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ABSTRACT

Background: DNA methylation is an important epigenetic modification which has numerous roles in
modulating genome function. Its levels are spatially correlated across the genome, typically high in
repressed regions but low in transcription factor (TF) binding sites and active regulatory regions.
However, the mechanisms establishing genome-wide and TF binding site methylation patterns are still

unclear.

Results: We used a comparative approach to investigate the association of DNA methylation to TF
binding evolution in mammals. Specifically, we experimentally profiled DNA methylation and
combined this with published occupancy profiles of five distinct TFs (CTCF, CEBPA, HNF4A, ONECUT],
FOXA1) in the liver of five mammalian species (human, macaque, mouse, rat, dog). TF binding sites
were lowly methylated, but they often also had intermediate methylation levels. Employing a

classification and clustering approach, we extracted distinct and species conserved patterns of DNA
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methylation levels at TF bound regions. CEBPA, HNF4A, ONECUT1 and FOXA1 shared the same
methylation patterns, while CTCF’s differed. These patterns characterize alternative functions and
chromatin landscapes of TF bound regions. Leveraging our phylogenetic framework, we found DNA
methylation gain upon evolutionary loss of TF occupancy, indicating coordinated evolution.
Furthermore, each methylation pattern has its own evolutionary trajectory reflecting its genomic

contexts.

Conclusions: Our epigenomic analyses found that specific DNA methylation profiles characterize TF
binding, and are associated to their regulatory activity, chromatin contexts, and evolutionary

trajectories.

BACKGROUND

Gene regulation is a complex process that controls gene expression across cell types and time points.
Key players in establishing tissue-specific expression are transcription factors, which bind to specific
DNA sequences, and covalent modifications to the DNA such as DNA methylation (DNAm). Regulatory
evolution has widely been studied in comparative analysis of transcription factor binding, but

complementary studies of the evolution of DNAm are lacking.

There are several known mechanisms influencing transcription factor binding evolution. Transcription
factor (TF) binding evolves rapidly: in mammals it is characterized by frequent gain and loss of binding
events even across short evolutionary time [1] [2][3] [4] [5]. Sequence divergence partly explains
binding divergence. For example, a comparative study of a handful of liver-specific transcription
factors in five mammals reported that more than 60% of binding losses could be explained by binding
motif disruption through mutations or indels [6]. However, in the remaining 20-40% of lost binding

events the motif was unchanged. Furthermore, TF binding in liver of rat and five mouse strains showed
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similar mutational rates between binding-conserved and binding-lost TF motifs [7], indicating that

sequence divergence alone cannot explain TF turnover.

Despite the rapid rearrangements of the TF binding network [3][8], gene expression of orthologous
genes tends to be conserved in mammals [9][10], likely due to the plasticity of the regulatory network
[11]. For example, compensatory binding turnover in the proximity of lost events preserve regulatory
network connectivity [11][6] and complexity of regulatory landscapes [12]. Finally, cooperative
binding of multiple TFs [7] and clustered binding of a single TF [13] are more evolutionary stable than
lone binding events. Less is known about how epigenetics modifications of DNA evolve and affect the

evolutionary dynamics of transcription factor binding.

DNA methylation (DNAm) is a chemical modification of DNA, most commonly the addition of a methyl
group to the fifth position of cytosines (5-methylcytosine (5mC)), for those cytosines followed by a
guanine (CpGs). The presence of CpG methylation can be measured in bulk tissues and cell types as a
continuous frequency value comprised between 0 to 100% (or 0 to 1) through whole-genome bisulfite
sequencing assays (WGBS) [14]. Most CpGs in mammalian genomes measure 0-10% and 70-80%
methylation, indicating overall unmethylated and methylated nucleotides, respectively [15].
However, about one in ten CpGs have intermediate levels, i.e. between 10 and 70% methylation [16],
reflecting either the cell-to-cell variability of the bulk samples or epigenomic and transcriptional

heterogeneity [17] [18] [19].

DNAm is largely recognized as a repressive epigenetic mark which often displays spatially correlated
patterns across the genome [20]. Active regulatory regions, specifically CpGs islands and active
promoters and enhancers, are typically unmethylated [21] [22] [23]. Genomic regions with
intermediate methylation (IM) levels were shown to be widespread and conserved across species [24].

They typically co-localize with distal regulatory elements and can be reshaped upon transcription
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factor binding [16]. In fact, DNAm levels are tightly linked to functional and chromatin contexts.
Transcriptional activity, TF binding, and chromatin remodelers have an impact on passive and active
enzymatic processes that ultimately determine local patterns of methylation across the genome [25].

As a consequence, DNAm levels are highly predictive of regulatory activity [26] [27] [28] [29].

DNA methylation was traditionally thought to inhibit transcription factor binding by physically
preventing proteins from binding their target DNA sequences [30]. However, mounting evidence from
in vivo and in vitro experiments now challenge this view. High-throughput in vitro assays such as
protein microarrays and methyl-SELEX (systematic evolution of ligands by exponential enrichment)
showed that TFs not only bind methylated motifs, but also that their binding affinity can be enhanced
by 5mC [31] [32] [33]. Evidence that the methylation landscape can be remodeled in vivo by the
binding of specific transcription factors such as the CCCTC-binding factor (CTCF) or the RE1 Silencing
Transcription Factor (REST) has further challenged the traditional view [16]. Despite the experimental
in vivo identification of a handful of TFs with modified specificity for methylated motifs [34] [33], the
impact of cytosine methylation on the regulation of TF binding in distinct genomic contexts remains

unclear.

