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ABSTRACT

Background: Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is a
frequent complication of co-treatment for TB and HIV-1. We characterized Mtbh-specific CD4 T cell
phenotype and transcription factor profile associated with the development of TB-IRIS.

Methods: We examined the role of CD4 T-cell transcription factors in a murine model of
mycobacterial IRIS. In humans, we compared longitudinally on antiretroviral therapy (ART) the
magnitude, activation, transcription factor profile and cytotoxic potential of Mth-specific CD4 T cells
between TB-IRIS (n=25) and appropriate non-IRIS control patients (n=18) using flow cytometry.
Results: In the murine model, CD4 T cell expression of Eomes, but not Thet, was associated with
experimentally induced IRIS. In patients, TB-IRIS onset was associated with the expansion of Mtb-
specific IFNy+CD4 T cells (p=0.039). TB-IRIS patients had higher HLA-DR expression (p=0.016), but
no differences in the expression of T-bet or Eomes were observed. At TB-IRIS onset,
Eomes+Tbet+Mtb-specific IFNy+CD4+ T cells showed higher expression of Granzyme B in TB-IRIS
patients (p=0.026).

Conclusion: While the murine model of MAC-IRIS suggests that Eomes+CD4 T cells underly IRIS,
TB-IRIS was not associated with Eomes expression in patients. Mtb-specific IFNy+CD4 T cell

responses in TB-IRIS patients are differentiated, highly activated and potentially cytotoxic.
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BACKGROUND

Although antiretroviral therapy (ART) has substantially reduced HIV-1 related morbidity and mortality
in patients with HIV-associated tuberculosis (TB) [1], TB-immune reconstitution inflammatory
syndrome (TB-IRIS) frequently complicates management [2, 3]. TB-IRIS has an estimated incidence of
18% across cohorts and an attributable mortality rate of 2% [4].

Two forms of TB-IRIS are recognised: 1) Unmasking TB IRIS which occurs in patients with
undiagnosed TB who present with severe inflammatory features of TB during the first 3 months of
ART and 2) Paradoxical TB-IRIS which occurs in patients started on TB treatment before ART who
experience recurrent, new or worsening symptoms and signs of TB within the first months of initiating
ART [5, 6]. The major risk factors for paradoxical TB-IRIS include a low CD4 count prior to ART
initiation, higher HIV-1 viral load, a short interval between TB treatment and ART initiation and
disseminated TB [7, 8].

Innate immune responses including inflammasome activation [9, 10], monocyte and natural killer cell
activation [11, 12], neutrophilia [12, 13] and dysregulation of the complement system in monocytes
[14] have been associated with TB-IRIS. Elevated concentrations of proinflammatory cytokines [15,
16] and matrix degrading metalloproteinases [17] have been described at TB-IRIS onset. Moreover,
monocyte subset frequency and circulating inflammatory mediators can independently predict TB-IRIS
disease [18, 19]. Expansion of pathogen-specific CD4+ T cells has been observed in association with
TB-IRIS [20-23]. Pathogen-specific CD4+ T cells from patients with IRIS have been reported to be
highly activated [24] and polyfunctional [25]. Recently, it was reported that HIV-1 patients with
Mycobacterium avium complex (MAC) infection, who developed MAC-IRIS had higher expression of
Eomesodermin (Eomes) compared with Tbet in MAC-specific IFNy+CD4+ T cells at the onset of IRIS

[26]. Eomes and Thet are members of the T-box DNA binding family of transcription factors with
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structural similarities and overlapping expression [27]. Eomes is involved in the development of
cytotoxic T lymphocyte activity [27] while Tbet is a Th-1 lineage-defining transcription factor [28].
Th-1 responses have been implicated in a mouse model of MAC-IRIS [20, 21]. Consequently, we
capitalized on the existing mouse model of IRIS to investigate phenotypic CD4 T cell features that may
be associated with IRIS in mice and compare these with findings in patients developing TB-IRIS in a

prospective cohort study of patients with HIV-associated TB initiating ART.
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METHODS

M. avium-IRIS induction in mice

C57BL/6J-[KO] TCRalpha mice (6-8 weeks old) were intravenously infected with 1x108 colony-
forming units of M. avium (strain SmT 2151). After at least 40 days, CD4 T cells were isolated from
C57BL/6, B6.129S6-Thx21tm1GIm/J mice (The Jackson Laboratory, Bar Harbor, ME), or
eomesCD4-CRE* uninfected mice using positively selecting microbeads (Miltenyi Biotec, Auburn,
CA), and 1x10° cells were intravenously transferred into chronically infected T cell deficient mice. All
mice were maintained and bred at NIAID, NIH, Bethesda, MD. All animals were housed at an
Association for the Assessment and Accreditation of Laboratory Animal Care-approved facility at the
NIAID according to the National Research Council’s Guide for the Care and Use of Laboratory

Animals

Participants in clinical study

Samples were obtained from patients with HIV-associated TB initiating ART enrolled in a prospective
observational study conducted at Brooklyn Chest Tuberculosis Hospital between May 2009 and
November 2010 in Cape Town, South Africa [29]. All patients were ART naive and those with
rifampicin-resistant TB were excluded. TB diagnosis was based on smear, culture or clinical diagnosis.
The first TB episode was treated with standard first line regimen of rifampicin (R), isoniazid (H),
pyrazinamide and ethambutol for two months followed by four months of RH regimen. In patients with
subsequent episodes, streptomycin was added for 2 months. TB-IRIS was diagnosed per International
Network for the Study of HIV-associated IRIS (INSHI) criteria [5]. HIV-1 treatment included
lamivudine and efavirenz with stavudine or tenofovir depending on guidelines at the time. Written

informed consent was obtained from all participants. The study was approved by the Human Research
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Ethics Committee (HREC REF: 049/2009 and 809/2018) of the University of Cape Town. Clinical and

other immunological findings from this cohort have been published [9, 29, 30].

