

1 **Phenotypic profile of *Mycobacterium tuberculosis*-specific CD4 T cell responses in HIV-positive**
2 **patients who develop Tuberculosis-associated Immune Reconstitution Inflammatory Syndrome**

3
4 Raymond M Moseki^{1,2}, Daniel L Barber⁵, Elsa Du Bruyn^{1,2}, Muki Shey^{1,3}, Helen Van der Plas^{2,3} Robert
5 J Wilkinson^{1,2,3,6,7}, Graeme Meintjes^{1,2,3*} and Catherine Riou^{1,2,4*}
6

7 ¹ Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa); ²Institute of Infectious
8 Disease and Molecular Medicine (IDM); ³Department of Medicine; ⁴Department of Pathology,
9 Division of Medical Virology; University of Cape Town, Observatory 7925, South Africa.

10 ⁵ T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Health,
11 National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America.

12 ⁶Department of Infectious Diseases, Imperial College London, W12 0NN, United Kingdom.

13 ⁷ The Francis Crick Institute, London, NW1 1AT, United Kingdom.

14

15 *These authors contributed equally to the work.

16

17 **Keywords:** HIV-1/TB coinfection, paradoxical TB-IRIS, Th1 responses, immune activation,
18 Tbet/Eomes

19

20 **Correspondence:** Dr Catherine Riou, PhD. University of Cape Town, Anzio Road, Observatory 7925,
21 Cape Town, South Africa (cr.riou@uct.ac.za).

22 **Alternate Correspondence:** Professor Graeme Meintjes, MBChB, PhD. University of Cape Town,
23 Anzio Road, Observatory 7925, Cape Town, South Africa (Graeme.Meintjes@uct.ac.za)

24 **ABSTRACT**

25 **Background:** Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is a
26 frequent complication of co-treatment for TB and HIV-1. We characterized Mtb-specific CD4 T cell
27 phenotype and transcription factor profile associated with the development of TB-IRIS.

28 **Methods:** We examined the role of CD4 T-cell transcription factors in a murine model of
29 mycobacterial IRIS. In humans, we compared longitudinally on antiretroviral therapy (ART) the
30 magnitude, activation, transcription factor profile and cytotoxic potential of Mtb-specific CD4 T cells
31 between TB-IRIS (n=25) and appropriate non-IRIS control patients (n=18) using flow cytometry.

32 **Results:** In the murine model, CD4 T cell expression of Eomes, but not Tbet, was associated with
33 experimentally induced IRIS. In patients, TB-IRIS onset was associated with the expansion of Mtb-
34 specific IFN γ +CD4 T cells (p=0.039). TB-IRIS patients had higher HLA-DR expression (p=0.016), but
35 no differences in the expression of T-bet or Eomes were observed. At TB-IRIS onset,
36 Eomes+Tbet+Mtb-specific IFN γ +CD4+ T cells showed higher expression of Granzyme B in TB-IRIS
37 patients (p=0.026).

38 **Conclusion:** While the murine model of MAC-IRIS suggests that Eomes+CD4 T cells underly IRIS,
39 TB-IRIS was not associated with Eomes expression in patients. Mtb-specific IFN γ +CD4 T cell
40 responses in TB-IRIS patients are differentiated, highly activated and potentially cytotoxic.

41

42

43 **BACKGROUND**

44 Although antiretroviral therapy (ART) has substantially reduced HIV-1 related morbidity and mortality
45 in patients with HIV-associated tuberculosis (TB) [1], TB-immune reconstitution inflammatory
46 syndrome (TB-IRIS) frequently complicates management [2, 3]. TB-IRIS has an estimated incidence of
47 18% across cohorts and an attributable mortality rate of 2% [4].

48 Two forms of TB-IRIS are recognised: 1) Unmasking TB IRIS which occurs in patients with
49 undiagnosed TB who present with severe inflammatory features of TB during the first 3 months of
50 ART and 2) Paradoxical TB-IRIS which occurs in patients started on TB treatment before ART who
51 experience recurrent, new or worsening symptoms and signs of TB within the first months of initiating
52 ART [5, 6]. The major risk factors for paradoxical TB-IRIS include a low CD4 count prior to ART
53 initiation, higher HIV-1 viral load, a short interval between TB treatment and ART initiation and
54 disseminated TB [7, 8].

55 Innate immune responses including inflammasome activation [9, 10], monocyte and natural killer cell
56 activation [11, 12], neutrophilia [12, 13] and dysregulation of the complement system in monocytes
57 [14] have been associated with TB-IRIS. Elevated concentrations of proinflammatory cytokines [15,
58 16] and matrix degrading metalloproteinases [17] have been described at TB-IRIS onset. Moreover,
59 monocyte subset frequency and circulating inflammatory mediators can independently predict TB-IRIS
60 disease [18, 19]. Expansion of pathogen-specific CD4+ T cells has been observed in association with
61 TB-IRIS [20-23]. Pathogen-specific CD4+ T cells from patients with IRIS have been reported to be
62 highly activated [24] and polyfunctional [25]. Recently, it was reported that HIV-1 patients with
63 *Mycobacterium avium* complex (MAC) infection, who developed MAC-IRIS had higher expression of
64 Eomesodermin (Eomes) compared with Tbet in MAC-specific IFN γ +CD4+ T cells at the onset of IRIS
65 [26]. Eomes and Tbet are members of the T-box DNA binding family of transcription factors with

66 structural similarities and overlapping expression [27]. Eomes is involved in the development of
67 cytotoxic T lymphocyte activity [27] while Tbet is a Th-1 lineage-defining transcription factor [28].
68 Th-1 responses have been implicated in a mouse model of MAC-IRIS [20, 21]. Consequently, we
69 capitalized on the existing mouse model of IRIS to investigate phenotypic CD4 T cell features that may
70 be associated with IRIS in mice and compare these with findings in patients developing TB-IRIS in a
71 prospective cohort study of patients with HIV-associated TB initiating ART.

72

73 **METHODS**

74 ***M. avium*-IRIS induction in mice**

75 C57BL/6J-[KO] TCRalpha mice (6-8 weeks old) were intravenously infected with 1×10^6 colony-
76 forming units of *M. avium* (strain SmT 2151). After at least 40 days, CD4 T cells were isolated from
77 C57BL/6, B6.129S6-Tbx21tm1Glm/J mice (The Jackson Laboratory, Bar Harbor, ME), or
78 eomes^{f1/f1}CD4-CRE⁺ uninfected mice using positively selecting microbeads (Miltenyi Biotec, Auburn,
79 CA), and 1×10^6 cells were intravenously transferred into chronically infected T cell deficient mice. All
80 mice were maintained and bred at NIAID, NIH, Bethesda, MD. All animals were housed at an
81 Association for the Assessment and Accreditation of Laboratory Animal Care-approved facility at the
82 NIAID according to the National Research Council's Guide for the Care and Use of Laboratory
83 Animals

84

85 **Participants in clinical study**

86 Samples were obtained from patients with HIV-associated TB initiating ART enrolled in a prospective
87 observational study conducted at Brooklyn Chest Tuberculosis Hospital between May 2009 and
88 November 2010 in Cape Town, South Africa [29]. All patients were ART naïve and those with
89 rifampicin-resistant TB were excluded. TB diagnosis was based on smear, culture or clinical diagnosis.
90 The first TB episode was treated with standard first line regimen of rifampicin (R), isoniazid (H),
91 pyrazinamide and ethambutol for two months followed by four months of RH regimen. In patients with
92 subsequent episodes, streptomycin was added for 2 months. TB-IRIS was diagnosed per International
93 Network for the Study of HIV-associated IRIS (INSHI) criteria [5]. HIV-1 treatment included
94 lamivudine and efavirenz with stavudine or tenofovir depending on guidelines at the time. Written
95 informed consent was obtained from all participants. The study was approved by the Human Research

96 Ethics Committee (HREC REF: 049/2009 and 809/2018) of the University of Cape Town. Clinical and
97 other immunological findings from this cohort have been published [9, 29, 30].

98

99 **PBMC isolation and stimulation**

100 PBMC were isolated by Ficoll-Hypaque density gradient centrifugation (GE Healthcare® ALC-
101 PK121R), cryopreserved and stored. Cryopreserved PBMC were thawed and rested at 37 °C in RPMI
102 1640 containing 10% heat-inactivated FCS for 4 hours prior to antigen stimulation. PBMC (2x10⁶
103 cells) were stimulated with a peptide pool constituted of 300 Mtb-derived peptides (Mtb300, 1.5
104 µg/mL) [31] in the presence of anti-CD28 and anti-CD49d antibodies (both at 1 µg/ml, BD, Franklin
105 Lakes, New Jersey) and brefeldin-A (10 µg/ml, Sigma, St Louis, Missouri) for 6 hours. Unstimulated
106 cells, incubated with co-stimulatory antibodies and Brefeldin A only, were used as controls.

107

108 **Cell staining and acquisition**

109 Samples with a cell count of less than one million or a viability score of less than 20% were excluded.
110 After stimulation, cells were washed, stained with a viability marker (Live/Dead® Fixable Near-
111 InfraRed marker, Invitrogen, Carlsbad, California) for 10 minutes at room temperature and
112 subsequently surface stained with the following antibodies: CD4-PerCP-cy5.5, PD1-BV421, HLA-DR-
113 BV605, CD14-Allophycocyanin/H7, CD19-Allophycocyanin/H7 (all from Biolegend, San Diego,
114 California) and CD8-Alexa700 (BD, Franklin Lakes, New Jersey) for 30 minutes at room temperature.
115 Cells were fixed and permeabilized using the eBioscience Foxp3 fixation buffer for 30 minutes at room
116 temperature and stained with IFNγ-BV711 (Biolegend), TNFα-FITC (Biolegend), granzyme B-BV510
117 (BD), Eomes-eFluor 660 (e-Bioscience, San Diego, California), Tbet-PEcy7 (e-Bioscience) and CD3-
118 BV785 (Biolegend), for 45 minutes at 4 °C. Cells were washed and resuspended in 1% formaldehyde
119 in PBS. Samples were acquired in the BD LSRII and data were analysed using FlowJo software version

120 9.9.6 (BD). The gating strategy is presented in **Supplementary Figure 1**. A positive Mtb-specific IFN γ
121 response was defined as three-fold higher than the background measured in the presence of co-
122 stimulatory antibodies without antigen. For the phenotypic analyses of Mtb-specific IFN γ +CD4+ T
123 cells, only Mtb responses with more than 20 events were considered. Protocols were compliant with the
124 guidelines for flow cytometry in immunological studies [32]. Although we analysed immunological
125 characteristics of live cells, our cohort included 8 samples with a viability below 50% (median: 67%,
126 [range: 96-22%]). Prior to assessing immunological phenotypic characteristics of our cohort, we
127 ascertained whether sample viability affected immunological expression of markers (particularly Tbet
128 and Eomes) in our cohort. There was no correlation between sample viability and the expression of
129 Tbet and Eomes at all measured time points (data not shown).

130

131

132 **Statistical analyses**

133 For analyses, samples from IRIS and non-IRIS groups were classified into four categories based on
134 sample timing in relation to ART: Baseline (BL) include samples collected within seven days before or
135 on the day of ART initiation, Week 2 (W2)-samples collected between day 1 and 14 on ART, Week 4
136 (W4)-samples collected between day 15 and 30 on ART, Week 6 (W6) samples collected between day
137 31 and 65 on ART (Supplementary Table 2&3). Paired samples were analysed using the paired
138 Wilcoxon ranked Student T test while the Mann-Whitney U test was used to compare unpaired samples
139 for all time points between TB-IRIS and non-IRIS groups. A p-value of 0.05 or less was considered
140 statistically significant. All statistical analyses were performed using Prism (v8.0.2, GraphPad Software
141 Inc, San Diego, CA, USA).