We designed a comparative epigenomic study of DNA methylation patterns within TF binding regions.
We generated whole-genome bisulfite-sequencing data from livers of five mammalian species
(human, macaque, mouse, rat, and dog) and retrieved publicly available ChIP-sequencing data from
five transcription factors in matched tissues. Four of the assayed transcription factors represent key
components of the liver-specific regulatory network [35], namely: CCAAT/enhancer-binding protein
alpha (CEBPA), hepatocyte nuclear factor 4 alpha (HNF4A), One Cut Homeobox 1 (ONECUT1, also
known as HNF6), forkhead box protein A1 (FOXA1, also known as HNF3A). The final TF included in this

study, CTCF, is a ubiquitous and multifunctional protein [36]. We used these datasets to characterize
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DNA methylation at TF binding regions, find different DNAm patterns within distinct functional

genomic elements, and show that DNA methylation and TF binding co-evolve.

RESULTS

Experimentally profiling DNA methylation in transcription factor binding regions

We obtained flash-frozen liver samples from five mammalian species (Homo sapiens, Macaca mulatta,
Mus musculus, Rattus norvegicus and Canis familiaris) and performed whole-genome bisulfite
sequencing to assay genome wide CpG methylation. We combined these results with previously
available chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) data for
tissue-specific and ubiquitous transcription factors. Specifically, we reanalyzed ChlIP-seq data for CTCF,
CEBPA, HNF4A, in all five species; FOXAL in all species but macaque; and ONECUT1 in all species but
dog. This allowed us to determine the CpG methylation patterns at transcription factor binding
regions, and compare their evolutionary conservation across mammals (Figure 1A). We profiled the
methylation of 39-57 millions CpGs in each species at an average of 6-15X coverage (Supplementary
Table 1), which accounted for 82-97% of all genomic CpGs (Figure 1B). As previously reported [30],the
distribution of genomic CpG methylation is bimodal, with the highest between 80-100% methylation
and the lowest between 0-10% (Figure 1C). These coordinated datasets enabled us to investigate

relationships between DNA methylation and transcription factor binding.

Transcription factor binding regions have intermediate CpG methylation

We explored the presence of CpGs and their methylation levels at transcription factor binding regions
(TFBRs) and binding sites (TFBSs). Using the ChlIP-seq data, we first identified TFBRs by calling peaks
with MACS2 [37], and normalized their length to the average peak length estimated separately for

each transcription factor and species (Supplementary Table 2, Methods). TFBSs were defined as the
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DNA sequence where the relevant TF binding motif mapped closest to ChIP-seq peak summit
(Methods). We found that around 80% of binding regions harbor at least one CpG in the close
proximity of the binding site (Figure 2A). TFBRs frequently have between three and five CpG sites
(Figure 2B). However, only a considerably smaller fraction of regions contains a CpG at the binding site
(Figure 2A). CTCF is an exception in that approximately 30% of binding sites contain one or more CpGs
(Figure 2A). This is also reflected in the canonical motif logos - CTCF has more high-scoring CpGs
instances in the position weight matrix (Supplementary Figure S1A). Taken together, transcription
factor binding regions commonly contain CpGs, but rarely at the binding site. This suggests that the
closely surrounding region has a few key sites that could be methylated and thus potentially affect

binding through direct steric hindrance or interference with a binding partner.

The average methylation across TFBRs is a bimodal distribution (Figure 2C), with both modes below
40%. This differs from the genomic background bimodal distribution (Figure 1C) and suggests that
most binding regions are either depleted of methylation or have intermediate methylation levels.
Intermediate methylation (IM) is also observed when considering CpG methylation density
distributions at binding regions and binding sites (Figure 2D, Supplementary Figure S1B). These
distributions are bimodal and confirm that a considerable fraction of CpGs take up intermediate
methylation levels, and that IM is not simply an artefact of averaging across the regions. Interestingly,
hypermethylation occurs more commonly in CEBPA TFBS than in the wider CEBPA TFBR (Figure 2D).
This supports previous observations that CEBPA may bind to methylated motifs [34], while there is no
such evidence for the remaining factors. CTCF is again an exception: in all species assayed, it has a
unimodal distribution with a large fraction of fully demethylated TFBRs and an absence of
intermediate methylation (Figure 2C and 2D). Taken together, hypo- and intermediate methylation
are signatures of both TFBRs and TFBSs. The wide range of methylation levels we observed most likely
reflects the diverse genomic contexts where TF bind, such as promoters or distal regulatory elements

[16].
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Transcription factors bind regions of distinct methylation profiles