PBMC isolation and stimulation

PBMC were isolated by Ficoll-Hypaqgue density gradient centrifugation (GE Healthcare® ALC-
PK121R), cryopreserved and stored. Cryopreserved PBMC were thawed and rested at 37 °C in RPMI
1640 containing 10% heat-inactivated FCS for 4 hours prior to antigen stimulation. PBMC (2x10°
cells) were stimulated with a peptide pool constituted of 300 Mtb-derived peptides (Mtb300, 1.5
pg/mL) [31] in the presence of anti-CD28 and anti-CD49d antibodies (both at 1 pg/ml, BD, Franklin
Lakes, New Jersey) and brefeldin-A (10 pg/ml, Sigma, St Louis, Missouri) for 6 hours. Unstimulated

cells, incubated with co-stimulatory antibodies and Brefeldin A only, were used as controls.

Cell staining and acquisition

Samples with a cell count of less than one million or a viability score of less than 20% were excluded.
After stimulation, cells were washed, stained with a viability marker (Live/Dead® Fixable Near-
InfraRed marker, Invitrogen, Carlsbad, California) for 10 minutes at room temperature and
subsequently surface stained with the following antibodies: CD4-PerCP-cy5.5, PD1-BV421, HLA-DR-
BV605, CD14-Allophycocyanin/H7, CD19-Allophycocyanin/H7 (all from Biolegend, San Diego,
California) and CD8-Alexa700 (BD, Franklin Lakes, New Jersey) for 30 minutes at room temperature.
Cells were fixed and permeabilized using the eBioscience Foxp3 fixation buffer for 30 minutes at room
temperature and stained with IFNy-BV711 (Biolegend), TNFa-FITC (Biolegend), granzyme B-BV510
(BD), Eomes-eFluor 660 (e-Bioscience, San Diego, California), Thet-PEcy7 (e-Bioscience) and CD3-
BV785 (Biolegend), for 45 minutes at 4 °C. Cells were washed and resuspended in 1% formaldehyde

in PBS. Samples were acquired in the BD LSRII and data were analysed using FlowJo software version
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9.9.6 (BD). The gating strategy is presented in Supplementary Figure 1. A positive Mtb-specific IFNy
response was defined as three-fold higher than the background measured in the presence of co-
stimulatory antibodies without antigen. For the phenotypic analyses of Mtb-specific IFNy+CD4+ T
cells, only Mtb responses with more than 20 events were considered. Protocols were compliant with the
guidelines for flow cytometry in immunological studies [32]. Although we analysed immunological
characteristics of live cells, our cohort included 8 samples with a viability below 50% (median: 67%,
[range: 96-22%]). Prior to assessing immunological phenotypic characteristics of our cohort, we
ascertained whether sample viability affected immunological expression of markers (particularly Thet
and Eomes) in our cohort. There was no correlation between sample viability and the expression of

Thet and Eomes at all measured time points (data not shown).

Statistical analyses

For analyses, samples from IRIS and non-IRIS groups were classified into four categories based on
sample timing in relation to ART: Baseline (BL) include samples collected within seven days before or
on the day of ART initiation, Week 2 (W2)-samples collected between day 1 and 14 on ART, Week 4
(W4)-samples collected between day 15 and 30 on ART, Week 6 (W6) samples collected between day
31 and 65 on ART (Supplementary Table 2&3). Paired samples were analysed using the paired
Wilcoxon ranked Student T test while the Mann-Whitney U test was used to compare unpaired samples
for all time points between TB-IRIS and non-IRIS groups. A p-value of 0.05 or less was considered
statistically significant. All statistical analyses were performed using Prism (v8.0.2, GraphPad Software

Inc, San Diego, CA, USA).
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RESULTS

Role of Eomes and Tbet in CD4 T cells during experimentally-induced IRIS

To model IRIS, T cell deficient (TCRa-/-) mice were infected with M. avium. This reproduced a
lymphopenic host harbouring a mycobacterial infection. After 40-60 days, the mice were injected with
CD4 T cells to mimic the reconstitution of T cells that occurs after ART (Figure 1A). To examine the
expression of Eomes and Thet in CD4 T cells and their potential involvement in the murine model of
IRIS, we injected mice with WT, Thet”-, and Eomes deficient CD4 T cells and examined the donor
CD4 T cells ten days post injection. We found that during murine IRIS, CD4 T cells surprisingly
expressed little Thet. Instead, a significant population of Eomes+ CD4 T cells was observed (Figure
1B). WT and Tbet”- CD4 T cells induced similar levels of weight loss (Figure 1C). In contrast,
recipients of Eomes deficient CD4 T cells displayed less weight loss and longer survival compared to
mice injected with WT CD4 T cells (Figure 1D, E). We concluded that, CD4 T cells utilize Eomes but
not Thet, to drive M. avium IRIS in this animal model. These findings prompted us to next examine the

role of Eomes expressing CD4 T cells in human TB-IRIS.

