window sizes of the cis-interaction LD scores highlighted in panel A. Here, we also show
20 that, when no genetic interaction effects are present, i-LDSC unbiasedly estimates the cis-interaction
2 coefficient in the regression model to be 9=0 (Figure 2B), robustly estimates the heritability (Figure 2C),
22 and provides well-calibrated P-values when assessed over many traits (Figure 2D). This behavior is
233 consistent across different MAF-dependent effect size distributions, and P-value calibration is not sensitive
24 to misspecification of the estimation windows used to generate the cis-interaction LD scores (Figure 2 —
25 figure supplement 1-2).

236 One of the innovations that 1-LDSC offers over the traditional LDSC framework is increased heritability
o estimates after the identification of non-additive genetic effects that are tagged by GWAS summary
28 statistics. Here, we applied both methods to the same set of simulations in order to understand how
239 LDSC behaves for traits generated with cis-interaction effects. Figure 3 depicts boxplots of the heritability
uo  estimates for each approach and shows that, across an array of different synthetic phenotype architectures,
21 LDSC captures less of phenotypic variance explained by all genetic effects. It is important to note that
22 1-LDSC can yield upwardly biased heritability estimates when the cis-interaction scores are computed
23 over genomic window sizes that are too small; however, these estimates become more accurate for larger
2s window size choices (Figure 3 — figure supplement 1). In contrast to LDSC, which aims to capture
25 phenotypic variance attributable to the additive effects of genotyped SNPs, i-LDSC accurately partitions
xus  genetic effects into additive versus cis-interacting components, which in turn generally leads the ability

27 of i-LDSC to capture more genetic variance. The mean absolute error between the true generative
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2us  heritability and heritability estimates produced by i-LDSC and LDSC are shown in Supplementary Files 1
29 and 2, respectively. Generally, the error in heritability estimates is higher for LDSC than it is for 1-LDSC
0 across each of the scenarios that we consider.

251 Next, we perform an additional set of simulations where we explore other common generative models
s for complex trait architecture that involve non-additive genetic effects. Specifically, we compare heri-
»3  tability estimates from LDSC and i-LDSC in the presence of additive effects, cis-acting interactions, and a
25« third source of genetic variance stemming from either gene-by-environment (GxE) or or gene-by-ancestry
25 (GxAncestry) effects. Details on how these components were generated can be found in Materials and
s Methods. In general, i-LDSC underestimates overall heritability when additive effects and cis-acting in-
»7  teractions are present alongside GXE (Figure 3 — figure supplement 2) and/or GxAncestry effects when
s PCs are included as covariates (Figure 3 — figure supplement 3). Notably, when PCs are not included
0 to correct for residual stratification, both LDSC and i-LDSC can yield unbounded heritability estimates
w0 greater than 1 (Figure 3 — figure supplement 4). Also interestingly, when we omit cis-interactions from
s the generative model (i.e., the genetic architecture of simulated traits is only made up of additive and
%2 GXE or GxAncestry effects), i-LDSC will still estimate a nonzero genetic variance component with the
23 cis-interaction LD scores (Figure 3 — figure supplement 5-7). Collectively, these results empirically show
%4 the important point that cis-interaction scores are not enough to recover missing genetic variation for
x5 all types of trait architectures; however, they are helpful in recovering phenotypic variation explained by
%6 statistical interaction effects. Recall that the linear relationship between (expected) x? test statistics and
sz LD scores proposed by the LDSC framework holds when complex traits are generated under the polygenic
x%s model where all causal variants have the same expected contribution to phenotypic variation. When
0 cis-interactions affect genetic architecture (e.g., in our earlier simulations in Figure 3), these assumptions
o are violated in LDSC, but the inclusion of the additional nonlinear scores in i-LDSC help recover the
a1 relationship between the expectation of x? test statistics and LD.

2 As a further demonstration of how i-LDSC performs when assumptions of the original LD score
a3 model are violated, we also generated synthetic phenotypes with sparse architectures using the spike-and-
2n slab model?°. Here, traits were simulated with solely additive effects, but this time only variants with
25 the top or bottom {1,5,10,25,50,100} percentile of LD scores were given nonzero effects (see Material
6 and Methods). Breaking the relationship assumed under the LDSC framework between LD scores and

o chi-squared statistics (i.e., that they are generally positively correlated) led to unbounded estimates of
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a8 heritability in all but the (polygenic) scenario when 100% of SNPs contributed to the phenotypic variation
a9 (Figure 3 — figure supplement 8).

280 Finally, we performed a set of polygenic simulations to assess if 1-LDSC estimates of non-additive
s genetic variance could be spuriously inflated due to either (7) unobserved additive effects (see, for example,
x Hemani et al.3?), (ii) unobserved SNPs that are involved in genetic interactions, or by (iii) nonzero
3 correlation between the additive and interaction effect sizes in the generative model (i.e., breaking the
2 independence assumption in Eq. (2)). In the first setting, we observed that, across a range of both minor
2 allele frequencies and effect sizes, the omission of causal haplotypes had a negligible effect on the estimated
26 value of the coefficients in i-LDSC (Figure 3 — figure supplement 9). We hypothesize this is due to the
27 fact that the simulations were done for polygenic architectures where all SNPs have at least an additive
xs  effect. As a result, not observing a small subset of SNPs does not hinder the ability of i-LDSC to estimate
20 genetic variance because the effect size of each SNP is small. If these simulations were conducted for sparse
20 architectures, we would have likely seen a greater impact on 1-LDSC; although, we have already shown the
21 LD score regression framework to be uncalibrated for traits with sparse genetic architectures (again see
22 Figure 3 — figure supplement 8). In the second setting, we observed that the 1-LDSC framework protects
203 against the false discovery of non-additive genetic effects and underestimates the variance component
2« when causal variants involved in pairwise interactions were unobserved (Figure 3 — figure supplement 10
25 and 11). As a direct comparison, estimates of the additive variance component 7 in i-LDSC were not
26 affected by the unobserved interacting variants. Lastly, in the third setting, we observed that the mean
27 estimate of the genetic variance in both LDSC and i-LDSC had a slight upward bias as the correlation
28 between additive and interaction effect sizes in the generative model increased; however, the median of
209 these bias estimates was still near zero across all simulated scenarios and their corresponding replicates

w0 (Figure 3 — figure supplement 12 and 13).

. Application of i-LDSC to the UK Biobank and BioBank Japan

sz To assess whether pairwise interaction genetic effects are significantly affecting estimates of heritability
33 in empirical biobank data, we applied 1-LDSC to 25 continuous quantitative traits from the UK Biobank
s and BioBank Japan (Supplementary File 3). Protocols for computing GWAS summary statistics for
s the UK Biobank are described in the Materials and Methods; while pre-computed summary statistics

ws for BioBank Japan were downloaded directly from the consortium website (see URLs). We release the
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a7 cis-acting SNP-by-SNP interaction LD scores used in our analyses on the i-LDSC GitHub repository from
w8 two reference groups in the 1000 Genomes: 489 individuals from the European superpopulation (EUR)
30 and 504 individuals from the East Asian (EAS) superpopulation (see also Supplementary Files 4 and 5).
310 In each of the 25 traits we analyzed in the UK Biobank, we detected significant proportions of
su  estimated genetic variation stemming from tagged pairwise cis-interactions (Table 1). This includes
sz many canonical traits of interest in heritability analyses: height, cholesterol levels, urate levels, and both
a3 systolic and diastolic blood pressure. Our findings in Table 1 are supported by multiple published studies
su  identifying evidence of non-additive effects playing a role in the architectures of different traits of interest.
as For example, Li et al. *° found evidence for genetic interactions that contributed to the pathogenesis of
ais  coronary artery disease. It was also recently shown that non-additive genetic effects plays a significant
a7 role in body mass index'%. Generally, we find that the traditional LDSC produces lower estimates of trait
as  heritability because it does not consider the additional sources of genetic signal that i-LDSC does (Table
s 1). In BioBank Japan, 23 of the 25 traits analyzed had a significant nonlinear component detected by
30 1-LDSC — with HDL and triglyceride levels being the only exceptions.

31 For each of the 25 traits that we analyzed, we found that the i-LDSC heritability estimates are
»  significantly correlated with corresponding estimates from LDSC in both the UK Biobank (r? = 0.988,
»s P = 5936 x 1072%) and BioBank Japan (r? = 0.849, P = 6.061 x 107'1) as shown in Figure 4A.
324 Additionally, we found that the heritability estimates for the same traits between the two biobanks are
»s  highly correlated according to both LDSC (r? = 0.848, P = 7.166 x 10~'!) and i-LDSC (r? = 0.666,
2 P = 6.551 x 1077) analyses as shown in Figure 4B. After comparing the i-LDSC heritability estimates
37 to LDSC, we then assessed whether there was significant difference in the amount of phenotypic variation
»s explained by the non-additive genetic effect component in the GWAS summary statistics derived from
20 the the UK Biobank and BioBank Japan (i.e., comparing the estimates of ¥; see Figure 4 — figure
30 supplement 1A). We show that, while heterogeneous between traits, the phenotypic variation explained
3 by genetic interactions is relatively of the same magnitude for both biobanks (r2 = 0.372, P = 0.0119).
s Notably, the trait with the most significant evidence of tagged cis-interaction effects in GWAS summary
313 statistics is height which is known to have a highly polygenic architecture.

33 The intercepts estimated by LDSC and 1-LDSC are also highly correlated in both the UK Biobank and
135 the BioBank Japan (Figure 4 — figure supplement 1B). Recall that these intercept estimates represent the

15 confounding factor due to uncontrolled effects. For LDSC, this does include phenotypic variation that is
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a7 due to unaccounted for pairwise statistical genetic interactions. The i-LDSC intercept estimates tend to
s be correlated with, but are generally different than, those computed with LDSC — empirically indicating
30 that non-additive genetic variation is partitioned away and is missed when using the standard LD score
s alone. This result shows similar patterns in both the UK Biobank (r? = 0.888, P = 1.962 x 107!2) and
s BioBank Japan (r? = 0.813, P = 7.814 x 10710).

32 Lastly, we performed an additional analysis in the UK Biobank where the cis-interaction scores are
w3 included as an annotation alongside 97 other functional categories in the stratified-LD score regression
s framework and its software s-LDSC*! (Materials and Methods). Here, s-LDSC heritability estimates still
us  showed an increase with the interaction scores versus when the publicly available functional categories
us were analyzed alone, but albeit at a much smaller magnitude (Table 2). The contributions from the
w7 pairwise interaction component to the overall estimate of genetic variance ranged from 0.005 for MCHC
us (P = 0.373) to 0.055 for HDL (P = 0.575) (Figures 4C and 4D). Furthermore, in this analysis, the
uo  estimates of the non-additive components were no longer statistically significant for any of the traits in
0 the UK Biobank (Table 2). Despite this, these results highlight the ability of the i-LDSC framework
s to identify sources of “missing” phenotypic variance explained in heritability estimation. Importantly,
2 moving forward, we suggest using the cis-interaction scores with additional annotations whenever they are

33 available as it provides more conservative estimates of the role of non-additive effects on trait architecture.

= Discussion

s In this paper, we present i-LDSC, an extension of the LD score regression framework which aims to
36 recover missing heritability from GWAS summary statistics by incorporating an additional score that
7 measures the non-additive genetic variation that is tagged by genotyped SNPs. Here, we demonstrate
s how 1-LDSC builds upon the original LDSC model through the development of new “cis-interaction” LD
30 scores which help to investigate signals of cis-acting SNP-by-SNP interactions (Figure 1 and Figure 1
w0 — figure supplement 1-5). Through extensive simulations, we show that i-LDSC is well-calibrated under
s the null model when polygenic traits are generated only by additive effects (Figure 2 and Figure 2
2 — figure supplement 1-2), we highlight that i-LDSC provides greater heritability estimates over LDSC
%3 when traits are indeed generated with cis-acting SNP-by-SNP interaction effects (Figure 3 and Figure 3

e — figure supplement 1, and Supplementary Files 1 and 2), and we tested the robustness of i-LDSC on
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s phenotypes where assumptions of the original LD score model are violated (Figure 3 — figure supplement 2-
w6 13). Finally, in real data, we show examples of many traits with estimated GWAS summary statistics
w7 that tag cis-interaction effects in the UK Biobank and BioBank Japan (Figure 4 and Figure 4 — figure
w8 supplement 1, Tables 1 and 2, and Supplementary Files 3-5). We have made i-LDSC a publicly available
0 command line tool that requires minimal updates to the computing environment used to run the original
s implementation of LD score regression (see URLs). In addition, we provide pre-computed cis-interaction
sn LD scores calculated from the European (EUR) and East Asian (EAS) reference populations in the 1000
sz Genomes phase 3 data (see Data and Software Availability under Materials and Methods).

