

1 **Title:** Molecular characterization of extended-spectrum beta-lactamase-producing extra-
2 intestinal pathogenic *Escherichia coli* isolated in a university teaching hospital Dakar-Senegal
3

4 **Authors**

5 Komla Mawunyo Dossouvi^{1*}, Bissoume Sambe Ba², Gora Lo^{1,3}, Abdoulaye Cissé², Awa Ba-
6 Diallo^{1,3}, Issa Ndiaye², Assane Dieng¹, Serigne Mbaye Lo Ndiaye¹, Cheikh Fall², Alioune Tine¹,
7 Farba Karam¹, Habsa Diagne-Samb¹, Safietou Ngom-Cisse¹, Halimatou Diop-Ndiaye^{1,3}, Coumba
8 Toure-Kane³, Aïssatou Gaye-Diallo^{1,3}, Souleymane Mboup^{1,3}, Cheikh Saad Bouh Boye¹, Yakhya
9 Dièye², Abdoulaye Seck^{2,4}, Makhtar Camara^{1,3}

10

11 ¹Bacteriology-Virology Laboratory, National University hospital, Aristide Le Dantec, Dakar,
12 Senegal

13 ²Pole of Microbiology, Institut Pasteur de Dakar, Senegal

14 ³Institut de Recherche en Santé, de Surveillance Epidémiologique et de Formation (IRESSEF),
15 Dakar, Senegal

16 ⁴Medical Analysis Laboratory, Institut Pasteur de Dakar

17

18 *** Corresponding author**

19 Email: dossouvikomlamawunyo@gmail.com

20 Abstract

21 Extra-intestinal pathogenic *Escherichia coli* (ExPEC), a predominant Gram-negative bacterial
22 pathogen, express a wide range of virulence factors and is responsible of several diseases
23 including urinary tract infections (UTI), nosocomial pneumonia, bacteremia, and neonatal
24 meningitis. ExPEC isolates are often multidrug resistant (MDR) and clones producing extended-
25 spectrum beta-lactamases (ESBL) are increasingly reported all over the world.

26 Seventy-eight clinical ExPEC strains were selected for this study. The majority was from UTIs
27 (n=51), while the rest (n=27) was from pus, sputum, bronchial fluid and vaginal samples (non-
28 uropathogenic ExPEC). Interestingly, 49 out of the 78 ExPEC isolates were considered as
29 community-acquired (CA) and 29 hospital-acquired (HA) bacteria. Antibiotic susceptibility
30 testing was performed using the Kirby-Bauer disc diffusion method. Standard polymerase chain
31 reaction (PCR) was used to screen major ESBL genes (*bla*_{CTX-M}, *bla*_{OXA-1}, *bla*_{TEM}, *bla*_{SHV}) and
32 *bla*_{CTX-M} variants (*bla*_{CTX-M-1}, *bla*_{CTX-M-9}, *bla*_{CTX-M-15}, *bla*_{CTX-M-25}).

33 All the ExPEC strains were resistant to ampicillin, ticarcillin, amoxicillin/clavulanic acid
34 combination, cefalotin, cefotaxime, ceftazidime, cefepime and aztreonam, but showed a high
35 susceptibility to fosfomycin (98.7%, n = 77), ertapenem (96.2%, n = 75), and imipenem (100%).
36 Moreover, isolates harbored at least one ESBL gene, including *bla*_{CTX-M} (98.7%), *bla*_{OXA-1}
37 (78.2%), *bla*_{TEM} (44.9%) and *bla*_{SHV} (3.8%). The CTX-M variants were also found with the
38 predominance of *bla*_{CTX-M-1} (90.9%) and *bla*_{CTX-M-15} (90.9%) followed by *bla*_{CTX-M-9} (11.7%),
39 while *bla*_{CTX-M-25} was not detected.

40 Despite the resistance to most of the tested antibiotics, ExPEC isolates showed fortunately a good
41 susceptibility to fosfomycin and carbapenems. *bla*_{CTX-M} (*bla*_{CTX-M1}, *bla*_{CTX-M15}) and *bla*_{OXA-1} seem

42 to be *E. coli* major ESBL genes circulating in Senegal. No significant difference was noted when
43 comparing prevalence of ESBL genes detected from CA and HA strains, and from UPEC and
44 non-uropathogenic ExPEC. The high level of resistance to antimicrobials observed stresses the
45 need of establishing an epidemiological surveillance of antimicrobial resistance in both
46 community and hospital settings.

47

48 **Key words:** *Escherichia coli*, Extended Spectrum β -lactamase, hospital, Dakar-Senegal

49 **Words count:** 299

50

51 **Introduction**

52 *Escherichia coli* (*E. coli*), a common bacteria found in various parts of the human body,
53 is also the predominant bacterial species responsible for community-acquired (CA) and hospital-
54 acquired (HA) infections at all ages in human [1]. Human pathogenic *E. coli* strains are classified
55 into two large groups, strains responsible for intestinal infections and those causing extra-
56 intestinal diseases (ExPEC) [2, 3].

57 ExPECs are among the most common Gram-negative bacterial pathogens affecting
58 Human with diverse infections, including urinary tract infections (UTI), bacteremia, meningitis,
59 nosocomial respiratory infections, peritonitis, prostatitis, skin and soft tissue infections [4–6].

