

1      **Cohesin is involved in transcriptional repression of stage-specific genes in the**  
2      **human malaria parasite**

3      Catarina Rosa<sup>1-5</sup>, Parul Singh<sup>1-4</sup>, Ameya Sinha<sup>6,7</sup>, Peter R Preiser<sup>6,7</sup>, Peter C Dedon<sup>7,8</sup>, Sebastian  
4      Baumgarten<sup>4,9</sup>, Artur Scherf<sup>1-4</sup>, Jessica M Bryant<sup>1-4\*</sup>

5  
6      <sup>1</sup> Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France

7      <sup>2</sup> INSERM U1201, Paris, France

8      <sup>3</sup> CNRS EMR9195, Paris, France

9      <sup>4</sup> Université Paris Cité, Paris, France

10     <sup>5</sup> Sorbonne Université, Ecole Doctorale Complexité du Vivant ED515, Paris, France

11     <sup>6</sup> School of Biological Sciences, Nanyang Technological University, Singapore, Singapore

12     <sup>7</sup> Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research  
13     and Technology, Singapore, Singapore

14     <sup>8</sup> Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge,  
15     MA, USA

16     <sup>9</sup> Plasmodium RNA Biology Group, Institut Pasteur, Paris, France

17

18     \*Correspondence should be addressed to Jessica Bryant: [jessica.bryant@pasteur.fr](mailto:jessica.bryant@pasteur.fr)

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 **ABSTRACT**

34 The most virulent human malaria parasite, *Plasmodium falciparum*, has a complex life cycle  
35 between its human host and mosquito vector. Each stage is driven by a specific transcriptional  
36 program, but with a relatively high ratio of genes to specific transcription factors, it is unclear how  
37 genes are activated or silenced at specific times. The *P. falciparum* genome is relatively euchromatic  
38 compared to the mammalian genome, except for specific genes that are uniquely heterochromatinized  
39 via HP1. There seems to be an association between gene activity and spatial organization; however,  
40 the molecular mechanisms behind genome organization are unclear. While *P. falciparum* lacks key  
41 genome-organizing proteins found in metazoans, it does have all core components of the cohesin  
42 complex. In other eukaryotes, cohesin is involved in sister chromatid cohesion, transcription, and  
43 genome organization. To investigate the role of cohesin in *P. falciparum*, we combined genome  
44 editing, mass spectrometry, chromatin immunoprecipitation and sequencing (ChIP-seq), and RNA  
45 sequencing to functionally characterize the cohesin subunit Structural Maintenance of Chromosomes  
46 protein 3 (SMC3). SMC3 knockdown in early stages of the intraerythrocytic developmental cycle  
47 (IDC) resulted in significant upregulation of a subset of genes involved in erythrocyte egress and  
48 invasion, which are normally expressed at later stages. ChIP-seq of SMC3 revealed that over the IDC,  
49 enrichment at the promoter regions of these genes inversely correlates with their expression and  
50 chromatin accessibility levels. These data suggest that SMC3 binding helps to repress specific genes  
51 until their appropriate time of expression, revealing a new mode of stage-specific, HP1-independent  
52 gene repression in *P. falciparum*.

53

54

55

56

57

58 **INTRODUCTION**

59        The most virulent human malaria parasite, *P. falciparum*, has a significant impact on human  
60    health in endemic regions (World Health Organization, 2020). The approximately 48-hour  
61    intraerythrocytic developmental cycle (IDC) takes place in the human blood and is responsible for all  
62    clinical symptoms of malaria. During the IDC, each parasite replicates by schizogony, giving rise to  
63    up to 36 daughter cells that egress out of the red blood cell (RBC) and begin a new round of infection  
64    (Cowman et al., 2016). Underlying parasite development across the IDC is a highly coordinated gene  
65    expression program in which transcription of most genes peaks when the corresponding protein is  
66    required (Bozdech et al., 2003; Painter et al., 2018). Since the major limiting step for gene expression  
67    is transcription initiation (Caro et al., 2014), one possibility is that expression patterns result from a  
68    precisely timed production and/or binding of sequence-specific transcription factors (TFs). While  
69    recent studies of chromatin accessibility show evidence for dynamic exposure of potential  
70    transcription factor binding sites upstream of genes, the *P. falciparum* genome encodes few sequence-  
71    specific TFs compared to other eukaryotes, accounting for less than 1% of the protein-coding genes  
72    (Balaji et al., 2005; Campbell et al., 2010; Toenhake et al., 2018).

73        The majority of the *P. falciparum* genome is in a transcriptionally permissive, euchromatic  
74    state, with histone acetylation and deacetylation being the main predictors of gene activation or  
75    repression, respectively (Salcedo-Amaya et al., 2009; Trelle et al., 2009). Exceptions to this rule  
76    include multigene families encoding variant surface antigens, which are uniquely  
77    heterochromatinized via heterochromatin protein 1 (HP1) and form clusters at the nuclear periphery  
78    (Lopez-Rubio et al., 2009; Ralph et al., 2005). The recent application of genome-wide chromosome  
79    conformation capture techniques (Hi-C) confirmed close association of these multigene families, the  
80    clustering of centromeres and telomeres at opposite sides of the nucleus, and co-localization of active  
81    ribosomal DNA (rDNA) genes (Ay et al., 2014; Bunnik et al., 2019). In addition to the strong  
82    clustering of HP1-enriched multigene families and highly transcribed rDNA units, genes with similar  
83    expression profiles were also found to associate in a spatiotemporal manner during the IDC (Ay et

84 al., 2014). Indeed, certain gene families appear to change their localization within the nucleus  
85 between the IDC (rings, trophozoites, and schizonts), the transmission from human to mosquito (early  
86 and late gametocytes), and from mosquito to human (sporozoites) (Bunnik et al., 2018).

87        Although this growing body of evidence shows that specific genes and genomic features  
88 associate at specific times in the *P. falciparum* life cycle, the factors responsible for this organization  
89 are largely unknown. Protein factors including actin and HP1 were shown to play a role in the  
90 organization and transcriptional regulation of the *var* multigene family (Lopez-Rubio et al., 2009;  
91 Ralph et al., 2005; Q. Zhang et al., 2011). More recently, an architectural factor, the high-mobility-  
92 group-box protein 1 (*Pf*HMGB1) was found to play a role in the nuclear organization of centromeres,  
93 and knockdown led to defects in *var* gene transcription (Lu et al., 2021). However, architectural  
94 factors linking chromosomal organization to the strict spatio-temporal transcriptional regulation of  
95 HP1-independent genes remain to be uncovered.

96        Although *P. falciparum* lacks lamins and CCCTC-binding factor (CTCF) – key genome  
97 organizing proteins in metazoans (Batsios et al., 2012; Heger et al., 2012) – it encodes the functionally  
98 uncharacterized putative orthologues of the core components of the cohesin complex: Structural  
99 Maintenance of Chromosomes protein 1 (SMC1, PF3D7\_1130700), SMC3 (PF3D7\_0414000), and  
100 an  $\alpha$ -kleisin subunit (RAD21) (PF3D7\_1440100) (Gardner et al., 2002). Among eukaryotes  
101 investigated, cohesin is a multiprotein complex that performs multiple different functions that  
102 primarily rely on its ability to topologically entrap strands of DNA (reviewed in (Dorsett & Ström,  
103 2012; Perea-Resa et al., 2021; Uhlmann, 2016)). SMC1 and SMC3 each contain a hinge domain,  
104 which facilitates dimerization between the two proteins, and an ATPase head domain (Fig. 1A).  
105 Association with RAD21 at the SMC1/3 head domains results in a ring-like structure (Fig. 1A) that  
106 is able to both entrap DNA (Gligoris et al., 2014; Huis in 't Veld et al., 2014) and extrude DNA loops  
107 (Davidson et al., 2019; Kim et al., 2019).

108        The most well-characterized role of cohesin is in holding replicated sister chromatids together  
109 to ensure faithful chromosome segregation during cell division (Michaelis et al., 1997). Cohesin is

110 loaded onto chromosomes during G<sub>1</sub> or S phase, but in early mitosis, most of it is removed except for  
111 at centromeric and pericentromeric regions. This final pool is removed at the onset of anaphase to  
112 facilitate chromatid separation (reviewed in (Mirkovic & Oliveira, 2017; Peters & Nishiyama, 2012)).  
113 In the IDC of *P. falciparum*, asexual replication is accomplished through endocyclic schizogony,  
114 during which asynchronous rounds of DNA replication and mitosis lead to multinucleated cells, all  
115 in the absence of chromosome condensation (Fig. 1B). Schizogony culminates with a final round of  
116 nuclear division before cytokinesis (Klaus et al., 2022; Rudlaff et al., 2020). While much recent  
117 progress has been made in elucidating the mechanisms behind this unique cell division, many  
118 questions remain.

119 In contrast to mitosis, cohesin binding during G<sub>1</sub> phase or in non-dividing cells was found to  
120 be more dynamic (Eichinger et al., 2013; Gerlich et al., 2006). In fact, in more recent years, the  
121 cohesin complex and the regulatory proteins that control the loading and unloading of the complex to  
122 DNA were found to play a role in shaping chromosomal architecture and thus, transcription, during  
123 interphase. In mammalian cells, cohesin and CTCF are often found at the boundaries of topologically  
124 associating domains (TADs) (Dixon et al., 2012; Nuebler et al., 2018; Rao et al., 2017; Wutz et al.,  
125 2017). A TAD is a region of the genome that preferentially interacts with itself in comparison with  
126 the rest of the genome (reviewed in (Dekker & Heard, 2015)). Importantly, TADs have emerged as  
127 functional structures involved in the regulation of cell type- and developmental stage-specific  
128 transcriptional programs, most likely via the correct pairing of enhancers with promoters (reviewed  
129 in (Dixon et al., 2016; Perea-Resa et al., 2021)). While the *P. falciparum* genome is not organized  
130 into TADs, as they are defined in metazoans, it does feature long-range inter- and intra-chromosomal  
131 that are involved in transcriptional control (Ay et al., 2014; Bunnik et al., 2019; Q. Zhang et al., 2011).

132 In *Plasmodium*, the physical association of SMC1, SMC3, and a protein containing the  
133 Rad21/Rec8-like N-terminal domain has been described (Hillier et al., 2019). Recently, a preliminary  
134 characterization of *PfSMC3* was carried out using an antibody generated in-house (Batugedara et al.,  
135 2020). Chromatin immunoprecipitation and sequencing (ChIP-seq) in trophozoites revealed that

136 SMC3 was enriched at centromeric regions (Batuagedara et al., 2020). In the present study, we use  
137 genome editing, mass spectrometry, and ChIP- and RNA-seq to functionally characterize the cohesin  
138 subunit SMC3 in interphase transcriptional regulation during the IDC. We show that while SMC3 is  
139 constantly present at centromeres across the IDC (Batuagedara et al., 2020), it binds dynamically to  
140 the promoters of a specific subset of genes that are upregulated in its absence. Our findings represent  
141 a new mode of transcriptional repression in *P. falciparum*.

142

## 143 RESULTS

### 144 SMC3 is expressed across the IDC and localizes to HP1-independent nuclear foci

145 In the *P. falciparum* genome, three putative core cohesin subunits have been annotated: SMC1  
146 (PF3D7\_1130700), SMC3 (PF3D7\_0414000), and a protein with the N-terminal Rad21/Rec8 domain  
147 (PF3D7\_1440100) (Fig. 1A). A comparative sequence analysis showed that, of these three subunits,  
148 *PfSMC3* shares the highest sequence similarly and identity to its orthologues in *H. sapiens*, *D.*  
149 *melanogaster*, *S. cerevisiae*, *S. pombe*, and *A. thaliana* (Fig. 1C). A Pfam domain analysis (Mistry et  
150 al., 2021) showed an overall conserved domain architecture: an N-terminal Walker A motif-  
151 containing domain, a central hinge domain, and a C-terminal Walker B motif-containing domain (Fig.  
152 1C). Given the conserved nature of *PfSMC3*, we decided to investigate its function *in vivo*.

153 We used CRISPR/Cas9 genome editing (Ghorbal et al., 2014) to add a 3x hemagglutinin  
154 (3HA) epitope tag-encoding sequence followed by a *glmS* ribozyme-encoding sequence at the 3' end  
155 of *smc3* (SMC3-3HA-*glmS*), which allows for inducible knockdown (Prommana et al., 2013).  
156 Immunoprecipitation followed by liquid chromatography-mass spectrometry (IP LC-MS/MS) of  
157 SMC3-3HA confirmed the interaction of SMC1, SMC3, and RAD21 previously reported in *P.*  
158 *falciparum* (Hillier et al., 2019; Batuagedara et al., 2020) (Table 1). A Stromal Antigen (STAG)  
159 domain-containing protein (PF3D7\_1456500) was also enriched in the SMC3-3HA IP LC-MS/MS,  
160 suggesting that a fourth cohesin subunit (STAG1/2 in *H. sapiens* and Scc3 in *S. cerevisiae*) is present  
161 in the *P. falciparum* cohesin complex (Table 1).

162 Western blot analysis of a synchronous bulk population of SMC3-3HA-*glmS* parasites  
163 showed that SMC3 is expressed across the IDC, but increases in abundance from ring to schizont  
164 stage (Fig. 1D). The presence of SMC3 in both ring and trophozoite stages suggests that cohesin is  
165 playing a role in interphase parasites (i.e. outside schizogony) and perhaps even before the onset of S  
166 phase, which is believed to take place after 24 hpi (Arnot et al., 2011; Ganter et al., 2017; Stanojcic  
167 et al., 2017) (Fig. 1B). Immunofluorescence assay (IFA) corroborated the nuclear localization,  
168 revealing a focus of SMC3-3HA at the nuclear periphery in trophozoite and schizont stages (Fig. 1E).  
169 While these foci are reminiscent of the heterochromatic *var* gene clusters at the nuclear periphery, no  
170 co-localization was observed between SMC3 and HP1 foci in trophozoite stage (Fig. 1F). It was not  
171 possible to detect SMC3 in ring stage and early trophozoite parasites with IFA, possibly due to the  
172 low abundance of the protein at this stage.

### 173 **SMC3 binds stably to centromeres, but dynamically to other genes across the IDC**

174 To determine the genome-wide binding pattern of SMC3 across the IDC, ChIP-seq was  
175 performed in a synchronous clonal population of SMC3-3HA-*glmS* parasites at 12 (ring), 24  
176 (trophozoite), and 36 (schizont) hours post invasion (hpi). Using the macs2 peak calling algorithm  
177 (Y. Zhang et al., 2008), we obtained 1,164, 1,614, and 1,027 significant peaks at 12, 24, and 36 hpi,  
178 respectively (Table 2). Most striking was the SMC3 enrichment at centromeric regions at all time  
179 points, a phenomenon that was previously reported for trophozoite stages (Batugedara et al., 2020)  
180 (Fig. 2 A, B). Comparison of the SMC3 peaks with the centromeric regions defined in (Hoeijmakers  
181 et al., 2012) revealed extensive overlap (Table 3). SMC3 peak enrichment in centromeric regions was  
182 significantly higher than that of the peaks associated with the rest of the genome at 12, 24, and 36 hpi  
183 ( $P < 0.0001$ ). Interestingly, we observed a decrease in SMC3 enrichment at the centromeric regions  
184 from 24 to 36 hpi, a time that corresponds to the transition into mitosis (Fig. 2C, Table 3).

185 While quantification of the SMC3 peaks showed the largest enrichment in the centromeric  
186 and pericentromeric regions, there were significant SMC3 peaks across other genomic locations at all  
187 time points (Table 2). SMC3 peaks were found in intergenic and intragenic regions closest to 767,

188 1,044, and 708 protein coding genes at 12, 24, and 36 hpi, respectively (Table 4). Of all genes within  
189  $\pm 500$  base pairs (bp) of an SMC3 peak, 168 were bound by SMC3 across all three time points (Fig.  
190 2D). However, most SMC3-bound genes showed a dynamic binding pattern, with a peak present at  
191 only one or two time points (Fig. 2B,D). Gene ontology (GO) enrichment analysis showed that genes  
192 associated with SMC3 peaks at 12 hpi were not significantly represented by a specific GO term  
193 category (Table 5). However, genes associated with SMC3 peaks at 24 and 36 hpi were most  
194 significantly represented by biological process categories such as “obsolete pathogenesis” ( $q = 1.2 \times$   
195  $10^{-19}$  and  $3.3 \times 10^{-21}$ , respectively), “cell-cell adhesion” ( $q = 1.2 \times 10^{-19}$  and  $4.7 \times 10^{-23}$ , respectively),  
196 “response to host” ( $q = 1.21 \times 10^{-11}$  and  $1.43 \times 10^{-13}$ , respectively), and “antigenic variation” ( $q = 8.1$   
197  $\times 10^{-12}$  and  $2.7 \times 10^{-13}$ , respectively) (Table 5). These categories include many genes in common such  
198 as *var* and *rif* genes, which encode proteins that are exported to the surface of the host red blood cell  
199 to facilitate adhesion to the host microvasculature (reviewed in (Scherf et al., 2008)). Genes  
200 associated with SMC3 peaks at 24 hpi were also significantly represented by the biological process  
201 categories “entry into host” ( $q = 0.014$ ) and “exit from host” ( $q = 0.031$ ). These categories include  
202 genes that are involved in invasion of or egress from the red blood cell such as *ralp1*  
203 (PF3D7\_0722200) (Haase et al., 2008), *rhoph3* (PF3D7\_0905400) (Sherling et al., 2017), and *msp1*  
204 (PF3D7\_0930300) (O’Donnell et al., 2000, 2001).