To explore the methylation patterns of the genomic neighborhood bound by transcription factors, we
extended the TFBRs to 1200 bp and found that CpG frequency is higher than at random genomic
regions and increases approaching the peak summit (Figure 3A, Supplementary Figure S2). This is
consistent across species and factors, although the width and height of the frequency peaks varies
between transcription factors. Inversely to CpG frequency, methylation levels are high at 600 bp away
and then sharply fall at the binding summit (Figure 3A, Supplementary Figure S2). This shows that
TFBRs are characterized by key CpGs in close proximity of the binding site which are predominantly
unmethylated when the protein is bound. A few key features stand out from these profiles. First, CTCF
exhibits an oscillatory methylation profile which is likely associated to the strong positional pattern of
nucleosomes around CTCF binding sites[38][39]. Second, though CEBPA binding sites have overall low
methylation, there is a slight increase in methylation at the binding site. This is consistent with the
higher density of hypermethylation in CEBPA TFBSs compared to TFBRs shown in Figure 2D. These
average profiles demonstrate the most common methylation patterns around transcription factor
binding sites. To study the methylation profiles in more detail, we next asked if the average profiles

can be further dissected into distinct patterns of local methylation.

To investigate multiple coexisting DNA methylation patterns, we derived the methylation profiles of
extended TFBRs using generalized linear model regression and clustering with the BPRMeth R package
[40]. According to the best fit model, all extended TFBRs cluster into three or four prototypical
methylation profiles with discernible patterns (Figure 3B and Supplementary Figure S3, Methods).
These profiles are very similar across transcription factors and species, and we named them according
to their features. The “high” clusters are the most abundant for all factors (Figure 3C and
Supplementary Figure S4), they have high methylation 300-500 bases from the binding site and show

a narrow drop to intermediate methylation levels at the center (Figure 3B and Supplementary Figure
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S3). All transcription factors but CTCF were assigned right and left “specular” profiles (so named
because they are mirror images of each other) that have 70% methylation at one end of the profile, a
drop to 20% methylation at the binding site, and low methylation maintained to the opposite end of
the profile (Figure 3B and Supplementary Figure S3). The right and left specular profiles account for
about 40% of binding regions (Figure 3C). The last “flat” profile comprises of the smallest group of
binding regions (Figure 3C), and is characterized by wide regions of complete demethylation (Figure
3B and Supplementary Figure S3). Only a few thousands binding regions could not be used for
clustering due to a small number of CpGs (i.e. less than four), and were hence named non-classified
(“NC”). Specular methylation clusters were not observed for CTCF, instead it has an intermediately
methylated cluster, the “mid” cluster. The mid is similar to the high cluster, but with a steeper drop in
methylation and complete demethylation at the binding site (Figure 3B and Supplementary Figure S3).
These prototypical profiles are reproducible across both species and transcriptions factors
(Supplementary Figure S3). Taken together, clustering classification provides a robust approach to
group transcription factor binding regions according to their distinct and conserved methylation

patterns.

Methylation profiles have distinct contexts and functions

DNA methylation levels and CpG density are associated with different regulatory contexts [41],
therefore we next explored if the prototypical methylation profiles associate with distinct regulatory
functions. To test the association with regulatory contexts, we annotated TFBRs using available active
promoter (marked by histone 3 lysine 4 trimethylation (H3K4me3) and histone 3 lysine 27 acetylation
(H3K27ac)), active enhancer (marked by histone 3 lysine 4 monomethylation (H3K4mel) and
H3K27ac) and primed enhancer (H3K4me1l only) calls determined by ChIP-seq [42] (Figure 3C right
side and Supplementary Figure S4A). To explore their genome-wide methylation context, we

annotated TFBRs according to their occurrence in Un-Methylated (UMRs), Lowly-Methylated (LMRs)
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and Fully-Methylated (FMRs) Regions ([26], Methods) (Figure 3C left side and Supplementary Figure

S4B).

A significantly high proportion (around 70%) of TFBRs with the flat profile overlap with active
promoters (Figure 3C right side and Supplementary Figure S4B). These are mostly found within UMRs,
very close to transcription start sites (TSSs), and 35% overlap an annotated TSS (Figure 3D and
Supplementary Figure S5). In fact, many of these regions are also found within CpG islands
(Supplementary Figure S6B). This is consistent across all species and for all transcription factors
(Supplementary Figure S6B). This shows that TFBRs of the flat clusters are largely promoter regions.
The right and left specular profiles comprise of similar numbers of binding regions (Figure 3C), have
comparable methylation levels (Supplementary Figure S7A) and similar annotations (Figure 3C and 3D,
Supplementary Figure S4 and S5), clearly underlying the same regulatory contexts. Therefore, for
further analyses we grouped these two profiles together. Most TFBRs of the specular profiles are
significantly found in LMRs and enhancers, with only a small fraction overlapping active promoters.
Similarly, the high profile comprises of TFBR significantly overlapping enhancers, but predominantly
in fully methylated regions (FMRs). The non-classified (NC) TFBR are found in FMRs and about 40% of
them were annotated as enhancers. The enhancer regions of the specular, high and NC groups are
equally far from TSSs (Figure 3D and Supplementary Figure S5) and do not overlap with CpG islands
(Supplementary Figure S6). Generally, TF binding events associated with the different methylation
profiles show similar binding intensities, measured by the ChlIP-seq signal fold enrichment
distributions (Supplementary Figure 7). However, binding events associated to the high profiles had
significantly lower fold enrichment scores than the specular profiles (Supplementary Figure 7). Next,
we compared CpG densities associated to the methylation profiles and found that flat profile TFBRs
are the richest, while those with the high profile have significantly fewer CpGs (Supplementary Figure

S6A), showing that the profiles have unique CpG densities. We show that prototypical DNA
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methylation profiles distinguish between unmethylated CpG-rich promoter regions, lowly-methylated

enhancers with intermediate CpG density, and highly-methylated CpG-poor enhancers.

