
1

Discovering non-additive heritability using additive GWAS1

summary statistics2

3

Samuel Pattillo Smith1-4,*, Gregory Darnell1,5,*, Dana Udwin6, Julian Stamp1, Arbel Harpak3,4, Sohini4

Ramachandran1,2,7,8,§, and Lorin Crawford1,6,8,§,†
5

1 Center for Computational Molecular Biology, Brown University, Providence, RI, USA6

2 Department of Ecology and Evolutionary Biology, Brown University, Providence, RI,7

USA8

3 Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA9

4 Department of Population Health, University of Texas at Austin, Austin, TX, USA10

5 Institute for Computational and Experimental Research in Mathematics, Brown11

University, Providence, RI, USA12

6 Department of Biostatistics, Brown University, Providence, RI, USA13

7 Data Science Institute, Brown University, Providence, RI, USA14

8 Microsoft Research, Cambridge, MA, USA15

* Authors Contributed Equally16

§ Authors Contributed Equally17

† Corresponding E-mail: lcrawford@microsoft.com18

Abstract19

LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association20

study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present21

interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for22

interactions between genetic variants. By studying a wide range of generative models in simulations, and23

by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and24

up to 159,095 individuals in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e.,25

interactions between a focal variant and proximal variants) recovers genetic variance that is not captured26

by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects27
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additional variation contributed by genetic interactions. The i-LDSC software and its application to28

these biobanks represent a step towards resolving further genetic contributions of sources of non-additive29

genetic effects to complex trait variation.30

Introduction31

Heritability is defined as the proportion of phenotypic trait variation that can be explained by genetic32

effects1–3. Until recently, studies of heritability in humans have been reliant on typically small sized family33

studies with known relatedness structures among individuals4,5. Due to advances in genomic sequencing34

and the steady development of statistical tools, it is now possible to obtain reliable heritability estimates35

from biobank-scale data sets of unrelated individuals1,3,6,7. Computational and privacy considerations36

with genome-wide association studies (GWAS) in these larger cohorts have motivated a recent trend37

to estimate heritability using summary statistics (i.e., estimated effect sizes and their corresponding38

standard errors). In the GWAS framework, additive effect sizes and standard errors for individual single39

nucleotide polymorphisms (SNPs) are estimated by regressing phenotype measurements onto the allele40

counts of each SNP independently. Through the application of this approach over the last two decades,41

it has become clear that many traits have a complex and polygenic basis—that is, hundreds to thousands42

of individual genetic loci across the genome often contribute to the genetic basis of variation in a single43

trait8.44

Many statistical methods have been developed to improve the estimation of heritability from GWAS45

summary statistics1,3,9,10. The most widely used of these approaches is linkage disequilibrium (LD) score46

regression and the corresponding LDSC software1, which corrects for inflation in GWAS summary statistics47

by modeling the relationship between the variance of SNP-level effect sizes and the sum of correlation48

coefficients between focal SNPs and their genomic neighbors (i.e., the LD score of each variant). The49

formulation of the LDSC framework relies on the fact that the expected relationship between chi-square test50

statistics (i.e., the squared magnitude of GWAS allelic effect estimates) and LD scores holds when complex51

traits are generated under the infinitesimal (or polygenic) model which assumes: (i) all causal variants52

have the same expected contribution to phenotypic variation and (ii) causal variants are uniformly53

distributed along the genome. Initial simulations in Bulik-Sullivan et al. 1 showed that violations of these54

assumptions can be tolerated to a point, but begin to affect the estimation of narrow-sense heritability55
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once a certain proportion of variants have nonzero effects. Importantly, the estimand of the LDSC model56

is the proportion of phenotypic variance attributable to additive effects of genotyped SNPs. The main57

motivation behind the LDSC model is that, for polygenic traits, many marker SNPs tag nonzero effects.58

This may simply arise because some of these SNPS are in LD with causal variants1 or because their59

statistical association is the product of a confounding factor such as population stratification.60

As of late, there have been many efforts to build upon and improve the LDSC framework. For example,61

recent work has shown that it is possible to estimate the proportion of phenotypic variation explained62

by dominance effects11 and local ancestry12 using extensions of the LDSC model. One limitation of63

LDSC is that, in practice, it only uses the diagonal elements of the squared LD matrix in its formulation64

which, while computationally efficient, does not account for information about trait architecture that is65

captured by the off-diagonal elements. This tradeoff helps LDSC to scale genome-wide, but it has also66

been shown to lead to heritability estimates with large standard error10,13,14. Recently, newer approaches67

have attempted to reformulate the LDSC model by using the eigenvalues of the LD matrix to leverage68

more of the information present in the correlation structure between SNPs3,10.69

In this paper, we show that the LDSC framework can be extended to estimate greater proportions of70

genetic variance in complex traits (i.e., beyond the variance that is attributable to additive effects) when71

a subset of causal variants is involved in a gene-by-gene (G×G) interaction. Indeed, recent association72

mapping studies have shown that G×G interactions can drive heterogeneity of causal variant effect73

sizes15. Importantly, non-additive genetic effects have been proposed as one of the main factors that74

explains “missing” heritability—the proportion of heritability not explained by the additive effects of75

variants16.76

The key insight we highlight in this manuscript is that SNP-level GWAS summary statistics can pro-77

vide evidence of non-additive genetic effects contributing to trait architecture if there is a nonzero correla-78

tion between individual-level genotypes and their statistical interactions. We present the “interaction-LD79

score” regression model or i-LDSC: an extension of the LDSC framework which recovers “missing” heri-80

tability by leveraging this “tagged” relationship between linear and nonlinear genetic effects. To validate81

the performance of i-LDSC in simulation studies, we focus on synthetic trait architectures that have82

been generated with contributions stemming from second-order and cis-acting statistical SNP-by-SNP83

interaction effects; however, note that the general concept underlying i-LDSC can easily be extended to84

other sources of non-additive genetic effects (e.g., gene-by-environment interactions). The main difference85
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between i-LDSC and LDSC is that the i-LDSC model includes an additional set of “cis-interaction” LD86

scores in its regression model. These scores measure the amount of phenoytpic variation contributed by87

genetic interactions that can be explained by additive effects. In practice, these additional scores are88

efficient to compute and require nothing more than access to a representative pairwise LD map, same as89

the input required for LD score regression.90

Through extensive simulations, we show that i-LDSC recovers substantial non-additive heritability91

that is not captured by LDSC when genetic interactions are indeed present in the generative model for a92

given complex trait. More importantly, i-LDSC has a calibrated type I error rate and does not overesti-93

mate contributions of genetic interactions to trait variation in simulated data when only additive effects94

are present. While analyzing 25 complex traits in the UK Biobank and BioBank Japan, we illustrate95

that pairwise interactions are a source of “missing” heritability captured by additive GWAS summary96

statistics—suggesting that phenotypic variation due to non-additive genetic effects is more pervasive in97

human phenotypes than previously reported. Specifically, we find evidence of tagged genetic interac-98

tion effects contributing to heritability estimates in all of the 25 traits in the UK Biobank, and 23 of99

the 25 traits we analyzed in the BioBank Japan. We believe that i-LDSC, with our development of a100

new cis-interaction score, represents a significant step towards resolving the true contribution of genetic101

interactions.102

Results103

Overview of the interaction-LD score regression model104

Interaction-LD score regression (i-LDSC) is a statistical framework for estimating heritability (i.e., the105

proportion of trait variance attributable to genetic variance). Here, we will give an overview of the106

i-LDSC method and its corresponding software, as well as detail how its underlying model differs from107

that of LDSC1. We will assume that we are analyzing a GWAS dats set D = {X,y} where X is an N ×J108

matrix of genotypes with J denoting the number of SNPs (each of which is encoded as {0, 1, 2} copies of109

a reference allele at each locus j) and y is an N -dimensional vector of measurements of a quantitative110

trait. The i-LDSC framework only requires summary statistics of individual-level data: namely, marginal111

effect size estimates for each SNP β̂ and a sample LD matrix R (which can be provided via reference112

panel data).113
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We begin by considering the following generative linear model for complex traits114

y = b0 + Xβ + Wθ + ε, ε ∼ N (0, (1−H2)I), (1)115

where b0 is an intercept term; β = (β1, . . . , βJ) is a J-dimensional vector containing the true additive116

effect sizes for an additional copy of the reference allele at each locus on y; W is an N ×M matrix117

of (pairwise) cis-acting SNP-by-SNP statistical interactions between some subset of causal SNPs, where118

columns of this matrix are assumed to be the Hadamard (element-wise) product between genotypic vectors119

of the form xj ◦xk for the j-th and k-th variants; θ = (θ1, . . . , θM ) is an M -dimensional vector containing120

the interaction effect sizes; ε is a normally distributed error term with mean zero and variance scaled121

according to the proportion of phenotypic variation not explained by genetic effects17, which we will refer122

to as the broad-sense heritability of the trait denoted by H2; and I denotes an N ×N identity matrix.123

For convenience, we will assume that the genotype matrix (column-wise) and the trait of interest have124

been mean-centered and standardized18–20. Lastly, we will let the intercept term b0 be a fixed parameter125

and we will assume that the effect sizes are each normally distributed with variances proportional to their126

individual contributions to trait heritability17,20–23
127

βj ∼ N (0, ϕ2
β/J), θm ∼ N (0, ϕ2

θ/M). (2)128

Effectively, we say that V[Xβ] = ϕ2
β is the proportion of phenotypic variation contributed by additive SNP129

effects under the generative model, while V[Wθ] = ϕ2
θ makes up the proportion of phenotypic variation130

contributed by genetic interactions. While the appropriateness of treating genetic effects as random131

variables in analytical derivations has been questioned24, later, we will justify the theory presented here132

with simulation results showing that i-LDSC accurately recovers non-additive genetic variance in Eq. (1)133

under a broad range of conditions.134

There are two key takeaways from the generative model specified above. First, Eq. (2) implies that135

the additive and non-additive components in Eq. (1) are orthogonal to each other. In other words,136

E[βᵀXᵀWθ] = E[βᵀ]XᵀWE[θ] = 0. This is important because it means that there is a unique par-137

titioning of genetic variance when studying a trait of interest. The second key takeaway is that the138

genotype matrix X and the matrix of genetic interactions W themselves are correlated despite being139

linearly independent (see Material and Methods). This property stems from the fact that the pairwise140
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interaction between two SNPs is encoded as the Hadamard product of two genotypic vectors in the form141

wm = xj ◦ xk (which is a nonlinear function of the genotypes).142

A central objective in GWAS studies is to infer how much phenotypic variation can be explained by143

genetic effects. To achieve that objective, a key consideration involves incorporating the possibility of144

non-additive sources of genetic variation to be explained by additive effect size estimates obtained from145

GWAS analyses25. If we assume that the genotype and interaction matrices are correlated, then X and146

W are not completely orthogonal (i.e., such that XᵀW 6= 0) and the following relationship between the147

moment matrix Xᵀy, the observed marginal GWAS summary statistics β̂, and the true coefficient values148

β from the generative model in Eq. (1) holds in expectation (see Materials and Methods)149

E[Xᵀy] = (XᵀX)β + (XᵀW)θ
≈⇐⇒ E[β̂] = Rβ + Vθ (3)150

where R is a sample estimate of the LD matrix, and V represents a sample estimate of the correlation151

between the individual-level genotypes X and the span of genetic interactions between causal SNPs in W.152

Intuitively, the term Vθ can be interpreted as the subset of pairwise interaction effects that are tagged153

by the additive effect estimates from the GWAS study. Note that, when (i) non-additive genetic effects154

do not contribute to the overall architecture of a trait (i.e., such that θ = 0) or (ii) the genotype and155

interaction matrices X and W are uncorrelated, the equation above simplifies to a relationship between156

LD and summary statistics that is assumed in many GWAS studies and methods26–32.157

The goal of i-LDSC is to increase estimates of genetic variance by accounting for sources of non-additive158

genetic effects that can be explained by additive GWAS summary statistics. To do this, we extend the LD159

score regression framework and the corresponding LDSC software17. Here, according to Eq. (3), we note160

that β̂ ∼ N (Rβ+Vθ, λR) where λ is a scale variance term due to uncontrolled confounding effects10,33.161

Next, we condition on Θ = (β,θ) and take the expectation of chi-square statistics χ2 = N β̂β̂ᵀ to yield162

E[β̂β̂ᵀ] = E
[
E
[
β̂β̂ᵀ |Θ

]]
= E

[
V
[
β̂ |Θ

]
+ E

[
β̂ |Θ

]
E
[
β̂ |Θ

]ᵀ]
= E [λR + (Rβ + Vθ)(Rβ + Vθ)ᵀ]

= E [λR + RββᵀR + 2RβθᵀVᵀ + VθθᵀVᵀ]

= λR +

(
ϕ2
β

J

)
R2 +

(
ϕ2
θ

M

)
V2.

(4)163
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We define `j =
∑
k r

2
jk as the LD score for the additive effect of the j-th variant17, and fj =

∑
m v

2
jm164

represents the “cis-interaction” LD score which encodes the pairwise interaction between the j-th variant165

and all other variants within a genomic window that is a pre-specified number of SNPs wide23, respec-166

tively. By considering only the diagonal elements of LD matrix in the first term, similar to the original167

LDSC approach10,17, we get the following simplified regression model168

E[χ2] ∝ 1 + `τ + fϑ (5)169

where χ2 = (χ2
1, . . . , χ

2
J) is a J-dimensional vector of chi-square summary statistics, and ` = (`1, . . . , `J)170

and f = (f1, . . . , fJ) are J-dimensional vectors of additive and cis-interaction LD scores, respectively.171

Furthermore, we define the variance components τ = Nϕ2
β/J and ϑ = Nϕ2

θ/M as the additive and172

non-additive regression coefficients of the model, and 1 is the intercept meant to model the bias factor173

due to uncontrolled confounding effects (e.g., cryptic relatedness structure). In practice, we efficiently174

compute the cis-interaction LD scores by considering only a subset of interactions between each j-th175

focal SNP and SNPs within a cis-proximal window around the j-th SNP. In our validation studies and176

applications, we base the width of this window on the observation that LD decays outside of a window177

of 1 centimorgan (cM); therefore, SNPs outside the 1 cM window centered on the j-th SNP will not178

significantly contribute to its LD scores. Note that the width of this window can be relaxed in the179

i-LDSC software when appropriate. We fit the i-LDSC model using weighted least squares to estimate180

regression parameters and derive P -values for identifying traits that have significant statistical evidence181

of tagged cis-interaction effects by testing the null hypothesis H0 : ϑ = 0. Importantly, under the null182

model of a trait being generated by only additive effects, the i-LDSC model in Eq. (5) reduces to an183

infinitesimal model34 or, in the case some variants have no effect on the trait, a polygenic model.184

Lastly, we want to note the empirical observation that the additive (`) and interaction (f) LD scores185

are lowly correlated. This is important because it indicates that the presence of cis-interaction LD scores186

in the model specified in Eq. (5) has little-to-no influence over the estimate for the additive coefficient187