142 **RESULTS**

143 **Role of Eomes and Tbet in CD4 T cells during experimentally-induced IRIS**

144 To model IRIS, T cell deficient (TCR α -/-) mice were infected with *M. avium*. This reproduced a
145 lymphopenic host harbouring a mycobacterial infection. After 40-60 days, the mice were injected with
146 CD4 T cells to mimic the reconstitution of T cells that occurs after ART (**Figure 1A**). To examine the
147 expression of Eomes and Tbet in CD4 T cells and their potential involvement in the murine model of
148 IRIS, we injected mice with WT, Tbet^{-/-}, and Eomes deficient CD4 T cells and examined the donor
149 CD4 T cells ten days post injection. We found that during murine IRIS, CD4 T cells surprisingly
150 expressed little Tbet. Instead, a significant population of Eomes+ CD4 T cells was observed (**Figure**
151 **1B**). WT and Tbet^{-/-} CD4 T cells induced similar levels of weight loss (**Figure 1C**). In contrast,
152 recipients of Eomes deficient CD4 T cells displayed less weight loss and longer survival compared to
153 mice injected with WT CD4 T cells (**Figure 1D, E**). We concluded that, CD4 T cells utilize Eomes but
154 not Tbet, to drive *M. avium* IRIS in this animal model. These findings prompted us to next examine the
155 role of Eomes expressing CD4 T cells in human TB-IRIS.

156

157 **Clinical characteristics of the cohort**

158 Sufficient samples for immunological analyses were available for 43 HIV-1 infected inpatients being
159 treated for TB when starting ART: 25 patients developed TB-IRIS and 18 patients did not (non-IRIS
160 controls). The demographic and clinical characteristics of the two groups are summarized in **Table 1**.
161 In both groups, over three-quarters of patients had evidence of extrapulmonary TB and around 20% had
162 neurological TB, a common reason for TB patients in South Africa to be admitted to a TB hospital.
163 Notably, 7/25 (28%) of TB-IRIS and 4/18 (22%) of non-IRIS patients were on treatment with
164 corticosteroids at the time of starting ART, the most frequent indication being neurological TB. We
165 previously demonstrated that corticosteroid therapy had no significant effect on the frequency of Mtb-

166 specific CD4 T cells [33]. The median CD4 count at the start of ART was lower in TB-IRIS patients
167 (median: 68 cells/mm³) compared with non-IRIS patients (median 111 cells/mm³) (p=0.009). The
168 median duration of TB treatment before initiation of ART was similar for the groups (median 37 days
169 in TB-IRIS versus 32 days in non-IRIS patients). The duration of ART prior to developing TB-IRIS
170 symptoms was a median of 15 days. Additional clinical data is presented in **Supplementary Table 1**.

171

172 **Expansion of Mtb-specific CD4+ T cells at TB-IRIS onset**

173 For phenotypic analyses, we first compared the magnitude of Mtb-specific IFN γ +CD4+ T cell
174 responses between the patient groups before the initiation of ART (Baseline), at week 2, 4 and 6 on
175 ART. Representative examples of IFN γ production by CD4+ T cells following Mtb300 stimulation are
176 presented in **Figure 2A**. We observed no differences in the frequency of Mtb-specific IFN γ +CD4+ T
177 cells between the two groups in cross-sectional comparisons at any time point (**Figure 2B**). However,
178 the fold change in Mtb-specific IFN γ +CD4+ T cell frequency between baseline and week 2 was
179 significantly higher in the TB-IRIS group compared to the non-IRIS group (median fold change: 1.9
180 [IQR: 0.83-19.3]) and 0.9 [IQR: 0.25-1.6], respectively, p=0.04) (**Figure 2C**). This significant increase
181 was exclusively observed in TB-IRIS patients between baseline (median: 0.08% [IQR: 0.0-0.2]) and 2
182 weeks on-ART (median: 0.13% [IQR: 0.0-0.71]) (p=0.039) (**Supplementary Figure 2**). We next
183 investigated the phenotype of Mtb-specific IFN γ +CD4+ T cell that could potentially characterise the
184 role of these cells in the pathogenesis of TB-IRIS in humans.

185

186 **No differences in the expression of Eomes or Tbet between patients with and without TB-IRIS at**
187 **any tested time point**

188 Based on our mouse model data and a recent report by Hsu *et al.* reporting that Eomes was
189 significantly upregulated over Tbet in MAC-specific IFN γ +CD4 T cells of MAC-IRIS patients at

190 disease onset [26], we determined whether these transcription factors were differentially expressed
191 between TB-IRIS and non-IRIS patients. We observed no differences in the frequency of Mtb-specific
192 IFN γ +Eomes+CD4+ T cells between the two clinical groups at baseline or any time point on ART
193 (**Supplementary Figure 3**).
194 Eomes and Tbet expression in Mtb-specific IFN γ +CD4 T cells were highly variable between patients
195 but not statistically different between the two groups at baseline (**Supplementary Figure 4**) or any
196 other time point (data not shown). The expression of Eomes in Mtb-specific IFN γ +CD4 T cells at
197 baseline was approximately 50% and was comparable between the two groups (**Supplementary**
198 **Figure 4B**). Similarly, Tbet expression in Mtb-specific IFN γ +CD4+ T cells was comparable between
199 TB-IRIS and non-IRIS groups; approximately 60% of cells expressed intermediate levels of Tbet (Tbet
200 dim, Tbet+) and 25% expressed high Tbet levels at baseline (Tbet high, Tbet++, **Supplementary**
201 **Figure 4C&D**). Furthermore, Eomes expression on total CD4+ T cells in TB-IRIS patients was
202 comparable to non-IRIS controls at all-time points (**Supplementary Figure 6A&B**). However, we did
203 observe a slight increase in Eomes expression between baseline and week 2 (which corresponds to IRIS
204 onset) in TB-IRIS patients (medians: 4.48% vs 7.6%, respectively, p=0.03). This was not observed in
205 non-IRIS controls (**Supplementary Figure 5C**). Previous studies have reported a higher frequency of
206 both *M. avium* and Mtb-specific effector memory CD4 T cells in unmasking and paradoxical TB-IRIS
207 patients compared to non-IRIS patients [24, 34]. Furthermore, a positive correlation between CD4+ T
208 cell memory and Eomes expression is well established [27]. Therefore, it is possible that the increase in
209 Eomes expression observed in total CD4 T cells could be related to an expansion of effector cells.
210 Finally, Tbet expression on total CD4+ T cells was comparable between TB-IRIS and non-IRIS
211 patients at baseline with no significant differences observed longitudinally on ART (data not shown).
212 In further analyses, we defined the co-expression of Eomes and Tbet, identifying five Eomes/Tbet
213 subsets: Eomes-Tbet-, Eomes-Tbet+, Eomes+Tbet+, Eomes-Tbet++ and Eomes+Tbet++, as previously

214 described [35] (**Figure 3A**). The distribution of these subpopulations within Mtb-specific IFN γ +CD4+
215 T cells was comparable between TB-IRIS and non-IRIS groups prior to ART initiation (i.e. baseline)
216 (**Figure 3B**) and longitudinally on ART (data not shown). No significant changes in the distribution of
217 Eomes and Tbet in Mtb-specific IFN γ +CD4+ T cells were observed over time within the two groups
218 (**Figure 3C**).

219 However, in total CD4+ T cells there was a significant reduction in Eomes-Tbet- CD4+ T cells
220 between baseline (median: 79.0%, IQR: 21.2-93.1) and week 2 (median: 65.5%, IQR: 15.3-84.4)
221 (p=0.02) and baseline and week 4 (median: 54.5%, IQR: 21.8-94.5) (p=0.009) in TB-IRIS patients.
222 These changes were countered by a progressive and significant increase in the proportion of Eomes-
223 Tbet+ and Eomes+Tbet+ CD4+ T cells over the first 6 weeks of ART in TB-IRIS patients. Conversely,
224 no changes over time were observed in the distribution of any of the Eomes/Tbet subsets in non-IRIS
225 patients (**Supplementary Figure 6C**).

226

227 **Elevated HLA-DR expression at the time of TB-IRIS onset compared to non-IRIS controls**

228 To further characterise the phenotype of Mtb-specific IFN γ +CD4+ T cell responses, we compared the
229 activation profile (HLA-DR) and cytotoxic potential (Granzyme B) between TB-IRIS patients and non-
230 IRIS controls. We observed a trend towards high pre-ART HLA-DR expression (p=0.18) in TB-IRIS
231 compared to non-IRIS patients. Responses were characterized by a significantly higher expression of
232 HLA-DR in TB-IRIS compared to non-IRIS patients at 2 weeks on ART (median: 79.3% [IQR: 66-96]
233 and 40.9% [IQR: 27-56], respectively, p=0.016) (**Figure 4A&B**). No significant changes over time
234 were observed when data were analysed longitudinally for both groups respectively (**Figure 4C**).
235 However, we observed an increase in HLA-DR expression in total CD4+ T cells in TB-IRIS patients
236 between baseline and week 2 (p=0.002) and week 4 (p=0.0005) and non-IRIS patients between
237 baseline and week 4 (p=0.0098) (**Supplementary Figure 7**).

238

239 **Elevated HLA-DR and granzyme B expression in Mtb-specific CD4 T cells co-expressing Eomes**
240 **and Tbet in patients with TB-IRIS compared to non-IRIS controls**

241 Finally, we investigated the activation and cytotoxic potential of Mtb-specific IFN γ +CD4+ T cells in
242 relation to their transcription factor profile at the time of IRIS onset (Week 2). While HLA-DR
243 expression was comparable across the different Eomes and Tbet subsets in both groups, HLA-DR
244 expression was higher in TB-IRIS compared with non-IRIS patients in specific Eomes/Tbet subsets,
245 including Eomes+Tbet+ (median: 83.9% vs 57.9%, respectively; p=0.032) and Eomes- Tbet++
246 (median: 83.3% vs 36.4%, respectively; p=0.032) (**Figure 5A**).

247 Notably, no differences in Granzyme B expression were observed in IFN γ +CD4 T cells between the
248 two groups in cross-sectional comparisons (**Supplementary Figure 8**). However, Granzyme B
249 expression was significantly higher in Eomes+Tbet+ Mtb-specific IFN γ +CD4+ T cells in patients with
250 TB-IRIS compared to non-IRIS controls at week 2 on ART (median: 4.7% vs 0%, respectively;
251 p=0.026). There was also a trend towards higher Granzyme B expression in the Eomes+Tbet++ Mtb-
252 specific IFN γ +CD4+ subset in patients with TB-IRIS compared to non-IRIS controls at week 2
253 (median: 19.7% vs 2.9%, respectively; p=0.063) (**Figure 5B**). This trend was not observed at other
254 time points (data not shown).

255 **DISCUSSION**

256 Hsu et al. recently reported that in HIV-1 and *M. avium* co-infected patients, *M. avium*-specific
257 IFN γ +CD4+ T cells were characterized by higher expression of Eomes than Tbet at IRIS onset [26],
258 suggesting potential involvement of Eomes in mycobacterial IRIS pathogenesis. While the functional
259 role of Eomes is well established in CD8 T cells [27, 28], its role in CD4 T cells is less clear. Some
260 reports implicate its expression in the pathogenesis of chronic inflammatory disorders [36-38], while
261 others suggest a regulatory role in T cells [39]. Therefore, to define whether aberrant expression of
262 transcription factors in CD4 T cell associate with the development of IRIS, we investigated the role of
263 Eomes and Tbet in a experimentally-induced MAC-IRIS mouse model and compared the phenotype of
264 Mtb-specific IFN γ +CD4+ T cells between HIV-associated TB patients who developed TB-IRIS and
265 those who did not.

266 The MAC-IRIS mouse model showed that mimicking T cell reconstitution using Eomes knock-out
267 CD4 T cells led to enhanced mice survival compared to wildtype, supporting the hypothesis that Eomes
268 expression in CD4 T cells could play a role in IRIS pathogenesis [26]. However, while we
269 demonstrated that Mtb-specific IFN γ +CD4+ T cells from TB-IRIS patients expressed high Eomes
270 levels (~ 50%) that are comparable to those reported by Hsu et al. [26], we did not observe any
271 difference in Eomes expression between TB-IRIS and non-IRIS patients. This suggests that the
272 expression of Eomes expression in Mtb-specific CD4 T cells (or overall CD4 compartment) on its own
273 does not predict nor characterize TB-IRIS pathogenesis.