60 In addition, multidrug resistant (MDR) ExPECs are now common both in community-
61 acquired and hospital-acquired infections, including resistance to beta-lactams (β -lactams), which
62 are the commonly used antibiotics in human and animal health. The β -lactams resistance is
63 mediated by production of extended-spectrum beta-lactamases [7–9]. These enzymes hydrolyze

64 penicillins, cephalosporins (first, second, third, and fourth generation), and monobactams, but
65 were generally inactive against cephemycins and carbapenems. ESBLs are generally inhibited by
66 beta-lactamase inhibitors (BLI) [10, 11]. A worrying fact is that mobile genetic elements that
67 harbor ESBL genes also carry others genes conferring resistance to quinolones, aminoglycosides
68 and even carbapenems [12–15].

69 ESBL-producing ExPECs infections are responsible of extended hospital stays,
70 accompanying high cost and mortality and morbidity [2]. Hence, the importance to establish
71 innovative diagnostic toolkits and performant surveillance system for early detection and
72 monitoring of ExPECs cases, especially in developing countries. In this study, we investigated
73 the antibiotic resistance profile and the ESBL genes carried by ESBL-producing ExPEC isolated
74 at the laboratory of bacteriology laboratory, Aristide le Dantec University Teaching Hospital
75 (HALD) in Dakar, Senegal. Additionally, we compared community-acquired (CA) to hospital-
76 acquired (HA), and uropathogenic *E. coli* (UPEC) to no-uropathogenic ExPEC isolates (No-
77 UPEC).

78

79 Materials and methods

80 Bacterial isolates

81 This is a retrospective study and all ExPEC isolates analyzed in this study were collected between
82 January 1st, 2018 and December 31th, 2020 at the Hospital Laboratory of HALD during routine
83 activities and stored at -80°C. Seventy-eight no-duplicate strains were randomly selected from
84 the Laboratory. Strains were isolated from urine (UPEC, $n = 51$), pus, sputum, bronchial fluid
85 and vaginal samples (no-uropathogenic ExPEC, $n = 27$). Of the 78 strains, 49 and 29 were CA

86 and HA respectively. Culture and Isolation were done based on gold standard microbiological
87 tests and identification by using [Api 20E](#) for *Enterobacteriaceae* (bioMérieux France).

88

89 **Antibiotic susceptibility testing**

90 Antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method and
91 results were interpreted according to the committee of the French society of microbiology ([CA-](#)
92 [SFM, 2020](#)) recommendations. Briefly, bacterial suspensions were prepared at 0.5 Mc Farland
93 and inoculated onto Mueller-Hinton agar for an overnight incubation at 37 °C. These following
94 antibiotic disks were tested: ampicillin (AMP, 10 µg), ticarcillin (TIC, 75 µg), amoxicillin-
95 clavulanic acid (AMC, 20/10 µg), cefalotin (CEF, 30 µg), cefoxitin (FOX, 30 µg), cefotaxime
96 (CTA, 30 µg), ceftazidime (CAZ, 30 µg), cefepime (CEP, 30 µg), aztreonam (AZT, 30 µg),
97 imipenem (IMP, 10 µg), ertapenem (ERT, 10µg), Nalidixic acid (NAL, 30 µg), ciprofloxacin
98 (CIP, 5 µg), gentamicin (GEN, 10 µg), amikacin (AMI, 30 µg), fosfomycin (FOS, 50 µg),
99 tetracycline (TET, 30 µg) and sulfamethoxazole-trimethoprim (TMS, 1.25 µg / 23.75 µg). The *E.*
100 *coli* ATCC 25922 was used for quality control. ESBL production was appreciated by [double-disk](#)
101 [synergy test](#) with disks of amoxicillin-clavulanic acid surrounded at a radius of 30 mm by
102 cefepime, ceftriaxone, ceftazidime and aztreonam.

103

104 **DNA extraction**

105 Bacterial DNA extraction was performed mechanically by thermal choc. Briefly, a well-separated
106 bacterial colony was dispersed in a tube contained 1ml of sterile distilled water, vortexed, boiled
107 for 15 minutes at 100°C and centrifuged at 13,200 rpm for 10 min. The supernatant was carefully

108 recovered, aliquoted and stored at -20°C until used. To confirm results, extraction was done by
109 Qiagen kit ([DNeasy Blood & Tissue Kit \(50\) Cat. No. / ID: 69504](#)).

110

111 **ESBL genes amplification**

112 A simplex end-point PCR was performed (on Thermocycler 2720, Applied Biosystems, Lincoln
113 Centre Drive, Foster City, California 94404, USA) to detect ESBL genes. Specific primer pairs
114 ([Table 1](#)) were used to amplify ESBL genes (*bla*_{CTX-M}, *bla*_{CTX-M-1}, *bla*_{CTX-M-9}, *bla*_{CTX-M-15}, *bla*<sub>CTX-
115 M-25</sub>, *bla*_{OXA-1}, *bla*_{TEM}, *bla*_{SHV}). Each reaction included positive and negative controls. PCRs were
116 carried out in 20 µl reaction volume (2.5 µl DNA + 17.5 Master Mix FIREPol®). The
117 amplification program consisted of an initial denaturation at 95°C for 3 min., 35 PCR cycles
118 (denaturation: 94° C, 30 sec., 72°C, 60 sec.) and a final elongation at 72°C for 7 min. Ten
119 microliters of each amplicon were separated on 2% agarose gel in 1X TAE buffer for 35 min at
120 135 volts and the amplified fragment detected using a GelDoc imager (BioRad).