τ . Instead, the inclusion of f creates a multivariate model that can identify the proportion of variance188

explained by both additive and non-additive effects in summary statistics. In other words, we can189

interpret ϑ̂ as an estimate of the phenotypic variation explained by tagged cis-acting interaction effects.190

The concept of additive genetic effects partially explaining non-additive variation has also described in191
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various studies from quantitative genetics25,35,36. Under Hardy-Weinberg equilibrium, it can be shown192

that the additive variance explained by J SNPs takes on the following form (Materials and Methods)37193

σ2
A =

J∑
j=1

2pj(1− pj)

βj + 2
J∑
k 6=j

pkθjk

2

. (6)194

195

The expression for the additive variance σ2
A in Eq. (6) is important because it represents the theoretical196

upper bound on the proportion of total phenotypic variance that can be recovered from GWAS summary197

statistics using the i-LDSC framework. As a result, we use the sum of coefficient estimates τ̂ + ϑ̂ ≤ σ2
A198

to construct i-LDSC heritability estimates. A full derivation of the cis-interaction regression framework199

and details about its corresponding implementation in our software i-LDSC can be found in Materials200

and Methods.201

Detection of tagged pairwise interaction effects using i-LDSC in simulations202

We illustrate the power of i-LDSC across different genetic trait architectures via extensive simulation203

studies (Materials and Methods). We generate synthetic phenotypes using real genome-wide genotype204

data from individuals of self-identified European ancestry in the UK Biobank. To do so, we first assume205

that traits have a polygenic architecture where all SNPs have a nonzero additive effect. Next, we randomly206

select a set of causal cis-interaction variants and divide them into two interacting groups (Materials and207

Methods). One may interpret the SNPs in group #1 as being the “hubs” in an interaction map23; while,208

SNPs in group #2 are selected to be variants within some kilobase (kb) window around each SNP in209

group #1. We assume a wide range of simulation scenarios by varying the following parameters:210

• heritability: H2 = 0.3 and 0.6;211

• proportion of phenotypic variation that is generated by additive effects: ρ = 0.5, 0.8, and 1;212

• percentage of SNPs selected to be in group #1: 1%, 5%, and 10%;213

• genomic window used to assign SNPs to group #2: ±10 and ±100 kb.214

We also varied the correlation between SNP effect size and minor allele frequency (MAF) (as discussed215

in Schoech et al. 38). All results presented in this section are based on 100 different simulated phenotypes216

for each parameter combination.217
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Figure 1 demonstrates that i-LDSC robustly detects significant tagged non-additive genetic variance,218

regardless of the total number of causal interactions genome-wide. Instead, the power of i-LDSC depends219

on the proportion of phenotypic variation that is generated by additive versus interaction effects (ρ),220

and its power tends to scale with the window size used to compute the cis-interaction LD scores (see221

Materials and Methods). i-LDSC shows a similar performance for detecting tagged cis-interaction effects222

when the effect sizes of causal SNPs depend on their minor allele frequency and when we varied the223

number of SNPs assigned to be in group #2 within 10 kb and 100kb windows, respectively (Figure 1 –224

figure supplement 1-5).225

Importantly, i-LDSC does not falsely identify putative non-additive genetic effects in GWAS summary226

statistics when the synthetic phenotype was generated by only additive effects (ρ = 1). Figure 2 illustrates227

the performance of i-LDSC under the null hypothesis H0 : ϑ = 0, with the type I error rates for different228

estimation window sizes of the cis-interaction LD scores highlighted in panel A. Here, we also show229

that, when no genetic interaction effects are present, i-LDSC unbiasedly estimates the cis-interaction230

coefficient in the regression model to be ϑ̂ = 0 (Figure 2B), robustly estimates the heritability (Figure 2C),231

and provides well-calibrated P -values when assessed over many traits (Figure 2D). This behavior is232

consistent across different MAF-dependent effect size distributions, and P -value calibration is not sensitive233

to misspecification of the estimation windows used to generate the cis-interaction LD scores (Figure 2 –234

figure supplement 1-2).235

One of the innovations that i-LDSC offers over the traditional LDSC framework is increased heritability236

estimates after the identification of non-additive genetic effects that are tagged by GWAS summary237

statistics. Here, we applied both methods to the same set of simulations in order to understand how238

LDSC behaves for traits generated with cis-interaction effects. Figure 3 depicts boxplots of the heritability239

estimates for each approach and shows that, across an array of different synthetic phenotype architectures,240

LDSC captures less of phenotypic variance explained by all genetic effects. It is important to note that241

i-LDSC can yield upwardly biased heritability estimates when the cis-interaction scores are computed242

over genomic window sizes that are too small; however, these estimates become more accurate for larger243

window size choices (Figure 3 – figure supplement 1). In contrast to LDSC, which aims to capture244

phenotypic variance attributable to the additive effects of genotyped SNPs, i-LDSC accurately partitions245

genetic effects into additive versus cis-interacting components, which in turn generally leads the ability246

of i-LDSC to capture more genetic variance. The mean absolute error between the true generative247
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heritability and heritability estimates produced by i-LDSC and LDSC are shown in Supplementary Files 1248

and 2, respectively. Generally, the error in heritability estimates is higher for LDSC than it is for i-LDSC249

across each of the scenarios that we consider.250

Next, we perform an additional set of simulations where we explore other common generative models251

for complex trait architecture that involve non-additive genetic effects. Specifically, we compare heri-252

tability estimates from LDSC and i-LDSC in the presence of additive effects, cis-acting interactions, and a253

third source of genetic variance stemming from either gene-by-environment (G×E) or or gene-by-ancestry254

(G×Ancestry) effects. Details on how these components were generated can be found in Materials and255

Methods. In general, i-LDSC underestimates overall heritability when additive effects and cis-acting in-256

teractions are present alongside G×E (Figure 3 – figure supplement 2) and/or G×Ancestry effects when257

PCs are included as covariates (Figure 3 – figure supplement 3). Notably, when PCs are not included258

to correct for residual stratification, both LDSC and i-LDSC can yield unbounded heritability estimates259

greater than 1 (Figure 3 – figure supplement 4). Also interestingly, when we omit cis-interactions from260

the generative model (i.e., the genetic architecture of simulated traits is only made up of additive and261

G×E or G×Ancestry effects), i-LDSC will still estimate a nonzero genetic variance component with the262

cis-interaction LD scores (Figure 3 – figure supplement 5-7). Collectively, these results empirically show263

the important point that cis-interaction scores are not enough to recover missing genetic variation for264

all types of trait architectures; however, they are helpful in recovering phenotypic variation explained by265

statistical interaction effects. Recall that the linear relationship between (expected) χ2 test statistics and266

LD scores proposed by the LDSC framework holds when complex traits are generated under the polygenic267

model where all causal variants have the same expected contribution to phenotypic variation. When268

cis-interactions affect genetic architecture (e.g., in our earlier simulations in Figure 3), these assumptions269

are violated in LDSC, but the inclusion of the additional nonlinear scores in i-LDSC help recover the270

relationship between the expectation of χ2 test statistics and LD.271

As a further demonstration of how i-LDSC performs when assumptions of the original LD score272

model are violated, we also generated synthetic phenotypes with sparse architectures using the spike-and-273

slab model20. Here, traits were simulated with solely additive effects, but this time only variants with274

the top or bottom {1, 5, 10, 25, 50, 100} percentile of LD scores were given nonzero effects (see Material275

and Methods). Breaking the relationship assumed under the LDSC framework between LD scores and276

chi-squared statistics (i.e., that they are generally positively correlated) led to unbounded estimates of277
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heritability in all but the (polygenic) scenario when 100% of SNPs contributed to the phenotypic variation278

(Figure 3 – figure supplement 8).279

Finally, we performed a set of polygenic simulations to assess if i-LDSC estimates of non-additive280

genetic variance could be spuriously inflated due to either (i) unobserved additive effects (see, for example,281

Hemani et al. 39), (ii) unobserved SNPs that are involved in genetic interactions, or by (iii) nonzero282

correlation between the additive and interaction effect sizes in the generative model (i.e., breaking the283

independence assumption in Eq. (2)). In the first setting, we observed that, across a range of both minor284

allele frequencies and effect sizes, the omission of causal haplotypes had a negligible effect on the estimated285

value of the coefficients in i-LDSC (Figure 3 – figure supplement 9). We hypothesize this is due to the286

fact that the simulations were done for polygenic architectures where all SNPs have at least an additive287

effect. As a result, not observing a small subset of SNPs does not hinder the ability of i-LDSC to estimate288

genetic variance because the effect size of each SNP is small. If these simulations were conducted for sparse289

architectures, we would have likely seen a greater impact on i-LDSC; although, we have already shown the290

LD score regression framework to be uncalibrated for traits with sparse genetic architectures (again see291

Figure 3 – figure supplement 8). In the second setting, we observed that the i-LDSC framework protects292

against the false discovery of non-additive genetic effects and underestimates the variance component ϑ293

when causal variants involved in pairwise interactions were unobserved (Figure 3 – figure supplement 10294

and 11). As a direct comparison, estimates of the additive variance component τ in i-LDSC were not295

affected by the unobserved interacting variants. Lastly, in the third setting, we observed that the mean296

estimate of the genetic variance in both LDSC and i-LDSC had a slight upward bias as the correlation297

between additive and interaction effect sizes in the generative model increased; however, the median of298

these bias estimates was still near zero across all simulated scenarios and their corresponding replicates299

(Figure 3 – figure supplement 12 and 13).300

Application of i-LDSC to the UK Biobank and BioBank Japan301

To assess whether pairwise interaction genetic effects are significantly affecting estimates of heritability302

in empirical biobank data, we applied i-LDSC to 25 continuous quantitative traits from the UK Biobank303

and BioBank Japan (Supplementary File 3). Protocols for computing GWAS summary statistics for304

the UK Biobank are described in the Materials and Methods; while pre-computed summary statistics305

for BioBank Japan were downloaded directly from the consortium website (see URLs). We release the306
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cis-acting SNP-by-SNP interaction LD scores used in our analyses on the i-LDSC GitHub repository from307

two reference groups in the 1000 Genomes: 489 individuals from the European superpopulation (EUR)308

and 504 individuals from the East Asian (EAS) superpopulation (see also Supplementary Files 4 and 5).309

In each of the 25 traits we analyzed in the UK Biobank, we detected significant proportions of310

estimated genetic variation stemming from tagged pairwise cis-interactions (Table 1). This includes311

many canonical traits of interest in heritability analyses: height, cholesterol levels, urate levels, and both312

systolic and diastolic blood pressure. Our findings in Table 1 are supported by multiple published studies313

identifying evidence of non-additive effects playing a role in the architectures of different traits of interest.314

For example, Li et al. 40 found evidence for genetic interactions that contributed to the pathogenesis of315

coronary artery disease. It was also recently shown that non-additive genetic effects plays a significant316

role in body mass index10. Generally, we find that the traditional LDSC produces lower estimates of trait317

heritability because it does not consider the additional sources of genetic signal that i-LDSC does (Table318

1). In BioBank Japan, 23 of the 25 traits analyzed had a significant nonlinear component detected by319

i-LDSC — with HDL and triglyceride levels being the only exceptions.320

For each of the 25 traits that we analyzed, we found that the i-LDSC heritability estimates are321

significantly correlated with corresponding estimates from LDSC in both the UK Biobank (r2 = 0.988,322

P = 5.936 × 10−24) and BioBank Japan (r2 = 0.849, P = 6.061 × 10−11) as shown in Figure 4A.323

Additionally, we found that the heritability estimates for the same traits between the two biobanks are324

highly correlated according to both LDSC (r2 = 0.848, P = 7.166 × 10−11) and i-LDSC (r2 = 0.666,325

P = 6.551 × 10−7) analyses as shown in Figure 4B. After comparing the i-LDSC heritability estimates326

to LDSC, we then assessed whether there was significant difference in the amount of phenotypic variation327

explained by the non-additive genetic effect component in the GWAS summary statistics derived from328

the the UK Biobank and BioBank Japan (i.e., comparing the estimates of ϑ; see Figure 4 – figure329

supplement 1A). We show that, while heterogeneous between traits, the phenotypic variation explained330

by genetic interactions is relatively of the same magnitude for both biobanks (r2 = 0.372, P = 0.0119).331

Notably, the trait with the most significant evidence of tagged cis-interaction effects in GWAS summary332

statistics is height which is known to have a highly polygenic architecture.333

The intercepts estimated by LDSC and i-LDSC are also highly correlated in both the UK Biobank and334

the BioBank Japan (Figure 4 – figure supplement 1B). Recall that these intercept estimates represent the335

confounding factor due to uncontrolled effects. For LDSC, this does include phenotypic variation that is336
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due to unaccounted for pairwise statistical genetic interactions. The i-LDSC intercept estimates tend to337

be correlated with, but are generally different than, those computed with LDSC — empirically indicating338

that non-additive genetic variation is partitioned away and is missed when using the standard LD score339

alone. This result shows similar patterns in both the UK Biobank (r2 = 0.888, P = 1.962× 10−12) and340

BioBank Japan (r2 = 0.813, P = 7.814× 10−10).341

Lastly, we performed an additional analysis in the UK Biobank where the cis-interaction scores are342

included as an annotation alongside 97 other functional categories in the stratified-LD score regression343

framework and its software s-LDSC41 (Materials and Methods). Here, s-LDSC heritability estimates still344

showed an increase with the interaction scores versus when the publicly available functional categories345

were analyzed alone, but albeit at a much smaller magnitude (Table 2). The contributions from the346

pairwise interaction component to the overall estimate of genetic variance ranged from 0.005 for MCHC347

(P = 0.373) to 0.055 for HDL (P = 0.575) (Figures 4C and 4D). Furthermore, in this analysis, the348

estimates of the non-additive components were no longer statistically significant for any of the traits in349

the UK Biobank (Table 2). Despite this, these results highlight the ability of the i-LDSC framework350

to identify sources of “missing” phenotypic variance explained in heritability estimation. Importantly,351

moving forward, we suggest using the cis-interaction scores with additional annotations whenever they are352

available as it provides more conservative estimates of the role of non-additive effects on trait architecture.353

Discussion354

In this paper, we present i-LDSC, an extension of the LD score regression framework which aims to355

recover missing heritability from GWAS summary statistics by incorporating an additional score that356

measures the non-additive genetic variation that is tagged by genotyped SNPs. Here, we demonstrate357

how i-LDSC builds upon the original LDSC model through the development of new “cis-interaction” LD358

scores which help to investigate signals of cis-acting SNP-by-SNP interactions (Figure 1 and Figure 1359

– figure supplement 1-5). Through extensive simulations, we show that i-LDSC is well-calibrated under360

the null model when polygenic traits are generated only by additive effects (Figure 2 and Figure 2361

– figure supplement 1-2), we highlight that i-LDSC provides greater heritability estimates over LDSC362

when traits are indeed generated with cis-acting SNP-by-SNP interaction effects (Figure 3 and Figure 3363

– figure supplement 1, and Supplementary Files 1 and 2), and we tested the robustness of i-LDSC on364
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phenotypes where assumptions of the original LD score model are violated (Figure 3 – figure supplement 2-365