274 The expression profile of Tbet in CD4+ T cells in this cohort mirrors that described by Knox *et al.* [40],
275 where three distinct populations were discernible. Most Mtb-specific IFN γ +CD4+ T cells expressed
276 Tbet with ~ 65% being Tbet dim and ~ 25% Tbet bright. Moreover, we found no significant differences
277 in the co-expression profile of Eomes and Tbet in Mtb-specific IFN γ +CD4+ T cells at TB-IRIS onset

278 or at other time points between the two clinical groups. However, the distribution of Eomes and Tbet
279 subsets in total CD4+ T cells were altered during the course of ART with increasing expression of both
280 Tbet+ and Eomes/Tbet co-expressing CD4+ T cells in TB-IRIS patients on ART. Further studies are
281 needed to confirm these observations and define their relevance.

282 In this cohort, TB-IRIS patients had significantly lower blood CD4 T cell counts compared to non-IRIS
283 patients at baseline, as previously described [8, 41] and we observed a significant expansion in the
284 frequency of Mtb-specific IFN γ +CD4+ T cells 2 weeks after the initiation of ART. Recently, Vignesh
285 *et al.* described elevated pre-ART frequencies of Mtb-specific CD4 T cell responses which further
286 expanded in TB-IRIS patients at disease onset [41]. We did not observe such differences at baseline in
287 this or previous studies [23]. Clinical differences between the cohorts might account for these
288 discrepancies.

289 Several studies have demonstrated that TB-IRIS is characterized by an increase in mycobacteria-
290 specific CD4 T cell responses at disease onset [22, 41-44]. However, increased mycobacterial-specific
291 CD4 T cell frequencies following ART is not systematically observed in all TB-IRIS patients, and
292 pathogen-specific CD4 T cell expansion can also be observed in some non-IRIS patients [23]. This
293 suggests that Mtb-specific CD4 T cell reconstitution upon ART is not be the only mechanism involved
294 in TB-IRIS.

295 To further elucidate the contribution of Mtb-specific IFN γ +CD4+ T cells in TB-IRIS pathology, we
296 characterised their phenotype in TB-IRIS patients. We demonstrated that Mtb-specific IFN γ +CD4 T
297 cells of TB-IRIS patients had elevated HLA-DR expression prior to the initiation of ART and this was
298 significantly upregulated in TB-IRIS patients at week 2 on ART compared to non-IRIS patients.
299 Similarly, others have demonstrated that Mtb-specific CD4 T cells are activated [24], and
300 polyfunctional [25, 42], compared to non-IRIS controls at IRIS onset.

301 Consistent with our previous findings [23], we did not observe any significant differences in the
302 expression of HLA-DR in total CD4+ T cells between the two clinical groups over time in a cross
303 section analysis. However, like Antonelli *et al*, we observed increased HLA-DR expression in total
304 CD4+ T cells of TB-IRIS patients from baseline to week 2 and 4 [24]. Similar observations were
305 reported by Haridas et al. at the time of IRIS onset [45].

306 Lastly, Granzyme B expression was enriched in Eomes/Tbet co-expressing Mtb-specific IFN γ +CD4+
307 T cells at 2 weeks on ART in TB-IRIS patients. Although this represents a modest proportion of
308 Eomes+Tbet+ cells, this is consistent with mouse data from experimental autoimmune encephalitis
309 showing the capacity of Eomes+ IFN γ +CD4 T cells to acquire cytotoxic attributes [36]. Moreover, our
310 group has previously shown TB-IRIS to be associated with increased transcript abundance and
311 secretion of granzyme B by PBMC of TB-IRIS patients at week 2 on ART [46].

312 There were several limitations to this study. The number of samples analysed were limited,
313 consequently, larger cohort studies are needed to verify these findings. We assessed responses in
314 peripheral blood when clinical manifestations are often localized in tissues. Finally, several patients
315 with severe disease received corticosteroids prior to or while on ART. Our previous findings however,
316 suggest that corticosteroid treatment does not have a significant impact on *ex vivo* T cell functional
317 responses in TB-IRIS patients [47].

318 In conclusion, while the mouse model data suggested that CD4 T cell expression of Eomes promotes
319 IRIS, there were no differences in the expression of Eomes or Tbet transcription factor in Mtb-specific
320 IFN γ + CD4 T cells between patients who developed TB-IRIS and non-IRIS controls. We found that
321 TB-IRIS was associated with an increase of Mtb-specific CD4 T cells at onset. Moreover, increased
322 expression of markers of immune activation and cytotoxicity in Mtb-specific CD4 T cell subsets in TB-
323 IRIS patients suggests these cells may contribute to pathogenesis of TB-IRIS. Improved understanding

324 of the pathophysiology of IRIS should enable the development of new diagnostic tools and better
325 targeted treatments.

326 **Acknowledgements**

327 The authors thank the study participants, the clinical staff and the laboratory staff involved in this
328 study.

329

330 **Conflict of Interest**

331 The authors declare no conflict of interest.

332

333 **Funding**

334 GM and RJW were supported by the Wellcome Trust (098316, 214321/Z/18/Z, and 203135/Z/16/Z
335 104803). GM was supported by the South African Research Chairs Initiative of the Department of
336 Science and Technology and National Research Foundation (NRF) of South Africa (Grant No 64787).
337 CR is supported by the European and Developing Countries Clinical Trials Partnership EDCTP2
338 programme supported by the European Union (EU)'s Horizon 2020 programme (Training and Mobility
339 Action TMA2017SF-1951-TB-SPEC to CR) and the National Institutes of Health, the Office of the
340 Director (OD) (NIH, R21AI115977 to CR). RJW was supported through the Francis Crick Institute
341 which receives support from UKRI (FC0010218); CRUK (FC0010218) and Wellcome (FC0010218);
342 and NIH (U01AI115940). DLB is supported by the Intramural Research Program of NIAID. The
343 funders had no role in the study design, data collection, data analysis, data interpretation, or writing of
344 this report. The opinions, findings and conclusions expressed in this manuscript reflect those of the
345 authors alone. This research was funded, in part, by the Wellcome Trust. For the purpose of open
346 access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript
347 version arising from this submission.

348 REFERENCES

- 349 1. Suthar AB, Lawn SD, Del Amo J, et al. Antiretroviral therapy for prevention of tuberculosis in
350 adults with HIV: a systematic review and meta-analysis. *PLoS Med* **2012**; 9:e1001270.
- 351 2. French MA, Price P, Stone SF. Immune restoration disease after antiretroviral therapy. *AIDS* **2004**;
352 18:1615-27.
- 353 3. Breen R, Smith C, Bettinson H, et al. Paradoxical reactions during tuberculosis treatment in patients
354 with and without HIV co-infection. *Thorax* **2004**; 59:704-7.
- 355 4. Namale PE, Abdullahi LH, Fine S, Kamkuemah M, Wilkinson RJ, Meintjes G. Paradoxical TB-IRIS
356 in HIV-infected adults: a systematic review and meta-analysis. *Future Microbiol* **2015**; 10:1077-99.
- 357 5. Meintjes G, Lawn SD, Scano F, et al. Tuberculosis-associated immune reconstitution inflammatory
358 syndrome: case definitions for use in resource-limited settings. *Lancet Infect Dis* **2008**; 8:516-23.
- 359 6. Colebunders R, John L, Huyst V, Kambugu A, Scano F, Lynen L. Tuberculosis immune
360 reconstitution inflammatory syndrome in countries with limited resources. *Int J Tuberc Lung Dis* **2006**;
361 10:946-53.
- 362 7. Shelburne SA, Visnegarwala F, Darcourt J, et al. Incidence and risk factors for immune
363 reconstitution inflammatory syndrome during highly active antiretroviral therapy. *AIDS* **2005**; 19:399-
364 406.
- 365 8. Vignesh R, Swathirajan CR, Solomon SS, Shankar EM, Murugavel KG. Risk factors and frequency
366 of tuberculosis-associated immune reconstitution inflammatory syndrome among HIV/Tuberculosis co-
367 infected patients in Southern India. *Indian J Med Microbiol* **2017**; 35:279.
- 368 9. Lai RP, Meintjes G, Wilkinson KA, et al. HIV-tuberculosis-associated immune reconstitution
369 inflammatory syndrome is characterized by Toll-like receptor and inflammasome signalling. *Nat
370 Commun* **2015**; 6:8451.
- 371 10. Tan HY, Yong YK, Shankar EM, et al. Aberrant inflammasome activation characterizes
372 tuberculosis-associated immune reconstitution inflammatory syndrome. *The Journal of Immunology*
373 **2016**; 196:4052-63.
- 374 11. Tran HTT, Van den Bergh R, Vu TN, et al. The role of monocytes in the development of
375 Tuberculosis-associated Immune Reconstitution Inflammatory Syndrome. *Immunobiology* **2014**;
376 219:37-44.
- 377 12. Conradie F, Foulkes AS, Ive P, et al. Natural Killer cell activation distinguishes M. tuberculosis-
378 mediated immune reconstitution syndrome (IRIS) from chronic HIV and HIV-MTB co-infection. *AIDS*
379 (1999) **2011**; 58:309.
- 380 13. Marais S, Meintjes G, Pepper DJ, et al. Frequency, severity, and prediction of tuberculous
381 meningitis immune reconstitution inflammatory syndrome. *Clin Infect Dis* **2013**; 56:450-60.
- 382 14. Tran HT, Van den Bergh R, Loembé MM, et al. Modulation of the complement system in
383 monocytes contributes to tuberculosis-associated immune reconstitution inflammatory syndrome.
384 *AIDS* **2013**; 27:1725-34.
- 385 15. Tadokera R, Meintjes G, Skolimowska KH, et al. Hypercytokinaemia accompanies HIV-
386 tuberculosis immune reconstitution inflammatory syndrome. *Eur Respir J* **2011**; 37:1248-59.
- 387 16. Tan DB, Lim A, Yong YK, et al. TLR2-induced cytokine responses may characterize HIV-infected
388 patients experiencing mycobacterial immune restoration disease. *AIDS* **2011**; 25:1455-60.
- 389 17. Tadokera R, Meintjes GA, Wilkinson KA, et al. Matrix metalloproteinases and tissue damage in
390 HIV-tuberculosis immune reconstitution inflammatory syndrome. *Eur J Immunol* **2014**; 44:127-36.
- 391 18. Haddow LJ, Dibben O, Moosa M-YS, Borrow P, Easterbrook PJ. Circulating inflammatory
392 biomarkers can predict and characterize tuberculosis-associated immune reconstitution inflammatory
393 syndrome. *AIDS* **2011**; 25:1163-74.

394 19. Andrade BB, Singh A, Narendran G, et al. Mycobacterial antigen driven activation of CD14++
395 CD16- monocytes is a predictor of tuberculosis-associated immune reconstitution inflammatory
396 syndrome. *PLoS Pathog* **2014**; 10:e1004433.

397 20. Barber DL, Mayer-Barber KD, Antonelli LR, et al. Th1-driven immune reconstitution disease in
398 *Mycobacterium avium*-infected mice. *Blood* **2010**; 116:3485-93.

399 21. Barber DL, Andrade BB, Sereti I, Sher A. Immune reconstitution inflammatory syndrome: the
400 trouble with immunity when you had none. *Nat Rev Microbiol* **2012**; 10:150-6.

401 22. Bourgarit A, Carcelain G, Martinez V, et al. Explosion of tuberculin-specific Th1-responses
402 induces immune restoration syndrome in tuberculosis and HIV co-infected patients. *AIDS* **2006**; 20:F1-
403 F7.