205 While peak calling analysis is informative, the diverse functional categories of genes  
206 associated with SMC3 peaks makes it difficult to determine if SMC3 plays a specific role in  
207 transcriptional regulation or binds randomly throughout genic regions to facilitate a role in mitosis-  
208 related chromosome organization. Thus, functional analysis was required to elucidate a potential  
209 transcriptional function for SMC3 binding.

## 210 **SMC3 inducible knockdown results in deregulation of genes during interphase**

211 To gain insight into the role of SMC3 during interphase, we performed an inducible  
212 knockdown of SMC3 using the *glmS* ribozyme system (Prommana et al., 2013). An SMC3-3HA-  
213 *glmS* clone was tightly synchronized and split, and glucosamine was added to one half for 96 hours

214 (2 cell cycles), as knockdown at the protein level could not be achieved after a single cell cycle (Supp.  
215 Fig. 1). Simultaneously, a wild-type (WT) clone from the parent 3D7 strain was synchronized and  
216 treated in the same way to account for transcriptional changes due to the presence of glucosamine.  
217 After another round of synchronization, parasites were harvested at 12 and 24 hpi, and western blot  
218 analysis revealed an SMC3-3HA knockdown at the protein level in nuclear extracts at both time  
219 points (Fig. 3A).

220 We then performed RNA-seq followed by differential expression analysis for the untreated  
221 and glucosamine-treated SMC3-3HA-*glmS* and WT parasites, which confirmed a significant  
222 knockdown of SMC3 at the transcript level in the SMC3-3HA-*glmS* parasites: 55% ( $q = 8.5 \times 10^{-3}$ )  
223 at 12 hpi and 69% ( $q = 1.3 \times 10^{-39}$ ) at 24 hpi (Tables 6 and 7, Fig. 3B). To remove potential artifacts  
224 of glucosamine treatment, genes that were significantly up- or downregulated in the glucosamine-  
225 treated WT parasites at 12 and 24 hpi (Tables 8 and 9) were filtered out of the datasets for significantly  
226 up- and downregulated genes in the SMC3-3HA-*glmS* parasites at the corresponding time points  
227 (Supp. Fig. 2). After this filtering, 104 and 932 genes were significantly downregulated at 12 and 24  
228 hpi, respectively (Tables 10 and 11, Fig. 3 C,D), and 67 and 674 genes were significantly upregulated  
229 at 12 and 24 hpi, respectively (Tables 10 and 11, Fig. 3 C,D) in SMC3-3HA-*glmS* parasites.  
230 Comparison of our RNA-seq data to time course microarray data from (Bozdech et al., 2003), as in  
231 (Lemieux et al., 2009), showed that data from the untreated and glucosamine-treated parasites  
232 harvested at 12 hpi corresponded statistically to 12 hpi (Supp. Fig. 3). The untreated and glucosamine-  
233 treated parasites harvested at 24 hpi correspond statistically to approximately 18-19 hpi (Supp. Fig.  
234 3). However, the glucosamine-treated parasites were slightly more advanced in the cell cycle than the  
235 untreated parasites at 24 hpi, which could account for the higher number of genes that were  
236 significantly differentially expressed at this time point.

237 To gain insight into the transcriptional function of SMC3, we performed a GO enrichment  
238 analysis of genes that were up- and downregulated specifically in response to SMC3 knockdown at  
239 12 and 24 hpi. At 12 hpi, downregulated genes were most significantly represented by the biological

240 process category of “protein insertion into membrane” ( $q = 0.017$ , Table 12), whereas at 24 hpi  
241 downregulated genes were most significantly represented by the categories of “chromosome  
242 organization” ( $q = 1.0 \times 10^{-3}$ , Table 13) and “chromosome segregation” ( $q = 1.0 \times 10^{-3}$ , Table 13).

243 For both time points, upregulated genes were most significantly represented by the biological  
244 process categories of “movement in host environment” (12 hpi:  $q = 1.8 \times 10^{-7}$ , Table 12; 24 hpi:  $q =$   
245  $1.3 \times 10^{-5}$ , Table 13) and “entry into host” (12 hpi:  $q = 1.8 \times 10^{-7}$ , Table 12; 24 hpi:  $q = 1.3 \times 10^{-5}$ ,  
246 Table 13). Genes included in these categories are involved in egress and invasion of the red blood  
247 cell (reviewed in (Cowman et al., 2012, 2017)). Indeed, a substantial percentage of invasion-related  
248 genes defined in (Hu et al., 2010) were significantly upregulated upon SMC3 depletion at 12 and 24  
249 hpi (Table 14). Comparison of our RNA-seq data to the time course transcriptomics data from (Painter  
250 et al., 2018) revealed that SMC3 depletion at 12 hpi caused downregulation of genes that normally  
251 reach their peak expression in the trophozoite stage (18-30 hpi), with the majority of upregulated  
252 genes normally reaching their peak expression in the schizont and very early ring stages (40-2 hpi)  
253 (Fig. 3E). At 24 hpi, a similar trend is observed, with most downregulated genes normally peaking in  
254 expression in trophozoite stage (24-32 hpi) and the majority of upregulated genes peaking in  
255 expression at very early ring stage (2 hpi) (Fig. 3F).

## 256 **SMC3 is involved in transcriptional regulation of genes involved in invasion**

257 To provide evidence for a direct function of SMC3 in the transcriptional regulation of these  
258 up- and downregulated genes, we compared our SMC3 ChIP-seq data to our RNA-seq data at 12 hpi.  
259 Metagene analysis from the ChIP-seq data showed that SMC3 was absent from the promoter regions  
260 of genes that are downregulated in response to its knockdown (Fig. 4A). In contrast, SMC3 was  
261 enriched in the promoter regions of genes that are upregulated in response to its knockdown (Fig.  
262 4A). Indeed, this enrichment of SMC3 at the promoters of upregulated genes was present at 12 and  
263 24 hpi, but not 36 hpi (Fig. 4B). Our data suggest that SMC3 binding has a direct effect on the  
264 transcription of genes that are upregulated in its absence, whether naturally or via knockdown.

265 Because genes that are significantly upregulated upon SMC3 knockdown normally reach peak  
266 expression late in the cell cycle (Fig. 3E), are depleted of SMC3 at 36 hpi (Fig. 4B), and are most  
267 significantly represented by GO terms pertaining to invasion and egress (Tables 12,13), we  
268 hypothesized that SMC3 helps to repress these genes until their appropriate time of expression late  
269 in the cell cycle. Examples include the rhoptry-associated protein 2 (*rap2*, PF3D7\_0501600) and  
270 glideosome-associated protein 45 (*gap45*, PF3D7\_1222700). These genes show SMC3 enrichment at  
271 their promoter regions at 12 and 24 hpi, but not at 36 hpi (Fig. 4C), and depletion of SMC3 resulted  
272 in upregulation at both 12 and 24 hpi (Fig. 4D). Comparison of the SMC3 ChIP-seq data with  
273 published Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data  
274 (Toenhake et al., 2018) and mRNA dynamics data (Painter et al., 2018) from similar time points in  
275 the IDC revealed that SMC3 binding at the promoter regions of these genes inversely correlates with  
276 chromatin accessibility (Fig. 4C) and their mRNA levels (Fig. 4E), which both peak in schizont  
277 stages. These data are consistent with a role of SMC3 in repressing this gene subset until their  
278 appropriate time of expression in the IDC.

279 We hypothesized that the upregulation of invasion-related genes upon SMC3 knockdown  
280 might result in higher rates of invasion. Curiously, a comparison of growth between untreated and  
281 glucosamine-treated WT and SMC3-3HA-*glmS* parasites revealed a significantly higher growth rate  
282 in glucosamine-treated SMC3-3HA-*glmS* parasites in comparison to non-treated SMC3-3HA-*glmS*,  
283 treated 3D7 WT, and non-treated 3D7 WT parasites ( $q < 0.0001$ ) (Fig. 4F). These data suggest that  
284 SMC3 knockdown results in a faster progression through the cell cycle or a higher rate of  
285 egress/invasion.

286

## 287 DISCUSSION

288 Genome organization is key to transcriptional control and genome integrity. The human  
289 malaria parasite *P. falciparum* executes complex transcriptional programs and has a sophisticated  
290 genome organization considering that it encodes relatively few specific transcription factors and lacks

291 key canonical genome organizing factors such as CTCF and lamins (Batsios et al., 2012; Heger et al.,  
292 2012; Ay et al., 2014; Bunnik et al., 2019). To investigate potential links between transcription and  
293 genome organization in this parasite, we have characterized SMC3, a key and conserved subunit of  
294 the multi-protein ring-shaped complex cohesin. In the organisms studied so far, cohesin plays diverse  
295 roles in genome organization such as sister chromatid cohesion during mitosis, transcription, and  
296 DNA damage repair (reviewed in (Perea-Resa et al., 2021)). Here, we used genome-wide approaches  
297 to elucidate the function of SMC3 in interphase transcription during the IDC of *P. falciparum*.

298 ChIP-seq over the course of the IDC revealed that SMC3 is most enriched in centromeric  
299 regions (Fig. 2A-C). In other eukaryotes, cohesin is also mostly enriched around the centromeres  
300 relative to the chromosome arms (Holzmann et al., 2019; Tanaka et al., 1999; Tomonaga et al., 2000).  
301 A reduction in centromere binding in late-stage parasites (Fig. 2A-C) might be due to the need for  
302 cohesin removal during the separation of sister chromatids, as has been observed in model eukaryotes  
303 (Uhlmann et al., 1999; Waizenegger et al., 2000). While *Plasmodium* does have a clear anaphase  
304 during which sister chromatids separate (Gerald et al., 2011), asynchronous mitosis may lead to a  
305 population of parasites in which cohesin is present or absent from centromeres to facilitate sister  
306 chromatid cohesion or separation, respectively. Our observation that SMC3 depletion does not inhibit  
307 parasite growth agrees with reports in *S. cerevisiae* and *D. melanogaster* in which normal growth and  
308 sister chromatid cohesion were achieved despite an 87% and 80% decrease in Rad21, respectively  
309 (Carvalhal et al., 2018; Heidinger-Pauli et al., 2010). These studies and ours suggest that only a small  
310 fraction of cohesin is needed to successfully complete mitosis.

311 Centromeric clustering in interphase nuclei has been observed in several eukaryotes including  
312 *S. cerevisiae*, *D. melanogaster*, and *H. sapiens* (reviewed in (Muller et al., 2019)). The functional  
313 importance of this spatial arrangement remains poorly understood; however, it has been shown that  
314 centromeric clustering is a relevant topological constraint that can affect transcription by preventing  
315 intrachromosomal arm interactions (Tolhuis et al., 2011). Studies in *P. falciparum* have demonstrated  
316 centromere clustering before and during schizogony, suggesting that this organization is needed

317 during interphase and mitosis (Ay et al., 2014; Hoeijmakers et al., 2012). One architectural factor,  
318 *PfHMGB1*, was recently shown to play a direct role in centromere organization in the nucleus (Lu et  
319 al., 2021). Although *PfHMGB1* binds predominantly to centromeres, its depletion led to the de-  
320 regulation of many different genes to which it was not bound, suggesting that global genome  
321 organization is important for transcriptional control at the local chromatin level (Lu et al., 2021).  
322 *PfHMGB1* knockout did not lead to blood stage parasite growth inhibition, indicating that other  
323 proteins, such as cohesin or *PfCenH3*, play a role in centromere organization and mitosis.

324 In addition to its potential centromeric role, we discovered that SMC3 plays a direct, extra-  
325 centromeric role in the transcriptional control of specific genes during interphase. SMC3 bound  
326 dynamically at extra-centromeric genomic locations over the course of the IDC (Fig. 2, Table 2). We  
327 observed stage-specific SMC3 binding across the genome, including at genes that were then  
328 upregulated upon SMC3 depletion during interphase (Fig. 2B,D, Fig. 4A-D, Tables 2, 10, 11). In  
329 contrast, genes that were downregulated upon SMC3 depletion were not enriched for SMC3,  
330 suggesting an indirect effect (Fig. 4A). And while SMC3 peak-associated genes were significantly  
331 represented by GO terms related to antigenic variation at 24 and 36 hpi, significantly upregulated  
332 genes at 24 hpi did not show significant *q*-values for these or related GO terms. Uregulated genes  
333 are generally most highly expressed in late-stage parasites (Fig. 3E, Fig. 4E), a time when we  
334 observed natural depletion of SMC3 at their promoters (Fig. 4B,C). Importantly, while we observed  
335 a decrease in SMC3 binding at centromeric and pericentromeric regions in late-stage parasites, this  
336 was not a general trend across all SMC3 binding sites (Fig. 2C). These data suggest that SMC3 is  
337 specifically recruited to and evicted from specific subsets of genes to facilitate their repression and  
338 transcription, respectively, over the course of the IDC.

339 Genes that were significantly upregulated upon SMC3 depletion during interphase were  
340 enriched for GO terms related to egress from and invasion of the RBC (Tables 12 and 13). Indeed,  
341 out of a list of 63 invasion-related genes (Hu et al., 2010), 50% were among the genes that were  
342 upregulated upon SMC3 depletion during interphase (Table 14). Curiously, parasites depleted of

343 SMC3 showed an increase in growth rate (Fig. 4F). It is possible that this phenotype is related to a  
344 potential role for SMC3 in mitosis or DNA repair, such as an as-yet unknown cell cycle checkpoint.  
345 However, this growth phenotype might also be the result of the upregulation of specific genes that  
346 allow for more efficient egress and invasion of new RBCs.

347 The mechanism by which SMC3 could repress specific genes in a stage-specific manner is  
348 unclear. In the context of interaction with CTCF, cohesin has been shown to impact transcription in  
349 opposite ways, by either preventing enhancer-promoter interactions (Nativio et al., 2009; Wendt et  
350 al., 2008) or by mediating specific enhancer-promoter loops (Kubo et al., 2021; Oh et al., 2021). In  
351 *P. falciparum*, the current genome-wide chromosome conformation capture (Hi-C) datasets do not  
352 provide evidence of typical enhancer-promoter interactions found in other eukaryotes (Ay et al., 2014;  
353 Bunnik et al., 2019). Moreover, in *S. cerevisiae*, a cohesin mutant resulted in the de-repression of  
354 genes located in subtelomeric regions, perhaps via disruption of local chromatin structure (Kothiwal  
355 & Laloraya, 2019). However, the invasion-related genes affected by *Pf*SMC3 are scattered across the  
356 genome (Table 14). One possibility is that cohesin binding to the promoter of a gene merely inhibits  
357 the transcriptional machinery from assembling. In light of the ability of cohesin to entrap multiple  
358 DNA molecules, another intriguing possibility is that it tethers invasion-related genes together in a  
359 cluster that renders their promoters inaccessible to specific activating factors until the appropriate  
360 time of transcription. Future high-resolution chromosome conformation capture studies will reveal a  
361 potential link between spatial association and transcriptional regulation of these SMC3-controlled  
362 genes.

363 It is also unclear how *Pf*SMC3 achieves binding specificity and how it is evicted from binding  
364 sites at specific times in the IDC. In other organisms studied, cohesin appears to need a DNA-binding  
365 factor to achieve sequence-specific binding (Kagey et al., 2010; Sasca et al., 2019; Wendt et al.,  
366 2008). A search for a specific binding motif within the promoter sequences of invasion-related genes  
367 bound by *Pf*SMC3 yielded no results, indicating that *Pf*SMC3 may associate with multiple factors to  
368 achieve specific binding. In *P. falciparum*, the AP2-I transcription factor (PF3D7\_1007700) is

369 involved in transcription of invasion-related genes via binding to the GTGCA motif, likely by  
370 interaction with the bromodomain protein 1 (*PfBDP1*, PF3D7\_1033700) (Santos et al., 2017). This  
371 complex could evict SMC3 from gene promoters or simply bind in its absence. Importantly, neither  
372 *ap2-I* nor *bdpI* are bound by SMC3 or are upregulated upon its depletion, suggesting that the observed  
373 upregulation of invasion-related genes upon SMC3 depletion in early-stage parasites is a direct effect.  
374 In addition, SMC3 depletion resulted in the upregulation of AP2-I-independent invasion-related  
375 genes such as RONs, EBLs and Rhs, which have an ACAACT motif in their promoter regions (Young  
376 et al., 2008) and may be activated by an as-yet unidentified transcription factor. Future studies will  
377 reveal the molecular machinery that regulates the stage-specific binding of cohesin.