73 The current implementation of the i-LDSC framework offers many directions for future development
s and applications. First, an area of future work would be to explore how the relationship between cis-
s interaction LD scores and interaction effect sizes from the generative model of complex traits might bias
we  heritability estimates provided by i-LDSC (e.g., similar to the relationship we explored between the stan-
s dard LD scores and linear effect sizes in Figure 3 — figure supplement 8). Second, as we showed with our
ws  simulation studies (Figure 3 — figure supplement 2-8), the cis-interaction LD scores that we propose are
;9 not always enough to recover explainable non-additive genetic effects for all types of trait architectures.
s While we focus on pairwise cis-acting SNP-by-SNP statistical interactions in this work, the theoretical
s concepts underlying i-LDSC can easily be adapted to other types of interactions as well. Third, in our
s analysis of the UK Biobank and BioBank Japan, we showed that the inclusion of additional categories

33 via frameworks such as stratified LD score regression 2

can be used to provide more refined heritability
s8¢ estimates from GWAS summary statistics while accounting for linkage (see results in Table 1 versus Table
s 2). A key part of our future work is to continue to explore whether considering functional annotation
s groups would also improve our ability to identify tagged non-additive genetic effects. Lastly, we have
s7  only focused on analyzing one phenotype at a time in this study. However, many previous studies have
s extensively shown that modeling multiple phenotypes can often dramatically increase power 344, There-
;0 fore, it would be interesting to extend the i-LDSC framework to multiple traits to study nonlinear genetic

a0 correlations in the same way that LDSC was recently extended to uncover additive genetic correlation

51 maps across traits?®.
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» URLS

33 1-LDSC software package for implementing interaction score regression, https://github.com/lcrawlab/
s 1-LDSC; LDSC software package for implementing LD score regression, https://github.com/bulik/
s ldsc/; UK Biobank, https://www.ukbiobank.ac.uk; BioBank Japan, http://jenger.riken. jp/en/
s result; 1000 Genomes Project genetic map and haplotypes, http://mathgen.stats.ox.ac.uk/impute/
s data_download_1000G_phasel_integrated.html; Database of Genotypes and Phenotypes (dbGaP),
s https://www.ncbi.nlm.nih.gov/gap; NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/;
s GRM-MAF-LD package, https://github.com/arminschoech/GRM-MAF-LD; GCTA toolkit, https://

w0 yanglab.westlake.edu.cn/software/gcta/.
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» Materials and Methods

= Generative statistical model for complex traits

w2 Our goal in this study is to re-analyze summary statistics from genome-wide association studies (GWAS)
«3  and estimate heritability while accounting for both additive genetic associations and tagged interaction
w0 effects. We begin by assuming the following generative linear model for complex traits which can be seen

w5 as an extended view of Eq. (1) in the main text

420 y=bo+XB+Xpw+WbO+e, e~N(0(1-H)I), (7)

w27 where y denotes an N-dimensional vector of phenotypic states for a quantitative trait of interest measured
»s in N individuals; bg is an intercept term; X is an IV x J matrix of genotypes, with J denoting the number
mo  of single nucleotide polymorphism (SNPs) encoded as {0, 1,2} copies of a reference allele at each locus;
ww B =(01,...,0s) is a J-dimensional vector containing the true additive effect sizes for an additional copy
a1 of the reference allele at each locus on y; Xp is an N x J matrix that represents the dominance for
2 each genotype encoded as {0, 1,1} with corresponding effect sizes w; W is an N x M matrix of genetic
.3 interactions; @ = (01,...,0)) is an M-dimensional vector containing the interaction effect sizes; € is
s a normally distributed error term with mean zero and variance scaled according to the proportion of
ss  phenotypic variation not explained by the broad-sense heritability of the trait, denoted by H?; and I
a6 denotes an N x N identity matrix. Note that the encoding for dominance in X p was chosen because it
s imposes orthogonality with the genotype encoding in X 114647,

438 For convenience, we will assume that the genotype matrix (column-wise), the dominance matrix
s (also column-wise), and trait of interest have all been standardized !*2°. Furthermore, while the matrix
4o W could encode any source of non-additive genetic interactions (e.g., gene-by-environmental effects) in
a1 theory, we limit our focus in this study to trait architectures that have been generated with contributions
w2 stemming from cis-acting statistical SNP-by-SNP (or pairwise) interactions. To that end, we assume
w3 that the columns of W are the Hadamard (element-wise) product between genotypic vectors of the
us  form x; o x;; for the j-th and k-th variants. We also want to point out that the generative formulation
us of Eq. (7) can also be easily extended to accommodate other fixed effects (e.g., age, sex, or genotype

s principal components), as well as other random effects terms that can be used to account for sample
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w7 non-independence due to other environmental factors.
a8 As a final set of assumptions, we will let the intercept term by be a fixed parameter while allowing
ao  the other coefficients to follow independent Gaussian distributions with variances proportional to their

w0 individual contributions to the trait heritability 17,20-23:48

451 5j ~ N(07@%/J)7 Wy ~ N(vai/J)’ O ~ N(07¢§/M)’ (8)

w2 for j=1,...,J and m = 1,...,M. The broad-sense heritability of the trait is defined as H? = @% +
w3 2 + @5, Under the generative model in Eq. (7), we then say that V[X3] = go% is the proportion of
s phenotypic variation contributed by additive SNP effects, V[X pw] = ¢? is the proportion of phenotypic
s variation contributed by dominance effects, and the set of interactions involving some subset of causal
s SNPs contribute the remaining proportion to the heritability V[W6] = gog. As we mentioned in the main
w7 text, we recognize that the appropriateness of treating genetic effects as random variables in analytical
w5 derivations has been questioned?*, but our simulation studies show that i-LDSC accurately recovers

0 non-additive genetic variance in Eq. (7) under a broad range of conditions.

w Orthogonality between additive and non-additive genetic effects

w1 Assuming that the effect sizes {3,w, 0} in Eq. (8) follow independent and zero mean Gaussian distri-
w2 butions leads to orthogonality between the additive and non-additive components in Eq. (7). Since the
w3 genotypes X and the dominance values X p are fixed orthogonal matrices, it is straightforward to show
w that Cov[X8,Xpw] = 0147, The same relationship can be shown for the additive and the pairwise

w5 interaction genetic effects where

Cov[X 3, W6] = E[3TXTW6)] — E[3TXT|E[W)]

=E Y 5 (XTW),, 951 — E[BT]XTWE[6]
a6 => (XTW),, E[B.6,] — 0TXTWO0 (9)

=Y (XTW),, E[3,]E[4,]

=0


https://doi.org/10.1101/2022.07.21.501001
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.21.501001; this version posted April 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

19

w7 with x; and w,, denoting the j-th and m-th column of the individual-level genotype matrix X and the
ws interaction matrix W, respectively. Note that a similar derivation to Eq. (9) can also be done for the
w0 dominance and pairwise genetic interaction effects. This concept of orthogonality is important because

a0 We want to preserve a unique partitioning of genetic variance when modeling a trait of interest.

s Genotypes and their interactions are correlated despite being linearly inde-

472 pendent

a3 The design matrices X and W in Eq. (7) are not linearly dependent because the pairwise interactions
ss  between two SNPs are encoded as the Hadamard product of two genotypic vectors in the form x; o xj,
w5 (which is a nonlinear function). Linear dependence would have implied that one could find a transfor-
w6 mation between a SNP and an interaction term in the form w,, = ¢ x x; for some constant c. However,
ar despite their linear independence, X and W are themselves not orthogonal and still have a nonzero
as  correlation. This implies that the inner product between genotypes and their interactions is nonzero

s XTW #£ 0. To see this, we focus on a focal SNP x; and consider three different types of interactions:

480 e Scenario I: Interaction between a focal SNP with itself (x; o x;).
a1 e Scenario II: Interaction between a focal SNP with a different SNP (x; o x3).
182 e Scenario III: Interaction between a focal SNP with a pair of different SNPs (xj o x;).

w3 The following derivations rely on the fact that: (1) we assume that genotypes have been mean-centered
s and scaled to have unit variance, and (2) under Hardy-Weinberg equilibrium, SNPs marginally follow a

w5 binomial distribution x; ~ Bin(2, p) where p represents the minor allele frequency (MAF)49:50,

s Scenario I. The covariance between a focal SNP and an interaction with itself is Cov[x;,x;x;] =
487 E[X?] - E[X]]E[X?] With mean-centered SNPs, this is proportional to E[X?] = (¢ — p)/v/2pq which is the

s skewness of the binomial distribution where, again, p = MAF and ¢ = 1-MAF of the j-th SNP.

s  Scenario II. Assume that we have two SNPs, x; ~ Bin(2,p;) and x; ~ Bin(2,py) where p; and py
w0 represent their respective minor allele frequencies. We want to compute the correlation between x; and

w1 the interaction x;x; where Cov[x;,x;x;] = E[xix;] — E[x;]E[x;x;]. Again, with the mean-centered
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assumption, the covariance is proportional to the expectation E[x?xk]. Here, with SNPs taking on values

{0,1,2}, the joint distribution between X? and x;, can be written out as the following®!:

x? =0 x? =1 x? =1
xp =0 u?k 2uk (1 — pr — ujn) (1—px— ujk)Q
xp =1 | 2uje(1 —pj —wj) | 2ugn(ujn +pj + ok — 1) +2(1 = pj — wje) (L — pr — wjn) | 2(ujk +pj +pe — V(L — pr — uji)
X = 2 (1—pj —ujn)? 2(uje +pj + e — (1 —pj — uji) (wjn +pj +pr — 1)

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

where uj, = (1 — p;)(1 — pi) + rji\/Pipe(1 — p;)(1 — pi) and rjj is the Pearson correlation or linkage
disequilibrium (LD) between the j-th and k-th SNPs.

Scenario ITI. The covariance between a focal SNP and an interaction with a pair of different SNPs

Cov(x;,x;x;| will be nonzero if the j-th SNP is correlated with either variant (i.e., rj; # 0 or rj; # 0).

Traditional estimation of additive GWAS summary statistics

As previously mentioned, the key to this work is that SNP-level GWAS summary statistics can also tag
non-additive genetic effects when there is a nonzero correlation between individual-level genotypes and
their interactions (as defined in Eq. (7)). Throughout the rest of this section, we will use X7X/N to
denote the LD or pairwise correlation matrix between SNPs. We will then let R represent an LD matrix
empirically estimated from external data (e.g., directly from GWAS study data, or using a pairwise
LD map from a population that is representative of the samples analyzed in the GWAS study). The

important property here is the following

E[XTX] =~ NR, E[xjx;] =~ N, E[xjxx] = Ny (10)

where the term 7, is again defined as the Pearson correlation coefficient between the j-th and k-th SNPs,
respectively.

In traditional GWAS studies, summary statistics of the true additive effects 8 = (XTX) !XTy in
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so Eq. (7) are typically derived by computing a marginal least squares estimate with the observed data
511 B\j = (X}'Xj)_lx;—y = B = diag(XTX) ' XTy. (11)

sz There are two key identities that may be taken from Eq. (11). The first uses Eq. (10) and is the
si3  approximate relationship (in expectation) between the moment matrix XTy and the linear effect size
sie - estimates Bz

E[XTy] = E[diag(XTX)8] ~ N3. (12)
sis The second key point combines Eqs. (10) and (12) to describe the asymptotic relationship between the

si7 - observed marginal GWAS summary statistics ,@ and the joint coefficient values 3 where (in expectation)
" E[8] = E[(X™X) 'XTy] ~ (NR)"'NB=R"'3. (13)

s.0  After some algebra, the above mirrors a high-dimensional regression model (in expectation) where ,@ =Rpg
so0  with the estimated summary statistics as the response variables and the empirically estimated LD matrix

26,29,31,32,52

sa1 - acting as the design matrix . Theoretically, the resulting coefficients output from this high-

s22  dimensional model are the desired true effect size estimates used to generate the phenotype of interest.

