

¹ Discovering non-additive heritability using additive GWAS ² summary statistics

³

⁴ Samuel Pattillo Smith^{1-4,*}, Gregory Darnell^{1,5,*}, Dana Udwin⁶, Julian Stamp¹, Arbel Harpak^{3,4}, Sohini
⁵ Ramachandran^{1,2,7,8,§}, and Lorin Crawford^{1,6,8,§,†}

⁶ **1** Center for Computational Molecular Biology, Brown University, Providence, RI, USA

⁷ **2** Department of Ecology and Evolutionary Biology, Brown University, Providence, RI,
⁸ USA

⁹ **3** Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA

¹⁰ **4** Department of Population Health, University of Texas at Austin, Austin, TX, USA

¹¹ **5** Institute for Computational and Experimental Research in Mathematics, Brown
¹² University, Providence, RI, USA

¹³ **6** Department of Biostatistics, Brown University, Providence, RI, USA

¹⁴ **7** Data Science Institute, Brown University, Providence, RI, USA

¹⁵ **8** Microsoft Research, Cambridge, MA, USA

¹⁶ *** Authors Contributed Equally**

¹⁷ **§ Authors Contributed Equally**

¹⁸ **† Corresponding E-mail: lcrawford@microsoft.com**

¹⁹ **Abstract**

²⁰ LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association
²¹ study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present
²² interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for
²³ interactions between genetic variants. By studying a wide range of generative models in simulations, and
²⁴ by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and
²⁵ up to 159,095 individuals in BioBank Japan, we show that the inclusion of a *cis*-interaction score (i.e.,
²⁶ interactions between a focal variant and proximal variants) recovers genetic variance that is not captured
²⁷ by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects

28 additional variation contributed by genetic interactions. The **i-LDSC** software and its application to
29 these biobanks represent a step towards resolving further genetic contributions of sources of non-additive
30 genetic effects to complex trait variation.

31 Introduction

32 Heritability is defined as the proportion of phenotypic trait variation that can be explained by genetic
33 effects^{1–3}. Until recently, studies of heritability in humans have been reliant on typically small sized family
34 studies with known relatedness structures among individuals^{4,5}. Due to advances in genomic sequencing
35 and the steady development of statistical tools, it is now possible to obtain reliable heritability estimates
36 from biobank-scale data sets of unrelated individuals^{1,3,6,7}. Computational and privacy considerations
37 with genome-wide association studies (GWAS) in these larger cohorts have motivated a recent trend
38 to estimate heritability using summary statistics (i.e., estimated effect sizes and their corresponding
39 standard errors). In the GWAS framework, additive effect sizes and standard errors for individual single
40 nucleotide polymorphisms (SNPs) are estimated by regressing phenotype measurements onto the allele
41 counts of each SNP independently. Through the application of this approach over the last two decades,
42 it has become clear that many traits have a complex and polygenic basis—that is, hundreds to thousands
43 of individual genetic loci across the genome often contribute to the genetic basis of variation in a single
44 trait⁸.

45 Many statistical methods have been developed to improve the estimation of heritability from GWAS
46 summary statistics^{1,3,9,10}. The most widely used of these approaches is linkage disequilibrium (LD) score
47 regression and the corresponding **LDSC** software¹, which corrects for inflation in GWAS summary statistics
48 by modeling the relationship between the variance of SNP-level effect sizes and the sum of correlation
49 coefficients between focal SNPs and their genomic neighbors (i.e., the LD score of each variant). The
50 formulation of the **LDSC** framework relies on the fact that the expected relationship between chi-square test
51 statistics (i.e., the squared magnitude of GWAS allelic effect estimates) and LD scores holds when complex
52 traits are generated under the infinitesimal (or polygenic) model which assumes: (i) all causal variants
53 have the same expected contribution to phenotypic variation and (ii) causal variants are uniformly
54 distributed along the genome. Initial simulations in Bulik-Sullivan et al.¹ showed that violations of these
55 assumptions can be tolerated to a point, but begin to affect the estimation of narrow-sense heritability

56 once a certain proportion of variants have nonzero effects. Importantly, the estimand of the LDSC model
57 is the proportion of phenotypic variance attributable to additive effects of genotyped SNPs. The main
58 motivation behind the LDSC model is that, for polygenic traits, many marker SNPs tag nonzero effects.
59 This may simply arise because some of these SNPs are in LD with causal variants¹ or because their
60 statistical association is the product of a confounding factor such as population stratification.

61 As of late, there have been many efforts to build upon and improve the LDSC framework. For example,
62 recent work has shown that it is possible to estimate the proportion of phenotypic variation explained
63 by dominance effects¹¹ and local ancestry¹² using extensions of the LDSC model. One limitation of
64 LDSC is that, in practice, it only uses the diagonal elements of the squared LD matrix in its formulation
65 which, while computationally efficient, does not account for information about trait architecture that is
66 captured by the off-diagonal elements. This tradeoff helps LDSC to scale genome-wide, but it has also
67 been shown to lead to heritability estimates with large standard error^{10,13,14}. Recently, newer approaches
68 have attempted to reformulate the LDSC model by using the eigenvalues of the LD matrix to leverage
69 more of the information present in the correlation structure between SNPs^{3,10}.

70 In this paper, we show that the LDSC framework can be extended to estimate greater proportions of
71 genetic variance in complex traits (i.e., beyond the variance that is attributable to additive effects) when
72 a subset of causal variants is involved in a gene-by-gene (G×G) interaction. Indeed, recent association
73 mapping studies have shown that G×G interactions can drive heterogeneity of causal variant effect
74 sizes¹⁵. Importantly, non-additive genetic effects have been proposed as one of the main factors that
75 explains “missing” heritability—the proportion of heritability not explained by the additive effects of
76 variants¹⁶.

77 The key insight we highlight in this manuscript is that SNP-level GWAS summary statistics can pro-
78 vide evidence of non-additive genetic effects contributing to trait architecture if there is a nonzero correla-
79 tion between individual-level genotypes and their statistical interactions. We present the “interaction-LD
80 score” regression model or **i**-LDSC: an extension of the LDSC framework which recovers “missing” heri-
81 tability by leveraging this “tagged” relationship between linear and nonlinear genetic effects. To validate
82 the performance of **i**-LDSC in simulation studies, we focus on synthetic trait architectures that have
83 been generated with contributions stemming from second-order and *cis*-acting statistical SNP-by-SNP
84 interaction effects; however, note that the general concept underlying **i**-LDSC can easily be extended to
85 other sources of non-additive genetic effects (e.g., gene-by-environment interactions). The main difference

86 between **i**-LDSC and LDSC is that the **i**-LDSC model includes an additional set of “*cis*-interaction” LD
87 scores in its regression model. These scores measure the amount of phenotypic variation contributed by
88 genetic interactions that can be explained by additive effects. In practice, these additional scores are
89 efficient to compute and require nothing more than access to a representative pairwise LD map, same as
90 the input required for LD score regression.

91 Through extensive simulations, we show that **i**-LDSC recovers substantial non-additive heritability
92 that is not captured by LDSC when genetic interactions are indeed present in the generative model for a
93 given complex trait. More importantly, **i**-LDSC has a calibrated type I error rate and does not overesti-
94 mate contributions of genetic interactions to trait variation in simulated data when only additive effects
95 are present. While analyzing 25 complex traits in the UK Biobank and BioBank Japan, we illustrate
96 that pairwise interactions are a source of “missing” heritability captured by additive GWAS summary
97 statistics—suggesting that phenotypic variation due to non-additive genetic effects is more pervasive in
98 human phenotypes than previously reported. Specifically, we find evidence of tagged genetic interac-
99 tion effects contributing to heritability estimates in all of the 25 traits in the UK Biobank, and 23 of
100 the 25 traits we analyzed in the BioBank Japan. We believe that **i**-LDSC, with our development of a
101 new *cis*-interaction score, represents a significant step towards resolving the true contribution of genetic
102 interactions.

103 Results

104 Overview of the interaction-LD score regression model

105 Interaction-LD score regression (**i**-LDSC) is a statistical framework for estimating heritability (i.e., the
106 proportion of trait variance attributable to genetic variance). Here, we will give an overview of the
107 **i**-LDSC method and its corresponding software, as well as detail how its underlying model differs from
108 that of LDSC¹. We will assume that we are analyzing a GWAS data set $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$ where \mathbf{X} is an $N \times J$
109 matrix of genotypes with J denoting the number of SNPs (each of which is encoded as $\{0, 1, 2\}$ copies of
110 a reference allele at each locus j) and \mathbf{y} is an N -dimensional vector of measurements of a quantitative
111 trait. The **i**-LDSC framework only requires summary statistics of individual-level data: namely, marginal
112 effect size estimates for each SNP $\hat{\beta}$ and a sample LD matrix \mathbf{R} (which can be provided via reference
113 panel data).

114 We begin by considering the following generative linear model for complex traits

115
$$\mathbf{y} = b_0 + \mathbf{X}\boldsymbol{\beta} + \mathbf{W}\boldsymbol{\theta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, (1 - H^2)\mathbf{I}), \quad (1)$$

116 where b_0 is an intercept term; $\boldsymbol{\beta} = (\beta_1, \dots, \beta_J)$ is a J -dimensional vector containing the true additive
117 effect sizes for an additional copy of the reference allele at each locus on \mathbf{y} ; \mathbf{W} is an $N \times M$ matrix
118 of (pairwise) *cis*-acting SNP-by-SNP statistical interactions between some subset of causal SNPs, where
119 columns of this matrix are assumed to be the Hadamard (element-wise) product between genotypic vectors
120 of the form $\mathbf{x}_j \circ \mathbf{x}_k$ for the j -th and k -th variants; $\boldsymbol{\theta} = (\theta_1, \dots, \theta_M)$ is an M -dimensional vector containing
121 the interaction effect sizes; $\boldsymbol{\varepsilon}$ is a normally distributed error term with mean zero and variance scaled
122 according to the proportion of phenotypic variation not explained by genetic effects¹⁷, which we will refer
123 to as the broad-sense heritability of the trait denoted by H^2 ; and \mathbf{I} denotes an $N \times N$ identity matrix.
124 For convenience, we will assume that the genotype matrix (column-wise) and the trait of interest have
125 been mean-centered and standardized^{18–20}. Lastly, we will let the intercept term b_0 be a fixed parameter
126 and we will assume that the effect sizes are each normally distributed with variances proportional to their
127 individual contributions to trait heritability^{17,20–23}

128
$$\beta_j \sim \mathcal{N}(0, \varphi_{\beta}^2/J), \quad \theta_m \sim \mathcal{N}(0, \varphi_{\theta}^2/M). \quad (2)$$

129 Effectively, we say that $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = \varphi_{\beta}^2$ is the proportion of phenotypic variation contributed by additive SNP
130 effects under the generative model, while $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = \varphi_{\theta}^2$ makes up the proportion of phenotypic variation
131 contributed by genetic interactions. While the appropriateness of treating genetic effects as random
132 variables in analytical derivations has been questioned²⁴, later, we will justify the theory presented here
133 with simulation results showing that i-LDSC accurately recovers non-additive genetic variance in Eq. (1)
134 under a broad range of conditions.

135 There are two key takeaways from the generative model specified above. First, Eq. (2) implies that
136 the additive and non-additive components in Eq. (1) are orthogonal to each other. In other words,
137 $\mathbb{E}[\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{W} \boldsymbol{\theta}] = \mathbb{E}[\boldsymbol{\beta}^T] \mathbf{X}^T \mathbf{W} \mathbb{E}[\boldsymbol{\theta}] = \mathbf{0}$. This is important because it means that there is a unique par-
138 titioning of genetic variance when studying a trait of interest. The second key takeaway is that the
139 genotype matrix \mathbf{X} and the matrix of genetic interactions \mathbf{W} themselves are correlated despite being
140 linearly independent (see Material and Methods). This property stems from the fact that the pairwise

141 interaction between two SNPs is encoded as the Hadamard product of two genotypic vectors in the form
 142 $\mathbf{w}_m = \mathbf{x}_j \circ \mathbf{x}_k$ (which is a nonlinear function of the genotypes).

143 A central objective in GWAS studies is to infer how much phenotypic variation can be explained by
 144 genetic effects. To achieve that objective, a key consideration involves incorporating the possibility of
 145 non-additive sources of genetic variation to be explained by additive effect size estimates obtained from
 146 GWAS analyses²⁵. If we assume that the genotype and interaction matrices are correlated, then \mathbf{X} and
 147 \mathbf{W} are not completely orthogonal (i.e., such that $\mathbf{X}^\top \mathbf{W} \neq \mathbf{0}$) and the following relationship between the
 148 moment matrix $\mathbf{X}^\top \mathbf{y}$, the observed marginal GWAS summary statistics $\hat{\beta}$, and the true coefficient values
 149 β from the generative model in Eq. (1) holds in expectation (see Materials and Methods)

$$150 \quad \mathbb{E}[\mathbf{X}^\top \mathbf{y}] = (\mathbf{X}^\top \mathbf{X})\beta + (\mathbf{X}^\top \mathbf{W})\theta \quad \xrightarrow{\approx} \quad \mathbb{E}[\hat{\beta}] = \mathbf{R}\beta + \mathbf{V}\theta \quad (3)$$

151 where \mathbf{R} is a sample estimate of the LD matrix, and \mathbf{V} represents a sample estimate of the correlation
 152 between the individual-level genotypes \mathbf{X} and the span of genetic interactions between causal SNPs in \mathbf{W} .
 153 Intuitively, the term $\mathbf{V}\theta$ can be interpreted as the subset of pairwise interaction effects that are tagged
 154 by the additive effect estimates from the GWAS study. Note that, when (i) non-additive genetic effects
 155 do not contribute to the overall architecture of a trait (i.e., such that $\theta = \mathbf{0}$) or (ii) the genotype and
 156 interaction matrices \mathbf{X} and \mathbf{W} are uncorrelated, the equation above simplifies to a relationship between
 157 LD and summary statistics that is assumed in many GWAS studies and methods²⁶⁻³².

158 The goal of i-LDSC is to increase estimates of genetic variance by accounting for sources of non-additive
 159 genetic effects that can be explained by additive GWAS summary statistics. To do this, we extend the LD
 160 score regression framework and the corresponding LDSC software¹⁷. Here, according to Eq. (3), we note
 161 that $\hat{\beta} \sim \mathcal{N}(\mathbf{R}\beta + \mathbf{V}\theta, \lambda\mathbf{R})$ where λ is a scale variance term due to uncontrolled confounding effects^{10,33}.
 162 Next, we condition on $\Theta = (\beta, \theta)$ and take the expectation of chi-square statistics $\chi^2 = N\hat{\beta}\hat{\beta}^\top$ to yield

$$163 \quad \begin{aligned} \mathbb{E}[\hat{\beta}\hat{\beta}^\top] &= \mathbb{E}[\mathbb{E}[\hat{\beta}\hat{\beta}^\top | \Theta]] = \mathbb{E}[\mathbb{V}[\hat{\beta} | \Theta] + \mathbb{E}[\hat{\beta} | \Theta]\mathbb{E}[\hat{\beta} | \Theta]^\top] \\ &= \mathbb{E}[\lambda\mathbf{R} + (\mathbf{R}\beta + \mathbf{V}\theta)(\mathbf{R}\beta + \mathbf{V}\theta)^\top] \\ &= \mathbb{E}[\lambda\mathbf{R} + \mathbf{R}\beta\beta^\top\mathbf{R} + 2\mathbf{R}\beta\theta^\top\mathbf{V}^\top + \mathbf{V}\theta\theta^\top\mathbf{V}^\top] \\ &= \lambda\mathbf{R} + \left(\frac{\varphi_\beta^2}{J}\right)\mathbf{R}^2 + \left(\frac{\varphi_\theta^2}{M}\right)\mathbf{V}^2. \end{aligned} \quad (4)$$

164 We define $\ell_j = \sum_k r_{jk}^2$ as the LD score for the additive effect of the j -th variant¹⁷, and $f_j = \sum_m v_{jm}^2$
165 represents the “*cis*-interaction” LD score which encodes the pairwise interaction between the j -th variant
166 and all other variants within a genomic window that is a pre-specified number of SNPs wide²³, respec-
167 tively. By considering only the diagonal elements of LD matrix in the first term, similar to the original
168 LDSC approach^{10,17}, we get the following simplified regression model

$$169 \quad \mathbb{E}[\chi^2] \propto \mathbf{1} + \boldsymbol{\ell}\tau + \mathbf{f}\vartheta \quad (5)$$

170 where $\chi^2 = (\chi_1^2, \dots, \chi_J^2)$ is a J -dimensional vector of chi-square summary statistics, and $\boldsymbol{\ell} = (\ell_1, \dots, \ell_J)$
171 and $\mathbf{f} = (f_1, \dots, f_J)$ are J -dimensional vectors of additive and *cis*-interaction LD scores, respectively.
172 Furthermore, we define the variance components $\tau = N\varphi_\beta^2/J$ and $\vartheta = N\varphi_\theta^2/M$ as the additive and
173 non-additive regression coefficients of the model, and $\mathbf{1}$ is the intercept meant to model the bias factor
174 due to uncontrolled confounding effects (e.g., cryptic relatedness structure). In practice, we efficiently
175 compute the *cis*-interaction LD scores by considering only a subset of interactions between each j -th
176 focal SNP and SNPs within a *cis*-proximal window around the j -th SNP. In our validation studies and
177 applications, we base the width of this window on the observation that LD decays outside of a window
178 of 1 centimorgan (cM); therefore, SNPs outside the 1 cM window centered on the j -th SNP will not
179 significantly contribute to its LD scores. Note that the width of this window can be relaxed in the
180 **i**-LDSC software when appropriate. We fit the **i**-LDSC model using weighted least squares to estimate
181 regression parameters and derive P -values for identifying traits that have significant statistical evidence
182 of tagged *cis*-interaction effects by testing the null hypothesis $H_0 : \vartheta = 0$. Importantly, under the null
183 model of a trait being generated by only additive effects, the **i**-LDSC model in Eq. (5) reduces to an
184 infinitesimal model³⁴ or, in the case some variants have no effect on the trait, a polygenic model.

185 Lastly, we want to note the empirical observation that the additive ($\boldsymbol{\ell}$) and interaction (\mathbf{f}) LD scores
186 are lowly correlated. This is important because it indicates that the presence of *cis*-interaction LD scores
187 in the model specified in Eq. (5) has little-to-no influence over the estimate for the additive coefficient
188 τ . Instead, the inclusion of \mathbf{f} creates a multivariate model that can identify the proportion of variance
189 explained by both additive and non-additive effects in summary statistics. In other words, we can
190 interpret $\hat{\vartheta}$ as an estimate of the phenotypic variation explained by tagged *cis*-acting interaction effects.
191 The concept of additive genetic effects partially explaining non-additive variation has also described in

192 various studies from quantitative genetics^{25,35,36}. Under Hardy-Weinberg equilibrium, it can be shown
193 that the additive variance explained by J SNPs takes on the following form (Materials and Methods)³⁷

$$194 \quad 195 \quad \sigma_A^2 = \sum_{j=1}^J 2p_j(1-p_j) \left[\beta_j + 2 \sum_{k \neq j}^J p_k \theta_{jk} \right]^2. \quad (6)$$

196 The expression for the additive variance σ_A^2 in Eq. (6) is important because it represents the theoretical
197 upper bound on the proportion of total phenotypic variance that can be recovered from GWAS summary
198 statistics using the i-LDSC framework. As a result, we use the sum of coefficient estimates $\hat{\tau} + \hat{\vartheta} \leq \sigma_A^2$
199 to construct i-LDSC heritability estimates. A full derivation of the *cis*-interaction regression framework
200 and details about its corresponding implementation in our software i-LDSC can be found in Materials
201 and Methods.

202 Detection of tagged pairwise interaction effects using i-LDSC in simulations

203 We illustrate the power of i-LDSC across different genetic trait architectures via extensive simulation
204 studies (Materials and Methods). We generate synthetic phenotypes using real genome-wide genotype
205 data from individuals of self-identified European ancestry in the UK Biobank. To do so, we first assume
206 that traits have a polygenic architecture where all SNPs have a nonzero additive effect. Next, we randomly
207 select a set of causal *cis*-interaction variants and divide them into two interacting groups (Materials and
208 Methods). One may interpret the SNPs in group #1 as being the “hubs” in an interaction map²³; while,
209 SNPs in group #2 are selected to be variants within some kilobase (kb) window around each SNP in
210 group #1. We assume a wide range of simulation scenarios by varying the following parameters:

- 211 • heritability: $H^2 = 0.3$ and 0.6 ;
- 212 • proportion of phenotypic variation that is generated by additive effects: $\rho = 0.5, 0.8$, and 1 ;
- 213 • percentage of SNPs selected to be in group #1: 1% , 5% , and 10% ;
- 214 • genomic window used to assign SNPs to group #2: ± 10 and ± 100 kb.

215 We also varied the correlation between SNP effect size and minor allele frequency (MAF) (as discussed
216 in Schoech et al.³⁸). All results presented in this section are based on 100 different simulated phenotypes
217 for each parameter combination.

218 Figure 1 demonstrates that **i**-LDSC robustly detects significant tagged non-additive genetic variance,
219 regardless of the total number of causal interactions genome-wide. Instead, the power of **i**-LDSC depends
220 on the proportion of phenotypic variation that is generated by additive versus interaction effects (ρ),
221 and its power tends to scale with the window size used to compute the *cis*-interaction LD scores (see
222 Materials and Methods). **i**-LDSC shows a similar performance for detecting tagged *cis*-interaction effects
223 when the effect sizes of causal SNPs depend on their minor allele frequency and when we varied the
224 number of SNPs assigned to be in group #2 within 10 kb and 100kb windows, respectively (Figure 1 –
225 figure supplement 1-5).

226 Importantly, **i**-LDSC does not falsely identify putative non-additive genetic effects in GWAS summary
227 statistics when the synthetic phenotype was generated by only additive effects ($\rho = 1$). Figure 2 illustrates
228 the performance of **i**-LDSC under the null hypothesis $H_0 : \vartheta = 0$, with the type I error rates for different
229 estimation window sizes of the *cis*-interaction LD scores highlighted in panel A. Here, we also show
230 that, when no genetic interaction effects are present, **i**-LDSC unbiasedly estimates the *cis*-interaction
231 coefficient in the regression model to be $\hat{\vartheta} = 0$ (Figure 2B), robustly estimates the heritability (Figure 2C),
232 and provides well-calibrated *P*-values when assessed over many traits (Figure 2D). This behavior is
233 consistent across different MAF-dependent effect size distributions, and *P*-value calibration is not sensitive
234 to misspecification of the estimation windows used to generate the *cis*-interaction LD scores (Figure 2 –
235 figure supplement 1-2).

236 One of the innovations that **i**-LDSC offers over the traditional LDSC framework is increased heritability
237 estimates after the identification of non-additive genetic effects that are tagged by GWAS summary
238 statistics. Here, we applied both methods to the same set of simulations in order to understand how
239 LDSC behaves for traits generated with *cis*-interaction effects. Figure 3 depicts boxplots of the heritability
240 estimates for each approach and shows that, across an array of different synthetic phenotype architectures,
241 LDSC captures less of phenotypic variance explained by all genetic effects. It is important to note that
242 **i**-LDSC can yield upwardly biased heritability estimates when the *cis*-interaction scores are computed
243 over genomic window sizes that are too small; however, these estimates become more accurate for larger
244 window size choices (Figure 3 – figure supplement 1). In contrast to LDSC, which aims to capture
245 phenotypic variance attributable to the additive effects of genotyped SNPs, **i**-LDSC accurately partitions
246 genetic effects into additive versus *cis*-interacting components, which in turn generally leads the ability
247 of **i**-LDSC to capture more genetic variance. The mean absolute error between the true generative

248 heritability and heritability estimates produced by **i**-LDSC and LDSC are shown in Supplementary Files 1
249 and 2, respectively. Generally, the error in heritability estimates is higher for LDSC than it is for **i**-LDSC
250 across each of the scenarios that we consider.

251 Next, we perform an additional set of simulations where we explore other common generative models
252 for complex trait architecture that involve non-additive genetic effects. Specifically, we compare heri-
253 tability estimates from LDSC and **i**-LDSC in the presence of additive effects, *cis*-acting interactions, and a
254 third source of genetic variance stemming from either gene-by-environment (G×E) or or gene-by-ancestry
255 (G×Ancestry) effects. Details on how these components were generated can be found in Materials and
256 Methods. In general, **i**-LDSC underestimates overall heritability when additive effects and *cis*-acting in-
257 teractions are present alongside G×E (Figure 3 – figure supplement 2) and/or G×Ancestry effects when
258 PCs are included as covariates (Figure 3 – figure supplement 3). Notably, when PCs are not included
259 to correct for residual stratification, both LDSC and **i**-LDSC can yield unbounded heritability estimates
260 greater than 1 (Figure 3 – figure supplement 4). Also interestingly, when we omit *cis*-interactions from
261 the generative model (i.e., the genetic architecture of simulated traits is only made up of additive and
262 G×E or G×Ancestry effects), **i**-LDSC will still estimate a nonzero genetic variance component with the
263 *cis*-interaction LD scores (Figure 3 – figure supplement 5-7). Collectively, these results empirically show
264 the important point that *cis*-interaction scores are not enough to recover missing genetic variation for
265 all types of trait architectures; however, they are helpful in recovering phenotypic variation explained by
266 statistical interaction effects. Recall that the linear relationship between (expected) χ^2 test statistics and
267 LD scores proposed by the LDSC framework holds when complex traits are generated under the polygenic
268 model where all causal variants have the same expected contribution to phenotypic variation. When
269 *cis*-interactions affect genetic architecture (e.g., in our earlier simulations in Figure 3), these assumptions
270 are violated in LDSC, but the inclusion of the additional nonlinear scores in **i**-LDSC help recover the
271 relationship between the expectation of χ^2 test statistics and LD.

272 As a further demonstration of how **i**-LDSC performs when assumptions of the original LD score
273 model are violated, we also generated synthetic phenotypes with sparse architectures using the spike-and-
274 slab model²⁰. Here, traits were simulated with solely additive effects, but this time only variants with
275 the top or bottom {1, 5, 10, 25, 50, 100} percentile of LD scores were given nonzero effects (see Material
276 and Methods). Breaking the relationship assumed under the LDSC framework between LD scores and
277 chi-squared statistics (i.e., that they are generally positively correlated) led to unbounded estimates of

²⁷⁸ heritability in all but the (polygenic) scenario when 100% of SNPs contributed to the phenotypic variation
²⁷⁹ (Figure 3 – figure supplement 8).

²⁸⁰ Finally, we performed a set of polygenic simulations to assess if *i*-LDSC estimates of non-additive
²⁸¹ genetic variance could be spuriously inflated due to either (*i*) unobserved additive effects (see, for example,
²⁸² Hemani et al.³⁹), (*ii*) unobserved SNPs that are involved in genetic interactions, or by (*iii*) nonzero
²⁸³ correlation between the additive and interaction effect sizes in the generative model (i.e., breaking the
²⁸⁴ independence assumption in Eq. (2)). In the first setting, we observed that, across a range of both minor
²⁸⁵ allele frequencies and effect sizes, the omission of causal haplotypes had a negligible effect on the estimated
²⁸⁶ value of the coefficients in *i*-LDSC (Figure 3 – figure supplement 9). We hypothesize this is due to the
²⁸⁷ fact that the simulations were done for polygenic architectures where all SNPs have at least an additive
²⁸⁸ effect. As a result, not observing a small subset of SNPs does not hinder the ability of *i*-LDSC to estimate
²⁸⁹ genetic variance because the effect size of each SNP is small. If these simulations were conducted for sparse
²⁹⁰ architectures, we would have likely seen a greater impact on *i*-LDSC; although, we have already shown the
²⁹¹ LD score regression framework to be uncalibrated for traits with sparse genetic architectures (again see
²⁹² Figure 3 – figure supplement 8). In the second setting, we observed that the *i*-LDSC framework protects
²⁹³ against the false discovery of non-additive genetic effects and underestimates the variance component ϑ
²⁹⁴ when causal variants involved in pairwise interactions were unobserved (Figure 3 – figure supplement 10
²⁹⁵ and 11). As a direct comparison, estimates of the additive variance component τ in *i*-LDSC were not
²⁹⁶ affected by the unobserved interacting variants. Lastly, in the third setting, we observed that the mean
²⁹⁷ estimate of the genetic variance in both LDSC and *i*-LDSC had a slight upward bias as the correlation
²⁹⁸ between additive and interaction effect sizes in the generative model increased; however, the median of
²⁹⁹ these bias estimates was still near zero across all simulated scenarios and their corresponding replicates
³⁰⁰ (Figure 3 – figure supplement 12 and 13).