378 The present study offers insight into the role of cohesin in the temporal regulation of genes in  
379 *P. falciparum*. While the role of H3K9me3/HP1 has been well established in the transcriptional  
380 repression of clonally variant gene families and *ap2-g*, this study identifies a new factor – SMC3 –  
381 involved in the repression of HP1-independent, stage-specific genes. Given the architectural nature  
382 of cohesin, this research provides a potential link between genome organization and transcriptional  
383 control in *P. falciparum*.

384

## 385 MATERIALS AND METHODS

### 386 Parasite culture

387 Blood stage 3D7 *P. falciparum* parasites were cultured as previously described in (Lopez-Rubio et  
388 al., 2009). Briefly, parasites were cultured in human RBCs supplemented with 10% v/v Albumax I  
389 (Thermo Fisher 11020), hypoxanthine (0.1 mM final concentration, C.C.Pro Z-41-M) and 10 mg  
390 gentamicin (Sigma G1397) at 4% hematocrit and under 5% O<sub>2</sub>, 5% CO<sub>2</sub> at 37 °C. Parasites were  
391 synchronized by sorbitol (5%, Sigma S6021) lysis during ring stage followed by a plasmagel  
392 (Plasmion, Fresenius Kabi) enrichment for late blood stages 24 hours later. Another sorbitol treatment  
393 6 h afterwards places the 0 h time point 3 h after the plasmagel enrichment. Parasite development was  
394 monitored by Giemsa staining. Parasites were harvested at 1–5% parasitemia.

395 Generation of strains

421 and downstream of the Cas9 cut site, excluding the gene STOP codon. The sgRNA sequence was  
422 designed using Protospacer (MacPherson & Scherf, 2015). The sgRNA sequence uniquely targeted a  
423 single sequence in the genome. As the sgRNA sequence encompasses the STOP codon, its  
424 modification via the addition of the 3HA and *glmS*-encoding sequences renders the modified parasites  
425 refractory to further dCas9 cleavage at this locus. All cloning was performed using KAPA HiFi DNA  
426 Polymerase (Roche 07958846001), In-Fusion HD Cloning Kit (Clontech 639649), and XL10-Gold  
427 Ultracompetent E. coli (Agilent Technologies 200315). After transfection, drug selection was applied  
428 for five days at 2.67 nM WR99210 (Jacobus Pharmaceuticals) and 1.5  $\mu$ M DSM1 (MR4/BEI  
429 Resources). Parasites reappeared approximately three weeks after transfection, and 5-fluorocytosine  
430 was used to negatively select the pL7 plasmid. Parasites were cloned by limiting dilution, and the  
431 targeted genomic locus was sequenced to confirm epitope tag and ribozyme integration.

### 432 **SMC3 immunoprecipitation and mass spectrometry**

433 An SMC3-3HA-*glms* clone ( $n = 3$  technical replicates) and wild-type culture ( $n = 3$  technical  
434 replicates), as a negative control, were synchronized. Late stage parasites ( $1.5 \times 10^9$  parasites) were  
435 enriched using Percoll density gradient separation and then cross-linked with 1 mL 0.5 mM  
436 dithiobissuccinimidyl propionate (DSP; Thermo Fisher 22585) in DPBS for 60 min at 37°C (as in  
437 (Mesén-Ramírez et al., 2016)). Cross-linked parasites were centrifuged at 4,000 g for 5 min at 4°C,  
438 and the pellet was washed twice with DPBS at 4°C. The pellet was lysed with 10 volumes of RIPA  
439 buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% SDS, 1% Triton) containing protease and  
440 phosphatase inhibitor cocktail (Thermo Fisher 78440) and 1 U/ $\mu$ L of Benzonase (Merck 71206). The  
441 lysates were cleared by centrifugation at 16,000 g for 10 min at 4°C. Supernatants were incubated  
442 with 25  $\mu$ L of anti-HA Dynabeads (Thermo Fisher 88836) overnight with rotation at 4°C. Beads were  
443 collected with a magnet and washed five times with 1 mL RIPA buffer, then five times with 1 mL  
444 DPBS, and then once with 1 mL 25 mM NH<sub>4</sub>HCO<sub>3</sub> (Sigma 09830). The beads were reduced with  
445 100 mM dithiothreitol (Sigma D9779), alkylated with 55 mM iodoacetamide (Sigma I1149), and

446 subjected to on-bead digestion using 1  $\mu$ g of trypsin (Thermo Fisher 90059). The resulting peptides  
447 were desalted using C18 ziptips (Merck ZTC04S096) and sent for MS analysis.

448 Peptides were separated by reverse phase HPLC (Thermo Fisher Easy-nLC1000) using an EASY-  
449 Spray column, 50 cm  $\times$  75  $\mu$ m ID, PepMap RSLC C18, 2  $\mu$ m (Thermo Fisher ES803A) over a 70-  
450 min gradient before nanoelectrospray using a Q Exactive HF-X mass spectrometer (Thermo Fisher).  
451 The mass spectrometer was operated in a data-dependent mode. The parameters for the full scan MS  
452 were as follows: resolution of 60,000 across 350–1,500 *m/z*, AGC 1e<sup>5</sup> (as in (Kensche et al., 2016)),  
453 and maximum injection time (IT) 150 ms. The full MS scan was followed by MS/MS for the top 15  
454 precursor ions in each cycle with an NCE of 30 and dynamic exclusion of 30 s and maximum IT of  
455 96 ms. Raw mass spectral data files (.raw) were searched using Proteome Discoverer 2.3.0.523  
456 (Thermo Fisher) with the SEQUEST search engine. The search parameters were as follows: 10 ppm  
457 mass tolerance for precursor ions; 0.8 Da fragment ion mass tolerance; two missed cleavages of  
458 trypsin; fixed modification was carbamidomethylation of cysteine; and variable modifications were  
459 methionine oxidation, CAMthiopropanoyl on lysine or protein N-terminal, and serine, threonine, and  
460 tyrosine phosphorylation. Only peptide spectral matches (PSMs) with an XCorr score greater than or  
461 equal to 2 and an isolation interference less than or equal to 30 were included in the data analysis.

#### 462 Protein fractionation and western blot analysis

463 Parasites were washed once with Dulbecco's phosphate-buffered saline (DPBS, Thermo  
464 Fisher 14190), then resuspended in cytoplasmic lysis buffer (25 mM Tris–HCl pH 7.5, 10 mM NaCl,  
465 1.5 mM MgCl<sub>2</sub>, 1% IGEPAL CA-630, and 1 $\times$  protease inhibitor cocktail [“PI”, Roche  
466 11836170001]) at 4°C and incubated on ice for 30 min. The cytoplasmic lysate was cleared with  
467 centrifugation (13,500 g, 10 min, 4°C). The pellet (containing the nuclei) was resuspended in 3.3  
468 times less volume of nuclear extraction buffer (25 mM Tris–HCl pH 7.5, 600 mM NaCl, 1.5 mM  
469 MgCl<sub>2</sub>, 1% IGEPAL CA-630, PI) than cytoplasmic lysis buffer at 4°C, transferred to 1.5 mL  
470 sonication tubes (Diagenode C30010016, 300  $\mu$ L per tube), and sonicated for five min total (10 cycles  
471 of 30 s on/off) in a Diagenode Pico Bioruptor at 4°C. This nuclear lysate was cleared with

472 centrifugation (13,500 g, 10 min, 4°C). Protein samples were supplemented with NuPage Sample  
473 Buffer (Thermo Fisher NP0008) and NuPage Reducing Agent (Thermo Fisher NP0004) and  
474 denatured for 10 min at 70°C. Proteins were separated on a 4–12% Bis-Tris NuPage gel (Thermo  
475 Fisher NP0321) and transferred to a PVDF membrane with a Trans-Blot Turbo Transfer system (Bio-  
476 Rad). The membrane was blocked for 1 h with 1% milk in PBST (PBS, 0.1% Tween 20) at 25°C.  
477 HA-tagged proteins and histone H3 were detected with anti-HA (Abcam ab9110, 1:1,000 in 1% milk-  
478 PBST) and anti-H3 (Abcam ab1791, 1:2,500 in 1% milk-PBST) primary antibodies, respectively,  
479 followed by donkey anti-rabbit secondary antibody conjugated to horseradish peroxidase (“HRP”,  
480 Sigma GENA934, 1:5,000 in 1% milk-PBST). Aldolase was detected with anti-aldolase-HRP  
481 (Abcam ab38905, 1:5,000 in 1% milk-PBST). HRP signal was developed with SuperSignal West  
482 Pico Plus chemiluminescent substrate (Thermo Fisher 34580) and imaged with a ChemiDoc XRS+  
483 (Bio-Rad).

#### 484 **Immunofluorescence assays and image acquisition**

485 iRBCs were washed once with DPBS (Thermo Fisher 14190) at 37°C and fixed in suspension  
486 in 4% paraformaldehyde (EMS 15714) with 0.0075% glutaraldehyde (EMS 16220) in PBS for 20 min  
487 at 25°C, as described previously (Tonkin et al., 2004). The subsequent steps were performed at 25 °C  
488 as described in (Mehnert et al., 2019), with minor changes. After washing once with PBS, cells were  
489 permeabilized with 0.1% Triton-X 100 for 10 min followed by three PBS washes. Free aldehyde  
490 group were quenched with 50 mM NH<sub>4</sub>Cl for 10 min, followed by two PBS washes. Cells were  
491 blocked with 3% bovine serum albumin (BSA) (Sigma A4503-50G) in PBS for 30 min. Cells were  
492 incubated with anti-HA (Abcam ab9110, 1:1,000 in 3% BSA in PBS) primary antibody for one hour  
493 followed by three 10 min washes with 0.5% Tween® 20/PBS. Cells were incubated with anti-rabbit  
494 Alexa Fluor 488- or 633-conjugated secondary antibodies (Invitrogen A-11008 or A-21070, 1:2,000  
495 in 3% BSA in PBS) with DAPI (FluoProbes FP-CJF800, 1 µg/mL) for 45 min followed by three 10  
496 min washes with 0.5% Tween® 20/PBS. Cells were washed once more with PBS and placed onto  
497 polyethyleneimine-coated slides (Thermo Scientific 30-42H-RED-CE24). Once adhered to the slide,

498 cells were washed twice and mounted with VectaShield® (Vector Laboratories). Images were  
499 acquired using a Deltavision Elite imaging system (GE Healthcare), and Fiji (<http://fiji.sc>) was used  
500 for analysis using the least manipulation possible.

501 **SMC3 chromatin immunoprecipitation sequencing and data analysis**

502 A clonal population of SMC3-3HA-*glmS* parasites were tightly synchronized and harvested  
503 at 12 ( $10^{10}$  parasites), 24 ( $4.3 \times 10^8$  parasites) and 36 hpi ( $3.6 \times 10^8$  parasites). Parasite culture was  
504 centrifuged at 800 g for 3 min at 25°C. Medium was removed and the RBCs were lysed with 10 mL  
505 0.075% saponin (Sigma S7900) in DPBS at 37°C. The parasites were centrifuged at 3,250 g for 3 min  
506 at 25°C and washed with 10 mL DPBS at 37°C. The supernatant was removed, and the parasite pellet  
507 was resuspended in 10 mL of PBS at 25°C. The parasites were cross-linked by adding methanol-free  
508 formaldehyde (Thermo Fisher 28908) (final concentration 1%) and incubating with gentle agitation  
509 for 10 min at 25°C. The cross-linking reaction was quenched by adding glycine (final concentration  
510 125 mM, Sigma G8899) and incubating with gentle agitation for 5 min at 25°C. Parasites were  
511 centrifuged at 3,250 g for 5 min at 4°C and the supernatant removed. The pellet was washed with  
512 DPBS and centrifuged at 3,250 g for 5 min at 4°C. The supernatant was removed, and the cross-  
513 linked parasite pellet were snap-frozen.

514 For each time-point, 200 μL of Protein G Dynabeads (Invitrogen 10004D) were washed twice  
515 with 1 mL ChIP dilution buffer (16.7 mM Tris–HCl pH 8, 150 mM NaCl, 1.2 mM EDTA pH 8, 1%  
516 Triton X-100, 0.01% SDS) using a DynaMag magnet (Thermo Fisher 12321D). The beads were  
517 resuspended in 1 mL ChIP dilution buffer with 8 μg of anti-HA antibody (Abcam ab9110) and  
518 incubated on a rotator at 4°C for 6 h.

519 The cross-linked parasites were resuspended in 4 mL of lysis buffer (10 mM HEPES pH 8,  
520 10 mM KCl, 0.1 mM EDTA pH 8, PI) at 4°C, and 10% Nonidet-P40 was added (final concentration  
521 0.25%). The parasites were lysed in a prechilled dounce homogenizer (200 strokes for 12 hpi parasites  
522 and 100 strokes for 24 and 36 hpi parasites). The lysates were centrifuged for 10 min at 13,500 g at  
523 4°C, the supernatant was removed, and the pellet was resuspended in SDS lysis buffer (50 mM Tris–

524 HCl pH 8, 10 mM EDTA pH 8, 1% SDS, PI) at 4°C (3.6 mL for the 12 hpi sample and 1.8 mL for  
525 the 24 ad 36 hpi samples). The liquid was distributed into 1.5 mL sonication tubes (Diagenode  
526 C30010016, 300 µL per tube) and sonicated for 12 min total (24 cycles of 30 s on/off) in a Diagenode  
527 Pico Bioruptor at 4°C. The sonicated extracts were centrifuged at 13,500 g for 10 min at 4°C and the  
528 supernatant, corresponding to the chromatin fraction, was kept. The DNA concentration for each time  
529 point was determined using the Qubit dsDNA High Sensitivity Assay Kit (Thermo Fisher Scientific  
530 Q32851) with a Qubit 3.0 Fluorometer (Thermo Fisher Scientific). For each time point, chromatin  
531 lysate corresponding to 100 ng of DNA was diluted in SDS lysis buffer (final volume 200 µL) and  
532 kept as “input” at -20°C. Chromatin lysate corresponding to 19 µg (12 hpi), 2 µg (24 hpi) and 3 µg  
533 (36 hpi) of DNA was diluted 1:10 in ChIP dilution buffer at 4°C.

534 Using a DynaMag magnet, the antibody-conjugated Dynabeads were washed twice with  
535 1 mL ChIP dilution buffer and resuspend in 100 µL of ChIP dilution buffer at 4°C. Then the washed  
536 antibody-conjugated Dynabeads were added to the diluted chromatin sample and incubated overnight  
537 with rotation at 4°C. The beads were collected on a DynaMag into eight different tubes per sample,  
538 the supernatant was removed, and the beads in each tube were washed for 5 min with gentle rotation  
539 with 1 mL of the following buffers, sequentially:

- 540     ○ Low salt wash buffer (20 mM Tris–HCl pH 8, 150 mM NaCl, 2 mM EDTA pH 8, 1% Triton  
541           X-100, 0.1% SDS) at 4°C.
- 542     ○ High salt wash buffer (20 mM Tris–HCl pH 8, 500 mM NaCl, 2 mM EDTA pH 8, 1% Triton  
543           X-100, 0.1% SDS) at 4°C.
- 544     ○ LiCl wash buffer (10 mM Tris–HCl pH 8, 250 mM LiCl, 1 mM EDTA pH 8, 0.5% IGEPAL  
545           CA-630, 0.5% sodium deoxycholate) at 4°C.
- 546     ○ TE wash buffer (10 mM Tris–HCl pH 8, 1 mM EDTA pH 8) at 25°C.

547 After the washes, the beads were collected on a DynaMag, the supernatant was removed, and the  
548 beads for each time point were resuspended in 800 µL of elution buffer and incubated at 65°C for 30

549 min with agitation (1000 rpm 30 s on/off). The beads were collected on a DynaMag and the eluate,  
550 corresponding to the “ChIP” samples, was transferred to a different tube.