Clinical characteristics of the cohort

Sufficient samples for immunological analyses were available for 43 HIV-1 infected inpatients being
treated for TB when starting ART: 25 patients developed TB-IRIS and 18 patients did not (non-IRIS
controls). The demographic and clinical characteristics of the two groups are summarized in Table 1.

In both groups, over three-quarters of patients had evidence of extrapulmonary TB and around 20% had
neurological TB, a common reason for TB patients in South Africa to be admitted to a TB hospital.
Notably, 7/25 (28%) of TB-IRIS and 4/18 (22%) of non-IRIS patients were on treatment with
corticosteroids at the time of starting ART, the most frequent indication being neurological TB. We

previously demonstrated that corticosteroid therapy had no significant effect on the frequency of Mtb-
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specific CD4 T cells [33]. The median CD4 count at the start of ART was lower in TB-IRIS patients
(median: 68 cells/mm?3) compared with non-IRIS patients (median 111 cells/mm?) (p=0.009). The
median duration of TB treatment before initiation of ART was similar for the groups (median 37 days
in TB-IRIS versus 32 days in non-1RIS patients). The duration of ART prior to developing TB-IRIS

symptoms was a median of 15 days. Additional clinical data is presented in Supplementary Table 1.

Expansion of Mtb-specific CD4+ T cells at TB-IRIS onset

For phenotypic analyses, we first compared the magnitude of Mtb-specific IFNy+CD4+ T cell
responses between the patient groups before the initiation of ART (Baseline), at week 2, 4 and 6 on
ART. Representative examples of IFNy production by CD4+ T cells following Mth300 stimulation are
presented in Figure 2A. We observed no differences in the frequency of Mth-specific IFNy+CD4+ T
cells between the two groups in cross-sectional comparisons at any time point (Figure 2B). However,
the fold change in Mtb-specific IFNy+CD4+ T cell frequency between baseline and week 2 was
significantly higher in the TB-IRIS group compared to the non-IRIS group (median fold change: 1.9
[IQR: 0.83-19.3]) and 0.9 [IQR: 0.25-1.6], respectively, p=0.04) (Figure 2C). This significant increase
was exclusively observed in TB-IRIS patients between baseline (median: 0.08% [IQR: 0.0-0.2]) and 2
weeks on-ART (median: 0.13% [IQR: 0.0-0.71]) (p=0.039) (Supplementary Figure 2). We next
investigated the phenotype of Mth-specific IFNy+CD4+ T cell that could potentially characterise the

role of these cells in the pathogenesis of TB-IRIS in humans.

No differences in the expression of Eomes or Tbet between patients with and without TB-IRIS at
any tested time point
Based on our mouse model data and a recent report by Hsu et al. reporting that Eomes was

significantly upregulated over Thet in MAC-specific IFNy+CD4 T cells of MAC-IRIS patients at


https://doi.org/10.1101/2022.07.20.500909
http://creativecommons.org/licenses/by/4.0/

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.20.500909; this version posted July 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

disease onset [26], we determined whether these transcription factors were differentially expressed
between TB-IRIS and non-IRIS patients. We observed no differences in the frequency of Mtb-specific
IFNy+Eomes+CD4+ T cells between the two clinical groups at baseline or any time point on ART
(Supplementary Figure 3).

Eomes and Tbet expression in Mtb-specific IFNy+CD4 T cells were highly variable between patients
but not statistically different between the two groups at baseline (Supplementary Figure 4) or any
other time point (data not shown). The expression of Eomes in Mtb-specific IFNy+CD4 T cells at
baseline was approximately 50% and was comparable between the two groups (Supplementary
Figure 4B). Similarly, Tbet expression in Mth-specific IFNy+CD4+ T cells was comparable between
TB-IRIS and non-IRIS groups; approximately 60% of cells expressed intermediate levels of Tbet (Thet
dim, Thet+) and 25% expressed high Tbet levels at baseline (Tbet high, Thet++, Supplementary
Figure 4C&D). Furthermore, Eomes expression on total CD4+ T cells in TB-IRIS patients was
comparable to non-IRIS controls at all-time points (Supplementary Figure 6A&B). However, we did
observe a slight increase in Eomes expression between baseline and week 2 (which corresponds to IRIS
onset) in TB-IRIS patients (medians: 4.48% vs 7.6%, respectively, p=0.03). This was not observed in
non-IRIS controls (Supplementary Figure 5C). Previous studies have reported a higher frequency of
both M. avium and Mtb-specific effector memory CD4 T cells in unmasking and paradoxical TB-IRIS
patients compared to non-IRIS patients [24, 34]. Furthermore, a positive correlation between CD4+ T
cell memory and Eomes expression is well established [27]. Therefore, it is possible that the increase in
Eomes expression observed in total CD4 T cells could be related to an expansion of effector cells.
Finally, Thet expression on total CD4+ T cells was comparable between TB-IRIS and non-IRIS
patients at baseline with no significant differences observed longitudinally on ART (data not shown).
In further analyses, we defined the co-expression of Eomes and Thbet, identifying five Eomes/Thet

subsets: Eomes-Tbet-, Eomes-Thet+, Eomes+Tbet+, Eomes-Tbet++ and Eomes+Tbet++, as previously

10
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described [35] (Figure 3A). The distribution of these subpopulations within Mth-specific IFNy+CD4+
T cells was comparable between TB-IRIS and non-IRIS groups prior to ART initiation (i.e. baseline)
(Figure 3B) and longitudinally on ART (data not shown). No significant changes in the distribution of
Eomes and Tbet in Mtb-specific IFNy+CD4+ T cells were observed over time within the two groups
(Figure 3C).