CTCF has exceptionally few overlaps with regulatory regions, except for TFBRs of the flat profile which
have comparable annotations to the other transcription factors. 25% of TFBRs with the mid profile,
found only for CTCF, and 10% with the high profile overlap primed or active enhancers. This overlap
is too small to confidently assign CTCF TFBRs of these profiles to regulatory contexts. Moreover, TFBRs
with a mid profile typically show higher binding intensity (Supplementary Figure 7). Given that CTCF
not only has a role in regulation, but also in genome stability and architecture, the low overlap with

promoters and enhancers likely reflects methylation landscapes of alternative chromatin contexts.

Taken together, transcription factors bind within different chromatin contexts that are marked by

specific DNA methylation profiles which are deeply conserved in mammals.

DNA methylation levels are coupled to transcription factor binding divergence

We investigated the evolutionary conservation of DNA methylation patterns across species and its
association with transcription factor binding divergence. First, we leveraged the EPO multiple species
alignments from Ensembl version 98 [43] to define regions orthologous to TFBRs by projecting their
coordinates onto the other species’ genome (Figure 4A, Methods). Next, we compared DNA
methylation levels across TFBRs and their orthologous counterparts to check for TF binding in the
orthologous region. Typically, orthologous regions that do not bind a TF have higher methylation levels
than those that do, with average medians of around 75% and 20%, respectively (Figure 4B). The
orthologous unbound regions have hypermethylation levels comparable to randomly selected
genomic segments (Figure 4B), and to those previously described for the non-regulatory portion of
the genome [23]. Next, we leveraged the parsimony principle and the structure of our phylogenetic

tree to subset orthologous regions into evolutionary binding losses and gains (Figure 4A, Methods).

10
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We found that the difference between methylation levels of bound and unbound orthologous regions
is more pronounced for binding losses than binding gains (Supplementary Figure S8A). These results
show coordinated evolution of DNA methylation and TF binding, and suggest that orthologous regions
which lost a binding event over evolution are reset back to the hypermethylated levels of the non-

regulatory genome.

We further investigated whether there is a correlation between DNA methylation and the degree of
TF binding conservation (Figure 4A). Lineage-specific binding events (i.e. those bound in only one of
the species studied) have intermediate levels of methylation; as the number of species sharing a
binding event at orthologous locations increases, the methylation level decreases (Figure 4C,
Supplementary Figure S8B). DNA methylation is inversely correlated to the degree of species
conservation, even for orthologous unbound regions. These results show that DNA methylation co-

evolves with the binding divergence of specific TFs.

Next, we explored the prevalence of DNA methylation profiles across TFBRs with different degrees of
binding conservation. We found a highly significant association between species conservation and
profile assignments of TFBR (chi-square test, p value < 0.05). Figure 4D and Supplementary Figure S9
estimate the strength of the association through Pearson’s residuals (Methods), and shows that the
high and flat profiles associate most strongly with species conservation, although in opposite
directions. Specifically, lineage-specific binding events are negatively associated with the flat profile,
and the higher the species conservation the stronger the association. TFBRs with high profiles show
the opposite trend; only the lineage-specific binding events have a positive association between
species conservation and the profile, while higher degrees of conservation contribute negatively. The
specular profiles contribute mildly to species conservation. CTCF TFBRs have different associations:
those with flat profiles only mildly contribute to correlation with higher species conservation, instead

those with mid profiles contribute more strongly. The association of specific methylation profiles to

11
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varying degrees of species conservation can in part explain the co-evolution of TF binding and DNA

methylation.

In conclusion, DNA methylation is coupled with TF binding divergence at different levels. Bound
regions are more highly methylated than orthologous unbound regions. Furthermore, the methylation
of both bound and unbound regions tracks with the degree of species conservation. Finally, different
methylation profiles are associated with high and low species conservation, indicating that their

regulatory contexts might contribute to evolutionary coupling of TF binding and DNA methylation.

DISCUSSION

To explore the co-evolution of DNA methylation and TF binding, we combined newly generated
bisulfite-sequencing experiments and matched publicly available ChIP-sequencing data for five
transcription factors in five mammals. These datasets allowed us to determine the spatial variation of
DNA methylation across transcription factor binding regions and characterize the genomic contexts
that establish distinct DNA methylation patterns. We leveraged interspecies differences that arose
over 96 million years of evolution among the five species and revealed coordinated evolution between

transcription factor binding divergence and DNA methylation patterns.

CpG methylation levels in transcription factor binding regions depend on the genomic context

The extent of DNAm’s role in modulating TF binding through changes of affinity towards their target
sequences is still not clear [44] [31]. Our data show that only a small subpopulation of TFBSs contain
a CpG and thus could be directly affected by 5mC. Considering the instability of methylated cytosines
[45], this suggests that CpGs may be generally negatively selected at TFBSs and those present could
be protected from mutagenic processes through other mechanisms, but further investigation is

necessary to confirm this hypothesis.