121

122 **Table 1. Oligonucleotide primers sequence used for PCR to detect ESBL genes.**

Target genes	Sequences genes	Sizes (bp)	Annealing Temp (°C)	References
<i>bla</i> _{CTX-M}	F: 5' - ATGTGCAGYACCAGTAARGTKATGGC - 3' R: 5' - TGGGTRAARTARGTSACCAGAAYSAGCGG - 3'	592	55	[16]
<i>bla</i> _{CTX-M-1}	F: 5' - GGTTAAAAAAATCACTGCGTC - 3' R: 5' - TTACAAACCGTYGGTGACGA - 3'	873	50	[16]
<i>bla</i> _{CTX-M-9}	F: 5' - GTGACAAAGAGAGTGCAACGG - 3' R: 5' - ATGATTCTGCCGCTGAAGCC - 3'	856	55	[16]

<i>bla</i> _{CTX-M-15}	F: 5' - CACACGTGGAATTAGGGACT - 3' R: 5' - GCCGTCTAAGGCATAAACCA - 3'	995	50	[16]
<i>bla</i> _{CTX-M-25}	F: 5' - GCACGATGACATTGGG - 3' R: 5' - AACCCACGATGTGGGTAGC - 3'	327	52	[16]
<i>bla</i> _{OXA-1}	F: 5' - ATGAAAAACACAATACATATC - 3' R: 5' - AATTAGTGTGTTAGAATGG - 3'	830	56	[17]
<i>bla</i> _{TEM}	F: 5' - TTGGGTGCACGAGTGGTTA - 3' R: 5' - TAATTGTTGCCGGGAAGCTA - 3'	506	55	[16]
<i>bla</i> _{SHV}	F: 5' - TCGGGCCCGCGTAGGCATGAT - 3' R: 5' - AGCAGGGCGACAATCCCGCG - 3'	628	52	[16]

123

124 Statistical analysis

125 Statistical analysis and multiple correspondence analysis and data analysis methods were
126 performed with R software. The statistic test used is the Chi-square at 5% risk threshold. p-values
127 are obtained from the proportion comparison test and the level of significance for all statistical
128 tests was set at $p < 0.05$.

129

130 Results

131 Antibiotic susceptibility testing

132 All the 78 ExPEC isolates were MDR (resistance to at least one drug from at least three classes
133 of antibiotics), and were resistant to ampicillin, ticarcillin, amoxicillin/clavulanic acid
134 combination, cefalotin, cefotaxime, ceftazidime, cefepime and aztreonam ([Table 2](#)). Besides,

135 resistance to ciprofloxacin (93.6%, $n = 73$), tetracycline (91%, $n = 71$) and sulfamethoxazole-
136 trimethoprim (91%, $n = 71$) was high, while less frequent for aminoglycosides (gentamicin,
137 60.3%, $n = 47$; amikacin, 42.3%, $n = 33$). In contrast, only 3.8% ($n = 3$) and 1.3% ($n = 1$) of the
138 isolates were resistant to ertapenem and fosfomycin respectively, while all were sensitive to
139 imipenem (Table 2). Comparison of resistance profiles between CA and HA, and between UPEC
140 and no-UPEC strain did not show any significant difference, except for ciprofloxacin (Table 2).

141

142 **Table 2. Antibiotics resistance rate of total strains, CA and HA strains, UPEC and no-UPEC**
143 **strains.**

Antibiotics		Total strains	Pathogenicity			Origin		
Class	Drug		UPEC N (%)	No-UPEC N (%)	p	CA N (%)	HA N (%)	p
Beta-lactams	AMP	78 (100)	51 (100)	27 (100)	1	49 (100)	29 (100)	1
	TIC	78 (100)	51 (100)	27 (100)	1	49 (100)	29 (100)	1
	AMC	78 (100)	51 (100)	27 (100)	1	49 (100)	29 (100)	1
	CEF	78 (100)	51 (100)	27 (100)	1	49 (100)	29 (100)	1
	FOX	5 (6.4)	3 (5.9)	2 (7.4)	0.06	4 (8.2)	1 (3.5)	0.06
	CTA	78 (100)	51 (100)	27 (100)	1	49 (100)	29 (100)	1
	CAZ	78 (100)	51 (100)	27 (100)	1	49 (100)	29 (100)	1
	CEP	78 (100)	51 (100)	27 (100)	1	49 (100)	29 (100)	1
	AZT	70 (89.7)	48 (91.4)	22 (81.5)	0.08	46 (93.9)	24 (82.8)	0.12
	IMP	0	0	0	-	0	0	-
Quinolones and Fluoroquinolones	ERT	3 (3.8)	3 (5.9)	0	0.01*	2 (4.1)	1 (3.5)	0.04*
	NAL	76 (97.4)	51 (100)	25 (92.6)	0.97	49 (100)	27 (93.1)	0.97
	CIP	73 (93.6)	50 (98)	23 (85.2)	0.03*	48 (98)	25 (86.2)	0.04*