= Additive GWAS summary statistics with tagged interaction effects

s When interactions contribute to the architecture of complex traits (i.e., 8 # 0), the marginal GWAS
s summary statistics derived using least squares in Eq. (11) will also explain non-additive variation when
so6  there is a nonzero correlation between genotypes and their interactions. To see this, we use the concept

s2»  of “omitted variable bias” 3

where the fitted model aims to estimate the true additive coefficients 3
s but does not account for contributions from the non-additive components which also contribute to trait
s0 architecture. In this case, we get the following

B = diag(XTX) ' XTy

530 (14)
= diag(XTX) " 'XT X8 + Xpw + WO +¢].
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sn Since we assume that the genotypes are orthogonal to both the dominance effects in Eq. (7), we know

s that XTXp = 0. This simplifies the above to be the following
53 B = diag(XTX) ' XTX/3 + diag(XTX) ' XTW8 + diag(X"X) 'XTe (15)

s where the matrix XTW (which we showed to be nonzero) can be interpreted as the sample correlation
535 between individual-level genotypes and the cis-interactions between causal SNPs. By taking the expec-
s  tation using Egs. (10) and (12), we get the following alternative (approximate) relationship between the

s7  observed marginal GWAS summary statistics B and the true coefficient values 3

-~

E[3] =RB + V4, (16)

s which results from our initial assumption that the residuals are normally distributed with mean zero
s0 [El[e] = 0 in Eq. (7). Here, we define V to represent a sample estimate of the correlation between the
sa  individual-level genotypes and the non-additive genetic interaction matrix such that E[XTW] = NV.
sz Similar to the LD matrix R, the correlation matrix V is also assumed to be computed from reference
se3 panel data. Intuitively, when 6@ # 0 there is additional phenotypic variation contributed by pairwise
s interactions that can be explained by GWAS effect size estimates. Moreover, when V@ = 0, then the
s relationship in Eq. (16) converges onto the conventional asymptotic assumption (in expectation) between

s GWAS summary statistics and the true additive coefficients in Eq. (13)26:2931,32,52,

s Connection to quantitative genetics theory

sis The concept of additive genetic effects partially explaining non-additive variation has also described in

25,35,36

se0  classical quantitative genetics . Consider an individual genotyped at J loci each with major and

sso minor alleles A and B, respectively. Let p; be the allele frequency of A at the j-th locus, a; denote the
s additive effect, and [aa];i be the additive-by-additive (pairwise) interaction effect between loci j and k,
sz and [aaa)ji represent a third order interaction between loci j, k, and I. For simplicity in presentation,

11,54,55

553 assume that dominance only makes a small contribution to the genetic variance . The population
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s mean is given as the following

555 —QijaJ—HlZijpk aaq Jk+8zz Z pjpkpl aaa ng‘ (17)

556 j=1k>j J=1k>jlI>k>j

ss7 - We follow the assumption that the genetic variation in human complex traits can predominately be
sss  explained by additive effects, with the remainder variation being mostly explained by additive-by-additive
s effects 4856758 Ag a result, we will ignore the higher-order interaction terms in Eq. (17). Under Hardy-
s  Weinberg equilibrium, we can find the average effect by taking the first derivative of the population mean
st with respect to the frequency of the increasing allele3%36. For the j-th SNP, the average effect (including

s2  terms up to second-order interaction) is given by the following
J
1/0
563 n; = 3 (8;5) =aj +2 Zpk[aa]jk + O ([aaal jk1) (18)
J k]
564

ss  which notably contains both the additive effect and a summation of additive-by-additive interactions

ss  between pairs of loci. The additive genetic variance for the j-th SNP takes on the following form

r 2

J
oa(j) = 2p;(1 —p;) |a; +2 pelaalx
|k
567 r
, 19
b J
_ 2
=2p;(1 —pj) |aj + 2a; Zpk[aa]jk +4 Zpk[aab‘k
k#j k#j

ses which is the product of the square of the average effect in Eq. (18) and the heterozygosity at j-th locus
so V[x;] = 2p;(1 — p;) (again assuming that SNPs marginally follow a binomial distribution). The total
so additive variance is then obtained by summing over the J loci such that 0% = . 0%(5)%".

571 We can derive a parallel construction for additive genetic variance using the generative random effect

s»  model presented in Eq. (7)3°. Here, we will leverage that with genotype data taken for N individuals,

s . %ij/N = 2p;. Ignoring the assumed small contributions from dominance effects, the population mean
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s for a quantitative trait y can be written as the following
1 < 1 &
= N Zyz = N Z by + szjﬂj + Z lejxlkejk + &
s =1 =1 j=1k>j (20)
= bo+2Zpaﬁa +4ZZWW b *Zsz

j=1k>j

s Lo find the average effect for the j-th locus, we this time take the first derivative of the population mean

s7 in Eq. (20) with respect to the allele frequency such that

o
578 N = 2 <6pj) ﬂ] + QZpkajk (21)

579 k#j

sso  which, similar to the theoretical form in quantitative genetics, also contains both the additive effect of
st the j-th SNP and additional terms encoding the interaction effect between the j-th SNP and all other
s2 variants in the data. Once again, under Hardy-Weinberg equilibrium, the additive variance for the j-th

ss3 ONP is found as taking on the following form

r 2

0% (j) = 2p;(1 = ;) | B +2 ) pibin
I =y
o I y 2 (22)
=2p;(1—p;) | B +28; Y _pubin +4 [ D pibjn
k#j k#j

ses  where we can explicitly draw connections between the two frameworks by setting 5; = a; and 0, = [aa] ;.
ss Note that when there no non-additive effects (such that @ = 0), the above reduces to 03 = ;2p;(1

w7 p;)B; which resembles the classical form for the additive genetic variance®®.

s Full derivation of interaction LD score regression

s90 In order to derive the interaction LD score (i-LDSC) regression framework, recall that our goal is to recover
so missing heritability from GWAS summary statistics by incorporating an additional score that measures
sn  the non-additive genetic variation that is tagged by genotyped SNPs. To do this, we build upon the

17

s LD score regression framework and the LDSC software"’. Here, we assume nonzero contributions from

so3  cis-acting pairwise interaction effects in the generative model of complex traits as in Eq. (16), and we use
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s« the observed least squares estimates from Eq. (11) to compute chi-square statistics X? =N BJQ for every

ss j=1,...,J variant in the data. Taking the expectation of these statistics yields
~ ~ N2
B[] = NEF] = ¥ V3] + (B5)) | (23)

s7  We can simplify Eq. (23) in two steps. First, by combining the prior assumption in Eq. (8) and the
ss asymptotic approximation in Eq. (16), we can show that marginal expectation (i.e., when not conditioning
90 on the true coefficients) ]E[B]] = 0 for all variants. Second, by conditioning on the generative model from

oo Eq. (7), we can use the law of total variance to simplify V[Bj} where

V[B;] = E[V[B; | X]] + VIE[B; | X]] ~ E[V[x]y/N | X]] +0

1 T
=& [ (vl 1 X)) ]

:E_ixT si%Xxwﬁx XT+‘i3WWT+(1—H2) X
N2TI YT J SPAD Ty I

1 [ 2 7
=E ~z {JXJTXXTXJ- + 7ij-XDXBXj + MQX]TWWTXJ- +N(1 - H?)

C ) ,
=E el {?XJTXXTXJ- + %XJWWTXJ- +N(1-— Hz)}]

602  Since XJT-X p = 0. Using the same logic from the original LDSC regression framework!'”, we can use Isserlis’

o:  theorem® to write the above in terms of more familiar quantities based on sample correlations

J M
1 1
604 WX;XXTXJ = ?‘?k’ WX;WWTX] = Z ;[\}/]27” (24)
k=1 m=1

ss  where 7, is used to denote the sample correlation between additively-coded genotypes at the j-th and
ss  k-th variants, and vj,, is used to denote the sample correlation between the genotype of the j-th variant
sor and the m-th genetic interaction on the phenotype of interest (again see Eq. (16)). Furthermore, we can

ss use the delta method (only displaying terms up to O(1/N?)) to show that (in expectation)

E[5] ~ i+ (1L—=r3)/N,  E[0,] =v}, + (1—-v},)/N. (25)
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s0  Next, we can then approximate the quantities in Eq. (24) via the following
J M
o E lz??kl ~li+(J—-¢)/N, E [Z Tffm] ~ fi+ M- f;) /N (26)
k=1 m=1

stz where ¢; is the corresponding LD score for the additive effect of the j-th variant and f; represents
a3 the “interaction” LD score between the j-th SNP and all other variants in the data set?3, respectively.

sia  Altogether, this leads to the specification of the univariate framework with the j-th SNP
5 1
ots ENj] ~ N )Gt (J) fi+ (A= H)| =47+ fi+1 (27)

e where we define 7 = N (p% /J as estimates of the additive genetic signal, the coefficient ¥ = N2 /M as
ez an estimate of the proportion of phenotypic variation explained by tagged pairwise interaction effects,
ss and 1 is the intercept meant to model the misestimation due to uncontrolled confounding effects (e.g.,
s0  cryptic relatedness and population stratification). Similar to the original LDSC formulation, an intercept
60 greater than one means significant bias. Note that the simplification for many of the terms above such as
o1 (1—H?)/N =~ 1/N results from our assumption that the number of individuals in our study is large. For
62 example, the sample sizes for each biobank-scale study considered in the analyses of this manuscript are
3 at least on the order of N > 10* observations (see Table 5). Altogether, we can jointly express Eq. (27)

64 1n multivariate form as

625 E[XQ] ~ 0T + f’l9 +1 (28)
o where x2 = (x3,...,x%) is a J-dimensional vector of chi-square summary statistics, and £ = (¢1,...,£;)
s and f = (f1,...,fs) are J-dimensional vectors of additive and cis-interaction LD scores, respectively. It

s is important to note that, while x2 must be recomputed for each trait of interest, both vectors £ and f
e only need to be constructed once per reference panel or individual-level genotypes (see next section for
a0 efficient computational strategies).

631 To identify summary statistics that have significant tagged interaction effects, we test the null hy-
62 pothesis Hy : ¥ = 0. The i-LDSC software package implements the same model fitting strategy as LDSC.

13 Here, we use weighted least squares to fit the joint regression in Eq. (28) such that

634 1/9\: (fT‘I’f)ilfir‘I’Xz7 ¢jj = [&7/:4- f31§+ 1 - (29)
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65 where W is a J x J diagonal weight matrix with nonzero elements set to values inversely proportional to
e6 the conditional variance V[x? 145, fi] = ¢j_jl to adjust for both heteroscedasticity and over-estimation of
s the summary statistics for each SNP!7. Standard errors for each coefficient estimate are derived via a
s jackknife over blocks of SNPs in the data*?, and we then use those standard errors to derive P-values with
s a two-sided test (i.e., testing the alternative hypothesis Hy4 : ¢ # 0). It is worth noting that the block-
s0 jackknife approach tends to be conservative and yield larger standard errors for hypothesis testing°. As
e1  an alternative, we could first run 1-LDSC using the block-jackknife procedure over all traits in a study and
ez then use the average of the standard errors to calculate the statistical significance of coefficient estimates;
&3 but we do not explore this strategy here and leave that for future work. The quantitative genetics
e expression for the additive variance 0% in Eq. (22) is important because it represents the theoretical
es upper bound on the proportion of phenotypic variance that can be explained from GWAS summary

w5 statistics via i-LDSC. Using this relationship, we can write the following (approximate) inequality

J J
647 ’/7'\+19522pj(17pj) ﬁjJrQZpkajk :O'i. (30)
Jj=1 k#j

648

eo  For all analyses in this paper, we estimate proportion of phenotypic variance explained by genetic effects
eo using a sum of the coefficients 7 + 9 (i.e., the estimated additive component plus the additional genetic

e variance explained by the tagged pairwise interaction effects).