12
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The wider genomic context surrounding the investigated TFBRs more often harbor CpGs than their
TFBSs. Their methylation state is less likely to directly disrupt the TF binding site, however it can still
affect binding through processes such as steric hindrance or the recruitment of chromatin remodelers.
Our results therefore suggest that local demethylation in TFBRs is rarely due to the direct competition
between transcription factors and DNAm levels [46],[16]. Furthermore, the intermediate methylation
and complete demethylation that we observed at TFBRs are consistent with a recently published
model describing distinct methylation dynamics between different genomic contexts [25]. For
example, it showed that intermediate methylation at distal regulatory regions is the result of an

increased rate of passive demethylation and variable rates of de novo methylation.

To enhance interpretability across genomic contexts, we further described local methylation patterns
within TFBRs and their genomic surroundings using generalized linear model regression and clustering
[28] [40]. We revealed that methylation patterns of TF binding regions can be summarized in three
prototypical profiles, and reflect their genetic and chromatin contexts. The profile with low levels of
methylation throughout (i.e. flat) was typical of CpG-rich promoter regions, and is likely the results of
H3K4me3’s inhibition of de novo methylation [47]. On the other hand, profiles with intermediate
levels overall were enriched within distal regulatory elements marked by H3K4me1. The high profiles
had intermediate to high methylation and mostly occurred in CpG-poor enhancers. The specular
profiles had low to intermediate methylation and were also marked by the active histone mark
H3K27ac. Thus, different types of regulatory regions can be discriminated solely based on 5mC

patterns.

Taken together, our results suggest that local methylation levels are determined through competition

among a wider number of context-dependent regulatory players such as transcription factors,

chromatin remodelers and DNA methylation effectors.

13
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Coevolution of 5mC and transcription factor binding

Although most transcription factors bind extremely conserved DNA motifs in mammals, their genome-
wide binding patterns are highly divergent between species [3][6]. Our study reveals that DNAm
follows inter-species divergence of cis-regulatory activity. Specifically, 5mC levels are low at TF bound
regions, but they increase at orthologous locations after binding loss to levels of non-regulatory
intergenic CpGs. Given that DNA methylation broadly mimics occupancy of various TFs [8] [48], the
detected gains of methylation may be indicative of complete regulatory turnover of the orthologous

region.

Within each genome, we showed that 5mC levels are inversely proportional to the number of species
with conserved binding. This is true for all orthologous regions regardless of whether they are bound,
though unbound regions have higher methylation values on average. These results can partly be
explained by enhancers evolving more rapidly than promoters [49],[50]: binding sites with flat
methylation profiles characterize promoters and have low within-species methylation, while those

with high methylation profiles characterize enhancers and have higher within-species methylation.

We show that the genomic context partially explains the evolutionary relationship between 5mC and
TF binding divergence, but more elaborate models are needed to define the rate of DNAm turnover

within these contexts.

CTCF has distinct CpG methylation profiles and evolution

Our analyses demonstrate that CTCF profoundly differs from the other TFs investigated in its DNA
methylation landscape and evolution. Unlike other TFs, 30% of CTCF binding sites contain at least one
CpG and CpGs close to the ChlIP-seq peak summit are overall more stably and lowly methylated. At
the same time, CTCF binding events are found in hypermethylated contexts more often as 5mC rapidly

increases around the binding site. Aside from CTCF TFBRs found within CpG-rich promoters (i.e. flat
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profiles), the remaining CTCF TFBRs have different profiles that are not linked to promoter or enhancer
elements. These differences in 5mC profiles may be explained by their different functions: CEBPA,
HNF4A, ONECUT1 and FOXA1 are transcription factors involved in the activation of key liver genes
[35], while CTCF is a multifunctional and ubiquitous transcription factor involved in gene activation

but also in determining three-dimensional genome structure, insulation, and gene repression [36,51].

Finally, CTCF’s 5mC profiles evolve differently than those of the other TFs. Specifically, the flat CTCF
profile, despite being enriched with promoters, is not associated with high species conservation. This
may be due to the previously described redundancy of CTCF near functionally important sites
(Kentepozidou et al. 2020), which may buffer the loss of a CTCF binding event in one species through
turnover. This suggests that CTCF’s binding events within the flat cluster are under less stringent
evolutionary pressure than the wider promoter region. On the other hand, the CTCF-specific
methylation profile (i.e. mid) is strongly associated with high species conservation, depleted at
lineage-specific binding events, and may be subjected to high evolutionary pressure. This points to an

important role for these binding sites, but further work is necessary to characterize their function.

METHODS
Publicly available data
All  ChiIP-seq data are publicly available and were retrieved from ArrayExpress

(https://www.ebi.ac.uk/arrayexpress). CTCF ChIP-seq data for all species can be downloaded under

accession number E-MTAB-437. HNF4A, ONECUT1, FOXA1 and CEBPA ChlP-seq data for all species can
be retrieved under accession number E-MTAB-1509. We used all the available experiments except
ONECUT1 from dog, due to the lack of replicates. ChIP-seq of histone modifications and processed

regulatory region calls can be accessed in ArrayExpress with accession number E-MTAB-7127.