Aminoglycosides	GEN	47 (60.3)	33 (64.7)	14 (51.9)	0.27	29 (59.2)	16 (62.1)	0.72
	AMI	33 (42.3)	24 (47.1)	9 (33.3)	0.24	19 (38.8)	14 (48.3)	0.41
Phosphonic acid	FOS	1 (1.3)	1 (2)	0	0.01*	0	1 (3.6)	0.01*
Cyclines	TET	71 (91)	45 (88.2)	26 (96.3)	0.24	44 (89.8)	27 (93.1)	0.62
Antifolates	TMS	71 (91)	45 (88.2)	26 (96.3)	0.24	45 (91.8)	26 (89.7)	0.74

UPEC, Uropathogenic *E. coli*; CA, Community-acquired; HA, Hospital-acquired; AMP, ampicillin; TIC, ticarcillin; AMC, Amoxicillin-clavulanic acid; CEF, cefalotin; FOX, cefoxitin; CTA, cefotaxim; CAZ, ceftazidime; CEP, cefepime; AZT, aztreonam; IMP, imipenem; ERT, Ertapenem; NAL, nalidixic acid; CIP, ciprofloxacin; GEN, gentamicin; AMI, amikacin; FOS, fosfomycin; TET, tetracycline; TMS, sulphamethoxazole-trimethoprim; *, significant p-value (p < 0.05).

144

145 **Presence of ESBL genes**

146 All 78 strains carried at least one ESBL gene. *bla*_{CTX-M} group was the most prevalent
147 (77/78; 98.7%), followed by *bla*_{OXA-1} (61/78; 78.2%), *bla*_{TEM} (35/78; 44.9%) and *bla*_{SHV} (3/78;
148 3.8%) ([Table 3](#)) and ([Fig 1](#)). 51/51 (100%) of UPEC strains and 29/29 (100%) of hospital -
149 acquired strains carried the *bla*_{CTX-M} gene and none of "no-uropathogenic ExPEC" strains carried
150 a *bla*_{SHV} gene ([Table 3](#)) and ([Fig 2](#)). (9/78; 11.5%) carried only *bla*_{CTX-M} or *bla*_{OXA-1} and (69/78;
151 88.5%) carried several types of ESBL gene. Indeed, (2/78; 2.6%) carried *bla*_{CTX-M} + *bla*_{OXA-1} +
152 *bla*_{TEM} + *bla*_{SHV}; (23/78; 29.4%) carried *bla*_{CTX-M} + *bla*_{OXA-1} + *bla*_{TEM}; (1/78; 1.3%) carried
153 *bla*_{CTXM} + *bla*_{OXA-1} + *bla*_{SHV}; (32/78; 41%) carried *bla*_{CTX-M} + *bla*_{OXA-1} and (11/78; 14.1%) of
154 strains carried "*bla*_{CTX-M} + *bla*_{TEM}" ([Table 3](#)). None of strains carried *bla*_{TEM} or *bla*_{SHV} gene alone
155 ([Table 4](#)).
156

157 **Table 3. Prevalence of ESBL genes in total strains, CA and HA strains, UPEC and non-**
158 **UPEC strains.**

ESBL		Total strains	Pathogenicity			Origin		
Family	Genes		UPEC N (%)	No-UPEC N (%)	p	CA N (%)	HA N (%)	p
Cefotaximase-Munich	<i>bla</i> _{CTX-M}	77 (98.7)	51 (100)	26 (96.3)	0.98	48 (98)	29 (100)	0.99
	<i>bla</i> _{CTX-M-1}	70 (89.7)	48 (94.1)	22 (81.5)	0.08	44 (89.8)	26 (89.7)	0.98
	<i>bla</i> _{CTX-M-9}	9 (11.5)	5 (9.8)	4 (14.8)	0.25	5 (10.2)	4 (13.8)	0.45
	<i>bla</i> _{CTX-M-15}	70 (89.7)	48 (94.1)	22 (81.5)	0.08	44 (89.8)	26 (89.7)	0.98
	<i>bla</i> _{CTX-M-25}	0	0	0	-	0	0	-
Oxacillinase	<i>bla</i> _{OXA-1}	61 (78.2)	42 (82.4)	19 (70.4)	0.22	38 (77.6)	23 (79.3)	0.86
Temoneira	<i>bla</i> _{TEM}	35 (44.9)	23 (45.1)	12 (44.4)	0.95	19 (38.8)	16 (55.2)	0.16
Sulphydryl variable	<i>bla</i> _{SHV}	3 (3.8)	3 (5.9)	0	0.01*	2 (4.1)	1 (3.5)	0.04*

UPEC, Uropathogenic *E. coli*; CA, community-acquired; HA, hospital-acquired; %, percentage; N, number of isolates, *, significant p-value (< 0.05).