However, in total CD4+ T cells there was a significant reduction in Eomes-Tbet- CD4+ T cells
between baseline (median: 79.0%, IQR: 21.2-93.1) and week 2 (median: 65.5%, IQR: 15.3-84.4)
(p=0.02) and baseline and week 4 (median: 54.5%, IQR: 21.8-94.5) (p=0.009) in TB-IRIS patients.
These changes were countered by a progressive and significant increase in the proportion of Eomes-
Thet+ and Eomes+Tbet+ CD4+ T cells over the first 6 weeks of ART in TB-IRIS patients. Conversely,
no changes over time were observed in the distribution of any of the Eomes/Tbet subsets in non-IRIS

patients (Supplementary Figure 6C).

Elevated HLA-DR expression at the time of TB-IRIS onset compared to non-IRIS controls

To further characterise the phenotype of Mth-specific IFNy+CD4+ T cell responses, we compared the
activation profile (HLA-DR) and cytotoxic potential (Granzyme B) between TB-IRIS patients and non-
IRIS controls. We observed a trend towards high pre-ART HLA-DR expression (p=0.18) in TB-IRIS
compared to non-IRIS patients. Responses were characterized by a significantly higher expression of
HLA-DR in TB-IRIS compared to non-IRIS patients at 2 weeks on ART (median: 79.3% [IQR: 66-96]
and 40.9% [IQR: 27-56], respectively, p=0.016) (Figure 4A&B). No significant changes over time
were observed when data were analysed longitudinally for both groups respectively (Figure 4C).
However, we observed an increase in HLA-DR expression in total CD4+ T cells in TB-IRIS patients
between baseline and week 2 (p=0.002) and week 4 (p=0.0005) and non-IRIS patients between

baseline and week 4 (p=0.0098) (Supplementary Figure 7).

11
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Elevated HLA-DR and granzyme B expression in Mtb-specific CD4 T cells co-expressing Eomes
and Tbet in patients with TB-IRIS compared to non-IRIS controls

Finally, we investigated the activation and cytotoxic potential of Mth-specific IFNy+CD4+ T cells in
relation to their transcription factor profile at the time of IRIS onset (Week 2). While HLA-DR
expression was comparable across the different Eomes and Thet subsets in both groups, HLA-DR
expression was higher in TB-IRIS compared with non-IRIS patients in specific Eomes/Thet subsets,
including Eomes+Tbet+ (median: 83.9% vs 57.9%, respectively; p=0.032) and Eomes- Thet++
(median: 83.3% vs 36.4%, respectively; p=0.032) (Figure 5A).

Notably, no differences in Granzyme B expression were observed in [IFNy+CD4 T cells between the
two groups in cross-sectional comparisons (Supplementary Figure 8). However, Granzyme B
expression was significantly higher in Eomes+Thet+ Mtb-specific IFNy+CD4+ T cells in patients with
TB-IRIS compared to non-IRIS controls at week 2 on ART (median: 4.7% vs 0%, respectively;
p=0.026). There was also a trend towards higher Granzyme B expression in the Eomes+Tbet++ Mtb-
specific IFNy+CD4+ subset in patients with TB-IRIS compared to non-IRIS controls at week 2
(median: 19.7% vs 2.9%, respectively; p=0.063) (Figure 5B). This trend was not observed at other

time points (data not shown).
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DISCUSSION

Hsu et al. recently reported that in HIVV-1 and M. avium co-infected patients, M. avium-specific
IFNy+CD4+ T cells were characterized by higher expression of Eomes than Tbet at IRIS onset [26],
suggesting potential involvement of Eomes in mycobacterial IRIS pathogenesis. While the functional
role of Eomes is well established in CD8 T cells [27, 28], its role in CD4 T cells is less clear. Some
reports implicate its expression in the pathogenesis of chronic inflammatory disorders [36-38], while
others suggest a regulatory role in T cells [39]. Therefore, to define whether aberrant expression of
transcription factors in CD4 T cell associate with the development of IRIS, we investigated the role of
Eomes and Tbet in a experimentally-induced MAC-IRIS mouse model and compared the phenotype of
Mtb-specific IFNy+CD4+ T cells between HIV-associated TB patients who developed TB-IRIS and

those who did not.

The MAC-IRIS mouse model showed that mimicking T cell reconstitution using Eomes knock-out
CDA4 T cells led to enhanced mice survival compared to wildtype, supporting the hypothesis that Eomes
expression in CD4 T cells could play a role in IRIS pathogenesis [26]. However, while we
demonstrated that Mtb-specific IFNy+CD4+ T cells from TB-IRIS patients expressed high Eomes
levels (~ 50%) that are comparable to those reported by Hsu et al. [26], we did not observe any
difference in Eomes expression between TB-IRIS and non-IRIS patients. This suggests that the
expression of Eomes expression in Mtb-specific CD4 T cells (or overall CD4 compartment) on its own

does not predict nor characterize TB-IRIS pathogenesis.