Tissue preparation
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Mammalian liver samples were extracted post-mortem, perfused with PBS, and flash-frozen in liquid
nitrogen. Tissues were prepared immediately post-mortem (typically within an hour) to maximize
experimental quality, and were kept on ice until processed to minimize potential DNA degradation.
Total genomic DNA was extracted from each sample with commercial reagents and following
manufacturer guidelines (Qiagen, DNAEasy Blood&Tissue kit). Details on origin, number of replicates,
sex and age for each species’ sample are in Supplementary Table 1.

DNA from at least two independent biological replicates from different animals was prepared for each
species. Wherever possible, livers from young adult males were used. Samples of healthy liver tissue
from humans were obtained from the Addenbrooke’s Hospital at the University of Cambridge under
license number 08-H0308-117 “Liver specific transcriptional regulation”. Mouse samples were

obtained from the Cambridge Institute under Home Office license PPL 80/2197.

Whole-genome bisulfite sequencing (WGBS) protocol

Mammalian DNA was subjected to bisulfite conversion using Epimark CT conversion kit using Agilent
and/or Epimark polymerase (Supplementary Table 1). Subsequently libraries were prepared using
NEBNext Ultra DNA library preparation kit and sequenced using an Illumina massively parallel

sequencer.

Genome resources

All genomes were downloaded from the Ensembl ftp version 98 [52] as toplevel assembly files. We
then filtered out patches and scaffolds and retained only assembled chromosomes. The species
genome versions used are the following: GRCh38.p13 for human, GRCm38.p6 for mouse, Mmul_10

for macaque, Rnor_6.0 for rat and CanFam3.1 for dog.

WGBS data processing
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Paired-end FASTQ files were trimmed and adapters removed using TrimGalore! version 0.6.4_dev [53]
with default parameters. We then processed the data using Bismark version 0.22.3 [54]. First, we
performed in-silico bisulfite conversion of the reference genome, i.e. C>T and G->A conversions,
using the bismark_genome_preparation script. Next, reads were mapped to each species’ genome by
running bismark with default parameters. Duplicate reads were removed from bam files with
bismark_deduplicator, before extracting methylation calls using bismark_methylation_extractor with
the following parameters: bismark _methylation _extractor --comprehensive --merge_non CpG --
bedGraph --no_overlap --ignore r2. Finally, we generated a coverage file using the script
coverage2cytosine with the following parameters: coverage2cytosine --merge_CpG --zero_based.
Methylation calls were considered in downstream analyses only if supported by methylation evidence

from at least four CpGs (i.e. minimum four read coverage).

ChiIP-seq data processing

Paired-end FASTQ files were trimmed and the sequencing adapters removed using TrimGalore! [53]
with default parameters. Trimmed reads were then mapped to each species’ genomes using bowtie2
version 2.3.5.1 [55] with default parameters. We next called peaks using MACS2 version 2.1.4 [37]
using the narrow peak mode and the -f BAMPE parameter. FOXA1 experiments from macaque were
removed from further analyses due to a smaller number of peaks called compared to the other
species. To call reproducible peaks we found overlap between replicates’ peaks with bedtools intersect
v2.29.2 [56] and kept those that overlap with at least one base between both replicates. For further
analyses, we represented the reproducible peak as the original replicate peak with the strongest

signal, as defined by the MACS2 p-value.

Defining transcription factor binding regions (TFBRs) and their methylation coverage
To define transcription factor binding regions (TFBRs) we normalized reproducible peak sets for

length. Specifically, we extended the reproducible peaks from the peak summit equally in both
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directions until we reached the average total peak length within that species and factor. To calculate
the number of CpGs that overlap with TFBRs, we used bedtools intersect and bedtools groupy to
intersect the TFBRs with the methylation coverage file. We repeated the same process to calculate
the average methylation level associated with TFBRs, but only considered CpGs covered at least four

times.

Motif discovery and transcription factor binding site (TFBS) annotation

Motif discovery was conducted with the MEME suite version 5.0.5 [57]. From each peak set we
selected the 500 strongest peaks, i.e. with lowest MACS2 p-values, and restricted them to 100bp
centered on the peak summit. From this representative set, we performed de-novo motif discovery
for the most significant motif using MEME with the following parameters -mod oops -dna -revcomp -
nmotifs 1. Next, we identified motif matches to these newly generated motif position weight matrices
(PWMs) in each TFBR set with FIMO using a p-value threshold -thresh 0.005 and the option -max-
stored-scores 1000000000. To define transcription factor binding sites (TFBSs), we kept the motif
closets to the peak summit. We calculated the number of CpGs and average methylation levels within

TFBSs with the same procedure as for TFBRs.

5mC and CpG density profiles

We modelled 5mC profiles with an average methylation approach and using the probabilistic model
implemented in the BPRMeth R package [40]. We first extended TFBRs to 2Kb centered on the ChlIP-
seq summit, then intersected these extended regions with methylation coverage files.