« KEfficient computation of cis-interaction LD scores

63 In practice, cis-interaction LD scores in 1-LDSC can be computed efficiently through realizing two key
64 opportunities for optimization. First, given J SNPs, the full matrix of genome-wide interaction effects W
s contains on the order of J(J — 1)/2 total pairwise interactions. However, to compute the cis-interaction
sss  score for each SNP, we simply can replace the full W matrix with a subsetted matrix W which includes
sz only interactions involving the j-th SNP. Analogous to the original LDSC formulation'”, we consider only
es interactive SNPs within a cis-window proximal to the focal j-th SNP for which we are computing the
6o 1-LDSC score. In the original LDSC model, this is based on the observation that LD decays outside of a
0 window of 1 centimorgan (cM)!7; therefore, SNPs outside the 1 ¢cM window centered on the j-th SNP
61 7 will not significantly contribute to its LD score. The second opportunity for optimization comes from

sz the fact that the matrix of interaction effects for any focal SNP, W}, does not need to be explicitly
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o5 generated. Referencing Eq. (24), the i-LDSC scores are defined as x] W;W]x;/N?. This can be re-
e4 Written as xJT(DjX(j))(DjX(j))ij, where D; = diag(x;) is a diagonal matrix with the j-th genotype as
ss its nonzero elements?? and X denotes the subset SNPs within a cis-window proximal to the focal j-th

e SNP. This means that the i-LDSC score for the j-th SNP can be simply computed as the following

1 9 . . 9
ss  With these simplifications, the computational complexity of generating i-LDSC scores reduces to that of
s0 computing LD scores — modulo a vector-by-vector Hadamard product which, for each SNP, is constant

s factor of N (i.e., the number of genotyped individuals).

o Coefficient estimates as determined by cis-interaction window size

ez When computing cis-interaction LD scores, the most important decision is choosing the number of
o3 interacting SNPs to include in X9) (or equivalently W, for each j-th focal SNP in the calculation of f;
ee in Eq. (31)). The i-LDSC framework considers different estimating windows to account for our lack of a
ers  priori knowledge about the “correct” non-additive genetic architecture of traits. Theoretically, one could
e follow previous work 20:28:30,32,33,61 1y considering an L-valued grid of possible SNP interaction window
o sizes. After fitting a series of i-LDSC regressions with cis-interaction LD scores f() generated under
e the L-different window sizes, we could compute normalized importance weights using their maximized

o0 likelihoods via the following

0

680

L (g, f(l);,é) L
W (e,fw);ﬁ)’ ;W(l) - )

61 As a final step in the model fitting procedure, we could then compute averaged estimates of the coefficients

s2 7 and ¥ by marginalizing (or averaging) over the L-different grid combinations of estimating windows

. P Z D70 J = Z OO (33)

=1 =1

es This final step can be viewed as an analogy to model averaging where marginal estimates are computed

62

65 via a weighted average using the importance weights®. In the current study, we explore the utility of
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es cis-interaction LD scores generated with different window sizes £5, +10, £25, and +50 SNPs around each
e7  j-th focal SNP. In practice, we find that cis-interaction LD scores that are calculated using larger windows
es  lead to the most robust estimates of heritability while also not over representing the total phenotypic
s variation explained by tagged non-additive genetic effects (see Figure 3 — figure supplement 1). Therefore,
s0 unless otherwise stated, we use cis-interaction LD scores calculated with a £50 SNP interaction window
e1 for all simulations and real data analyses conducted in this work. For a direct comparison between
ez choosing a single window size versus the model averaging strategy described above, see Supplementary

s0s Files 1 and 2.

« Relationship between minor allele frequency and effect size

es The LDSC software computes LD scores using annotations over equally spaced minor allele frequency
w6 (MAF) bins. These annotations enable the per trait relationship between the MAF and the effect size
s of each variant in the genome to vary based on the discrete category (or MAF bin) it is placed into.
ss This additional flexibility is intended to help LDSC be more robust when estimating heritability. The
eo relationship between MAF and effect size is already implicitly encoded in the LDSC formulation since we
w0 assume genotypes are normalized. When normalizing by the variance of each SNP (or equivalently its
m  MAF), we make the assumption that rare variants inherently have larger effect sizes. There exists a true
02 functional relationship between MAF and effect size which is likely to be somewhere between the two
03 extremes of (i) normalizing each SNP by its MAF and (i) allowing the variance per SNP to be dictated
o by its MAF.

705 Recent approaches have proposed using a single parameter « to better represent the nonlinear rela-
06 tionship between MAF and variant effect size. The main idea is that this « not only provides the same
o7 additional flexibility to LDSC as the MAF-based discrete annotations, but it also empirically yields even

706 more precise heritability estimates®. Namely, we use
G(e) =Y Lip(@ac(k),  Lijk(a) =13 V[xy]' ™ (34)
k

7m0 where a.(k) is the annotation value for the c-th categorical bin. The « parameter is unknown in practice
= and needs to be estimated for any given trait. While standard ranges for « can be used for heritability es-

72 timates, we use a restricted maximum likelihood (REML) based method which was recently developed38.
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73 In the i-LDSC software, we use this « construction to handle the relationship between MAF and variant
na  effect size for two specific reasons. First, by constructing the LD scores using a, we more accurately
ns  capture the variation in chi-square test statistics due to additive effects®. Second, we note that there is
ne  correlation between MAF and (i) LD scores, (i) cis-interaction LD scores, and (4i) trait architecture.
n7 To that end, if we do not properly condition on MAF, there becomes additional bias, and we may falsely
ns  attribute some amount of variation in the chi-square test statistics to LD or the tagged interaction effects.
no  Therefore, in our formulation, we include an « term on the LD scores to condition on this effect. We
=0 demonstrate in simulations that this removes the bias introduced by the relationship between MAF and

= trait architecture, and it mitigates potential inflation of type I error rates in the i-LDSC test.

= Estimation of allele frequency parameters

73 In the main text, we analyzed 25 complex traits in both the UK Biobank and BioBank Japan data sets.
¢ In order to account for minor allele frequency (MAF) dependent trait architecture, we calculated a values
s for each trait that had not been analyzed by previous studies>®. The « estimates for each of the 25 traits
726 analyzed in this study are shown in Table 4. Intuitively, a parameterizes the weighting of the effects of
77 each individual variant given its frequency in the study cohort and can take on values in the range of
s [-1,0]. More negative values of « indicate that lower frequency variants contribute more to the observed
7o variation in a trait of interest, whereas values of « closer to zero indicate that common variants contribute
0 a greater amount of variation to observed trait values.

731 We took « values for 11 traits (again see Table 4) that had previously been calculated from Schoech
2 et al.3®. For the remaining 14 traits analyzed in this study, we followed the estimation protocol described
73 in the same manuscript. Specifically, using the variants passing the quality control step in our pipeline for
74 25,000 randomly selected individuals in the UK Biobank cohort, we constructed MAF-dependent genetic
5 relatedness matrices for values of & = {—1,—-0.95,—-0.9,...,0} using the GRM-MAF-LD software, https:
7% //github.com/arminschoech/GRM-MAF-LD. We then used the GCTA software%* to obtain heritability and
7 likelihood estimates using REML for each a-trait pairing. We then fit a trait-specific profile likelihood

78 across the range of a values and estimate the maximum likelihood value of o using a natural cubic spline.


https://github.com/arminschoech/GRM-MAF-LD
https://github.com/arminschoech/GRM-MAF-LD
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2 Simulation studies

0 We used a simulation scheme to generate synthetic quantitative traits and SNP-level summary statis-
71 tics under multiple genetic architectures using real genome-wide data from individuals of self-identified
n2  European ancestry in the UK Biobank. Here, we consider phenotypes that have some combination of
n3  additive effects, cis-acting interactions, and a third source of genetic variance stemming from either gene-
s by-environment (GXE) or gene-by-ancestry (GxAncestry) effects. For each scenario, we select some set

ns  of SNPs to be causal and assume that complex traits are generated via the following general linear model
726 y=XB+ W0+ Z~ +e¢, e ~ N(0,0°T), (35)

7 where y is an N-dimensional vector containing all the phenotypes; X is an N x J matrix of genotypes
ns encoded as 0, 1, or 2 copies of a reference allele; 3 is a J-dimensional vector of additive effect sizes for
ne  each SNP; W is an N x M matrix which holds all pairwise interactions between the randomly selected
0 subset of the interacting SNPs with corresponding effects 8; Z is an N x K matrix of either GXE or
s GxAncestry interactions with coefficients «; and € is an N-dimensional vector of environmental noise.
2 The phenotypic variation is assumed to be V]y] = 1. All additive and interaction effect sizes for SNPs
73 are randomly drawn from independent standard Gaussian distributions and then rescaled so that they
75 explain a fixed proportion of the phenotypic variance V[X3] + VW8] + V[Z~] = H?. Note that we do
75 not assume any specific correlation structure between the effect sizes 3, 8, and v. We then rescale the
7 random error term such that V[e] = (1 — H?). In the main text, we compare the traditional LDSC to

w7 its direct extension in i-LDSC. For each method, GWAS summary statistics are computed by fitting a

T

s single-SNP univariate linear model via least squares where 3; = (XJ

x;j)"'x]y for every j = 1,...,J SNP
0 in the data. These effect size estimates are used to derive the chi-square test statistics X? =N BJQ We
70 implement both LDSC and i-LDSC with the LD matrix R = XTX/N and the cis-interaction correlation
w matrix V.= XTW /N being computed using a reference panel of 489 individuals from the European

w2 superpopulation (EUR) of the 1000 Genomes Project. The resulting matrices R and V are used to

%3 compute the additive and cis-interaction LD scores, respectively.

s  Polygenic simulations with cis-interactions. In our first set of simulations, we consider phenotypes

s with polygenic architectures that are made up of only additive and cis-acting SNP-by-SNP interactions.
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e Here, we begin by assuming that every SNP in the genome has at least a small additive effect on the
w7 traits of interest. Next, when generating synthetic traits, we assume that the additive effects make up
w8 p% of the heritability while the pairwise interactions make up the remaining (1 — p)%. Alternatively, the
70 proportion of the heritability explained by additivity is said to be V[X8] = pH?, while the proportion
7o detailed by interactions is given as V[W@] = (1 — p) H?. The setting of p = 1 represents the limiting null
m  case for i-LDSC where the variation of a trait is driven by solely additive effects. Here, we use the same
7 simulation strategy used in Crawford et al.?3 where we divide the causal cis-interaction variants into two
7z groups. One may view the SNPs in group #1 as being the “hubs” of an interaction map. SNPs in group
7 #2 are selected to be variants within some kilobase (kb) window around each SNP in group #1. Given
s different parameters for the generative model in Eq. (35), we simulate data mirroring a wide range of

7 genetic architectures by toggling the following parameters:

Ra e heritability: H? = 0.3 and 0.6;

78 e proportion of phenotypic variation that is generated by additive effects: p = 0.5, 0.8, and 1;
) e percentage of SNPs selected to be in group #1: 1% (sparse), 5%, and 10% (polygenic);

780 e genomic window used to assign SNPs to group #2: £10 and £100 kilobase (kb);

781 allele frequency parameter: a = -1, -0.5, and 0.

72 All figures and tables show the mean performances (and standard errors) across 100 simulated replicates.

3 Polygenic simulations with gene-by-environmental effects. In our second set of simulations, we
7 continue to consider phenotypes with polygenic architectures that are made up of only additive and
s cis-acting SNP-by-SNP interactions; however, now we also consider each trait to have contributions
7 stemming from nonzero G xE effects. Here, both the additive and cis-interaction effects are simulated in
w7 the same way as previously described where, for the two groups of interacting variants, 10% of SNPs were
s selected to be in group #1 and we chose £10 kb windows to assign SNPs to group #2. To create GXE
0 effects, we follow a simulation strategy implemented by Zhu et al. % and split our sample population in
o half to emulate two subsets of individuals coming from different environments. We randomly draw the
w1 effect sizes for the first environment from a standard Gaussian distribution which we denote as ;. We

2 then selected an amplification coefficient w and set the effect sizes of the GXE interactions in the second
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73 environment to be a scaled version of the first environment effects where v5 = w=;. In this paper, we
74 generate traits with heritability H? = {0.3,0.6} and amplification coefficients set to w = [1.1,1.2,...,2].
75  For the first set of simulations, we hold the proportion of phenotypic variation explained by the different

w6 genetic components constant by fixing:
797 e H?=10.3: V[XB] = 0.15; VW8] = 0.075; and V[Z~] = 0.075;
798 e H? =0.6: V[X3] =0.3; VIWE] = 0.15; and V[Z~] = 0.15;

0 where Z = [Xj,X_5] is the set of genotypes split according to environment and vy = [y1,72]. To test
a0 the sensitivity of the cis-interaction LD scores to other sources of non-additive variation, we also re-
g1 peated the same simulations where there were only additive and GXE effects contributing equally to

w2 trait architecture:
503 e H?=10.3: V[XB] = 0.15; VW8] = 0; and V[Z~] = 0.15;
804 e H? =0.6: V[X3] =0.3; VIWE] = 0; and V[Z~] = 0.3.

w5 Again all figures show the mean performances (and standard errors) across 100 simulated replicates.

ss Polygenic simulations with gene-by-ancestry effects. In our third set of simulations, we consider
sz phenotypes with polygenic architectures that are made up of additive, cis-interactions, and G x Ancestry
s effects. Here, we follow Sohail et al. %6 and first run a matrix decomposition on the individual-level
g0 genotype matrix X = UQT where U is a unitary NV x K score matrix, Q is a K x J loadings matrix,
s and K represents the number of (predetermined) principal components (PCs). To generate G x Ancestry
a1 interactions, we then create the matrix Zy = Xqi where qy is a J-dimensional vector of SNP loadings
a2 for the k-th principal component. In this paper, we generate traits with heritability H? = {0.3,0.6} and
a3 interaction effects taken over k =1, ..., 10 principal components. For the first set of simulations, we hold

aia  the proportion of phenotypic variation explained by the different genetic components constant by fixing:
515 e H?=10.3: V[XB] = 0.15; VW8] = 0.075; and V[Z~] = 0.075;
816 e H? =0.6: V[X3] = 0.3; VIW6] = 0.15; and V[Z~] = 0.15;

a1z 10 test the sensitivity of the cis-interaction LD scores to other sources of non-additive variation, we also
ais  repeated the same simulations where there were only additive and GxE effects contributing equally to

s10  trait architecture:
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w e H2=03: V[X0] = 0.15; VW8] = 0; and V[Z~] = 0.15;
621 e H?=10.6: V[XB] =0.3; V[W8O] = 0; and V[Z~] = 0.3.

s2  Note that, for each case, we generate summary statistics in two ways: (i) including the top 10 PCs as
w23 covariates in the marginal linear model to correct for population structure and (4i) not correcting for any
s2¢  population structure. Again all figures show the mean performances (and standard errors) across 100

e simulated replicates.