404 23. Meintjes G, Wilkinson KA, Rangaka MX, et al. Type 1 helper T cells and FoxP3-positive T cells in
405 HIV-tuberculosis-associated immune reconstitution inflammatory syndrome. *Am J Respir Crit Care
406 Med* **2008**; 178:1083-9.

407 24. Antonelli LR, Mahnke Y, Hodge JN, et al. Elevated frequencies of highly activated CD4+ T cells
408 in HIV+ patients developing immune reconstitution inflammatory syndrome. *Blood* **2010**; 116:3818-
409 27.

410 25. Mahnke YD, Greenwald JH, DerSimonian R, et al. Selective expansion of polyfunctional pathogen-
411 specific CD4+ T cells in HIV-1-infected patients with immune reconstitution inflammatory syndrome.
412 *Blood* **2012**; 119:3105-12.

413 26. Hsu DC, Breglio KF, Pei L, et al. Emergence of polyfunctional cytotoxic CD4+ T Cells in
414 *Mycobacterium avium* immune reconstitution inflammatory syndrome in human immunodeficiency
415 virus-infected patients. *Clin Infect Dis* **2018**; 67:437-46.

416 27. Pearce EL, Mullen AC, Martins GA, et al. Control of effector CD8+ T cell function by the
417 transcription factor Eomesodermin. *Science* **2003**; 302:1041-3.

418 28. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor,
419 T-bet, directs Th1 lineage commitment. *Cell* **2000**; 100:655-69.

420 29. Van der Plas H, Meintjes G, Schutz C, et al. Complications of antiretroviral therapy initiation in
421 hospitalised patients with HIV-associated tuberculosis. *PLoS One* **2013**; 8:e54145.

422 30. Conesa-Botella A, Meintjes G, Coussens AK, et al. Corticosteroid therapy, vitamin D status, and
423 inflammatory cytokine profile in the HIV-tuberculosis immune reconstitution inflammatory syndrome.
424 *Clin Infect Dis* **2012**; 55:1004-11.

425 31. Lindestam Arlehamn CS, McKinney DM, Carpenter C, et al. A quantitative analysis of complexity
426 of human pathogen-specific CD4 T cell responses in healthy *M. tuberculosis* infected South Africans.
427 *PLoS Pathog* **2016**; 12:e1005760.

428 32. Cossarizza A, Chang HD, Radbruch A, et al. Guidelines for the use of flow cytometry and cell
429 sorting in immunological studies. *Eur J Immunol* **2019**; 49:1457-973.

430 33. Meintjes G, Skolimowska KH, Wilkinson KA, et al. Corticosteroid-modulated immune activation
431 in the tuberculosis immune reconstitution inflammatory syndrome. *American journal of respiratory and
432 critical care medicine* **2012**; 186:369-77.

433 34. Silveira-Mattos PS, Narendran G, Akrami K, et al. Differential expression of CXCR3 and CCR6 on
434 CD4+ T-lymphocytes with distinct memory phenotypes characterizes tuberculosis-associated immune
435 reconstitution inflammatory syndrome. *Scientific reports* **2019**; 9:1-9.

436 35. Buggert M, Tauriainen J, Yamamoto T, et al. T-bet and Eomes are differentially linked to the
437 exhausted phenotype of CD8+ T cells in HIV infection. *PLoS pathogens* **2014**; 10:e1004251.

438 36. Raveney BJ, Oki S, Hohjoh H, et al. Eomesodermin-expressing T-helper cells are essential for
439 chronic neuroinflammation. *Nat Commun* **2015**; 6:8437.

440 37. Chemin K, Ramsköld D, Diaz-Gallo LM, et al. EOMES-positive CD4+ T cells are increased in
441 PTPN22 (1858T) risk allele carriers. *Eur J Immunol* **2018**; 48:655-69.

442 38. Mazzoni A, Maggi L, Siracusa F, et al. Eomes controls the development of Th17-derived (non-
443 classic) Th1 cells during chronic inflammation. *Eur J Immunol* **2019**; 49:79-95.

444 39. Gruarin P, Maglie S, De Simone M, et al. Eomesodermin controls a unique differentiation program
445 in human IL-10 and IFN- γ coproducing regulatory T cells. *Eur J Immunol* **2019**; 49:96-111.

446 40. Knox JJ, Cosma GL, Betts MR, McLane LM. Characterization of T-bet and eomes in peripheral
447 human immune cells. *Front Immunol* **2014**; 5:217.

448 41. Vignesh R, Kumarasamy N, Lim A, et al. TB-IRIS after initiation of antiretroviral therapy is
449 associated with expansion of preexistent Th1 responses against *Mycobacterium tuberculosis* antigens.
450 *AIDS* (1999) **2013**; 64:241.

451 42. Ravimohan S, Tamuhla N, Nfanyana K, et al. Robust reconstitution of tuberculosis-specific
452 polyfunctional CD4+ T-cell responses and rising systemic interleukin 6 in paradoxical tuberculosis-
453 associated immune reconstitution inflammatory syndrome. *Clin Infect Dis* **2015**; 62:795-803.

454 43. Tieu HV, Ananworanich J, Avihingsanon A, et al. Immunologic markers as predictors of
455 tuberculosis-associated immune reconstitution inflammatory syndrome in HIV and tuberculosis
456 coinfecting persons in Thailand. *AIDS research and human retroviruses* **2009**; 25:1083-9.

457 44. Elliott JH, Vohith K, Saramony S, et al. Immunopathogenesis and diagnosis of tuberculosis and
458 tuberculosis-associated immune reconstitution inflammatory syndrome during early antiretroviral
459 therapy. *J Infect Dis* **2009**; 200:1736-45.

460 45. Haridas V, Pean P, Jasenosky LD, et al. TB-IRIS, T-cell activation, and remodeling of the T-cell
461 compartment in highly immunosuppressed HIV-infected patients with TB. *AIDS* **2015**; 29:263-73.

462 46. Wilkinson KA, Walker NF, Meintjes G, et al. Cytotoxic Mediators in Paradoxical HIV—
463 Tuberculosis Immune Reconstitution Inflammatory Syndrome. *J Immunol* **2015**; 194:1748-54.

464 47. Meintjes G, Skolimowska KH, Wilkinson KA, et al. Corticosteroid-modulated immune activation
465 in the tuberculosis immune reconstitution inflammatory syndrome. *AM J Respir Crit Care Med* **2012**;
466 186:369-77.

467

468

469 **Table 1**

470

	TB-IRIS (n=25)	Non-IRIS (n=18)	p-value
Age [Median (IQR)] (years)	34 (22-52)	33 (24-55)	ns
Female sex [n (%)]	13 (52%)	12 (66%)	
Previous TB [n (%)]	15 (60%)	10 (55%)	
TB type [n (%)]			
PTB	4 (16%)	2 (11%)	
EPTB	4 (16%)	5 (27%)	
EPTB and PTB	17 (68%)	11 (61%)	
TB meningitis/neuroTB [n (%)]	7 (23%)	4 (21%)	
TB confirmation [n (%)]			
Cultured Mtb	9 (36%)	6 (33%)	
Smear	6 (24%)	2 (11%)	
Clinicoradiological	10 (40%)	10 (55%)	
Hb [Median (IQR)] (g/dL)	9.1 (6.4-13)	9.4 (5.9-14.0)	ns
CD4 nadir [Median (IQR)]	49 (11-209)	70 (4-272)	ns
CD4 count (cells/mm ³) at week 0 [Median (IQR)]	68 (21-521)	111 (4-662)	0.009
CD4 count (cells/mm ³) at week 4 [Median (IQR)]	164 (23-556)	276 (21-514)	ns
Log ₁₀ HIV VL at week 0 [Median (IQR)]	5.73 (3.96-7.78)	5.8 (4.21-7.15)	ns
Log ₁₀ HIV VL at week 4 [Median (IQR)]	2.72 (0-3.88)	2.68 (1.32-3.3)	ns
Duration TB treatment to ART [Median (IQR)] (days)	37 (14-99)	32 (13-91)	ns
Duration ART to TB-IRIS [Median (IQR)] (days)	15 (4-49)		
On steroid treatment at week 0 [n (%)]	7 (28)	4 (22)	ns

471

472

473

474

475

476

477

Table 1. Clinical characteristics of patients who developed tuberculosis immune reconstitution inflammatory syndrome (TB-IRIS, n=25) and those who did not (non-IRIS, n=18). TB: Tuberculosis, PTB: pulmonary TB, EPTB: extrapulmonary TB, IQR: interquartile range, ART: antiretroviral treatment, Hb: hemoglobin. The Wilcoxon rank sum test was used to compare all continuous variables and the Mann-Whitney test was used to compare categorical variables.

478 **Table S1**

IRIS patient Identifier	ART regimen	Duration ART Start to TB-IRIS (days)	TB-IRIS system involvement	Steroids to Treat TB-IRIS	Duration from TB-IRIS onset to starting steroids (days)
IR 4011-3	D4T, 3TC, EFZ	6	Pulmonary, nodal, effusion and abdominal	Yes	9
IR 4035-1	AZT, 3TC, EFZ	42	Nodal, abdominal	No	
IR 4074-8	TDF, 3TC, EFZ	10	Pulmonary, nodal	Yes	5
IR 4071-5	TDF, 3TC, EFZ	8	Pulmonary, effusion, abdominal	No	
IR 4075-9	D4T, 3TC, EFZ	12	Abdominal	Yes	na
IR 4076-0	TDF, 3TC, EFZ	9	Nodal	No	
IR 4081-7	TDF, 3TC, EFZ	10	Abdominal	No	
IR 4108-1	TDF, 3TC, EFZ	9	Pulmonary, abdominal	No	
IR 4018-0	D4T, 3TC, EFZ	13	Pulmonary	Yes	4
IR 4020-4	D4T, 3TC, EFZ	30	Nodal	Yes	13
IR 4047-5	D4T, 3TC, EFZ	8	Pulmonary, abdominal	Yes	5
IR 4110-5	D4T, 3TC, EFZ	4	Pulmonary, abdominal	No	
IR 4052-2	TDF, 3TC, EFZ	13	Pulmonary, abdominal	No	
IR 4078-2	TDF, 3TC, EFZ	26	Neurological, pulmonary, abdominal	Yes	20
IR 4096-4	TDF, 3TC, EFZ	14	Pulmonary, abdominal	No	
IR 4115-0	AZT, 3TC, EFZ	26	Pulmonary	Yes	16
IR 4010-2	D4T, 3TC, EFZ	7	Nodal, abdominal	Yes	56
IR 4015-7	D4T, 3TC, EFZ	15	Pulmonary, abdominal	Yes	20
IR 4021-8	D4T, 3TC, EFZ	5	Pulmonary	Yes	2
IR 4036-2	D4T, 3TC, EFZ	7	Nodal, neurological	Yes	1
IR 4080-6	TDF, 3TC, EFZ	11	Neurological	Yes	na
IR 4085-1	TDF, 3TC, EFZ	14	Articular	Yes	na
IR 4088-4	TDF, 3TC, EFZ	49	Neurological	Yes	9
IR 4095-3	TDF, 3TC, EFZ	12	Pulmonary, abdominal	Yes	3
IR 4111-6	TDF, 3TC, EFZ	8	Abdominal	Yes	8

479

480 **Supplementary Table 1. Individual patient duration to first TB-IRIS episode, symptom**
481 **manifestation and steroid management.** Different patients were on different combination of ART
482 regimen including Stavudine (D4T), Lamivudine (3TC), Efavirenz (EFZ), Zidovudine (AZT) and
483 Tenofovir (TDF).