The expression profile of Thet in CD4+ T cells in this cohort mirrors that described by Knox et al. [40],
where three distinct populations were discernible. Most Mtb-specific IFNy+CD4+ T cells expressed
Thet with ~ 65% being Thet dim and ~ 25% Thbet bright. Moreover, we found no significant differences

in the co-expression profile of Eomes and Thet in Mtb-specific IFNy+CD4+ T cells at TB-IRIS onset
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278  or at other time points between the two clinical groups. However, the distribution of Eomes and Thet
279  subsets in total CD4+ T cells were altered during the course of ART with increasing expression of both
280  Thet+ and Eomes/Thet co-expressing CD4+ T cells in TB-IRIS patients on ART. Further studies are

281 needed to confirm these observations and define their relevance.

282  In this cohort, TB-IRIS patients had significantly lower blood CD4 T cell counts compared to non-IRIS
283  patients at baseline, as previously described [8, 41] and we observed a significant expansion in the

284  frequency of Mtb-specific IFNy+CD4+ T cells 2 weeks after the initiation of ART. Recently, Vignesh
285 etal. described elevated pre-ART frequencies of Mtb-specific CD4 T cell responses which further

286  expanded in TB-IRIS patients at disease onset [41]. We did not observe such differences at baseline in
287  this or previous studies [23]. Clinical differences between the cohorts might account for these

288  discrepancies.

289  Several studies have demonstrated that TB-IRIS is characterized by an increase in mycobacteria-

290  specific CD4 T cell responses at disease onset [22, 41-44]. However, increased mycobacterial-specific
291  CDA4T cell frequencies following ART is not systematically observed in all TB-IRIS patients, and

292  pathogen-specific CD4 T cell expansion can also be observed in some non-IRIS patients [23]. This
293  suggests that Mtb-specific CD4 T cell reconstitution upon ART is not be the only mechanism involved

294  in TB-IRIS.

295  To further elucidate the contribution of Mtb-specific IFNy+CD4+ T cells in TB-IRIS pathology, we
296  characterised their phenotype in TB-IRIS patients. We demonstrated that Mtb-specific IFNy+CD4 T
297  cells of TB-IRIS patients had elevated HLA-DR expression prior to the initiation of ART and this was
298  significantly upregulated in TB-IRIS patients at week 2 on ART compared to non-IRIS patients.

299  Similarly, others have demonstrated that Mtb-specific CD4 T cells are activated [24], and

300 polyfunctional [25, 42], compared to non-IRIS controls at IRIS onset.
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Consistent with our previous findings [23], we did not observe any significant differences in the
expression of HLA-DR in total CD4+ T cells between the two clinical groups over time in a cross
section analysis. However, like Antonelli et al, we observed increased HLA-DR expression in total
CD4+ T cells of TB-IRIS patients from baseline to week 2 and 4 [24]. Similar observations were

reported by Haridas et al. at the time of IRIS onset [45].

Lastly, Granzyme B expression was enriched in Eomes/Tbet co-expressing Mtb-specific IFNy+CD4+
T cells at 2 weeks on ART in TB-IRIS patients. Although this represents a modest proportion of
Eomes+Thet+ cells, this is consistent with mouse data from experimental autoimmune encephalitis
showing the capacity of Eomes+ IFNy+CD4 T cells to acquire cytotoxic attributes [36]. Moreover, our
group has previously shown TB-IRIS to be associated with increased transcript abundance and
secretion of granzyme B by PBMC of TB-IRIS patients at week 2 on ART [46].

There were several limitations to this study. The number of samples analysed were limited,
consequently, larger cohort studies are needed to verify these findings. We assessed responses in
peripheral blood when clinical manifestations are often localized in tissues. Finally, several patients
with severe disease received corticosteroids prior to or while on ART. Our previous findings however,
suggest that corticosteroid treatment does not have a significant impact on ex vivo T cell functional
responses in TB-IRIS patients [47].

In conclusion, while the mouse model data suggested that CD4 T cell expression of Eomes promotes
IRIS, there were no differences in the expression of Eomes or Tbet transcription factor in Mtb-specific
IFNy+ CD4 T cells between patients who developed TB-IRIS and non-IRIS controls. We found that
TB-IRIS was associated with an increase of Mtb-specific CD4 T cells at onset. Moreover, increased
expression of markers of immune activation and cytotoxicity in Mtb-specific CD4 T cell subsets in TB-

IRIS patients suggests these cells may contribute to pathogenesis of TB-IRIS. Improved understanding
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324  of the pathophysiology of IRIS should enable the development of new diagnostic tools and better

325  targeted treatments.
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Table 1

TB-IRIS (n=25) Non-IRIS (h=18) p-value

Age [Median (IQR)] (years) 34 (22-52) 33 (24-55) ns
Female sex [n (%)] 13 (52%) 12 (66%)
Previous TB [n (%)] 15 (60%) 10 (55%)
TB type [n (%)]

PTB 4 (16%) 2 (11%)