13). Finally, in real data, we show examples of many traits with estimated GWAS summary statistics366

that tag cis-interaction effects in the UK Biobank and BioBank Japan (Figure 4 and Figure 4 – figure367

supplement 1, Tables 1 and 2, and Supplementary Files 3-5). We have made i-LDSC a publicly available368

command line tool that requires minimal updates to the computing environment used to run the original369

implementation of LD score regression (see URLs). In addition, we provide pre-computed cis-interaction370

LD scores calculated from the European (EUR) and East Asian (EAS) reference populations in the 1000371

Genomes phase 3 data (see Data and Software Availability under Materials and Methods).372

The current implementation of the i-LDSC framework offers many directions for future development373

and applications. First, an area of future work would be to explore how the relationship between cis-374

interaction LD scores and interaction effect sizes from the generative model of complex traits might bias375

heritability estimates provided by i-LDSC (e.g., similar to the relationship we explored between the stan-376

dard LD scores and linear effect sizes in Figure 3 – figure supplement 8). Second, as we showed with our377

simulation studies (Figure 3 – figure supplement 2-8), the cis-interaction LD scores that we propose are378

not always enough to recover explainable non-additive genetic effects for all types of trait architectures.379

While we focus on pairwise cis-acting SNP-by-SNP statistical interactions in this work, the theoretical380

concepts underlying i-LDSC can easily be adapted to other types of interactions as well. Third, in our381

analysis of the UK Biobank and BioBank Japan, we showed that the inclusion of additional categories382

via frameworks such as stratified LD score regression42 can be used to provide more refined heritability383

estimates from GWAS summary statistics while accounting for linkage (see results in Table 1 versus Table384

2). A key part of our future work is to continue to explore whether considering functional annotation385

groups would also improve our ability to identify tagged non-additive genetic effects. Lastly, we have386

only focused on analyzing one phenotype at a time in this study. However, many previous studies have387

extensively shown that modeling multiple phenotypes can often dramatically increase power43,44. There-388

fore, it would be interesting to extend the i-LDSC framework to multiple traits to study nonlinear genetic389

correlations in the same way that LDSC was recently extended to uncover additive genetic correlation390

maps across traits45.391
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URLs392

i-LDSC software package for implementing interaction score regression, https://github.com/lcrawlab/393

i-LDSC; LDSC software package for implementing LD score regression, https://github.com/bulik/394

ldsc/; UK Biobank, https://www.ukbiobank.ac.uk; BioBank Japan, http://jenger.riken.jp/en/395

result; 1000 Genomes Project genetic map and haplotypes, http://mathgen.stats.ox.ac.uk/impute/396

data_download_1000G_phase1_integrated.html; Database of Genotypes and Phenotypes (dbGaP),397

https://www.ncbi.nlm.nih.gov/gap; NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/;398

GRM-MAF-LD package, https://github.com/arminschoech/GRM-MAF-LD; GCTA toolkit, https://399

yanglab.westlake.edu.cn/software/gcta/.400
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Materials and Methods420

Generative statistical model for complex traits421

Our goal in this study is to re-analyze summary statistics from genome-wide association studies (GWAS)422

and estimate heritability while accounting for both additive genetic associations and tagged interaction423

effects. We begin by assuming the following generative linear model for complex traits which can be seen424

as an extended view of Eq. (1) in the main text425

y = b0 + Xβ + XDω + Wθ + ε, ε ∼ N (0, (1−H2)I), (7)426

where y denotes an N -dimensional vector of phenotypic states for a quantitative trait of interest measured427

in N individuals; b0 is an intercept term; X is an N×J matrix of genotypes, with J denoting the number428

of single nucleotide polymorphism (SNPs) encoded as {0, 1, 2} copies of a reference allele at each locus;429

β = (β1, . . . , βJ) is a J-dimensional vector containing the true additive effect sizes for an additional copy430

of the reference allele at each locus on y; XD is an N × J matrix that represents the dominance for431

each genotype encoded as {0, 1, 1} with corresponding effect sizes ω; W is an N ×M matrix of genetic432

interactions; θ = (θ1, . . . , θM ) is an M -dimensional vector containing the interaction effect sizes; ε is433

a normally distributed error term with mean zero and variance scaled according to the proportion of434

phenotypic variation not explained by the broad-sense heritability of the trait, denoted by H2; and I435

denotes an N ×N identity matrix. Note that the encoding for dominance in XD was chosen because it436

imposes orthogonality with the genotype encoding in X11,46,47.437

For convenience, we will assume that the genotype matrix (column-wise), the dominance matrix438

(also column-wise), and trait of interest have all been standardized18–20. Furthermore, while the matrix439

W could encode any source of non-additive genetic interactions (e.g., gene-by-environmental effects) in440

theory, we limit our focus in this study to trait architectures that have been generated with contributions441

stemming from cis-acting statistical SNP-by-SNP (or pairwise) interactions. To that end, we assume442

that the columns of W are the Hadamard (element-wise) product between genotypic vectors of the443

form xj ◦ xk for the j-th and k-th variants. We also want to point out that the generative formulation444

of Eq. (7) can also be easily extended to accommodate other fixed effects (e.g., age, sex, or genotype445

principal components), as well as other random effects terms that can be used to account for sample446
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non-independence due to other environmental factors.447

As a final set of assumptions, we will let the intercept term b0 be a fixed parameter while allowing448

the other coefficients to follow independent Gaussian distributions with variances proportional to their449

individual contributions to the trait heritability17,20–23,48
450

βj ∼ N (0, ϕ2
β/J), ωj ∼ N (0, ϕ2

ω/J), θm ∼ N (0, ϕ2
θ/M), (8)451

for j = 1, . . . , J and m = 1, . . . ,M . The broad-sense heritability of the trait is defined as H2 = ϕ2
β +452

ϕ2
ω + ϕ2

θ. Under the generative model in Eq. (7), we then say that V[Xβ] = ϕ2
β is the proportion of453

phenotypic variation contributed by additive SNP effects, V[XDω] = ϕ2
ω is the proportion of phenotypic454

variation contributed by dominance effects, and the set of interactions involving some subset of causal455

SNPs contribute the remaining proportion to the heritability V[Wθ] = ϕ2
θ. As we mentioned in the main456

text, we recognize that the appropriateness of treating genetic effects as random variables in analytical457

derivations has been questioned24, but our simulation studies show that i-LDSC accurately recovers458

non-additive genetic variance in Eq. (7) under a broad range of conditions.459

Orthogonality between additive and non-additive genetic effects460

Assuming that the effect sizes {β,ω,θ} in Eq. (8) follow independent and zero mean Gaussian distri-461

butions leads to orthogonality between the additive and non-additive components in Eq. (7). Since the462

genotypes X and the dominance values XD are fixed orthogonal matrices, it is straightforward to show463

that Cov[Xβ,XDω] = 011,47. The same relationship can be shown for the additive and the pairwise464

interaction genetic effects where465

Cov[Xβ,Wθ] = E[βᵀXᵀWθ]− E[βᵀXᵀ]E[Wθ]

= E

[∑
rs

βr (XᵀW)rs θs

]
− E[βᵀ]XᵀWE[θ]

=
∑
rs

(XᵀW)rs E[βrθs]− 0ᵀXᵀW0

=
∑
rs

(XᵀW)rs E[βr]E[θs]

= 0

(9)466
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with xj and wm denoting the j-th and m-th column of the individual-level genotype matrix X and the467

interaction matrix W, respectively. Note that a similar derivation to Eq. (9) can also be done for the468

dominance and pairwise genetic interaction effects. This concept of orthogonality is important because469

we want to preserve a unique partitioning of genetic variance when modeling a trait of interest.470

Genotypes and their interactions are correlated despite being linearly inde-471

pendent472

The design matrices X and W in Eq. (7) are not linearly dependent because the pairwise interactions473

between two SNPs are encoded as the Hadamard product of two genotypic vectors in the form xj ◦ xk474

(which is a nonlinear function). Linear dependence would have implied that one could find a transfor-475

mation between a SNP and an interaction term in the form wm = c× xj for some constant c. However,476

despite their linear independence, X and W are themselves not orthogonal and still have a nonzero477

correlation. This implies that the inner product between genotypes and their interactions is nonzero478

XᵀW 6= 0. To see this, we focus on a focal SNP xj and consider three different types of interactions:479

• Scenario I: Interaction between a focal SNP with itself (xj ◦ xj).480

• Scenario II: Interaction between a focal SNP with a different SNP (xj ◦ xk).481

• Scenario III: Interaction between a focal SNP with a pair of different SNPs (xk ◦ xl).482

The following derivations rely on the fact that: (1) we assume that genotypes have been mean-centered483

and scaled to have unit variance, and (2) under Hardy-Weinberg equilibrium, SNPs marginally follow a484

binomial distribution xj ∼ Bin(2, p) where p represents the minor allele frequency (MAF)49,50.485

Scenario I. The covariance between a focal SNP and an interaction with itself is Cov[xj ,xjxj ] =486

E[x3
j ]−E[xj ]E[x2

j ]. With mean-centered SNPs, this is proportional to E[x3
j ] = (q− p)/

√
2pq which is the487

skewness of the binomial distribution where, again, p = MAF and q = 1-MAF of the j-th SNP.488

Scenario II. Assume that we have two SNPs, xj ∼ Bin(2, pj) and xk ∼ Bin(2, pk) where pj and pk489

represent their respective minor allele frequencies. We want to compute the correlation between xj and490

the interaction xjxk where Cov[xj ,xjxk] = E[x2
jxk] − E[xj ]E[xjxk]. Again, with the mean-centered491
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assumption, the covariance is proportional to the expectation E[x2
jxk]. Here, with SNPs taking on values492

{0, 1, 2}, the joint distribution between x2
j and xk can be written out as the following51:493

x2
j = 0 x2

j = 1 x2
j = 4

xk = 0 u2jk 2ujk(1− pk − ujk) (1− pk − ujk)2

xk = 1 2ujk(1− pj − ujk) 2ujk(ujk + pj + pk − 1) + 2(1− pj − ujk)(1− pk − ujk) 2(ujk + pj + pk − 1)(1− pk − ujk)

xk = 2 (1− pj − ujk)2 2(ujk + pj + pk − 1)(1− pj − ujk) (ujk + pj + pk − 1)2

where ujk = (1 − pj)(1 − pk) + rjk
√
pjpk(1− pj)(1− pk) and rjk is the Pearson correlation or linkage494

disequilibrium (LD) between the j-th and k-th SNPs.495

Scenario III. The covariance between a focal SNP and an interaction with a pair of different SNPs496

Cov[xj ,xkxl] will be nonzero if the j-th SNP is correlated with either variant (i.e., rjk 6= 0 or rjl 6= 0).497

Traditional estimation of additive GWAS summary statistics498

As previously mentioned, the key to this work is that SNP-level GWAS summary statistics can also tag499

non-additive genetic effects when there is a nonzero correlation between individual-level genotypes and500

their interactions (as defined in Eq. (7)). Throughout the rest of this section, we will use XᵀX/N to501

denote the LD or pairwise correlation matrix between SNPs. We will then let R represent an LD matrix502

empirically estimated from external data (e.g., directly from GWAS study data, or using a pairwise503

LD map from a population that is representative of the samples analyzed in the GWAS study). The504

important property here is the following505

E[XᵀX] ≈ NR, E[xᵀ
jxj ] ≈ N, E[xᵀ

jxk] ≈ Nrjk (10)506

where the term rjk is again defined as the Pearson correlation coefficient between the j-th and k-th SNPs,507

respectively.508

In traditional GWAS studies, summary statistics of the true additive effects β = (XᵀX)−1Xᵀy in509
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Eq. (7) are typically derived by computing a marginal least squares estimate with the observed data510

β̂j = (xᵀ
jxj)

−1xᵀ
jy ⇐⇒ β̂ = diag(XᵀX)−1Xᵀy. (11)511

There are two key identities that may be taken from Eq. (11). The first uses Eq. (10) and is the512

approximate relationship (in expectation) between the moment matrix Xᵀy and the linear effect size513

estimates β̂:514

E[Xᵀy] = E[diag(XᵀX)β̂] ≈ N β̂. (12)515

The second key point combines Eqs. (10) and (12) to describe the asymptotic relationship between the516

observed marginal GWAS summary statistics β̂ and the joint coefficient values β where (in expectation)517

E[β] = E[(XᵀX)−1Xᵀy] ≈ (NR)−1N β̂ = R−1β̂. (13)518

After some algebra, the above mirrors a high-dimensional regression model (in expectation) where β̂ = Rβ519

with the estimated summary statistics as the response variables and the empirically estimated LD matrix520

acting as the design matrix26,29,31,32,52. Theoretically, the resulting coefficients output from this high-521

dimensional model are the desired true effect size estimates used to generate the phenotype of interest.522

Additive GWAS summary statistics with tagged interaction effects523

When interactions contribute to the architecture of complex traits (i.e., θ 6= 0), the marginal GWAS524

summary statistics derived using least squares in Eq. (11) will also explain non-additive variation when525

there is a nonzero correlation between genotypes and their interactions. To see this, we use the concept526

of “omitted variable bias”53 where the fitted model aims to estimate the true additive coefficients β527

but does not account for contributions from the non-additive components which also contribute to trait528

architecture. In this case, we get the following529

β̂ = diag(XᵀX)−1Xᵀy

= diag(XᵀX)−1Xᵀ [Xβ + XDω + Wθ + ε] .