484 **FIGURE LEGENDS**

485 **Figure 1. CD4 T cell expression of eomesodermin promotes mycobacterial IRIS in a murine model.**

486 **A.** To model IRIS in mice, TCR α -/- mice harboring a chronic *M. avium* infection were injected with
487 purified CD4 T cells from uninfected donor mice. **B.** *M. avium* infected TCR α -/- mice were injected with
488 WT, Tbet-deficient or eomes-deficient CD4 T cells. The donor CD4 T cells (CD4+TCR β +CD3+) were
489 analyzed in the PBMC on day 10 post infection for the expression of Tbet and eomesodermin (plots are
490 concatenated from n=8 mice/group). **C.** *M. avium* infected TCR α -/- mice were injected with either WT
491 or Tbet-deficient CD4 T cells and monitored for weight loss (n=5 mice/group). **D.** *M. avium* infected
492 TCR α -/- mice were injected with no T cells, WT or eomes-deficient CD4 T cells and monitored for
493 weight loss. **E.** Survival of mice receiving WT or eomes-deficient CD4 T cells. n=4 to 5 mice/group.
494 Error bars represent the standard deviation. Data are representative of at least 4 independent experiments
495 each.

496

497 **Figure 2. Frequencies of Mtb-specific IFN γ +CD4+ T cells in TB-IRIS and non-IRIS patients. A,**

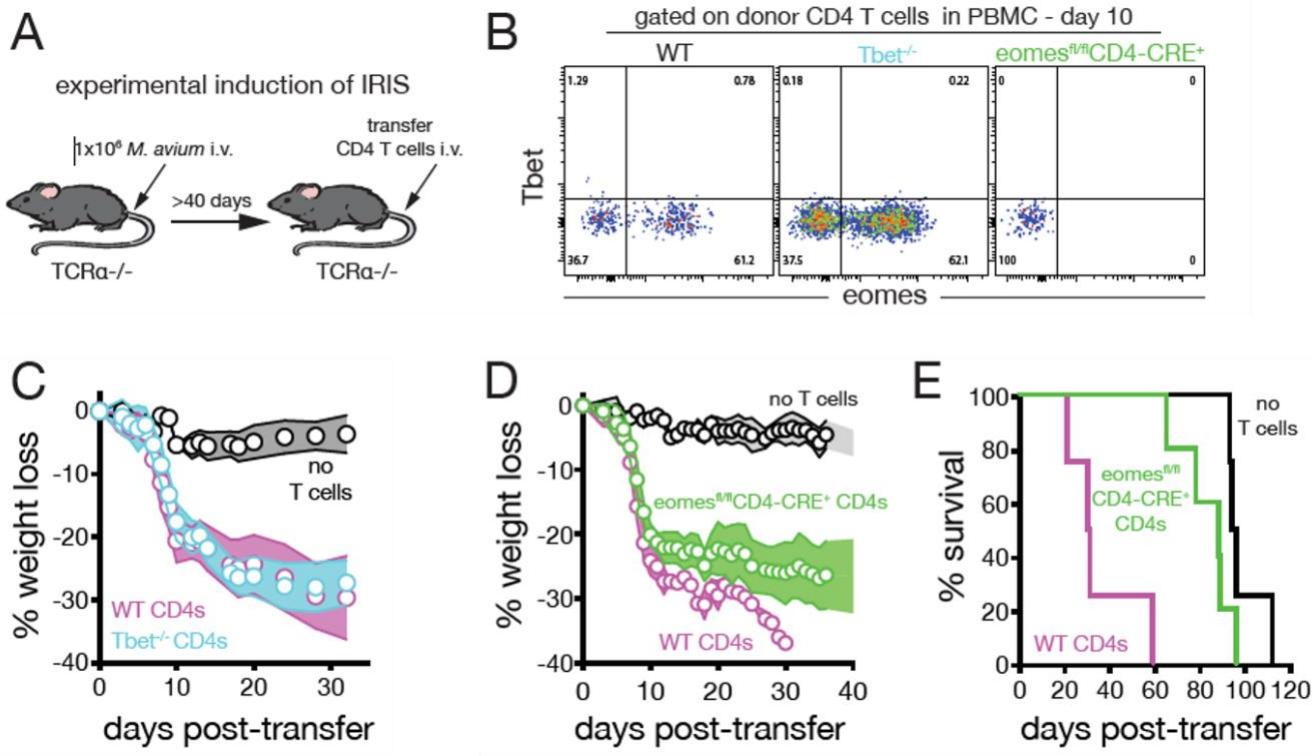
498 Representative flow plots of IFN γ production in response to Mtb peptide pool (Mtb300) and non-stimulated
499 controls (NS) at baseline (BL, prior to initiation of antiretroviral therapy, ART) and 2 weeks on ART (W2).
500 **B,** Frequencies of IFN γ producing CD4+ T cells in TB-IRIS (red) from baseline (BL, n= 16), through 2
501 weeks (W2, n= 9), 4 weeks (W4, n= 10) and 6 weeks (W6, n=12) and non-IRIS (black) from BL= 11, through
502 W2, n= 4, W4, n= 8 and W6, n= 1 on ART. **C,** Fold change in the frequency of IFN γ +CD4+ T cells in TB-
503 IRIS and non-IRIS patients between baseline (prior to ART) and 2 weeks on ART. The Wilcoxon ranked
504 test was used for the statistical comparison of paired samples and the Mann-Whitney-U test was used for
505 unpaired samples. Only statistically significant data with a p value of 0.05 or less are indicated on graphs

506

507 **Figure 3. HLA-DR expression on Mtb-specific IFN γ +CD4+ T cells in TB-IRIS and non-IRIS patients.**

508 **A**, Representative flow plot of HLA-DR expression on Mtb-specific IFN γ +CD4+ T cells (red) and total
509 CD4+ T cells (black) in one TB-IRIS and one non-IRIS patient at two weeks post ART initiation (W2). **B**,
510 Expression of HLA-DR on Mtb-specific IFN γ +CD4+ T cells in TB-IRIS (red) from baseline (BL, n= 6),
511 through 2 weeks (W2, n= 5), 4 weeks (W4, n= 7) and 6 weeks (W6, n= 13) and non-IRIS patients (black)
512 from baseline (BL, n= 6), through 2 weeks (W2, n= 4), and 4 weeks (W4, n= 8) on-ART. **C**, Frequency of
513 HLA-DR on Mtb-specific IFN γ +CD4+ T cells from baseline to 6 weeks on ART in TB-IRIS and non-IRIS
514 patients. The Wilcoxon ranked test was used for the statistical comparison of paired samples and the Mann-
515 Whitney-U test was used for unpaired samples. Only statistically significant data with a p value of 0.05 or
516 less are indicated on graphs.

517

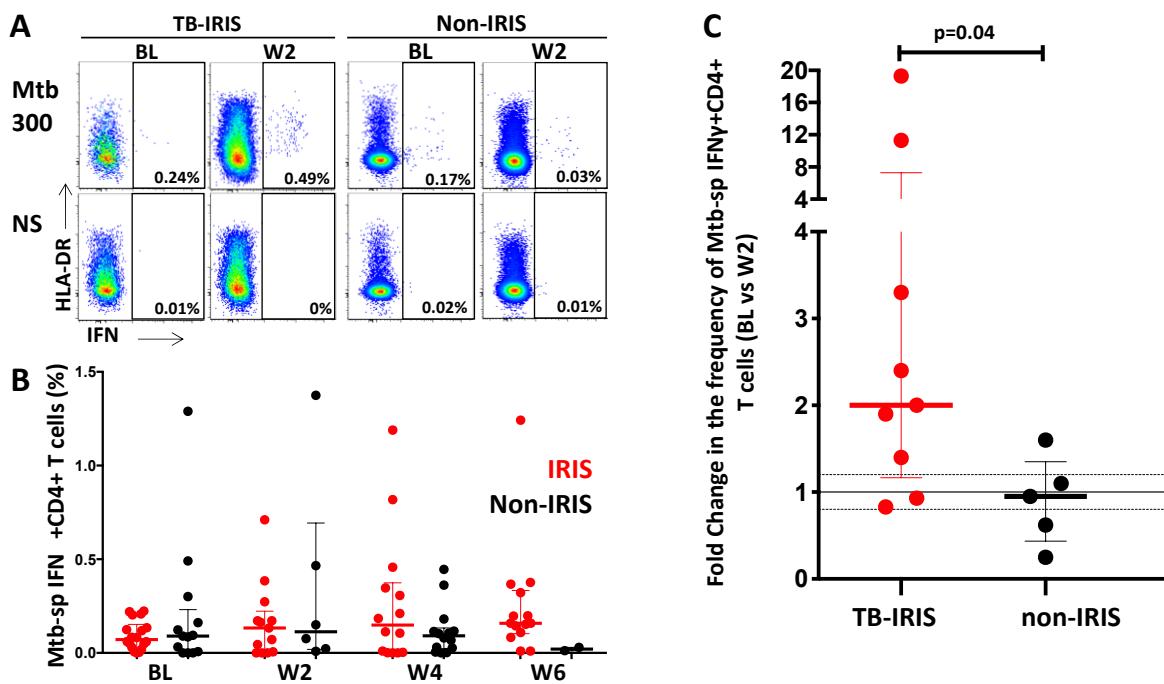

518 **Figure 4. Eomes and T-bet expression profile in Mtb-specific IFN γ +CD4+ T cells in TB-IRIS and non-
519 IRIS patients.** **A**, Representative flow plot of Eomes and T-bet expression on Mtb-specific IFN γ +CD4+ T
520 cells (red) and total CD4+ T cells (black) in one TB-IRIS and one non-IRIS patient prior to ART initiation
521 (BL). **B**, Distribution of Mtb-specific IFN γ +CD4+ T cells amongst distinct Eomes and T-bet subsets:
522 (Eomes- T-bet-; Eomes- T-bet+; Eomes+ T-bet+; Eomes- T-bet++; Eomes+ T-bet++) in TB-IRIS (red, n=
523 6) and non-IRIS patients (black, n= 6) at BL. **C**, Evolution of Eomes and T-bet profile in Mtb-specific
524 IFN γ +CD4+ T cells in TB-IRIS from BL, (n= 6), through 2 weeks (W2, n= 5), 4 weeks (W4, n= 7) and 6
525 weeks (W6, n= 13) and non-IRIS patients (black) from BL, (n= 6), through 2 weeks (W2, n= 4) and 4 weeks
526 (W4, n= 8) on-ART. The Wilcoxon ranked test was used for the statistical comparison of paired samples
527 and the Mann-Whitney-U test was used for unpaired samples. Only statistically significant data with a p
528 value of 0.05 or less are indicated on graphs.

529

530 **Figure 5. Expression of HLA-DR and granzyme B on Eomes and T-bet expressing subsets of**
531 **Mtb-specific IFN γ +CD4+ T cells two weeks on ART. A, Expression of HLA-DR and B, granzyme B**
532 **on Eomes and T-bet subsets (Eomes-, T-bet+, Eomes+, T-bet+, Eomes-, T-bet++ and Eomes+, T-**
533 **bet++) of Mtb-specific IFN γ +CD4+ T cells in TB-IRIS (red, n= 5), and non-IRIS patients (black, n=**
534 **4), 2 weeks on ART. The Mann-Whitney-U test was used for statistical comparison of unpaired**
535 **samples. Only statistically significant data with a p value of 0.05 or less are indicated on graphs.**
536