551 For purification of the DNA, both “ChIP” and “Input” samples were incubated for  
552 approximately 10 h at 65°C to reverse the crosslinking. 200 µL of TE buffer followed by 8 µL of  
553 RNaseA (Thermo Fisher EN0531) (final concentration of 0.2 mg/mL) were added to each sample,  
554 which was then incubated for 2 h at 37 °C. 4 µL Proteinase K (New England Biolabs P8107S) (final  
555 concentration of 0.2 mg/mL) were added to each sample, which was then incubated for 2 h at 55°C.  
556 400 µL phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma, 77617) were added to each sample,  
557 which was then mixed with vortexing and centrifuged for 10 min at 13,500 g at 4°C to separate  
558 phases. The aqueous top layer was transferred to another tube and mixed with 30 µg glycogen  
559 (Thermo Fisher 10814) and 5M NaCl (200 mM final concentration). 800 µL 100% EtOH at 4°C  
560 were added to each sample, which was then incubated at –20°C for 30 min. The DNA was pelleted  
561 by centrifugation for 10 min at 13,500 g at 4°C, washed with 500 µL 80% EtOH at 4°C, and  
562 centrifuged for 5 min at 13,500 g at 4°C. After removing the EtOH, the pellet was dried at 25 °C and  
563 all DNA for each sample was resuspended in 30 µL 10 mM Tris–HCl, pH 8 total. The DNA  
564 concentration and average size of the sonicated fragments was determined using a DNA high  
565 sensitivity kit and the Agilent 2100 Bioanalyzer. Libraries for Illumina Next Generation Sequencing  
566 were prepared with the MicroPlex library preparation kit (Diagenode C05010014), with KAPA HiFi  
567 polymerase (KAPA biosystems) substituted for the PCR amplification. Libraries were sequenced on  
568 the NextSeq 500 platform (Illumina).

569 Sequenced reads (150 bp paired end) were mapped to the *P. falciparum* genome (Gardner et  
570 al., 2002) (plasmoDB.org, version 3, release 55) using “bwa mem” (Li & Durbin, 2009) allowing a  
571 read to align only once to the reference genome (option “–c 1”). Alignments were subsequently  
572 filtered for duplicates and a mapping quality  $\geq 20$  using samtools (Li et al., 2009). The paired end  
573 deduplicated ChIP and input BAM files were used as treatment and control, respectively, for peak  
574 calling with the macs2 command callpeak default settings (Y. Zhang et al., 2008). Obtained peaks

575 with *q*-value cutoff 0.05 for each time point were visualized in Integrative Genomics Viewer  
576 (Robinson et al., 2011) along with ChIP-Input ratio coverage obtained from deeptool's bamCompare  
577 command (Ramírez et al., 2016). To map SMC3 binding to nearby protein coding genes, peak  
578 summits were extended 150 bp upstream and downstream, and bedtools closest command (Quinlan  
579 & Hall, 2010) were used with *P. falciparum* reference genome feature file (gff) (plasmoDB.org,  
580 version 3, release 56). Only regions 500 bp upstream or downstream near to the protein coding genes  
581 were considered further for downstream analysis. Centromeric regions (from (Hoeijmakers et al.,  
582 2012) were corrected for changes in genome annotation. These regions were overlapped with SMC3  
583 peaks dataset using bedtools intersect command (Quinlan & Hall, 2010). Fold change quantification  
584 and statistical analysis for all peaks and peaks in centromeric regions was performed in R (R Core  
585 Team, 2021).

## 586 RNA extraction, stranded RNA sequencing and analysis

587 A WT and SMC3-3HA-*glmS* clone were synchronized simultaneously and each culture was split into  
588 two at 12 hpi. Glucosamine (Sigma G1514, final concentration 2.5 nM) was added to one half of the  
589 culture for two rounds of parasite replication (approximately 96 h). Parasites were then re-  
590 synchronized and three technical replicates (with and without glucosamine) were harvested at 12, 24,  
591 and 36 hpi. RBCs were lysed in 0.075 % saponin (Sigma S7900) in PBS at 37°C, centrifuged at 3,250  
592 g for 5 min, washed in PBS, centrifuged at 3,250 g for 5 min, and resuspended in 700 µL QIAzol  
593 reagent (Qiagen 79306). RNA was extracted using an miRNeasy Mini kit (Qiagen 1038703) with the  
594 recommended on-column DNase treatment. Total RNA was poly (A) selected using the Dynabeads  
595 mRNA Purification Kit (Thermo Fischer Scientific 61006). Library preparation was performed with  
596 the NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina® (New England Biolabs  
597 E7760S) and paired end sequencing was performed on the Nextseq 550 platform (Illumina).  
598 Sequenced reads (150 bp paired end) were mapped to the *P. falciparum* genome (Gardner et al., 2002)  
599 (plasmoDB.org, version 3, release 55) using “bwa mem” (Li & Durbin, 2009), allowing a read to  
600 align only once to the reference genome (option “–c 1”). Alignments were subsequently filtered for

601 duplicates and a mapping quality  $\geq 20$  using samtools (Li et al., 2009). Gene counts were quantified  
602 with htseq-count (Anders et al., 2015), and differentially expressed genes were identified in R (R  
603 Core Team, 2021) using package DESeq2 (Love et al., 2014).

604 **Estimation of cell cycle progression**

605 RNA-seq-based cell cycle progression was estimated in R by comparing the normalized expression  
606 values (i.e., RPKM, reads per kilobase per exon per one million mapped reads) of each sample to the  
607 microarray data from (Bozdech et al., 2003) using the statistical model as in (Lemieux et al., 2009).

608 **Parasite growth assay**

609 Parasite growth was measured as described previously (Vembar et al., 2015). Briefly, an SMC3-3HA-  
610 *glmS* clone and a WT clone were tightly synchronized. Each culture was split and glucosamine  
611 (Sigma G1514) was added (2.5 mM final concentration) to one half for approximately 96 h before  
612 starting the growth curve. The parasites were tightly re-synchronized and diluted to 0.3% parasitemia  
613 (5% hematocrit) at ring stage using the blood of two different donors. The growth curve was  
614 performed in a 96-well plate (200  $\mu$ L culture per well) with three technical replicates per condition  
615 per blood. Every 24 h, 5  $\mu$ L of the culture were fixed in 45  $\mu$ L of 0.025% glutaraldehyde in PBS for  
616 1h at 4°C. After centrifuging at 800 g for 5 min, free aldehyde groups were quenched by re-  
617 suspending the iRBC pellet in 200  $\mu$ L of 15 mM NH<sub>4</sub>Cl in PBS. A 1:10 dilution of the quenched  
618 iRBC suspension was incubated with Sybr Green I (Sigma S9430) to stain the parasite nuclei.  
619 Quantification of the iRBCs was performed in a CytoFLEX S cytometer (Beckman Coulter) and  
620 analysis with FlowJo™ Software.

621

622 **DATA AVAILABILITY**

623 All data sets generated in this study are available in the following databases:

624 • ChIP-seq data: NCBI BioProject accession # PRJNA854331  
625 • RNA-seq data: NCBI BioProject accession # PRJNA854331  
626 • SMC3-3HA Proteomics data: PRIDE repository accession # PXD035225

627 (DOI: 10.6019/PXD035225, Username: reviewer\_pxd035225@ebi.ac.uk,  
628 Password: agXjJYP4)

629

630 **ACKNOWLEDGEMENTS**

631 This work was supported by the Agence Nationale de la Recherche (grant ANR-21-CE15-0010  
632 PlasmoVarOrg to JMB and grant ANR-11-LABEX-0024-01 ParaFrap to ASc); the European  
633 Research Council (grant PlasmoSilencing 670301 to ASc and grant PlasmoEpiRNA 947819 to SB);  
634 the Academic Research Fund (Tier 2) of the Ministry of Education, Singapore (MOE2018-T2-2-131  
635 to PRP); and the Merlion Project (6.11.18 to PRP). Work in the laboratories of PRP and PCD was  
636 funded by the National Research Foundation of Singapore through the Singapore-MIT Alliance for  
637 Research and Technology Antimicrobial Resistance Interdisciplinary Research Group. JMB was  
638 supported by a European Molecular Biology Organization long-term postdoctoral fellowship (EMBO  
639 ALTF 180-2015), the Institut Pasteur Roux-Cantarini postdoctoral fellowship, and a ParaFrap  
640 fellowship. SB was supported by a European Molecular Biology Organization long-term postdoctoral  
641 fellowship (EMBO ALTF 1444-2016) and advanced fellowship (EMBO aALTF 632-2018). ASi was  
642 supported by the Singapore-MIT Alliance (SMA) Graduate Fellowship from the Ministry of  
643 Education of Singapore. The authors would like to acknowledge the use of the Biomics and Flow  
644 Cytometry platforms at the Institut Pasteur, as well as the mass spectrometer facilities at A\*STAR  
645 Institute of Molecular and Cell Biology in the laboratory of Dr. Radoslaw Sabota with the aid of Dr.  
646 Wint Wint Phoo. The authors would like to thank Aurélie Claës and Patty Chen of the Biology of  
647 Host Parasite Interactions unit at the Institut Pasteur for their invaluable support in the lab.

648

649 **AUTHOR CONTRIBUTIONS**

650 CR and JMB conceptualized the project and conceived experiments. PS and SB performed  
651 DNA/RNA sequencing bioinformatic analysis. ASi performed the SMC3 immunoprecipitation mass  
652 spectrometry and analysis. CR performed all other experiments. PRP, PCD, and ASc supervised and

653 helped interpret analyses. CR, PS, and JMB wrote the manuscript. All authors discussed and approved  
654 the manuscript.

655

656 **CONFLICT OF INTEREST**

657 The authors declare that they have no conflict of interest.

658

659 **FIGURE LEGENDS**

660 **Figure 1. SMC3 is expressed across the IDC and localizes to HP1-independent nuclear foci**

661 **(A)** Cohesin complex subunits annotated in *P. falciparum* (Gardner *et al.*, 2002). Image prepared with  
662 BioRender.com.

663 **(B)** Schematic of *P. falciparum* intraerythrocytic developmental cycle (IDC). Yellow, approximate  
664 timing of DNA replication; Grey, approximate duration of schizogony (modified from Ganter *et*  
665 *al.*, 2017 and Matthews *et al.*, 2018). Time points in this study – 12 hpi (ring), 24 hpi  
666 (trophozoite), and 36 hpi (schizont) – are indicated.

667 **(C)** Alignment of *P. falciparum* (*Pf*) SMC3 (*PfSMC3*) with SMC3 protein sequences in *H. sapiens*  
668 (*Hs*), *D. melanogaster* (*Dm*), *S. pombe* (*Sp*), *S. cerevisiae* (*Sc*), and *A. thaliana* (*At*). A schematic  
669 of *PfSMC3* domain architecture is shown above. Coiled-coil domains are in yellow, low  
670 complexity regions are in blue, and other structured domains are annotated and in green.  
671 Sequence consensus (“Cons”) is indicated by the grey bar with colors representing regions of 100  
672 % agreement between the aligned sequences. Image prepared with Geneious Prime 2020.0.3.

673 **(D)** Western blot analysis of nuclear extracts of ring (R), trophozoite (T), and schizont (S) stages from  
674 a synchronous population of SMC3-3HA-*glmS* parasites. SMC3-3HA is detected with an anti-  
675 HA antibody. An antibody against histone H3 is used as a control for the nuclear extract.  
676 Molecular weights are shown to the right. The SMC3-3HA has a predicted molecular weight of  
677 147.3 kDa (3.3 kDa corresponding to the 3HA tag).

678 (E) and (F) Immunofluorescence assays of fixed RBCs infected with trophozoite or schizont stage  
679 SMC3-3HA-*glmS* parasites. DNA was stained with DAPI (blue) and SMC3-3HA was detected  
680 with anti-HA (green in E and magenta in F) antibody. HP1 was detected with anti-HP1 antibody  
681 (green in F). DIC, differential interference contrast. Scale bars equal 10  $\mu$ m (E) and 5  $\mu$ m (F).

682 **Figure 2. SMC3 binds stably to centromeres, but dynamically to other genes across the IDC**

683 (A) Circos plot of ChIP-seq data showing genome-wide SMC3 binding across the IDC. For 12 (blue),  
684 24 (coral), and 36 (green) hpi, the 14 chromosomes are represented circularly by the outer gray  
685 bars, with chromosome number indicated in roman numerals and chromosome distances (Mbp)  
686 indicated in Arabic numerals. Enrichment ratio (ChIP/input) is shown as average reads per million  
687 (RPM) over bins of 1,000 nucleotides. The maximum y-axis value is 24. Centromeric regions are  
688 represented by red bars in the innermost circle.

689 (B) Zoomed-in view of ChIP-seq data corresponding to chromosome 4 (604,345 - 709,167 bp),  
690 including the centromere (represented with dark red line below the x-axis). For 12 (blue), 24  
691 (coral), and 36 (green) hpi the y-axis is enrichment (ChIP/Input), with vertical lines below  
692 representing significant peaks obtained from peak calling algorithm macs2 ( $q$ -value < 0.05).  
693 The x-axis is DNA sequence, with genes represented by black boxes indented to delineate  
694 introns and labeled with white arrowheads to indicate transcription direction.

695 (C) Box plot comparing the distribution of peak enrichment (fold change, ChIP/Input) between  
696 centromeric (Cent.) regions and extra-centromeric (Other) regions of the genome for 12, 24, and  
697 36 hpi. Peaks were called with macs2 ( $q$ -value < 0.05). Center line, median; box limits, first and  
698 third quartiles; whiskers, 1.5 $\times$  interquartile range. Wilcoxon test was used for statistical analysis.  
699 \*\*\*\* = adjusted  $P$ -value < 0.0001.

700 (D) Venn diagram showing overlap between SMC3 peak-associated genes at 12 (blue), 24 (coral),  
701 and 36 (green) hpi. Closest unique protein coding genes to the extended SMC3-3HA peak summit  
702 (+/- 500 bp) at 12, 24, and 36 hpi are shown in Table 4.

703 **Figure 3. SMC3 inducible knockdown results in deregulation of genes during interphase**

704 (A) Western blot analysis of nuclear extracts at 12 and 24 hpi from a clonal population of SMC3-  
705 3HA-*glmS* parasites in the absence (-) or presence (+) of glucosamine (GlcN). SMC3-3HA is  
706 detected with an anti-HA antibody. An antibody against histone H3 is used as a control for the  
707 nuclear extract. Molecular weights are shown to the right.

708 (B) RNA-seq of an SMC3-3HA-*glmS* clone shows *smc3* transcript levels (FPKM) at 12 ( $q = 8.5 \times 10^{-3}$ )  
709 and 24 ( $q = 1.3 \times 10^{-39}$ ) hpi in the absence (circles) or presence (squares) of glucosamine (GlcN).  
710 *P*-values are calculated with a Wald test for significance of coefficients in a negative binomial  
711 generalized linear model as implemented in DESeq2 (Love et al., 2014).  $q$  = Bonferroni corrected  
712 *P*-value. Corresponding data can be found in Tables 6 and 7.

713 (C) and (D) MA plots of  $\log_2$ (glucosamine-treated/untreated, M) plotted over the mean  
714 abundance of each gene (A) at 12 hpi (C) and 24 hpi (D). Transcripts that were  
715 significantly higher (above *x*-axis) or lower (below *x*-axis) in abundance in the presence  
716 of glucosamine are highlighted in red ( $q \leq 0.1$ ). *smc3* is highlighted in green. Three  
717 replicates were used for untreated and glucosamine-treated parasites, with the exception  
718 of the untreated 12 hpi parasites, for which there were two replicates. *P*-values were  
719 calculated with a Wald test for significance of coefficients in a negative binomial  
720 generalized linear model as implemented in DESeq2 (Love et al., 2014).  $q$  = Bonferroni  
721 corrected *P*-value.

722 (E) and (F) Frequency plots showing the time in the IDC (hpi) of peak transcript level (comparison  
723 to transcriptomics time course in (Painter et al., 2018)) for genes that are significantly  
724 downregulated (grey) or upregulated (black) following SMC3 knockdown at 12 hpi (E) and 24  
725 (F) hpi.

726 **Figure 4. SMC3 is involved in transcriptional regulation of genes involved in invasion**

727 Metagene plot showing average SMC3 enrichment (y-axis = ChIP/Input) in clonal SMC3-  
728 3HA-*glmS* parasites at 12 hpi from 1.5 kb upstream of the transcription start site (TSS) to  
729 1.5 kb downstream of the transcription end site (TES) for genes that are significantly

730 down- (grey) or upregulated (black) upon SMC3 knockdown. One replicate was used for  
731 the SMC3 ChIP-seq.

732 (A) Metagene plot showing average SMC3 enrichment (y-axis = ChIP/Input) in clonal SMC3-  
733 3HA-*glmS* parasites at 12 (blue), 24 (coral), and 36 hpi (green) from 1.5 kb upstream of  
734 the transcription start site (TSS) to 1.5 kb downstream of the transcription end site (TES)  
735 for genes that are significantly upregulated upon SMC3 knockdown at 12 hpi. One  
736 replicate was used for the SMC3 ChIP-seq.