26 Sparse simulation study design with additive effects. In this set of simulations, we consider
2z phenotypes with sparse architectures2?. Here, traits were simulated with solely additive effects such that
2 V[XB] = H?, but this time only variants with the top or bottom {1, 5,10, 25,50,100} percentile of LD
w0 scores were given nonzero coefficients (a similar simulation approach was also previously implemented
s in both Bulik-Sullivan et al.! and Lee et al.®7). We once again generate traits with heritability H? =
s {0.3,0.6}. We also want to note that, in each of these specific analyses, synthetic trait architectures
a2 were generated using all UK Biobank genotyped variants that passed initial preprocessing and quality
s3  control (see next section). Since not all of these SNPs are HapMap3 SNPs, some variants were omitted
g from the LDSC and i-LDSC regression. Overall, as shown in the main text with results taken over 100
a5 replicates, breaking the assumed relationship between LD scores and chi-squared statistics (i.e., that
so  they are generally positively correlated) led to unbounded estimates of heritability in all but the (more

s polygenic) scenario when 100% of SNPs contributed to phenotypic variation.

ss  Polygenic simulations with unobserved additive effects. In this next set of simulations, we
s0  consider another extension of the polygenic case where a portion of the variants with only additive
a0 genetic effects are not observed due ascertainment or other quality control procedures. It was found
e in Hemani et al.?? that an initial set of signals pointing towards evidence of genetic interactions were
a2 actually better explained using linear models of unobserved variants in the same haplotype. Here, we test
a3 whether the i-LDSC framework is prone to overestimate the non-additive genetic variance when additive
sa  effects in the same haplotype are not included in the model. In each simulation, we generated haplotypes
ws  that each contain 5,000 variants. Next, we select either a single causal variant with only an additive effect
as or a set of ten causal variants with only additive effects — each having a MAF that is randomly selected

a7 between: (7) (0.01, 0.1), (4) (0.1, 0.2), (4) (0.2, 0.3), (iv) (0.3, 0.4), and (v) (0.4, 0.5). The corresponding
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aus  additive effect size for each causal variant across the haplotype is simulated inversely proportional with
so its MAF. For this analysis, we measure the difference between 1i-LDSC coeflicient estimates when every
go variant is included in the model versus when the haplotype causal variants are omitted for two different
1 trait architectures with broad-sense heritability set to H? = 0.3 and 0.6. Differences in the component
s2  estimates between the observed and unobserved single additive variant models are shown in Figure 3
g3 — figure supplement 9A and 9B. Similar estimates when the larger number of ten additive variants are
sss unobserved in each haplotype are shown in Figure 3 — figure supplement 9C and 9D. If i-LDSC was prone
ss  to overestimating the non-additive effects, then the omission of the variants with only significant additive
ss  effects would lead to increased estimates of 7 and 1. However, across a range of generative broad-sense
es7  heritabilities and haplotype architectures we observe that estimates of 7 and 9 are robust. Intuitively,
ess  this is likely due to the fact that these simulations were done under polygenic trait architectures where,
so  as a result, the omission of a few causal variants with small marginal effect sizes has little impact on the

g0 ability to estimate genetic variance.

s Polygenic simulations with unobserved interaction effects. In this set of simulations, we ex-
s2 tend the polygenic case to a setting where a portion of the variants involved in genetic interactions are
s3 unobserved. Similar to the case with unobserved additive effects, the purpose of these simulations is to
s« assess whether the i-LDSC framework is prone to false discovery of non-additive genetic variance when
ss causal interacting SNPs are not included during the estimation of GWAS summary statistics. In each
ss simulation, we generated haplotypes that each contain 5,000 variants. Traits were simulated using the
s7  generative model in Eq. (35) with both additive and interaction effects such that V[X3] + V(W8] = H2.
ss Here, every SNP in the genome had at least a small additive effect with a corresponding effect size that
so was drawn to be inversely proportional to its MAF. Only 1% or 5% of variants within each haplotype had
g0 causal non-zero interaction effects. However, when running i-LDSC, only a percentage of the interacting
sn SNPs {1%, 5%, 10%, 25%, or 50%} were included in the estimation of 9. We once again generate traits
s with heritability H? = {0.3,0.6} such that the proportion of genetic variance explained by additive effects
es was equal to p = {0.5,0.8}. As with the other simulation scenarios, all synthetic traits were generated
es  using UK Biobank genotyped variants that passed initial preprocessing and quality control (see next
a5 section). Since not all of these SNPs are HapMap3 SNPs, some variants were omitted from the 1i-LDSC

ars  regression analyses. Overall, as discussed in the main text with results taken over 100 replicates, 1-LDSC
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o underestimated values of ¥ when there were unobserved interacting variants (see Figure 3 — figure sup-
es  plement 10 and 11). As expected, estimates of the additive variance component 7, on the other hand,

s were not affected.

a0  Polygenic simulations with correlated additive and interaction effects. In our last set of sim-
s1  ulations, we sought out to better understand how the relationship between the additive (8) and inter-
sz action () coefficients in the generative model of complex traits could potentially bias the additive and
ss  non-additive variance component estimates in LDSC and i-LDSC. To that end, we performed a set of
s simulations where we varied the correlation between the set of effects. Specifically, we first drew a set of
s additive effect sizes for each variant using the MAF-dependent procedure described above (i.e., « = —1).
s We next selected a subset of the causal variants to be in cis-interactions. Here, we set the interaction
ssr  effect sizes to covary with the additive effect size vector in two different ways. In the first, we simply drew
ss  the additive and interaction effect sizes from a multivariate normal such that their correlation was equal
s tor ={-1,-0.8,-0.6,...,0.6,0.8, 1} (see Figure 3 — figure supplement 12). In the second, we simply
so amplified the interaction effects to be a linear function 8 = 8 x ¢ (Figure 3 — figure supplement 13A and
g1 13C) or a squared function § = 327 (Figure 3 — figure supplement 13B and 13D) of the additive effects
s2  where ¢ = {0.1,0.2,...,0.9,1}. While testing 100 replicates for each value of ¢, we observed that the
g3 mean estimate of genetic variance had a slight upward bias as the correlation between the additive and
s« interaction effect sizes in the generative model increased; however, the distribution of these bias esti-
a5 mates covered zero in the first and third quartiles of all results. We evaluated this behavior for multiple

s broad-sense heritability levels H? = 0.3 and 0.6.

07 Preprocessing for the UK Biobank and BioBank Japan

e In order to apply the i-LDSC framework to 25 continuous traits the UK Biobank%®, we first down-
s loaded genotype data for 488,377 individuals in the UK Biobank using the ukbgene tool (https:
wo //biobank.ctsu.ox.ac.uk/crystal/download.cgi) and converted the genotypes using the provided
w1 ukbconv tool (https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149660). Phenotype data
w2 for the 25 continuous traits were also downloaded for those same individuals using the ukbgene tool.
o3 Individuals identified by the UK Biobank as having high heterozygosity, excessive relatedness, or aneu-

we¢  ploidy were removed (1,550 individuals). After separating individuals into self-identified ancestral cohorts
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ss using data field 21000 , unrelated individuals were selected by randomly choosing an individual from
o6 each pair of related individuals. This resulted in N = 349,469 white British individuals to be included
o7 in our analysis. We downloaded imputed SNP data from the UK Biobank for all remaining individuals
o8 and removed SNPs with an information score below 0.8. Information scores for each SNP are provided
wo by the UK Biobank (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1967).

010 Quality control for the remaining genotyped and imputed variants was then performed on each co-
on  hort separately using the following steps. All structural variants were first removed, leaving only single
a2 nucleotide polymorphisms (SNPs) in the genotype data. Next, all AT/CG SNPs were removed to avoid
a3 possible confounding due to sequencing errors. Then, SNPs with minor allele frequency less than 1%
as  were removed using the PLINK 2.0% command --maf 0.01 . We then removed all SNPs found to be
o5 out of Hardy-Weinberg equilibrium, using the PLINK --hwe 0.000001 flag to remove all SNPs with a
as  Fisher’s exact test P-value > 1075, Finally, all SNPs with missingness greater than 1% were removed
oi7 using the PLINK --mind 0.01 flag.

018 We then performed a genome-wide association study (GWAS) for each trait in the UK Biobank on
o9 the remaining 8,981,412 SNPs. SNP-level GWAS effect sizes were calculated using PLINK and the --glm

69 Age, sex, and the first twenty principal components were included as covariates for all traits

oo flag
oz analyzed 6. Principal component analysis was performed using FlashPCA 2.07° on a set of independent

o2 markers derived separately for each ancestry cohort using the PLINK command --indep-pairwise 100 10 0.1.
o3 Using the parameters --indep-pairwise removes all SNPs that have a pairwise correlation above 0.1

oa  within a 100 SNP window, then slides forward in increments of ten SNPs genome-wide.

025 In order to analyze data from BioBank Japan, we downloaded publicly available GWAS summary

o6 statistics for the 25 traits listed in Table 5 from http://jenger.riken. jp/en/result. Summary statis-

o7 tics used age, sex, and the first ten principal components as confounders in the initial GWAS study.

ws  We then used individuals from the East Asian (EAS) superpopulation from the 1000 Genomes Project

o0 Phase 3 to calculate paired LDSC and i-LDSC scores from a reference panel. We pruned the reference

o0 panel using the PLINK command --indep-pairwise 100 10 0.5 to limit the computational time of

s calculating scores®®. This resulted in reference scores for 1,164,666 SNPs that are included on the i-LDSC

o2 GitHub repository (see URLs). Using summary statistics from BioBank Japan, with scores calculated

o33 from the EAS population in the 1000 Genomes, we obtained i-LDSC heritability estimates for each of the

o34 2D traits.
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s Data and software availability

ss  Source code and tutorials for implementing interaction-LD score regression via the i-LDSC package are
o7 written in Python and are publicly available online at https://github.com/lcrawlab/i-LDSC. Files
as  of LD scores, cis-interaction LD scores, and GWAS summary statistics used for our analyses of the UK
a0 Biobank and BioBank Japan can be downloaded from the Harvard Dataverse (https://dataverse.
w0 harvard.edu/datsset.xhtml?persistentId=doi:10.7910/DVN/W6MA8J&faces-redirect=true). All
o1 software for the traditional and stratified LD score regression framework with LDSC and s-LDSC were
a2 fit using the default settings, unless otherwise stated in the main text. Source code for these approaches
ws  was downloaded from https://github.com/bulik/ldsc. When applying s-LDSC, we used 97 func-
«s tional annotations from Gazal et al.#' to estimate heritability. Data from the UK Biobank Resource%®

ws (https://www.ukbiobank.ac.uk) was made available under Application Numbers 14649 and 22419.

aus Data can be accessed by direct application to the UK Biobank.


https://github.com/lcrawlab/i-LDSC
https://dataverse.harvard.edu/dats set.xhtml?persistentId=doi:10.7910/DVN/W6MA8J&faces-redirect=true
https://dataverse.harvard.edu/dats set.xhtml?persistentId=doi:10.7910/DVN/W6MA8J&faces-redirect=true
https://dataverse.harvard.edu/dats set.xhtml?persistentId=doi:10.7910/DVN/W6MA8J&faces-redirect=true
https://github.com/bulik/ldsc
https://www.ukbiobank.ac.uk
https://doi.org/10.1101/2022.07.21.501001
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.21.501001; this version posted April 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