³⁰¹ Application of *i*-LDSC to the UK Biobank and BioBank Japan

³⁰² To assess whether pairwise interaction genetic effects are significantly affecting estimates of heritability
³⁰³ in empirical biobank data, we applied *i*-LDSC to 25 continuous quantitative traits from the UK Biobank
³⁰⁴ and BioBank Japan (Supplementary File 3). Protocols for computing GWAS summary statistics for
³⁰⁵ the UK Biobank are described in the Materials and Methods; while pre-computed summary statistics
³⁰⁶ for BioBank Japan were downloaded directly from the consortium website (see URLs). We release the

307 *cis*-acting SNP-by-SNP interaction LD scores used in our analyses on the **i**-LDSC GitHub repository from
308 two reference groups in the 1000 Genomes: 489 individuals from the European superpopulation (EUR)
309 and 504 individuals from the East Asian (EAS) superpopulation (see also Supplementary Files 4 and 5).

310 In each of the 25 traits we analyzed in the UK Biobank, we detected significant proportions of
311 estimated genetic variation stemming from tagged pairwise *cis*-interactions (Table 1). This includes
312 many canonical traits of interest in heritability analyses: height, cholesterol levels, urate levels, and both
313 systolic and diastolic blood pressure. Our findings in Table 1 are supported by multiple published studies
314 identifying evidence of non-additive effects playing a role in the architectures of different traits of interest.
315 For example, Li et al.⁴⁰ found evidence for genetic interactions that contributed to the pathogenesis of
316 coronary artery disease. It was also recently shown that non-additive genetic effects plays a significant
317 role in body mass index¹⁰. Generally, we find that the traditional LDSC produces lower estimates of trait
318 heritability because it does not consider the additional sources of genetic signal that **i**-LDSC does (Table
319 1). In BioBank Japan, 23 of the 25 traits analyzed had a significant nonlinear component detected by
320 **i**-LDSC — with HDL and triglyceride levels being the only exceptions.

321 For each of the 25 traits that we analyzed, we found that the **i**-LDSC heritability estimates are
322 significantly correlated with corresponding estimates from LDSC in both the UK Biobank ($r^2 = 0.988$,
323 $P = 5.936 \times 10^{-24}$) and BioBank Japan ($r^2 = 0.849$, $P = 6.061 \times 10^{-11}$) as shown in Figure 4A.
324 Additionally, we found that the heritability estimates for the same traits between the two biobanks are
325 highly correlated according to both LDSC ($r^2 = 0.848$, $P = 7.166 \times 10^{-11}$) and **i**-LDSC ($r^2 = 0.666$,
326 $P = 6.551 \times 10^{-7}$) analyses as shown in Figure 4B. After comparing the **i**-LDSC heritability estimates
327 to LDSC, we then assessed whether there was significant difference in the amount of phenotypic variation
328 explained by the non-additive genetic effect component in the GWAS summary statistics derived from
329 the the UK Biobank and BioBank Japan (i.e., comparing the estimates of ϑ ; see Figure 4 – figure
330 supplement 1A). We show that, while heterogeneous between traits, the phenotypic variation explained
331 by genetic interactions is relatively of the same magnitude for both biobanks ($r^2 = 0.372$, $P = 0.0119$).
332 Notably, the trait with the most significant evidence of tagged *cis*-interaction effects in GWAS summary
333 statistics is height which is known to have a highly polygenic architecture.

334 The intercepts estimated by LDSC and **i**-LDSC are also highly correlated in both the UK Biobank and
335 the BioBank Japan (Figure 4 – figure supplement 1B). Recall that these intercept estimates represent the
336 confounding factor due to uncontrolled effects. For LDSC, this does include phenotypic variation that is

337 due to unaccounted for pairwise statistical genetic interactions. The **i**-LDSC intercept estimates tend to
338 be correlated with, but are generally different than, those computed with LDSC — empirically indicating
339 that non-additive genetic variation is partitioned away and is missed when using the standard LD score
340 alone. This result shows similar patterns in both the UK Biobank ($r^2 = 0.888$, $P = 1.962 \times 10^{-12}$) and
341 BioBank Japan ($r^2 = 0.813$, $P = 7.814 \times 10^{-10}$).

342 Lastly, we performed an additional analysis in the UK Biobank where the *cis*-interaction scores are
343 included as an annotation alongside 97 other functional categories in the stratified-LD score regression
344 framework and its software **s**-LDSC⁴¹ (Materials and Methods). Here, **s**-LDSC heritability estimates still
345 showed an increase with the interaction scores versus when the publicly available functional categories
346 were analyzed alone, but albeit at a much smaller magnitude (Table 2). The contributions from the
347 pairwise interaction component to the overall estimate of genetic variance ranged from 0.005 for MCHC
348 ($P = 0.373$) to 0.055 for HDL ($P = 0.575$) (Figures 4C and 4D). Furthermore, in this analysis, the
349 estimates of the non-additive components were no longer statistically significant for any of the traits in
350 the UK Biobank (Table 2). Despite this, these results highlight the ability of the **i**-LDSC framework
351 to identify sources of “missing” phenotypic variance explained in heritability estimation. Importantly,
352 moving forward, we suggest using the *cis*-interaction scores with additional annotations whenever they are
353 available as it provides more conservative estimates of the role of non-additive effects on trait architecture.

354 Discussion

355 In this paper, we present **i**-LDSC, an extension of the LD score regression framework which aims to
356 recover missing heritability from GWAS summary statistics by incorporating an additional score that
357 measures the non-additive genetic variation that is tagged by genotyped SNPs. Here, we demonstrate
358 how **i**-LDSC builds upon the original LDSC model through the development of new “*cis*-interaction” LD
359 scores which help to investigate signals of *cis*-acting SNP-by-SNP interactions (Figure 1 and Figure 1
360 – figure supplement 1-5). Through extensive simulations, we show that **i**-LDSC is well-calibrated under
361 the null model when polygenic traits are generated only by additive effects (Figure 2 and Figure 2
362 – figure supplement 1-2), we highlight that **i**-LDSC provides greater heritability estimates over LDSC
363 when traits are indeed generated with *cis*-acting SNP-by-SNP interaction effects (Figure 3 and Figure 3
364 – figure supplement 1, and Supplementary Files 1 and 2), and we tested the robustness of **i**-LDSC on

365 phenotypes where assumptions of the original LD score model are violated (Figure 3 – figure supplement 2-
366 13). Finally, in real data, we show examples of many traits with estimated GWAS summary statistics
367 that tag *cis*-interaction effects in the UK Biobank and BioBank Japan (Figure 4 and Figure 4 – figure
368 supplement 1, Tables 1 and 2, and Supplementary Files 3-5). We have made **i-LDSC** a publicly available
369 command line tool that requires minimal updates to the computing environment used to run the original
370 implementation of LD score regression (see URLs). In addition, we provide pre-computed *cis*-interaction
371 LD scores calculated from the European (EUR) and East Asian (EAS) reference populations in the 1000
372 Genomes phase 3 data (see Data and Software Availability under Materials and Methods).

373 The current implementation of the **i-LDSC** framework offers many directions for future development
374 and applications. First, an area of future work would be to explore how the relationship between *cis*-
375 interaction LD scores and interaction effect sizes from the generative model of complex traits might bias
376 heritability estimates provided by **i-LDSC** (e.g., similar to the relationship we explored between the stan-
377 dard LD scores and linear effect sizes in Figure 3 – figure supplement 8). Second, as we showed with our
378 simulation studies (Figure 3 – figure supplement 2-8), the *cis*-interaction LD scores that we propose are
379 not always enough to recover explainable non-additive genetic effects for all types of trait architectures.
380 While we focus on pairwise *cis*-acting SNP-by-SNP statistical interactions in this work, the theoretical
381 concepts underlying **i-LDSC** can easily be adapted to other types of interactions as well. Third, in our
382 analysis of the UK Biobank and BioBank Japan, we showed that the inclusion of additional categories
383 via frameworks such as stratified LD score regression⁴² can be used to provide more refined heritability
384 estimates from GWAS summary statistics while accounting for linkage (see results in Table 1 versus Table
385 2). A key part of our future work is to continue to explore whether considering functional annotation
386 groups would also improve our ability to identify tagged non-additive genetic effects. Lastly, we have
387 only focused on analyzing one phenotype at a time in this study. However, many previous studies have
388 extensively shown that modeling multiple phenotypes can often dramatically increase power^{43,44}. There-
389 fore, it would be interesting to extend the **i-LDSC** framework to multiple traits to study nonlinear genetic
390 correlations in the same way that LDSC was recently extended to uncover additive genetic correlation
391 maps across traits⁴⁵.

392 URLs

393 i-LDSC software package for implementing interaction score regression, <https://github.com/lcrawlab/i-LDSC>;
394 LDSC software package for implementing LD score regression, <https://github.com/bulik/ldsc/>;
395 UK Biobank, <https://www.ukbiobank.ac.uk>; BioBank Japan, <http://jenger.riken.jp/en/result>;
396 1000 Genomes Project genetic map and haplotypes, http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html; Database of Genotypes and Phenotypes (dbGaP),
397 <https://www.ncbi.nlm.nih.gov/gap>; NHGRI-EBI GWAS Catalog, <https://www.ebi.ac.uk/gwas/>;
398 GRM-MAF-LD package, <https://github.com/arminschoech/GRM-MAF-LD>; GCTA toolkit, <https://yanglab.westlake.edu.cn/software/gcta/>.
400

401 Acknowledgements

402 We thank Jeffrey P. Spence, Roshni Patel, Matthew Aguirre, Mineto Ota, and our anonymous referees
403 for insightful comments on an earlier version of this manuscript as well as the Harpak, Ramachandran,
404 and Crawford Labs for helpful discussions. This research was conducted in part using computational
405 resources and services at the Center for Computation and Visualization at Brown University. This
406 research was also conducted using the UK Biobank Resource under Application Numbers 14649 (LC) and
407 22419 (SR). S.P. Smith and D. Udwin were trainees supported under the Brown University Predoctoral
408 Training Program in Biological Data Science (NIH T32 GM128596). S.P. Smith was also supported
409 by NIH RF1AG073593. S.P. Smith and A. Harpak were also supported by NIH R35 GM151108 to
410 A. Harpak. G. Darnell was supported by NSF Grant No. DMS-1439786 while in residence at the Institute
411 for Computational and Experimental Research in Mathematics (ICERM) in Providence, RI. This research
412 was supported in part by an Alfred P. Sloan Research Fellowship and a David & Lucile Packard Fellowship
413 for Science and Engineering awarded to L. Crawford. This research was also partly supported by US
414 National Institutes of Health (NIH) grant R01 GM118652, NIH grant R35 GM139628, and National
415 Science Foundation (NSF) CAREER award DBI-1452622 to S. Ramachandran. Any opinions, findings,
416 and conclusions or recommendations expressed in this material are those of the author(s) and do not
417 necessarily reflect the views of any of the funders.

⁴¹⁸ **Competing Interests**

⁴¹⁹ The authors declare no competing interests.

420 Materials and Methods

421 Generative statistical model for complex traits

422 Our goal in this study is to re-analyze summary statistics from genome-wide association studies (GWAS)
423 and estimate heritability while accounting for both additive genetic associations and tagged interaction
424 effects. We begin by assuming the following generative linear model for complex traits which can be seen
425 as an extended view of Eq. (1) in the main text

$$426 \quad \mathbf{y} = b_0 + \mathbf{X}\boldsymbol{\beta} + \mathbf{X}_D\boldsymbol{\omega} + \mathbf{W}\boldsymbol{\theta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, (1 - H^2)\mathbf{I}), \quad (7)$$

427 where \mathbf{y} denotes an N -dimensional vector of phenotypic states for a quantitative trait of interest measured
428 in N individuals; b_0 is an intercept term; \mathbf{X} is an $N \times J$ matrix of genotypes, with J denoting the number
429 of single nucleotide polymorphism (SNPs) encoded as $\{0, 1, 2\}$ copies of a reference allele at each locus;
430 $\boldsymbol{\beta} = (\beta_1, \dots, \beta_J)$ is a J -dimensional vector containing the true additive effect sizes for an additional copy
431 of the reference allele at each locus on \mathbf{y} ; \mathbf{X}_D is an $N \times J$ matrix that represents the dominance for
432 each genotype encoded as $\{0, 1, 1\}$ with corresponding effect sizes $\boldsymbol{\omega}$; \mathbf{W} is an $N \times M$ matrix of genetic
433 interactions; $\boldsymbol{\theta} = (\theta_1, \dots, \theta_M)$ is an M -dimensional vector containing the interaction effect sizes; $\boldsymbol{\varepsilon}$ is
434 a normally distributed error term with mean zero and variance scaled according to the proportion of
435 phenotypic variation not explained by the broad-sense heritability of the trait, denoted by H^2 ; and \mathbf{I}
436 denotes an $N \times N$ identity matrix. Note that the encoding for dominance in \mathbf{X}_D was chosen because it
437 imposes orthogonality with the genotype encoding in \mathbf{X} ^{11,46,47}.

438 For convenience, we will assume that the genotype matrix (column-wise), the dominance matrix
439 (also column-wise), and trait of interest have all been standardized^{18–20}. Furthermore, while the matrix
440 \mathbf{W} could encode any source of non-additive genetic interactions (e.g., gene-by-environmental effects) in
441 theory, we limit our focus in this study to trait architectures that have been generated with contributions
442 stemming from *cis*-acting statistical SNP-by-SNP (or pairwise) interactions. To that end, we assume
443 that the columns of \mathbf{W} are the Hadamard (element-wise) product between genotypic vectors of the
444 form $\mathbf{x}_j \circ \mathbf{x}_k$ for the j -th and k -th variants. We also want to point out that the generative formulation
445 of Eq. (7) can also be easily extended to accommodate other fixed effects (e.g., age, sex, or genotype
446 principal components), as well as other random effects terms that can be used to account for sample

447 non-independence due to other environmental factors.

448 As a final set of assumptions, we will let the intercept term b_0 be a fixed parameter while allowing
 449 the other coefficients to follow independent Gaussian distributions with variances proportional to their
 450 individual contributions to the trait heritability^{17,20–23,48}

$$451 \quad \beta_j \sim \mathcal{N}(0, \varphi_\beta^2/J), \quad \omega_j \sim \mathcal{N}(0, \varphi_\omega^2/J), \quad \theta_m \sim \mathcal{N}(0, \varphi_\theta^2/M), \quad (8)$$

452 for $j = 1, \dots, J$ and $m = 1, \dots, M$. The broad-sense heritability of the trait is defined as $H^2 = \varphi_\beta^2 +$
 453 $\varphi_\omega^2 + \varphi_\theta^2$. Under the generative model in Eq. (7), we then say that $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = \varphi_\beta^2$ is the proportion of
 454 phenotypic variation contributed by additive SNP effects, $\mathbb{V}[\mathbf{X}_D\boldsymbol{\omega}] = \varphi_\omega^2$ is the proportion of phenotypic
 455 variation contributed by dominance effects, and the set of interactions involving some subset of causal
 456 SNPs contribute the remaining proportion to the heritability $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = \varphi_\theta^2$. As we mentioned in the main
 457 text, we recognize that the appropriateness of treating genetic effects as random variables in analytical
 458 derivations has been questioned²⁴, but our simulation studies show that i-LDSC accurately recovers
 459 non-additive genetic variance in Eq. (7) under a broad range of conditions.

460 **Orthogonality between additive and non-additive genetic effects**

461 Assuming that the effect sizes $\{\boldsymbol{\beta}, \boldsymbol{\omega}, \boldsymbol{\theta}\}$ in Eq. (8) follow independent and zero mean Gaussian distri-
 462 butions leads to orthogonality between the additive and non-additive components in Eq. (7). Since the
 463 genotypes \mathbf{X} and the dominance values \mathbf{X}_D are fixed orthogonal matrices, it is straightforward to show
 464 that $\text{Cov}[\mathbf{X}\boldsymbol{\beta}, \mathbf{X}_D\boldsymbol{\omega}] = 0$ ^{11,47}. The same relationship can be shown for the additive and the pairwise
 465 interaction genetic effects where

$$466 \quad \begin{aligned} \text{Cov}[\mathbf{X}\boldsymbol{\beta}, \mathbf{W}\boldsymbol{\theta}] &= \mathbb{E}[\boldsymbol{\beta}^\top \mathbf{X}^\top \mathbf{W}\boldsymbol{\theta}] - \mathbb{E}[\boldsymbol{\beta}^\top \mathbf{X}^\top] \mathbb{E}[\mathbf{W}\boldsymbol{\theta}] \\ &= \mathbb{E} \left[\sum_{rs} \beta_r (\mathbf{X}^\top \mathbf{W})_{rs} \theta_s \right] - \mathbb{E}[\boldsymbol{\beta}^\top] \mathbf{X}^\top \mathbf{W} \mathbb{E}[\boldsymbol{\theta}] \\ &= \sum_{rs} (\mathbf{X}^\top \mathbf{W})_{rs} \mathbb{E}[\beta_r \theta_s] - \mathbf{0}^\top \mathbf{X}^\top \mathbf{W} \mathbf{0} \\ &= \sum_{rs} (\mathbf{X}^\top \mathbf{W})_{rs} \mathbb{E}[\beta_r] \mathbb{E}[\theta_s] \\ &= 0 \end{aligned} \quad (9)$$

467 with \mathbf{x}_j and \mathbf{w}_m denoting the j -th and m -th column of the individual-level genotype matrix \mathbf{X} and the
468 interaction matrix \mathbf{W} , respectively. Note that a similar derivation to Eq. (9) can also be done for the
469 dominance and pairwise genetic interaction effects. This concept of orthogonality is important because
470 we want to preserve a unique partitioning of genetic variance when modeling a trait of interest.

471 **Genotypes and their interactions are correlated despite being linearly inde-
472 pendent**

473 The design matrices \mathbf{X} and \mathbf{W} in Eq. (7) are not linearly dependent because the pairwise interactions
474 between two SNPs are encoded as the Hadamard product of two genotypic vectors in the form $\mathbf{x}_j \circ \mathbf{x}_k$
475 (which is a nonlinear function). Linear dependence would have implied that one could find a transfor-
476 mation between a SNP and an interaction term in the form $\mathbf{w}_m = c \times \mathbf{x}_j$ for some constant c . However,
477 despite their linear independence, \mathbf{X} and \mathbf{W} are themselves not orthogonal and still have a nonzero
478 correlation. This implies that the inner product between genotypes and their interactions is nonzero
479 $\mathbf{X}^\top \mathbf{W} \neq \mathbf{0}$. To see this, we focus on a focal SNP \mathbf{x}_j and consider three different types of interactions:

480 • **Scenario I:** Interaction between a focal SNP with itself ($\mathbf{x}_j \circ \mathbf{x}_j$).
481 • **Scenario II:** Interaction between a focal SNP with a different SNP ($\mathbf{x}_j \circ \mathbf{x}_k$).
482 • **Scenario III:** Interaction between a focal SNP with a pair of different SNPs ($\mathbf{x}_k \circ \mathbf{x}_l$).

483 The following derivations rely on the fact that: (1) we assume that genotypes have been mean-centered
484 and scaled to have unit variance, and (2) under Hardy-Weinberg equilibrium, SNPs marginally follow a
485 binomial distribution $\mathbf{x}_j \sim \text{Bin}(2, p)$ where p represents the minor allele frequency (MAF)^{49,50}.

486 **Scenario I.** The covariance between a focal SNP and an interaction with itself is $\text{Cov}[\mathbf{x}_j, \mathbf{x}_j \mathbf{x}_j] =$
487 $\mathbb{E}[\mathbf{x}_j^3] - \mathbb{E}[\mathbf{x}_j] \mathbb{E}[\mathbf{x}_j^2]$. With mean-centered SNPs, this is proportional to $\mathbb{E}[\mathbf{x}_j^3] = (q - p)/\sqrt{2pq}$ which is the
488 skewness of the binomial distribution where, again, $p = \text{MAF}$ and $q = 1 - \text{MAF}$ of the j -th SNP.

489 **Scenario II.** Assume that we have two SNPs, $\mathbf{x}_j \sim \text{Bin}(2, p_j)$ and $\mathbf{x}_k \sim \text{Bin}(2, p_k)$ where p_j and p_k
490 represent their respective minor allele frequencies. We want to compute the correlation between \mathbf{x}_j and
491 the interaction $\mathbf{x}_j \mathbf{x}_k$ where $\text{Cov}[\mathbf{x}_j, \mathbf{x}_j \mathbf{x}_k] = \mathbb{E}[\mathbf{x}_j^2 \mathbf{x}_k] - \mathbb{E}[\mathbf{x}_j] \mathbb{E}[\mathbf{x}_j \mathbf{x}_k]$. Again, with the mean-centered

492 assumption, the covariance is proportional to the expectation $\mathbb{E}[\mathbf{x}_j^2 \mathbf{x}_k]$. Here, with SNPs taking on values
 493 $\{0, 1, 2\}$, the joint distribution between \mathbf{x}_j^2 and \mathbf{x}_k can be written out as the following⁵¹:

	$\mathbf{x}_j^2 = 0$	$\mathbf{x}_j^2 = 1$	$\mathbf{x}_j^2 = 4$
$\mathbf{x}_k = 0$	u_{jk}^2	$2u_{jk}(1 - p_k - u_{jk})$	$(1 - p_k - u_{jk})^2$
$\mathbf{x}_k = 1$	$2u_{jk}(1 - p_j - u_{jk})$	$2u_{jk}(u_{jk} + p_j + p_k - 1) + 2(1 - p_j - u_{jk})(1 - p_k - u_{jk})$	$2(u_{jk} + p_j + p_k - 1)(1 - p_k - u_{jk})$
$\mathbf{x}_k = 2$	$(1 - p_j - u_{jk})^2$	$2(u_{jk} + p_j + p_k - 1)(1 - p_j - u_{jk})$	$(u_{jk} + p_j + p_k - 1)^2$

494 where $u_{jk} = (1 - p_j)(1 - p_k) + r_{jk}\sqrt{p_j p_k (1 - p_j)(1 - p_k)}$ and r_{jk} is the Pearson correlation or linkage
 495 disequilibrium (LD) between the j -th and k -th SNPs.

496 **Scenario III.** The covariance between a focal SNP and an interaction with a pair of different SNPs
 497 $\text{Cov}[\mathbf{x}_j, \mathbf{x}_k \mathbf{x}_l]$ will be nonzero if the j -th SNP is correlated with either variant (i.e., $r_{jk} \neq 0$ or $r_{jl} \neq 0$).

498 Traditional estimation of additive GWAS summary statistics

499 As previously mentioned, the key to this work is that SNP-level GWAS summary statistics can also tag
 500 non-additive genetic effects when there is a nonzero correlation between individual-level genotypes and
 501 their interactions (as defined in Eq. (7)). Throughout the rest of this section, we will use $\mathbf{X}^\top \mathbf{X} / N$ to
 502 denote the LD or pairwise correlation matrix between SNPs. We will then let \mathbf{R} represent an LD matrix
 503 empirically estimated from external data (e.g., directly from GWAS study data, or using a pairwise
 504 LD map from a population that is representative of the samples analyzed in the GWAS study). The
 505 important property here is the following

$$506 \quad \mathbb{E}[\mathbf{X}^\top \mathbf{X}] \approx N\mathbf{R}, \quad \mathbb{E}[\mathbf{x}_j^\top \mathbf{x}_j] \approx N, \quad \mathbb{E}[\mathbf{x}_j^\top \mathbf{x}_k] \approx N r_{jk} \quad (10)$$

507 where the term r_{jk} is again defined as the Pearson correlation coefficient between the j -th and k -th SNPs,
 508 respectively.

509 In traditional GWAS studies, summary statistics of the true additive effects $\boldsymbol{\beta} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$ in

510 Eq. (7) are typically derived by computing a marginal least squares estimate with the observed data

$$511 \quad \hat{\beta}_j = (\mathbf{x}_j^\top \mathbf{x}_j)^{-1} \mathbf{x}_j^\top \mathbf{y} \quad \iff \quad \hat{\beta} = \text{diag}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}. \quad (11)$$

512 There are two key identities that may be taken from Eq. (11). The first uses Eq. (10) and is the
 513 approximate relationship (in expectation) between the moment matrix $\mathbf{X}^\top \mathbf{y}$ and the linear effect size
 514 estimates $\hat{\beta}$:

$$515 \quad \mathbb{E}[\mathbf{X}^\top \mathbf{y}] = \mathbb{E}[\text{diag}(\mathbf{X}^\top \mathbf{X}) \hat{\beta}] \approx N \hat{\beta}. \quad (12)$$

516 The second key point combines Eqs. (10) and (12) to describe the asymptotic relationship between the
 517 observed marginal GWAS summary statistics $\hat{\beta}$ and the joint coefficient values β where (in expectation)

$$518 \quad \mathbb{E}[\beta] = \mathbb{E}[(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}] \approx (N \mathbf{R})^{-1} N \hat{\beta} = \mathbf{R}^{-1} \hat{\beta}. \quad (13)$$

519 After some algebra, the above mirrors a high-dimensional regression model (in expectation) where $\hat{\beta} = \mathbf{R} \beta$
 520 with the estimated summary statistics as the response variables and the empirically estimated LD matrix
 521 acting as the design matrix^{26,29,31,32,52}. Theoretically, the resulting coefficients output from this high-
 522 dimensional model are the desired true effect size estimates used to generate the phenotype of interest.

523 Additive GWAS summary statistics with tagged interaction effects

524 When interactions contribute to the architecture of complex traits (i.e., $\theta \neq \mathbf{0}$), the marginal GWAS
 525 summary statistics derived using least squares in Eq. (11) will also explain non-additive variation when
 526 there is a nonzero correlation between genotypes and their interactions. To see this, we use the concept
 527 of “omitted variable bias”⁵³ where the fitted model aims to estimate the true additive coefficients β
 528 but does not account for contributions from the non-additive components which also contribute to trait
 529 architecture. In this case, we get the following

$$530 \quad \begin{aligned} \hat{\beta} &= \text{diag}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y} \\ &= \text{diag}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top [\mathbf{X} \beta + \mathbf{X}_D \omega + \mathbf{W} \theta + \varepsilon]. \end{aligned} \quad (14)$$

531 Since we assume that the genotypes are orthogonal to both the dominance effects in Eq. (7), we know
 532 that $\mathbf{X}^\top \mathbf{X}_D = \mathbf{0}$. This simplifies the above to be the following

533
$$\hat{\boldsymbol{\beta}} = \text{diag}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{X} \boldsymbol{\beta} + \text{diag}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{W} \boldsymbol{\theta} + \text{diag}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \boldsymbol{\varepsilon} \quad (15)$$

534 where the matrix $\mathbf{X}^\top \mathbf{W}$ (which we showed to be nonzero) can be interpreted as the sample correlation
 535 between individual-level genotypes and the *cis*-interactions between causal SNPs. By taking the expectation
 536 using Eqs. (10) and (12), we get the following alternative (approximate) relationship between the
 537 observed marginal GWAS summary statistics $\hat{\boldsymbol{\beta}}$ and the true coefficient values $\boldsymbol{\beta}$

538
$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbf{R}\boldsymbol{\beta} + \mathbf{V}\boldsymbol{\theta}, \quad (16)$$

539 which results from our initial assumption that the residuals are normally distributed with mean zero
 540 $\mathbb{E}[\boldsymbol{\varepsilon}] = \mathbf{0}$ in Eq. (7). Here, we define \mathbf{V} to represent a sample estimate of the correlation between the
 541 individual-level genotypes and the non-additive genetic interaction matrix such that $\mathbb{E}[\mathbf{X}^\top \mathbf{W}] \approx N\mathbf{V}$.
 542 Similar to the LD matrix \mathbf{R} , the correlation matrix \mathbf{V} is also assumed to be computed from reference
 543 panel data. Intuitively, when $\boldsymbol{\theta} \neq \mathbf{0}$ there is additional phenotypic variation contributed by pairwise
 544 interactions that can be explained by GWAS effect size estimates. Moreover, when $\mathbf{V}\boldsymbol{\theta} = \mathbf{0}$, then the
 545 relationship in Eq. (16) converges onto the conventional asymptotic assumption (in expectation) between
 546 GWAS summary statistics and the true additive coefficients in Eq. (13)^{26,29,31,32,52}.