EPTB 4 (16%) 5 (27%)

EPTB and PTB 17 (68%) 11 (61%)
TB meningitis/neuroTB [n (%)] 7 (23%) 4 (21%)
TB confirmation [n (%)]

Cultured Mtb 9 (36%) 6 (33%)

Smear 6 (24%) 2 (11%)

Clinicoradiological 10 (40%) 10 (55%)
Hb [Median (IQR)] (g/dL) 9.1 (6.4-13) 9.4 (5.9-14.0) ns
CD4 nadir [Median (IQR)] 49 (11-209) 70 (4-272) ns
CD4 count (cells/mm?) at week 0 [Median (IQR)] 68 (21-521) 111 (4-662) 0.009
CD4 count (cells/mm3) at week 4 [Median (IQR)] 164 (23-556) 276 (21-514) ns

Log;o HIV VL at week 0 [Median (IQR)]

5.73 (3.96-7.78)

5.8 (4.21-7.15)

ns

Log;p HIV VL at week 4 [Median (IQR)] 2.72 (0-3.88) 2.68 (1.32-3.3) ns
Duration TB treatment to ART [Median (IQR)] (days) 37 (14-99) 32 (13-91) ns
Duration ART to TB-IRIS [Median (IQR)] (days) 15 (4-49)

On steroid treatment at week 0 [n (%)] 7 (28) 4(22) ns

Table 1. Clinical characteristics of patients who developed tuberculosis immune
reconstitution inflammatory syndrome (TB-IRIS, n=25) and those who did not
(non-IRIS, n=18). TB: Tuberculosis, PTB: pulmonary TB, EPTB: extrapulmonary
TB, IQR: interquartile range, ART: antiretroviral treatment, Hb: hemoglobin. The
Wilcoxon rank sum test was used to compare all continuous variables and the Mann-
Whitney test was used to compare categorical variables.
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Table S1
IF\"IS ART Duration ART TB-IRIS Steroids to Duration from TB-IR.IS
patient . Start to - onset to starting steroids
Identifier regimen TB-IRIS (days) system involvement Treat TB-IRIS (days)
IR 4011-3 D4T, 3TC, EFZ 6 Pulmonary, nodal_, effusion and Yes 9
abdominal

IR 4035-1 AZT, 3TC, EFZ 42 Nodal, abdominal No

IR 4074-8 TDF, 3TC, EFZ 10 Pulmonary, nodal Yes 5
IR 4071-5 TDF, 3TC, EFZ 8 Pulmonary, effusion, abdominal No

IR 4075-9 DAT, 3TC, EFZ 12 Abdominal Yes na
IR 4076-0 TDF, 3TC, EFZ 9 Nodal No

IR 4081-7 TDF, 3TC, EFZ 10 Abdominal No

IR 4108-1 TDF, 3TC, EFZ 9 Pulmonary, abdominal No

IR 4018-0 DAT, 3TC, EFZ 13 Pulmonary Yes 4
IR 4020-4 DA4T, 3TC, EFZ 30 Nodal Yes 13
IR 4047-5 DAT, 3TC, EFZ 8 Pulmonary, abdominal Yes 5
IR 4110-5 DAT, 3TC, EFZ 4 Pulmonary, abdominal No

IR 4052-2 TDF 3TC,EFZ 13 Pulmonary, abdominal No

IR 4078-2 | TDF,3TC, EFZ 26 Neurological, pulmonary, Yes 20

abdominal

IR 4096-4 TDF, 3TC, EFZ 14 Pulmonary, abdominal No

IR 4115-0 AZT, 3TC, EFZ 26 Pulmonary Yes 16
IR 4010-2 DA4T, 3TC, EFZ 7 Nodal, abdominal Yes 56
IR 4015-7 DAT, 3TC, EFZ 15 Pulmonary, abdominal Yes 20
IR 4021-8 DAT, 3TC, EFZ 5 Pulmonary Yes 2
IR 4036-2 DAT, 3TC, EFZ 7 Nodal, neurological Yes 1
IR 4080-6 TDF, 3TC, EFZ 11 Neurological Yes na
IR 4085-1 TDF, 3TC, EFZ 14 Avrticular Yes na
IR 4088-4 TDF, 3TC, EFZ 49 Neurological Yes 9
IR 4095-3 TDF, 3TC, EFZ 12 Pulmonary, abdominal Yes 3
IR 4111-6 TDF, 3TC, EFZ 8 Abdominal Yes 8

Supplementary Table

1. Individual patient duration to first TB-IRIS episode, symptom
manifestation and steroid management. Different patients were on different combination of ART
regimen including Stavudine (D4T), Lamivudine (3TC), Efavirenz (EFZ), Zidovudine (AZT) and
Tenofovir (TDF).
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FIGURE LEGENDS

Figure 1. CD4 T cell expression of eomesodermin promotes mycobacterial IRIS in a murine model.
A. To model IRIS in mice, TCRa-/- mice harboring a chronic M. avium infection were injected with
purified CD4 T cells from uninfected donor mice. B. M. avium infected TCRa-/- mice were injected with
WT, Thet-deficient or eomes-deficient CD4 T cells. The donor CD4 T cells (CD4+TCRB+CD3+) were
analyzed in the PBMC on day 10 post infection for the expression of Thet and eomesodermin (plots are
concatenated from n=8 mice/group). C. M. avium infected TCRa-/- mice were injected with either WT
or Thet-deficient CD4 T cells and monitored for weight loss (n=5 mice/group). D. M. avium infected
TCRa-/- mice were injected with no T cells, WT or eomes-deficient CD4 T cells and monitored for
weight loss. E. Survival of mice receiving WT or eomes-deficient CD4 T cells. n=4 to 5 mice/group.
Error bars represent the standard deviation. Data are representative of at least 4 independent experiments

each.