159

160

161 **Fig. 1. Prevalence of ESBL genes in total strains.**

162

163 **Fig. 2. Prevalence of ESBL genes in UPEC and no-uropathogenic ExPEC.**

164

165 **Table 4. Prevalence of ESBL genes combinations in total strains, CA and HA strains, UPEC**

166 **and non-UPEC strains.**

Combination of ESBL genes	Total strains	Pathogenicity			Origin		
		N (%)	UPEC	No-UPEC	p	CA	HA
<i>bla</i> _{CTX-M-1} + <i>bla</i> _{CTX-M-15} + <i>bla</i> _{CTX-M-9} + <i>bla</i> _{OXA-1} + <i>bla</i> _{TEM}	2 (2.6)	2 (3.9)	0	0.01*	1 (2)	1 (3.4)	0.1
<i>bla</i> _{CTX-M-1} + <i>bla</i> _{CTX-M-15} + <i>bla</i> _{OXA-1} + <i>bla</i> _{TEM} + <i>bla</i> _{SHV}	2 (2.6)	2 (3.9)	0	0.01*	1 (2)	1 (3.4)	0.1
<i>bla</i> _{CTX-M-1} + <i>bla</i> _{CTX-M-15} + <i>bla</i> _{OXA-1} + <i>bla</i> _{TEM}	21 (26.9)	14 (27.4)	7 (33.3)	0.68	10 (20.4)	11 (37.9)	0.12
<i>bla</i> _{CTX-M-1} + <i>bla</i> _{CTX-M-15} + <i>bla</i> _{OXA-1} + <i>bla</i> _{SHV}	1 (1.3)	1 (2)	0	0.01*	1 (2)	0	0.01*
<i>bla</i> _{CTX-M-1} + <i>bla</i> _{CTX-M-15} + <i>bla</i> _{OXA-1}	32 (41)	21 (41.2)	11 (40.7)	0.98	23 (46.9)	9 (31)	0.15
<i>bla</i> _{CTX-M-1} + <i>bla</i> _{OXA-1} + <i>bla</i> _{TEM}	1 (1.3)	1 (2)	0	0.01*	1 (2)	0	0.01*
<i>bla</i> _{CTX-M-1} + <i>bla</i> _{CTX-M-15} + <i>bla</i> _{TEM}	7 (9)	4 (7.8)	3 (11.1)	0.21	5 (10.2)	2 (6.9)	0.23
<i>bla</i> _{CTX-M-1} + <i>bla</i> _{CTX-M-15}	3 (3.8)	2 (3.9)	1 (3.7)	0.97	2 (4.1)	1 (3.4)	0.04
<i>bla</i> _{CTX-M-15} + <i>bla</i> _{CTX-M-9}	2 (2.6)	2 (3.9)	0	0.01*	1 (2)	1 (3.4)	0.1
<i>bla</i> _{CTX-M-1} + <i>bla</i> _{OXA-1}	1 (1.3)	1 (2)	0	0.01*	0	1 (3.4)	0.01*
<i>bla</i> _{CTX-M-9} + <i>bla</i> _{TEM}	2 (2.6)	0	2 (7.4)	0.01*	1 (2)	1 (3.4)	0.1

UPEC, Uropathogenic *E. coli*; CA, community-acquired; HA, hospital-acquired %, percentage; N, number of isolates;

*, significant p-value (< 0.05).

168 In 4 *bla*_{CTX-M} group, *bla*_{CTX-M-1} (70/77; 90.9%) with *bla*_{CTX-M-15} (70/77; 90.9%) was the
169 most prevalent followed by *bla*_{CTX-M-9} (9/77; 11.7%). *bla*_{CTX-M-25} was not detected in any of the
170 77 strains ([Table 4](#)). Among strains which carried the *bla*_{CTX-M} type, 89.6% carried 2 variants of
171 *bla*_{CTX-M} while 7.8% carried only one variant and 2.6% carried 3 *bla*_{CTX-M} variants ([Table 4](#)). No
172 significant difference was found by comparing the prevalence of ESBL genes in hospital-acquired
173 and community-acquired strains on the one hand and UPEC and no-uropathogenic ExPEC strains
174 on the other hand ([Figs 2-5](#)).

175

176 ***Fig. 3. Prevalence of ESBL genes in community-acquired and hospital-acquired strains.***

177

178 ***Fig. 4. Prevalence of *bla*_{CTX-M} variants in community and hospital-acquired strains.***

179

180 ***Fig. 5. Prevalence of *bla*_{CTX-M} variants genes in UPEC and no-uropathogenic ExPEC.***

181

182 **Discussion**

183 Potentially pathogenic *Escherichia coli* which produce extended spectrum betalactamases
184 (ESBL) are frequently isolated from urinary tract infections [[6](#), [18](#)] can be resistant to many
185 molecules of this class. The most worrying thing is that these strains, which spread rapidly both
186 in hospitals and in the community, are often resistant to many other antibiotics such as those of
187 the aminoglycosides and quinolones classes, thus making the treatment failure of these infections.

188 The rate of resistance to multiple antibiotics among ESBL- producing isolates is usually
189 common due to carrying multi- resistant genes and plasmids [[12-14](#)].

190 Nowadays, ESBL type CTX-M are the most widespread in the world, unlike ESBL TEM
191 and SHV which are becoming less prevalent [[19](#), [20](#)]. Our study also confirmed this trend with

192 98.7% of strains positive for *bla*_{CTX-M}, followed by *bla*_{OXA-1} (78.2%), *bla*_{TEM} (44.9%) and *bla*_{SHV}
193 (3.8%). Several studies carried out in Togo [21], in Saudi Arabia [22], and in Mozambique [23]
194 reported high prevalence rates of *bla*_{CTX-M} in ESBL ExPEC strains 100%; 93.94% and 77%,
195 respectively. Moreover, other authors [24, 25] had already pointed out that currently, *bla*_{OXA-1}
196 was the second most prevalent ESBL gene type in the world behind *bla*_{CTX-M}. In disagreement to
197 these studies, [23] rather mentioned 52% of prevalence for *bla*_{SHV} and 1% for *bla*_{TEM} in 2021 in
198 Mozambique. [26] mentioned 3.12% of prevalence rate for *bla*_{SHV} in 2019 in Senegal. ESBLs
199 SHV-gene type therefore seem to be rare in *E. coli* strains circulating in Senegal.