547 **Connection to quantitative genetics theory**

548 The concept of additive genetic effects partially explaining non-additive variation has also described in
 549 classical quantitative genetics^{25,35,36}. Consider an individual genotyped at J loci each with major and
 550 minor alleles A and B, respectively. Let p_j be the allele frequency of A at the j -th locus, a_j denote the
 551 additive effect, and $[aa]_{jk}$ be the additive-by-additive (pairwise) interaction effect between loci j and k ,
 552 and $[aaa]_{jkl}$ represent a third order interaction between loci j , k , and l . For simplicity in presentation,
 553 assume that dominance only makes a small contribution to the genetic variance^{11,54,55}. The population

554 mean is given as the following

$$555 \quad \mu = 2 \sum_{j=1}^J p_j a_j + 4 \sum_{j=1}^J \sum_{k>j}^J p_j p_k [aa]_{jk} + 8 \sum_{j=1}^J \sum_{k>j}^J \sum_{l>k>j}^J p_j p_k p_l [aaa]_{jkl} + \dots \quad (17)$$

556

557 We follow the assumption that the genetic variation in human complex traits can predominately be
 558 explained by additive effects, with the remainder variation being mostly explained by additive-by-additive
 559 effects^{48,56–58}. As a result, we will ignore the higher-order interaction terms in Eq. (17). Under Hardy-
 560 Weinberg equilibrium, we can find the average effect by taking the first derivative of the population mean
 561 with respect to the frequency of the increasing allele^{35,36}. For the j -th SNP, the average effect (including
 562 terms up to second-order interaction) is given by the following

$$563 \quad \eta_j = \frac{1}{2} \left(\frac{\partial \mu}{\partial p_j} \right) = a_j + 2 \sum_{k \neq j}^J p_k [aa]_{jk} + O([aaa]_{jkl}) \quad (18)$$

564

565 which notably contains both the additive effect and a summation of additive-by-additive interactions
 566 between pairs of loci. The additive genetic variance for the j -th SNP takes on the following form

$$567 \quad \sigma_A^2(j) = 2p_j(1-p_j) \left[a_j + 2 \sum_{k \neq j}^J p_k [aa]_{jk} \right]^2 \\ = 2p_j(1-p_j) \left[a_j^2 + 2a_j \sum_{k \neq j}^J p_k [aa]_{jk} + 4 \left(\sum_{k \neq j}^J p_k [aa]_{jk} \right)^2 \right] \quad (19)$$

568 which is the product of the square of the average effect in Eq. (18) and the heterozygosity at j -th locus
 569 $\mathbb{V}[\mathbf{x}_j] = 2p_j(1-p_j)$ (again assuming that SNPs marginally follow a binomial distribution). The total
 570 additive variance is then obtained by summing over the J loci such that $\sigma_A^2 = \sum_j \sigma_A^2(j)$ ³⁷.

571 We can derive a parallel construction for additive genetic variance using the generative random effect
 572 model presented in Eq. (7)³⁵. Here, we will leverage that with genotype data taken for N individuals,
 573 $\sum_i x_{ij}/N = 2p_j$. Ignoring the assumed small contributions from dominance effects, the population mean

574 for a quantitative trait \mathbf{y} can be written as the following

$$\begin{aligned}
 \mu &= \frac{1}{N} \sum_{i=1}^N y_i = \frac{1}{N} \sum_{i=1}^N \left[b_0 + \sum_{j=1}^J x_{ij} \beta_j + \sum_{j=1}^J \sum_{k>j}^J x_{ij} x_{ik} \theta_{jk} + \varepsilon_i \right] \\
 &= b_0 + 2 \sum_{j=1}^J p_j \beta_j + 4 \sum_{j=1}^J \sum_{k>j}^J p_j p_k \theta_{jk} + \frac{1}{N} \sum_{i=1}^N \varepsilon_i.
 \end{aligned} \tag{20}$$

575 576 To find the average effect for the j -th locus, we this time take the first derivative of the population mean
577 in Eq. (20) with respect to the allele frequency such that

$$\eta_j = \frac{1}{2} \left(\frac{\partial \mu}{\partial p_j} \right) = \beta_j + 2 \sum_{k \neq j}^J p_k \theta_{jk} \tag{21}$$

580 which, similar to the theoretical form in quantitative genetics, also contains both the additive effect of
581 the j -th SNP and additional terms encoding the interaction effect between the j -th SNP and all other
582 variants in the data. Once again, under Hardy-Weinberg equilibrium, the additive variance for the j -th
583 SNP is found as taking on the following form

$$\begin{aligned}
 \sigma_A^2(j) &= 2p_j(1-p_j) \left[\beta_j + 2 \sum_{k \neq j}^J p_k \theta_{jk} \right]^2 \\
 &= 2p_j(1-p_j) \left[\beta_j^2 + 2\beta_j \sum_{k \neq j}^J p_k \theta_{jk} + 4 \left(\sum_{k \neq j}^J p_k \theta_{jk} \right)^2 \right]
 \end{aligned} \tag{22}$$

584 585 where we can explicitly draw connections between the two frameworks by setting $\beta_j = a_j$ and $\theta_{jk} = [aa]_{jk}$.
586 Note that when there no non-additive effects (such that $\boldsymbol{\theta} = \mathbf{0}$), the above reduces to $\sigma_A^2 = \sum_j 2p_j(1-p_j)\beta_j^2$ which resembles the classical form for the additive genetic variance⁵⁸.

588 Full derivation of interaction LD score regression

589 590 In order to derive the interaction LD score (i-LDSC) regression framework, recall that our goal is to recover
591 missing heritability from GWAS summary statistics by incorporating an additional score that measures
592 the non-additive genetic variation that is tagged by genotyped SNPs. To do this, we build upon the
593 LD score regression framework and the LDSC software¹⁷. Here, we assume nonzero contributions from
594 *cis*-acting pairwise interaction effects in the generative model of complex traits as in Eq. (16), and we use

594 the observed least squares estimates from Eq. (11) to compute chi-square statistics $\chi_j^2 = N\widehat{\beta}_j^2$ for every
 595 $j = 1, \dots, J$ variant in the data. Taking the expectation of these statistics yields

$$596 \quad \mathbb{E}[\chi_j^2] = N\mathbb{E}[\widehat{\beta}_j^2] = N \left[\mathbb{V}[\widehat{\beta}_j] + (\mathbb{E}[\widehat{\beta}_j])^2 \right]. \quad (23)$$

597 We can simplify Eq. (23) in two steps. First, by combining the prior assumption in Eq. (8) and the
 598 asymptotic approximation in Eq. (16), we can show that marginal expectation (i.e., when not conditioning
 599 on the true coefficients) $\mathbb{E}[\widehat{\beta}_j] = 0$ for all variants. Second, by conditioning on the generative model from
 600 Eq. (7), we can use the law of total variance to simplify $\mathbb{V}[\widehat{\beta}_j]$ where

$$\begin{aligned} \mathbb{V}[\widehat{\beta}_j] &= \mathbb{E}[\mathbb{V}[\widehat{\beta}_j | \mathbf{X}]] + \mathbb{V}[\mathbb{E}[\widehat{\beta}_j | \mathbf{X}]] \approx \mathbb{E}[\mathbb{V}[\mathbf{x}_j^\top \mathbf{y} / N | \mathbf{X}]] + 0 \\ &= \mathbb{E} \left[\frac{1}{N^2} \mathbf{x}_j^\top \{ \mathbb{V}[\mathbf{y} | \mathbf{X}] \} \mathbf{x}_j \right] \\ &= \mathbb{E} \left[\frac{1}{N^2} \mathbf{x}_j^\top \left\{ \frac{\varphi_\beta^2}{J} \mathbf{X} \mathbf{X}^\top + \frac{\varphi_\omega^2}{J} \mathbf{X}_D \mathbf{X}_D^\top + \frac{\varphi_\theta^2}{M} \mathbf{W} \mathbf{W}^\top + (1 - H^2) \right\} \mathbf{x}_j \right] \\ &= \mathbb{E} \left[\frac{1}{N^2} \left\{ \frac{\varphi_\beta^2}{J} \mathbf{x}_j^\top \mathbf{X} \mathbf{X}^\top \mathbf{x}_j + \frac{\varphi_\omega^2}{J} \mathbf{x}_j^\top \mathbf{X}_D \mathbf{X}_D^\top \mathbf{x}_j + \frac{\varphi_\theta^2}{M} \mathbf{x}_j^\top \mathbf{W} \mathbf{W}^\top \mathbf{x}_j + N(1 - H^2) \right\} \right] \\ &= \mathbb{E} \left[\frac{1}{N^2} \left\{ \frac{\varphi_\beta^2}{J} \mathbf{x}_j^\top \mathbf{X} \mathbf{X}^\top \mathbf{x}_j + \frac{\varphi_\theta^2}{M} \mathbf{x}_j^\top \mathbf{W} \mathbf{W}^\top \mathbf{x}_j + N(1 - H^2) \right\} \right] \end{aligned}$$

602 since $\mathbf{x}_j^\top \mathbf{X}_D = \mathbf{0}$. Using the same logic from the original LDSC regression framework¹⁷, we can use Isserlis'
 603 theorem⁵⁹ to write the above in terms of more familiar quantities based on sample correlations

$$604 \quad \frac{1}{N^2} \mathbf{x}_j^\top \mathbf{X} \mathbf{X}^\top \mathbf{x}_j = \sum_{k=1}^J \tilde{r}_{jk}^2, \quad \frac{1}{N^2} \mathbf{x}_j^\top \mathbf{W} \mathbf{W}^\top \mathbf{x}_j = \sum_{m=1}^M \tilde{v}_{jm}^2 \quad (24)$$

605 where \tilde{r}_{jk} is used to denote the sample correlation between additively-coded genotypes at the j -th and
 606 k -th variants, and \tilde{v}_{jm} is used to denote the sample correlation between the genotype of the j -th variant
 607 and the m -th genetic interaction on the phenotype of interest (again see Eq. (16)). Furthermore, we can
 608 use the delta method (only displaying terms up to $\mathcal{O}(1/N^2)$) to show that (in expectation)

$$609 \quad \mathbb{E}[\tilde{r}_{jk}^2] \approx r_{jk}^2 + (1 - r_{jk}^2)/N, \quad \mathbb{E}[\tilde{v}_{jm}^2] \approx v_{jm}^2 + (1 - v_{jm}^2)/N. \quad (25)$$

610 Next, we can then approximate the quantities in Eq. (24) via the following

$$611 \quad \mathbb{E} \left[\sum_{k=1}^J \tilde{r}_{jk}^2 \right] \approx \ell_j + (J - \ell_j)/N, \quad \mathbb{E} \left[\sum_{m=1}^M \tilde{v}_{jm}^2 \right] \approx f_j + (M - f_j)/N \quad (26)$$

612 where ℓ_j is the corresponding LD score for the additive effect of the j -th variant and f_j represents
613 the “interaction” LD score between the j -th SNP and all other variants in the data set²³, respectively.

614 Altogether, this leads to the specification of the univariate framework with the j -th SNP

$$615 \quad \mathbb{E}[\chi_j^2] \approx N \left[\left(\frac{\varphi_\beta^2}{J} \right) \ell_j + \left(\frac{\varphi_\theta^2}{M} \right) f_j + \frac{1}{N} (1 - H^2) \right] = \ell_j \tau + f_j \vartheta + 1 \quad (27)$$

616 where we define $\tau = N\varphi_\beta^2/J$ as estimates of the additive genetic signal, the coefficient $\vartheta = N\varphi_\theta^2/M$ as
617 an estimate of the proportion of phenotypic variation explained by tagged pairwise interaction effects,
618 and $\mathbf{1}$ is the intercept meant to model the misestimation due to uncontrolled confounding effects (e.g.,
619 cryptic relatedness and population stratification). Similar to the original LDSC formulation, an intercept
620 greater than one means significant bias. Note that the simplification for many of the terms above such as
621 $(1 - H^2)/N \approx 1/N$ results from our assumption that the number of individuals in our study is large. For
622 example, the sample sizes for each biobank-scale study considered in the analyses of this manuscript are
623 at least on the order of $N \geq 10^4$ observations (see Table 5). Altogether, we can jointly express Eq. (27)
624 in multivariate form as

$$625 \quad \mathbb{E}[\boldsymbol{\chi}^2] \approx \boldsymbol{\ell}\tau + \boldsymbol{f}\vartheta + \mathbf{1} \quad (28)$$

626 where $\boldsymbol{\chi}^2 = (\chi_1^2, \dots, \chi_J^2)$ is a J -dimensional vector of chi-square summary statistics, and $\boldsymbol{\ell} = (\ell_1, \dots, \ell_J)$
627 and $\boldsymbol{f} = (f_1, \dots, f_J)$ are J -dimensional vectors of additive and *cis*-interaction LD scores, respectively. It
628 is important to note that, while $\boldsymbol{\chi}^2$ must be recomputed for each trait of interest, both vectors $\boldsymbol{\ell}$ and \boldsymbol{f}
629 only need to be constructed once per reference panel or individual-level genotypes (see next section for
630 efficient computational strategies).

631 To identify summary statistics that have significant tagged interaction effects, we test the null hy-
632 pothesis $H_0 : \vartheta = 0$. The **i**-LDSC software package implements the same model fitting strategy as LDSC.
633 Here, we use weighted least squares to fit the joint regression in Eq. (28) such that

$$634 \quad \hat{\vartheta} = (\boldsymbol{f}^\top \boldsymbol{\Psi} \boldsymbol{f})^{-1} \boldsymbol{f}^\top \boldsymbol{\Psi} \boldsymbol{\chi}^2, \quad \psi_{jj} = [\ell_j \hat{\tau} + f_j \hat{\vartheta} + 1]^{-2} \quad (29)$$

635 where Ψ is a $J \times J$ diagonal weight matrix with nonzero elements set to values inversely proportional to
636 the conditional variance $\mathbb{V}[\chi_j^2 | \ell_j, f_j] = \psi_{jj}^{-1}$ to adjust for both heteroscedasticity and over-estimation of
637 the summary statistics for each SNP¹⁷. Standard errors for each coefficient estimate are derived via a
638 jackknife over blocks of SNPs in the data⁴², and we then use those standard errors to derive P -values with
639 a two-sided test (i.e., testing the alternative hypothesis $H_A : \vartheta \neq 0$). It is worth noting that the block-
640 jackknife approach tends to be conservative and yield larger standard errors for hypothesis testing⁶⁰. As
641 an alternative, we could first run **i-LDSC** using the block-jackknife procedure over all traits in a study and
642 then use the average of the standard errors to calculate the statistical significance of coefficient estimates;
643 but we do not explore this strategy here and leave that for future work. The quantitative genetics
644 expression for the additive variance σ_A^2 in Eq. (22) is important because it represents the theoretical
645 upper bound on the proportion of phenotypic variance that can be explained from GWAS summary
646 statistics via **i-LDSC**. Using this relationship, we can write the following (approximate) inequality

$$647 \hat{\tau} + \hat{\vartheta} \lesssim \sum_{j=1}^J 2p_j(1-p_j) \left[\beta_j + 2 \sum_{k \neq j}^J p_k \theta_{jk} \right]^2 = \sigma_A^2. \quad (30)$$

648

649 For all analyses in this paper, we estimate proportion of phenotypic variance explained by genetic effects
650 using a sum of the coefficients $\hat{\tau} + \hat{\vartheta}$ (i.e., the estimated additive component plus the additional genetic
651 variance explained by the tagged pairwise interaction effects).

652 Efficient computation of *cis*-interaction LD scores

653 In practice, *cis*-interaction LD scores in **i-LDSC** can be computed efficiently through realizing two key
654 opportunities for optimization. First, given J SNPs, the full matrix of genome-wide interaction effects \mathbf{W}
655 contains on the order of $J(J - 1)/2$ total pairwise interactions. However, to compute the *cis*-interaction
656 score for each SNP, we simply can replace the full \mathbf{W} matrix with a subsetted matrix \mathbf{W}_j which includes
657 only interactions involving the j -th SNP. Analogous to the original LDSC formulation¹⁷, we consider only
658 interactive SNPs within a *cis*-window proximal to the focal j -th SNP for which we are computing the
659 **i-LDSC** score. In the original LDSC model, this is based on the observation that LD decays outside of a
660 window of 1 centimorgan (cM)¹⁷; therefore, SNPs outside the 1 cM window centered on the j -th SNP
661 j will not significantly contribute to its LD score. The second opportunity for optimization comes from
662 the fact that the matrix of interaction effects for any focal SNP, \mathbf{W}_j , does not need to be explicitly

663 generated. Referencing Eq. (24), the **i**-LDSC scores are defined as $\mathbf{x}_j^T \mathbf{W}_j \mathbf{W}_j^T \mathbf{x}_j / N^2$. This can be re-
 664 written as $\mathbf{x}_j^T (\mathbf{D}_j \mathbf{X}^{(j)}) (\mathbf{D}_j \mathbf{X}^{(j)})^T \mathbf{x}_j$, where $\mathbf{D}_j = \text{diag}(\mathbf{x}_j)$ is a diagonal matrix with the j -th genotype as
 665 its nonzero elements²³ and $\mathbf{X}^{(j)}$ denotes the subset SNPs within a *cis*-window proximal to the focal j -th
 666 SNP. This means that the **i**-LDSC score for the j -th SNP can be simply computed as the following

$$667 \quad f_j \approx \frac{1}{N^2} (\mathbf{x}_j^T)^2 \mathbf{X}^{(j)} \mathbf{X}^{(j)T} (\mathbf{x}_j)^2. \quad (31)$$

668 With these simplifications, the computational complexity of generating **i**-LDSC scores reduces to that of of
 669 computing LD scores — modulo a vector-by-vector Hadamard product which, for each SNP, is constant
 670 factor of N (i.e., the number of genotyped individuals).

671 Coefficient estimates as determined by *cis*-interaction window size

672 When computing *cis*-interaction LD scores, the most important decision is choosing the number of
 673 interacting SNPs to include in $\mathbf{X}^{(j)}$ (or equivalently \mathbf{W}_j for each j -th focal SNP in the calculation of f_j
 674 in Eq. (31)). The **i**-LDSC framework considers different estimating windows to account for our lack of *a*
 675 *priori* knowledge about the “correct” non-additive genetic architecture of traits. Theoretically, one could
 676 follow previous work^{20,28,30,32,33,61} by considering an L -valued grid of possible SNP interaction window
 677 sizes. After fitting a series of **i**-LDSC regressions with *cis*-interaction LD scores $\mathbf{f}^{(l)}$ generated under
 678 the L -different window sizes, we could compute normalized importance weights using their maximized
 679 likelihoods via the following

$$680 \quad \pi^{(l)} = \frac{\mathcal{L}(\boldsymbol{\ell}, \mathbf{f}^{(l)}; \boldsymbol{\beta})}{\sum_{l'} \mathcal{L}(\boldsymbol{\ell}, \mathbf{f}^{(l')}; \boldsymbol{\beta})}, \quad \sum_{l=1}^L \pi^{(l)} = 1. \quad (32)$$

681 As a final step in the model fitting procedure, we could then compute averaged estimates of the coefficients
 682 τ and ϑ by marginalizing (or averaging) over the L -different grid combinations of estimating windows

$$683 \quad \hat{\tau} = \sum_{l=1}^L \pi^{(l)} \hat{\tau}^{(l)}, \quad \hat{\vartheta} = \sum_{l=1}^L \pi^{(l)} \hat{\vartheta}^{(l)}. \quad (33)$$

684 This final step can be viewed as an analogy to model averaging where marginal estimates are computed
 685 via a weighted average using the importance weights⁶². In the current study, we explore the utility of

686 *cis*-interaction LD scores generated with different window sizes ± 5 , ± 10 , ± 25 , and ± 50 SNPs around each
687 j -th focal SNP. In practice, we find that *cis*-interaction LD scores that are calculated using larger windows
688 lead to the most robust estimates of heritability while also not over representing the total phenotypic
689 variation explained by tagged non-additive genetic effects (see Figure 3 – figure supplement 1). Therefore,
690 unless otherwise stated, we use *cis*-interaction LD scores calculated with a ± 50 SNP interaction window
691 for all simulations and real data analyses conducted in this work. For a direct comparison between
692 choosing a single window size versus the model averaging strategy described above, see Supplementary
693 Files 1 and 2.

694 Relationship between minor allele frequency and effect size

695 The LDSC software computes LD scores using annotations over equally spaced minor allele frequency
696 (MAF) bins. These annotations enable the per trait relationship between the MAF and the effect size
697 of each variant in the genome to vary based on the discrete category (or MAF bin) it is placed into.
698 This additional flexibility is intended to help LDSC be more robust when estimating heritability. The
699 relationship between MAF and effect size is already implicitly encoded in the LDSC formulation since we
700 assume genotypes are normalized. When normalizing by the variance of each SNP (or equivalently its
701 MAF), we make the assumption that rare variants inherently have larger effect sizes. There exists a true
702 functional relationship between MAF and effect size which is likely to be somewhere between the two
703 extremes of (i) normalizing each SNP by its MAF and (ii) allowing the variance per SNP to be dictated
704 by its MAF.

705 Recent approaches have proposed using a single parameter α to better represent the nonlinear rela-
706 tionship between MAF and variant effect size. The main idea is that this α not only provides the same
707 additional flexibility to LDSC as the MAF-based discrete annotations, but it also empirically yields even
708 more precise heritability estimates⁶³. Namely, we use

$$709 \quad \ell_j(c) := \sum_k L_{jk}(\alpha) a_c(k), \quad L_{jk}(\alpha) = r_{jk}^2 \mathbb{V}[\mathbf{x}_k]^{1-\alpha} \quad (34)$$

710 where $a_c(k)$ is the annotation value for the c -th categorical bin. The α parameter is unknown in practice
711 and needs to be estimated for any given trait. While standard ranges for α can be used for heritability es-
712 timates, we use a restricted maximum likelihood (REML) based method which was recently developed³⁸.

713 In the **i-LDSC** software, we use this α construction to handle the relationship between MAF and variant
714 effect size for two specific reasons. First, by constructing the LD scores using α , we more accurately
715 capture the variation in chi-square test statistics due to additive effects⁶³. Second, we note that there is
716 correlation between MAF and (i) LD scores, (ii) *cis*-interaction LD scores, and (iii) trait architecture.
717 To that end, if we do not properly condition on MAF, there becomes additional bias, and we may falsely
718 attribute some amount of variation in the chi-square test statistics to LD or the tagged interaction effects.
719 Therefore, in our formulation, we include an α term on the LD scores to condition on this effect. We
720 demonstrate in simulations that this removes the bias introduced by the relationship between MAF and
721 trait architecture, and it mitigates potential inflation of type I error rates in the **i-LDSC** test.

722 Estimation of allele frequency parameters

723 In the main text, we analyzed 25 complex traits in both the UK Biobank and BioBank Japan data sets.
724 In order to account for minor allele frequency (MAF) dependent trait architecture, we calculated α values
725 for each trait that had not been analyzed by previous studies³⁸. The α estimates for each of the 25 traits
726 analyzed in this study are shown in Table 4. Intuitively, α parameterizes the weighting of the effects of
727 each individual variant given its frequency in the study cohort and can take on values in the range of
728 [-1,0]. More negative values of α indicate that lower frequency variants contribute more to the observed
729 variation in a trait of interest, whereas values of α closer to zero indicate that common variants contribute
730 a greater amount of variation to observed trait values.

731 We took α values for 11 traits (again see Table 4) that had previously been calculated from Schoeck
732 et al.³⁸. For the remaining 14 traits analyzed in this study, we followed the estimation protocol described
733 in the same manuscript. Specifically, using the variants passing the quality control step in our pipeline for
734 25,000 randomly selected individuals in the UK Biobank cohort, we constructed MAF-dependent genetic
735 relatedness matrices for values of $\alpha = \{-1, -0.95, -0.9, \dots, 0\}$ using the **GRM-MAF-LD** software, <https://github.com/arminschoeck/GRM-MAF-LD>. We then used the **GCTA** software⁶⁴ to obtain heritability and
736 likelihood estimates using REML for each α -trait pairing. We then fit a trait-specific profile likelihood
737 across the range of α values and estimate the maximum likelihood value of α using a natural cubic spline.
738

739 **Simulation studies**

740 We used a simulation scheme to generate synthetic quantitative traits and SNP-level summary statistics
741 under multiple genetic architectures using real genome-wide data from individuals of self-identified
742 European ancestry in the UK Biobank. Here, we consider phenotypes that have some combination of
743 additive effects, *cis*-acting interactions, and a third source of genetic variance stemming from either gene-
744 by-environment (G×E) or gene-by-ancestry (G×Ancestry) effects. For each scenario, we select some set
745 of SNPs to be causal and assume that complex traits are generated via the following general linear model

746
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{W}\boldsymbol{\theta} + \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \delta^2 \mathbf{I}), \quad (35)$$

747 where \mathbf{y} is an N -dimensional vector containing all the phenotypes; \mathbf{X} is an $N \times J$ matrix of genotypes
748 encoded as 0, 1, or 2 copies of a reference allele; $\boldsymbol{\beta}$ is a J -dimensional vector of additive effect sizes for
749 each SNP; \mathbf{W} is an $N \times M$ matrix which holds all pairwise interactions between the randomly selected
750 subset of the interacting SNPs with corresponding effects $\boldsymbol{\theta}$; \mathbf{Z} is an $N \times K$ matrix of either G×E or
751 G×Ancestry interactions with coefficients $\boldsymbol{\gamma}$; and $\boldsymbol{\varepsilon}$ is an N -dimensional vector of environmental noise.
752 The phenotypic variation is assumed to be $\mathbb{V}[\mathbf{y}] = 1$. All additive and interaction effect sizes for SNPs
753 are randomly drawn from independent standard Gaussian distributions and then rescaled so that they
754 explain a fixed proportion of the phenotypic variance $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] + \mathbb{V}[\mathbf{W}\boldsymbol{\theta}] + \mathbb{V}[\mathbf{Z}\boldsymbol{\gamma}] = H^2$. Note that we do
755 not assume any specific correlation structure between the effect sizes $\boldsymbol{\beta}$, $\boldsymbol{\theta}$, and $\boldsymbol{\gamma}$. We then rescale the
756 random error term such that $\mathbb{V}[\boldsymbol{\varepsilon}] = (1 - H^2)$. In the main text, we compare the traditional LDSC to
757 its direct extension in *i*-LDSC. For each method, GWAS summary statistics are computed by fitting a
758 single-SNP univariate linear model via least squares where $\widehat{\beta}_j = (\mathbf{x}_j^\top \mathbf{x}_j)^{-1} \mathbf{x}_j^\top \mathbf{y}$ for every $j = 1, \dots, J$ SNP
759 in the data. These effect size estimates are used to derive the chi-square test statistics $\chi_j^2 = N\widehat{\beta}_j^2$. We
760 implement both LDSC and *i*-LDSC with the LD matrix $\mathbf{R} = \mathbf{X}^\top \mathbf{X} / N$ and the *cis*-interaction correlation
761 matrix $\mathbf{V} = \mathbf{X}^\top \mathbf{W} / N$ being computed using a reference panel of 489 individuals from the European
762 superpopulation (EUR) of the 1000 Genomes Project. The resulting matrices \mathbf{R} and \mathbf{V} are used to
763 compute the additive and *cis*-interaction LD scores, respectively.

764 **Polygenic simulations with *cis*-interactions.** In our first set of simulations, we consider phenotypes
765 with polygenic architectures that are made up of only additive and *cis*-acting SNP-by-SNP interactions.

766 Here, we begin by assuming that every SNP in the genome has at least a small additive effect on the
767 traits of interest. Next, when generating synthetic traits, we assume that the additive effects make up
768 $\rho\%$ of the heritability while the pairwise interactions make up the remaining $(1 - \rho)\%$. Alternatively, the
769 proportion of the heritability explained by additivity is said to be $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = \rho H^2$, while the proportion
770 detailed by interactions is given as $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = (1 - \rho)H^2$. The setting of $\rho = 1$ represents the limiting null
771 case for **i-LDSC** where the variation of a trait is driven by solely additive effects. Here, we use the same
772 simulation strategy used in Crawford et al.²³ where we divide the causal *cis*-interaction variants into two
773 groups. One may view the SNPs in group #1 as being the “hubs” of an interaction map. SNPs in group
774 #2 are selected to be variants within some kilobase (kb) window around each SNP in group #1. Given
775 different parameters for the generative model in Eq. (35), we simulate data mirroring a wide range of
776 genetic architectures by toggling the following parameters:

- 777 • heritability: $H^2 = 0.3$ and 0.6 ;
- 778 • proportion of phenotypic variation that is generated by additive effects: $\rho = 0.5, 0.8$, and 1 ;
- 779 • percentage of SNPs selected to be in group #1: 1% (sparse), 5%, and 10% (polygenic);
- 780 • genomic window used to assign SNPs to group #2: ± 10 and ± 100 kilobase (kb);
- 781 • allele frequency parameter: $\alpha = -1, -0.5$, and 0 .