To calculate average 5mC profiles (Figure 3A and Supplementary Figure S2), we first created a matrix
in R version 4.0.1 [58] where each row is an extended TFBRs and the positions denote presence and
methylation levels of CpGs covered at least 4 times. For each column we calculated the average
methylation level and plotted the results using ggplot2 jitters version 3.3.4 [59]. To calculate CpG

frequency, we repeated the same process but used all CpGs, regardless of coverage.
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To model and cluster 5mC profiles with a probabilistic approach (Figure 3B and Supplementary Figure
S3), we inferred profiles using the mean-field variational inference (Variational Bayes) method from
the BPRMeth R package v1.8.2 [40]. For each species and each transcription factor, we independently
optimized the number of radial basis functions (RBFs) — which determine the spatial resolution of the
methylation profiles — and the number of clusters. To do so, we used the Bayesian Information
Criterion (BIC) and set the number of clusters to three for CTCF and to four for the remaining
transcription factors. The combination of parameters selected for each species and transcription

factor is shown in Supplementary Figure S3.

Functional categories of TF binding regions

We further annotated TFBRs into functional categories using regulatory region calls from [42], CpG
islands (CGls) and methylome segments annotations. CpG islands were calculated for each species’
genome with the EMBOSS cpgplot v6.6 [60] using default parameters. To segment the methylome in
UnMethylated Regions (UMRs), Lowly-Methylated Regions (LMRs), and Fully-Methylated Regions
(FMRs) we used the MethylSeekR R package version 1.22 [26], setting the FDR cutoff to 5 and the m
parameter to 0.5. To make the assignments, TFBRs were overlapped with each functional category
above using bedtools intersect v2.26 (1bp overlap required). In Figure 3C (left side, Supplementary
Figure 4B) we show the distribution of TFBRs’ clustered profile assignments between these functional
categories. Finally, we defined transcription start sites (TSSs) as the start of every annotated
transcripts in GTF files downloaded from the Ensembl version 98 ftp [52]. We used ggplot2 to plot
cumulative distributions of the distance between TFBRs and their the closest TSS (Figure 3D and

Supplementary Figure S5).

Evolutionary conservation of TF binding regions
To make evolutionary conservation calls for TFBRs we used their overlap in whole genome alignments.

Specifically, we used the EPO eutherian mammal alignment from Ensembl version 98 [43] to align each
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TFBR with every other species’ genome and extract the genomic coordinates of these orthologous
sequences. Next, we overlapped the orthologous coordinates with transcription factor binding
locations of the corresponding TF from the species projected to, and if overlap was found we called
the binding conserved. For example, CEBPA binding locations from mouse were first aligned to the rat
genome, then the aligned orthologous locations on the rat genome were intersected with CEBPA
binding locations from rat. If the projected sequence and the rat CEBPA binding region overlapped
with at least 1bp, these were considered conserved between mouse and rat. For each binding event
within each species, we then summarized the number of species the binding sequence was alignable

to and the number of species the binding sequence was both alignable and conserved.

We categorized binding events in two ways (Figure 4A), the first according to the number of species
with conserved binding and the second according to phylogeny. The number of species with
conservation was defined irrespective of phylogeny; for example, if the binding event was shared at
orthologous locations in exactly three species, that was called a 3-way conserved binding event. The
second categorization was based on the phylogenetic relationships between the species. Specifically,
we considered binding only shared by mouse and rat exclusive to the rodent clade and binding only
in human and macaque exclusive to the primate clade. We further built on the phylogenetic approach
using the parsimony method defined in [6] to call binding events as ultra-conserved (if the binding
event is shared by all species studied), lineage-specific binding loss (if the binding event is present in
all species except one), lineage-specific binding gain (if the binding event is present only in one
species), clade-specific binding gain (if the binding event is present in only one clade), and clade-

specific binding loss (if the binding event is present in all other species except one clade).

To explore the effect of methylation levels on binding conservation, we intersected the orthologous
sequences on each species’ genome with the corresponding methylation coverage files to obtain the

number of CpGs and their methylation levels, regardless of whether the corresponding TF was bound
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in that species. In Figures 4B, 4C and Supplementary Figure S8A, we calculated average 5mC levels for
the bound and unbound sequences within each evolutionary category. For example, within a rodent-
specific binding gain category (also defined as a 2-way binding event), the bound regions correspond
to the orthologous regions where a TFBR was identified in mouse and rat, while the unbound regions

correspond to the orthologous locations in the remaining species not bound by the TF.

Association between 5mC profiles and evolutionary conservation

To test for independence between evolutionary categories of binding conservation and clustered
methylation profiles, we first used them to create a contingency table in R and then performed a chi
squared test using the chisq.test function. We extracted the chi squared residuals and plotted the

correlation as balloon plots with the corrplot R function (Figure 4D and Supplementary Figure S9).
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FIGURE LEGENDS

Figure 1: Experimentally mapping methylomes across mammals.

A) Example cross species whole genome alignment of the SMG6 gene. For each species levels of CpG
methylation assayed with bisulfite sequencing are shown above the region, and binding of five
transcription factors tracks (CEBPA, CTCF, FOXA1, HNF4A, ONECUT1) assayed through ChlP-
sequencing are shown below. B) Genomic coverage of WGBS data in each species. The y-axis shows
the percentage, while the radius of each point denotes the total number of CpGs covered on the
forward and reverse strands. C) Genome wide CpG methylation density distributions for each species.