(14)530
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Since we assume that the genotypes are orthogonal to both the dominance effects in Eq. (7), we know531

that XᵀXD = 0. This simplifies the above to be the following532

β̂ = diag(XᵀX)−1XᵀXβ + diag(XᵀX)−1XᵀWθ + diag(XᵀX)−1Xᵀε (15)533

where the matrix XᵀW (which we showed to be nonzero) can be interpreted as the sample correlation534

between individual-level genotypes and the cis-interactions between causal SNPs. By taking the expec-535

tation using Eqs. (10) and (12), we get the following alternative (approximate) relationship between the536

observed marginal GWAS summary statistics β̂ and the true coefficient values β537

E[β̂] = Rβ + Vθ, (16)538

which results from our initial assumption that the residuals are normally distributed with mean zero539

E[ε] = 0 in Eq. (7). Here, we define V to represent a sample estimate of the correlation between the540

individual-level genotypes and the non-additive genetic interaction matrix such that E[XᵀW] ≈ NV.541

Similar to the LD matrix R, the correlation matrix V is also assumed to be computed from reference542

panel data. Intuitively, when θ 6= 0 there is additional phenotypic variation contributed by pairwise543

interactions that can be explained by GWAS effect size estimates. Moreover, when Vθ = 0, then the544

relationship in Eq. (16) converges onto the conventional asymptotic assumption (in expectation) between545

GWAS summary statistics and the true additive coefficients in Eq. (13)26,29,31,32,52.546

Connection to quantitative genetics theory547

The concept of additive genetic effects partially explaining non-additive variation has also described in548

classical quantitative genetics25,35,36. Consider an individual genotyped at J loci each with major and549

minor alleles A and B, respectively. Let pj be the allele frequency of A at the j-th locus, aj denote the550

additive effect, and [aa]jk be the additive-by-additive (pairwise) interaction effect between loci j and k,551

and [aaa]jkl represent a third order interaction between loci j, k, and l. For simplicity in presentation,552

assume that dominance only makes a small contribution to the genetic variance11,54,55. The population553
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mean is given as the following554

µ = 2
J∑
j=1

pjaj + 4
J∑
j=1

J∑
k>j

pjpk[aa]jk + 8
J∑
j=1

J∑
k>j

J∑
l>k>j

pjpkpl[aaa]jkl + · · · (17)555

556

We follow the assumption that the genetic variation in human complex traits can predominately be557

explained by additive effects, with the remainder variation being mostly explained by additive-by-additive558

effects48,56–58. As a result, we will ignore the higher-order interaction terms in Eq. (17). Under Hardy-559

Weinberg equilibrium, we can find the average effect by taking the first derivative of the population mean560

with respect to the frequency of the increasing allele35,36. For the j-th SNP, the average effect (including561

terms up to second-order interaction) is given by the following562

ηj =
1

2

(
∂µ

∂pj

)
= aj + 2

J∑
k 6=j

pk[aa]jk +O ([aaa]jkl) (18)563

564

which notably contains both the additive effect and a summation of additive-by-additive interactions565

between pairs of loci. The additive genetic variance for the j-th SNP takes on the following form566

σ2
A(j) = 2pj(1− pj)

aj + 2
J∑
k 6=j

pk[aa]jk

2

= 2pj(1− pj)

a2j + 2aj

J∑
k 6=j

pk[aa]jk + 4

 J∑
k 6=j

pk[aa]jk

2


(19)567

which is the product of the square of the average effect in Eq. (18) and the heterozygosity at j-th locus568

V[xj ] = 2pj(1 − pj) (again assuming that SNPs marginally follow a binomial distribution). The total569

additive variance is then obtained by summing over the J loci such that σ2
A =

∑
j σ

2
A(j)37.570

We can derive a parallel construction for additive genetic variance using the generative random effect571

model presented in Eq. (7)35. Here, we will leverage that with genotype data taken for N individuals,572 ∑
i xij/N = 2pj . Ignoring the assumed small contributions from dominance effects, the population mean573
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for a quantitative trait y can be written as the following574

µ =
1

N

N∑
i=1

yi =
1

N

N∑
i=1

b0 +
J∑
j=1

xijβj +
J∑
j=1

J∑
k>j

xijxikθjk + εi


= b0 + 2

J∑
j=1

pjβj + 4
J∑
j=1

J∑
k>j

pjpkθjk +
1

N

N∑
i=1

εi.

(20)575

To find the average effect for the j-th locus, we this time take the first derivative of the population mean576

in Eq. (20) with respect to the allele frequency such that577

ηj =
1

2

(
∂µ

∂pj

)
= βj + 2

J∑
k 6=j

pkθjk (21)578

579

which, similar to the theoretical form in quantitative genetics, also contains both the additive effect of580

the j-th SNP and additional terms encoding the interaction effect between the j-th SNP and all other581

variants in the data. Once again, under Hardy-Weinberg equilibrium, the additive variance for the j-th582

SNP is found as taking on the following form583

σ2
A(j) = 2pj(1− pj)

βj + 2
J∑
k 6=j

pkθjk

2

= 2pj(1− pj)

β2
j + 2βj

J∑
k 6=j

pkθjk + 4

 J∑
k 6=j

pkθjk

2


(22)584

where we can explicitly draw connections between the two frameworks by setting βj = aj and θjk = [aa]jk.585

Note that when there no non-additive effects (such that θ = 0), the above reduces to σ2
A =

∑
j 2pj(1 −586

pj)β
2
j which resembles the classical form for the additive genetic variance58.587

Full derivation of interaction LD score regression588

In order to derive the interaction LD score (i-LDSC) regression framework, recall that our goal is to recover589

missing heritability from GWAS summary statistics by incorporating an additional score that measures590

the non-additive genetic variation that is tagged by genotyped SNPs. To do this, we build upon the591

LD score regression framework and the LDSC software17. Here, we assume nonzero contributions from592

cis-acting pairwise interaction effects in the generative model of complex traits as in Eq. (16), and we use593
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the observed least squares estimates from Eq. (11) to compute chi-square statistics χ2
j = Nβ̂2

j for every594

j = 1, . . . , J variant in the data. Taking the expectation of these statistics yields595

E[χ2
j ] = NE[β̂2

j ] = N

[
V[β̂j ] +

(
E[β̂j ]

)2]
. (23)596

We can simplify Eq. (23) in two steps. First, by combining the prior assumption in Eq. (8) and the597

asymptotic approximation in Eq. (16), we can show that marginal expectation (i.e., when not conditioning598

on the true coefficients) E[β̂j ] = 0 for all variants. Second, by conditioning on the generative model from599

Eq. (7), we can use the law of total variance to simplify V[β̂j ] where600

V[β̂j ] = E[V[β̂j |X]] + V[E[β̂j |X]] ≈ E[V[xᵀ
jy/N |X]] + 0

= E
[

1

N2
xᵀ
j {V[y |X]}xj

]
= E

[
1

N2
xᵀ
j

{
ϕ2
β

J
XXᵀ +

ϕ2
ω

J
XDXᵀ

D +
ϕ2
θ

M
WWᵀ + (1−H2)

}
xj

]

= E

[
1

N2

{
ϕ2
β

J
xᵀ
jXXᵀxj +

ϕ2
ω

J
xᵀ
jXDXᵀ

Dxj +
ϕ2
θ

M
xᵀ
jWWᵀxj +N(1−H2)

}]

= E

[
1

N2

{
ϕ2
β

J
xᵀ
jXXᵀxj +

ϕ2
θ

M
xᵀ
jWWᵀxj +N(1−H2)

}]
601

since xᵀ
jXD = 0. Using the same logic from the original LDSC regression framework17, we can use Isserlis’602

theorem59 to write the above in terms of more familiar quantities based on sample correlations603

1

N2
xᵀ
jXXᵀxj =

J∑
k=1

r̃2jk,
1

N2
xᵀ
jWWᵀxj =

M∑
m=1

ṽ2jm (24)604

where r̃jk is used to denote the sample correlation between additively-coded genotypes at the j-th and605

k-th variants, and ṽjm is used to denote the sample correlation between the genotype of the j-th variant606

and the m-th genetic interaction on the phenotype of interest (again see Eq. (16)). Furthermore, we can607

use the delta method (only displaying terms up to O(1/N2)) to show that (in expectation)608

E[r̃2jk] ≈ r2jk + (1− r2jk)/N, E
[
ṽ2jm

]
≈ v2jm +

(
1− v2jm

)
/N. (25)609
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Next, we can then approximate the quantities in Eq. (24) via the following610

E

[
J∑
k=1

r̃2jk

]
≈ `j + (J − `j)/N, E

[
M∑
m=1

ṽ2jm

]
≈ fj + (M − fj) /N (26)611

where `j is the corresponding LD score for the additive effect of the j-th variant and fj represents612

the “interaction” LD score between the j-th SNP and all other variants in the data set23, respectively.613

Altogether, this leads to the specification of the univariate framework with the j-th SNP614

E[χ2
j ] ≈ N

[(
ϕ2
β

J

)
`j +

(
ϕ2
θ

M

)
fj +

1

N
(1−H2)

]
= `jτ + fjϑ+ 1 (27)615

where we define τ = Nϕ2
β/J as estimates of the additive genetic signal, the coefficient ϑ = Nϕ2

θ/M as616

an estimate of the proportion of phenotypic variation explained by tagged pairwise interaction effects,617

and 1 is the intercept meant to model the misestimation due to uncontrolled confounding effects (e.g.,618

cryptic relatedness and population stratification). Similar to the original LDSC formulation, an intercept619

greater than one means significant bias. Note that the simplification for many of the terms above such as620

(1−H2)/N ≈ 1/N results from our assumption that the number of individuals in our study is large. For621

example, the sample sizes for each biobank-scale study considered in the analyses of this manuscript are622

at least on the order of N ≥ 104 observations (see Table 5). Altogether, we can jointly express Eq. (27)623

in multivariate form as624

E[χ2] ≈ `τ + fϑ+ 1 (28)625

where χ2 = (χ2
1, . . . , χ

2
J) is a J-dimensional vector of chi-square summary statistics, and ` = (`1, . . . , `J)626

and f = (f1, . . . , fJ) are J-dimensional vectors of additive and cis-interaction LD scores, respectively. It627

is important to note that, while χ2 must be recomputed for each trait of interest, both vectors ` and f628

only need to be constructed once per reference panel or individual-level genotypes (see next section for629

efficient computational strategies).630

To identify summary statistics that have significant tagged interaction effects, we test the null hy-631

pothesis H0 : ϑ = 0. The i-LDSC software package implements the same model fitting strategy as LDSC.632

Here, we use weighted least squares to fit the joint regression in Eq. (28) such that633

ϑ̂ = (fᵀΨf)−1fᵀΨχ2, ψjj =
[
`j τ̂ + fj ϑ̂+ 1

]−2
(29)634
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where Ψ is a J × J diagonal weight matrix with nonzero elements set to values inversely proportional to635

the conditional variance V[χ2
j | `j , fj ] = ψ−1jj to adjust for both heteroscedasticity and over-estimation of636

the summary statistics for each SNP17. Standard errors for each coefficient estimate are derived via a637

jackknife over blocks of SNPs in the data42, and we then use those standard errors to derive P -values with638

a two-sided test (i.e., testing the alternative hypothesis HA : ϑ 6= 0). It is worth noting that the block-639

jackknife approach tends to be conservative and yield larger standard errors for hypothesis testing60. As640

an alternative, we could first run i-LDSC using the block-jackknife procedure over all traits in a study and641

then use the average of the standard errors to calculate the statistical significance of coefficient estimates;642

but we do not explore this strategy here and leave that for future work. The quantitative genetics643

expression for the additive variance σ2
A in Eq. (22) is important because it represents the theoretical644

upper bound on the proportion of phenotypic variance that can be explained from GWAS summary645

statistics via i-LDSC. Using this relationship, we can write the following (approximate) inequality646

τ̂ + ϑ̂ .
J∑
j=1

2pj(1− pj)

βj + 2
J∑
k 6=j

pkθjk

2

= σ2
A. (30)647

648

For all analyses in this paper, we estimate proportion of phenotypic variance explained by genetic effects649

using a sum of the coefficients τ̂ + ϑ̂ (i.e., the estimated additive component plus the additional genetic650

variance explained by the tagged pairwise interaction effects).651

Efficient computation of cis-interaction LD scores652

In practice, cis-interaction LD scores in i-LDSC can be computed efficiently through realizing two key653

opportunities for optimization. First, given J SNPs, the full matrix of genome-wide interaction effects W654

contains on the order of J(J − 1)/2 total pairwise interactions. However, to compute the cis-interaction655

score for each SNP, we simply can replace the full W matrix with a subsetted matrix Wj which includes656

only interactions involving the j-th SNP. Analogous to the original LDSC formulation17, we consider only657

interactive SNPs within a cis-window proximal to the focal j-th SNP for which we are computing the658

i-LDSC score. In the original LDSC model, this is based on the observation that LD decays outside of a659

window of 1 centimorgan (cM)17; therefore, SNPs outside the 1 cM window centered on the j-th SNP660

j will not significantly contribute to its LD score. The second opportunity for optimization comes from661

the fact that the matrix of interaction effects for any focal SNP, Wj , does not need to be explicitly662
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generated. Referencing Eq. (24), the i-LDSC scores are defined as xᵀ
jWjW

ᵀ
j xj/N

2. This can be re-663

written as xᵀ
j (DjX

(j))(DjX
(j))ᵀxj , where Dj = diag(xj) is a diagonal matrix with the j-th genotype as664

its nonzero elements23 and X(j) denotes the subset SNPs within a cis-window proximal to the focal j-th665

SNP. This means that the i-LDSC score for the j-th SNP can be simply computed as the following666

fj ≈
1

N2
(xᵀ
j )2X(j)X(j)ᵀ(xj)

2. (31)667

With these simplifications, the computational complexity of generating i-LDSC scores reduces to that of668

computing LD scores — modulo a vector-by-vector Hadamard product which, for each SNP, is constant669

factor of N (i.e., the number of genotyped individuals).670

Coefficient estimates as determined by cis-interaction window size671

When computing cis-interaction LD scores, the most important decision is choosing the number of672

interacting SNPs to include in X(j) (or equivalently Wj for each j-th focal SNP in the calculation of fj673

in Eq. (31)). The i-LDSC framework considers different estimating windows to account for our lack of a674

priori knowledge about the “correct” non-additive genetic architecture of traits. Theoretically, one could675

follow previous work20,28,30,32,33,61 by considering an L-valued grid of possible SNP interaction window676

sizes. After fitting a series of i-LDSC regressions with cis-interaction LD scores f (l) generated under677

the L-different window sizes, we could compute normalized importance weights using their maximized678

likelihoods via the following679

π(l) =
L
(
`,f (l); β̂

)
∑
l′ L

(
`,f (l′); β̂

) , L∑
l=1

π(l) = 1. (32)680

As a final step in the model fitting procedure, we could then compute averaged estimates of the coefficients681

τ and ϑ by marginalizing (or averaging) over the L-different grid combinations of estimating windows682

τ̂ =
L∑
l=1

π(l)τ̂ (l), ϑ̂ =
L∑
l=1

π(l)ϑ̂(l). (33)683

This final step can be viewed as an analogy to model averaging where marginal estimates are computed684

via a weighted average using the importance weights62. In the current study, we explore the utility of685
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cis-interaction LD scores generated with different window sizes ±5, ±10, ±25, and ±50 SNPs around each686

j-th focal SNP. In practice, we find that cis-interaction LD scores that are calculated using larger windows687

lead to the most robust estimates of heritability while also not over representing the total phenotypic688

variation explained by tagged non-additive genetic effects (see Figure 3 – figure supplement 1). Therefore,689

unless otherwise stated, we use cis-interaction LD scores calculated with a ±50 SNP interaction window690

for all simulations and real data analyses conducted in this work. For a direct comparison between691

choosing a single window size versus the model averaging strategy described above, see Supplementary692

Files 1 and 2.693

Relationship between minor allele frequency and effect size694

The LDSC software computes LD scores using annotations over equally spaced minor allele frequency695

(MAF) bins. These annotations enable the per trait relationship between the MAF and the effect size696

of each variant in the genome to vary based on the discrete category (or MAF bin) it is placed into.697

This additional flexibility is intended to help LDSC be more robust when estimating heritability. The698

relationship between MAF and effect size is already implicitly encoded in the LDSC formulation since we699

assume genotypes are normalized. When normalizing by the variance of each SNP (or equivalently its700