782 All figures and tables show the mean performances (and standard errors) across 100 simulated replicates.

783 **Polygenic simulations with gene-by-environmental effects.** In our second set of simulations, we
784 continue to consider phenotypes with polygenic architectures that are made up of only additive and
785 *cis*-acting SNP-by-SNP interactions; however, now we also consider each trait to have contributions
786 stemming from nonzero $G \times E$ effects. Here, both the additive and *cis*-interaction effects are simulated in
787 the same way as previously described where, for the two groups of interacting variants, 10% of SNPs were
788 selected to be in group #1 and we chose ± 10 kb windows to assign SNPs to group #2. To create $G \times E$
789 effects, we follow a simulation strategy implemented by Zhu et al.⁶⁵ and split our sample population in
790 half to emulate two subsets of individuals coming from different environments. We randomly draw the
791 effect sizes for the first environment from a standard Gaussian distribution which we denote as γ_1 . We
792 then selected an amplification coefficient w and set the effect sizes of the $G \times E$ interactions in the second

793 environment to be a scaled version of the first environment effects where $\gamma_2 = w\gamma_1$. In this paper, we
794 generate traits with heritability $H^2 = \{0.3, 0.6\}$ and amplification coefficients set to $w = [1.1, 1.2, \dots, 2]$.
795 For the first set of simulations, we hold the proportion of phenotypic variation explained by the different
796 genetic components constant by fixing:

797 • $H^2 = 0.3$: $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = 0.15$; $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = 0.075$; and $\mathbb{V}[\mathbf{Z}\boldsymbol{\gamma}] = 0.075$;

798 • $H^2 = 0.6$: $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = 0.3$; $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = 0.15$; and $\mathbb{V}[\mathbf{Z}\boldsymbol{\gamma}] = 0.15$;

799 where $\mathbf{Z} = [\mathbf{X}_1, \mathbf{X}_2]$ is the set of genotypes split according to environment and $\boldsymbol{\gamma} = [\gamma_1, \gamma_2]$. To test
800 the sensitivity of the *cis*-interaction LD scores to other sources of non-additive variation, we also re-
801 peated the same simulations where there were only additive and $G \times E$ effects contributing equally to
802 trait architecture:

803 • $H^2 = 0.3$: $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = 0.15$; $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = 0$; and $\mathbb{V}[\mathbf{Z}\boldsymbol{\gamma}] = 0.15$;

804 • $H^2 = 0.6$: $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = 0.3$; $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = 0$; and $\mathbb{V}[\mathbf{Z}\boldsymbol{\gamma}] = 0.3$.

805 Again all figures show the mean performances (and standard errors) across 100 simulated replicates.

806 **Polygenic simulations with gene-by-ancestry effects.** In our third set of simulations, we consider
807 phenotypes with polygenic architectures that are made up of additive, *cis*-interactions, and $G \times$ Ancestry
808 effects. Here, we follow Sohail et al.⁶⁶ and first run a matrix decomposition on the individual-level
809 genotype matrix $\mathbf{X} = \mathbf{U}\mathbf{Q}^\top$ where \mathbf{U} is a unitary $N \times K$ score matrix, \mathbf{Q} is a $K \times J$ loadings matrix,
810 and K represents the number of (predetermined) principal components (PCs). To generate $G \times$ Ancestry
811 interactions, we then create the matrix $\mathbf{Z}_k = \mathbf{X}\mathbf{q}_k$ where \mathbf{q}_k is a J -dimensional vector of SNP loadings
812 for the k -th principal component. In this paper, we generate traits with heritability $H^2 = \{0.3, 0.6\}$ and
813 interaction effects taken over $k = 1, \dots, 10$ principal components. For the first set of simulations, we hold
814 the proportion of phenotypic variation explained by the different genetic components constant by fixing:

815 • $H^2 = 0.3$: $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = 0.15$; $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = 0.075$; and $\mathbb{V}[\mathbf{Z}\boldsymbol{\gamma}] = 0.075$;

816 • $H^2 = 0.6$: $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = 0.3$; $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = 0.15$; and $\mathbb{V}[\mathbf{Z}\boldsymbol{\gamma}] = 0.15$;

817 To test the sensitivity of the *cis*-interaction LD scores to other sources of non-additive variation, we also
818 repeated the same simulations where there were only additive and $G \times E$ effects contributing equally to
819 trait architecture:

820 • $H^2 = 0.3$: $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = 0.15$; $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = 0$; and $\mathbb{V}[\mathbf{Z}\boldsymbol{\gamma}] = 0.15$;

821 • $H^2 = 0.6$: $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = 0.3$; $\mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = 0$; and $\mathbb{V}[\mathbf{Z}\boldsymbol{\gamma}] = 0.3$.

822 Note that, for each case, we generate summary statistics in two ways: (i) including the top 10 PCs as
823 covariates in the marginal linear model to correct for population structure and (ii) not correcting for any
824 population structure. Again all figures show the mean performances (and standard errors) across 100
825 simulated replicates.

826 **Sparse simulation study design with additive effects.** In this set of simulations, we consider
827 phenotypes with sparse architectures²⁰. Here, traits were simulated with solely additive effects such that
828 $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] = H^2$, but this time only variants with the top or bottom $\{1, 5, 10, 25, 50, 100\}$ percentile of LD
829 scores were given nonzero coefficients (a similar simulation approach was also previously implemented
830 in both Bulik-Sullivan et al.¹ and Lee et al.⁶⁷). We once again generate traits with heritability $H^2 =$
831 $\{0.3, 0.6\}$. We also want to note that, in each of these specific analyses, synthetic trait architectures
832 were generated using all UK Biobank genotyped variants that passed initial preprocessing and quality
833 control (see next section). Since not all of these SNPs are HapMap3 SNPs, some variants were omitted
834 from the LDSC and i-LDSC regression. Overall, as shown in the main text with results taken over 100
835 replicates, breaking the assumed relationship between LD scores and chi-squared statistics (i.e., that
836 they are generally positively correlated) led to unbounded estimates of heritability in all but the (more
837 polygenic) scenario when 100% of SNPs contributed to phenotypic variation.

838 **Polygenic simulations with unobserved additive effects.** In this next set of simulations, we
839 consider another extension of the polygenic case where a portion of the variants with only additive
840 genetic effects are not observed due ascertainment or other quality control procedures. It was found
841 in Hemani et al.³⁹ that an initial set of signals pointing towards evidence of genetic interactions were
842 actually better explained using linear models of unobserved variants in the same haplotype. Here, we test
843 whether the i-LDSC framework is prone to overestimate the non-additive genetic variance when additive
844 effects in the same haplotype are not included in the model. In each simulation, we generated haplotypes
845 that each contain 5,000 variants. Next, we select either a single causal variant with only an additive effect
846 or a set of ten causal variants with only additive effects — each having a MAF that is randomly selected
847 between: (i) (0.01, 0.1), (ii) (0.1, 0.2), (iii) (0.2, 0.3), (iv) (0.3, 0.4), and (v) (0.4, 0.5). The corresponding

848 additive effect size for each causal variant across the haplotype is simulated inversely proportional with
849 its MAF. For this analysis, we measure the difference between *i*-LDSC coefficient estimates when every
850 variant is included in the model versus when the haplotype causal variants are omitted for two different
851 trait architectures with broad-sense heritability set to $H^2 = 0.3$ and 0.6 . Differences in the component
852 estimates between the observed and unobserved single additive variant models are shown in Figure 3
853 – figure supplement 9A and 9B. Similar estimates when the larger number of ten additive variants are
854 unobserved in each haplotype are shown in Figure 3 – figure supplement 9C and 9D. If *i*-LDSC was prone
855 to overestimating the non-additive effects, then the omission of the variants with only significant additive
856 effects would lead to increased estimates of τ and ϑ . However, across a range of generative broad-sense
857 heritabilities and haplotype architectures we observe that estimates of τ and ϑ are robust. Intuitively,
858 this is likely due to the fact that these simulations were done under polygenic trait architectures where,
859 as a result, the omission of a few causal variants with small marginal effect sizes has little impact on the
860 ability to estimate genetic variance.

861 **Polygenic simulations with unobserved interaction effects.** In this set of simulations, we ex-
862 tend the polygenic case to a setting where a portion of the variants involved in genetic interactions are
863 unobserved. Similar to the case with unobserved additive effects, the purpose of these simulations is to
864 assess whether the *i*-LDSC framework is prone to false discovery of non-additive genetic variance when
865 causal interacting SNPs are not included during the estimation of GWAS summary statistics. In each
866 simulation, we generated haplotypes that each contain 5,000 variants. Traits were simulated using the
867 generative model in Eq. (35) with both additive and interaction effects such that $\mathbb{V}[\mathbf{X}\boldsymbol{\beta}] + \mathbb{V}[\mathbf{W}\boldsymbol{\theta}] = H^2$.
868 Here, every SNP in the genome had at least a small additive effect with a corresponding effect size that
869 was drawn to be inversely proportional to its MAF. Only 1% or 5% of variants within each haplotype had
870 causal non-zero interaction effects. However, when running *i*-LDSC, only a percentage of the interacting
871 SNPs {1%, 5%, 10%, 25%, or 50%} were included in the estimation of $\hat{\vartheta}$. We once again generate traits
872 with heritability $H^2 = \{0.3, 0.6\}$ such that the proportion of genetic variance explained by additive effects
873 was equal to $\rho = \{0.5, 0.8\}$. As with the other simulation scenarios, all synthetic traits were generated
874 using UK Biobank genotyped variants that passed initial preprocessing and quality control (see next
875 section). Since not all of these SNPs are HapMap3 SNPs, some variants were omitted from the *i*-LDSC
876 regression analyses. Overall, as discussed in the main text with results taken over 100 replicates, *i*-LDSC

underestimated values of $\hat{\vartheta}$ when there were unobserved interacting variants (see Figure 3 – figure supplement 10 and 11). As expected, estimates of the additive variance component $\hat{\tau}$, on the other hand, were not affected.

Polygenic simulations with correlated additive and interaction effects. In our last set of simulations, we sought out to better understand how the relationship between the additive (β) and interaction (θ) coefficients in the generative model of complex traits could potentially bias the additive and non-additive variance component estimates in LDSC and i-LDSC. To that end, we performed a set of simulations where we varied the correlation between the set of effects. Specifically, we first drew a set of additive effect sizes for each variant using the MAF-dependent procedure described above (i.e., $\alpha = -1$). We next selected a subset of the causal variants to be in *cis*-interactions. Here, we set the interaction effect sizes to covary with the additive effect size vector in two different ways. In the first, we simply drew the additive and interaction effect sizes from a multivariate normal such that their correlation was equal to $r = \{-1, -0.8, -0.6, \dots, 0.6, 0.8, 1\}$ (see Figure 3 – figure supplement 12). In the second, we simply amplified the interaction effects to be a linear function $\theta = \beta \times q$ (Figure 3 – figure supplement 13A and 13C) or a squared function $\theta = \beta^{2q}$ (Figure 3 – figure supplement 13B and 13D) of the additive effects where $q = \{0.1, 0.2, \dots, 0.9, 1\}$. While testing 100 replicates for each value of q , we observed that the mean estimate of genetic variance had a slight upward bias as the correlation between the additive and interaction effect sizes in the generative model increased; however, the distribution of these bias estimates covered zero in the first and third quartiles of all results. We evaluated this behavior for multiple broad-sense heritability levels $H^2 = 0.3$ and 0.6 .

Preprocessing for the UK Biobank and BioBank Japan

In order to apply the i-LDSC framework to 25 continuous traits the UK Biobank⁶⁸, we first downloaded genotype data for 488,377 individuals in the UK Biobank using the `ukbgene` tool (<https://biobank.ctsu.ox.ac.uk/crystal/download.cgi>) and converted the genotypes using the provided `ukbconv` tool (<https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149660>). Phenotype data for the 25 continuous traits were also downloaded for those same individuals using the `ukbgene` tool. Individuals identified by the UK Biobank as having high heterozygosity, excessive relatedness, or aneuploidy were removed (1,550 individuals). After separating individuals into self-identified ancestral cohorts

905 using data field 21000, unrelated individuals were selected by randomly choosing an individual from
906 each pair of related individuals. This resulted in $N = 349,469$ white British individuals to be included
907 in our analysis. We downloaded imputed SNP data from the UK Biobank for all remaining individuals
908 and removed SNPs with an information score below 0.8. Information scores for each SNP are provided
909 by the UK Biobank (<http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1967>).

910 Quality control for the remaining genotyped and imputed variants was then performed on each co-
911 hort separately using the following steps. All structural variants were first removed, leaving only single
912 nucleotide polymorphisms (SNPs) in the genotype data. Next, all AT/CG SNPs were removed to avoid
913 possible confounding due to sequencing errors. Then, SNPs with minor allele frequency less than 1%
914 were removed using the PLINK 2.0⁶⁹ command `--maf 0.01`. We then removed all SNPs found to be
915 out of Hardy-Weinberg equilibrium, using the PLINK `--hwe 0.000001` flag to remove all SNPs with a
916 Fisher's exact test P -value $> 10^{-6}$. Finally, all SNPs with missingness greater than 1% were removed
917 using the PLINK `--mind 0.01` flag.

918 We then performed a genome-wide association study (GWAS) for each trait in the UK Biobank on
919 the remaining 8,981,412 SNPs. SNP-level GWAS effect sizes were calculated using PLINK and the `--glm`
920 flag⁶⁹. Age, sex, and the first twenty principal components were included as covariates for all traits
921 analyzed⁶⁶. Principal component analysis was performed using FlashPCA 2.0⁷⁰ on a set of independent
922 markers derived separately for each ancestry cohort using the PLINK command `--indep-pairwise 100 10 0.1`.
923 Using the parameters `--indep-pairwise` removes all SNPs that have a pairwise correlation above 0.1
924 within a 100 SNP window, then slides forward in increments of ten SNPs genome-wide.

925 In order to analyze data from BioBank Japan, we downloaded publicly available GWAS summary
926 statistics for the 25 traits listed in Table 5 from <http://jenger.riken.jp/en/result>. Summary statistics
927 used age, sex, and the first ten principal components as confounders in the initial GWAS study.
928 We then used individuals from the East Asian (EAS) superpopulation from the 1000 Genomes Project
929 Phase 3 to calculate paired LDSC and i-LDSC scores from a reference panel. We pruned the reference
930 panel using the PLINK command `--indep-pairwise 100 10 0.5` to limit the computational time of
931 calculating scores⁶⁹. This resulted in reference scores for 1,164,666 SNPs that are included on the i-LDSC
932 GitHub repository (see URLs). Using summary statistics from BioBank Japan, with scores calculated
933 from the EAS population in the 1000 Genomes, we obtained i-LDSC heritability estimates for each of the
934 25 traits.

935 **Data and software availability**

936 Source code and tutorials for implementing interaction-LD score regression via the **i-LDSC** package are
937 written in Python and are publicly available online at <https://github.com/lcrawlab/i-LDSC>. Files
938 of LD scores, *cis*-interaction LD scores, and GWAS summary statistics used for our analyses of the UK
939 Biobank and BioBank Japan can be downloaded from the Harvard Dataverse ([https://dataVERSE.
940 harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/W6MA8J&faces-redirect=true](https://dataVERSE.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/W6MA8J&faces-redirect=true)). All
941 software for the traditional and stratified LD score regression framework with LDSC and **s-LDSC** were
942 fit using the default settings, unless otherwise stated in the main text. Source code for these approaches
943 was downloaded from <https://github.com/bulik/ldsc>. When applying **s-LDSC**, we used 97 func-
944 tional annotations from Gazal et al.⁴¹ to estimate heritability. Data from the UK Biobank Resource⁶⁸
945 (<https://www.ukbiobank.ac.uk>) was made available under Application Numbers 14649 and 22419.
946 Data can be accessed by direct application to the UK Biobank.

947 **Figures and Tables**

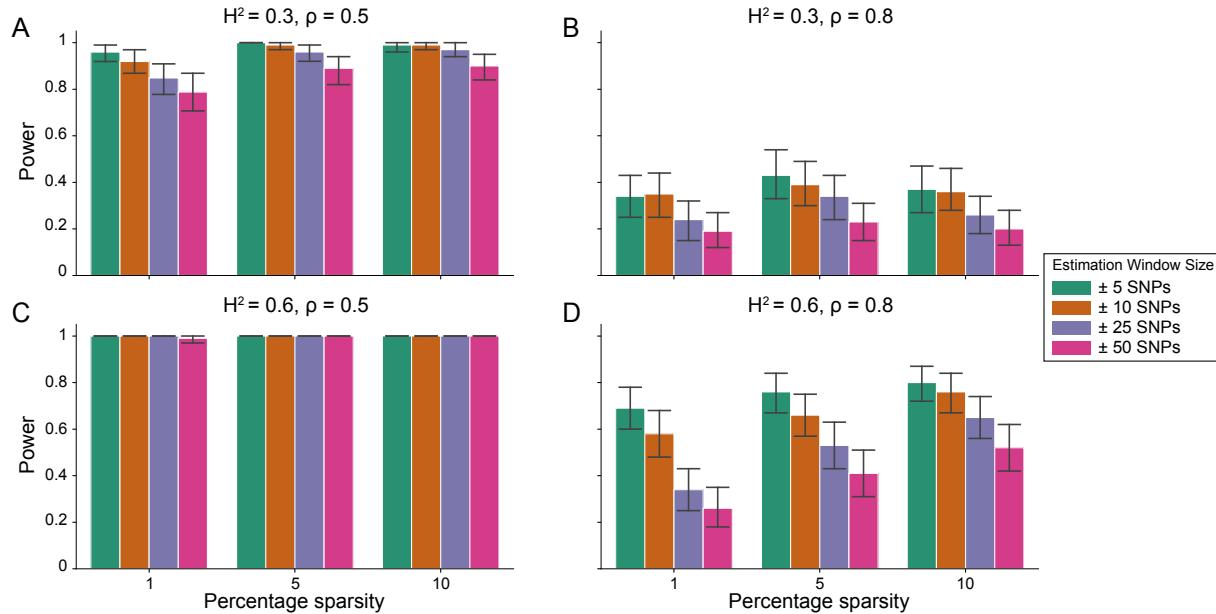


Figure 1. Power of the *i*-LDSC framework to detect tagged pairwise genetic interaction effects on simulated data. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These interact with the group #2 SNPs which are selected to be variants within a ± 10 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects were simulated with no minor allele frequency dependency $\alpha = 0$ (see Materials and Methods). Panels (A) and (B) are results with simulations using a heritability $H^2 = 0.3$, while panels (C) and (D) were generated with $H^2 = 0.6$. We also varied the proportion of heritability contributed by additive effects to (A, C) $\rho = 0.5$ and (B, D) $\rho = 0.8$, respectively. Here, we are blind to the parameter settings used in generative model and run *i*-LDSC while computing the *cis*-interaction LD scores using different estimating windows of ± 5 (green), ± 10 (orange), ± 25 (purple), and ± 50 (pink) SNPs. Results are based on 100 simulations per parameter combination and the horizontal bars represent standard errors. Generally, the performance of *i*-LDSC increases with larger heritability and lower proportions of additive variation. Note that LDSC is not shown here because it does not search for tagged interaction effects in summary statistics.

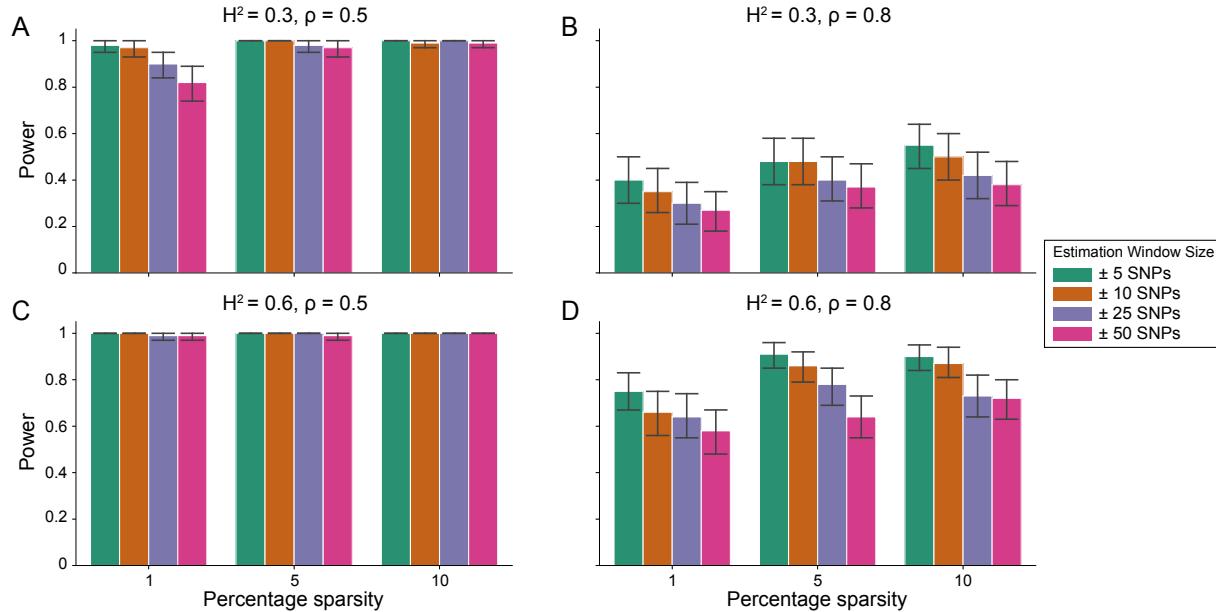


Figure 1 – figure supplement 1. Power calculations for the i-LDSC framework to detect tagged pairwise genetic interaction effects on simulated data using a ± 10 kilobase (kb) window to generate *cis*-interactions around a focal SNP with a moderate minor allele frequency dependency $\alpha = -0.5$ for effect sizes. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These interact with the group #2 SNPs which are selected to be variants within a ± 10 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects were simulated with minor allele frequency dependency $\alpha = -0.5$ (see Materials and Methods). Panels (A) and (B) are results of simulations where the total heritability explained by additive SNP effects and *cis*-interaction effects is $H^2 = 0.3$, while panels (C) and (D) were generated with $H^2 = 0.6$. We also varied the proportion of phenotypic variation explained by additive SNP effects to (A, C) $\rho = 0.5$ and (B, D) $\rho = 0.8$, respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while computing the *cis*-interaction LD scores using different estimation windows of ± 5 (green), ± 10 (orange), ± 25 (purple), and ± 50 (pink) SNPs. Results are based on 100 simulations per parameter combination and the horizontal black bars represent standard errors.

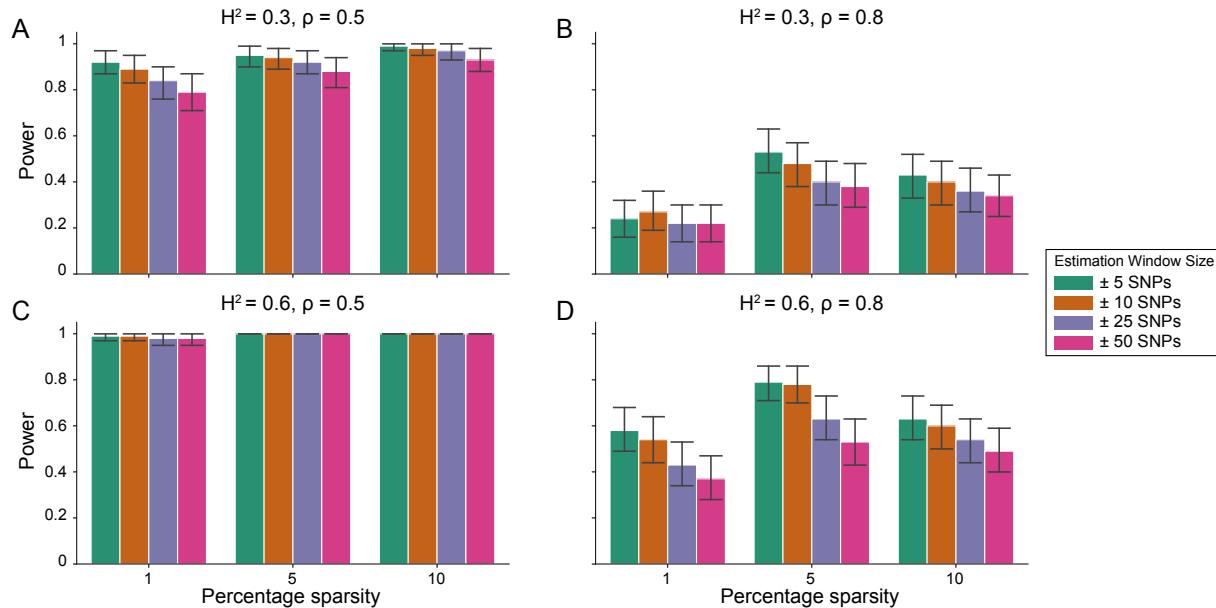


Figure 1 – figure supplement 2. Power calculations for the i-LDSC framework to detect tagged pairwise genetic interaction effects on simulated data using a ± 10 kilobase (kb) window to generate *cis*-interactions around a focal SNP with a strong minor allele frequency dependency $\alpha = -1$ for effect sizes. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These interact with the group #2 SNPs which are selected to be variants within a ± 10 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects were simulated with minor allele frequency dependency $\alpha = -0.5$ (see Materials and Methods). Panels (A) and (B) are results of simulations where the total heritability explained by additive SNP effects and *cis*-interaction effects is $H^2 = 0.3$, while panels (C) and (D) were generated with $H^2 = 0.6$. We also varied the proportion of phenotypic variation explained by additive SNP effects to (A, C) $\rho = 0.5$ and (B, D) $\rho = 0.8$, respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while computing the *cis*-interaction LD scores using different estimation windows of ± 5 (green), ± 10 (orange), ± 25 (purple), and ± 50 (pink) SNPs. Results are based on 100 simulations per parameter combination and the horizontal black bars represent standard errors.

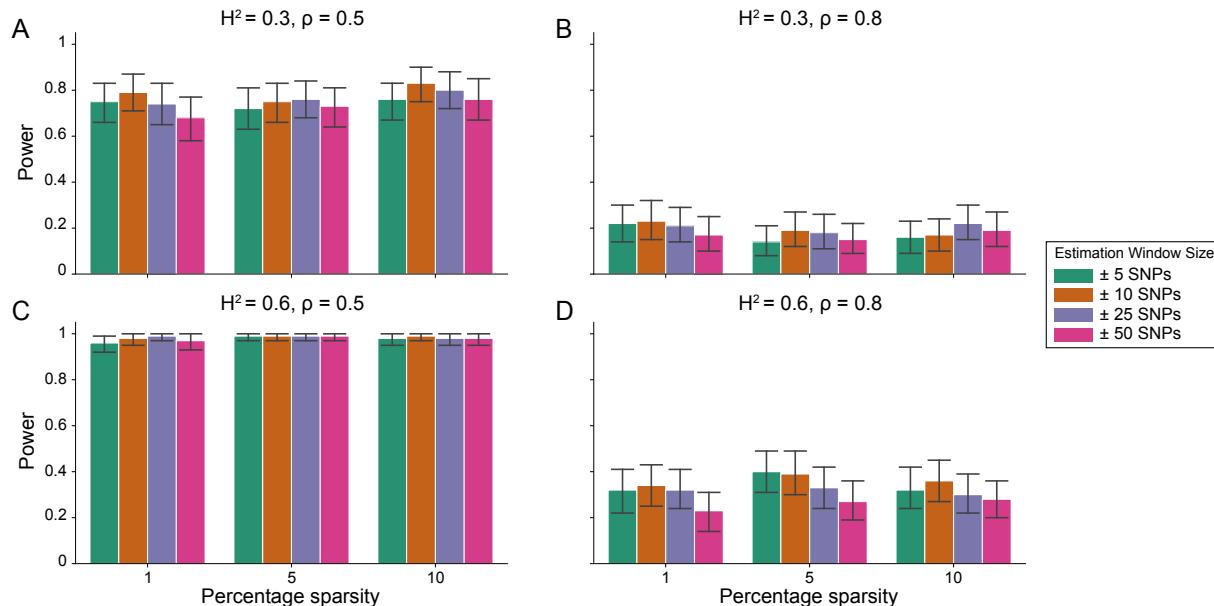


Figure 1 – figure supplement 3. Power calculations for the i-LDSC framework to detect tagged pairwise genetic interaction effects on simulated data using a ± 10 kilobase (kb) window to generate *cis*-interactions around a focal SNP with no minor allele frequency dependency $\alpha = 0$ for effect sizes. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These interact with the group #2 SNPs which are selected to be variants within a ± 10 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects were simulated with minor allele frequency dependency $\alpha = -0.5$ (see Materials and Methods). Panels (A) and (B) are results of simulations where the total heritability explained by additive SNP effects and *cis*-interaction effects is $H^2 = 0.3$, while panels (C) and (D) were generated with $H^2 = 0.6$. We also varied the proportion of phenotypic variation explained by additive SNP effects to (A, C) $\rho = 0.5$ and (B, D) $\rho = 0.8$, respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while computing the *cis*-interaction LD scores using different estimation windows of ± 5 (green), ± 10 (orange), ± 25 (purple), and ± 50 (pink) SNPs. Results are based on 100 simulations per parameter combination and the horizontal black bars represent standard errors.