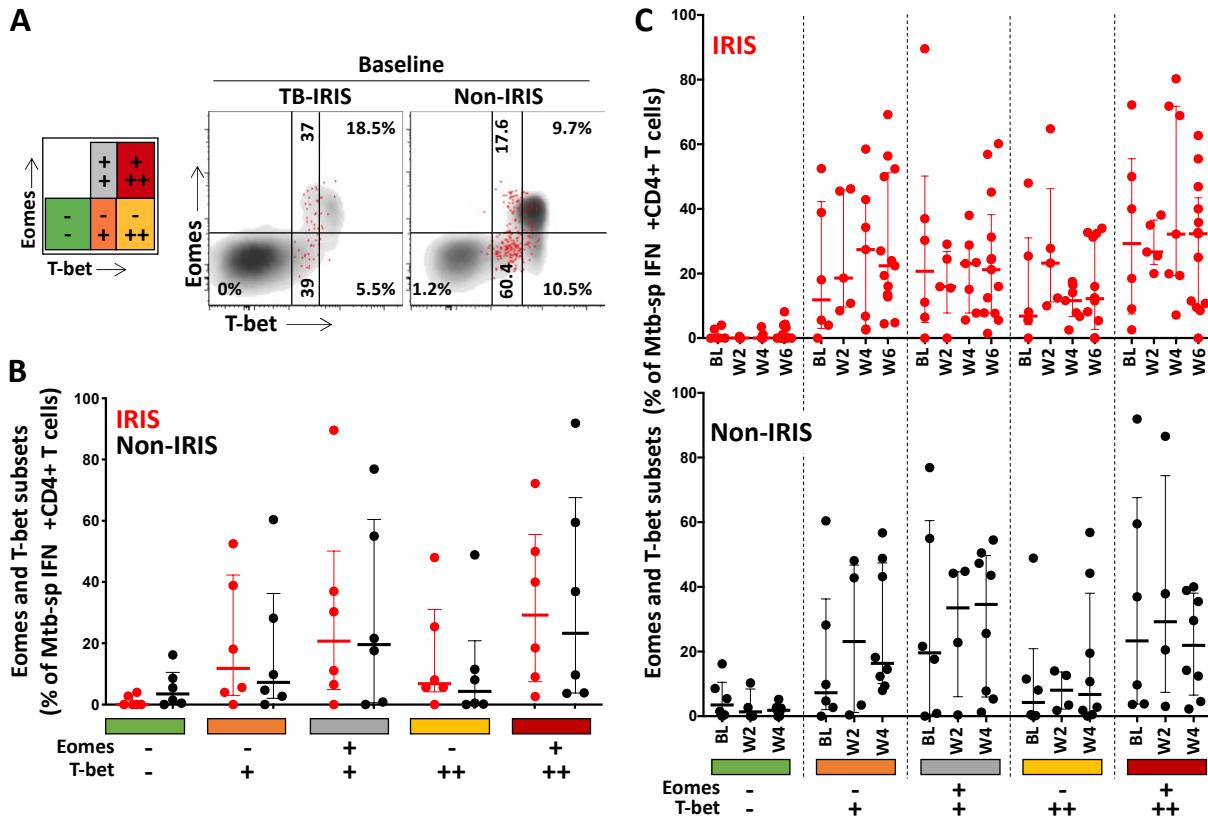
537 **Figure 1**

538



539

540


541

542 **Figure 2**
543

546
547


Figure 3

548
549

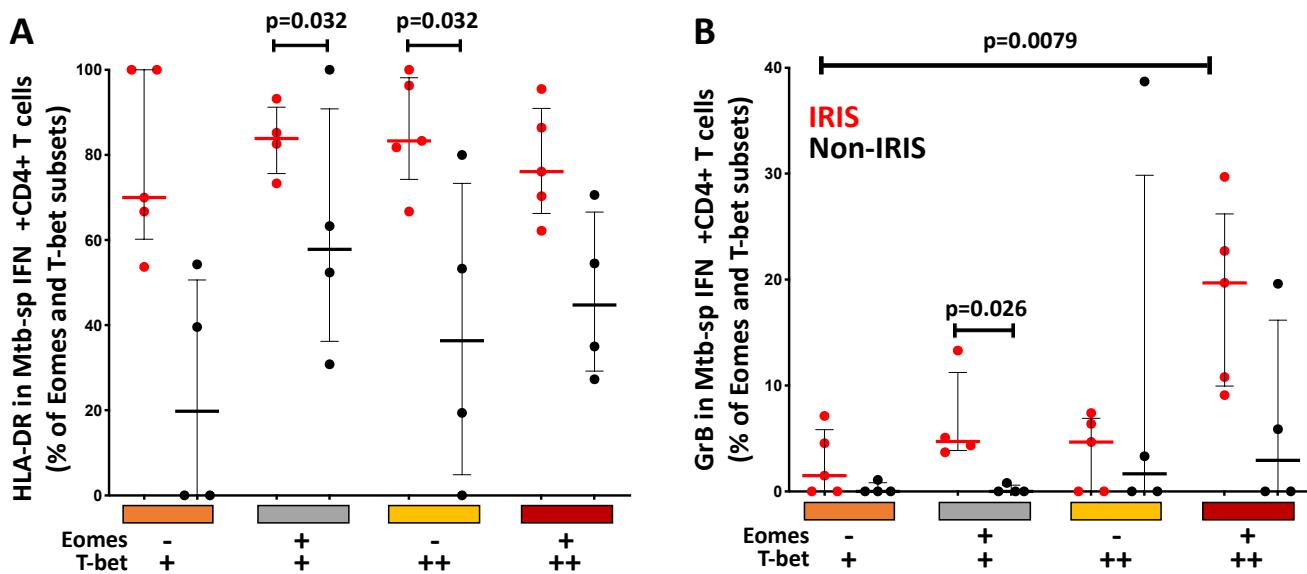
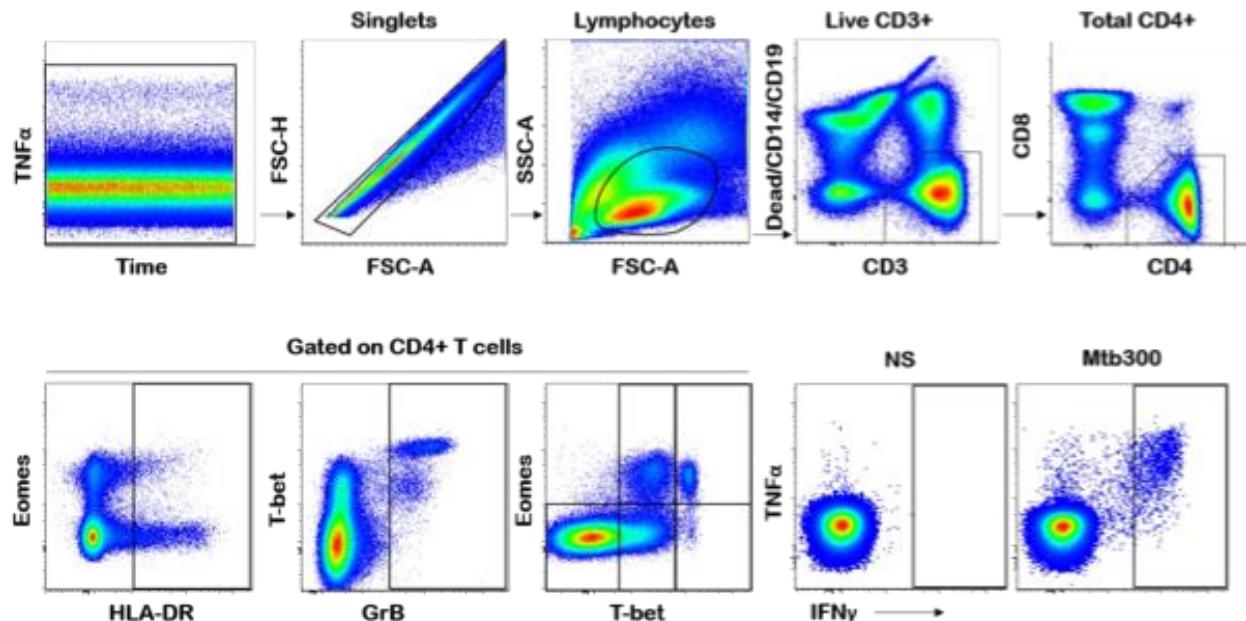
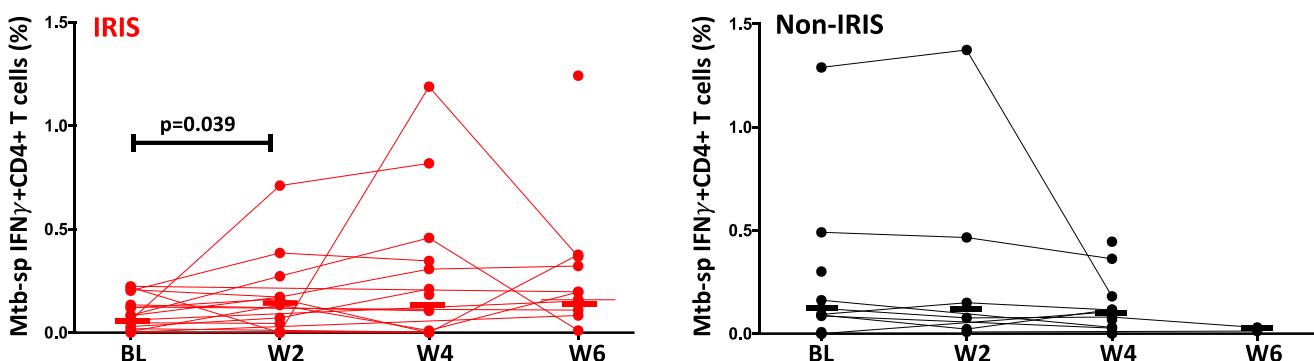