MAF), we make the assumption that rare variants inherently have larger effect sizes. There exists a true701

functional relationship between MAF and effect size which is likely to be somewhere between the two702

extremes of (i) normalizing each SNP by its MAF and (ii) allowing the variance per SNP to be dictated703

by its MAF.704

Recent approaches have proposed using a single parameter α to better represent the nonlinear rela-705

tionship between MAF and variant effect size. The main idea is that this α not only provides the same706

additional flexibility to LDSC as the MAF-based discrete annotations, but it also empirically yields even707

more precise heritability estimates63. Namely, we use708

`j(c) :=
∑
k

Ljk(α)ac(k), Ljk(α) = r2jkV[xk]1−α (34)709

where ac(k) is the annotation value for the c-th categorical bin. The α parameter is unknown in practice710

and needs to be estimated for any given trait. While standard ranges for α can be used for heritability es-711

timates, we use a restricted maximum likelihood (REML) based method which was recently developed38.712
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In the i-LDSC software, we use this α construction to handle the relationship between MAF and variant713

effect size for two specific reasons. First, by constructing the LD scores using α, we more accurately714

capture the variation in chi-square test statistics due to additive effects63. Second, we note that there is715

correlation between MAF and (i) LD scores, (ii) cis-interaction LD scores, and (iii) trait architecture.716

To that end, if we do not properly condition on MAF, there becomes additional bias, and we may falsely717

attribute some amount of variation in the chi-square test statistics to LD or the tagged interaction effects.718

Therefore, in our formulation, we include an α term on the LD scores to condition on this effect. We719

demonstrate in simulations that this removes the bias introduced by the relationship between MAF and720

trait architecture, and it mitigates potential inflation of type I error rates in the i-LDSC test.721

Estimation of allele frequency parameters722

In the main text, we analyzed 25 complex traits in both the UK Biobank and BioBank Japan data sets.723

In order to account for minor allele frequency (MAF) dependent trait architecture, we calculated α values724

for each trait that had not been analyzed by previous studies38. The α estimates for each of the 25 traits725

analyzed in this study are shown in Table 4. Intuitively, α parameterizes the weighting of the effects of726

each individual variant given its frequency in the study cohort and can take on values in the range of727

[-1,0]. More negative values of α indicate that lower frequency variants contribute more to the observed728

variation in a trait of interest, whereas values of α closer to zero indicate that common variants contribute729

a greater amount of variation to observed trait values.730

We took α values for 11 traits (again see Table 4) that had previously been calculated from Schoech731

et al. 38 . For the remaining 14 traits analyzed in this study, we followed the estimation protocol described732

in the same manuscript. Specifically, using the variants passing the quality control step in our pipeline for733

25,000 randomly selected individuals in the UK Biobank cohort, we constructed MAF-dependent genetic734

relatedness matrices for values of α = {−1,−0.95,−0.9, . . . , 0} using the GRM-MAF-LD software, https:735

//github.com/arminschoech/GRM-MAF-LD. We then used the GCTA software64 to obtain heritability and736

likelihood estimates using REML for each α-trait pairing. We then fit a trait-specific profile likelihood737

across the range of α values and estimate the maximum likelihood value of α using a natural cubic spline.738
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Simulation studies739

We used a simulation scheme to generate synthetic quantitative traits and SNP-level summary statis-740

tics under multiple genetic architectures using real genome-wide data from individuals of self-identified741

European ancestry in the UK Biobank. Here, we consider phenotypes that have some combination of742

additive effects, cis-acting interactions, and a third source of genetic variance stemming from either gene-743

by-environment (G×E) or gene-by-ancestry (G×Ancestry) effects. For each scenario, we select some set744

of SNPs to be causal and assume that complex traits are generated via the following general linear model745

y = Xβ + Wθ + Zγ + ε, ε ∼ N (0, δ2I), (35)746

where y is an N -dimensional vector containing all the phenotypes; X is an N × J matrix of genotypes747

encoded as 0, 1, or 2 copies of a reference allele; β is a J-dimensional vector of additive effect sizes for748

each SNP; W is an N ×M matrix which holds all pairwise interactions between the randomly selected749

subset of the interacting SNPs with corresponding effects θ; Z is an N × K matrix of either G×E or750

G×Ancestry interactions with coefficients γ; and ε is an N -dimensional vector of environmental noise.751

The phenotypic variation is assumed to be V[y] = 1. All additive and interaction effect sizes for SNPs752

are randomly drawn from independent standard Gaussian distributions and then rescaled so that they753

explain a fixed proportion of the phenotypic variance V[Xβ] + V[Wθ] + V[Zγ] = H2. Note that we do754

not assume any specific correlation structure between the effect sizes β, θ, and γ. We then rescale the755

random error term such that V[ε] = (1 − H2). In the main text, we compare the traditional LDSC to756

its direct extension in i-LDSC. For each method, GWAS summary statistics are computed by fitting a757

single-SNP univariate linear model via least squares where β̂j = (xᵀ
jxj)

−1xᵀ
jy for every j = 1, . . . , J SNP758

in the data. These effect size estimates are used to derive the chi-square test statistics χ2
j = Nβ̂2

j . We759

implement both LDSC and i-LDSC with the LD matrix R = XᵀX/N and the cis-interaction correlation760

matrix V = XᵀW/N being computed using a reference panel of 489 individuals from the European761

superpopulation (EUR) of the 1000 Genomes Project. The resulting matrices R and V are used to762

compute the additive and cis-interaction LD scores, respectively.763

Polygenic simulations with cis-interactions. In our first set of simulations, we consider phenotypes764

with polygenic architectures that are made up of only additive and cis-acting SNP-by-SNP interactions.765

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2022.07.21.501001doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.21.501001
http://creativecommons.org/licenses/by-nc/4.0/


32

Here, we begin by assuming that every SNP in the genome has at least a small additive effect on the766

traits of interest. Next, when generating synthetic traits, we assume that the additive effects make up767

ρ% of the heritability while the pairwise interactions make up the remaining (1− ρ)%. Alternatively, the768

proportion of the heritability explained by additivity is said to be V[Xβ] = ρH2, while the proportion769

detailed by interactions is given as V[Wθ] = (1− ρ)H2. The setting of ρ = 1 represents the limiting null770

case for i-LDSC where the variation of a trait is driven by solely additive effects. Here, we use the same771

simulation strategy used in Crawford et al. 23 where we divide the causal cis-interaction variants into two772

groups. One may view the SNPs in group #1 as being the “hubs” of an interaction map. SNPs in group773

#2 are selected to be variants within some kilobase (kb) window around each SNP in group #1. Given774

different parameters for the generative model in Eq. (35), we simulate data mirroring a wide range of775

genetic architectures by toggling the following parameters:776

• heritability: H2 = 0.3 and 0.6;777

• proportion of phenotypic variation that is generated by additive effects: ρ = 0.5, 0.8, and 1;778

• percentage of SNPs selected to be in group #1: 1% (sparse), 5%, and 10% (polygenic);779

• genomic window used to assign SNPs to group #2: ±10 and ±100 kilobase (kb);780

• allele frequency parameter: α = -1, -0.5, and 0.781

All figures and tables show the mean performances (and standard errors) across 100 simulated replicates.782

Polygenic simulations with gene-by-environmental effects. In our second set of simulations, we783

continue to consider phenotypes with polygenic architectures that are made up of only additive and784

cis-acting SNP-by-SNP interactions; however, now we also consider each trait to have contributions785

stemming from nonzero G×E effects. Here, both the additive and cis-interaction effects are simulated in786

the same way as previously described where, for the two groups of interacting variants, 10% of SNPs were787

selected to be in group #1 and we chose ±10 kb windows to assign SNPs to group #2. To create G×E788

effects, we follow a simulation strategy implemented by Zhu et al. 65 and split our sample population in789

half to emulate two subsets of individuals coming from different environments. We randomly draw the790

effect sizes for the first environment from a standard Gaussian distribution which we denote as γ1. We791

then selected an amplification coefficient w and set the effect sizes of the G×E interactions in the second792
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environment to be a scaled version of the first environment effects where γ2 = wγ1. In this paper, we793

generate traits with heritability H2 = {0.3, 0.6} and amplification coefficients set to w = [1.1, 1.2, . . . , 2].794

For the first set of simulations, we hold the proportion of phenotypic variation explained by the different795

genetic components constant by fixing:796

• H2 = 0.3: V[Xβ] = 0.15; V[Wθ] = 0.075; and V[Zγ] = 0.075;797

• H2 = 0.6: V[Xβ] = 0.3; V[Wθ] = 0.15; and V[Zγ] = 0.15;798

where Z = [X1,X2] is the set of genotypes split according to environment and γ = [γ1,γ2]. To test799

the sensitivity of the cis-interaction LD scores to other sources of non-additive variation, we also re-800

peated the same simulations where there were only additive and G×E effects contributing equally to801

trait architecture:802

• H2 = 0.3: V[Xβ] = 0.15; V[Wθ] = 0; and V[Zγ] = 0.15;803

• H2 = 0.6: V[Xβ] = 0.3; V[Wθ] = 0; and V[Zγ] = 0.3.804

Again all figures show the mean performances (and standard errors) across 100 simulated replicates.805

Polygenic simulations with gene-by-ancestry effects. In our third set of simulations, we consider806

phenotypes with polygenic architectures that are made up of additive, cis-interactions, and G×Ancestry807

effects. Here, we follow Sohail et al. 66 and first run a matrix decomposition on the individual-level808

genotype matrix X = UQᵀ where U is a unitary N ×K score matrix, Q is a K × J loadings matrix,809

and K represents the number of (predetermined) principal components (PCs). To generate G×Ancestry810

interactions, we then create the matrix Zk = Xqk where qk is a J-dimensional vector of SNP loadings811

for the k-th principal component. In this paper, we generate traits with heritability H2 = {0.3, 0.6} and812

interaction effects taken over k = 1, . . . , 10 principal components. For the first set of simulations, we hold813

the proportion of phenotypic variation explained by the different genetic components constant by fixing:814

• H2 = 0.3: V[Xβ] = 0.15; V[Wθ] = 0.075; and V[Zγ] = 0.075;815

• H2 = 0.6: V[Xβ] = 0.3; V[Wθ] = 0.15; and V[Zγ] = 0.15;816

To test the sensitivity of the cis-interaction LD scores to other sources of non-additive variation, we also817

repeated the same simulations where there were only additive and G×E effects contributing equally to818

trait architecture:819
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• H2 = 0.3: V[Xβ] = 0.15; V[Wθ] = 0; and V[Zγ] = 0.15;820

• H2 = 0.6: V[Xβ] = 0.3; V[Wθ] = 0; and V[Zγ] = 0.3.821

Note that, for each case, we generate summary statistics in two ways: (i) including the top 10 PCs as822

covariates in the marginal linear model to correct for population structure and (ii) not correcting for any823

population structure. Again all figures show the mean performances (and standard errors) across 100824

simulated replicates.825

Sparse simulation study design with additive effects. In this set of simulations, we consider826

phenotypes with sparse architectures20. Here, traits were simulated with solely additive effects such that827

V[Xβ] = H2, but this time only variants with the top or bottom {1, 5, 10, 25, 50, 100} percentile of LD828

scores were given nonzero coefficients (a similar simulation approach was also previously implemented829

in both Bulik-Sullivan et al. 1 and Lee et al. 67). We once again generate traits with heritability H2 =830

{0.3, 0.6}. We also want to note that, in each of these specific analyses, synthetic trait architectures831

were generated using all UK Biobank genotyped variants that passed initial preprocessing and quality832

control (see next section). Since not all of these SNPs are HapMap3 SNPs, some variants were omitted833

from the LDSC and i-LDSC regression. Overall, as shown in the main text with results taken over 100834

replicates, breaking the assumed relationship between LD scores and chi-squared statistics (i.e., that835

they are generally positively correlated) led to unbounded estimates of heritability in all but the (more836

polygenic) scenario when 100% of SNPs contributed to phenotypic variation.837

Polygenic simulations with unobserved additive effects. In this next set of simulations, we838

consider another extension of the polygenic case where a portion of the variants with only additive839

genetic effects are not observed due ascertainment or other quality control procedures. It was found840

in Hemani et al. 39 that an initial set of signals pointing towards evidence of genetic interactions were841

actually better explained using linear models of unobserved variants in the same haplotype. Here, we test842

whether the i-LDSC framework is prone to overestimate the non-additive genetic variance when additive843

effects in the same haplotype are not included in the model. In each simulation, we generated haplotypes844

that each contain 5,000 variants. Next, we select either a single causal variant with only an additive effect845

or a set of ten causal variants with only additive effects — each having a MAF that is randomly selected846

between: (i) (0.01, 0.1), (ii) (0.1, 0.2), (iii) (0.2, 0.3), (iv) (0.3, 0.4), and (v) (0.4, 0.5). The corresponding847
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additive effect size for each causal variant across the haplotype is simulated inversely proportional with848

its MAF. For this analysis, we measure the difference between i-LDSC coefficient estimates when every849

variant is included in the model versus when the haplotype causal variants are omitted for two different850

trait architectures with broad-sense heritability set to H2 = 0.3 and 0.6. Differences in the component851

estimates between the observed and unobserved single additive variant models are shown in Figure 3852

– figure supplement 9A and 9B. Similar estimates when the larger number of ten additive variants are853

unobserved in each haplotype are shown in Figure 3 – figure supplement 9C and 9D. If i-LDSC was prone854

to overestimating the non-additive effects, then the omission of the variants with only significant additive855

effects would lead to increased estimates of τ and ϑ. However, across a range of generative broad-sense856

heritabilities and haplotype architectures we observe that estimates of τ and ϑ are robust. Intuitively,857

this is likely due to the fact that these simulations were done under polygenic trait architectures where,858

as a result, the omission of a few causal variants with small marginal effect sizes has little impact on the859

ability to estimate genetic variance.860

Polygenic simulations with unobserved interaction effects. In this set of simulations, we ex-861

tend the polygenic case to a setting where a portion of the variants involved in genetic interactions are862

unobserved. Similar to the case with unobserved additive effects, the purpose of these simulations is to863

assess whether the i-LDSC framework is prone to false discovery of non-additive genetic variance when864

causal interacting SNPs are not included during the estimation of GWAS summary statistics. In each865

simulation, we generated haplotypes that each contain 5,000 variants. Traits were simulated using the866

generative model in Eq. (35) with both additive and interaction effects such that V[Xβ] +V[Wθ] = H2.867

Here, every SNP in the genome had at least a small additive effect with a corresponding effect size that868

was drawn to be inversely proportional to its MAF. Only 1% or 5% of variants within each haplotype had869

causal non-zero interaction effects. However, when running i-LDSC, only a percentage of the interacting870

SNPs {1%, 5%, 10%, 25%, or 50%} were included in the estimation of ϑ̂. We once again generate traits871

with heritability H2 = {0.3, 0.6} such that the proportion of genetic variance explained by additive effects872

was equal to ρ = {0.5, 0.8}. As with the other simulation scenarios, all synthetic traits were generated873

using UK Biobank genotyped variants that passed initial preprocessing and quality control (see next874

section). Since not all of these SNPs are HapMap3 SNPs, some variants were omitted from the i-LDSC875

regression analyses. Overall, as discussed in the main text with results taken over 100 replicates, i-LDSC876
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underestimated values of ϑ̂ when there were unobserved interacting variants (see Figure 3 – figure sup-877

plement 10 and 11). As expected, estimates of the additive variance component τ̂ , on the other hand,878

were not affected.879

Polygenic simulations with correlated additive and interaction effects. In our last set of sim-880

ulations, we sought out to better understand how the relationship between the additive (β) and inter-881

action (θ) coefficients in the generative model of complex traits could potentially bias the additive and882

non-additive variance component estimates in LDSC and i-LDSC. To that end, we performed a set of883

simulations where we varied the correlation between the set of effects. Specifically, we first drew a set of884

additive effect sizes for each variant using the MAF-dependent procedure described above (i.e., α = −1).885