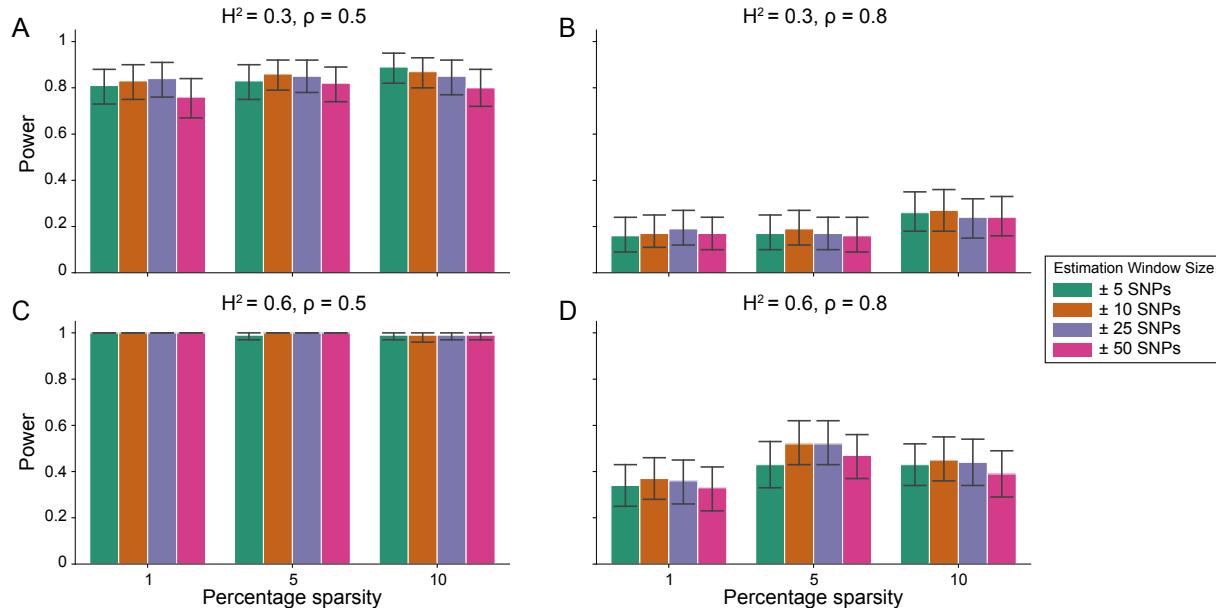


Figure 1 – figure supplement 4. Power calculations for the i-LDSC framework to detect tagged pairwise genetic interaction effects on simulated data using a ±100 kilobase (kb) window to generate *cis*-interactions around a focal SNP with a moderate minor allele frequency dependency $\alpha = -0.5$ for effect sizes. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These interact with the group #2 SNPs which are selected to be variants within a ±10 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects were simulated with minor allele frequency dependency $\alpha = -0.5$ (see Materials and Methods). Panels (A) and (B) are results of simulations where the total heritability explained by additive SNP effects and *cis*-interaction effects is $H^2 = 0.3$, while panels (C) and (D) were generated with $H^2 = 0.6$. We also varied the proportion of phenotypic variation explained by additive SNP effects to (A, C) $\rho = 0.5$ and (B, D) $\rho = 0.8$, respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while computing the *cis*-interaction LD scores using different estimation windows of ±5 (green), ±10 (orange), ±25 (purple), and ±50 (pink) SNPs. Results are based on 100 simulations per parameter combination and the horizontal black bars represent standard errors.

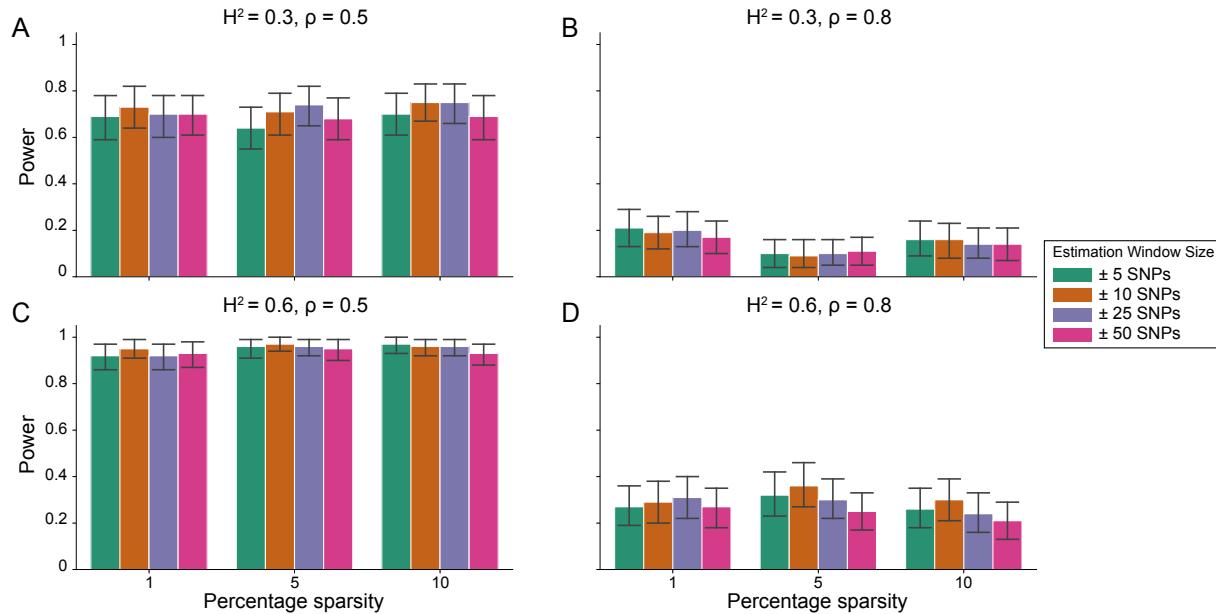


Figure 1 – figure supplement 5. Power calculations for the i-LDSC framework to detect tagged pairwise genetic interaction effects on simulated data using a ± 100 kilobase (kb) window to generate *cis*-interactions around a focal SNP with a strong minor allele frequency dependency $\alpha = -1$ for effect sizes. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These interact with the group #2 SNPs which are selected to be variants within a ± 10 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects were simulated with minor allele frequency dependency $\alpha = -0.5$ (see Materials and Methods). Panels (A) and (B) are results of simulations where the total heritability explained by additive SNP effects and *cis*-interaction effects is $H^2 = 0.3$, while panels (C) and (D) were generated with $H^2 = 0.6$. We also varied the proportion of phenotypic variation explained by additive SNP effects to (A, C) $\rho = 0.5$ and (B, D) $\rho = 0.8$, respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while computing the *cis*-interaction LD scores using different estimation windows of ± 5 (green), ± 10 (orange), ± 25 (purple), and ± 50 (pink) SNPs. Results are based on 100 simulations per parameter combination and the horizontal black bars represent standard errors.

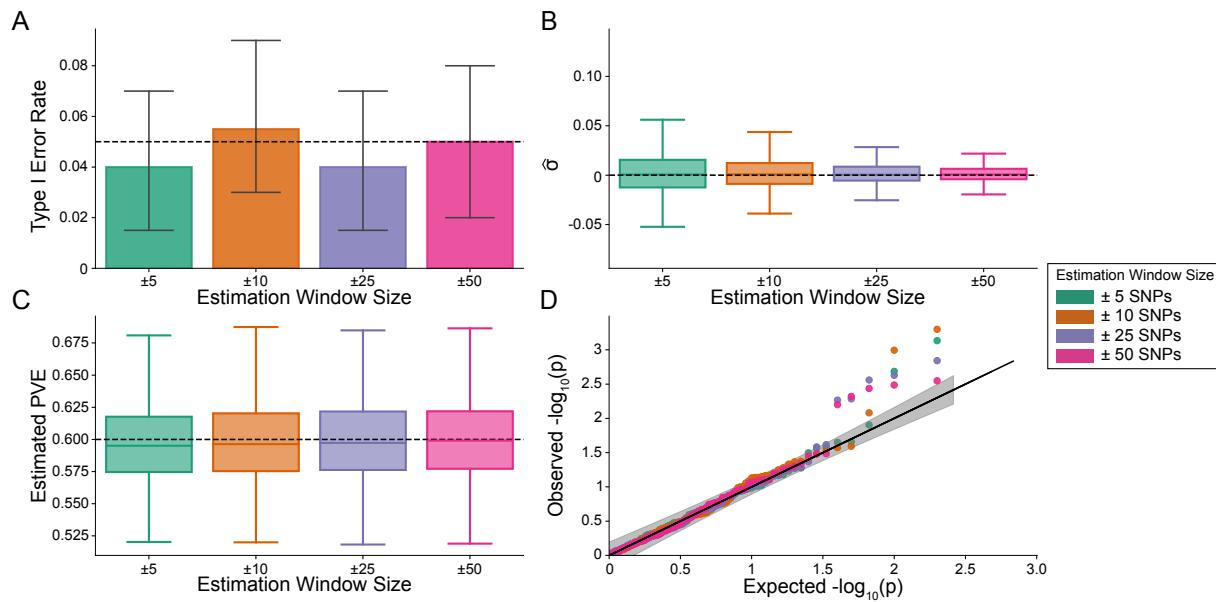


Figure 2. The i-LDSC framework is well-calibrated under the null hypothesis and does not identify evidence of tagged non-additive effects when polygenic traits are generated by only additive effects. In these simulations, synthetic trait architecture is made up of only additive genetic variation (i.e., $\rho = 1$). Coefficients for additive and interaction effects were simulated with no minor allele frequency dependency $\alpha = 0$ (see Materials and Methods). Here, we are blind to the parameter settings used in generative model and run i-LDSC while computing the *cis*-interaction LD scores using different estimating windows of ± 5 (green), ± 10 (orange), ± 25 (purple), and ± 50 (pink) SNPs. **(A)** Mean type I error rate using the i-LDSC framework across an array of estimation window sizes for the *cis*-interaction LD scores. This is determined by assessing the *P*-value of the *cis*-interaction coefficient (ϑ) in the i-LDSC regression model and checking whether $P < 0.05$. **(B)** Estimates of the *cis*-interaction coefficient (ϑ). Since traits were simulated with only additive effects, these estimates should be centered around zero. **(C)** Estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) where the true additive variance is set to $H^2\rho = 0.6$. **(D)** QQ-plot of the *P*-values for the *cis*-interaction coefficient (ϑ) in i-LDSC. Results are based on 100 simulations per parameter combination and the horizontal bars represent standard errors.

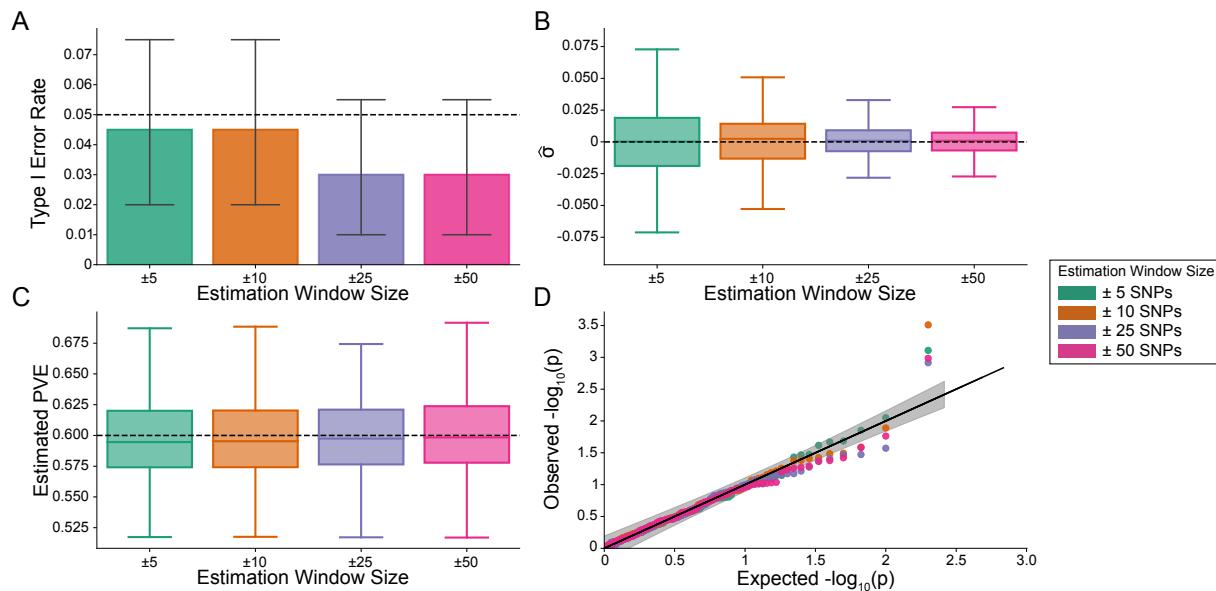


Figure 2 – figure supplement 1. The i-LDSC framework is well-calibrated under the null hypothesis and does not identify evidence of tagged non-additive effects when polygenic traits are generated by only additive effects and a moderate minor allele frequency dependency $\alpha = -0.5$ for effect sizes. In these simulations, synthetic trait architecture is made up of only additive genetic variation (i.e., $\rho = 1$). Coefficients for additive and interaction effects were simulated with minor allele frequency dependency $\alpha = -0.5$ (see Materials and Methods). Here, we are blind to the parameter settings used in generative model and run i-LDSC while computing the *cis*-interaction LD scores using different estimation windows of ± 5 (green), ± 10 (orange), ± 25 (purple), and ± 50 (pink) SNPs. **(A)** Mean type I error rate using the i-LDSC framework across an array of estimation window sizes for the *cis*-interaction LD scores. This is determined by assessing the *P*-value of the *cis*-interaction coefficient (ϑ) in the i-LDSC regression model and checking whether $P < 0.05$. **(B)** Estimates of the *cis*-interaction coefficient (ϑ). Since traits were simulated with only additive effects, these estimates should be centered around zero. **(C)** Estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) where the true additive variance is set to $H^2\rho = 0.6$. **(D)** QQ-plot of the *P*-values for the *cis*-interaction coefficient (ϑ) in i-LDSC. Results are based on 100 simulations per parameter combination and the horizontal black bars represent standard errors.

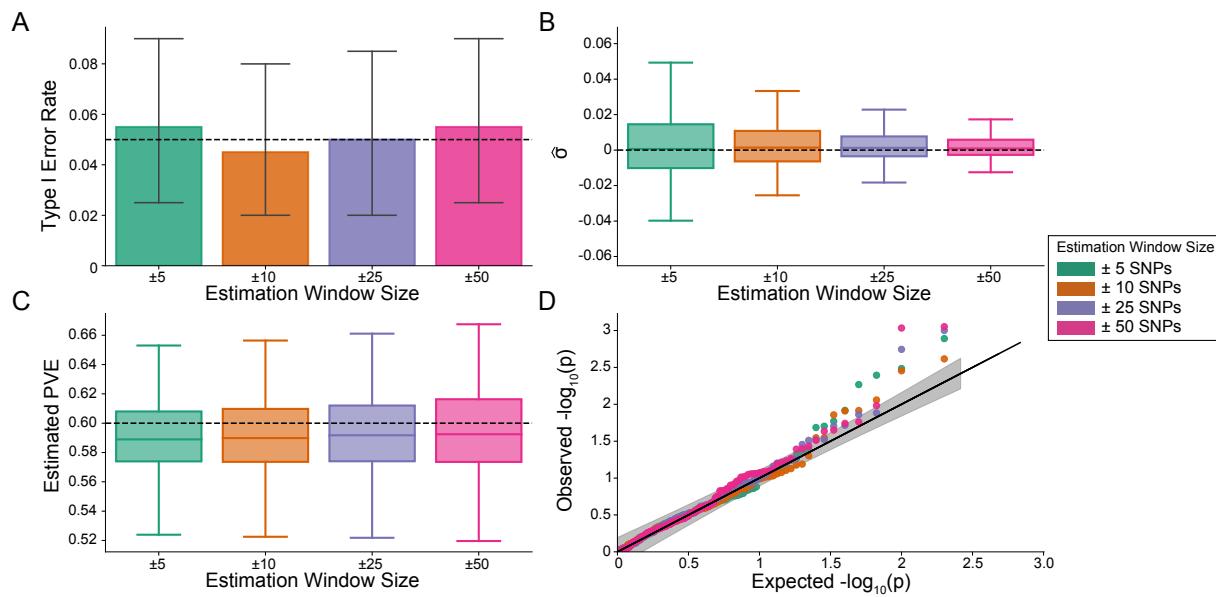


Figure 2 – figure supplement 2. The i-LDSC framework is well-calibrated under the null hypothesis and does not identify evidence of tagged non-additive effects when polygenic traits are generated by only additive effects and a strong minor allele frequency dependency $\alpha = -1$ for effect sizes. In these simulations, synthetic trait architecture is made up of only additive genetic variation (i.e., $\rho = 1$). Coefficients for additive and interaction effects were simulated with minor allele frequency dependency $\alpha = -0.5$ (see Materials and Methods). Here, we are blind to the parameter settings used in generative model and run i-LDSC while computing the *cis*-interaction LD scores using different estimation windows of ± 5 (green), ± 10 (orange), ± 25 (purple), and ± 50 (pink) SNPs. **(A)** Mean type I error rate using the i-LDSC framework across an array of estimation window sizes for the *cis*-interaction LD scores. This is determined by assessing the *P*-value of the *cis*-interaction coefficient (ϑ) in the i-LDSC regression model and checking whether $P < 0.05$. **(B)** Estimates of the *cis*-interaction coefficient (ϑ). Since traits were simulated with only additive effects, these estimates should be centered around zero. **(C)** Estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) where the true additive variance is set to $H^2 \rho = 0.6$. **(D)** QQ-plot of the *P*-values for the *cis*-interaction coefficient (ϑ) in i-LDSC. Results are based on 100 simulations per parameter combination and the horizontal black bars represent standard errors.

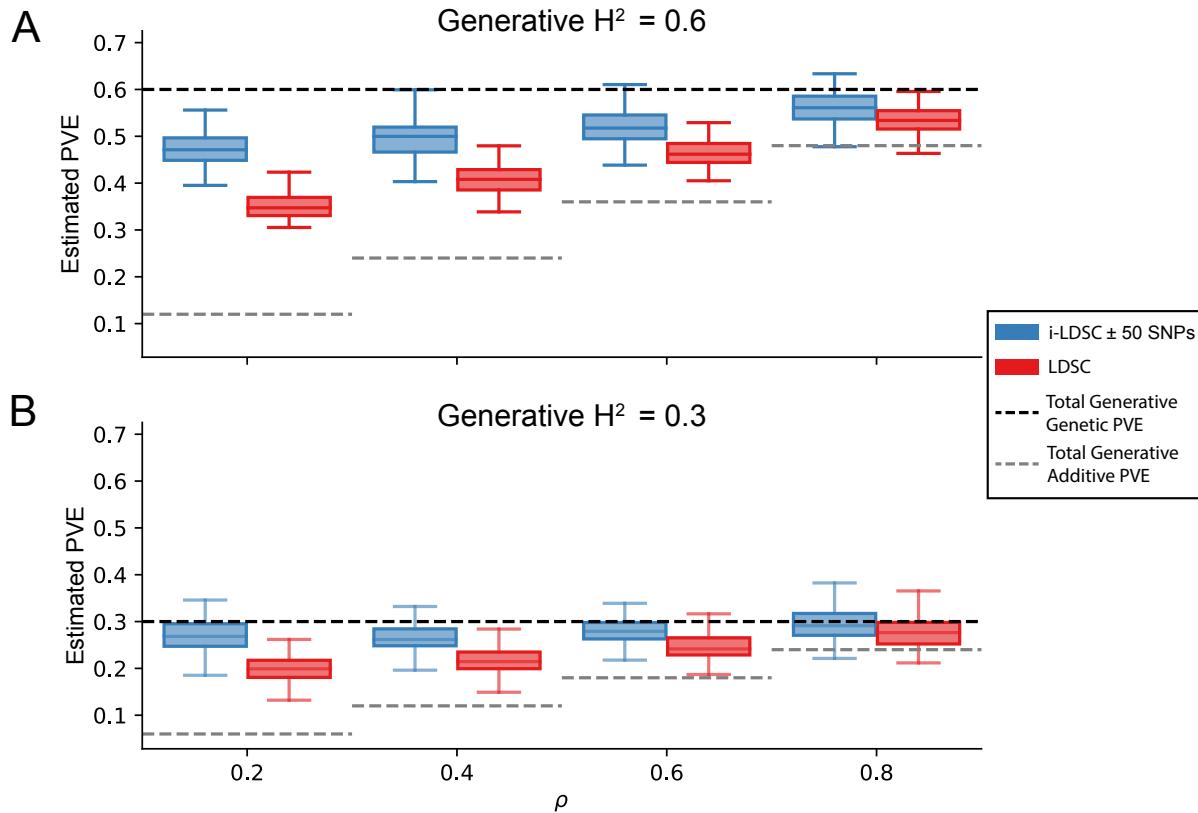


Figure 3. i-LDSC robustly and accurately estimates the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) in simulations in polygenic traits, compared to LDSC, due to our accounting for interaction effects tagged in additive GWAS summary statistics. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank (Materials and Methods). All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within a ± 100 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects were simulated with no minor allele frequency dependency $\alpha = 0$ (see Materials and Methods). Here, we assume a heritability (A) $H^2 = 0.3$ or (B) $H^2 = 0.6$ (marked by the black dotted lines, respectively), and we vary the proportion contributed by additive effects with $\rho = \{0.2, 0.4, 0.6, 0.8\}$. The grey dotted lines represent the total contribution of additive effects in the generative model for the synthetic traits ($H^2\rho$). i-LDSC outperforms LDSC in recovering heritability across each scenario. Results are based on 100 simulations per parameter combination.

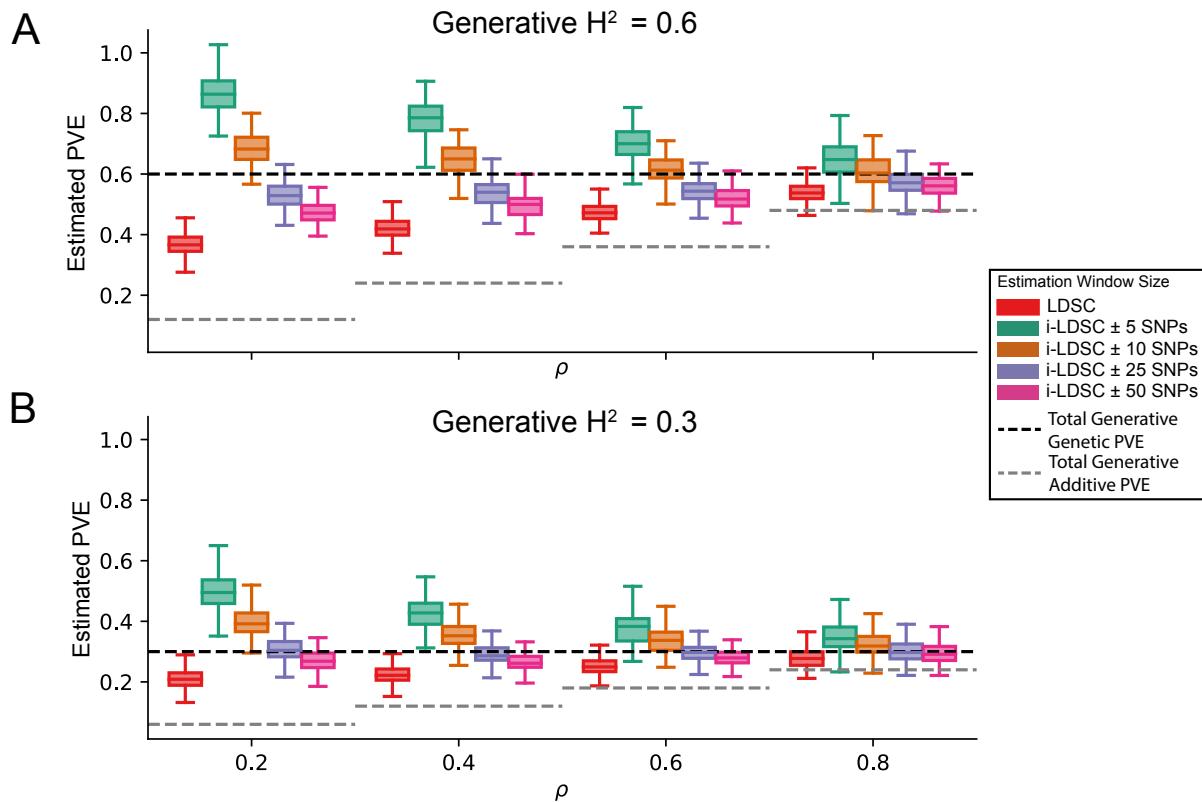


Figure 3 – figure supplement 1. i-LDSC robustly and accurately estimates the proportions of phenotypic variance explained (PVE) by genetic effects in polygenic traits by accounting for interaction effects tagged by GWAS summary statistics. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within a ± 100 kilobase (kb) window around each SNP in group #1. Coefficients for additive and *cis*-interaction effects were simulated with no minor allele frequency dependency $\alpha = 0$ (see Materials and Methods). Here, we assume a total heritability explained by additive SNP and *cis*-interaction effects is (A) $H^2 = 0.3$ or (B) $H^2 = 0.6$ (marked by the black dotted lines, respectively), and we vary the proportion contributed by additive effects with $\rho = \{0.2, 0.4, 0.6, 0.8\}$. The grey dotted line represents the total contribution of additive effects in the generative model for the synthetic traits ($H^2\rho$). We run i-LDSC while computing the *cis*-interaction LD scores using different estimating windows of ± 5 , ± 10 , ± 25 , and ± 50 SNPs, respectively. These results help motivate the selection of scores calculated using a ± 50 SNP window in our empirical analyses. Results are based on 100 simulations per parameter combination.

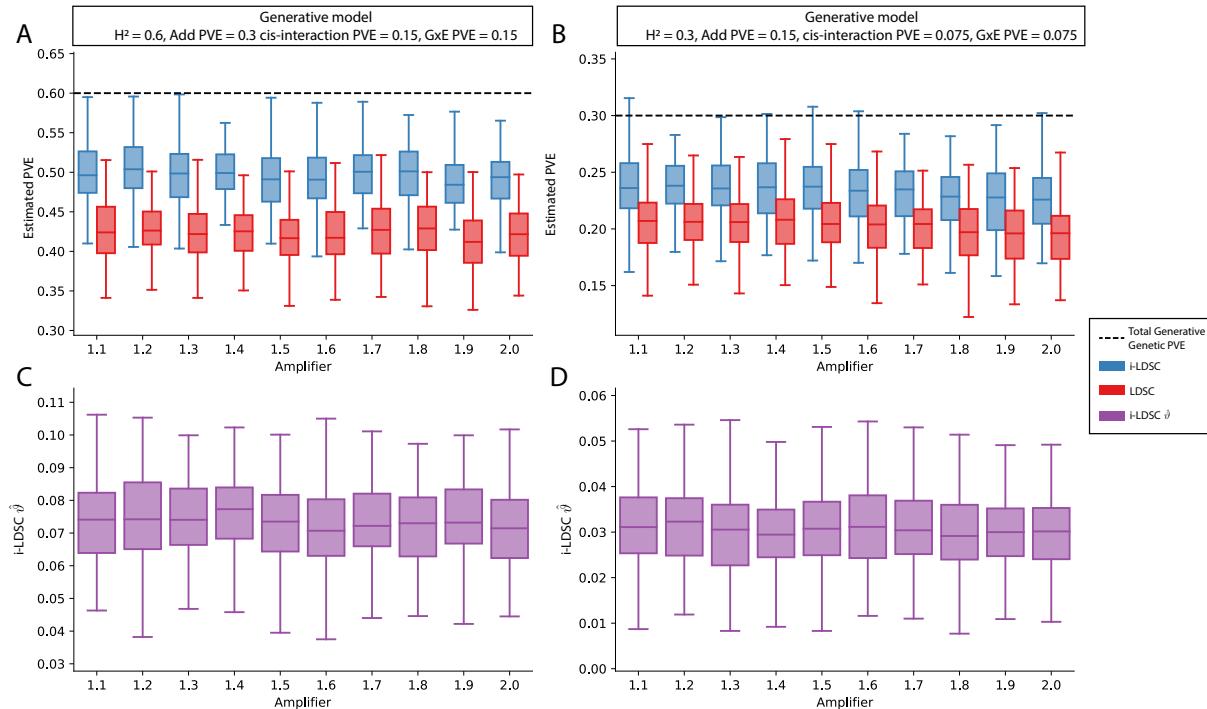


Figure 3 – figure supplement 2. Performance of LDSC and i-LDSC on simulated polygenic traits with architectures that are determined by additive, *cis*-interaction, and gene-by-environment (G×E) effects. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within a ± 100 kilobase (kb) window around each SNP in group #1. G×E effects were simulated using an amplification model⁶⁵ (see Materials and Methods) where we split the sample population in half to emulate two subsets of individuals coming from different environments. We randomly draw variant effect sizes for the first environment from a standard Gaussian distribution. Then effect sizes for the second environment are set to be the product of the effect sizes in from with first environment with an amplifier $w = [1.1, 1.2, \dots, 2]$ (see the x-axis in each panel). Both the *cis*-interaction and G×E effects were set to explain a quarter of the total phenotypic variation and the remaining half was explained by additive SNP effects. Panels (A) and (B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic effects using the *cis*-interaction LD score (i.e., estimates of ϑ). We assume the total heritability explained by all genetic effects to be (A, C) $H^2 = 0.6$ and (B, D) $H^2 = 0.3$. Results are based on 100 simulations per parameter combination.