550
551

Figure 4

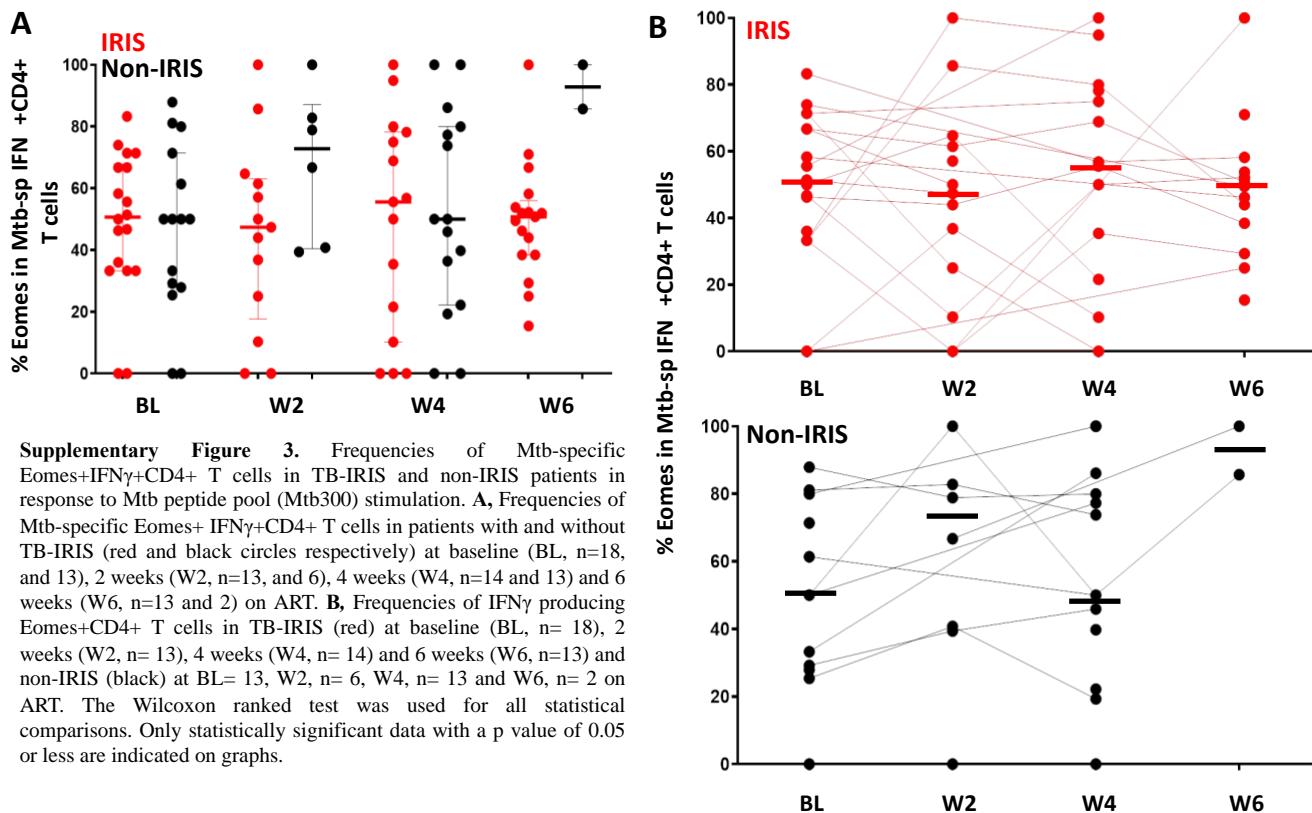

552
553

554 **Figure 5**
555

556
557
558

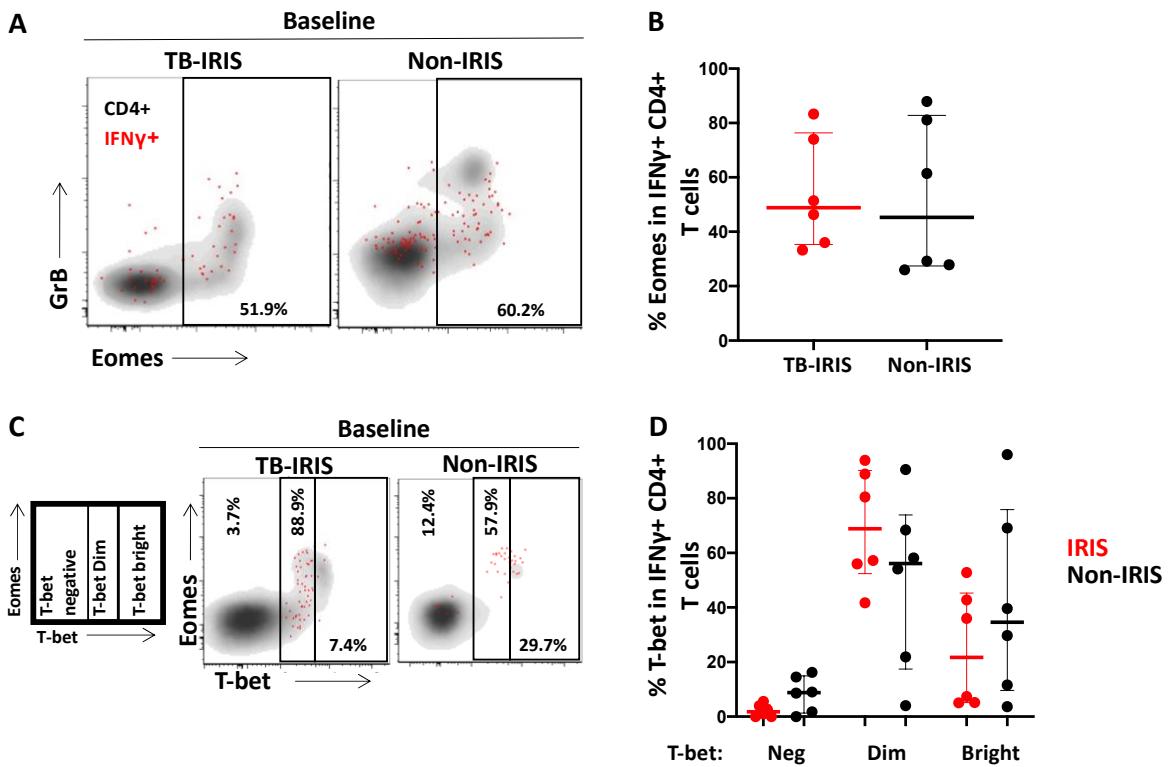

559 Supplementary figure 1
560

511
512 **Supplementary Figure 1. Representative gating strategy for the phenotypic**
513 **characterization of IFN γ +CD4+ T cells.** To phenotype Mtb-specific IFN γ +CD4+ T cell
514 responses, we gated on singlets (FSC-H vs FSC-A), lymphocytes (SSC-A vs FSC-A), live
515 CD3+ cells (dead cells vs live CD3+) and on total CD4+ T cells.


516
517

568 Supplementary figure 2
569

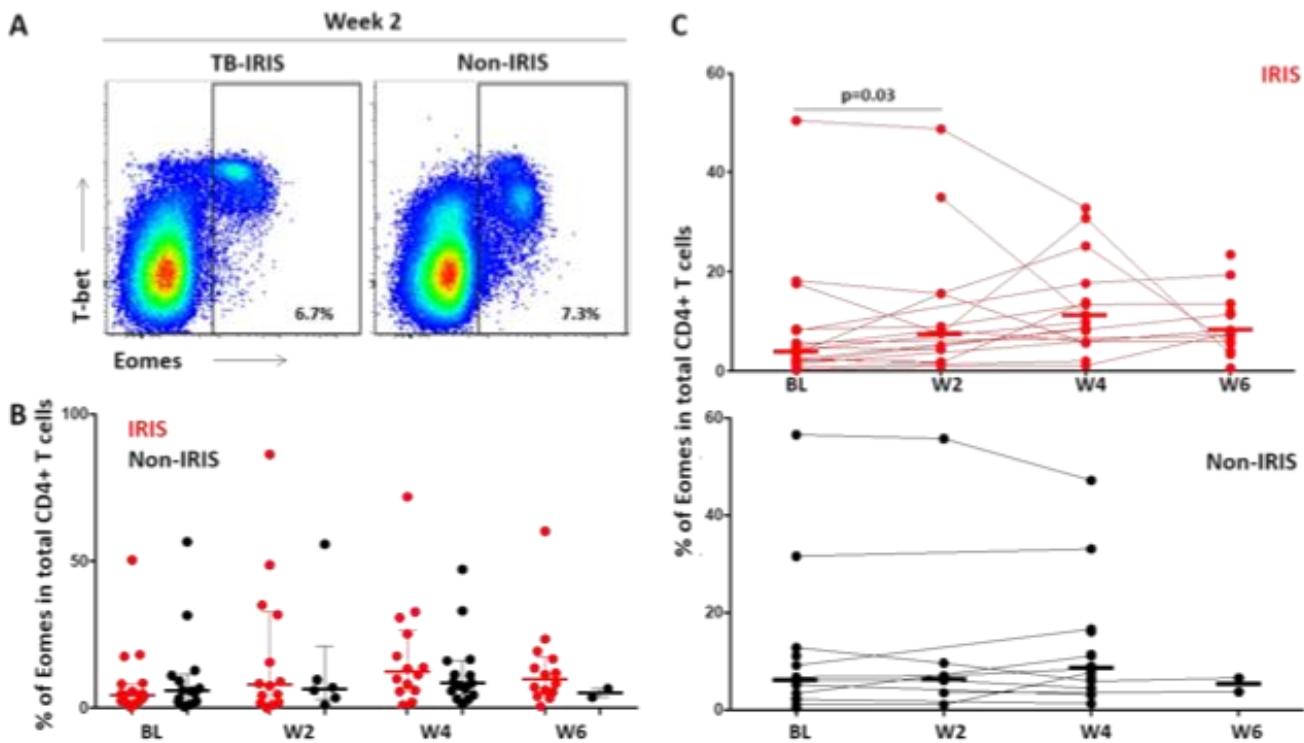
570
571
572
573
574
575
576
577
578
Supplementary Figure 2. Frequencies of IFN γ producing CD4+ T cells in response to Mtb peptide pool (Mtb300) stimulation in TB-IRIS (red) at baseline (BL, n= 16), 2 weeks (W2, n= 9), 4 weeks (W4, n= 10) and 6 weeks (W6, n=12) and non-IRIS (black) at BL= 11, W2, n= 4, W4, n= 8 and W6, n= 1 after ART initiation. The Wilcoxon ranked test was used for all statistical comparisons. Only statistically significant data with a p value of 0.05 or less are indicated on graphs.


579 Supplementary figure 3
580

Supplementary Figure 3. Frequencies of Mtb-specific Eomes+IFN γ +CD4+ T cells in TB-IRIS and non-IRIS patients in response to Mtb peptide pool (Mtb300) stimulation. **A**, Frequencies of Mtb-specific Eomes+ IFN γ +CD4+ T cells in patients with and without TB-IRIS (red and black circles respectively) at baseline (BL, n=18, and 13), 2 weeks (W2, n=13, and 6), 4 weeks (W4, n=14 and 13) and 6 weeks (W6, n=13 and 2) on ART. **B**, Frequencies of IFN γ producing Eomes+CD4+ T cells in TB-IRIS (red) at baseline (BL, n= 18), 2 weeks (W2, n= 13), 4 weeks (W4, n= 14) and 6 weeks (W6, n=13) and non-IRIS (black) at BL= 13, W2, n= 6, W4, n= 13 and W6, n= 2 on ART. The Wilcoxon ranked test was used for all statistical comparisons. Only statistically significant data with a p value of 0.05 or less are indicated on graphs.

581
582
583
584
585
586

587 Supplementary figure 4
588



589
590 **Supplementary Figure 4. Eomes and T-bet expression on Mtb-specific IFN γ +CD4+ T cells in patients with and without TB-IRIS prior to initiation of antiretroviral therapy (ART) (BL).** A, Representative flow plot of the expression of Eomes on Mtb-specific IFN γ +CD4+ T cells (red) and total CD4+ T cells (black) in one TB-IRIS and one non-IRIS patient at BL. B, Summary plot of Eomes expression in Mtb-specific IFN γ +CD4+ T cells between TB-IRIS (n= 6) and non-IRIS patients (n= 6) at BL. C, Representative flow plot of the expression of differentiated T-bet subpopulations on Mtb-specific IFN γ +CD4+ T cells (red) and total CD4+ T cells (black) in one TB-IRIS and one non-IRIS patient at baseline. D, Summary plot of the T-bet expression in Mtb-specific IFN γ +CD4+ T cells between TB-IRIS (n= 6) and non-IRIS patients (n= 6) at BL. The Wilcoxon ranked test was used for all statistical comparisons. Only statistically significant data with a p value of 0.05 or less are indicated on graphs.