We next selected a subset of the causal variants to be in cis-interactions. Here, we set the interaction886

effect sizes to covary with the additive effect size vector in two different ways. In the first, we simply drew887

the additive and interaction effect sizes from a multivariate normal such that their correlation was equal888

to r = {−1,−0.8,−0.6, . . . , 0.6, 0.8, 1} (see Figure 3 – figure supplement 12). In the second, we simply889

amplified the interaction effects to be a linear function θ = β × q (Figure 3 – figure supplement 13A and890

13C) or a squared function θ = β2q (Figure 3 – figure supplement 13B and 13D) of the additive effects891

where q = {0.1, 0.2, . . . , 0.9, 1}. While testing 100 replicates for each value of q, we observed that the892

mean estimate of genetic variance had a slight upward bias as the correlation between the additive and893

interaction effect sizes in the generative model increased; however, the distribution of these bias esti-894

mates covered zero in the first and third quartiles of all results. We evaluated this behavior for multiple895

broad-sense heritability levels H2 = 0.3 and 0.6.896

Preprocessing for the UK Biobank and BioBank Japan897

In order to apply the i-LDSC framework to 25 continuous traits the UK Biobank68, we first down-898

loaded genotype data for 488,377 individuals in the UK Biobank using the ukbgene tool (https:899

//biobank.ctsu.ox.ac.uk/crystal/download.cgi) and converted the genotypes using the provided900

ukbconv tool (https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149660). Phenotype data901

for the 25 continuous traits were also downloaded for those same individuals using the ukbgene tool.902

Individuals identified by the UK Biobank as having high heterozygosity, excessive relatedness, or aneu-903

ploidy were removed (1,550 individuals). After separating individuals into self-identified ancestral cohorts904
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using data field 21000 , unrelated individuals were selected by randomly choosing an individual from905

each pair of related individuals. This resulted in N = 349,469 white British individuals to be included906

in our analysis. We downloaded imputed SNP data from the UK Biobank for all remaining individuals907

and removed SNPs with an information score below 0.8. Information scores for each SNP are provided908

by the UK Biobank (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1967).909

Quality control for the remaining genotyped and imputed variants was then performed on each co-910

hort separately using the following steps. All structural variants were first removed, leaving only single911

nucleotide polymorphisms (SNPs) in the genotype data. Next, all AT/CG SNPs were removed to avoid912

possible confounding due to sequencing errors. Then, SNPs with minor allele frequency less than 1%913

were removed using the PLINK 2.069 command --maf 0.01 . We then removed all SNPs found to be914

out of Hardy-Weinberg equilibrium, using the PLINK --hwe 0.000001 flag to remove all SNPs with a915

Fisher’s exact test P -value > 10−6. Finally, all SNPs with missingness greater than 1% were removed916

using the PLINK --mind 0.01 flag.917

We then performed a genome-wide association study (GWAS) for each trait in the UK Biobank on918

the remaining 8,981,412 SNPs. SNP-level GWAS effect sizes were calculated using PLINK and the --glm919

flag69. Age, sex, and the first twenty principal components were included as covariates for all traits920

analyzed66. Principal component analysis was performed using FlashPCA 2.070 on a set of independent921

markers derived separately for each ancestry cohort using the PLINK command --indep-pairwise 100 10 0.1 .922

Using the parameters --indep-pairwise removes all SNPs that have a pairwise correlation above 0.1923

within a 100 SNP window, then slides forward in increments of ten SNPs genome-wide.924

In order to analyze data from BioBank Japan, we downloaded publicly available GWAS summary925

statistics for the 25 traits listed in Table 5 from http://jenger.riken.jp/en/result. Summary statis-926

tics used age, sex, and the first ten principal components as confounders in the initial GWAS study.927

We then used individuals from the East Asian (EAS) superpopulation from the 1000 Genomes Project928

Phase 3 to calculate paired LDSC and i-LDSC scores from a reference panel. We pruned the reference929

panel using the PLINK command --indep-pairwise 100 10 0.5 to limit the computational time of930

calculating scores69. This resulted in reference scores for 1,164,666 SNPs that are included on the i-LDSC931

GitHub repository (see URLs). Using summary statistics from BioBank Japan, with scores calculated932

from the EAS population in the 1000 Genomes, we obtained i-LDSC heritability estimates for each of the933

25 traits.934
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Data and software availability935

Source code and tutorials for implementing interaction-LD score regression via the i-LDSC package are936

written in Python and are publicly available online at https://github.com/lcrawlab/i-LDSC. Files937

of LD scores, cis-interaction LD scores, and GWAS summary statistics used for our analyses of the UK938

Biobank and BioBank Japan can be downloaded from the Harvard Dataverse (https://dataverse.939

harvard.edu/datsset.xhtml?persistentId=doi:10.7910/DVN/W6MA8J&faces-redirect=true). All940

software for the traditional and stratified LD score regression framework with LDSC and s-LDSC were941

fit using the default settings, unless otherwise stated in the main text. Source code for these approaches942

was downloaded from https://github.com/bulik/ldsc. When applying s-LDSC, we used 97 func-943

tional annotations from Gazal et al. 41 to estimate heritability. Data from the UK Biobank Resource68
944

(https://www.ukbiobank.ac.uk) was made available under Application Numbers 14649 and 22419.945

Data can be accessed by direct application to the UK Biobank.946
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Figures and Tables947
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Figure 1. Power of the i-LDSC framework to detect tagged pairwise genetic interaction
effects on simulated data. Synthetic trait architecture was simulated using real genotype data from
individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have
at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two
groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be
1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These interact
with the group #2 SNPs which are selected to be variants within a ±10 kilobase (kb) window around
each SNP in group #1. Coefficients for additive and interaction effects were simulated with no minor
allele frequency dependency α = 0 (see Materials and Methods). Panels (A) and (B) are results with
simulations using a heritability H2 = 0.3, while panels (C) and (D) were generated with H2 = 0.6. We
also varied the proportion of heritability contributed by additive effects to (A, C) ρ = 0.5 and (B, D)
ρ = 0.8, respectively. Here, we are blind to the parameter settings used in generative model and run
i-LDSC while computing the cis-interaction LD scores using different estimating windows of ±5 (green),
±10 (orange), ±25 (purple), and ±50 (pink) SNPs. Results are based on 100 simulations per parameter
combination and the horizontal bars represent standard errors. Generally, the performance of i-LDSC