200 Interestingly, 55.1% of the strains harbored 2 ESBL gene types while 30.8% of the strains
201 carried 3 and 2.6% carried all the 4 ESBL genotypes. While 33.33% and 12.12% of strains
202 carrying 2 and 3 ESBL gene types, respectively were reported from Riyadh, Saudi Arabia [22].
203 The very high proportion of strains (88.5%) combining several ESBL gene types seems to be one
204 of the major causes of the 100% resistance to ampicillin, ticarcillin, (clavulanic acid +
205 amoxicillin), cefalotin, cefotaxime, ceftazidime, cefepime and aztreonam. None of the strains
206 carried only *bla*_{TEM} or *bla*_{SHV} gene.

207 Globally, *bla*_{CTX-M-15} had long been cited as the most prevalent variant of *bla*_{CTX-M} in *E.*
208 *coli* [27–29]. The high prevalence rate of *bla*_{CTX-M-15} (90.9%) observed among *bla*_{CTX-M} positive
209 strains in our study corroborates these earlier studies. An interesting fact in our study was that
210 *bla*_{CTX-M-1} was as prevalent as *bla*_{CTX-M-15} with respectively 90.9% and 85.7% rates of the strains
211 concomitantly carried *bla*_{CTX-M-15} and *bla*_{CTX-M-1}. These data suggest that *bla*_{CTX-M-15} is not the
212 only major variant of *bla*_{CTX-M} circulating in Senegal. The low prevalence rates of *bla*_{CTX-M-9}
213 (11.7%) and *bla*_{CTX-M-25} (0%) follow trends observed in other parts of the world [27, 30].

214 No significant difference was noted when comparing the prevalence of ESBL genes from
215 community-acquired and hospital-acquired strains. This seems to imply either a port of ESBL

216 ExPEC in community or that the community strains are the same ones encountered in a hospital
217 environment. We did not notice any significant difference in the prevalence of ESBL genes
218 between UPEC strains and non-uropathogenic ExPEC strains. It seems that in Senegal, non-
219 uropathogenic ExPEC are as resistant as UPEC strains. Future studies could confirm this.

220 The high prevalence of *bla*_{CTX-M} genes suggests the involvement of mobile genetic
221 elements (plasmids, integrons and transposons) [20, 31] in the spread of antibiotic resistance in
222 Dakar, as reported in many studies leading increasing resistance to fluoroquinolones,
223 aminoglycosides and even carbapenems antibiotics [12–14]. This suggests the importance to
224 study and monitor the mobile genetic elements from strains isolated in healthy carriers,
225 environment, and hospital settings in order to initiate others actions that can help fighting against
226 antibiotic resistance.

227

228 Conclusion

229 All the 78 ExPEC strains tested in this study were MDR patterns, and resistant to almost all
230 antibiotics families, except fosfomycin and carbapenems. Based on our results, we recommend
231 avoiding monotherapy and prohibiting fluoroquinolones, C3G and C4G as empiric treatment of
232 UTIs in Senegal. *bla*_{CTX-M} (*bla*_{CTX-M1}, *bla*_{CTX-M15}) and *bla*_{OXA-1} seem to be the major ESBL genes
233 circulating in Senegal. No significant difference was noted when comparing the prevalence of
234 ESBL genes between hospital-acquired and community-acquired strains; As well as by
235 comparing UPEC and ExPEC strains isolated from other types of samples. The high resistance to
236 antimicrobials observed, underscore the relevance to implement an epidemiological antimicrobial
237 resistance (AMR) surveillance system to improve the management of treatment protocols in
238 patients infected with MDR bacteria.

239

240 **Acknowledgements**

241 The authors thank Abdoul Aziz Wane, Amadou Mactar Gueye, Ousmane Sow and El Hadji Aly
242 Niang for their technical assistance.

243

244 **References**

245 1. Savage DC. Microbial biota of the human intestine: a tribute to some pioneering scientists. Curr
246 Issues Intest Microbiol. 2001;2: 1–15.

247 2. Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2: 123–
248 140. <https://doi.org/10.1038/nrmicro818>

249 3. Braz VS, Melchior K, Moreira CG. Escherichia coli as a Multifaceted Pathogenic and Versatile
250 Bacterium. Front Cell Infect Microbiol. 2020;10: 548492.
251 <https://doi.org/10.3389/fcimb.2020.548492>

252 4. Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia
253 coli: focus on an increasingly important endemic problem. Microbes Infect. 2003;5: 449–456.
254 [https://doi.org/10.1016/s1286-4579\(03\)00049-2](https://doi.org/10.1016/s1286-4579(03)00049-2)

255 5. Johnson JR, Russo TA. Extraintestinal pathogenic Escherichia coli : “The other bad E coli .” J Lab
256 Clin Med. 2002;139: 155–162. <https://doi.org/10.1067/mlc.2002.121550>

257 6. Pitout J. Extraintestinal Pathogenic Escherichia coli: A Combination of Virulence with Antibiotic
258 Resistance. Front Microbiol. 2012;3. <https://doi.org/10.3389/fmicb.2012.00009>