591
592
593
594
595
596
597
598
599
600
601
602

603 Supplementary figure 5

604

605

606

607

608

609

610

611

612

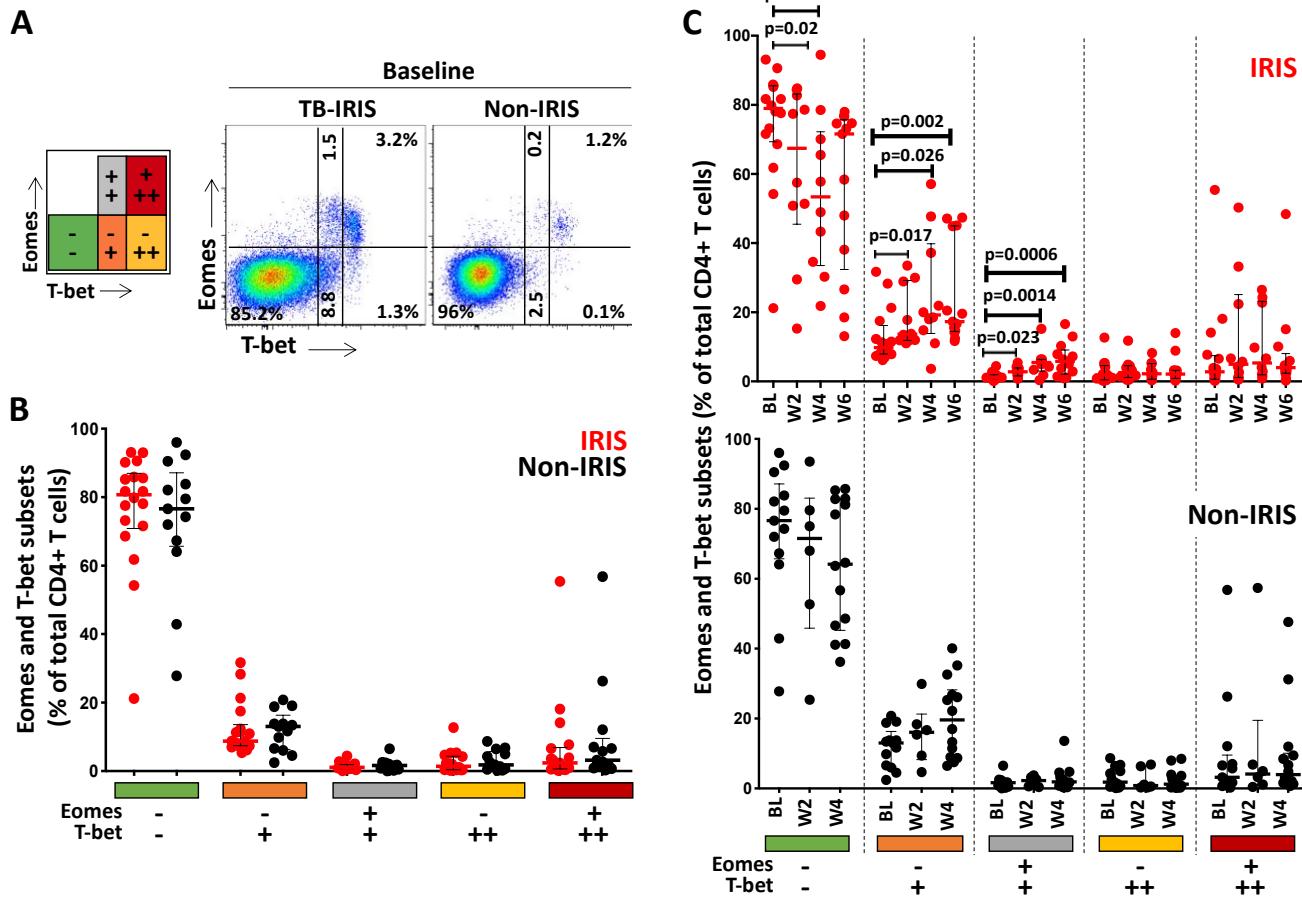
613

614

615

616

617

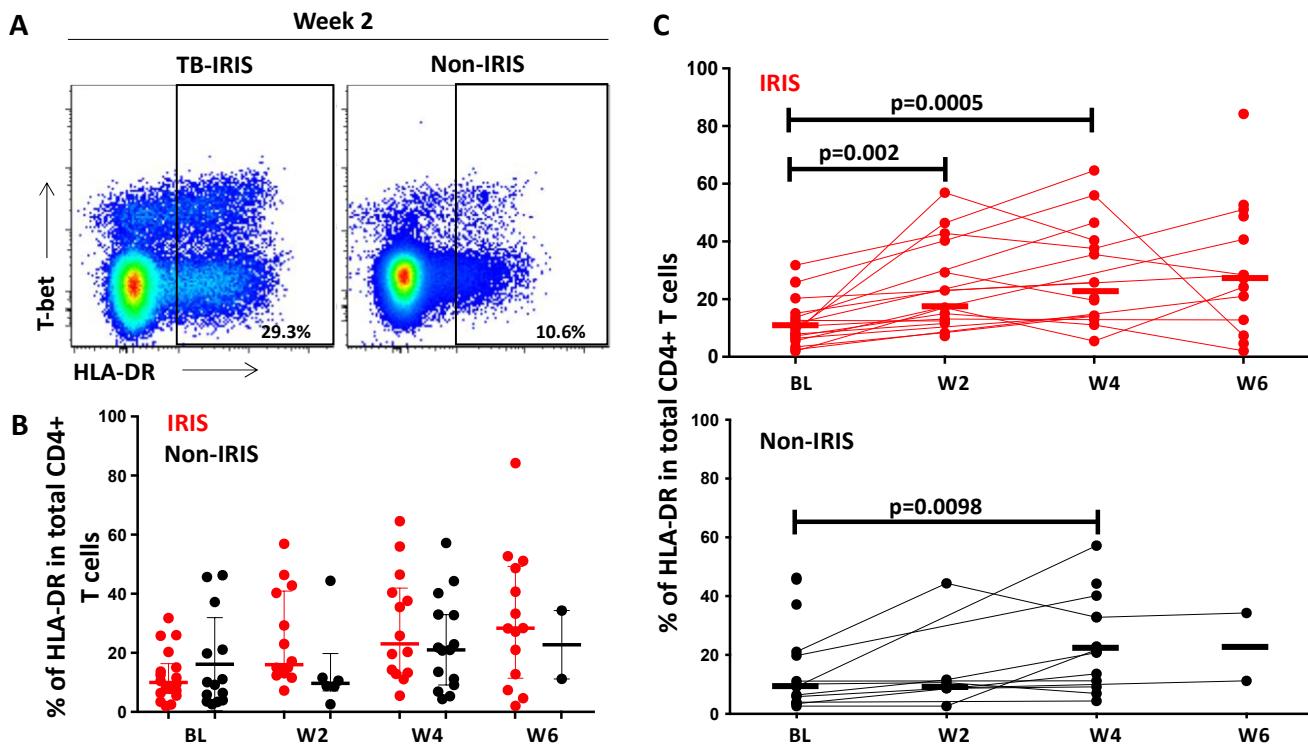

618

619

620

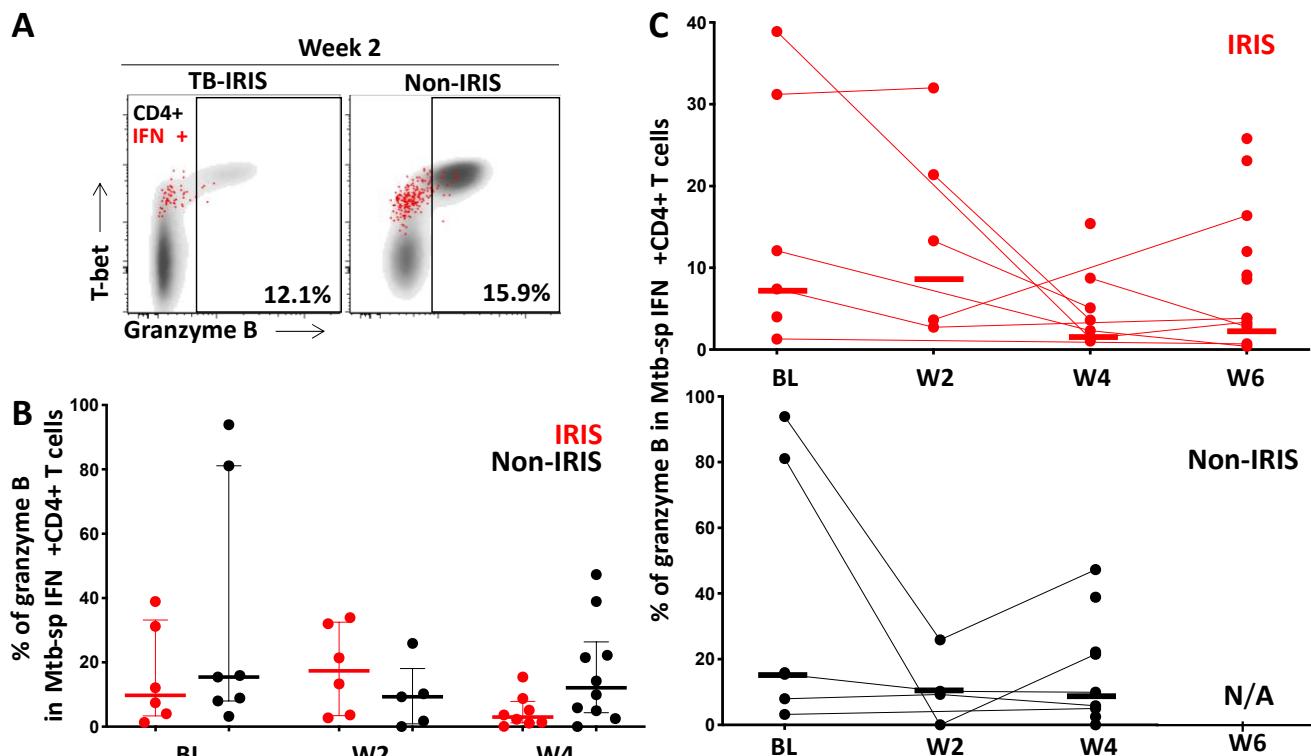
Supplementary Figure 5. Eomes expression in total CD4+ T cells in patients with and without TB-IRIS. A, Representative flow plot of Eomes expression in one patient with TB-IRIS and one non-IRIS patient in total CD4+ T cells two weeks post ART initiation. B, Cross sectional analyses of Eomes expression in total CD4+ T cells in patients with and without TB-IRIS at baseline (BL, n=18, and 13, respectively), 2 weeks (W2, n=13, and 6), 4 weeks (W4, n=14 and 13) and 6 weeks (W6, n=13 and 2) post-ART. C, Longitudinal analyses of the expression of Eomes in total CD4+ T cells in patients with TB-IRIS (top panel) and non-IRIS controls (bottom panel) from BL to 6 weeks post ART. The Wilcoxon ranked test was used for all statistical comparisons. Only statistically significant data with a p value of 0.05 or less are indicated on graphs.

621 Supplementary figure 6
 622



623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635

Supplementary Figure 6. Eomes and T-bet co-expression in total CD4+ T cells in patients with and without TB-IRIS. A, Representative flow plot of Eomes and T-bet co-expression in one patient with TB-IRIS and one non-IRIS patient in total CD4+ T cells two weeks on ART initiation. B, Cross sectional analyses of Eomes and T-bet co-expression in total CD4+ T cells in patients with and without TB-IRIS at baseline (BL, n=18, and 13, respectively), 2 weeks (W2, n=13, and 6), 4 weeks (W4, n=14 and 13) and 6 weeks (W6, n=13 and 2) on ART. C, Longitudinal analyses of the co-expression of Eomes and T-bet in total CD4+ T cells in patients with TB-IRIS (top panel) and non-IRIS controls (bottom panel) from BL to 6 weeks on ART. The Wilcoxon ranked test was used for all statistical comparisons. Only statistically significant data with a p value of 0.05 or less are indicated on graphs.


636 Supplementary figure 7

637

Supplementary Figure 7. HLA-DR expression in total CD4+ T cells in patients with and without TB-IRIS. A, Representative flow plot of HLA-DR expression in one patient with TB-IRIS and one non-IRIS patient in total CD4+ T cells two weeks post ART initiation. B, Cross sectional analyses of HLA-DR expression in total CD4+ T cells in patients with and without TB-IRIS at baseline (BL, n=18, and 13, respectively), 2 weeks (W2, n=13, and 6), 4 weeks (W4, n=14 and 13) and 6 weeks (W6, n=16 and 2) post-ART. C, Longitudinal analyses of the expression of HLA-DR in total CD4+ T cells in patients with TB-IRIS from BL, n= 18, W2, n= 13, W4, n= 14, W6, n= 13 and non-IRIS controls, BL, n= 13, W2, n= 6, W4, n= 13 and W6, n= 2 post ART. The Wilcoxon ranked test was used for all statistical comparisons. Only statistically significant data with a p value of 0.05 or less are indicated on graphs.

652 Supplementary figure 8
 653

654
 655
 656

Supplementary Figure 8. Granzyme B expression in Mtb-specific IFN γ +CD4+ T cells in TB-IRIS and non-IRIS patients. A, Representative flow plot of granzyme B expression in Mtb-specific IFN γ +CD4+ T cells (red) and total CD4+ T cells (gray) in one TB-IRIS and one non-IRIS patient prior to ART initiation (at Baseline, BL). B, Expression of granzyme B in Mtb-specific IFN γ +CD4+ T cells in TB-IRIS (red) at baseline (BL, n= 6), 2 weeks (W2, n= 5), 4 weeks (W4, n= 7) and 6 weeks (W6, n= 13) and non-IRIS patients (black) at baseline (BL, n= 6), 2 weeks (W2, n= 4), and 4 weeks (W4, n= 8) post-ART. C, Expression of granzyme B in Mtb-specific IFN γ +CD4+ T cells from Baseline to 6 weeks post ART in TB-IRIS and non-IRIS patients. The Wilcoxon ranked test was used for all statistical comparisons. Only statistically significant data with a p value of 0.05 or less are indicated on graphs.