increases with larger heritability and lower proportions of additive variation. Note that LDSC is not shown
here because it does not search for tagged interaction effects in summary statistics.
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Figure 1 – figure supplement 1. Power calculations for the i-LDSC framework to detect
tagged pairwise genetic interaction effects on simulated data using a ±10 kilobase (kb)
window to generate cis-interactions around a focal SNP with a moderate minor allele
frequency dependency α = −0.5 for effect sizes. Synthetic trait architecture was simulated using
real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs
were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next,
we randomly select two groups of interacting variants and divide them into two groups. The group #1
SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in
each panel). These interact with the group #2 SNPs which are selected to be variants within a ±10
kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects
were simulated with minor allele frequency dependency α = −0.5 (see Materials and Methods). Panels
(A) and (B) are results of simulations where the total heritability explained by additive SNP effects
and cis-interaction effects is H2 = 0.3, while panels (C) and (D) were generated with H2 = 0.6. We
also varied the proportion of phenotypic variation explained by additive SNP effects to (A, C) ρ = 0.5
and (B, D) ρ = 0.8, respectively. Here, we are blind to the parameter settings used in generative model
and run i-LDSC while computing the cis-interaction LD scores using different estimation windows of ±5
(green), ±10 (orange), ±25 (purple), and ±50 (pink) SNPs. Results are based on 100 simulations per
parameter combination and the horizontal black bars represent standard errors.
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Figure 1 – figure supplement 2. Power calculations for the i-LDSC framework to detect
tagged pairwise genetic interaction effects on simulated data using a ±10 kilobase (kb)
window to generate cis-interactions around a focal SNP with a strong minor allele frequency
dependency α = −1 for effect sizes. Synthetic trait architecture was simulated using real genotype
data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered
to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select
two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to
be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These
interact with the group #2 SNPs which are selected to be variants within a ±10 kilobase (kb) window
around each SNP in group #1. Coefficients for additive and interaction effects were simulated with minor
allele frequency dependency α = −0.5 (see Materials and Methods). Panels (A) and (B) are results of
simulations where the total heritability explained by additive SNP effects and cis-interaction effects is
H2 = 0.3, while panels (C) and (D) were generated with H2 = 0.6. We also varied the proportion
of phenotypic variation explained by additive SNP effects to (A, C) ρ = 0.5 and (B, D) ρ = 0.8,
respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while
computing the cis-interaction LD scores using different estimation windows of ±5 (green), ±10 (orange),
±25 (purple), and ±50 (pink) SNPs. Results are based on 100 simulations per parameter combination
and the horizontal black bars represent standard errors.
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Figure 1 – figure supplement 3. Power calculations for the i-LDSC framework to detect
tagged pairwise genetic interaction effects on simulated data using a ±10 kilobase (kb)
window to generate cis-interactions around a focal SNP with no minor allele frequency
dependency α = 0 for effect sizes. Synthetic trait architecture was simulated using real genotype
data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered
to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select
two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to
be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These
interact with the group #2 SNPs which are selected to be variants within a ±10 kilobase (kb) window
around each SNP in group #1. Coefficients for additive and interaction effects were simulated with minor
allele frequency dependency α = −0.5 (see Materials and Methods). Panels (A) and (B) are results of
simulations where the total heritability explained by additive SNP effects and cis-interaction effects is
H2 = 0.3, while panels (C) and (D) were generated with H2 = 0.6. We also varied the proportion
of phenotypic variation explained by additive SNP effects to (A, C) ρ = 0.5 and (B, D) ρ = 0.8,
respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while
computing the cis-interaction LD scores using different estimation windows of ±5 (green), ±10 (orange),
±25 (purple), and ±50 (pink) SNPs. Results are based on 100 simulations per parameter combination
and the horizontal black bars represent standard errors.
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Figure 1 – figure supplement 4. Power calculations for the i-LDSC framework to detect
tagged pairwise genetic interaction effects on simulated data using a ±100 kilobase (kb)
window to generate cis-interactions around a focal SNP with a moderate minor allele
frequency dependency α = −0.5 for effect sizes. Synthetic trait architecture was simulated using
real genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs
were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next,
we randomly select two groups of interacting variants and divide them into two groups. The group #1
SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in
each panel). These interact with the group #2 SNPs which are selected to be variants within a ±10
kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects
were simulated with minor allele frequency dependency α = −0.5 (see Materials and Methods). Panels
(A) and (B) are results of simulations where the total heritability explained by additive SNP effects
and cis-interaction effects is H2 = 0.3, while panels (C) and (D) were generated with H2 = 0.6. We
also varied the proportion of phenotypic variation explained by additive SNP effects to (A, C) ρ = 0.5
and (B, D) ρ = 0.8, respectively. Here, we are blind to the parameter settings used in generative model
and run i-LDSC while computing the cis-interaction LD scores using different estimation windows of ±5
(green), ±10 (orange), ±25 (purple), and ±50 (pink) SNPs. Results are based on 100 simulations per
parameter combination and the horizontal black bars represent standard errors.
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Figure 1 – figure supplement 5. Power calculations for the i-LDSC framework to detect
tagged pairwise genetic interaction effects on simulated data using a ±100 kilobase (kb)
window to generate cis-interactions around a focal SNP with a strong minor allele frequency
dependency α = −1 for effect sizes. Synthetic trait architecture was simulated using real genotype
data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered
to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select
two groups of interacting variants and divide them into two groups. The group #1 SNPs are chosen to
be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the x-axis in each panel). These
interact with the group #2 SNPs which are selected to be variants within a ±10 kilobase (kb) window
around each SNP in group #1. Coefficients for additive and interaction effects were simulated with minor
allele frequency dependency α = −0.5 (see Materials and Methods). Panels (A) and (B) are results of
simulations where the total heritability explained by additive SNP effects and cis-interaction effects is
H2 = 0.3, while panels (C) and (D) were generated with H2 = 0.6. We also varied the proportion
of phenotypic variation explained by additive SNP effects to (A, C) ρ = 0.5 and (B, D) ρ = 0.8,
respectively. Here, we are blind to the parameter settings used in generative model and run i-LDSC while
computing the cis-interaction LD scores using different estimation windows of ±5 (green), ±10 (orange),
±25 (purple), and ±50 (pink) SNPs. Results are based on 100 simulations per parameter combination
and the horizontal black bars represent standard errors.
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Figure 2. The i-LDSC framework is well-calibrated under the null hypothesis and does not
identify evidence of tagged non-additive effects when polygenic traits are generated by only
additive effects. In these simulations, synthetic trait architecture is made up of only additive genetic
variation (i.e., ρ = 1). Coefficients for additive and interaction effects were simulated with no minor allele
frequency dependency α = 0 (see Materials and Methods). Here, we are blind to the parameter settings
used in generative model and run i-LDSC while computing the cis-interaction LD scores using different
estimating windows of ±5 (green), ±10 (orange), ±25 (purple), and ±50 (pink) SNPs. (A) Mean type I
error rate using the i-LDSC framework across an array of estimation window sizes for the cis-interaction
LD scores. This is determined by assessing the P -value of the cis-interaction coefficient (ϑ) in the i-LDSC
regression model and checking whether P < 0.05. (B) Estimates of the cis-interaction coefficient (ϑ).
Since traits were simulated with only additive effects, these estimates should be centered around zero. (C)
Estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated
heritability) where the true additive variance is set to H2ρ = 0.6. (D) QQ-plot of the P -values for the
cis-interaction coefficient (ϑ) in i-LDSC. Results are based on 100 simulations per parameter combination
and the horizontal bars represent standard errors.
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Figure 2 – figure supplement 1. The i-LDSC framework is well-calibrated under the null hy-
pothesis and does not identify evidence of tagged non-additive effects when polygenic traits
are generated by only additive effects and a moderate minor allele frequency dependency
α = −0.5 for effect sizes. In these simulations, synthetic trait architecture is made up of only additive
genetic variation (i.e., ρ = 1). Coefficients for additive and interaction effects were simulated with minor
allele frequency dependency α = −0.5 (see Materials and Methods). Here, we are blind to the parameter
settings used in generative model and run i-LDSC while computing the cis-interaction LD scores using
different estimation windows of ±5 (green), ±10 (orange), ±25 (purple), and ±50 (pink) SNPs. (A)
Mean type I error rate using the i-LDSC framework across an array of estimation window sizes for the
cis-interaction LD scores. This is determined by assessing the P -value of the cis-interaction coefficient
(ϑ) in the i-LDSC regression model and checking whether P < 0.05. (B) Estimates of the cis-interaction
coefficient (ϑ). Since traits were simulated with only additive effects, these estimates should be centered
around zero. (C) Estimates of the proportions of phenotypic variance explained (PVE) by genetic ef-
fects (i.e., estimated heritability) where the true additive variance is set to H2ρ = 0.6. (D) QQ-plot of
the P -values for the cis-interaction coefficient (ϑ) in i-LDSC. Results are based on 100 simulations per
parameter combination and the horizontal black bars represent standard errors.
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Figure 2 – figure supplement 2. The i-LDSC framework is well-calibrated under the null
hypothesis and does not identify evidence of tagged non-additive effects when polygenic
traits are generated by only additive effects and a strong minor allele frequency dependency
α = −1 for effect sizes. In these simulations, synthetic trait architecture is made up of only additive
genetic variation (i.e., ρ = 1). Coefficients for additive and interaction effects were simulated with minor
allele frequency dependency α = −0.5 (see Materials and Methods). Here, we are blind to the parameter
settings used in generative model and run i-LDSC while computing the cis-interaction LD scores using
different estimation windows of ±5 (green), ±10 (orange), ±25 (purple), and ±50 (pink) SNPs. (A)
Mean type I error rate using the i-LDSC framework across an array of estimation window sizes for the
cis-interaction LD scores. This is determined by assessing the P -value of the cis-interaction coefficient
(ϑ) in the i-LDSC regression model and checking whether P < 0.05. (B) Estimates of the cis-interaction
coefficient (ϑ). Since traits were simulated with only additive effects, these estimates should be centered
around zero. (C) Estimates of the proportions of phenotypic variance explained (PVE) by genetic effects
(i.e., estimated heritability) where the true additive variance is set to H2ρ = 0.6. (D) QQ-plot of
the P -values for the cis-interaction coefficient (ϑ) in i-LDSC. Results are based on 100 simulations per
parameter combination and the horizontal black bars represent standard errors.
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Figure 3. i-LDSC robustly and accurately estimates the proportions of phenotypic variance
explained (PVE) by genetic effects (i.e., estimated heritability) in simulations in polygenic
traits, compared to LDSC, due to our accounting for interaction effects tagged in additive
GWAS summary statistics. Synthetic trait architecture was simulated using real genotype data from
individuals of self-identified European ancestry in the UK Biobank (Materials and Methods). All SNPs
were considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we
randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs
are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs
which are selected to be variants within a ±100 kilobase (kb) window around each SNP in group #1.
Coefficients for additive and interaction effects were simulated with no minor allele frequency dependency
α = 0 (see Materials and Methods). Here, we assume a heritability (A) H2 = 0.3 or (B) H2 = 0.6
(marked by the black dotted lines, respectively), and we vary the proportion contributed by additive
effects with ρ = {0.2, 0.4, 0.6, 0.8}. The grey dotted lines represent the total contribution of additive
effects in the generative model for the synthetic traits (H2ρ). i-LDSC outperforms LDSC in recovering
heritability across each scenario. Results are based on 100 simulations per parameter combination.
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Figure 3 – figure supplement 1. i-LDSC robustly and accurately estimates the proportions
of phenotypic variance explained (PVE) by genetic effects in polygenic traits by account-
ing for interaction effects tagged by GWAS summary statistics. Synthetic trait architecture
was simulated using real genotype data from individuals of self-identified European ancestry in the UK
Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait
architecture). Next, we randomly select two groups of interacting variants and divide them into two
groups. The group #1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These
interact with the group #2 SNPs which are selected to be variants within a ±100 kilobase (kb) window
around each SNP in group #1. Coefficients for additive and cis-interaction effects were simulated with
no minor allele frequency dependency α = 0 (see Materials and Methods). Here, we assume a total heri-
tability explained by additive SNP and cis-interaction effects is (A) H2 = 0.3 or (B) H2 = 0.6 (marked
by the black dotted lines, respectively), and we vary the proportion contributed by additive effects with
ρ = {0.2, 0.4, 0.6, 0.8}. The grey dotted line represents the total contribution of additive effects in the
generative model for the synthetic traits (H2ρ). We run i-LDSC while computing the cis-interaction LD
scores using different estimating windows of ±5, ±10, ±25, and ±50 SNPs, respectively. These results
help motivate the selection of scores calculated using a ±50 SNP window in our empirical analyses.
Results are based on 100 simulations per parameter combination.
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Figure 3 – figure supplement 2. Performance of LDSC and i-LDSC on simulated polygenic
traits with architectures that are determined by additive, cis-interaction, and gene-by-
environment (G×E) effects. Synthetic trait architecture was simulated using real genotype data from
individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at
least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups
of interacting variants and divide them into two groups. The group #1 SNPs are chosen to be 10% of
the total number of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be
variants within a ±100 kilobase (kb) window around each SNP in group #1. G×E effects were simulated
using an amplification model65 (see Materials and Methods) where we split the sample population in half
to emulate two subsets of individuals coming from different environments. We randomly draw variant
effect sizes for the first environment from a standard Gaussian distribution. Then effect sizes for the
second environment are set to be the product of the effect sizes in from with first environment with an
amplifier w = [1.1, 1.2, . . . , 2] (see the x-axis in each panel). Both the cis-interaction and G×E effects were
set to explain a quarter of the total phenotypic variation and the remaining half was explained by additive
SNP effects. Panels (A) and (B) show estimates of the proportions of phenotypic variance explained
(PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C)
and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic
effects using the cis-interaction LD score (i.e., estimates of ϑ). We assume the total heritability explained
by all genetic effects to be (A, C) H2 = 0.6 and (B, D) H2 = 0.3. Results are based on 100 simulations
per parameter combination.
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Figure 3 – figure supplement 3. Performance of LDSC and i-LDSC on simulated polygenic
traits with architectures that are determined by additive, cis-interaction, and gene-by-
ancestry (G×Ancestry) effects with principal components (PCs) included in the GWAS
model to correct for additional structure. Synthetic trait architecture was simulated using real
genotype data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were
considered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we
randomly select two groups of interacting variants and divide them into two groups. The group #1 SNPs
are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs
which are selected to be variants within a ±100 kilobase (kb) window around each SNP in group #1.
G×Ancestry effects were simulated as the product of individual genotypes and the SNP loadings for each
of the first 10 PCs (see the x-axis in each panel). Both the cis-interaction and G×Ancestry effects were
set to explain a quarter of the total phenotypic variation and the remaining half was explained by additive
SNP effects. The proportion of genotypic variance explained by each PC is shown in green. Panels (A)
and (B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e.,
estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates
of the phenotypic variation explained by tagged non-additive genetic effects using the cis-interaction LD
score (i.e., estimates of ϑ). We assume the total heritability explained by all genetic effects to be (A, C)
H2 = 0.6 and (B, D) H2 = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 – figure supplement 4. Performance of LDSC and i-LDSC on simulated polygenic
traits with architectures that are determined by additive, cis-interaction, and gene-by-
ancestry (G×Ancestry) effects without correcting for the additional structure in the GWAS
analysis. Synthetic trait architecture was simulated using real genotype data from individuals of self-
identified European ancestry in the UK Biobank. All SNPs were considered to have at least an additive
effect (i.e., creating a polygenic trait architecture). Next, we randomly select two groups of interacting
variants and divide them into two groups. The group #1 SNPs are chosen to be 10% of the total number
of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within
a ±100 kilobase (kb) window around each SNP in group #1. G×Ancestry effects were simulated as the
product of individual genotypes and the SNP loadings for each of the first 10 PCs (see the x-axis in
each panel). Both the cis-interaction and G×Ancestry effects were set to explain a quarter of the total
phenotypic variation and the remaining half was explained by additive SNP effects. The proportion of
genotypic variance explained by each PC is shown in green. Panels (A) and (B) show estimates of the
proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from
LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation
explained by tagged non-additive genetic effects using the cis-interaction LD score (i.e., estimates of ϑ).
We assume the total heritability explained by all genetic effects to be (A, C) H2 = 0.6 and (B, D)
H2 = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 – figure supplement 5. Performance of LDSC and i-LDSC on simulated polygenic
traits with architectures that are determined by only additive and gene-by-environment
(G×E) effects. Synthetic trait architecture was simulated using real genotype data from individuals
of self-identified European ancestry in the UK Biobank. All SNPs were considered to have at least
an additive effect (i.e., creating a polygenic trait architecture). G×E effects were simulated using an
amplification model65 (see Materials and Methods) where we split the sample population in half to
emulate two subsets of individuals coming from different environments. We randomly draw variant effect
sizes for the first environment from a standard Gaussian distribution. Then effect sizes for the second
environment are set to be the product of the effect sizes in from with first environment with an amplifier
w = [1.1, 1.2, . . . , 2] (see the x-axis in each panel). Additive and G×E effects were set to explain half of
the phenotypic variation. Note that unlike results depicted in Figure 3 – figure supplement 2, there are
no cis-interaction effects that affect trait architecture. Here, panels (A) and (B) show estimates of the
proportions of phenotypic variance explained (PVE) by genetic effects (i.e., estimated heritability) from
LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates of the phenotypic variation
explained by tagged non-additive genetic effects using the cis-interaction LD score (i.e., estimates of ϑ).
We assume the total heritability explained by all genetic effects to be (A, C) H2 = 0.6 and (B, D)
H2 = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 – figure supplement 6. Performance of LDSC and i-LDSC on simulated poly-
genic traits with architectures that are determined by only additive and gene-by-ancestry
(G×Ancestry) effects with principal components (PCs) included in the GWAS model to
correct for additional structure. Synthetic trait architecture was simulated using real genotype data
from individuals of self-identified European ancestry in the UK Biobank. All SNPs were considered to
have at least an additive effect (i.e., creating a polygenic trait architecture). G×Ancestry effects were
simulated as the product of individual genotypes and the SNP loadings for each of the first 10 PCs (see
the x-axis in each panel). Additive and G×E effects were set to explain half of the phenotypic variation.
The proportion of genotypic variance explained by each PC is shown in green. Note that unlike results
depicted in Figure 3 – figure supplement 3, there are no cis-interaction effects that affect trait archi-
tecture. Here, panels (A) and (B) show estimates of the proportions of phenotypic variance explained
(PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively. Panels (C)
and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive genetic
effects using the cis-interaction LD score (i.e., estimates of ϑ). We assume the total heritability explained
by all genetic effects to be (A, C) H2 = 0.6 and (B, D) H2 = 0.3. Results are based on 100 simulations
per parameter combination.
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Figure 3 – figure supplement 7. Performance of LDSC and i-LDSC on simulated poly-
genic traits with architectures that are determined by only additive and gene-by-ancestry
(G×Ancestry) effects without correcting for the additional structure in the GWAS analy-
sis. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified
European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e.,
creating a polygenic trait architecture). G×Ancestry effects were simulated as the product of individual
genotypes and the SNP loadings for each of the first 10 PCs (see the x-axis in each panel). Additive
and G×E effects were set to explain half of the phenotypic variation. The proportion of genotypic vari-
ance explained by each PC is shown in green. Note that unlike results depicted in Figure 3 – figure
supplement 4, there are no cis-interaction effects that affect trait architecture. Here, panels (A) and
(B) show estimates of the proportions of phenotypic variance explained (PVE) by genetic effects (i.e.,
estimated heritability) from LDSC and i-LDSC, respectively. Panels (C) and (D) show i-LDSC estimates
of the phenotypic variation explained by tagged non-additive genetic effects using the cis-interaction LD
score (i.e., estimates of ϑ). We assume the total heritability explained by all genetic effects to be (A, C)
H2 = 0.6 and (B, D) H2 = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 – figure supplement 8. Performance of LDSC and i-LDSC on simulated traits with
sparse architectures that are determined by only additive effects. Synthetic trait architecture
was simulated using real genotype data from individuals of self-identified European ancestry in the UK
Biobank. Here, traits were generated with solely additive effects where only variants with the top or bot-
tom {1, 5, 10, 25, 50, 100} percentile of LD scores were given nonzero coefficients in the generative model
(see the x-axis in each panel). Panels (A) and (B) show estimates of the proportions of phenotypic vari-
ance explained (PVE) by genetic effects (i.e., estimated heritability) from LDSC and i-LDSC, respectively.
Panels (C) and (D) show i-LDSC estimates of the phenotypic variation explained by tagged non-additive
genetic effects using the cis-interaction LD score (i.e., estimates of ϑ). We assume the total heritability
explained by all genetic effects to be (A, C) H2 = 0.6 and (B, D) H2 = 0.3. Results are based on 100
simulations per parameter combination. The overall takeaway is that breaking the assumed relationship
between LD scores and chi-squared test statistics (i.e., that they are generally positively correlated) led
to unbounded estimates of heritability for both LDSC and i-LDSC in all but the (polygenic) scenario when
100% of SNPs contributed to phenotypic variation.
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Figure 3 – figure supplement 9. The non-additive component estimates in i-LDSC are robust
to unobserved additive effects in a haplotype. Synthetic trait architectures are simulated such that
a substantial proportion of genetic variance is explained by an additive effect that is not directly observed.
The goal of these simulations was to assess how these unobserved effects influence the estimation of the
non-additive variance component in the i-LDSC model. In each simulation, we generated haplotypes that
each contain 5,000 variants. Next, we select either (A, B) a single causal variant with only an additive
effect or (C, D) a set of ten causal variants with only additive effects. In each case, the causal variants
have a MAF that is randomly selected between: (i) (0.01, 0.1), (ii) (0.1, 0.2), (iii) (0.2, 0.3), (iv) (0.3,
0.4), or (v) (0.4, 0.5) as depicted on the x-axis. The corresponding additive effect size for each causal
variant across the haplotypes is simulated to be inversely proportional to its MAF38. On the y-axis,
we measure the difference (∆) between i-LDSC coefficient estimates when every variant is included in
the model versus when the haplotype causal variants are omitted for two different trait architectures
with broad-sense heritability set to (A, C) H2 = 0.6 and (B, D) H2 = 0.3. Results are based on 100
simulations per parameter combination.
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Figure 3 – figure supplement 10. The i-LDSC framework protects against the false discovery
of non-additive genetic variance when causal interacting SNPs are unobserved and the
proportion of genetic variance explained by additive effects is equal to ρ = 0.5. Synthetic
trait architectures are simulated such that a substantial proportion of genetic variance is explained by
pairwise genetic interaction effects that are not directly observed. The goal of these simulations was to
assess how these unobserved effects influence the estimation of the non-additive variance component in
the i-LDSC model. In each simulation, we generated haplotypes that each contain 5,000 variants. Every
SNP in the genome had at least a small additive effect. The corresponding additive effect size for each
variant across the haplotypes is simulated to be inversely proportional to its MAF38. We then set (A,
C) 1% or (B, D) 5% of causal variants in each haplotype to have non-zero interaction effects. On the
y-axis, we measure the difference (∆) between i-LDSC coefficient estimates when every variant is included
in the model versus when the specified percentage of variants with pairwise genetic interaction effects are
omitted for two different trait architectures with broad-sense heritability set to (A, B) H2 = 0.6 and
(C, D) H2 = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 – figure supplement 11. The i-LDSC framework protects against the false discovery
of non-additive genetic variance when causal interacting SNPs are unobserved and the
proportion of genetic variance explained by additive effects is equal to ρ = 0.8. Synthetic
trait architectures are simulated such that a substantial proportion of genetic variance is explained by
pairwise genetic interaction effects that are not directly observed. The goal of these simulations was to
assess how these unobserved effects influence the estimation of the non-additive variance component in
the i-LDSC model. In each simulation, we generated haplotypes that each contain 5,000 variants. Every
SNP in the genome had at least a small additive effect. The corresponding additive effect size for each
variant across the haplotypes is simulated to be inversely proportional to its MAF38. We then set (A,
C) 1% or (B, D) 5% of causal variants in each haplotype to have non-zero interaction effects. On the
y-axis, we measure the difference (∆) between i-LDSC coefficient estimates when every variant is included
in the model versus when the specified percentage of variants with pairwise genetic interaction effects are
omitted for two different trait architectures with broad-sense heritability set to (A, B) H2 = 0.6 and
(C, D) H2 = 0.3. Results are based on 100 simulations per parameter combination.
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Figure 3 – figure supplement 12. Bias in LDSC and i-LDSC estimates when the additive and
interaction effect sizes in the generative model of complex traits are correlated. To simulate
synthetic trait architectures, we first simulated additive effects for each variant to be MAF-dependent
(i.e., α = −1). Here, we set the corresponding interaction effect sizes to have a correlation with the
additive effect sizes equal to r = {−1,−0.8,−0.6, . . . , 0.6, 0.8, 1} (labeled across the x-axis). On the
y-axis, we measure the bias in the LDSC and i-LDSC estimates of phenotypic variance explained (PVE)
by genetic effects. In each simulation, we generate traits with an equal proportion of variance explained
by additive and interaction effects and a total broad-sense heritability set to (A) H2 = 0.6 and (B)
H2 = 0.3. Results are based on 100 simulations for each parameter value.
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Figure 3 – figure supplement 13. Bias in LDSC and i-LDSC estimates when interaction effect
sizes in the generative model of complex traits are a linear or squared function of the the
additive effects. To simulate synthetic trait architectures, we first simulated additive effects for each
variant to be MAF-dependent (i.e., α = −1). Here, we set the corresponding interaction effect sizes to be
either (A, C) a linear function or (B, D) a squared function of the additive effects with a scaling factor
q = {0.1, 0.2, . . . , 0.8, 1} (labeled across the x-axis). On the y-axis, we measure the bias in the LDSC and
i-LDSC estimates of the phenotypic variance explained (PVE) by genetic effects. In each simulation, we
generate traits with an equal proportion of variance explained by additive and interaction effects and a
total broad-sense heritability set to (A, B) H2 = 0.6 and (C, D) H2 = 0.3. Results are based on 100
simulations for each parameter value.
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Figure 4. The i-LDSC framework recovers heritability and provides estimates of tagged cis-
interactions in GWAS summary statistics (ϑ) for 25 quantitiative traits in the UK Biobank
and BioBank Japan. (A) In both the UK Biobank (green) and BioBank Japan (purple), estimates
of phenotypic variance explained (PVE) by genetic effects from i-LDSC and LDSC are highly correlated
for 25 different complex traits. The Spearman correlation coefficient between heritability estimates from
LDSC and i-LDSC for the UK Biobank and BioBank Japan are r2 = 0.989 and r2 = 0.850, respectively.
The y = x dotted line represents the values at which estimates from both approaches are the same. (B)
PVE estimates from the UK Biobank are better correlated with those from the BioBank Japan across 25
traits using LDSC (Spearman r2 = 0.848) than i-LDSC (Spearman r2 = 0.666). (C) Both the original and
stratified LDSC models recover the same amount of PVE when the cis-interaction LD score is included
as an additional component in the UK Biobank analysis (Spearman r2 = 0.989). These models are
listed as i-LDSC and s+i-LDSC, respectively. For s+i-LDSC, we included 97 functional annotations from
Gazal et al. 41 to estimate heritability. (D) Estimates of non-additive variance components in i-LDSC