39

« Figures and Tables
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Figure 1. Power of the i-LDSC framework to detect tagged pairwise genetic interaction
effects on simulated data. Synthetic trait architecture was simulated using real genotype data from
individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have
at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two
groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be
1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These interact
with the group #2 SNPs which are selected to be variants within a £10 kilobase (kb) window around
each SNP in group #1. Coeflicients for additive and interaction effects were simulated with no minor
allele frequency dependency a = 0 (see Materials and Methods). Panels (A) and (B) are results with
simulations using a heritability H? = 0.3, while panels (C) and (D) were generated with H? = 0.6. We
also varied the proportion of heritability contributed by additive effects to (A, C) p = 0.5 and (B, D)
p = 0.8, respectively. Here, we are blind to the parameter settings used in generative model and run
i-LDSC while computing the cis-interaction LD scores using different estimating windows of +5 (green),
+10 (orange), £25 (purple), and +50 (pink) SNPs. Results are based on 100 simulations per parameter
combination and the horizontal bars represent standard errors. Generally, the performance of 1-LDSC
increases with larger heritability and lower proportions of additive variation. Note that LDSC is not shown
here because it does not search for tagged interaction effects in summary statistics.
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Figure 1 — figure supplement 1. Power calculations for the i-LDSC framework to detect
tagged pairwise genetic interaction effects on simulated data using a +10 kilobase (kb)
window to generate cis-interactions around a focal SNP with a moderate minor allele
frequency dependency a = —0.5 for effect sizes. Synthetic trait architecture was simulated using
real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs
were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next,
we randomly select two groups of interacting variants and divide them into two groups. The group #1
SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in
each panel). These interact with the group #2 SNPs which are selected to be variants within a £10
kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects
were simulated with minor allele frequency dependency o = —0.5 (see Materials and Methods). Panels
(A) and (B) are results of simulations where the total heritability explained by additive SNP effects
and cis-interaction effects is H? = 0.3, while panels (C) and (D) were generated with H? = 0.6. We
also varied the proportion of phenotypic variation explained by additive SNP effects to (A, C) p = 0.5
and (B, D) p = 0.8, respectively. Here, we are blind to the parameter settings used in generative model
and run i-LDSC while computing the cis-interaction LD scores using different estimation windows of 45
(green), +£10 (orange), £25 (purple), and +50 (pink) SNPs. Results are based on 100 simulations per
parameter combination and the horizontal black bars represent standard errors.
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Figure 1 — figure supplement 2. Power calculations for the i-LDSC framework to detect
tagged pairwise genetic interaction effects on simulated data using a +10 kilobase (kb)
window to generate cis-interactions around a focal SNP with a strong minor allele frequency
dependency a = —1 for effect sizes. Synthetic trait architecture was simulated using real genotype
data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered
to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select
two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to
be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These
interact with the group #2 SNPs which are selected to be variants within a £10 kilobase (kb) window
around each SNP in group #1. Coefficients for additive and interaction effects were simulated with minor
allele frequency dependency o = —0.5 (see Materials and Methods). Panels (A) and (B) are results of
simulations where the total heritability explained by additive SNP effects and cis-interaction effects is
H? = 0.3, while panels (C) and (D) were generated with H? = 0.6. We also varied the proportion
of phenotypic variation explained by additive SNP effects to (A, C) p = 0.5 and (B, D) p = 0.8,
respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while
computing the cis-interaction LD scores using different estimation windows of +5 (green), £10 (orange),
+25 (purple), and +50 (pink) SNPs. Results are based on 100 simulations per parameter combination
and the horizontal black bars represent standard errors.
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Figure 1 — figure supplement 3. Power calculations for the i-LDSC framework to detect
tagged pairwise genetic interaction effects on simulated data using a +10 kilobase (kb)
window to generate cis-interactions around a focal SNP with no minor allele frequency
dependency a = 0 for effect sizes. Synthetic trait architecture was simulated using real genotype
data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered
to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select
two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to
be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These
interact with the group #2 SNPs which are selected to be variants within a £10 kilobase (kb) window
around each SNP in group #1. Coefficients for additive and interaction effects were simulated with minor
allele frequency dependency a = —0.5 (see Materials and Methods). Panels (A) and (B) are results of
simulations where the total heritability explained by additive SNP effects and cis-interaction effects is
H? = 0.3, while panels (C) and (D) were generated with H? = 0.6. We also varied the proportion
of phenotypic variation explained by additive SNP effects to (A, C) p = 0.5 and (B, D) p = 0.8,
respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while
computing the cis-interaction LD scores using different estimation windows of +5 (green), £10 (orange),
+25 (purple), and +50 (pink) SNPs. Results are based on 100 simulations per parameter combination
and the horizontal black bars represent standard errors.
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Figure 1 — figure supplement 4. Power calculations for the i-LDSC framework to detect
tagged pairwise genetic interaction effects on simulated data using a +100 kilobase (kb)
window to generate cis-interactions around a focal SNP with a moderate minor allele
frequency dependency a = —0.5 for effect sizes. Synthetic trait architecture was simulated using
real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs
were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next,
we randomly select two groups of interacting variants and divide them into two groups. The group #1
SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in
each panel). These interact with the group #2 SNPs which are selected to be variants within a £10
kilobase (kb) window around each SNP in group #1. Coeflicients for additive and interaction effects
were simulated with minor allele frequency dependency o = —0.5 (see Materials and Methods). Panels
(A) and (B) are results of simulations where the total heritability explained by additive SNP effects
and cis-interaction effects is H? = 0.3, while panels (C) and (D) were generated with H? = 0.6. We
also varied the proportion of phenotypic variation explained by additive SNP effects to (A, C) p = 0.5
and (B, D) p = 0.8, respectively. Here, we are blind to the parameter settings used in generative model
and run i-LDSC while computing the cis-interaction LD scores using different estimation windows of 45
(green), +£10 (orange), £25 (purple), and £50 (pink) SNPs. Results are based on 100 simulations per
parameter combination and the horizontal black bars represent standard errors.


https://doi.org/10.1101/2022.07.21.501001
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.21.501001; this version posted April 15, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

44

H2=0.3,p=0.5 H2=0.3,p=0.8
A B
11 ]
0.8
o 06
3
o
a 04
0.2 ]
Estimation Window Size
0l 4 N + 5 SNPs
- — _ _ I + 10 SNPs
c H2=0.6,p=0.5 D H?=0.6,p=0.8 B =+ 25 SNPs
1 1 I + 50 SNPs
0.8
a§> 0.6 4
o
O 4]
0.2]