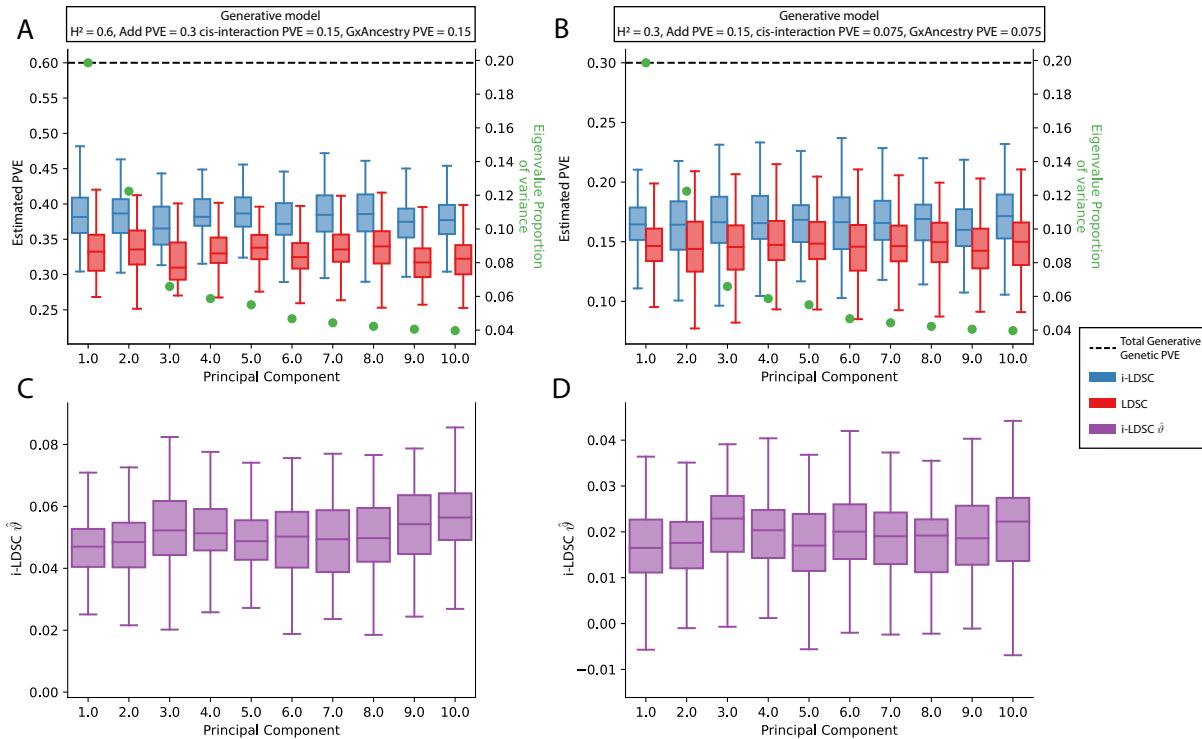


Figure 3 – figure supplement 3. Performance of LDSC and i-LDSC on simulated polygenic traits with architectures that are determined by additive, *cis*-interaction, and gene-by-ancestry (G×Ancestry) effects with principal components (PCs) included in the GWAS model to correct for additional structure. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within a ± 100 kilobase (kb) window around each SNP in group #1. G×Ancestry effects were simulated as the product of individual genotypes and the SNP loadings for each of the first 10 PCs (see the x-axis in each panel). Both the *cis*-interaction and G×Ancestry effects were set to explain a quarter of the total phenotypic variation and the remaining half was explained by additive SNP effects. The proportion of genotypic variance explained by each PC is shown in green. Panels (A) and (B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic effects using the *cis*-interaction LD score (i.e., estimates of ϑ). We assume the total heritability explained by all genetic effects to be (A, C) $H^2 = 0.6$ and (B, D) $H^2 = 0.3$. Results are based on 100 simulations per parameter combination.

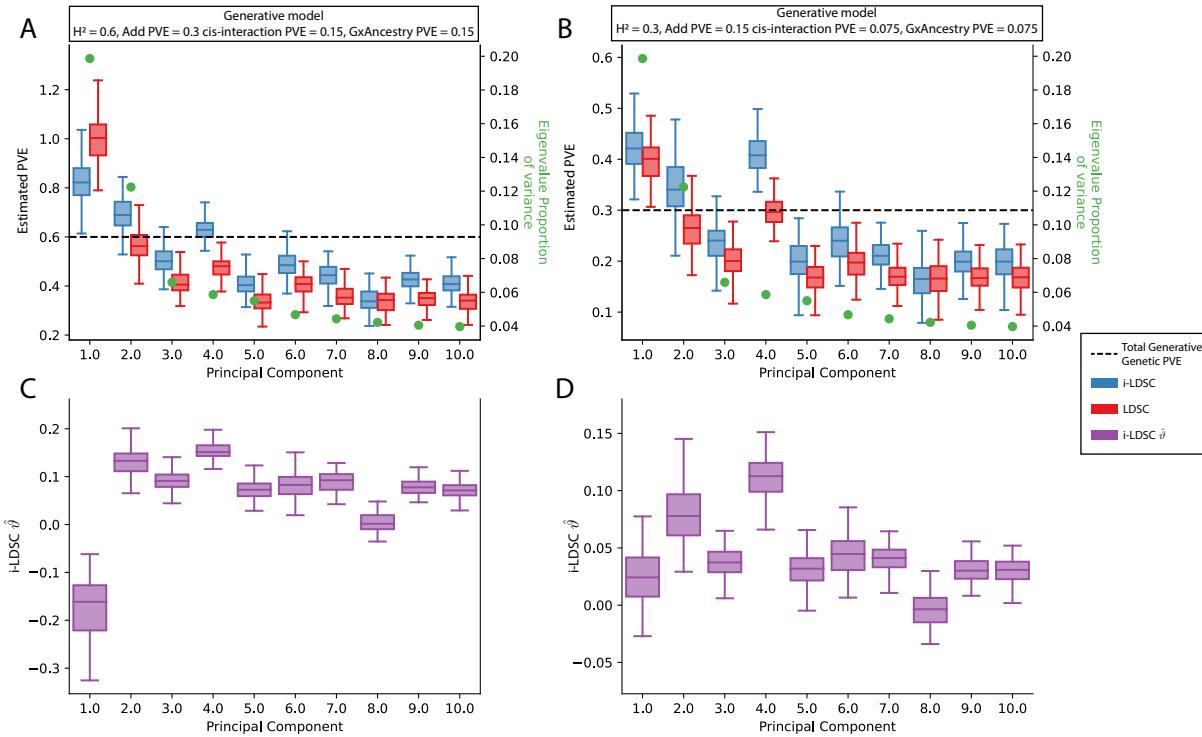


Figure 3 – figure supplement 4. Performance of LDSC and i-LDSC on simulated polygenic traits with architectures that are determined by additive, *cis*-interaction, and gene-by-ancestry (G×Ancestry) effects without correcting for the additional structure in the GWAS analysis. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within a ± 100 kilobase (kb) window around each SNP in group #1. G×Ancestry effects were simulated as the product of individual genotypes and the SNP loadings for each of the first 10 PCs (see the x-axis in each panel). Both the *cis*-interaction and G×Ancestry effects were set to explain a quarter of the total phenotypic variation and the remaining half was explained by additive SNP effects. The proportion of genotypic variance explained by each PC is shown in green. Panels (A) and (B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic effects using the *cis*-interaction LD score (i.e., estimates of ϑ). We assume the total heritability explained by all genetic effects to be (A, C) $H^2 = 0.6$ and (B, D) $H^2 = 0.3$. Results are based on 100 simulations per parameter combination.

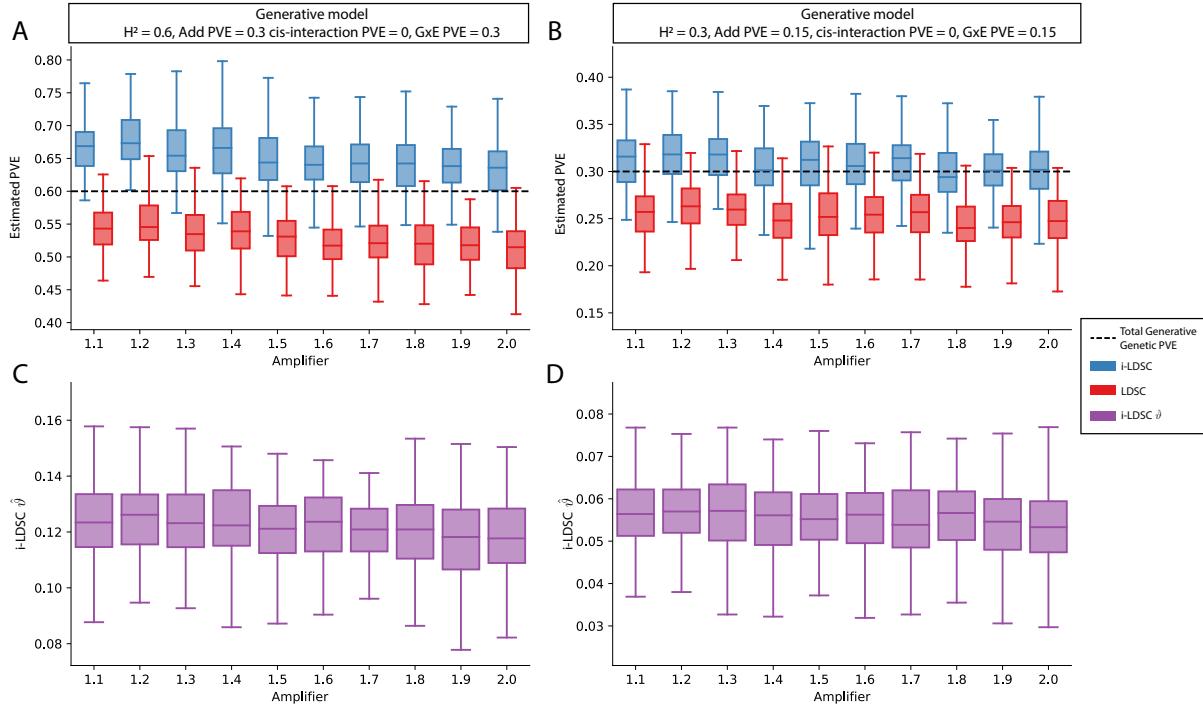


Figure 3 – figure supplement 5. Performance of LDSC and i-LDSC on simulated polygenic traits with architectures that are determined by only additive and gene-by-environment (G×E) effects. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). G×E effects were simulated using an amplification model⁶⁵ (see Materials and Methods) where we split the sample population in half to emulate two subsets of individuals coming from different environments. We randomly draw variant effect sizes for the first environment from a standard Gaussian distribution. Then effect sizes for the second environment are set to be the product of the effect sizes in the first environment with an amplifier $w = [1.1, 1.2, \dots, 2]$ (see the x-axis in each panel). Additive and G×E effects were set to explain half of the phenotypic variation. Note that unlike results depicted in Figure 3 – figure supplement 2, there are no *cis*-interaction effects that affect trait architecture. Here, panels (A) and (B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic effects using the *cis*-interaction LD score (i.e., estimates of ϑ). We assume the total heritability explained by all genetic effects to be (A, C) $H^2 = 0.6$ and (B, D) $H^2 = 0.3$. Results are based on 100 simulations per parameter combination.

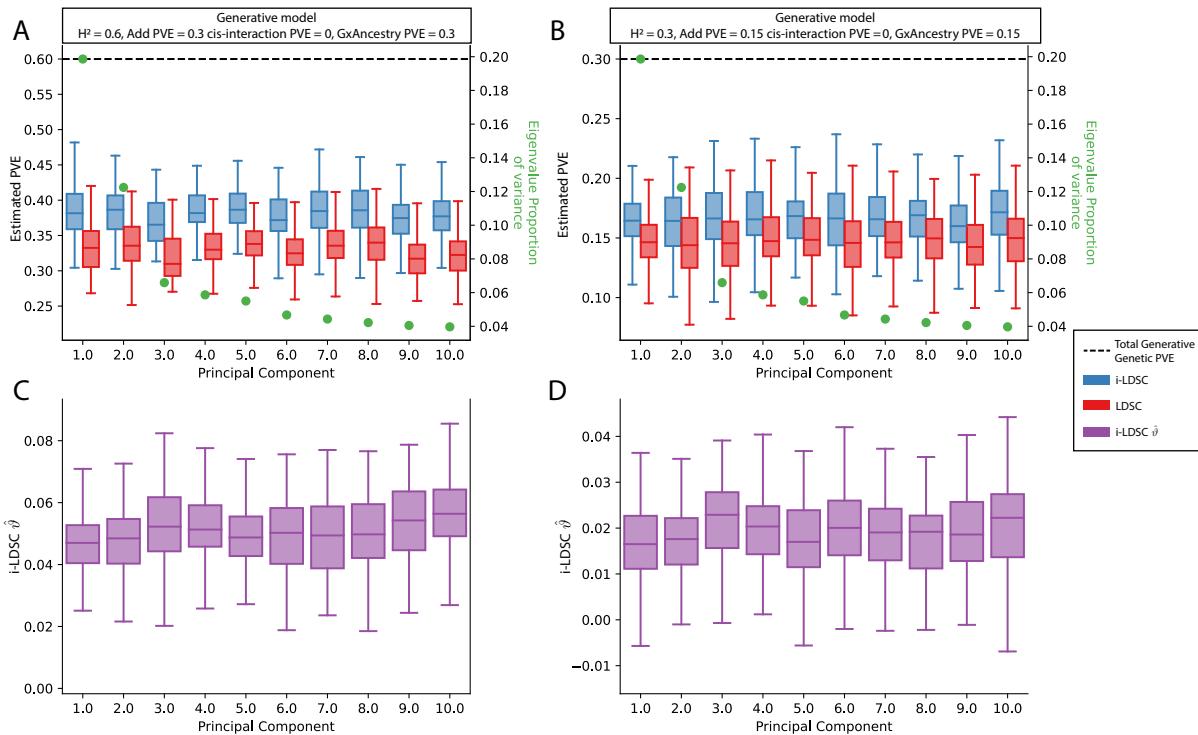


Figure 3 – figure supplement 6. Performance of LDSC and i-LDSC on simulated polygenic traits with architectures that are determined by only additive and gene-by-ancestry (G×Ancestry) effects with principal components (PCs) included in the GWAS model to correct for additional structure. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). G×Ancestry effects were simulated as the product of individual genotypes and the SNP loadings for each of the first 10 PCs (see the x-axis in each panel). Additive and G×E effects were set to explain half of the phenotypic variation. The proportion of genotypic variance explained by each PC is shown in green. Note that unlike results depicted in Figure 3 – figure supplement 3, there are no *cis*-interaction effects that affect trait architecture. Here, panels (A) and (B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic effects using the *cis*-interaction LD score (i.e., estimates of θ). We assume the total heritability explained by all genetic effects to be (A, C) $H^2 = 0.6$ and (B, D) $H^2 = 0.3$. Results are based on 100 simulations per parameter combination.

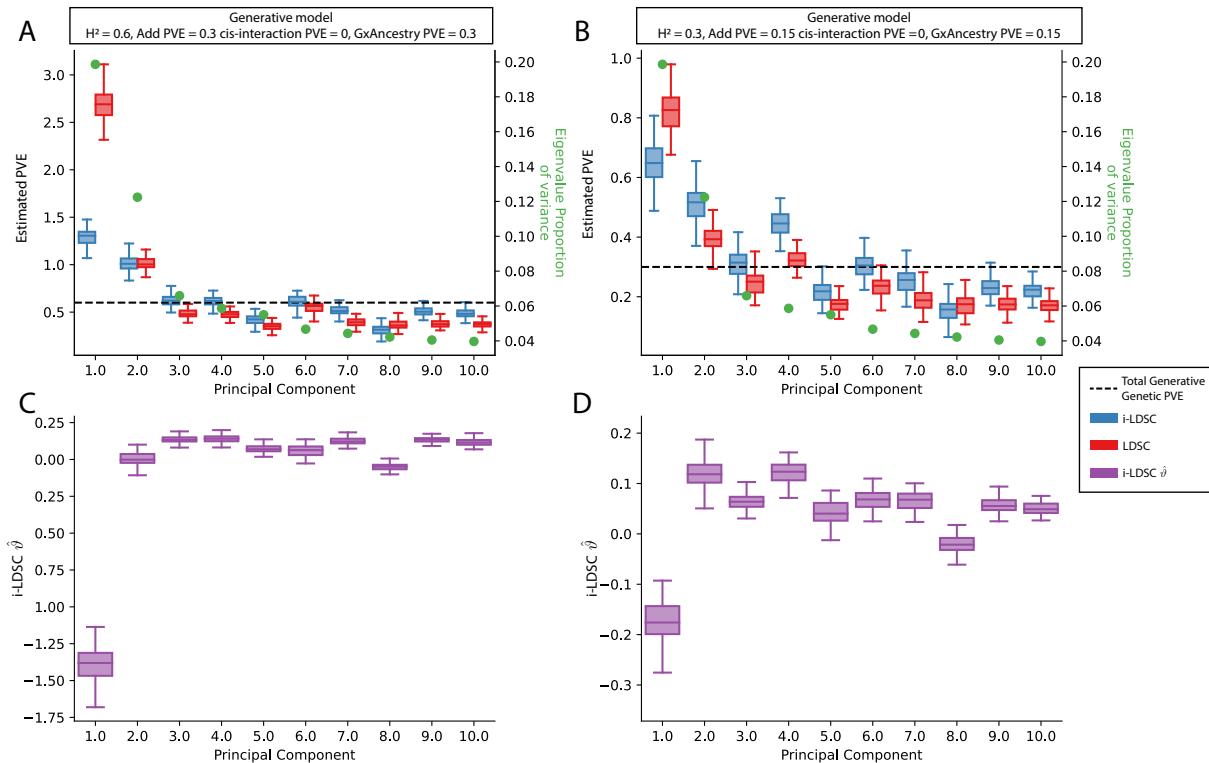


Figure 3 – figure supplement 7. Performance of LDSC and i-LDSC on simulated polygenic traits with architectures that are determined by only additive and gene-by-ancestry (G×Ancestry) effects without correcting for the additional structure in the GWAS analysis. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). G×Ancestry effects were simulated as the product of individual genotypes and the SNP loadings for each of the first 10 PCs (see the x-axis in each panel). Additive and G×E effects were set to explain half of the phenotypic variation. The proportion of genotypic variance explained by each PC is shown in green. Note that unlike results depicted in Figure 3 – figure supplement 4, there are no *cis*-interaction effects that affect trait architecture. Here, panels (A) and (B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic effects using the *cis*-interaction LD score (i.e., estimates of ϑ). We assume the total heritability explained by all genetic effects to be (A, C) $H^2 = 0.6$ and (B, D) $H^2 = 0.3$. Results are based on 100 simulations per parameter combination.

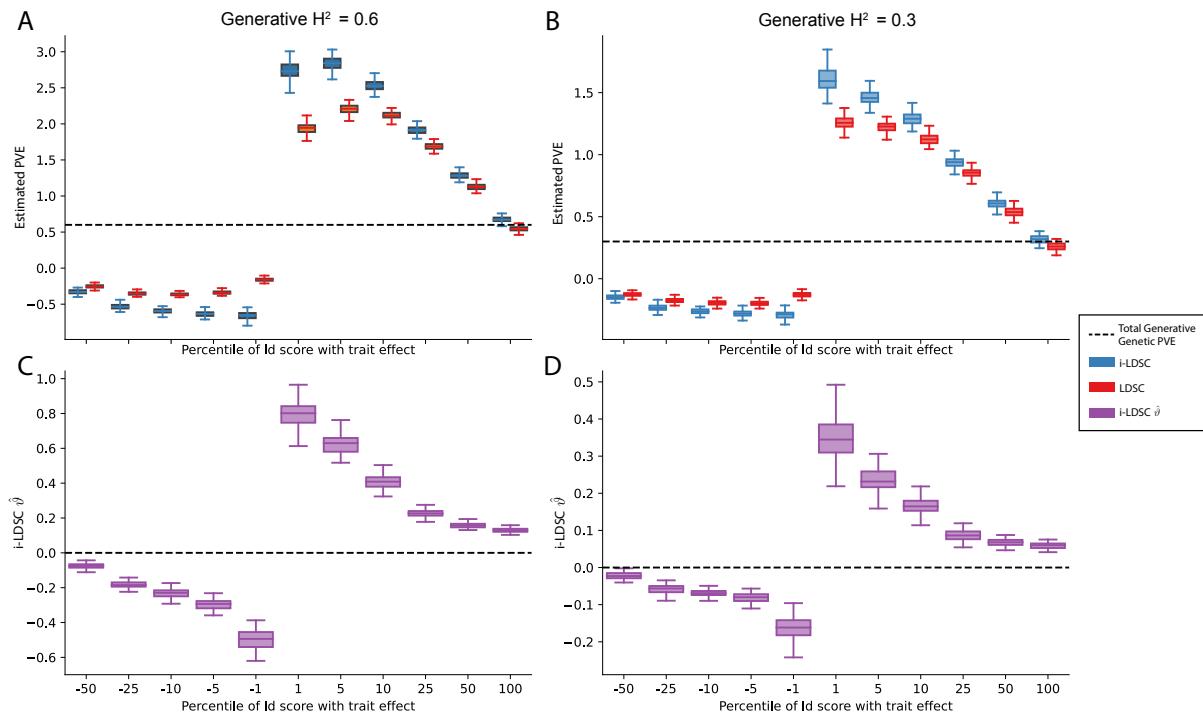


Figure 3 – figure supplement 8. Performance of LDSC and i-LDSC on simulated traits with sparse architectures that are determined by only additive effects. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. Here, traits were generated with solely additive effects where only variants with the top or bottom $\{1, 5, 10, 25, 50, 100\}$ percentile of LD scores were given nonzero coefficients in the generative model (see the x-axis in each panel). Panels (A) and (B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic effects using the *cis*-interaction LD score (i.e., estimates of ϑ). We assume the total heritability explained by all genetic effects to be (A, C) $H^2 = 0.6$ and (B, D) $H^2 = 0.3$. Results are based on 100 simulations per parameter combination. The overall takeaway is that breaking the assumed relationship between LD scores and chi-squared test statistics (i.e., that they are generally positively correlated) led to unbounded estimates of heritability for both LDSC and i-LDSC in all but the (polygenic) scenario when 100% of SNPs contributed to phenotypic variation.

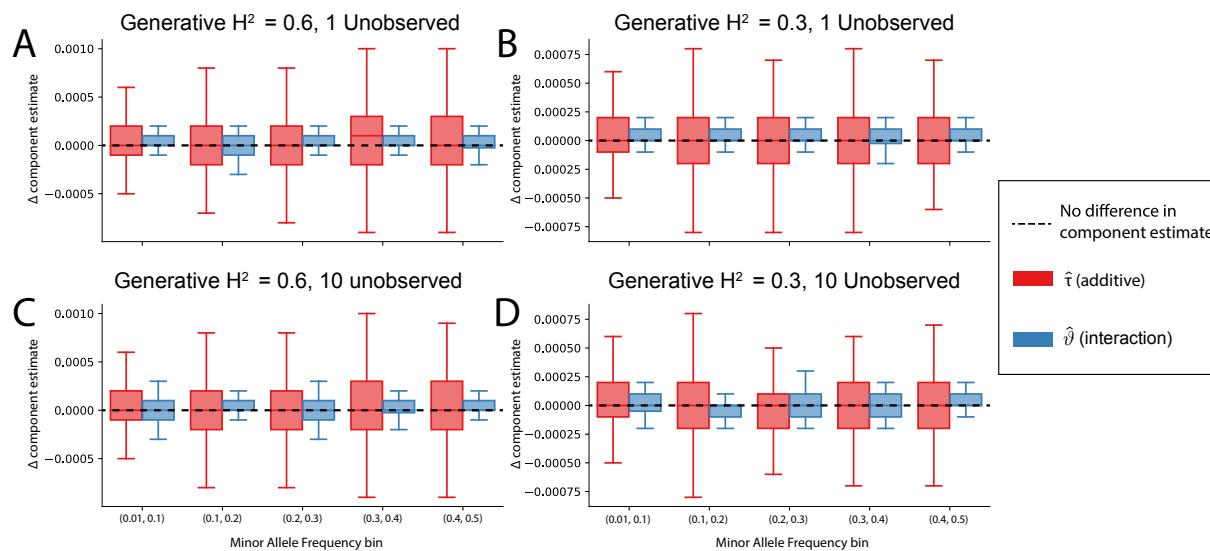


Figure 3 – figure supplement 9. The non-additive component estimates in i-LDSC are robust to unobserved additive effects in a haplotype. Synthetic trait architectures are simulated such that a substantial proportion of genetic variance is explained by an additive effect that is not directly observed. The goal of these simulations was to assess how these unobserved effects influence the estimation of the non-additive variance component in the i-LDSC model. In each simulation, we generated haplotypes that each contain 5,000 variants. Next, we select either **(A, B)** a single causal variant with only an additive effect or **(C, D)** a set of ten causal variants with only additive effects. In each case, the causal variants have a MAF that is randomly selected between: *(i)* (0.01, 0.1), *(ii)* (0.1, 0.2), *(iii)* (0.2, 0.3), *(iv)* (0.3, 0.4), or *(v)* (0.4, 0.5) as depicted on the x-axis. The corresponding additive effect size for each causal variant across the haplotypes is simulated to be inversely proportional to its MAF³⁸. On the y-axis, we measure the difference (Δ) between i-LDSC coefficient estimates when every variant is included in the model versus when the haplotype causal variants are omitted for two different trait architectures with broad-sense heritability set to **(A, C)** $H^2 = 0.6$ and **(B, D)** $H^2 = 0.3$. Results are based on 100 simulations per parameter combination.

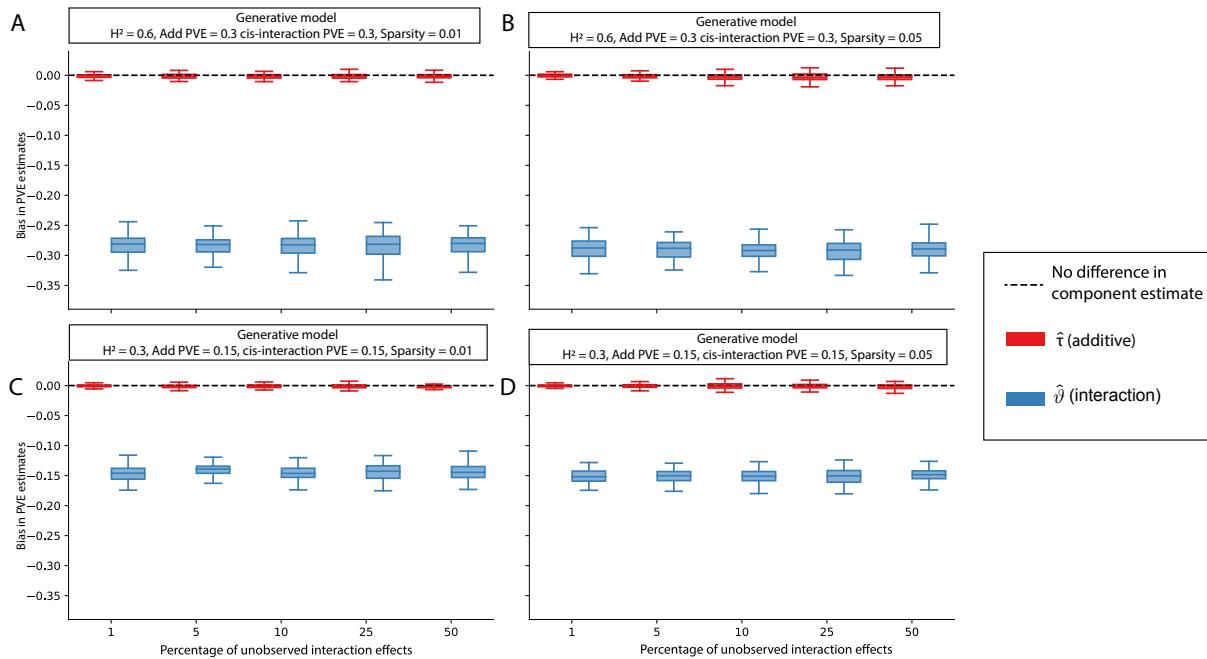


Figure 3 – figure supplement 10. The i-LDSC framework protects against the false discovery of non-additive genetic variance when causal interacting SNPs are unobserved and the proportion of genetic variance explained by additive effects is equal to $\rho = 0.5$. Synthetic trait architectures are simulated such that a substantial proportion of genetic variance is explained by pairwise genetic interaction effects that are not directly observed. The goal of these simulations was to assess how these unobserved effects influence the estimation of the non-additive variance component in the i-LDSC model. In each simulation, we generated haplotypes that each contain 5,000 variants. Every SNP in the genome had at least a small additive effect. The corresponding additive effect size for each variant across the haplotypes is simulated to be inversely proportional to its MAF³⁸. We then set (A, C) 1% or (B, D) 5% of causal variants in each haplotype to have non-zero interaction effects. On the y-axis, we measure the difference (Δ) between i-LDSC coefficient estimates when every variant is included in the model versus when the specified percentage of variants with pairwise genetic interaction effects are omitted for two different trait architectures with broad-sense heritability set to (A, B) $H^2 = 0.6$ and (C, D) $H^2 = 0.3$. Results are based on 100 simulations per parameter combination.