Figure 2. Frequencies of Mtb-specific IFNy+CD4+ T cells in TB-IRIS and non-IRIS patients. A,
Representative flow plots of IFNy production in response to Mtb peptide pool (Mtb300) and non-stimulated
controls (NS) at baseline (BL, prior to initiation of antiretroviral therapy, ART) and 2 weeks on ART (W2).
B, Frequencies of IFNy producing CD4+ T cells in TB-IRIS (red) from baseline (BL, n= 16), through 2
weeks (W2, n=9), 4 weeks (W4, n=10) and 6 weeks (W6, n=12) and non-IRIS (black) from BL= 11, through
W2, n=4, W4, n=8 and W6, n= 1 on ART. C, Fold change in the frequency of IFNy+CD4+ T cells in TB-
IRIS and non-IRIS patients between baseline (prior to ART) and 2 weeks on ART. The Wilcoxon ranked

test was used for the statistical comparison of paired samples and the Mann-Whitney-U test was used for

unpaired samples. Only statistically significant data with a p value of 0.05 or less are indicated on graphs
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Figure 3. HLA-DR expression on Mtb-specific IFNy+CD4+ T cells in TB-IRIS and non-IRIS patients.
A, Representative flow plot of HLA-DR expression on Mtb-specific IFNy+CD4+ T cells (red) and total
CD4+ T cells (black) in one TB-IRIS and one non-IRIS patient at two weeks post ART initiation (W2). B,
Expression of HLA-DR on Mtb-specific IFNy+CD4+ T cells in TB-IRIS (red) from baseline (BL, n= 6),
through 2 weeks (W2, n=15), 4 weeks (W4, n=7) and 6 weeks (W6, n= 13) and non-IRIS patients (black)
from baseline (BL, n= 6), through 2 weeks (W2, n= 4), and 4 weeks (W4, n= 8) on-ART. C, Frequency of
HLA-DR on Mtb-specific IFNy+CD4+ T cells from baseline to 6 weeks on ART in TB-IRIS and non-IRIS
patients. The Wilcoxon ranked test was used for the statistical comparison of paired samples and the Mann-
Whitney-U test was used for unpaired samples. Only statistically significant data with a p value of 0.05 or

less are indicated on graphs.

Figure 4. Eomes and T-bet expression profile in Mtb-specific IFNy+CD4+ T cells in TB-IRIS and non-
IRIS patients. A, Representative flow plot of Eomes and T-bet expression on Mtb-specific IFNy+CD4+ T
cells (red) and total CD4+ T cells (black) in one TB-IRIS and one non-IRIS patient prior to ART initiation
(BL). B, Distribution of Mth-specific IFNy+CD4+ T cells amongst distinct Eomes and T-bet subsets:
(Eomes- T-bet-; Eomes- T-bet+; Eomes+ T-bet+; Eomes- T-bet++; Eomes+ T-bet++) in TB-IRIS (red, n=
6) and non-IRIS patients (black, n= 6) at BL. C, Evolution of Eomes and T-bet profile in Mtb-specific
[FNy+CD4+ T cells in TB-IRIS from BL, (n= 6), through 2 weeks (W2, n=5), 4 weeks (W4, n=7) and 6
weeks (W6, n=13) and non-IRIS patients (black) from BL, (n= 6), through 2 weeks (W2, n=4) and 4 weeks
(W4, n= 8) on-ART. The Wilcoxon ranked test was used for the statistical comparison of paired samples
and the Mann-Whitney-U test was used for unpaired samples. Only statistically significant data with a p

value of 0.05 or less are indicated on graphs.
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Figure 5. Expression of HLA-DR and granzyme B on Eomes and T-bet expressing subsets of
Mtb-specific IFNy+CD4+ T cells two weeks on ART. A, Expression of HLA-DR and B, granzyme B
on Eomes and T-bet subsets (Eomes-, T-bet+, Eomes+, T-bet+, Eomes-, T-bet++ and Eomes+, T-
bet++) of Mtb-specific [IFNy+CD4+ T cells in TB-IRIS (red, n=5), and non-IRIS patients (black, n=
4), 2 weeks on ART. The Mann-Whitney-U test was used for statistical comparison of unpaired