Percentage sparsity Percentage sparsity

Figure 1 — figure supplement 5. Power calculations for the i-LDSC framework to detect
tagged pairwise genetic interaction effects on simulated data using a +100 kilobase (kb)
window to generate cis-interactions around a focal SNP with a strong minor allele frequency
dependency o = —1 for effect sizes. Synthetic trait architecture was simulated using real genotype
data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered
to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select
two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to
be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These
interact with the group #2 SNPs which are selected to be variants within a £10 kilobase (kb) window
around each SNP in group #1. Coeflicients for additive and interaction effects were simulated with minor
allele frequency dependency a = —0.5 (see Materials and Methods). Panels (A) and (B) are results of
simulations where the total heritability explained by additive SNP effects and cis-interaction effects is
H? = 0.3, while panels (C) and (D) were generated with H?> = 0.6. We also varied the proportion
of phenotypic variation explained by additive SNP effects to (A, C) p = 0.5 and (B, D) p = 0.8,
respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while
computing the cis-interaction LD scores using different estimation windows of £5 (green), £10 (orange),
+25 (purple), and £50 (pink) SNPs. Results are based on 100 simulations per parameter combination
and the horizontal black bars represent standard errors.
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Figure 2. The i-LDSC framework is well-calibrated under the null hypothesis and does not
identify evidence of tagged non-additive effects when polygenic traits are generated by only
additive effects. In these simulations, synthetic trait architecture is made up of only additive genetic
variation (i.e., p = 1). Coeflicients for additive and interaction effects were simulated with no minor allele
frequency dependency a = 0 (see Materials and Methods). Here, we are blind to the parameter settings
used in generative model and run i-LDSC while computing the cis-interaction LD scores using different
estimating windows of +5 (green), +10 (orange), £25 (purple), and +50 (pink) SNPs. (A) Mean type I
error rate using the i-LDSC framework across an array of estimation window sizes for the cis-interaction
LD scores. This is determined by assessing the P-value of the cis-interaction coefficient (1) in the 1-LDSC
regression model and checking whether P < 0.05. (B) Estimates of the cis-interaction coefficient ().
Since traits were simulated with only additive effects, these estimates should be centered around zero. (C)
Estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated
heritability) where the true additive variance is set to H2p = 0.6. (D) QQ-plot of the P-values for the
cis-interaction coefficient (99) in i-LDSC. Results are based on 100 simulations per parameter combination
and the horizontal bars represent standard errors.
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Figure 2 — figure supplement 1. The i-LDSC framework is well-calibrated under the null hy-
pothesis and does not identify evidence of tagged non-additive effects when polygenic traits
are generated by only additive effects and a moderate minor allele frequency dependency
a = —0.5 for effect sizes. In these simulations, synthetic trait architecture is made up of only additive
genetic variation (i.e., p = 1). Coefficients for additive and interaction effects were simulated with minor
allele frequency dependency a = —0.5 (see Materials and Methods). Here, we are blind to the parameter
settings used in generative model and run i-LDSC while computing the cis-interaction LD scores using
different estimation windows of +5 (green), £10 (orange), +25 (purple), and +50 (pink) SNPs. (A)
Mean type I error rate using the i-LDSC framework across an array of estimation window sizes for the
cis-interaction LD scores. This is determined by assessing the P-value of the cis-interaction coefficient
(9) in the 1-LDSC regression model and checking whether P < 0.05. (B) Estimates of the cis-interaction
coefficient (¥9). Since traits were simulated with only additive effects, these estimates should be centered
around zero. (C) Estimates of the proportions of phenotypic variance explained (PVE) by genetic ef-
fects (i.e., estimated heritability) where the true additive variance is set to H?p = 0.6. (D) QQ-plot of
the P-values for the cis-interaction coefficient (¢#) in i-LDSC. Results are based on 100 simulations per
parameter combination and the horizontal black bars represent standard errors.
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Figure 2 — figure supplement 2. The i-LDSC framework is well-calibrated under the null
hypothesis and does not identify evidence of tagged non-additive effects when polygenic
traits are generated by only additive effects and a strong minor allele frequency dependency
a = —1 for effect sizes. In these simulations, synthetic trait architecture is made up of only additive
genetic variation (i.e., p = 1). Coefficients for additive and interaction effects were simulated with minor
allele frequency dependency a = —0.5 (see Materials and Methods). Here, we are blind to the parameter
settings used in generative model and run i-LDSC while computing the cis-interaction LD scores using
different estimation windows of +5 (green), £10 (orange), +25 (purple), and +50 (pink) SNPs. (A)
Mean type I error rate using the i-LDSC framework across an array of estimation window sizes for the
cis-interaction LD scores. This is determined by assessing the P-value of the cis-interaction coefficient
(9) in the 1-LDSC regression model and checking whether P < 0.05. (B) Estimates of the cis-interaction
coefficient (¥9). Since traits were simulated with only additive effects, these estimates should be centered
around zero. (C) Estimates of the proportions of phenotypic variance explained (PVE) by genetic effects
(i.e., estimated heritability) where the true additive variance is set to H?p = 0.6. (D) QQ-plot of
the P-values for the cis-interaction coefficient (¢J) in i-LDSC. Results are based on 100 simulations per
parameter combination and the horizontal black bars represent standard errors.
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Figure 3. i-LDSC robustly and accurately estimates the proportions of phenotypic variance
explained (PVE) by genetic effects (i.e., estimated heritability) in simulations in polygenic
traits, compared to LDSC, due to our accounting for interaction effects tagged in additive
GWAS summary statistics. Synthetic trait architecture was simulated using real genotype data from
individuals of self-identified European ancestry in the UK Biobank (Materials and Methods). All SNPs
were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we
randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs
are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs
which are selected to be variants within a +100 kilobase (kb) window around each SNP in group #1.
Coeflicients for additive and interaction effects were simulated with no minor allele frequency dependency
a = 0 (see Materials and Methods). Here, we assume a heritability (A) H? = 0.3 or (B) H? = 0.6
(marked by the black dotted lines, respectively), and we vary the proportion contributed by additive
effects with p = {0.2,0.4,0.6,0.8}. The grey dotted lines represent the total contribution of additive
effects in the generative model for the synthetic traits (H2p). i-LDSC outperforms LDSC in recovering
heritability across each scenario. Results are based on 100 simulations per parameter combination.
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Figure 3 — figure supplement 1. i-LDSC robustly and accurately estimates the proportions
of phenotypic variance explained (PVE) by genetic effects in polygenic traits by account-
ing for interaction effects tagged by GWAS summary statistics. Synthetic trait architecture
was simulated using real genotype data from individuals of self-identified European ancestry in the UK
Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait
architecture). Next, we randomly select two groups of interacting variants and divide them into two
groups. The group #1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These
interact with the group #2 SNPs which are selected to be variants within a +100 kilobase (kb) window
around each SNP in group #1. Coefficients for additive and cis-interaction effects were simulated with
no minor allele frequency dependency « = 0 (see Materials and Methods). Here, we assume a total heri-
tability explained by additive SNP and cis-interaction effects is (A) H? = 0.3 or (B) H? = 0.6 (marked
by the black dotted lines, respectively), and we vary the proportion contributed by additive effects with
p ={0.2,0.4,0.6,0.8}. The grey dotted line represents the total contribution of additive effects in the
generative model for the synthetic traits (H?p). We run i-LDSC while computing the cis-interaction LD
scores using different estimating windows of £5, 10, +25, and +50 SNPs, respectively. These results
help motivate the selection of scores calculated using a +50 SNP window in our empirical analyses.
Results are based on 100 simulations per parameter combination.
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Figure 3 — figure supplement 2. Performance of LDSC and i-LDSC on simulated polygenic
traits with architectures that are determined by additive, cis-interaction, and gene-by-
environment (G xE) effects. Synthetic trait architecture was simulated using real genotype data from
individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at
least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups
of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 10% of
the total number of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be
variants within a 100 kilobase (kb) window around each SNP in group #1. GxE effects were simulated
using an amplification model%® (see Materials and Methods) where we split the sample population in half
to emulate two subsets of individuals coming from different environments. We randomly draw variant
effect sizes for the first environment from a standard Gaussian distribution. Then effect sizes for the
second environment are set to be the product of the effect sizes in from with first environment with an
amplifier w = [1.1,1.2, ..., 2] (see the x-axis in each panel). Both the cis-interaction and GxE effects were
set to explain a quarter of the total phenotypic variation and the remaining half was explained by additive
SNP effects. Panels (A) and (B) show estimates of the proportions of phenotypic variance explained
(PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C)
and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic
effects using the cis-interaction LD score (i.e., estimates of ¢#). We assume the total heritability explained
by all genetic effects to be (A, C) H? = 0.6 and (B, D) H? = 0.3. Results are based on 100 simulations
per parameter combination.
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Figure 3 — figure supplement 3. Performance of LDSC and i-LDSC on simulated polygenic
traits with architectures that are determined by additive, cis-interaction, and gene-by-
ancestry (GxAncestry) effects with principal components (PCs) included in the GWAS
model to correct for additional structure. Synthetic trait architecture was simulated using real
genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were
considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we
randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs
are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs
which are selected to be variants within a +100 kilobase (kb) window around each SNP in group #1.
Gx Ancestry effects were simulated as the product of individual genotypes and the SNP loadings for each
of the first 10 PCs (see the x-axis in each panel). Both the cis-interaction and GxAncestry effects were
set to explain a quarter of the total phenotypic variation and the remaining half was explained by additive
SNP effects. The proportion of genotypic variance explained by each PC is shown in green. Panels (A)
and (B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e.,
estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates
of the phenotypic variation explained by tagged non-additive genetic effects using the cis-interaction LD
score (i.e., estimates of 1). We assume the total heritability explained by all genetic effects to be (A, C)
H? = 0.6 and (B, D) H? = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 — figure supplement 4. Performance of LDSC and i-LDSC on simulated polygenic
traits with architectures that are determined by additive, cis-interaction, and gene-by-
ancestry (G xAncestry) effects without correcting for the additional structure in the GWAS
analysis. Synthetic trait architecture was simulated using real genotype data from individuals of self-
identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive
effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting
variants and divide them into two groups. The group #1 SNPs are chosen to be 10% of the total number
of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within
a +100 kilobase (kb) window around each SNP in group #1. GxAncestry effects were simulated as the
product of individual genotypes and the SNP loadings for each of the first 10 PCs (see the x-axis in
each panel). Both the cis-interaction and GxAncestry effects were set to explain a quarter of the total
phenotypic variation and the remaining half was explained by additive SNP effects. The proportion of
genotypic variance explained by each PC is shown in green. Panels (A) and (B) show estimates of the
proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from
LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation
explained by tagged non-additive genetic effects using the cis-interaction LD score (i.e., estimates of 19).
We assume the total heritability explained by all genetic effects to be (A, C) H? = 0.6 and (B, D)
H? = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 — figure supplement 5. Performance of LDSC and i-LDSC on simulated polygenic
traits with architectures that are determined by only additive and gene-by-environment
(GxE) effects. Synthetic trait architecture was simulated using real genotype data from individuals
of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least
an additive effect (i.e., creating a polygenic trait architecture). GxE effects were simulated using an
amplification model® (see Materials and Methods) where we split the sample population in half to
emulate two subsets of individuals coming from different environments. We randomly draw variant effect
sizes for the first environment from a standard Gaussian distribution. Then effect sizes for the second
environment are set to be the product of the effect sizes in from with first environment with an amplifier
w=[1.1,1.2,...,2] (see the x-axis in each panel). Additive and GXE effects were set to explain half of
the phenotypic variation. Note that unlike results depicted in Figure 3 — figure supplement 2, there are
no cis-interaction effects that affect trait architecture. Here, panels (A) and (B) show estimates of the
proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from
LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation
explained by tagged non-additive genetic effects using the cis-interaction LD score (i.e., estimates of ).
We assume the total heritability explained by all genetic effects to be (A, C) H? = 0.6 and (B, D)
H? = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 — figure supplement 6. Performance of LDSC and i-LDSC on simulated poly-
genic traits with architectures that are determined by only additive and gene-by-ancestry
(GxAncestry) effects with principal components (PCs) included in the GWAS model to
correct for additional structure. Synthetic trait architecture was simulated using real genotype data
from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to
have at least an additive effect (i.e., creating a polygenic trait architecture). GxAncestry effects were
simulated as the product of individual genotypes and the SNP loadings for each of the first 10 PCs (see
the x-axis in each panel). Additive and GxE effects were set to explain half of the phenotypic variation.
The proportion of genotypic variance explained by each PC is shown in green. Note that unlike results
depicted in Figure 3 — figure supplement 3, there are no cis-interaction effects that affect trait archi-
tecture. Here, panels (A) and (B) show estimates of the proportions of phenotypic variance explained
(PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C)
and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic
effects using the cis-interaction LD score (i.e., estimates of ¢#). We assume the total heritability explained
by all genetic effects to be (A, C) H? = 0.6 and (B, D) H? = 0.3. Results are based on 100 simulations
per parameter combination.
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Figure 3 — figure supplement 7. Performance of LDSC and i-LDSC on simulated poly-
genic traits with architectures that are determined by only additive and gene-by-ancestry
(G xAncestry) effects without correcting for the additional structure in the GWAS analy-
sis. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified
European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e.,
creating a polygenic trait architecture). GxAncestry effects were simulated as the product of individual
genotypes and the SNP loadings for each of the first 10 PCs (see the x-axis in each panel). Additive
and GxE effects were set to explain half of the phenotypic variation. The proportion of genotypic vari-
ance explained by each PC is shown in green. Note that unlike results depicted in Figure 3 — figure
supplement 4, there are no cis-interaction effects that affect trait architecture. Here, panels (A) and
(B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e.,
estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates
of the phenotypic variation explained by tagged non-additive genetic effects using the cis-interaction LD
score (i.e., estimates of ¥). We assume the total heritability explained by all genetic effects to be (A, C)
H? = 0.6 and (B, D) H? = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 — figure supplement 8. Performance of LDSC and i-LDSC on simulated traits with
sparse architectures that are determined by only additive effects. Synthetic trait architecture
was simulated using real genotype data from individuals of self-identified European ancestry in the UK
Biobank. Here, traits were generated with solely additive effects where only variants with the top or bot-
tom {1,5,10, 25,50, 100} percentile of LD scores were given nonzero coefficients in the generative model
(see the x-axis in each panel). Panels (A) and (B) show estimates of the proportions of phenotypic vari-
ance explained (PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively.
Panels (C) and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive
genetic effects using the cis-interaction LD score (i.e., estimates of ©). We assume the total heritability
explained by all genetic effects to be (A, C) H? = 0.6 and (B, D) H? = 0.3. Results are based on 100
simulations per parameter combination. The overall takeaway is that breaking the assumed relationship
between LD scores and chi-squared test statistics (i.e., that they are generally positively correlated) led
to unbounded estimates of heritability for both LDSC and i-LDSC in all but the (polygenic) scenario when
100% of SNPs contributed to phenotypic variation.
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Figure 3 — figure supplement 9. The non-additive component estimates in i-LDSC are robust
to unobserved additive effects in a haplotype. Synthetic trait architectures are simulated such that
a substantial proportion of genetic variance is explained by an additive effect that is not directly observed.
The goal of these simulations was to assess how these unobserved effects influence the estimation of the
non-additive variance component in the i-LDSC model. In each simulation, we generated haplotypes that
each contain 5,000 variants. Next, we select either (A, B) a single causal variant with only an additive
effect or (C, D) a set of ten causal variants with only additive effects. In each case, the causal variants
have a MAF that is randomly selected between: (¢) (0.01, 0.1), () (0.1, 0.2), (i) (0.2, 0.3), (i) (0.3,
0.4), or (v) (0.4, 0.5) as depicted on the x-axis. The corresponding additive effect size for each causal
variant across the haplotypes is simulated to be inversely proportional to its MAF38. On the y-axis,
we measure the difference (A) between i-LDSC coefficient estimates when every variant is included in
the model versus when the haplotype causal variants are omitted for two different trait architectures
with broad-sense heritability set to (A, C) H? = 0.6 and (B, D) H? = 0.3. Results are based on 100
simulations per parameter combination.
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Figure 3 — figure supplement 10. The i-LDSC framework protects against the false discovery
of non-additive genetic variance when causal interacting SNPs are unobserved and the
proportion of genetic variance explained by additive effects is equal to p = 0.5. Synthetic
trait architectures are simulated such that a substantial proportion of genetic variance is explained by
pairwise genetic interaction effects that are not directly observed. The goal of these simulations was to
assess how these unobserved effects influence the estimation of the non-additive variance component in
the i-LDSC model. In each simulation, we generated haplotypes that each contain 5,000 variants. Every
SNP in the genome had at least a small additive effect. The corresponding additive effect size for each
variant across the haplotypes is simulated to be inversely proportional to its MAF 3. We then set (A,
C) 1% or (B, D) 5% of causal variants in each haplotype to have non-zero interaction effects. On the
y-axis, we measure the difference (A) between i-LDSC coefficient estimates when every variant is included
in the model versus when the specified percentage of variants with pairwise genetic interaction effects are
omitted for two different trait architectures with broad-sense heritability set to (A, B) H? = 0.6 and
(C, D) H? = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 — figure supplement 11. The i-LDSC framework protects against the false discovery
of non-additive genetic variance when causal interacting SNPs are unobserved and the
proportion of genetic variance explained by additive effects is equal to p = 0.8. Synthetic
trait architectures are simulated such that a substantial proportion of genetic variance is explained by
pairwise genetic interaction effects that are not directly observed. The goal of these simulations was to
assess how these unobserved effects influence the estimation of the non-additive variance component in
the i-LDSC model. In each simulation, we generated haplotypes that each contain 5,000 variants. Every
SNP in the genome had at least a small additive effect. The corresponding additive effect size for each
variant across the haplotypes is simulated to be inversely proportional to its MAF38. We then set (A,
C) 1% or (B, D) 5% of causal variants in each haplotype to have non-zero interaction effects. On the
y-axis, we measure the difference (A) between i-LDSC coefficient estimates when every variant is included
in the model versus when the specified percentage of variants with pairwise genetic interaction effects are
omitted for two different trait architectures with broad-sense heritability set to (A, B) H? = 0.6 and
(C, D) H? = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 — figure supplement 12. Bias in LDSC and i-LDSC estimates when the additive and
interaction effect sizes in the generative model of complex traits are correlated. To simulate
synthetic trait architectures, we first simulated additive effects for each variant to be MAF-dependent
(i.e., « = —1). Here, we set the corresponding interaction effect sizes to have a correlation with the
additive effect sizes equal to r = {—1,-0.8,—-0.6,...,0.6,0.8,1} (labeled across the x-axis). On the
y-axis, we measure the bias in the LDSC and i-LDSC estimates of phenotypic variance explained (PVE)
by genetic effects. In each simulation, we generate traits with an equal proportion of variance explained
by additive and interaction effects and a total broad-sense heritability set to (A) H? = 0.6 and (B)
H? = 0.3. Results are based on 100 simulations for each parameter value.
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Figure 3 — figure supplement 13. Bias in LDSC and i-LDSC estimates when interaction effect
sizes in the generative model of complex traits are a linear or squared function of the the
additive effects. To simulate synthetic trait architectures, we first simulated additive effects for each
variant to be MAF-dependent (i.e., « = —1). Here, we set the corresponding interaction effect sizes to be
either (A, C) a linear function or (B, D) a squared function of the additive effects with a scaling factor
¢ =1{0.1,0.2,...,0.8,1} (labeled across the x-axis). On the y-axis, we measure the bias in the LDSC and
i-LDSC estimates of the phenotypic variance explained (PVE) by genetic effects. In each simulation, we
generate traits with an equal proportion of variance explained by additive and interaction effects and a
total broad-sense heritability set to (A, B) H? = 0.6 and (C, D) H? = 0.3. Results are based on 100
simulations for each parameter value.
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Figure 4. The i-LDSC framework recovers heritability and provides estimates of tagged cis-
interactions in GWAS summary statistics (¥) for 25 quantitiative traits in the UK Biobank
and BioBank Japan. (A) In both the UK Biobank (green) and BioBank Japan (purple), estimates
of phenotypic variance explained (PVE) by genetic effects from i-LDSC and LDSC are highly correlated
for 25 different complex traits. The Spearman correlation coefficient between heritability estimates from
LDSC and i-LDSC for the UK Biobank and BioBank Japan are r2 = 0.989 and r? = 0.850, respectively.
The y = = dotted line represents the values at which estimates from both approaches are the same. (B)
PVE estimates from the UK Biobank are better correlated with those from the BioBank Japan across 25
traits using LDSC (Spearman r? = 0.848) than i-LDSC (Spearman 72 = 0.666). (C) Both the original and
stratified LDSC models recover the same amount of PVE when the cis-interaction LD score is included
as an additional component in the UK Biobank analysis (Spearman r? = 0.989). These models are
listed as i-LDSC and s+i-LDSC, respectively. For s+i-LDSC, we included 97 functional annotations from
Gazal et al.*! to estimate heritability. (D) Estimates of non-additive variance components in i-LDSC
versus s+i-LDSC (Spearmen r? = 0.184). While not statistically significant in the stratified analysis with
the additional annotations, the non-additive component still makes nonzero contributions to the PVE
estimation for all 25 traits in the UK Biobank (see Tables 1 and 2).
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Figure 4 — figure supplement 1. Additional results from applying LDSC and i-LDSC for 25
quantitiative traits in the UK Biobank and BioBank Japan. (A) i-LDSC estimates of the
phenotypic variation explained by tagged non-additive genetic effects using the cis-interaction LD score
(i.e., estimates of 9J) between traits in the UK Biobank and BioBank Japan (Spearman r? = 0.372). (B)
Estimates of i-LDSC and LDSC intercept terms for 25 traits analyzed in the UK Biobank and BioBank
Japan. Intercept terms using LDSC and i-LDSC are highly correlated in both the UK Biobank (Spearman
r? = 0.888) and BioBank Japan (Spearman r? = 0.813). The x = y dotted line represents points for
when the two sets of estimates are equal.
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Trait UKB (LDSC) | UKB (i-LDSC) | UKB ¢ | UKB P-value ||| BBJ (LDSC) | BBJ (i-LDSC) | BBJ ¢ | BBJ P-value
Basophil 0.0250 0.0315 0.0065 1.572 x10~12 0.0684 0.1548 0.0864 0.025
BMI 0.1757 0.2349 0.0592 | 3.083 x10—84 0.1667 0.2656 0.0989 | 2.438 x10~18
Cholesterol 0.0954 0.0974 0.0020 1.821 x10~1'6 0.0629 0.1268 0.0639 | 2.740 x10~4
CRP 0.0354 0.0414 0.0060 9.845 x10~12 0.0202 0.1625 0.1423 0.020
DBP 0.0940 0.1203 0.0263 1.118 x10~% 0.0605 0.1267 0.0662 | 1.675 x10~7
EGFR 0.1521 0.1999 0.0478 1.187 x10~46 0.1010 0.1225 0.0215 | 4.232 x10~°
Eosinophil 0.1055 0.1375 0.0320 1.230 x10~ 18 0.0785 0.1973 0.1188 0.001
HBA1C 0.0906 0.1083 0.0177 1.578 x1072%6 0.1057 0.1308 0.0251 0.031
HDL* 0.1599 0.1768 0.0169 | 9.636 x10~37 0.1590 0.1838 0.0248 0.081
Height 0.3675 0.4815 0.1140 1.038 x10~64 0.3941 0.7336 0.3395 | 7.433 x10733
Hematocrit 0.1078 0.1352 0.0274 | 2.479 x102° 0.0752 0.0928 0.0176 | 3.689 x10~°
Hemoglobin 0.1177 0.1433 0.0256 | 4.284 x10~%7 0.0702 0.0752 0.0050 | 9.037 x10~*
LDL 0.0802 0.0859 0.0057 | 5.087 x10~13 0.0745 0.1438 0.0693 0.018
Lymphocyte 0.0402 0.0501 0.0099 | 4.906 x10~19 0.0844 0.1757 0.0913 | 5.479 x107°
MCH 0.1361 0.1597 0.0236 1.785 x10~% 0.1536 0.2831 0.1295 | 1.042 x107°
MCHC 0.0317 0.0364 0.0047 | 3.730 x10712 0.0571 0.0650 0.0079 0.027
MCV 0.1630 0.1902 0.0272 1.180 x10~2° 0.1530 0.2818 0.1288 | 1.042 x107°
Monocyte 0.0788 0.0955 0.0167 | 5.257 x10718 0.0888 0.1549 0.0661 0.004
Neutrophil 0.1102 0.1391 0.0289 1.777 x10733 0.1191 0.2114 0.0923 | 5.050 x107°
Platelet 0.1992 0.2447 0.0455 2.303 x10737 0.1565 0.2436 0.0871 | 7.724 x107°
RBC 0.1574 0.1933 0.0359 | 3.292 x1073! 0.1203 0.2068 0.0865 | 5.972 x10~®
SBP 0.0954 0.1201 0.0247 | 8.660 x10~7° 0.0769 0.1604 0.0835 | 9.075 x10~10
Triglycerides* 0.1061 0.1204 0.0143 1.410 x10~26 0.1171 0.2670 0.1499 0.110
Urate 0.1217 0.1550 0.0333 | 9.642 x1038 0.1395 0.3462 0.2067 0.015
WBC 0.0962 0.1250 0.0288 9.866 x10734 0.1024 0.2266 0.1242 1.346 x10~8