versus s+i-LDSC (Spearmen r2 = 0.184). While not statistically significant in the stratified analysis with
the additional annotations, the non-additive component still makes nonzero contributions to the PVE
estimation for all 25 traits in the UK Biobank (see Tables 1 and 2).
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UK Biobank

r2 = 0.813

r2 = 0.888

r  = 0.372

i-LDSC
A B

Figure 4 – figure supplement 1. Additional results from applying LDSC and i-LDSC for 25
quantitiative traits in the UK Biobank and BioBank Japan. (A) i-LDSC estimates of the
phenotypic variation explained by tagged non-additive genetic effects using the cis-interaction LD score
(i.e., estimates of ϑ) between traits in the UK Biobank and BioBank Japan (Spearman r2 = 0.372). (B)
Estimates of i-LDSC and LDSC intercept terms for 25 traits analyzed in the UK Biobank and BioBank
Japan. Intercept terms using LDSC and i-LDSC are highly correlated in both the UK Biobank (Spearman
r2 = 0.888) and BioBank Japan (Spearman r2 = 0.813). The x = y dotted line represents points for
when the two sets of estimates are equal.
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Trait UKB (LDSC) UKB (i-LDSC) UKB ϑ̂ UKB P -value BBJ (LDSC) BBJ (i-LDSC) BBJ ϑ̂ BBJ P -value

Basophil 0.0250 0.0315 0.0065 1.572 ×10−12 0.0684 0.1548 0.0864 0.025

BMI 0.1757 0.2349 0.0592 3.083 ×10−84 0.1667 0.2656 0.0989 2.438 ×10−18

Cholesterol 0.0954 0.0974 0.0020 1.821 ×10−16 0.0629 0.1268 0.0639 2.740 ×10−4

CRP 0.0354 0.0414 0.0060 9.845 ×10−12 0.0202 0.1625 0.1423 0.020

DBP 0.0940 0.1203 0.0263 1.118 ×10−65 0.0605 0.1267 0.0662 1.675 ×10−7

EGFR 0.1521 0.1999 0.0478 1.187 ×10−46 0.1010 0.1225 0.0215 4.232 ×10−5

Eosinophil 0.1055 0.1375 0.0320 1.230 ×10−18 0.0785 0.1973 0.1188 0.001

HBA1C 0.0906 0.1083 0.0177 1.578 ×10−26 0.1057 0.1308 0.0251 0.031

HDL* 0.1599 0.1768 0.0169 9.636 ×10−37 0.1590 0.1838 0.0248 0.081

Height 0.3675 0.4815 0.1140 1.038 ×10−64 0.3941 0.7336 0.3395 7.433 ×10−33

Hematocrit 0.1078 0.1352 0.0274 2.479 ×10−25 0.0752 0.0928 0.0176 3.689 ×10−5

Hemoglobin 0.1177 0.1433 0.0256 4.284 ×10−27 0.0702 0.0752 0.0050 9.037 ×10−4

LDL 0.0802 0.0859 0.0057 5.087 ×10−13 0.0745 0.1438 0.0693 0.018

Lymphocyte 0.0402 0.0501 0.0099 4.906 ×10−19 0.0844 0.1757 0.0913 5.479 ×10−5

MCH 0.1361 0.1597 0.0236 1.785 ×10−25 0.1536 0.2831 0.1295 1.042 ×10−5

MCHC 0.0317 0.0364 0.0047 3.730 ×10−12 0.0571 0.0650 0.0079 0.027

MCV 0.1630 0.1902 0.0272 1.180 ×10−29 0.1530 0.2818 0.1288 1.042 ×10−5

Monocyte 0.0788 0.0955 0.0167 5.257 ×10−18 0.0888 0.1549 0.0661 0.004

Neutrophil 0.1102 0.1391 0.0289 1.777 ×10−33 0.1191 0.2114 0.0923 5.050 ×10−5

Platelet 0.1992 0.2447 0.0455 2.303 ×10−37 0.1565 0.2436 0.0871 7.724 ×10−9

RBC 0.1574 0.1933 0.0359 3.292 ×10−31 0.1203 0.2068 0.0865 5.972 ×10−8

SBP 0.0954 0.1201 0.0247 8.660 ×10−75 0.0769 0.1604 0.0835 9.075 ×10−10

Triglycerides* 0.1061 0.1204 0.0143 1.410 ×10−26 0.1171 0.2670 0.1499 0.110

Urate 0.1217 0.1550 0.0333 9.642 ×10−38 0.1395 0.3462 0.2067 0.015

WBC 0.0962 0.1250 0.0288 9.866 ×10−34 0.1024 0.2266 0.1242 1.346 ×10−8

Table 1. i-LDSC heritability estimates and P -values highlighting statistically significant contributions of tagged pairwise
genetic interaction effects for 25 traits in the UK Biobank and BioBank Japan. Here, LDSC heritability estimates are included
as a baseline. The difference between the approaches is that the i-LDSC heritability estimates include proportions of phenotypic variation
that are explained by tagged non-additive variation (see columns with estimates of ϑ). Note that all 25 traits analyzed in the UK Biobank
and 23 of the 25 traits analyzed in BioBank Japan have a statistically significant amount of tagged non-additive genetic effects as detected
by the cis-interaction LD score (P < 0.05). The two traits without significant tagged non-additive genetic effects in BioBank Japan were
HDL (P = 0.081) and Triglyceride (P = 0.110). These traits are indicated by *. The i-LDSC P -values are related to the estimates of the
ϑ coefficients which are also displayed in Figure 4.
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Trait UKB PVE (s-LDSC) UKB PVE (s+i-LDSC) s+i-LDSC P -value

Basophil 0.0363 0.0375 0.4728

BMI 0.2100 0.2482 0.8126

Cholesterol 0.1042 0.1358 0.6202

CRP 0.0452 0.0524 0.6483

DBP 0.1228 0.1441 0.6125

EGFR 0.1826 0.2105 0.8507

Eosinophil 0.1403 0.1578 0.1867

HBA1C 0.1040 0.1275 0.6917

HDL 0.1820 0.2373 0.5754

Height 0.4315 0.4726 0.5224

Hematocrit 0.1416 0.1646 0.3956

Hemoglobin 0.1504 0.1795 0.2299

LDL 0.0858 0.1131 0.8812

Lymphocyte 0.0545 0.0651 0.1453

MCH 0.1497 0.1545 0.0968

MCHC 0.0450 0.0496 0.3728

MCV 0.1814 0.1930 0.1530

Monocyte 0.1085 0.1431 0.5421

Neutrophil 0.1320 0.1599 0.2499

Platelet 0.2317 0.2628 0.7371

RBC 0.1933 0.2223 0.3197

SBP 0.1206 0.1419 0.1100

Triglycerides 0.1335 0.1621 0.5301

Urate 0.1530 0.1736 0.1177

WBC 0.1221 0.1482 0.5155

Table 2. Comparison of s-LDSC and i-LDSC estimates of phenotypic variance explained
(PVE) by genetic effects for 25 complex traits in the UK Biobank. Here, we use stratified
LD score regression (s-LDSC) to partition heritability across different genomic elements42. We used 97
functional annotations from Gazal et al. 41 to estimate heritability in 25 traits. We then appended cis-
interaction LD scores as an additional annotation to obtain heritability estimates (this method is referred
to as s+i-LDSC in the table). P -values for the s+i-LDSC model detailing the contributions of tagged non-
additive genetic effects for 25 traits are provided in the last column. Note that, while not statistically
significant in this stratified analysis with the additional annotations, the non-additive component still
makes nonzero contributions to the PVE estimation for all 25 traits.
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Supplementary File Captions948

Supplementary File 1. Comparison of LDSC and i-LDSC estimates of the proportion of phe-
notypic variance explained (PVE) by genetic effects (i.e., estimated heritability) when the
true heritability is set to H2 = 0.3 for polygenic traits. Synthetic trait architecture was simulated
using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All
SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture).
Next, we randomly select two groups of interacting variants and divide them into two groups. The group
#1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group
#2 SNPs which are selected to be variants within a ±100 kilobase (kb) window around each SNP in
group #1. Coefficients for additive and interaction effects were simulated with no minor allele frequency
dependency α = 0 (see Materials and Methods). Here, we assume a heritability H2 = 0.3 and vary the
proportion contributed by additive effects with ρ = {0.2, 0.4, 0.6, 0.8}. We run i-LDSC while comput-
ing the cis-interaction LD scores using different estimating windows of ±5, ±10, ±25, and ±50 SNPs.
The “average” column represents results using model averaging over the different estimating windows (see
Materials and Methods). We report the mean estimates of heritability (with standard errors in the paren-
theses) and use mean absolute error (MAE) to quantify the difference between the two methods. Results
are based on 100 simulations per parameter combination. As shown in Figure 3 – figure supplement 3
and 1, LDSC does not capture the contribution of non-additive genetic effects to trait variation.

Supplementary File 2. Comparison of LDSC and i-LDSC estimates of the proportion of phe-
notypic variance explained (PVE) by genetic effects (i.e., estimated heritability) when the
true heritability is set to H2 = 0.6. Synthetic trait architecture was simulated using real genotype
data from individuals of self-identified European ancestry in the UK Biobank. All SNPs were consid-
ered to have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly
select two groups of interacting variants and divide them into two interacting groups. The group #1
SNPs are chosen to be 10% of the total number of SNPs genome-wide. These interact with the group
#2 SNPs which are selected to be variants within a ±100 kilobase (kb) window around each SNP in
group #1. Coefficients for additive and interaction effects were simulated with no minor allele frequency
dependency α = 0 (see Materials and Methods). Here, we assume a heritability H2 = 0.6 and vary the
proportion contributed by additive effects with ρ = {0.2, 0.4, 0.6, 0.8}. We run i-LDSC while comput-
ing the cis-interaction LD scores using different estimating windows of ±5, ±10, ±25, and ±50 SNPs.
The “average” column represents results using model averaging over the different estimating windows
(see Materials and Methods). We report the mean estimates of heritability (with standard errors in the
parentheses) and use mean absolute error (MAE) to quantify the difference between the two methods.
Results are based on 100 simulations per parameter combination. As shown in Figure 3 – figure supple-
ment 3 and 1, LDSC does not capture the additional contribution of non-additive genetic effects to trait
variation.

Supplementary File 3. Abbreviations used throughout this study for 14 quantitative traits
analyzed in this study. The remaining 11 traits analyzed were Basophil count, Cholesterol, Eosinophil
count, Height, Hematocrit, Hemoglobin, Lymphocyte count, Monocyte count, Neutrophil count, and
Triglyceride levels, respectively. These are not abbreviated in the main text.
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Supplementary File 4. Trait-specific α parameters for each of the 25 traits analyzed. Here,
α values are used to weight each variant based on its minor allele frequency to account for frequency
dependent architectures in each trait. The ∗ indicates α parameters that were taken directly from
Schoech et al. 38 . The α parameters for other traits were calculated using the protocol used in that
paper. Expansion of trait abbreviations are given in Table 3.

Supplementary File 5. Number of individuals and total SNPs included in the analysis of
each trait in BioBank Japan.
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