samples. Only statistically significant data with a p value of 0.05 or less are indicated on graphs.
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571 Supplementary Figure 2. Frequencies of IFNy producing CD4+ T cells in response to Mtb
572 peptide pool (Mtb300) stimulation in TB-IRIS (red) at baseline (BL, n= 16), 2 weeks (W2,
573 n=9), 4 weeks (W4, n=10) and 6 weeks (W6, n=12) and non-IRIS (black) at BL= 11, W2,
574 n=4, W4, n= 8 and W6, n= 1 after ART initiation. The Wilcoxon ranked test was used for all
575 statistical comparisons. Only statistically significant data with a p value of 0.05 or less are
576 indicated on graphs.
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Supplementary Figure 4. Eomes and T-bet expression on Mtb-specific IFNy+CD4+
T cells in patients with and without TB-IRIS prior to initiation of antiretroviral
therapy (ART) (BL). A, Representative flow plot of the expression of Eomes on Mtb-
specific IFNy+CD4+ T cells (red) and total CD4+ T cells (black) in one TB-IRIS and
one non-IRIS patient at BL. B, Summary plot of Eomes expression in Mtb-specific
IFNy+CD4+ T cells between TB-IRIS (n= 6) and non-IRIS patients (n= 6) at BL. C,
Representative flow plot of the expression of differentiated T-bet subpopulations on
Mtb-specific IFNy+CD4+ T cells (red) and total CD4+ T cells (black) in one TB-IRIS
and one non-IRIS patient at baseline. D, Summary plot of the T-bet expression in Mtb-
specific IFNy+CD4+ T cells between TB-IRIS (n= 6) and non-IRIS patients (n= 6) at
BL. The Wilcoxon ranked test was used for all statistical comparisons. Only statistically
significant data with a p value of 0.05 or less are indicated on graphs.
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Supplementary Figure 5. Eomes expression in total CD4+ T cells in patients with and
without TB-IRIS. A, Representative flow plot of Eomes expression in one patient with TB-
IRIS and one non-IRIS patient in total CD4+ T cells two weeks post ART initiation. B, Cross
sectional analyses of Eomes expression in total CD4+ T cells in patients with and without TB-
IRIS at baseline (BL, n=18, and 13, respectively), 2 weeks (W2, n=13, and 6), 4 weeks (W4,
n=14 and 13) and 6 weeks (W6, n=13 and 2) post-ART. C, Longitudinal analyses of the
expression of Eomes in total CD4+ T cells in patients with TB-IRIS (top panel) and non-IRIS
controls (bottom panel) from BL to 6 weeks post ART. The Wilcoxon ranked test was used for
all statistical comparisons. Only statistically significant data with a p value of 0.05 or less are
indicated on graphs.
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Supplementary Figure 6. Eomes and T-bet co-expression in total CD4+ T cells in patients with
and without TB-IRIS. A, Representative flow plot of Eomes and T-bet co-expression in one patient
with TB-IRIS and one non-IRIS patient in total CD4+ T cells two weeks on ART initiation. B, Cross
sectional analyses of Eomes and T-bet co-expression in total CD4+ T cells in patients with and
without TB-IRIS at baseline (BL, n=18, and 13, respectively), 2 weeks (W2, n=13, and 6), 4 weeks
(W4, n=14 and 13) and 6 weeks (W6, n=13 and 2) on ART. C, Longitudinal analyses of the co-
expression of Eomes and T-bet in total CD4+ T cells in patients with TB-IRIS (top panel) and non-
IRIS controls (bottom panel) from BL to 6 weeks on ART. The Wilcoxon ranked test was used for all
statistical comparisons. Only statistically significant data with a p value of 0.05 or less are indicated
on graphs.
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640 Supplementary Figure 7. HLA-DR expression in total CD4+ T cells in patients with and
641 without TB-IRIS. A, Representative flow plot of HLA-DR expression in one patient with
642 TB-IRIS and one non-IRIS patient in total CD4+ T cells two weeks post ART initiation. B,
643 Cross sectional analyses of HLA-DR expression in total CD4+ T cells in patients with and
644 without TB-IRIS at baseline (BL, n=18, and 13, respectively), 2 weeks (W2, n=13, and 6), 4
645 weeks (W4, n=14 and 13) and 6 weeks (W6, n=16 and 2) post-ART. C, Longitudinal analyses
646 of the expression of HLA-DR in total CD4+ T cells in patients with TB-IRIS from BL, n= 18,
647 W2, n= 13,W4, n= 14, W6, n= 13 and non-IRIS controls, BL, n= 13, W2, n= 6, W4, n= 13
648 and W6, n= 2 post ART. The Wilcoxon ranked test was used for all statistical comparisons.
649 Only statistically significant data with a p value of 0.05 or less are indicated on graphs.
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655
656 Supplementary Figure 8. Granzyme B expression in Mtb-specific IFNy+CD4+ T cells in TB-

IRIS and non-IRIS patients. A, Representative flow plot of granzyme B expression in Mtb-specific
IFNy+CD4+ T cells (red) and total CD4+ T cells (gray) in one TB-IRIS and one non-IRIS patient
prior to ART initiation (at Baseline, BL). B, Expression of granzyme B in Mtb-specific IFNy+CD4+
T cells in TB-IRIS (red) at baseline (BL, n= 6), 2 weeks (W2, n=5), 4 weeks (W4, n=7) and 6
weeks (W6, n=13) and non-IRIS patients (black) at baseline (BL, n= 6), 2 weeks (W2, n=4), and 4
weeks (W4, n=8) post-ART. C, Expression of granzyme B in Mtb-specific [FNy+CD4+ T cells from
Baseline to 6 weeks post ART in TB-IRIS and non-IRIS patients. The Wilcoxon ranked test was
used for all statistical comparisons. Only statistically significant data with a p value of 0.05 or less
are indicated on graphs.
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