259 7. Camara M, Mane MT, Ba-Diallo A, Dieng A, Diop-Ndiaye H, Karam F, et al. Extended-spectrum
260 beta-lactamase- and carbapenemase-producing Enterobacteriaceae clinical isolates in a Senegalese
261 teaching hospital: A cross sectional study. *Afr J Microbiol Res.* 2017;11: 1600–1605.
262 <https://doi.org/10.5897/AJMR2017.8716>

263 8. Toudji AG, Djeri B, Karou SD, Tigossou S, Ameyapoh Y, Souza C de. Prévalence des souches
264 d'entérobactéries productrices de bêta-lactamases à spectre élargi isolées au Togo et de leur
265 sensibilité aux antibiotiques. *Int J Biol Chem Sci.* 2017;11: 1165–1177.
266 <https://doi.org/10.4314/ijbcs.v11i3.19>

267 9. Ouedraogo A-S, Sanou M, Kissou A, Sanou S, Solaré H, Kaboré F, et al. High prevalence of
268 extended-spectrum β -lactamase producing enterobacteriaceae among clinical isolates in Burkina
269 Faso. *BMC Infect Dis.* 2016;16: 326. <https://doi.org/10.1186/s12879-016-1655-3>

270 10. Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z. Extended Spectrum Beta-lactamases: Definition,
271 Classification and Epidemiology. *Curr Issues Mol Biol.* 2015;17: 11–22.
272 <https://doi.org/10.21775/cimb.017.011>

273 11. Bradford PA. Extended-Spectrum β -Lactamases in the 21st Century: Characterization,
274 Epidemiology, and Detection of This Important Resistance Threat. *Clin Microbiol Rev.* 2001;14:
275 933–951. <https://doi.org/10.1128/CMR.14.4.933-951.2001>

276 12. Gburek TM, Dodgson AR, Cheesbrough J, Fox AJ, Bolton FJ, Upton M. Population structure,
277 virulence potential and antibiotic susceptibility of uropathogenic *Escherichia coli* from Northwest
278 England. *J Antimicrob Chemother.* 2012;67: 346–356. <https://doi.org/10.1093/jac/dkr451>

279 13. Doumith M, Day M, Ciesielczuk H, Hope R, Underwood A, Reynolds R, et al. Rapid Identification
280 of Major *Escherichia coli* Sequence Types Causing Urinary Tract and Bloodstream Infections. *J Clin
281 Microbiol.* 2015;53: 160–166. <https://doi.org/10.1128/JCM.02562-14>

282 14. Dale AP, Woodford N. Extra-intestinal pathogenic *Escherichia coli* (ExPEC): Disease, carriage and
283 clones. *J Infect.* 2015;71: 615–626. <https://doi.org/10.1016/j.jinf.2015.09.009>

284 15. Poirel L, Dortet L, Bernabeu S, Nordmann P. Genetic Features of blaNDM-1-Positive
285 Enterobacteriaceae. *Antimicrob Agents Chemother.* 2011;55: 5403–5407.
286 <https://doi.org/10.1128/AAC.00585-11>

287 16. Gundran RS, Cardenio PA, Villanueva MA, Sison FB, Benigno CC, Kreausukon K, et al. Prevalence
288 and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β - lactamase-
289 producing *E. coli* isolates from broiler farms in the Philippines. *BMC Vet Res.* 2019;15: 227.
290 <https://doi.org/10.1186/s12917-019-1975-9>

291 17. Weill F-X, Guesnier F, Guibert V, Timinouni M, Demartin M, Polomack L, et al. Multidrug
292 resistance in *Salmonella enterica* serotype Typhimurium from humans in France (1993 to 2003). *J*
293 *Clin Microbiol.* 2006;44: 700–708. <https://doi.org/10.1128/JCM.44.3.700-708.2006>

294 18. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. *Clin Microbiol*
295 *Rev.* 2005;18: 657–686. <https://doi.org/10.1128/CMR.18.4.657-686.2005>

296 19. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β -lactamases: temporal and
297 geographical shifts in genotype. *J Antimicrob Chemother.* 2017;72: 2145–2155.
298 <https://doi.org/10.1093/jac/dkx146>

299 20. Canton R, Gonzalez-Alba JM, Galán JC. CTX-M Enzymes: Origin and Diffusion. *Front Microbiol.*
300 2012;3. <https://www.frontiersin.org/article/10.3389/fmicb.2012.00110>

301 21. Dossim S, Salou M, Ihou-Wateba M, Bidjada B, Godonou AM, Aoussi E, et al. Molecular
302 Characterization Of Extended Spectrum Betalactamases Genes (Blactxm And Blashv) In

303 Enterobacteria Isolates In Medical Specimens In Lomé (Togo). <https://researcher-app.com/paper/3400456>

304

305 22. Alqasim A, Abu Jaffal A, Alyousef AA. Prevalence of Multidrug Resistance and Extended-
306 Spectrum β -Lactamase Carriage of Clinical Uropathogenic Escherichia coli Isolates in Riyadh, Saudi
307 Arabia. *Int J Microbiol.* 2018;2018: e3026851. <https://doi.org/10.1155/2018/3026851>

308 23. Estaleva CEL, Zimba TF, Sekyere JO, Govinden U, Chenia HY, Simonsen GS, et al. High
309 prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of
310 Escherichia coli at Maputo Central Hospital, Mozambique. *BMC Infect Dis.* 2021;21: 16.
311 <https://doi.org/10.1186/s12879-020-05696-y>