737 (B) ChIP-seq data showing enrichment of SMC3 (ChIP/Input) at 12 (blue), 24 (coral), and 36 (green)  
738 hpi in clonal SMC3-3HA-*glmS* parasites at the *rhoptry-associated protein 2* (*rap2*,  
739 PF3D7\_0501600) and the *glideosome-associated protein 45* (*gap45*, PF3D7\_1222700) gene loci.  
740 The x-axis is DNA sequence, with the gene represented by a black box with white arrowheads to  
741 indicate transcription direction. One replicate was used for ChIP-seq. ATAC-seq data from  
742 closely corresponding time points (15, 25, and 35 hpi) from (Toenhake et al., 2018) are shown in  
743 grey, with the y-axis representing ATAC-seq (RPM)/gDNA (RPM).

744 (C) RNA-seq of an SMC3-3HA-*glmS* clone shows transcript levels (FPKM) for *rap2*  
745 (PF3D7\_0501600) at 12 ( $q = 3 \times 10^{-2}$ ) and 24 ( $q = 3.3 \times 10^{-2}$ ) hpi and *gap45* (PF3D7\_1222700)  
746 at 12 ( $q = 8 \times 10^{-1}$ ) and 24 ( $q = 1.6 \times 10^{-2}$ ) hpi in the absence (black) or presence (grey) of  
747 glucosamine (GlcN). P-values are calculated with a Wald test for significance of coefficients in a  
748 negative binomial generalized linear model as implemented in DESeq2 (Love et al., 2014).  $q =$   
749 Bonferroni corrected P-value. Corresponding data can be found in Tables 6 and 7.

750 (D) Expression values of *rap2* (PF3D7\_0501600) and *gap45* (PF3D7\_1222700) genes across the IDC  
751 (indicated on the x-axis by hpi) from the transcriptomics time course in (Painter et al., 2018).  
752 Data corresponding to 12 (blue), 24 (coral), and 36 (green) hpi time points are  
753 highlighted.

754 (E) Growth curve over five days of clonal SMC3-3HA-*glmS* and WT parasites in the absence or  
755 presence of glucosamine (GlcN). Glucosamine treatment was started 96 h (two cycles) before

756 Day 1 to ensure SMC3 knockdown during the days sampled (Supp. Fig. 1). Uninfected red blood  
757 cells (Blood) served as reference of background. Error bars indicate standard deviation of three  
758 technical replicates in blood from two different donors ( $n = 6$ ). A two-way ANOVA with Tukey  
759 post hoc test was used for statistical analysis. \*\*\*\* = adjusted  $P$ -value  $< 0.0001$ .  
760

## 761 TABLE LEGENDS

762 **Table 1. LC-MS/MS analysis of SMC3-3HA immunoprecipitation.** LC-MS/MS results of the  
763 SMC3-3HA immunoprecipitation in late stage parasites. Total (TotPep) and unique (UniPep) peptide  
764 counts for the proteins listed are shown for three replicates each of the SMC3-3HA and 3D7 WT  
765 control immunoprecipitations. Predicted members of the cohesin complex are highlighted in grey  
766 based on (Hillier et al., 2019; Batugedara et al., 2020).

767 **Table 2. MACS2 peak calling results for SMC3-3HA ChIP-seq at 12, 24, and 36 hpi.** The paired  
768 end deduplicated ChIP and input BAM files were used as treatment and control, respectively, for peak  
769 calling algorithm macs2 command callpeak. Significant peaks ( $q < 0.05$ ) are shown for each time  
770 point, along with their chromosomal coordinates, fold enrichment (ChIP/Input), and  $-\log_{10}(q\text{-value})$ .

771 **Table 3. SMC3-3HA peak enrichment at centromeric regions at 12, 24, and 36 hpi.** List of  
772 significant SMC3 peaks ( $q < 0.05$ , Table 2) that overlap with centromeres, as defined by peaks of  
773 CenH3 (Hoeijmakers et al., 2012) at 12, 24, and 36 hpi. Significant SMC3 peaks and their overlapping  
774 centromeric regions are shown for each time point, along with their chromosomal coordinates, fold  
775 enrichment (ChIP/Input), and  $-\log_{10}(q\text{-value})$ .

776 **Table 4. List of SMC3-3HA peak-associated genes at 12, 24, and 36 hpi.** Protein-coding genes  
777 that are closest to the SMC3-3HA peak summit ( $\pm 500$  bp) at 12, 24, and 36 hpi (defined in Table  
778 2).

779 **Table 5. Gene Ontology analysis for SMC3 peak-associated genes.** GO enrichment analysis  
780 (biological process) of genes associated with an SMC3 peak at 12, 24, or 36 hpi (defined in Table 4).  
781 Number of significantly enriched genes within each “biological process” term (Result count), number

782 of genes with this term divided by the total number of annotated genes with this term in the *P.*  
783 *falciparum* genome (Fold enrichment), odds ratio statistics from the Fisher's exact test, *P*-value  
784 (calculated using a Fisher's exact test), and Benjamini-corrected *P*-value are shown (*q*-value). Only  
785 GO terms with *P* < 0.05 are shown. Analysis was performed using the GO enrichment tool at  
786 PlasmoDB.org (Aurrecoechea et al., 2017).

787 **Table 6. Differential gene expression analysis at 12 hpi of glucosamine-treated over untreated**  
788 **SMC3-3HA-*glmS* parasites.** Analysis was performed for n=3153 genes (ID and chromosome  
789 locations are given) with two and three replicates for untreated and glucosamine-treated SMC3-3HA-  
790 *glmS* parasites, respectively. SMC3 is highlighted in grey.  $\log_2(\text{FoldChange})$  = Fold change of  
791 baseMean (average of the normalized read counts across all samples and replicates for this gene) in  
792 glucosamine-treated/untreated parasites ( $\log_2$ ). *P*-values are calculated with a Wald test for  
793 significance of coefficients in a negative binomial generalized linear model as implemented in  
794 DESeq2 (Love et al., 2014). *q* = Bonferroni corrected *P*-value.

795 **Table 7. Differential gene expression analysis at 24 hpi of glucosamine-treated over untreated**  
796 **SMC3-3HA-*glmS* parasites.** Analysis was performed for n=4822 genes (ID and chromosome  
797 locations are given) with three replicates for untreated and glucosamine-treated SMC3-3HA-*glmS*  
798 parasites. SMC3 is highlighted in grey.  $\log_2(\text{FoldChange})$  = Fold change of baseMean (average of the  
799 normalized read counts across all samples and replicates for this gene) in glucosamine-  
800 treated/untreated parasites ( $\log_2$ ). *P*-values are calculated with a Wald test for significance of  
801 coefficients in a negative binomial generalized linear model as implemented in DESeq2  
802 (Love et al., 2014) *q* = Bonferroni corrected *P*-value.

803 **Table 8. Differential gene expression analysis at 12 hpi of glucosamine-treated over untreated**  
804 **3D7 WT parasites.** Analysis was performed for n=3668 genes (ID and chromosome locations are  
805 given) with three replicates for untreated and glucosamine-treated 3D7 WT parasites, respectively.  
806  $\log_2(\text{FoldChange})$  = Fold change of baseMean (average of the normalized read counts across all  
807 samples and replicates for this gene) in glucosamine-treated/untreated parasites ( $\log_2$ ). *P*-values are

808 calculated with a Wald test for significance of coefficients in a negative binomial generalized linear  
809 model as implemented in DESeq2 (Love et al., 2014).  $q$  = Bonferroni corrected  $P$ -value.

810 **Table 9. Differential gene expression analysis at 24 hpi of glucosamine-treated over untreated**  
811 **3D7 WT parasites.** Analysis was performed for n=4734 genes (ID and chromosome locations are  
812 given) with three replicates for untreated and glucosamine-treated 3D7 WT parasites.  
813  $\log_2(\text{FoldChange})$  = Fold change of baseMean (average of the normalized read counts across all  
814 samples and replicates for this gene) in glucosamine-treated/untreated parasites ( $\log_2$ ).  $P$ -values are  
815 calculated with a Wald test for significance of coefficients in a negative binomial generalized linear  
816 model as implemented in DESeq2 (Love et al., 2014).  $q$  = Bonferroni corrected  $P$ -value.

817 **Table 10. List of differentially expressed genes in SMC3-3HA-*glmS* parasites after filtering of**  
818 **significantly differentially expressed genes in the 3D7 WT upon glucosamine treatment at 12**  
819 **hpi (Supp. Fig. 2).**  $\log_2(\text{FoldChange})$  = Fold change of baseMean (average of the normalized read  
820 counts across all samples and replicates for this gene) in glucosamine-treated/untreated parasites  
821 ( $\log_2$ ).  $P$ -values are calculated with a Wald test for significance of coefficients in a negative binomial  
822 generalized linear model as implemented in DESeq2 (Love et al., 2014).  $q$  = Bonferroni corrected  $P$ -  
823 value. SMC3 is highlighted in grey.

824 **Table 11. List of differentially expressed genes in SMC3-3HA-*glmS* parasites after filtering of**  
825 **significantly differentially expressed genes in the 3D7 WT upon glucosamine treatment at 24hpi**  
826 **(Supp. Fig. 2).**  $\log_2(\text{FoldChange})$  = Fold change of baseMean (average of the normalized read counts  
827 across all samples and replicates for this gene) in glucosamine-treated/untreated parasites ( $\log_2$ ).  $P$ -  
828 values are calculated with a Wald test for significance of coefficients in a negative binomial  
829 generalized linear model as implemented in DESeq2 (Love et al, 2014).  $q$  = Bonferroni corrected  $P$ -  
830 value. SMC3 is highlighted in grey.

831 **Table 12: Gene Ontology analysis of significantly up- and downregulated genes in SMC3**  
832 **knockdown at 12 hpi.** GO enrichment analysis (biological process) of genes significantly and  
833 specifically up- or downregulated upon SMC3 knockdown at 12 hpi (as defined in Table 10). Number

834 of significantly enriched genes within each “biological process” term (Result count), number of genes  
835 with this term divided by the total number of annotated genes with this term in the *P. falciparum*  
836 genome (Fold enrichment), odds ratio statistics from the Fisher’s exact test, *P*-value (calculated using  
837 a Fisher’s exact test), and Benjamini-corrected *P*-value (*q*-value). Only GO terms with *P* < 0.05 are  
838 shown. Analysis was performed using the GO enrichment tool at PlasmoDB.org (Aurrecoechea et  
839 al., 2017).

840 **Table 13: Gene Ontology analysis of significantly up- and downregulated genes in SMC3  
841 knockdown at 24 hpi.** GO enrichment analysis (biological process) of genes significantly and  
842 specifically up- or downregulated upon SMC3 knockdown at 12 hpi (as defined in Table 11). Number  
843 of significantly enriched genes within each “biological process” term (Result count), number of genes  
844 with this term divided by the total number of annotated genes with this term in the *P. falciparum*  
845 genome (Fold enrichment), odds ratio statistics from the Fisher’s exact test, *P*-value (calculated using  
846 a Fisher’s exact test), and Benjamini-corrected *P*-value (*q*-value). Only GO terms with a *P* < 0.05 are  
847 shown. Analysis was performed using the GO enrichment tool at PlasmoDB.org (Aurrecoechea et  
848 al., 2017).

849 **Table 14: List of invasion-related genes that are significantly upregulated in SMC3 knockdown  
850 at 12 and 24 hpi.** List of genes significantly and specifically upregulated at 12 and 24 hpi in response  
851 to SMC3 depletion that overlap with a list of “invasion-related genes,” as defined in (Hu et al., 2010).  
852 Gene IDs and chromosome locations are given.  $\log_2(\text{FoldChange})$  = Fold change of baseMean  
853 (average of the normalized read counts across all samples and replicates for this gene) in glucosamine-  
854 treated/untreated parasites ( $\log_2$ ). *P*-values are calculated with a Wald test for significance of  
855 coefficients in a negative binomial generalized linear model as implemented in DESeq2 (Love et al.,  
856 2014). *q* = Bonferroni corrected *P*-value.

857

858 **SUPPLEMENTARY FIGURE LEGENDS**

859 **Supplementary Figure 1. SMC3 knockdown occurs after two cell cycles of glucosamine  
860 treatment.**

861 Western blot analysis of nuclear extracts from a synchronous clonal population of SMC3-3HA-*glmS*  
862 ring stage parasites in the absence (-) or presence (+) of glucosamine (GlcN) for 48 and 96 hr (one  
863 and two IDC cycles, respectively). SMC3-3HA is detected with an anti-HA antibody. An antibody  
864 against histone H3 is used as a control for the nuclear extract. Molecular weights are shown to the  
865 right.

866 **Supplementary Figure 2. Strategy for determining expression changes due to glucosamine  
867 treatment.**

868 Venn diagram showing the number of unique or shared significantly up- or downregulated genes after  
869 two cycles of glucosamine treatment in synchronous, clonal populations of SMC3-3HA-*glmS* (green)  
870 and WT (purple) parasites at 12 and 24 hpi.

871 **Supplementary Figure 3. Cell cycle progression of SMC3-3HA-*glmS* at 12 and 24 hpi.**

872 Cell cycle progression estimation of a synchronous, clonal SMC3-3HA-*glmS* population in the  
873 absence (- GlcN) or presence (+ GlcN) of glucosamine. RNA-seq data from synchronized parasites  
874 harvested at 12 (blue) and 24 (coral) hpi were compared to microarray data from (Bozdech et al.,  
875 2003) as in (Lemieux et al., 2009) to determine the approximate time point in the IDC (x-axis).  
876 Replicates are represented with circles.

877

878 **REFERENCES**

879 Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-  
880 throughput sequencing data. *Bioinformatics*, 31(2), 166–169.  
881 <https://doi.org/10.1093/bioinformatics/btu638>

882 Arnot, D. E., Ronander, E., & Bengtsson, D. C. (2011). The progression of the intra-erythrocytic cell  
883 cycle of *Plasmodium falciparum* and the role of the centriolar plaques in asynchronous mitotic

884 division during schizogony. *International Journal for Parasitology*, 41(1), 71–80.

885 <https://doi.org/10.1016/j.ijpara.2010.07.012>

886 Aurrecoechea, C., Barreto, A., Basenko, E. Y., Brestelli, J., Brunk, B. P., Cade, S., Crouch, K.,

887 Doherty, R., Falke, D., Fischer, S., Gajria, B., Harb, O. S., Heiges, M., Hertz-Fowler, C., Hu, S.,

888 Iodice, J., Kissinger, J. C., Lawrence, C., Li, W., ... Zheng, J. (2017). EuPathDB: The eukaryotic

889 pathogen genomics database resource. *Nucleic Acids Research*, 45(D1), D581–D591.