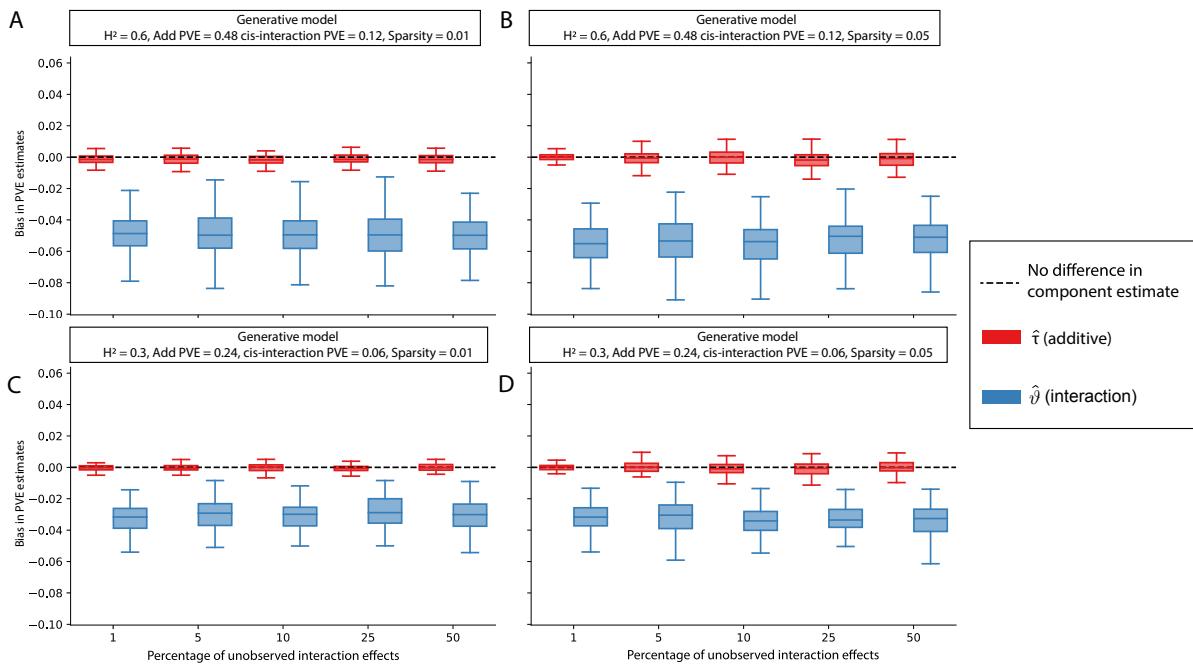


Figure 3 – figure supplement 11. The i-LDSC framework protects against the false discovery of non-additive genetic variance when causal interacting SNPs are unobserved and the proportion of genetic variance explained by additive effects is equal to $\rho = 0.8$. Synthetic trait architectures are simulated such that a substantial proportion of genetic variance is explained by pairwise genetic interaction effects that are not directly observed. The goal of these simulations was to assess how these unobserved effects influence the estimation of the non-additive variance component in the i-LDSC model. In each simulation, we generated haplotypes that each contain 5,000 variants. Every SNP in the genome had at least a small additive effect. The corresponding additive effect size for each variant across the haplotypes is simulated to be inversely proportional to its MAF³⁸. We then set (A, C) 1% or (B, D) 5% of causal variants in each haplotype to have non-zero interaction effects. On the y-axis, we measure the difference (Δ) between i-LDSC coefficient estimates when every variant is included in the model versus when the specified percentage of variants with pairwise genetic interaction effects are omitted for two different trait architectures with broad-sense heritability set to (A, B) $H^2 = 0.6$ and (C, D) $H^2 = 0.3$. Results are based on 100 simulations per parameter combination.

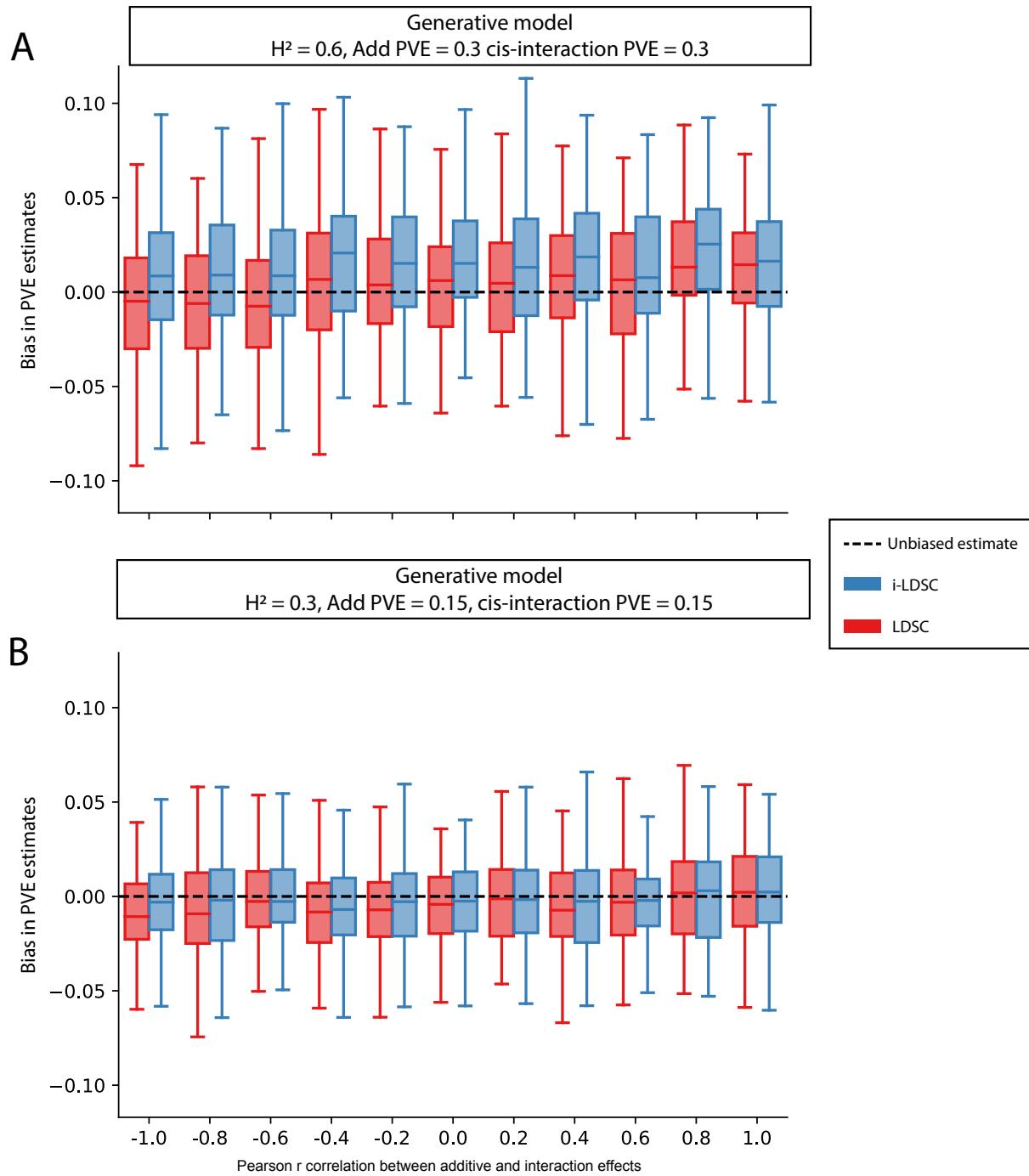


Figure 3 – figure supplement 12. Bias in LDSC and i-LDSC estimates when the additive and interaction effect sizes in the generative model of complex traits are correlated. To simulate synthetic trait architectures, we first simulated additive effects for each variant to be MAF-dependent (i.e., $\alpha = -1$). Here, we set the corresponding interaction effect sizes to have a correlation with the additive effect sizes equal to $r = \{-1, -0.8, -0.6, \dots, 0.6, 0.8, 1\}$ (labeled across the x-axis). On the y-axis, we measure the bias in the LDSC and i-LDSC estimates of phenotypic variance explained (PVE) by genetic effects. In each simulation, we generate traits with an equal proportion of variance explained by additive and interaction effects and a total broad-sense heritability set to (A) $H^2 = 0.6$ and (B) $H^2 = 0.3$. Results are based on 100 simulations for each parameter value.

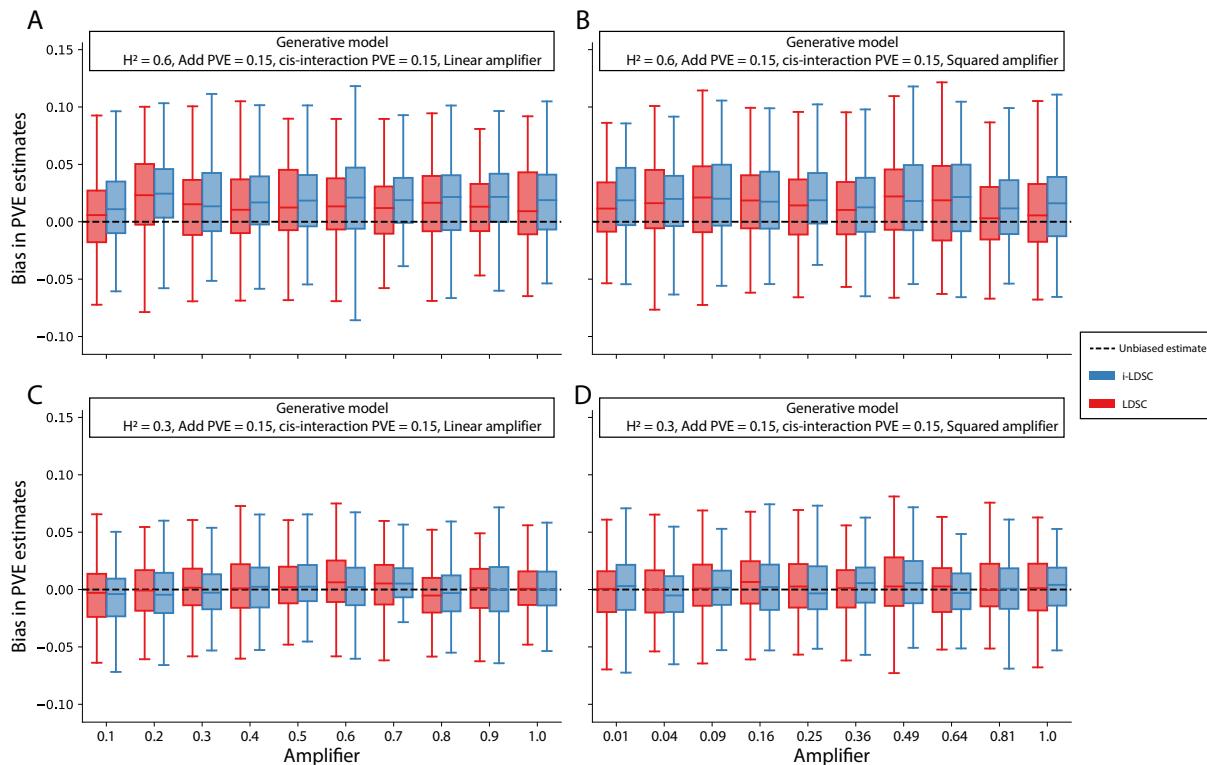


Figure 3 – figure supplement 13. Bias in LDSC and i-LDSC estimates when interaction effect sizes in the generative model of complex traits are a linear or squared function of the the additive effects. To simulate synthetic trait architectures, we first simulated additive effects for each variant to be MAF-dependent (i.e., $\alpha = -1$). Here, we set the corresponding interaction effect sizes to be either (A, C) a linear function or (B, D) a squared function of the additive effects with a scaling factor $q = \{0.1, 0.2, \dots, 0.8, 1\}$ (labeled across the x-axis). On the y-axis, we measure the bias in the LDSC and i-LDSC estimates of the phenotypic variance explained (PVE) by genetic effects. In each simulation, we generate traits with an equal proportion of variance explained by additive and interaction effects and a total broad-sense heritability set to (A, B) $H^2 = 0.6$ and (C, D) $H^2 = 0.3$. Results are based on 100 simulations for each parameter value.

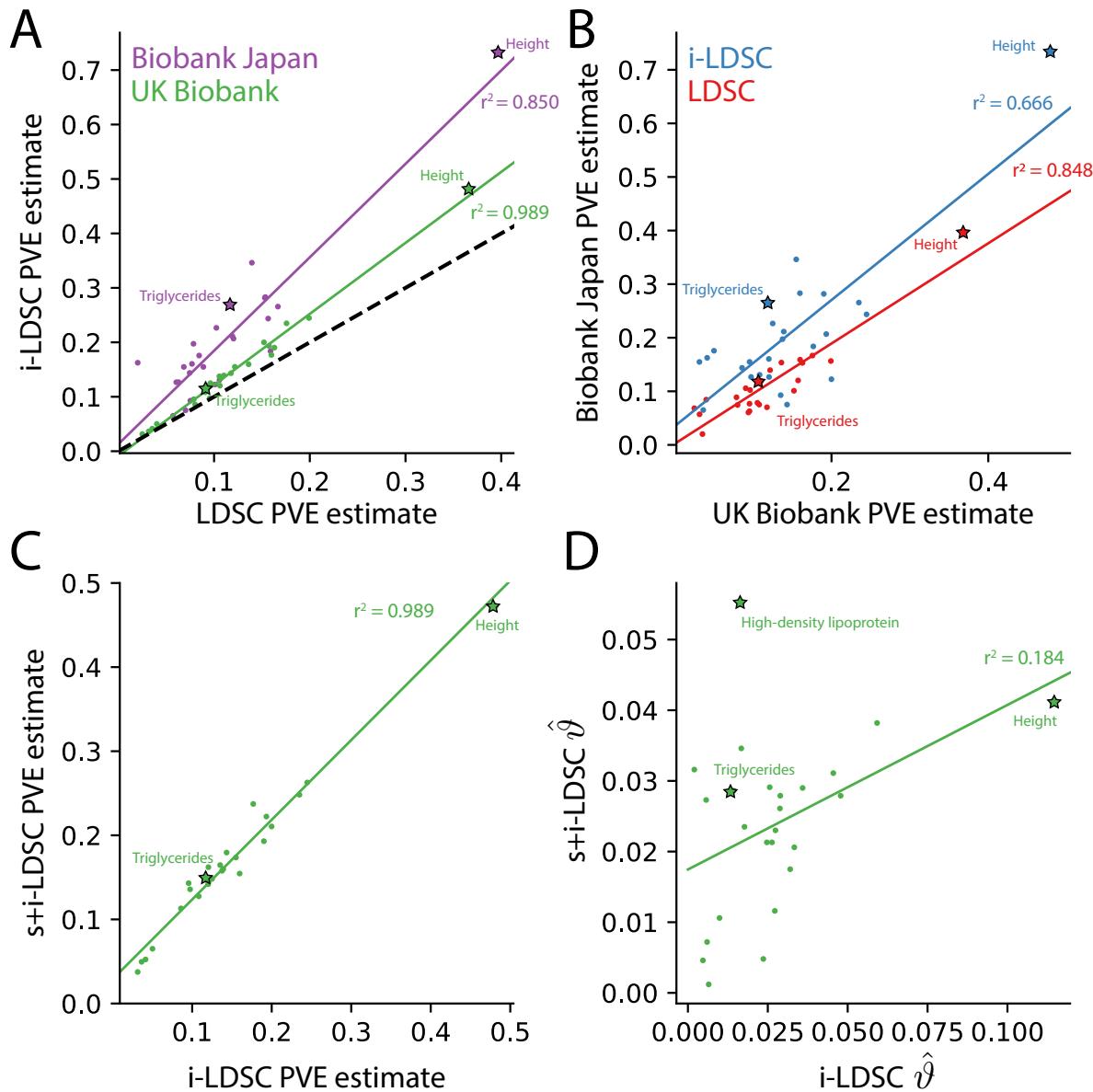


Figure 4. The i-LDSC framework recovers heritability and provides estimates of tagged *cis*-interactions in GWAS summary statistics (ϑ) for 25 quantitative traits in the UK Biobank and BioBank Japan. **(A)** In both the UK Biobank (green) and BioBank Japan (purple), estimates of phenotypic variance explained (PVE) by genetic effects from i-LDSC and LDSC are highly correlated for 25 different complex traits. The Spearman correlation coefficient between heritability estimates from LDSC and i-LDSC for the UK Biobank and BioBank Japan are $r^2 = 0.989$ and $r^2 = 0.850$, respectively. The $y = x$ dotted line represents the values at which estimates from both approaches are the same. **(B)** PVE estimates from the UK Biobank are better correlated with those from the BioBank Japan across 25 traits using LDSC (Spearman $r^2 = 0.848$) than i-LDSC (Spearman $r^2 = 0.666$). **(C)** Both the original and stratified LDSC models recover the same amount of PVE when the *cis*-interaction LD score is included as an additional component in the UK Biobank analysis (Spearman $r^2 = 0.989$). These models are listed as i-LDSC and s+i-LDSC, respectively. For s+i-LDSC, we included 97 functional annotations from Gazal et al.⁴¹ to estimate heritability. **(D)** Estimates of non-additive variance components in i-LDSC versus s+i-LDSC (Spearman $r^2 = 0.184$). While not statistically significant in the stratified analysis with the additional annotations, the non-additive component still makes nonzero contributions to the PVE estimation for all 25 traits in the UK Biobank (see Tables 1 and 2).

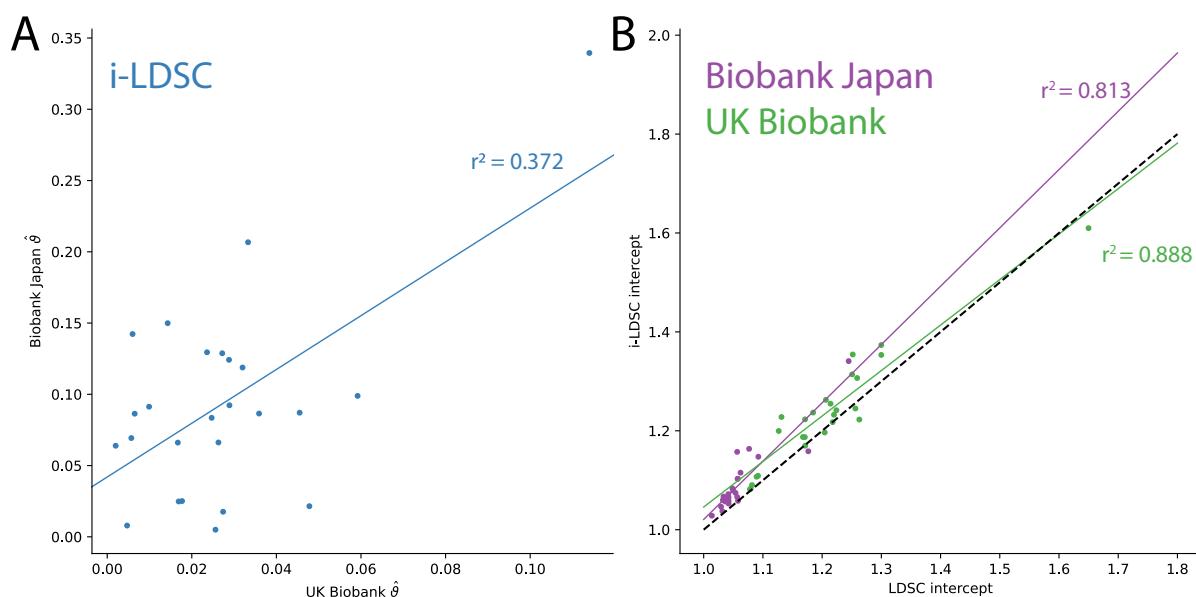


Figure 4 – figure supplement 1. Additional results from applying LDSC and i-LDSC for 25 quantitative traits in the UK Biobank and BioBank Japan. (A) i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic effects using the *cis*-interaction LD score (i.e., estimates of $\hat{\vartheta}$) between traits in the UK Biobank and BioBank Japan (Spearman $r^2 = 0.372$). (B) Estimates of i-LDSC and LDSC intercept terms for 25 traits analyzed in the UK Biobank and BioBank Japan. Intercept terms using LDSC and i-LDSC are highly correlated in both the UK Biobank (Spearman $r^2 = 0.888$) and BioBank Japan (Spearman $r^2 = 0.813$). The $x = y$ dotted line represents points for when the two sets of estimates are equal.

Trait	UKB (LDSC)	UKB (i-LDSC)	UKB $\hat{\vartheta}$	UKB <i>P</i> -value	BBJ (LDSC)	BBJ (i-LDSC)	BBJ $\hat{\vartheta}$	BBJ <i>P</i> -value
Basophil	0.0250	0.0315	0.0065	1.572×10^{-12}	0.0684	0.1548	0.0864	0.025
BMI	0.1757	0.2349	0.0592	3.083×10^{-84}	0.1667	0.2656	0.0989	2.438×10^{-18}
Cholesterol	0.0954	0.0974	0.0020	1.821×10^{-16}	0.0629	0.1268	0.0639	2.740×10^{-4}
CRP	0.0354	0.0414	0.0060	9.845×10^{-12}	0.0202	0.1625	0.1423	0.020
DBP	0.0940	0.1203	0.0263	1.118×10^{-65}	0.0605	0.1267	0.0662	1.675×10^{-7}
EGFR	0.1521	0.1999	0.0478	1.187×10^{-46}	0.1010	0.1225	0.0215	4.232×10^{-5}
Eosinophil	0.1055	0.1375	0.0320	1.230×10^{-18}	0.0785	0.1973	0.1188	0.001
HBA1C	0.0906	0.1083	0.0177	1.578×10^{-26}	0.1057	0.1308	0.0251	0.031
HDL*	0.1599	0.1768	0.0169	9.636×10^{-37}	0.1590	0.1838	0.0248	0.081
Height	0.3675	0.4815	0.1140	1.038×10^{-64}	0.3941	0.7336	0.3395	7.433×10^{-33}
Hematocrit	0.1078	0.1352	0.0274	2.479×10^{-25}	0.0752	0.0928	0.0176	3.689×10^{-5}
Hemoglobin	0.1177	0.1433	0.0256	4.284×10^{-27}	0.0702	0.0752	0.0050	9.037×10^{-4}
LDL	0.0802	0.0859	0.0057	5.087×10^{-13}	0.0745	0.1438	0.0693	0.018
Lymphocyte	0.0402	0.0501	0.0099	4.906×10^{-19}	0.0844	0.1757	0.0913	5.479×10^{-5}
MCH	0.1361	0.1597	0.0236	1.785×10^{-25}	0.1536	0.2831	0.1295	1.042×10^{-5}
MCHC	0.0317	0.0364	0.0047	3.730×10^{-12}	0.0571	0.0650	0.0079	0.027
MCV	0.1630	0.1902	0.0272	1.180×10^{-29}	0.1530	0.2818	0.1288	1.042×10^{-5}
Monocyte	0.0788	0.0955	0.0167	5.257×10^{-18}	0.0888	0.1549	0.0661	0.004
Neutrophil	0.1102	0.1391	0.0289	1.777×10^{-33}	0.1191	0.2114	0.0923	5.050×10^{-5}
Platelet	0.1992	0.2447	0.0455	2.303×10^{-37}	0.1565	0.2436	0.0871	7.724×10^{-9}
RBC	0.1574	0.1933	0.0359	3.292×10^{-31}	0.1203	0.2068	0.0865	5.972×10^{-8}
SBP	0.0954	0.1201	0.0247	8.660×10^{-75}	0.0769	0.1604	0.0835	9.075×10^{-10}
Triglycerides*	0.1061	0.1204	0.0143	1.410×10^{-26}	0.1171	0.2670	0.1499	0.110
Urate	0.1217	0.1550	0.0333	9.642×10^{-38}	0.1395	0.3462	0.2067	0.015
WBC	0.0962	0.1250	0.0288	9.866×10^{-34}	0.1024	0.2266	0.1242	1.346×10^{-8}

Table 1. i-LDSC heritability estimates and *P*-values highlighting statistically significant contributions of tagged pairwise genetic interaction effects for 25 traits in the UK Biobank and BioBank Japan. Here, LDSC heritability estimates are included as a baseline. The difference between the approaches is that the i-LDSC heritability estimates include proportions of phenotypic variation that are explained by tagged non-additive variation (see columns with estimates of ϑ). Note that all 25 traits analyzed in the UK Biobank and 23 of the 25 traits analyzed in BioBank Japan have a statistically significant amount of tagged non-additive genetic effects as detected by the *cis*-interaction LD score ($P < 0.05$). The two traits without significant tagged non-additive genetic effects in BioBank Japan were HDL ($P = 0.081$) and Triglyceride ($P = 0.110$). These traits are indicated by *. The i-LDSC *P*-values are related to the estimates of the ϑ coefficients which are also displayed in Figure 4.

Trait	UKB PVE (s-LDSC)	UKB PVE (s+i-LDSC)	s+i-LDSC P-value
Basophil	0.0363	0.0375	0.4728
BMI	0.2100	0.2482	0.8126
Cholesterol	0.1042	0.1358	0.6202
CRP	0.0452	0.0524	0.6483
DBP	0.1228	0.1441	0.6125
EGFR	0.1826	0.2105	0.8507
Eosinophil	0.1403	0.1578	0.1867
HBA1C	0.1040	0.1275	0.6917
HDL	0.1820	0.2373	0.5754
Height	0.4315	0.4726	0.5224
Hematocrit	0.1416	0.1646	0.3956
Hemoglobin	0.1504	0.1795	0.2299
LDL	0.0858	0.1131	0.8812
Lymphocyte	0.0545	0.0651	0.1453
MCH	0.1497	0.1545	0.0968
MCHC	0.0450	0.0496	0.3728
MCV	0.1814	0.1930	0.1530
Monocyte	0.1085	0.1431	0.5421
Neutrophil	0.1320	0.1599	0.2499
Platelet	0.2317	0.2628	0.7371
RBC	0.1933	0.2223	0.3197
SBP	0.1206	0.1419	0.1100
Triglycerides	0.1335	0.1621	0.5301
Urate	0.1530	0.1736	0.1177
WBC	0.1221	0.1482	0.5155

Table 2. Comparison of s-LDSC and i-LDSC estimates of phenotypic variance explained (PVE) by genetic effects for 25 complex traits in the UK Biobank. Here, we use stratified LD score regression (s-LDSC) to partition heritability across different genomic elements⁴². We used 97 functional annotations from Gazal et al.⁴¹ to estimate heritability in 25 traits. We then appended *cis*-interaction LD scores as an additional annotation to obtain heritability estimates (this method is referred to as s+i-LDSC in the table). P-values for the s+i-LDSC model detailing the contributions of tagged non-additive genetic effects for 25 traits are provided in the last column. Note that, while not statistically significant in this stratified analysis with the additional annotations, the non-additive component still makes nonzero contributions to the PVE estimation for all 25 traits.

948 Supplementary File Captions

Supplementary File 1. Comparison of LDSC and i-LDSC estimates of the proportion of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) when the true heritability is set to $H^2 = 0.3$ for polygenic traits. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within a ± 100 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects were simulated with no minor allele frequency dependency $\alpha = 0$ (see Materials and Methods). Here, we assume a heritability $H^2 = 0.3$ and vary the proportion contributed by additive effects with $\rho = \{0.2, 0.4, 0.6, 0.8\}$. We run i-LDSC while computing the *cis*-interaction LD scores using different estimating windows of ± 5 , ± 10 , ± 25 , and ± 50 SNPs. The “average” column represents results using model averaging over the different estimating windows (see Materials and Methods). We report the mean estimates of heritability (with standard errors in the parentheses) and use mean absolute error (MAE) to quantify the difference between the two methods. Results are based on 100 simulations per parameter combination. As shown in Figure 3 – figure supplement 3 and 1, LDSC does not capture the contribution of non-additive genetic effects to trait variation.

Supplementary File 2. Comparison of LDSC and i-LDSC estimates of the proportion of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) when the true heritability is set to $H^2 = 0.6$. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and divide them into two interacting groups. The group #1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within a ± 100 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects were simulated with no minor allele frequency dependency $\alpha = 0$ (see Materials and Methods). Here, we assume a heritability $H^2 = 0.6$ and vary the proportion contributed by additive effects with $\rho = \{0.2, 0.4, 0.6, 0.8\}$. We run i-LDSC while computing the *cis*-interaction LD scores using different estimating windows of ± 5 , ± 10 , ± 25 , and ± 50 SNPs. The “average” column represents results using model averaging over the different estimating windows (see Materials and Methods). We report the mean estimates of heritability (with standard errors in the parentheses) and use mean absolute error (MAE) to quantify the difference between the two methods. Results are based on 100 simulations per parameter combination. As shown in Figure 3 – figure supplement 3 and 1, LDSC does not capture the additional contribution of non-additive genetic effects to trait variation.