All distributions are bimodal, with the vast majority of CpGs hypermethylated.

Figure 2: Low and intermediate methylation are signatures of TFBRs.

A) Percentage of TFBRs and TFBSs harboring at least one CpG for each TF and species. Most TFBRs
contain CpGs, but rarely at the TF binding site. B) Density distributions of CpGs within TFBRs. TFBRS
generally have between three and five CpGs. C) Average methylation levels of TFBRs. In all species and
most TFs the distributions are bimodal, with the highest mode within intermediate levels of 5mC. CTCF
has unimodal distributions across all species. D) CpG methylation density distributions at TFBRs and

TFBSs. All distributions are bimodal, except for CTCF which has unimodal distributions in all species.

Figure 3: Distinct methylations profiles characterize transcription factor binding regions.

A) Average 5mC and CpG frequency profiles of human transcription factor binding regions, centered
on ChlP-seq peak summits and normalized to 1200bp length. The number of regions classified in each
profile is shown in panel B. B) Clustered 5mC profiles for rat CEBPA, mouse FOXA1 and macaque CTCF
binding regions centered on ChlP-seq peak summits and normalized to 1200bp length. The regions
have four types of methylation profiles: “flat” in dark green, “left” and “right” in purple and orange,
respectively, (both referred to as “specular” in the text), “high” in light green and “mid”, which is

unique to CTCF, in pink. C) Annotations of TF binding regions associated to each clustered methylation
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profiles defined in panel B. On the left, the percentage of TF binding events belonging to each
methylation profile located within Unmethylated (UMRs), Lowly-Methylated (LMRs) or Fully-
Methylated Regions (FMR) of the genome. On the right, the percentage of TF binding events in each
5mC profile that are annotated as active promoters, active enhancers, or primed enhancers. Asterisks
indicate that the annotation category is significantly enriched (z-test with Bonferroni correction, * =
p-values << 0.05) D) Cumulative distributions of the distance of each TF binding region from the

nearest transcription start site, grouped by methylation profiles defined in panel B.

Figure 4: Coevolution of methylation and TF binding in mammals.

A) Schematic representation of the phylogenetic parsimony approach (adapted from [6]) to define
species conservation categories and number of species with binding conservation. Briefly, TF binding
events were first alignhed and compared across species, then divided using parsimony in lineage- and
clade- specific binding losses, and lineage- and clade- specific binding gains. Regions with
experimentally determined binding in the species were called as orthologous bound, and those
without binding unbound. Ultra-conserved binding events were defined as those bound across all
species. Below, examples of corresponding degrees of species conservation defined by the total
number of species that share a TF binding event. B) Average 5mC level distribution of bound regions,
orthologous unbound regions and genomic background (BG), with significant differences marked with
asterixis (Wilcoxon test with Bonferroni correction, *** = p-value <= 0.001). C) Average 5mC
distributions within CEBPA and CTCF bound and orthologous unbound regions divided by species
conservation categories defined in panel A (Jonckheere-Terpstra trend test, p-values < 2.2e10”"6),
shown for dog and macaque. D) Relationships between species conservation and 5mC profiles.
Balloon plots show Pearson’s residuals from an association analysis between 5mC profiles and TF

binding conservation categories for dog’s CEBPA and macaque’s CTCF TF binding events.
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Figure S1: A) Position weight matrices (PWMs) calculated de novo for all transcription factors in this
study and in all species. B) CpG methylation density distributions at TFBRs and TFBSs for ONECUT]1,
HNF4A and FOXA1 in all species.
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Figure S4: Annotation of TFBRs associated to the clustered 5mC profiles for all species and TFs. A)
Proportion of TFBRs that overlap with annotated promoters, active enhancers, and primed enhancers.
Asterisks indicate enrichment of annotation type (z-test, p-value < 0.05). B) Proportion of TFBRs that
overlap with annotated UMRs, LMRs or FMRs. FOXA1 ChlIP-seq was not available for macaque, and
ONECUT1 was not available for dog.
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Figure S7: A) Average methylation levels distribution of TF binding regions associated with different
clustered 5mC profiles. B) distribution of fold enrichment values of TF binding regions (ChIP-seq peaks)
associated with different clustered methylation profiles (Wilcoxon rank test, ****: p<0.0001, ***:
p<0.001, **: p<0.01, *: p<=0.05, ns: p>0.05). FOXA1 ChIP-seq was not available for macaque, and

ONECUT1 was not available for dog.
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Figure S8: A) Average 5mC levels distribution of binding gains sequences compared to binding loss
(Wilcoxon rank test, p-value < 0.05; Bonferroni correction). B) Average DNA methylation levels
distribution of TF bound and unbound regions divided by species conservation categories (Jonckheere-
Terpstra trend test, p-values < 2.2e1076). FOXA1 ChlIP-seq was not available for macaque, and
ONECUT1 was not available for dog.
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Figure S9: Balloon plots showing Pearson’s residuals from the association analysis between 5mC
profiles and TF binding conservation categories for all species and TFs. FOXA1 ChlP-seq was not
available for macaque, and ONECUT1 was not available for dog.
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