890 <https://doi.org/10.1093/nar/gkw1105>

891 Ay, F., Bunnik, E. M., Varoquaux, N., Bol, S. M., Prudhomme, J., Vert, J. P., Noble, W. S., & le

892 Roch, K. G. (2014). Three-dimensional modeling of the *P. falciparum* genome during the

893 erythrocytic cycle reveals a strong connection between genome architecture and gene

894 expression. *Genome Research*, 24(6), 974–988. <https://doi.org/10.1101/gr.169417.113>

895 Balaji, S., Madan Babu, M., Iyer, L. M., & Aravind, L. (2005). Discovery of the principal specific

896 transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase

897 DNA binding domains. *Nucleic Acids Research*, 33(13), 3994–4006.

898 <https://doi.org/10.1093/nar/gki709>

899 Batsios, P., Peter, T., Baumann, O., Stick, R., Meyer, I., & Gräf, R. (2012). A lamin in lower

900 eukaryotes? *Nucleus (United States)*, 3(3). <https://doi.org/10.4161/nucl.20149>

901 Batugedara, G., Lu, X. M., Saraf, A., Sardiu, M. E., Cort, A., Abel, S., Prudhomme, J., Washburn,

902 M. P., Florens, L., Bunnik, E. M., & le Roch, K. G. (2020). The chromatin bound proteome of

903 the human malaria parasite. *Microbial Genomics*, 6(2). <https://doi.org/10.1099/mgen.0.000327>

904 Baumgarten, S., Bryant, J. M., Sinha, A., Reyser, T., Preiser, P. R., Dedon, P. C., & Scherf, A. (2019).

905 Transcriptome-wide dynamics of extensive m6A mRNA methylation during *Plasmodium*

906 *falciparum* blood-stage development. *BioRxiv*, 33(0), 572891. <https://doi.org/10.1101/572891>

907 Bozdech, Z., Llinás, M., Pulliam, B. L., Wong, E. D., Zhu, J., & DeRisi, J. L. (2003). The

908 transcriptome of the intraerythrocytic developmental cycle of *Plasmodium falciparum*. *PLoS*

909 *Biology*, 1(1). <https://doi.org/10.1371/journal.pbio.0000005>

910 Bunnik, E. M., Cook, K. B., Varoquaux, N., Batugedara, G., Prudhomme, J., Cort, A., Shi, L.,  
911 Andolina, C., Ross, L. S., Brady, D., Fidock, D. A., Nosten, F., Tewari, R., Sinnis, P., Ay, F.,  
912 Vert, J. P., Noble, W. S., & le Roch, K. G. (2018). Changes in genome organization of parasite-  
913 specific gene families during the *Plasmodium* transmission stages. *Nature Communications*,  
914 9(1). <https://doi.org/10.1038/s41467-018-04295-5>

915 Bunnik, E. M., Venkat, A., Shao, J., McGovern, K. E., Batugedara, G., Worth, D., Prudhomme, J.,  
916 Lapp, S. A., Andolina, C., Ross, L. S., Lawres, L., Brady, D., Sinnis, P., Nosten, F., Fidock, D.  
917 A., Wilson, E. H., Tewari, R., Galinski, M. R., Mamoun, C. ben, ... le Roch, K. G. (2019).  
918 Comparative 3D genome organization in apicomplexan parasites. *Proceedings of the National  
919 Academy of Sciences of the United States of America*, 116(8), 3183–3192.  
920 <https://doi.org/10.1073/pnas.1810815116>

921 Campbell, T. L., de Silva, E. K., Olszewski, K. L., Elemento, O., & Llinás, M. (2010). Identification  
922 and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 family of regulators  
923 from the malaria parasite. *PLoS Pathogens*, 6(10). <https://doi.org/10.1371/journal.ppat.1001165>

924 Caro, F., Ahyong, V., Betegon, M., & DeRisi, J. L. (2014). Genome-wide regulatory dynamics of  
925 translation in the *Plasmodium falciparum* asexual blood stages. *ELife*, 3, 1–24.  
926 <https://doi.org/10.7554/elife.04106>

927 Carvalhal, S., Tavares, A., Santos, M. B., Mirkovic, M., & Oliveira, R. A. (2018). A quantitative  
928 analysis of cohesin decay in mitotic fidelity. *Journal of Cell Biology*, 217(10), 3343–3353.  
929 <https://doi.org/10.1083/JCB.201801111>

930 Cowman, A. F., Berry, D., & Baum, J. (2012). The cellular and molecular basis for malaria parasite  
931 invasion of the human red blood cell. *Journal of Cell Biology*, 198(6), 961–971.  
932 <https://doi.org/10.1083/jcb.201206112>

933 Cowman, A. F., Healer, J., Marapana, D., & Marsh, K. (2016). Malaria: Biology and Disease. *Cell*,  
934 167(3), 610–624. <https://doi.org/10.1016/j.cell.2016.07.055>

935 Cowman, A. F., Tonkin, C. J., Tham, W. H., & Duraisingham, M. T. (2017). The Molecular Basis of  
936 Erythrocyte Invasion by Malaria Parasites. *Cell Host and Microbe*, 22(2), 232–245.  
937 <https://doi.org/10.1016/j.chom.2017.07.003>

938 Davidson, I. F., Bauer, B., Goetz, D., Tang, W., Wutz, G., & Peters, J.-M. (2019). DNA loop extrusion  
939 by human cohesin. *Science*, 366(6471), 1338–1345. <https://doi.org/10.1126/science.aaz3418>

940 Dekker, J., & Heard, E. (2015). Structural and functional diversity of Topologically Associating  
941 Domains. *FEBS Letters*, 589(20), 2877–2884. <https://doi.org/10.1016/j.febslet.2015.08.044>

942 Dixon, J. R., Gorkin, D. U., & Ren, B. (2016). Chromatin Domains: The Unit of Chromosome  
943 Organization. *Molecular Cell*, 62(5), 668–680. <https://doi.org/10.1016/j.molcel.2016.05.018>

944 Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., & Ren, B. (2012).  
945 Topological domains in mammalian genomes identified by analysis of chromatin interactions.  
946 *Nature*, 485(7398), 376–380. <https://doi.org/10.1038/nature11082>

947 Dorsett, D., & Ström, L. (2012). The ancient and evolving roles of cohesin in gene expression and  
948 DNA repair. *Current Biology*, 22(7). <https://doi.org/10.1016/j.cub.2012.02.046>

949 Eichinger, C. S., Kurze, A., Oliveira, R. A., & Nasmyth, K. (2013). Disengaging the Smc3/kleisin  
950 interface releases cohesin from *Drosophila* chromosomes during interphase and mitosis. *EMBO  
951 Journal*, 32(5), 656–665. <https://doi.org/10.1038/emboj.2012.346>

952 Ganter, M., Goldberg, J. M., Dvorin, J. D., Paulo, J. A., King, J. G., Tripathi, A. K., Paul, A. S., Yang,  
953 J., Coppens, I., Jiang, R. H. Y., Elsworth, B., Baker, D. A., Dinglasan, R. R., Gygi, S. P., &  
954 Duraisingham, M. T. (2017). *Plasmodium falciparum* CRK4 directs continuous rounds of DNA  
955 replication during schizogony. *Nature Microbiology*, 2.  
956 <https://doi.org/10.1038/nmicrobiol.2017.17>

957 Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A.,  
958 Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S.  
959 L., Craig, A., Kyes, S., Chan, M. S., Nene, V., ... Barrell, B. (2002). Genome sequence of the

960 human malaria parasite *Plasmodium falciparum*. *Nature*, 419(6906), 498–511.  
961 <https://doi.org/10.1038/nature01097>

962 Gerald, N., Mahajan, B., & Kumar, S. (2011). Mitosis in the human malaria parasite plasmodium  
963 falciparum. *Eukaryotic Cell*, 10(4), 474–482. <https://doi.org/10.1128/EC.00314-10>

964 Gerlich, D., Koch, B., Dupeux, F., Peters, J. M., & Ellenberg, J. (2006). Live-Cell Imaging Reveals  
965 a Stable Cohesin-Chromatin Interaction after but Not before DNA Replication. *Current Biology*,  
966 16(15), 1571–1578. <https://doi.org/10.1016/j.cub.2006.06.068>

967 Ghorbal, M., Gorman, M., MacPherson, C. R., Martins, R. M., Scherf, A., & Lopez-Rubio, J. J.  
968 (2014). Genome editing in the human malaria parasite *Plasmodium falciparum* using the  
969 CRISPR-Cas9 system. *Nature Biotechnology*, 32(8), 819–821. <https://doi.org/10.1038/nbt.2925>

970 Gligoris, T. G., Scheinost, J. C., Bürmann, F., Petela, N., Chan, K. L., Uluocak, P., Beckouët, F.,  
971 Gruber, S., Nasmyth, K., & Löwe, J. (2014). Closing the cohesin ring: Structure and function of  
972 its Smc3-kleisin interface. *Science*, 346(6212), 963–967.  
973 <https://doi.org/10.1126/science.1256917>

974 Haase, S., Cabrera, A., Langer, C., Treeck, M., Struck, N., Herrmann, S., Jansen, P. W., Bruchhaus,  
975 I., Bachmann, A., Dias, S., Cowman, A. F., Stunnenberg, H. G., Spielmann, T., & Gilberger, T.  
976 W. (2008). Characterization of a conserved rhoptry-associated leucine zipper-like protein in the  
977 malaria parasite *Plasmodium falciparum*. *Infection and Immunity*, 76(3), 879–887.  
978 <https://doi.org/10.1128/IAI.00144-07>

979 Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E., & Wiehe, T. (2012). The chromatin insulator  
980 CTCF and the emergence of metazoan diversity. *Proceedings of the National Academy of  
981 Sciences of the United States of America*, 109(43), 17507–17512.  
982 <https://doi.org/10.1073/pnas.1111941109>

983 Heidinger-Pauli, J. M., Mert, O., Davenport, C., Guacci, V., & Koshland, D. (2010). Systematic  
984 Reduction of Cohesin Differentially Affects Chromosome Segregation, Condensation, and DNA  
985 Repair. *Curr Biol*, 20(10), 957–963. <https://doi.org/10.1016/j.cub.2010.04.018>

986 Hillier, C., Pardo, M., Yu, L., Bushell, E., Sanderson, T., Metcalf, T., Herd, C., Anar, B., Rayner, J.  
987 C., Billker, O., & Choudhary, J. S. (2019). Landscape of the *Plasmodium* Interactome Reveals  
988 Both Conserved and Species-Specific Functionality. *Cell Reports*, 28(6), 1635-1647.e5.  
989 <https://doi.org/10.1016/j.celrep.2019.07.019>

990 Hoeijmakers, W. A. M., Flueck, C., Françoijs, K. J., Smits, A. H., Wetzel, J., Volz, J. C., Cowman,  
991 A. F., Voss, T., Stunnenberg, H. G., & Bártfai, R. (2012). *Plasmodium falciparum* centromeres  
992 display a unique epigenetic makeup and cluster prior to and during schizogony. *Cellular  
993 Microbiology*, 14(9), 1391–1401. <https://doi.org/10.1111/j.1462-5822.2012.01803.x>

994 Holzmann, J., Politi, A. Z., Nagasaka, K., Hantsche-Grininger, M., Walther, N., Koch, B., Fuchs, J.,  
995 Dürnberger, G., Tang, W., Ladurner, R., Stocsits, R. R., Busslinger, G. A., Novák, B., Mechtler,  
996 K., Davidson, I. F., Ellenberg, J., & Peters, J. M. (2019). Absolute quantification of Cohesin,  
997 CTCF and their regulators in human cells. *eLife*, 8. <https://doi.org/10.7554/eLife.46269.001>

998 Hu, G., Cabrera, A., Kono, M., Mok, S., Chaal, B. K., Haase, S., Engelberg, K., Cheemadan, S.,  
999 Spielmann, T., Preiser, P. R., Gilberger, T. W., & Bozdech, Z. (2010). Transcriptional profiling  
1000 of growth perturbations of the human malaria parasite *Plasmodium falciparum*. *Nature  
1001 Biotechnology*, 28(1), 91–98. <https://doi.org/10.1038/nbt.1597>

1002 Huis in 't Veld, P., Herzog, F., Ladurner, R., Davidson, I. F., Piric, S., Kreidl, E., Bhaskara, V.,  
1003 Aebersold, R., & Peters, J.-M. (2014). Characterization of a DNA exit gate in the human cohesin  
1004 ring. *Science*, 346(6212), 968–972. <https://doi.org/10.1126/science.1256904>

1005 Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L., Ebmeier,  
1006 C. C., Goossens, J., Rahl, P. B., Levine, S. S., Taatjes, D. J., Dekker, J., & Young, R. A. (2010).  
1007 Mediator and cohesin connect gene expression and chromatin architecture. *Nature*, 467(7314),  
1008 430–435. <https://doi.org/10.1038/nature09380>

1009 Kensche, P. R., Hoeijmakers, W. A. M., Toenhake, C. G., Bras, M., Chappell, L., Berriman, M., &  
1010 Bártfai, R. (2016). The nucleosome landscape of *Plasmodium falciparum* reveals chromatin

1011        architecture and dynamics of regulatory sequences. *Nucleic Acids Research*, 44(5), 2110–2124.

1012        <https://doi.org/10.1093/nar/gkv1214>

1013        Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J., & Yu, H. (2019). Human cohesin compacts DNA by

1014        loop extrusion. *Science*, 366(6471), 1345–1349. <https://doi.org/10.1126/science.aaz4475>

1015        Klaus, S., Binder, P., Kim, J., Machado, M., Funaya, C., Schaaf, V., Klaschka, D., Kudulyte, A.,

1016        Cyrklaff, M., Laketa, V., Höfer, T., Guizetti, J., Becker, N. B., Frischknecht, F., Schwarz, U. S.,

1017        & Ganter, M. (2022). Asynchronous nuclear cycles in multinucleated *Plasmodium falciparum*

1018        facilitate rapid proliferation. *Sci. Adv.*, 8, 5362. <https://doi.org/10.1126/sciadv.abj5362>

1019        Kothiwal, D., & Laloraya, S. (2019). A SIR-independent role for cohesin in subtelomeric silencing

1020        and organization. *Proceedings of the National Academy of Sciences of the United States of*

1021        *America*, 116(12), 5659–5664. <https://doi.org/10.1073/pnas.1816582116>

1022        Kubo, N., Ishii, H., Xiong, X., Bianco, S., Meitinger, F., Hu, R., Hocker, J. D., Conte, M., Gorkin,

1023        D., Yu, M., Li, B., Dixon, J. R., Hu, M., Nicodemi, M., Zhao, H., & Ren, B. (2021). Promoter-

1024        proximal CTCF binding promotes distal enhancer-dependent gene activation. *Nature Structural*

1025        *and Molecular Biology*, 28(2), 152–161. <https://doi.org/10.1038/s41594-020-00539-5>

1026        Lemieux, J. E., Gomez-Escobar, N., Feller, A., Carret, C., Amambua-Ngwa, A., Pinches, R., Day, F.,

1027        Kyes, S. A., Conway, D. J., Holmes, C. C., & Newbold, C. I. (2009). Statistical estimation of

1028        cell-cycle progression and lineage commitment in *Plasmodium falciparum* reveals a

1029        homogeneous pattern of transcription in ex vivo culture. *Proceedings of the National Academy*

1030        *of Sciences*, 106(18), 7559–7564. <https://doi.org/10.1073/pnas.0811829106>

1031        Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform.

1032        *Bioinformatics*, 25(14), 1754–1760. <https://doi.org/10.1093/bioinformatics/btp324>

1033        Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., &

1034        Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16),

1035        2078–2079. <https://doi.org/10.1093/bioinformatics/btp352>

1036 Lopez-Rubio, J. J., Mancio-Silva, L., & Scherf, A. (2009). Genome-wide Analysis of  
1037 Heterochromatin Associates Clonally Variant Gene Regulation with Perinuclear Repressive  
1038 Centers in Malaria Parasites. *Cell Host and Microbe*, 5(2), 179–190.  
1039 <https://doi.org/10.1016/j.chom.2008.12.012>

1040 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for  
1041 RNA-seq data with DESeq2. *Genome Biology*, 15(12). <https://doi.org/10.1186/s13059-014-0550-8>

1043 Lu, B., Liu, M., Gu, L., Li, Y., Shen, S., Guo, G., Wang, F., He, X., Zhao, Y., Shang, X., Wang, L.,  
1044 Yang, G., Zhu, Q., Cao, J., Jiang, C., Culleton, R., Wei, G., & Zhang, Q. (2021). The  
1045 architectural factor hmgb1 is involved in genome organization in the human malaria parasite  
1046 plasmodium falciparum. *MBio*, 12(2). <https://doi.org/10.1128/mBio.00148-21>

1047 MacPherson, C. R., & Scherf, A. (2015). Flexible guide-RNA design for CRISPR applications using  
1048 Protospacer Workbench. *Nature Biotechnology*, 33(8), 805–806.  
1049 <https://doi.org/10.1038/nbt.3291>

1050 Mehnert, A.-K., Simon, C. S., & Guizetti, J. (2019). Immunofluorescence staining protocol for STED  
1051 nanoscopy of *Plasmodium*-infected red blood cells. *Molecular and Biochemical Parasitology*,  
1052 229, 47–52. <https://doi.org/10.1016/j.molbiopara.2019.02.007>

1053 Mesén-Ramírez, P., Reinsch, F., Blancke Soares, A., Bergmann, B., Ullrich, A. K., Tenzer, S., &  
1054 Spielmann, T. (2016). Stable Translocation Intermediates Jam Global Protein Export in  
1055 Plasmodium falciparum Parasites and Link the PTEX Component EXP2 with Translocation  
1056 Activity. *PLoS Pathogens*, 12(5). <https://doi.org/10.1371/journal.ppat.1005618>

1057 Michaelis, C., Ciosk, R., & Nasmyth, K. (1997). Cohesins: Chromosomal Proteins that Prevent  
1058 Premature Separation of Sister Chromatids. *Cell*, 91(1), 35–45. [https://doi.org/10.1016/s0092-8674\(01\)80007-6](https://doi.org/10.1016/s0092-8674(01)80007-6)

1060 Mirkovic, M., & Oliveira, R. A. (2017). Centromeric Cohesin: Molecular Glue and Much More.  
1061 *Progress in Molecular and Subcellular Biology*, 485–513. [https://doi.org/10.1007/978-3-319-58592-5\\_20](https://doi.org/10.1007/978-3-319-58592-5_20)

1063 Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto,  
1064 S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The  
1065 protein families database in 2021. *Nucleic Acids Research*, 49(D1), D412–D419.  
1066 <https://doi.org/10.1093/nar/gkaa913>

1067 Muller, H., Gil, J., & Drinnenberg, I. A. (2019). The Impact of Centromeres on Spatial Genome  
1068 Architecture. *Trends in Genetics*, 35(8), 565–578. <https://doi.org/10.1016/j.tig.2019.05.003>

1069 Nativio, R., Wendt, K. S., Ito, Y., Huddleston, J. E., Uribe-Lewis, S., Woodfine, K., Krueger, C.,  
1070 Reik, W., Peters, J. M., & Murrell, A. (2009). Cohesin is required for higher-order chromatin  
1071 conformation at the imprinted IGF2-H19 locus. *PLoS Genetics*, 5(11).  
1072 <https://doi.org/10.1371/journal.pgen.1000739>

1073 Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N., & Mirny, L. A. (2018). Chromatin  
1074 organization by an interplay of loop extrusion and compartmental segregation. *Proceedings of  
1075 the National Academy of Sciences of the United States of America*, 115(29), E6697–E6706.  
1076 <https://doi.org/10.1073/pnas.1717730115>

1077 O'Donnell, R. A., Saul, A., Cowman, A. F., & Crabb, B. S. (2000). Functional conservation of the  
1078 malaria vaccine antigen MSP-119 across distantly related *Plasmodium* species. *Nature Medicine*,  
1079 6(1), 91–95. <https://doi.org/10.1038/71595>

1080 O'Donnell, R. A., de Koning-Ward, T. F., Burt, R. A., Bockarie, M., Reeder, J. C., Cowman, A. F.,  
1081 & Crabb, B. S. (2001). Antibodies against Merozoite Surface Protein (Msp)-119 Are a Major  
1082 Component of the Invasion-Inhibitory Response in Individuals Immune to Malaria. *Journal of  
1083 Experimental Medicine*, 193(12), 1403–1412. <https://doi.org/10.1084/jem.193.12.1403>

1084 Oh, S., Shao, J., Mitra, J., Xiong, F., D'Antonio, M., Wang, R., Garcia-Bassets, I., Ma, Q., Zhu, X.,  
1085 Lee, J. H., Nair, S. J., Yang, F., Ohgi, K., Frazer, K. A., Zhang, Z. D., Li, W., & Rosenfeld, M.