Table 1. i-LDSC heritability estimates and P-values highlighting statistically significant contributions of tagged pairwise
genetic interaction effects for 25 traits in the UK Biobank and BioBank Japan. Here, LDSC heritability estimates are included
as a baseline. The difference between the approaches is that the i-LDSC heritability estimates include proportions of phenotypic variation
that are explained by tagged non-additive variation (see columns with estimates of ). Note that all 25 traits analyzed in the UK Biobank
and 23 of the 25 traits analyzed in BioBank Japan have a statistically significant amount of tagged non-additive genetic effects as detected
by the cis-interaction LD score (P < 0.05). The two traits without significant tagged non-additive genetic effects in BioBank Japan were
HDL (P = 0.081) and Triglyceride (P = 0.110). These traits are indicated by *. The i-LDSC P-values are related to the estimates of the

¥ coeflicients which are also displayed in Figure 4.
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Trait UKB PVE (s-LDSC) || UKB PVE (s+i-LDSC) | s+i-LDSC P-value
Basophil 0.0363 0.0375 0.4728
BMI 0.2100 0.2482 0.8126
Cholesterol 0.1042 0.1358 0.6202
CRP 0.0452 0.0524 0.6483
DBP 0.1228 0.1441 0.6125
EGFR 0.1826 0.2105 0.8507
Eosinophil 0.1403 0.1578 0.1867
HBA1C 0.1040 0.1275 0.6917
HDL 0.1820 0.2373 0.5754
Height 0.4315 0.4726 0.5224
Hematocrit 0.1416 0.1646 0.3956
Hemoglobin 0.1504 0.1795 0.2299
LDL 0.0858 0.1131 0.8812
Lymphocyte 0.0545 0.0651 0.1453
MCH 0.1497 0.1545 0.0968
MCHC 0.0450 0.0496 0.3728
MCV 0.1814 0.1930 0.1530
Monocyte 0.1085 0.1431 0.5421
Neutrophil 0.1320 0.1599 0.2499
Platelet 0.2317 0.2628 0.7371
RBC 0.1933 0.2223 0.3197
SBP 0.1206 0.1419 0.1100
Triglycerides 0.1335 0.1621 0.5301
Urate 0.1530 0.1736 0.1177
WBC 0.1221 0.1482 0.5155

Table 2. Comparison of s-LDSC and i-LDSC estimates of phenotypic variance explained
(PVE) by genetic effects for 25 complex traits in the UK Biobank. Here, we use stratified
LD score regression (s-LDSC) to partition heritability across different genomic elements?2. We used 97
functional annotations from Gazal et al.*! to estimate heritability in 25 traits. We then appended cis-
interaction LD scores as an additional annotation to obtain heritability estimates (this method is referred
to as s+i-LDSC in the table). P-values for the s+i-LDSC model detailing the contributions of tagged non-
additive genetic effects for 25 traits are provided in the last column. Note that, while not statistically
significant in this stratified analysis with the additional annotations, the non-additive component still
makes nonzero contributions to the PVE estimation for all 25 traits.
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« Supplementary File Captions

Supplementary File 1. Comparison of LDSC and i-LDSC estimates of the proportion of phe-
notypic variance explained (PVE) by genetic effects (i.e., estimated heritability) when the
true heritability is set to H? = 0.3 for polygenic traits. Synthetic trait architecture was simulated
using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All
SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture).
Next, we randomly select two groups of interacting variants and divide them into two groups. The group
#1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group
#2 SNPs which are selected to be variants within a +100 kilobase (kb) window around each SNP in
group #1. Coefficients for additive and interaction effects were simulated with no minor allele frequency
dependency o = 0 (see Materials and Methods). Here, we assume a heritability H? = 0.3 and vary the
proportion contributed by additive effects with p = {0.2,0.4,0.6,0.8}. We run i-LDSC while comput-
ing the cis-interaction LD scores using different estimating windows of £5, 410, £25, and +50 SNPs.
The “average” column represents results using model averaging over the different estimating windows (see
Materials and Methods). We report the mean estimates of heritability (with standard errors in the paren-
theses) and use mean absolute error (MAE) to quantify the difference between the two methods. Results
are based on 100 simulations per parameter combination. As shown in Figure 3 — figure supplement 3
and 1, LDSC does not capture the contribution of non-additive genetic effects to trait variation.

Supplementary File 2. Comparison of LDSC and i-LDSC estimates of the proportion of phe-
notypic variance explained (PVE) by genetic effects (i.e., estimated heritability) when the
true heritability is set to H? = 0.6. Synthetic trait architecture was simulated using real genotype
data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were consid-
ered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly
select two groups of interacting variants and divide them into two interacting groups. The group #1
SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group
#2 SNPs which are selected to be variants within a +100 kilobase (kb) window around each SNP in
group #1. Coefficients for additive and interaction effects were simulated with no minor allele frequency
dependency o = 0 (see Materials and Methods). Here, we assume a heritability H? = 0.6 and vary the
proportion contributed by additive effects with p = {0.2,0.4,0.6,0.8}. We run i-LDSC while comput-
ing the cis-interaction LD scores using different estimating windows of +5, 410, £25, and +50 SNPs.
The “average” column represents results using model averaging over the different estimating windows
(see Materials and Methods). We report the mean estimates of heritability (with standard errors in the
parentheses) and use mean absolute error (MAE) to quantify the difference between the two methods.
Results are based on 100 simulations per parameter combination. As shown in Figure 3 — figure supple-
ment 3 and 1, LDSC does not capture the additional contribution of non-additive genetic effects to trait
variation.

Supplementary File 3. Abbreviations used throughout this study for 14 quantitative traits
analyzed in this study. The remaining 11 traits analyzed were Basophil count, Cholesterol, Eosinophil
count, Height, Hematocrit, Hemoglobin, Lymphocyte count, Monocyte count, Neutrophil count, and
Triglyceride levels, respectively. These are not abbreviated in the main text.
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Supplementary File 4. Trait-specific o parameters for each of the 25 traits analyzed. Here,
« values are used to weight each variant based on its minor allele frequency to account for frequency
dependent architectures in each trait. The * indicates a parameters that were taken directly from
Schoech et al.?®. The a parameters for other traits were calculated using the protocol used in that
paper. Expansion of trait abbreviations are given in Table 3.

Supplementary File 5. Number of individuals and total SNPs included in the analysis of
each trait in BioBank Japan.
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