Supplementary File 3. Abbreviations used throughout this study for 14 quantitative traits analyzed in this study. The remaining 11 traits analyzed were Basophil count, Cholesterol, Eosinophil count, Height, Hematocrit, Hemoglobin, Lymphocyte count, Monocyte count, Neutrophil count, and Triglyceride levels, respectively. These are not abbreviated in the main text.

Supplementary File 4. Trait-specific α parameters for each of the 25 traits analyzed. Here, α values are used to weight each variant based on its minor allele frequency to account for frequency dependent architectures in each trait. The * indicates α parameters that were taken directly from Schoeck et al.³⁸. The α parameters for other traits were calculated using the protocol used in that paper. Expansion of trait abbreviations are given in Table 3.

Supplementary File 5. Number of individuals and total SNPs included in the analysis of each trait in BioBank Japan.

949 **References**

- 950 1. Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang, Nick Pat-
951 terson, Mark J Daly, Alkes L Price, and Benjamin M Neale. Ld score regression distinguishes
952 confounding from polygenicity in genome-wide association studies. *Nature genetics*, 47(3):291–
953 295, 2015.
- 954 2. Brendan Bulik-Sullivan, Hilary K Finucane, Verner Anttila, Alexander Gusev, Felix R Day, Po-
955 Ru Loh, Laramie Duncan, John R B Perry, Nick Patterson, Elise B Robinson, Mark J Daly,
956 Alkes L Price, Benjamin M Neale, ReproGen Consortium, Psychiatric Genomics Consortium, and
957 Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3. An
958 atlas of genetic correlations across human diseases and traits. *Nature Genetics*, 47(11):1236–1241,
959 2015. doi: 10.1038/ng.3406. URL <https://doi.org/10.1038/ng.3406>.
- 960 3. Huwenbo Shi, Gleb Kichaev, and Bogdan Pasaniuc. Contrasting the genetic architecture of 30
961 complex traits from summary association data. *The American Journal of Human Genetics*, 99(1):
962 139–153, 2016.
- 963 4. Noah Zaitlen, Peter Kraft, Nick Patterson, Bogdan Pasaniuc, Gaurav Bhatia, Samuela Pollack, and
964 Alkes L. Price. Using extended genealogy to estimate components of heritability for 23 quantitative
965 and dichotomous traits. *PLOS Genetics*, 9(5):1–11, 2013. doi: 10.1371/journal.pgen.1003520. URL
966 <https://doi.org/10.1371/journal.pgen.1003520>.
- 967 5. Tinca J C Polderman, Beben Benyamin, Christiaan A de Leeuw, Patrick F Sullivan, Arjen van
968 Bochoven, Peter M Visscher, and Danielle Posthuma. Meta-analysis of the heritability of human
969 traits based on fifty years of twin studies. *Nature Genetics*, 47(7):702–709, 2015. doi: 10.1038/ng.
970 3285. URL <https://doi.org/10.1038/ng.3285>.
- 971 6. Kangcheng Hou, Kathryn S. Burch, Arunabha Majumdar, Huwenbo Shi, Nicholas Mancuso, Yue
972 Wu, Sriram Sankararaman, and Bogdan Pasaniuc. Accurate estimation of snp-heritability from
973 biobank-scale data irrespective of genetic architecture. *Nature Genetics*, 51(8):1244–1251, 2019.
974 doi: 10.1038/s41588-019-0465-0. URL <https://doi.org/10.1038/s41588-019-0465-0>.
- 975 7. Ali Pazokitoroudi, Yue Wu, Kathryn S. Burch, Kangcheng Hou, Aaron Zhou, Bogdan Pasaniuc,
976 and Sriram Sankararaman. Efficient variance components analysis across millions of genomes.

977 [Nature Communications](https://doi.org/10.1038/s41467-020-17576-9), 11(1):4020, 2020. doi: 10.1038/s41467-020-17576-9. URL <https://doi.org/10.1038/s41467-020-17576-9>.

978

979 8. Loic Yengo, Julia Sidorenko, Kathryn E Kemper, Zhili Zheng, Andrew R Wood, Michael N Weedon,
980 Timothy M Frayling, Joel Hirschhorn, Jian Yang, Peter M Visscher, et al. Meta-analysis of genome-
981 wide association studies for height and body mass index in 700000 individuals of european ancestry.
982 [Human molecular genetics](https://doi.org/10.1093/hmg/duy051), 27(20):3641–3649, 2018.

983 9. Doug Speed and David J Balding. Sumher better estimates the snp heritability of complex traits
984 from summary statistics. [Nature genetics](https://doi.org/10.1038/s41437-019-0437-2), 51(2):277–284, 2019.

985 10. Shuang Song, Wei Jiang, Yiliang Zhang, Lin Hou, and Hongyu Zhao. Leveraging ld eigenvalue
986 regression to improve the estimation of snp heritability and confounding inflation. [The American
987 Journal of Human Genetics](https://doi.org/10.1161/01.312.1700), 2022.

988 11. Duncan S Palmer, Wei Zhou, Liam Abbott, Emilie M Wigdor, Nikolas Baya, Claire Churchhouse,
989 Cotton Seed, Tim Poterba, Daniel King, Masahiro Kanai, et al. Analysis of genetic dominance in
990 the uk biobank. [Science](https://doi.org/10.1126/science.379.6639.1341), 379(6639):1341–1348, 2023.

991 12. Tsz Fung Chan, Xinyue Rui, David V. Conti, Myriam Fornage, Mariaelisa Graff, Jeffrey Haessler,
992 Christopher Haiman, Heather M. Highland, Su Yon Jung, Eimear Kenny, Charles Kooperberg,
993 Loic Le Marchland, Kari E. North, Ran Tao, Genevieve Wojcik, Christopher R. Gignoux, PAGE
994 Consortium, Charleston W. K. Chiang, and Nicholas Mancuso. Estimating heritability explained
995 by local ancestry and evaluating stratification bias in admixture mapping from summary statistics.
996 [bioRxiv](https://doi.org/10.1101/2023.04.10.536252), page 2023.04.10.536252, 2023. doi: 10.1101/2023.04.10.536252. URL [http://biorxiv.org/content/early/2023/04/18/2023.04.10.536252.abstract](https://doi.org/10.1101/2023.04.10.536252).

997

998 13. Zheng Ning, Yudi Pawitan, and Xia Shen. High-definition likelihood inference of genetic cor-
999 relations across human complex traits. [Nature Genetics](https://doi.org/10.1038/s41588-020-0653-y), 52(8):859–864, 2020. doi: 10.1038/s41588-020-0653-y. URL <https://doi.org/10.1038/s41588-020-0653-y>.

1000

1001 14. Yiliang Zhang, Qiongshi Lu, Yixuan Ye, Kunling Huang, Wei Liu, Yuchang Wu, Xiaoyuan Zhong,
1002 Boyang Li, Zhaolong Yu, Brittany G Travers, Donna M Werling, James J Li, and Hongyu Zhao.
1003 Supergnova: local genetic correlation analysis reveals heterogeneous etiologic sharing of complex

1004 traits. *Genome Biol*, 22(1):262, 2021. ISSN 1474-760X (Electronic); 1474-7596 (Print); 1474-7596
1005 (Linking). doi: 10.1186/s13059-021-02478-w.

1006 15. Roshni A. Patel, Shaila A. Musharoff, Jeffrey P. Spence, Harold Pimentel, Catherine Tcheandjieu,
1007 Hakhamanesh Mostafavi, Nasa Sinnott-Armstrong, Shoa L. Clarke, Courtney J. Smith, Peter P.
1008 Durda, Kent D. Taylor, Russell Tracy, Yongmei Liu, W. Craig Johnson, Francois Aguet, Kristin G.
1009 Ardlie, Stacey Gabriel, Josh Smith, Deborah A. Nickerson, Stephen S. Rich, Jerome I. Rotter,
1010 Philip S. Tsao, Themistocles L. Assimes, and Jonathan K. Pritchard. Genetic interactions drive
1011 heterogeneity in causal variant effect sizes for gene expression and complex traits. *The American*
1012 *Journal of Human Genetics*, 2022. doi: 10.1016/j.ajhg.2022.05.014. URL <https://doi.org/10.1016/j.ajhg.2022.05.014>.

1013
1014 16. Evan E. Eichler, Jonathan Flint, Greg Gibson, Augustine Kong, Suzanne M. Leal, Jason H. Moore,
1015 and Joseph H. Nadeau. Missing heritability and strategies for finding the underlying causes of
1016 complex disease. *Nature Reviews Genetics*, 11(6):446–450, 2010. doi: 10.1038/nrg2809. URL
1017 <https://doi.org/10.1038/nrg2809>.

1018 17. Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang, Schizophrenia
1019 Working Group of the Psychiatric Genomics Consortium, Nick Patterson, Mark J Daly,
1020 Alkes L Price, and Benjamin M Neale. Ld score regression distinguishes confounding from
1021 polygenicity in genome-wide association studies. *Nat Genet*, 47:291–295, 2015. URL <http://dx.doi.org/10.1038/ng.3211>.

1022
1023 18. Ismo Strandén and Ole F Christensen. Allele coding in genomic evaluation. *Genet Sel Evol*, 43
1024 (1):25, 2011. ISSN 1297-9686 (Electronic); 0999-193X (Print); 0999-193X (Linking). doi: 10.1186/
1025 1297-9686-43-25.

1026 19. Gustavo de Los Campos, Ana I Vazquez, Rohan Fernando, Yann C Klimentidis, and Daniel
1027 Sorensen. Prediction of complex human traits using the genomic best linear unbiased predictor.
1028 *PLoS Genet*, 9(7):e1003608, 2013. ISSN 1553-7404 (Electronic); 1553-7390 (Print); 1553-7390
1029 (Linking). doi: 10.1371/journal.pgen.1003608.

1030 20. Xiang Zhou, Peter Carbonetto, and Matthew Stephens. Polygenic modeling with Bayesian sparse
1031 linear mixed models. *PLoS Genet*, 9(2):e1003264, 2013.

1032 21. Jian Yang, Beben Benyamin, Brian P McEvoy, Scott Gordon, Anjali K Henders, Dale R Nyholt,
1033 Pamela A Madden, Andrew C Heath, Nicholas G Martin, and Grant W Montgomery. Common
1034 snps explain a large proportion of the heritability for human height. *Nat Genet*, 42(7):565, 2010.

1035 22. Michael C Wu, Seunggeun Lee, Tianxi Cai, Yun Li, Michael Boehnke, and Xihong Lin. Rare-
1036 variant association testing for sequencing data with the sequence kernel association test. *Am J*
1037 *Hum Genet*, 89(1):82–93, 2011. ISSN 1537-6605 (Electronic); 0002-9297 (Linking). doi: 10.1016/
1038 [j.ajhg.2011.05.029](https://doi.org/10.1016/j.ajhg.2011.05.029).

1039 23. Lorin Crawford, Ping Zeng, Sayan Mukherjee, and Xiang Zhou. Detecting epistasis with the
1040 marginal epistasis test in genetic mapping studies of quantitative traits. *PLoS Genet*, 13(7):
1041 [e1006869](https://doi.org/10.1371/journal.pgen.1006869), 2017. URL <https://doi.org/10.1371/journal.pgen.1006869>.

1042 24. Gustavo de los Campos, Daniel Sorensen, and Daniel Gianola. Genomic heritability: What is it?
1043 *PLOS Genetics*, 11(5):e1005048, 2015. URL <https://doi.org/10.1371/journal.pgen.1005048>.

1044 25. William G. Hill, Michael E. Goddard, and Peter M. Visscher. Data and theory point to mainly
1045 additive genetic variance for complex traits. *PLOS Genetics*, 4(2):1–10, 2008. doi: 10.1371/journal.
1046 [pgen.1000008](https://doi.org/10.1371/journal.pgen.1000008). URL <https://doi.org/10.1371/journal.pgen.1000008>.

1047 26. Farhad Hormozdiari, Emrah Kostem, Eun Yong Kang, Bogdan Pasaniuc, and Eleazar Eskin. Iden-
1048 tifying causal variants at loci with multiple signals of association. *Genetics*, 198(2):497–508, 2014.
1049 doi: 10.1534/genetics.114.167908. URL <https://pubmed.ncbi.nlm.nih.gov/25104515>.

1050 27. Priyanka Nakka, Benjamin J Raphael, and Sohini Ramachandran. Gene and Network Analysis
1051 of Common Variants Reveals Novel Associations in Multiple Complex Diseases. *Genetics*, 204(2):
1052 783–798, 2016. ISSN 1943-2631. doi: 10.1534/genetics.116.188391. URL <https://doi.org/10.1534/genetics.116.188391>.

1053 28. Xiang Zhu and Matthew Stephens. Bayesian large-scale multiple regression with summary statistics
1054 from genome-wide association studies. *Ann Appl Stat*, 11(3):1561–1592, 2017. doi: 10.1214/
1055 17-AOAS1046. URL <https://projecteuclid.org:443/euclid.aoas/1507168840>.

1056 29. Yan Zhang, Guanghao Qi, Ju-Hyun Park, and Nilanjan Chatterjee. Estimation of complex effect-
1057

1058 size distributions using summary-level statistics from genome-wide association studies across 32
1059 complex traits. *Nat Genet*, 50(9):1318–1326, 2018.

1060 30. Xiang Zhu and Matthew Stephens. Large-scale genome-wide enrichment analyses identify new
1061 trait-associated genes and pathways across 31 human phenotypes. *Nat Comm*, 9(1):4361, 2018.

1062 31. Wei Cheng, Sohini Ramachandran, and Lorin Crawford. Estimation of non-null snp effect size
1063 distributions enables the detection of enriched genes underlying complex traits. *PLoS Genet*, 16
1064 (6):e1008855, 2020. URL <https://doi.org/10.1371/journal.pgen.1008855>.

1065 32. Pinar Demetci, Wei Cheng, Gregory Darnell, Xiang Zhou, Sohini Ramachandran, and Lorin
1066 Crawford. Multi-scale inference of genetic trait architecture using biologically annotated neu-
1067 ral networks. *PLOS Genetics*, 17(8):1–53, 2021. doi: 10.1371/journal.pgen.1009754. URL
1068 <https://doi.org/10.1371/journal.pgen.1009754>.

1069 33. Yongtao Guan and Matthew Stephens. Bayesian variable selection regression for genome-wide
1070 association studies and other large-scale problems. *Ann Appl Stat*, 5(3):1780–1815, 2011. doi:
1071 10.1214/11-AOAS455. URL <https://projecteuclid.org:443/euclid.aoas/1318514285>.

1072 34. Ronald Aylmer Fisher. *The genetical theory of natural selection: a complete variorum edition*.
1073 Oxford University Press, 1999. ISBN 0198504403.

1074 35. Valentin Hivert, Julia Sidorenko, Florian Rohart, Michael E Goddard, Jian Yang, Naomi R Wray,
1075 Loic Yengo, and Peter M Visscher. Estimation of non-additive genetic variance in human complex
1076 traits from a large sample of unrelated individuals. *The American Journal of Human Genetics*, 108
1077 (5):786–798, 2021.

1078 36. Asko Mäki-Tanila and William G Hill. Influence of gene interaction on complex trait variation
1079 with multilocus models. *Genetics*, 198(1):355–367, 2014. doi: 10.1534/genetics.114.165282. URL
1080 <https://doi.org/10.1534/genetics.114.165282>.

1081 37. Douglas Scott Falconer and Trudy FC Mackay. *Quantitative genetics*. Longman London, UK,
1082 1983.

1083 38. Armin P Schoech, Daniel M Jordan, Po-Ru Loh, Steven Gazal, Luke J O'Connor, Daniel J Bal-
1084 ick, Pier F Palamara, Hilary K Finucane, Shamil R Sunyaev, and Alkes L Price. Quantification

1085 of frequency-dependent genetic architectures in 25 uk biobank traits reveals action of negative
1086 selection. *Nature communications*, 10(1):1–10, 2019.

1087 39. Gibran Hemani, Konstantin Shakhbazov, Harm-Jan Westra, Tonu Esko, Anjali K Henders, Allan F
1088 McRae, Jian Yang, Greg Gibson, Nicholas G Martin, Andres Metspalu, et al. Retracted article:
1089 Detection and replication of epistasis influencing transcription in humans. *Nature*, 508(7495):
1090 249–253, 2014.

1091 40. Yabo Li, Hyosuk Cho, Fan Wang, Oriol Canela-Xandri, Chunyan Luo, Konrad Rawlik, Stephen
1092 Archacki, Chengqi Xu, Albert Tenesa, Qiuyun Chen, et al. Statistical and functional studies
1093 identify epistasis of cardiovascular risk genomic variants from genome-wide association studies.
1094 *Journal of the American Heart Association*, 9(7):e014146, 2020.

1095 41. Steven Gazal, Hilary K Finucane, Nicholas A Furlotte, Po-Ru Loh, Pier Francesco Palamara,
1096 Xuanyao Liu, Armin Schoech, Brendan Bulik-Sullivan, Benjamin M Neale, Alexander Gusev, et al.
1097 Linkage disequilibrium–dependent architecture of human complex traits shows action of negative
1098 selection. *Nature genetics*, 49(10):1421–1427, 2017.

1099 42. Hilary K Finucane, Brendan Bulik-Sullivan, Alexander Gusev, Gosia Trynka, Yakir Reshef, Po-Ru
1100 Loh, Verner Anttila, Han Xu, Chongzhi Zang, Kyle Farh, Stephan Ripke, Felix R Day, Shaun
1101 Purcell, Eli Stahl, Sara Lindstrom, John R B Perry, Yukinori Okada, Soumya Raychaudhuri,
1102 Mark J Daly, Nick Patterson, Benjamin M Neale, and Alkes L Price. Partitioning heritability
1103 by functional annotation using genome-wide association summary statistics. *Nat Genet*, 47(11):
1104 1228–1235, 2015. ISSN 1546-1718 (Electronic); 1061-4036 (Print); 1061-4036 (Linking). doi: 10.
1105 1038/ng.3404.

1106 43. Daniel Runcie, Hao Cheng, and Lorin Crawford. Mega-scale linear mixed models for ge-
1107 nomic predictions with thousands of traits. *bioRxiv*, page 2020.05.26.116814, 2020. doi:
1108 10.1101/2020.05.26.116814. URL <http://biorxiv.org/content/early/2020/05/29/2020.05.26.116814.abstract>.

1110 44. Julian Stamp, Alan DenAdel, Daniel Weinreich, and Lorin Crawford. Leveraging the genetic
1111 correlation between traits improves the detection of epistasis in genome-wide association studies.

1112 [bioRxiv](http://biorxiv.org/content/early/2022/12/01/2022.11.30.518547.abstract), page 2022.11.30.518547, 2022. doi: 10.1101/2022.11.30.518547. URL <http://biorxiv.org/content/early/2022/12/01/2022.11.30.518547.abstract>.

1113

1114 45. Sahin Naqvi, Yoeri Sleyp, Hanne Hoskens, Karlijne Indencleef, Jeffrey P. Spence, Rose Bruffaerts,
1115 Ahmed Radwan, Ryan J. Eller, Stephen Richmond, Mark D. Shriver, John R. Shaffer, Seth M.
1116 Weinberg, Susan Walsh, James Thompson, Jonathan K. Pritchard, Stefan Sunaert, Hilde Peeters,
1117 Joanna Wysocka, and Peter Claes. Shared heritability of human face and brain shape. *Nature*
1118 *Genetics*, 53(6):830–839, 2021. doi: 10.1038/s41588-021-00827-w. URL <https://doi.org/10.1038/s41588-021-00827-w>.

1119

1120 46. Shaun Purcell, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, Manuel AR Ferreira, David
1121 Bender, Julian Maller, Pamela Sklar, Paul IW De Bakker, and Mark J Daly. Plink: a tool set
1122 for whole-genome association and population-based linkage analyses. *Am J Hum Genet*, 81(3):
1123 559–575, 2007.

1124

1125 47. Zulma G Vitezica, Andrés Legarra, Miguel A Toro, and Luis Varona. Orthogonal estimates of
1126 variances for additive, dominance, and epistatic effects in populations. *Genetics*, 206(3):1297–1307,
1127 2017. doi: 10.1534/genetics.116.199406. URL <https://doi.org/10.1534/genetics.116.199406>.

1128

1129 48. Yong Jiang and Jochen C. Reif. Modeling epistasis in genomic selection. *Genetics*, 201:759–768,
1130 2015.

1131

1132 49. Naomi R Wray, Michael E Goddard, and Peter M Visscher. Prediction of individual genetic risk
1133 to disease from genome-wide association studies. *Genome Res*, 17(10):1520–1528, 2007. ISSN
1134 1088-9051 (Print); 1549-5477 (Electronic); 1088-9051 (Linking). doi: 10.1101/gr.6665407.

1135

1136 50. Christoph Lippert, Gerald Quon, Eun Yong Kang, Carl M Kadie, Jennifer Listgarten, and David
1137 Heckerman. The benefits of selecting phenotype-specific variants for applications of mixed models
1138 in genomics. *Scientific Reports*, 3(1):1815, 2013.

1139

1140 51. Seung-Ho Kang and Sin-Ho Jung. Generating correlated binary variables with complete spec-
1141 ification of the joint distribution. *Biometrical Journal*, 43(3):263–269, 2001. doi: [https://doi.org/10.1002/1521-4036\(200106\)43:3<263::AID-BIMJ263>3.0.CO;2-5](https://doi.org/10.1002/1521-4036(200106)43:3<263::AID-BIMJ263>3.0.CO;2-5). URL [https://doi.org/10.1002/1521-4036\(200106\)43:3<263::AID-BIMJ263>3.0.CO;2-5](https://doi.org/10.1002/1521-4036(200106)43:3<263::AID-BIMJ263>3.0.CO;2-5).

1139 52. Farhad Hormozdiari, Martijn van de Bunt, Ayellet V. Segrè, Xiao Li, Jong Wha J. Joo, Michael
1140 Bilow, Jae Hoon Sul, Sriram Sankararaman, Bogdan Pasaniuc, and Eleazar Eskin. Colocalization
1141 of GWAS and eQTL signals detects target genes. *Am J Hum Genet*, 99(6):1245–1260, 2016. doi:
1142 10.1016/j.ajhg.2016.10.003. URL <https://doi.org/10.1016/j.ajhg.2016.10.003>.

1143 53. Humberto Barreto and Frank Howland. *Introductory Econometrics: Using Monte Carlo*
1144 *Simulation with Microsoft Excel*. Cambridge University Press, Cambridge, 2005. ISBN
1145 9780521843195. doi: DOI:10.1017/CBO9780511809231. URL <https://www.cambridge.org/core/books/introductory-econometrics/EA8D7F1057DB5285EFF4E44E6A6A2959>.

1146 54. Ali Pazokitoroudi, Alec M. Chiu, Kathryn S. Burch, Bogdan Pasaniuc, and Sriram Sankararaman. Quantifying the contribution of dominance deviation effects to complex trait variation in
1147 biobank-scale data. *The American Journal of Human Genetics*, 108(5):799–808, 2021. ISSN 0002-
1148 9297. doi: <https://doi.org/10.1016/j.ajhg.2021.03.018>. URL <https://www.sciencedirect.com/science/article/pii/S0002929721001026>.

1149 55. Zhihong Zhu, Andrew Bakshi, Anna A. E. Vinkhuyzen, Gibran Hemani, Sang Hong Lee, Ilja M.
1150 Nolte, Jana V. van Vliet-Ostaptchouk, Harold Snieder, Tonu Esko, Lili Milani, Reedik Mägi,
1151 Andres Metspalu, William G. Hill, Bruce S. Weir, Michael E. Goddard, Peter M. Visscher, and
1152 Jian Yang. Dominance genetic variation contributes little to the missing heritability for human
1153 complex traits. *The American Journal of Human Genetics*, 96(3):377–385, 2024/03/05 2015. doi:
1154 10.1016/j.ajhg.2015.01.001. URL <https://doi.org/10.1016/j.ajhg.2015.01.001>.

1155 56. Daniel M. Weinreich, Yinghong Lan, Jacob Jaffe, and Robert B. Heckendorn. The influence
1156 of higher-order epistasis on biological fitness landscape topography. *Journal of Statistical*
1157 *Physics*, 172(1):208–225, 2018. doi: 10.1007/s10955-018-1975-3. URL <https://doi.org/10.1007/s10955-018-1975-3>.

1158 57. Ronald A Fisher. The correlation between relatives on the supposition of mendelian inheritance.
1159 *Earth and Environmental Science Transactions of the Royal Society of Edinburgh*, 52(2):399–433,
1160 1919.

1161 58. Michael Lynch and Bruce Walsh. *Genetics and analysis of quantitative traits*, volume 1. Sinauer
1162 Sunderland, MA, 1998.

1163

1164

1165

1166

1167 59. L. Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency
1168 distribution in any number of variables. *Biometrika*, 12(1-2):134–139, 1918. ISSN 0006-3444. doi:
1169 [10.1093/biomet/12.1-2.134](https://doi.org/10.1093/biomet/12.1-2.134). URL <https://doi.org/10.1093/biomet/12.1-2.134>.

1170 60. Bradley Efron. *The jackknife, the bootstrap and other resampling plans*. SIAM, 1982. ISBN
1171 0898711797.

1172 61. Peter Carbonetto and Matthew Stephens. Scalable variational inference for bayesian variable
1173 selection in regression, and its accuracy in genetic association studies. *Bayesian Anal*, 7(1):73–108,
1174 2012.

1175 62. Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volinsky. Bayesian model
1176 averaging: a tutorial (with comments by m. clyde, david draper and e. i. george, and a rejoinder
1177 by the authors. *Statist Sci*, 14(4):382–417, 1999. doi: [10.1214/ss/1009212519](https://doi.org/10.1214/ss/1009212519). URL <https://projecteuclid.org:443/euclid.ss/1009212519>.

1179 63. Shadi Zabad, Aaron P Ragsdale, Rosie Sun, Yue Li, and Simon Gravel. Assumptions about
1180 frequency-dependent architectures of complex traits bias measures of functional enrichment.
1181 *Genetic epidemiology*, 45(6):621–632, 2021.

1182 64. Jian Yang, S Hong Lee, Michael E Goddard, and Peter M Visscher. Gcta: a tool for genome-
1183 wide complex trait analysis. *Am J Hum Genet*, 88(1):76–82, 2011. ISSN 1537-6605 (Electronic);
1184 0002-9297 (Print); 0002-9297 (Linking). doi: [10.1016/j.ajhg.2010.11.011](https://doi.org/10.1016/j.ajhg.2010.11.011).

1185 65. Carrie Zhu, Matthew J. Ming, Jared M. Cole, Michael D. Edge, Mark Kirkpatrick, and Arbel
1186 Harpak. Amplification is the primary mode of gene-by-sex interaction in complex human traits.
1187 *Cell Genomics*, 3(100297), 2023. doi: [10.1016/j.xgen.2023.100297](https://doi.org/10.1016/j.xgen.2023.100297). URL <https://doi.org/10.1016/j.xgen.2023.100297>.

1189 66. Mashaal Sohail, Robert M Maier, Andrea Ganna, Alex Bloemendal, Alicia R Martin, Michael C
1190 Turchin, Charleston WK Chiang, Joel Hirschhorn, Mark J Daly, Nick Patterson, et al. Polygenic
1191 adaptation on height is overestimated due to uncorrected stratification in genome-wide association
1192 studies. *Elife*, 8:e39702, 2019.

1193 67. James J Lee, Matt McGue, William G Iacono, and Carson C Chow. The accuracy of ld score
1194 regression as an estimator of confounding and genetic correlations in genome-wide association
1195 studies. *Genetic epidemiology*, 42(8):783–795, 2018.

1196 68. Clare Bycroft, Colin Freeman, Desislava Petkova, Gavin Band, Lloyd T. Elliott, Kevin Sharp,
1197 Allan Motyer, Damjan Vukcevic, Olivier Delaneau, Jared O’Connell, Adrian Cortes, Samantha
1198 Welsh, Alan Young, Mark Effingham, Gil McVean, Stephen Leslie, Naomi Allen, Peter Donnelly,
1199 and Jonathan Marchini. The uk biobank resource with deep phenotyping and genomic data.
1200 *Nature*, 562(7726):203–209, 2018. doi: 10.1038/s41586-018-0579-z. URL <https://doi.org/10.1038/s41586-018-0579-z>.

1201 69. Christopher C Chang, Carson C Chow, Laurent CAM Tellier, Shashaank Vattikuti, Shaun M
1202 Purcell, and James J Lee. Second-generation plink: rising to the challenge of larger and richer
1203 datasets. *Gigascience*, 4(1):s13742–015, 2015.

1204 70. Gad Abraham, Yixuan Qiu, and Michael Inouye. Flashpca2: principal component analysis of
1205 biobank-scale genotype datasets. *Bioinformatics*, 2017.