1086 G. (2021). Enhancer release and retargeting activates disease-susceptibility genes. *Nature*,  
1087 595(7869), 735–740. <https://doi.org/10.1038/s41586-021-03577-1>

1088 Painter, H. J., Chung, N. C., Sebastian, A., Albert, I., Storey, J. D., & Llinás, M. (2018). Genome-  
1089 wide real-time in vivo transcriptional dynamics during *Plasmodium falciparum* blood-stage  
1090 development. *Nature Communications*, 9(1). <https://doi.org/10.1038/s41467-018-04966-3>

1091 Perea-Resa, C., Wattendorf, L., Marzouk, S., & Blower, M. D. (2021). Cohesin: behind dynamic  
1092 genome topology and gene expression reprogramming. *Trends in Cell Biology*, 31(9), 760–773.  
1093 <https://doi.org/10.1016/j.tcb.2021.03.005>

1094 Peters, J. M., & Nishiyama, T. (2012). Sister chromatid cohesion. *Cold Spring Harbor Perspectives  
1095 in Biology*, 4(11). <https://doi.org/10.1101/cshperspect.a011130>

1096 Prommano, P., Uthaipibull, C., Wongsombat, C., Kamchonwongpaisan, S., Yuthavong, Y., Knuepfer,  
1097 E., Holder, A. A., & Shaw, P. J. (2013). Inducible Knockdown of *Plasmodium* Gene Expression  
1098 Using the glmS Ribozyme. *PLoS One*, 8(8). <https://doi.org/10.1371/journal.pone.0073783>

1099 Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic  
1100 features. *Bioinformatics*, 26(6), 841–842. <https://doi.org/10.1093/bioinformatics/btq033>

1101 R Core Team. (2021). *R: A language and environment for statistical computing*. <https://www.R-project.org/>

1103 Ralph, S. A., Scheidig-Benatar, C., & Scherf, A. (2005). Antigenic variation in *Plasmodium  
1104 falciparum* is associated with movement of var loci between subnuclear locations. *Proceedings  
1105 of the National Academy of Sciences*, 102(15), 5414–5419.  
1106 <https://doi.org/10.1073/pnas.0408883102>

1107 Ramírez, F., Ryan, D. P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., Heyne, S., Dündar,  
1108 F., & Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data  
1109 analysis. *Nucleic Acids Research*, 44(1), 160–165. <https://doi.org/10.1093/NAR/GKW257>

1110 Rao, S. S. P., Huang, S. C., Glenn St Hilaire, B., Engreitz, J. M., Perez, E. M., Kieffer-Kwon, K. R.,  
1111 Sanborn, A. L., Johnstone, S. E., Bascom, G. D., Bochkov, I. D., Huang, X., Shamim, M. S.,

1112 Shin, J., Turner, D., Ye, Z., Omer, A. D., Robinson, J. T., Schlick, T., Bernstein, B. E., ... Aiden,  
1113 E. L. (2017). Cohesin Loss Eliminates All Loop Domains. *Cell*, 171(2), 305-320.e24.  
1114 <https://doi.org/10.1016/j.cell.2017.09.026>

1115 Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov,  
1116 J. P. (2011). Integrative genomics viewer. *Nature Biotechnology*, 29(1), 24–26.  
1117 <https://doi.org/10.1038/nbt0111-24>

1118 Rudlaff, R. M., Kraemer, S., Marshman, J., & Dvorin, J. D. (2020). Three-dimensional ultrastructure  
1119 of *Plasmodium falciparum* throughout cytokinesis. *PLoS Pathogens*, 16(6).  
1120 <https://doi.org/10.1371/journal.ppat.1008587>

1121 Salcedo-Amaya, A. M., van Driel, M. A., Alako, B. T., Trelle, M. B., van den Elzen, A. M. G., Cohen,  
1122 A. M., Janssen-Megens, E. M., van de Vegte-Bolmer, M., Selzer, R. R., Iniguez, A. L., Green,  
1123 R. D., Sauerwein, R. W., Jensen, O. N., & Stunnenberg, H. G. (2009). Dynamic histone H3  
1124 epigenome marking during the intraerythrocytic cycle of *Plasmodium falciparum*. *Proceedings  
1125 of the National Academy of Sciences of the United States of America*, 106(24), 9655–9660.  
1126 <https://doi.org/10.1073/pnas.0902515106>

1127 Santos, J. M., Josling, G., Ross, P., Joshi, P., Campbell, T., Schieler, A., & Cristea, I. M. (2017). Red  
1128 blood cell invasion by the malaria parasite is coordinated by the PfAP2-I transcription factor.  
1129 *Cell Host Microbe*, 21(6), 731–741. <https://doi.org/10.1016/j.chom.2017.05.006>.Red

1130 Sasca, D., Yun, H., Giotopoulos, G., Szybinski, J., Evan, T., Wilson, N. K., Gerstung, M., Gallipoli,  
1131 P., Green, A. R., Hills, R., Russell, N., Osborne, C. S., Papaemmanuil, E., Göttgens, B.,  
1132 Campbell, P., & Huntly, B. J. P. (2019). Cohesin-dependent regulation of gene expression during  
1133 differentiation is lost in cohesin-mutated myeloid malignancies. *Blood*, 134(24), 2195–2208.  
1134 <https://doi.org/10.1182/blood.2019001553>

1135 Scherf, A., Lopez-Rubio, J. J., & Riviere, L. (2008). Antigenic Variation in *Plasmodium falciparum*,  
1136 *Annual Review of Microbiology*, 62(1), 445–470.  
1137 <https://doi.org/10.1146/annurev.micro.61.080706.093134>

1138 Sherling, E. S., Knuepfer, E., Brzostowski, J. A., Miller, L. H., Blackman, M. J., & van Ooij, C.  
1139 (2017). The *Plasmodium falciparum* rhoptry protein RhopH3 plays essential roles in host cell  
1140 invasion and nutrient uptake. *eLife*, 6. <https://doi.org/10.7554/eLife.23239.001>

1141 Stanojcic, S., Kuk, N., Ullah, I., Sterkers, Y., & Merrick, C. J. (2017). Single-molecule analysis  
1142 reveals that DNA replication dynamics vary across the course of schizogony in the malaria  
1143 parasite *Plasmodium falciparum*. *Scientific Reports*, 7(1). <https://doi.org/10.1038/s41598-017-04407-z>

1145 Tanaka, T., Cosma, M. P., Wirth, K., & Nasmyth, K. (1999). Identification of Cohesin Association  
1146 Sites at Centromeres and along Chromosome Arms. *Cell*, 98, 847–858.  
1147 [https://doi.org/10.1016/S0092-8674\(00\)81518-4](https://doi.org/10.1016/S0092-8674(00)81518-4)

1148 Toenhake, C. G., Fraschka, S. A.-K., Vijayabaskar, M. S., Westhead, D. R., van Heeringen, S. J., &  
1149 Bártfai, R. (2018). Chromatin Accessibility-Based Characterization of the Gene Regulatory  
1150 Network Underlying *Plasmodium falciparum* Blood-Stage Development. *Cell Host & Microbe*,  
1151 23(4), 557-569.e9. <https://doi.org/10.1016/j.chom.2018.03.007>

1152 Tolhuis, B., Blom, M., Kerkhoven, R. M., Pagie, L., Teunissen, H., Nieuwland, M., Simonis, M., de  
1153 Laat, W., van Lohuizen, M., & van Steensel, B. (2011). Interactions among polycomb domains  
1154 are guided by chromosome architecture. *PLoS Genetics*, 7(3).  
1155 <https://doi.org/10.1371/journal.pgen.1001343>

1156 Tomonaga, T., Nagao, K., Kawasaki, Y., Furuya, K., Murakaini, A., Morishita, J., Yuasa, T., Sutani,  
1157 T., Kearsey, S. E., Uhlmann, F., Nasmyth, K., & Yanagida, M. (2000). Characterization of  
1158 fission yeast cohesin: Essential anaphase proteolysis of Rad21 phosphorylated in the S phase.  
1159 *Genes and Development*, 14(21), 2757–2770. <https://doi.org/10.1101/gad.832000>

1160 Tonkin, C. J., van Dooren, G. G., Spurck, T. P., Struck, N. S., Good, R. T., Handman, E., Cowman,  
1161 A. F., & McFadden, G. I. (2004). Localization of organellar proteins in *Plasmodium falciparum*  
1162 using a novel set of transfection vectors and a new immunofluorescence fixation method.

1163        *Molecular and Biochemical Parasitology*, 137(1), 13–21.

1164        <https://doi.org/10.1016/j.molbiopara.2004.05.009>

1165        Trelle, M. B., Salcedo-Amaya, A. M., Cohen, A. M., Stunnenberg, H. G., & Jensen, O. N. (2009).

1166        Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues

1167        in the malaria parasite *Plasmodium falciparum*. *Journal of Proteome Research*, 8(7), 3439–

1168        3450. <https://doi.org/10.1021/pr9000898>

1169        Uhlmann, F., Lottspeich, F., & Nasmyth, K. (1999). Sister-chromatid separation at anaphase onset is

1170        promoted by cleavage of the cohesin subunit Scc1. *Nature*, 400(6739), 37–42.

1171        <https://doi.org/10.1038/21831>

1172        Uhlmann, F. (2016). SMC complexes: From DNA to chromosomes. *Nature Reviews Molecular Cell*

1173        *Biology*, 17(7), 399–412. <https://doi.org/10.1038/nrm.2016.30>

1174        Vembar, S. S., Macpherson, C. R., Sismeiro, O., Coppée, J. Y., & Scherf, A. (2015). The PfAlba1

1175        RNA-binding protein is an important regulator of translational timing in *Plasmodium falciparum*

1176        blood stages. *Genome Biology*, 16(1). <https://doi.org/10.1186/s13059-015-0771-5>

1177        Waizenegger, I. C., Hauf, S., Meinke, A., & Peters, J.-M. (2000). Two Distinct Pathways Remove

1178        Mammalian Cohesin from Chromosome Arms in Prophase and from Centromeres in Anaphase.

1179        *Cell*, 103, 399–410.

1180        Wendt, K. S., Yoshida, K., Itoh, T., Bando, M., Koch, B., Schirghuber, E., Tsutsumi, S., Nagae, G.,

1181        Ishihara, K., Mishiro, T., Yahata, K., Imamoto, F., Aburatani, H., Nakao, M., Imamoto, N.,

1182        Maeshima, K., Shirahige, K., & Peters, J. M. (2008). Cohesin mediates transcriptional insulation

1183        by CCCTC-binding factor. *Nature*, 451(7180), 796–801. <https://doi.org/10.1038/nature06634>

1184        World Health Organization. (2020). *World malaria report 2020 - 20 years of global progress &*

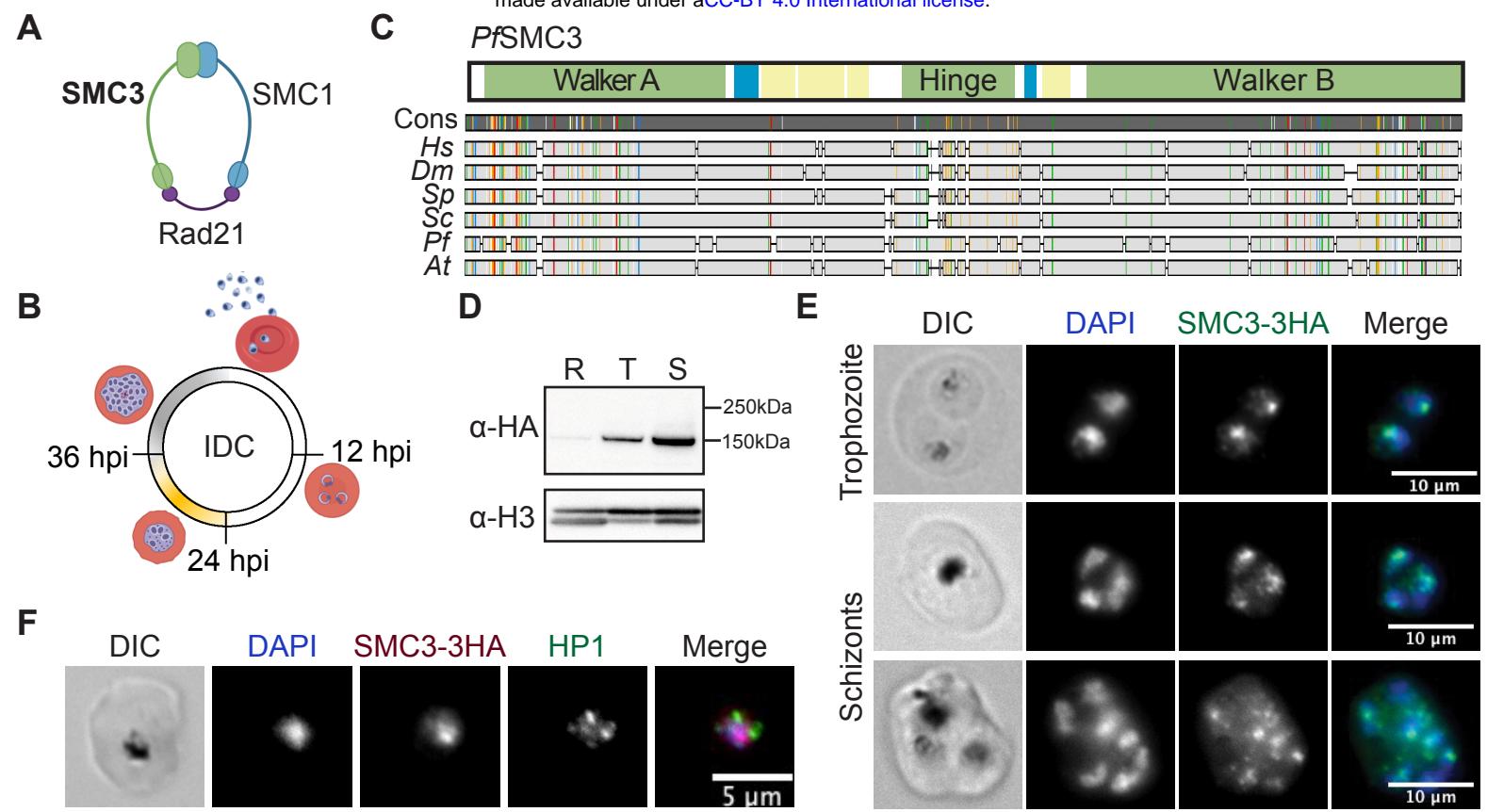
1185        *challenges*.

1186        Wutz, G., Várnai, C., Nagasaka, K., Cisneros, D. A., Stocsits, R. R., Tang, W., Schoenfelder, S.,

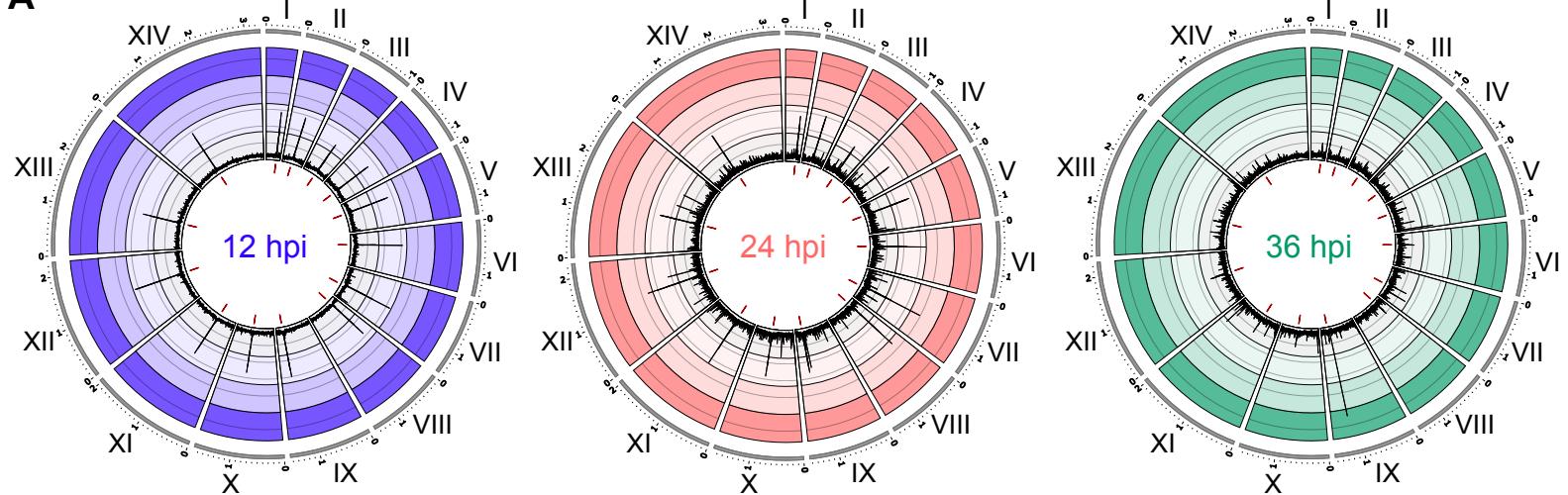
1187        Jessberger, G., Muhar, M., Hossain, M. J., Walther, N., Koch, B., Kueblbeck, M., Ellenberg, J.,

1188        Zuber, J., Fraser, P., & Peters, J. (2017). Topologically associating domains and chromatin loops

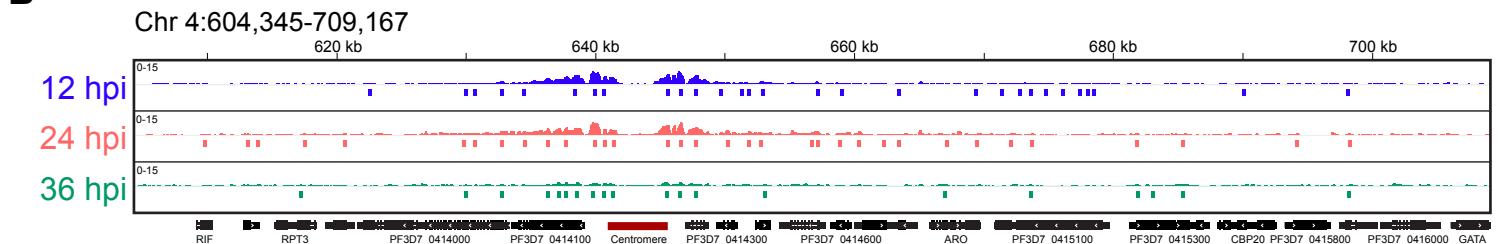
1189 depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. *The EMBO Journal*,  
1190 36(24), 3573–3599. <https://doi.org/10.15252/embj.201798004>


1191 Young, J. A., Johnson, J. R., Benner, C., Yan, S. F., Chen, K., le Roch, K. G., Zhou, Y., & Winzeler,  
1192 E. A. (2008). In silico discovery of transcription regulatory elements in *Plasmodium falciparum*.  
1193 *BMC Genomics*, 9. <https://doi.org/10.1186/1471-2164-9-70>

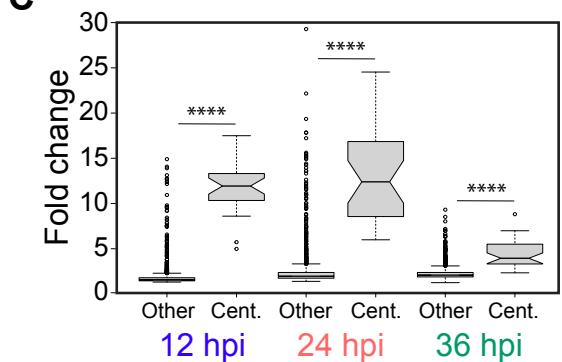
1194 Zhang, Q., Huang, Y., Zhang, Y., Fang, X., Claes, A., Duchateau, M., Namane, A., Lopez-Rubio, J.,  
1195 J., Pan, W., & Scherf, A. (2011). A Critical role of perinuclear filamentous Actin in spatial  
1196 repositioning and mutually exclusive expression of virulence genes in malaria parasites. *Cell  
1197 Host and Microbe*, 10(5), 451–463. <https://doi.org/10.1016/j.chom.2011.09.013>


1198 Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nussbaum, C.,  
1199 Myers, R. M., Brown, M., Li, W., & Shirley, X. S. (2008). Model-based analysis of ChIP-Seq  
1200 (MACS). *Genome Biology*, 9(9). <https://doi.org/10.1186/gb-2008-9-9-r137>

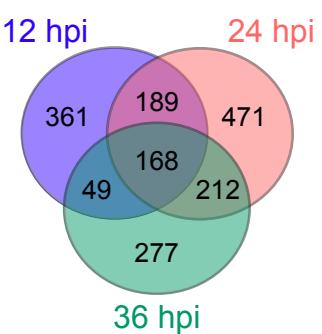
1201


1202

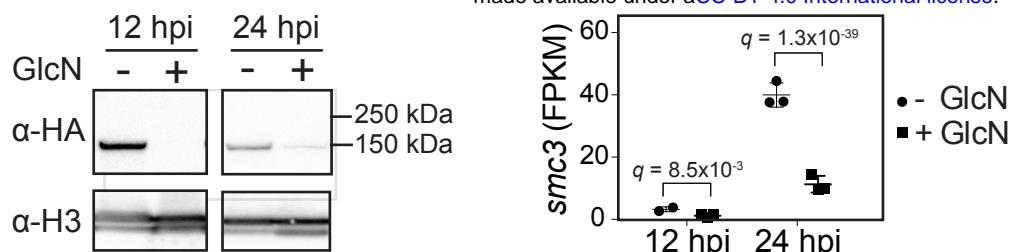



**A**

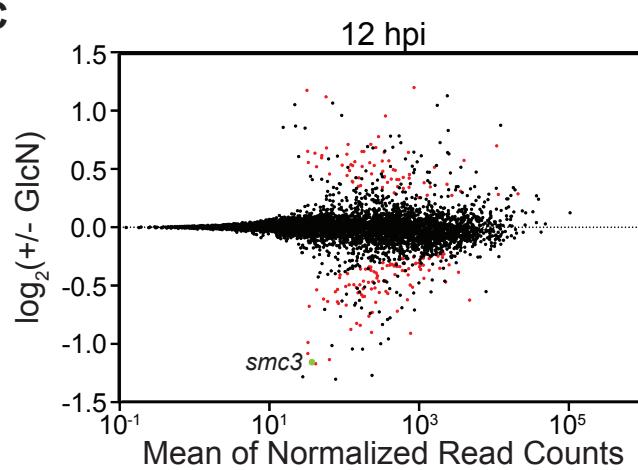



**B**

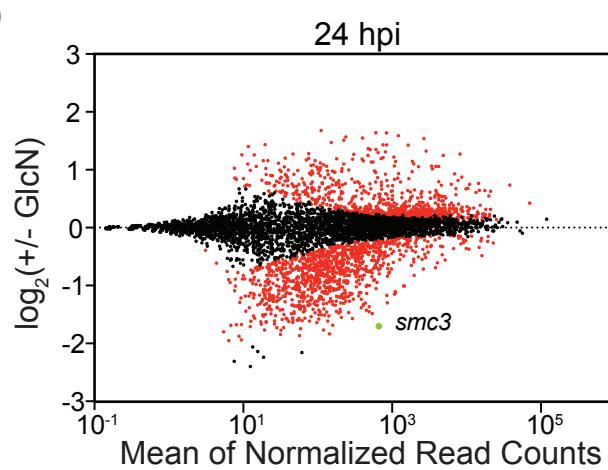



**C**

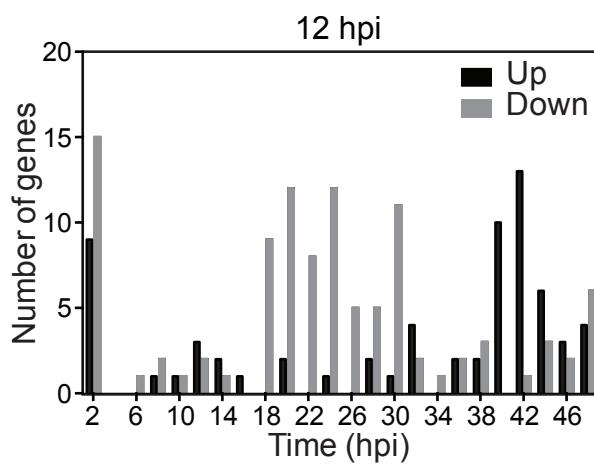



**D**

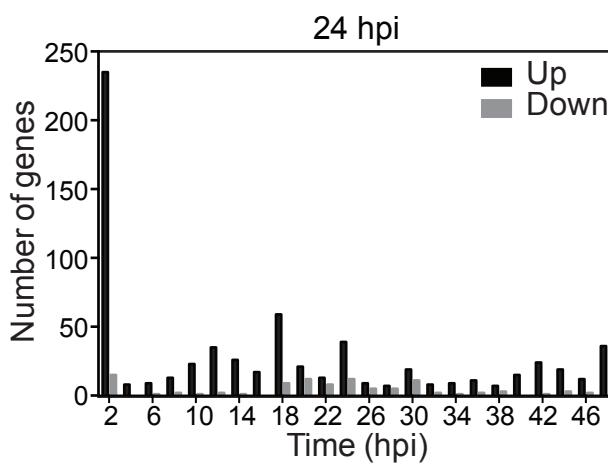



A

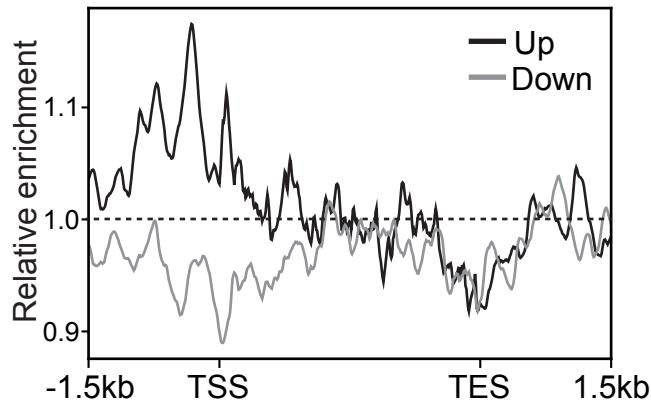



C

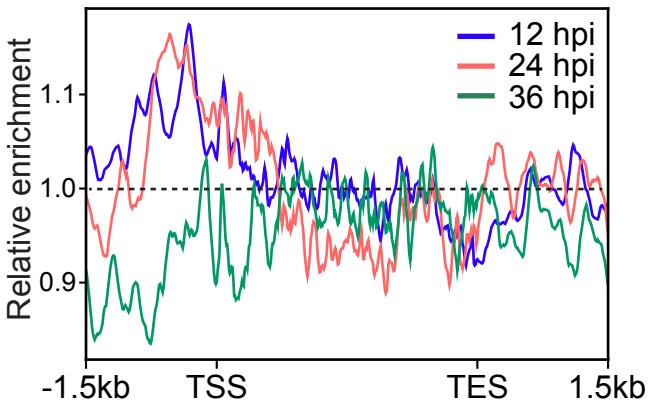



D

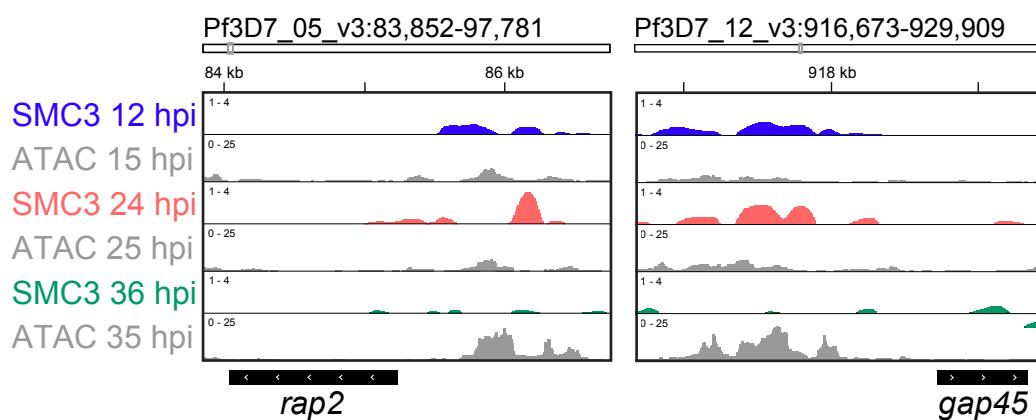



E

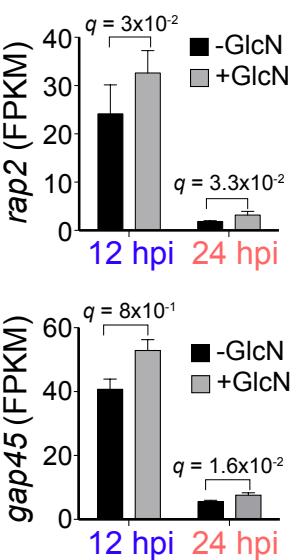



F

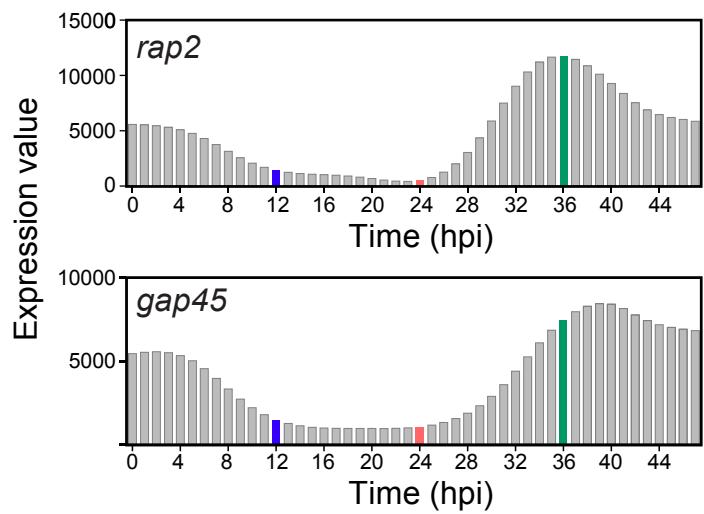



A

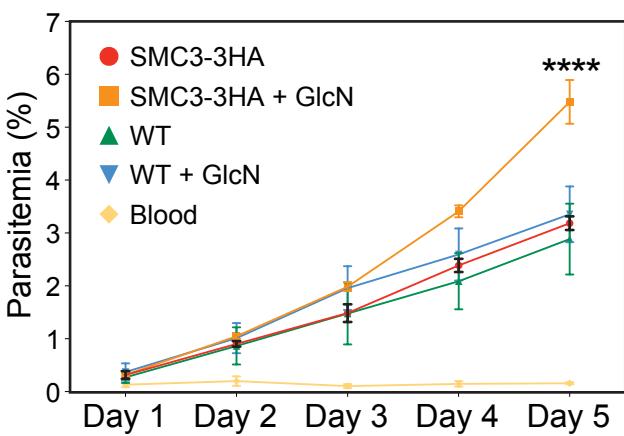



B




C




D



E



F