312 24. Faezi Ghasemi M, Dibadji SN. Prevalence of blaOXA-1 and blaSHV Genes in *E. coli* Isolates from
313 Hospitalized Patients in Rasht. *Med Lab J.* 2016;10: 65–70.
314 <https://doi.org/10.18869/acadpub.mlj.10.5.65>

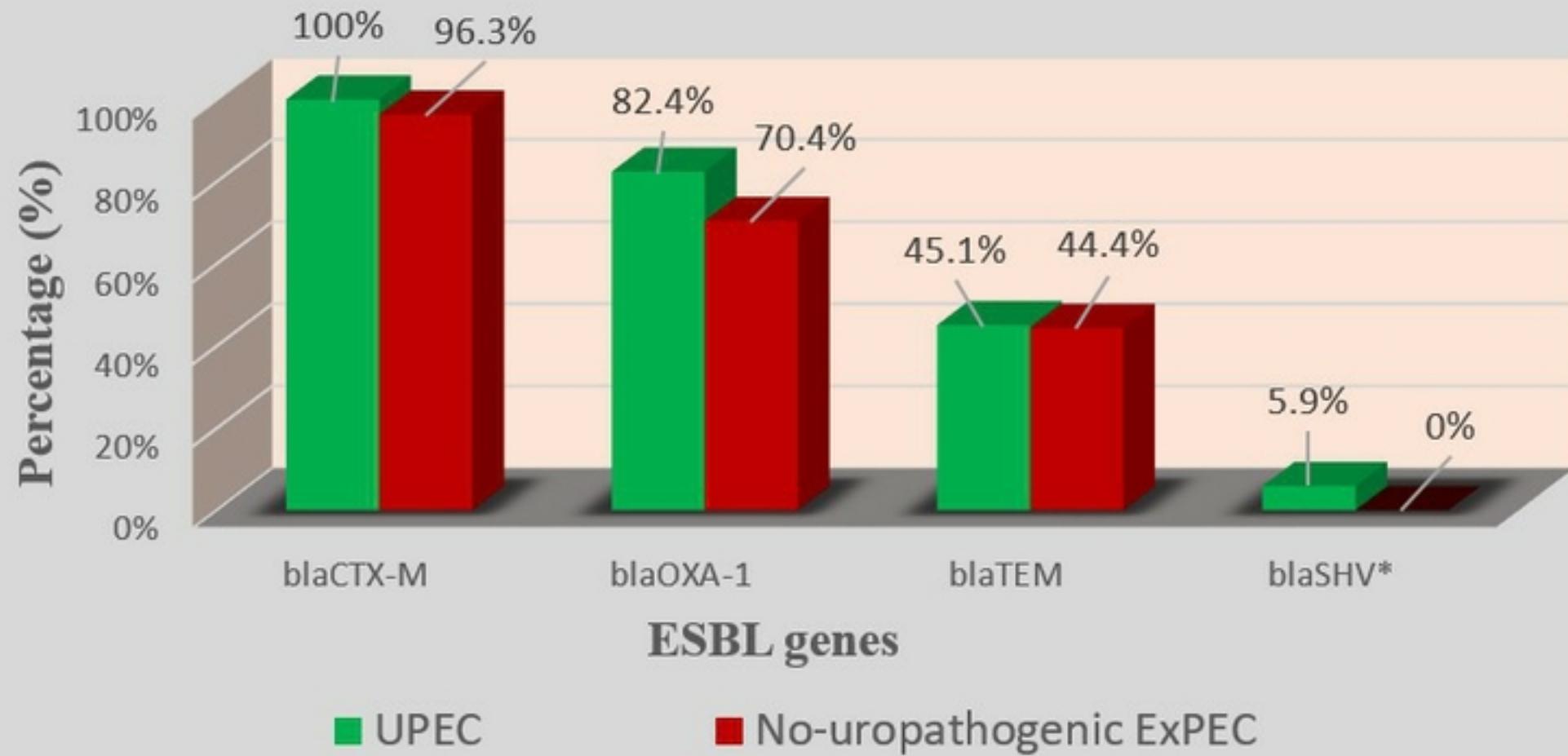
315 25. Abrar S, Ain NU, Liaqat H, Hussain S, Rasheed F, Riaz S. Distribution of blaCTX – M, blaTEM,
316 blaSHV and blaOXA genes in Extended-spectrum- β -lactamase-producing Clinical isolates: A three-
317 year multi-center study from Lahore, Pakistan. *Antimicrob Resist Infect Control.* 2019;8: 80.
318 <https://doi.org/10.1186/s13756-019-0536-0>

319 26. Diagne R. Recherche de gènes BLSE de type TEM, SHV, et OXA-1 sur des souches de *E. coli*
320 isolées au laboratoire de Bactériologie de Fann, Sénégal. *Rev Afr Malgache Rech Sci Santé.* 2019;1.
321 <http://publication.lecames.org/index.php/sante/article/view/1469>

322 27. Lahlaoui H, Ben Haj Khalifa A, Ben Moussa M. Epidemiology of Enterobacteriaceae producing
323 CTX-M type extended spectrum β -lactamase (ESBL). *Med Mal Infect.* 2014;44: 400–404.
324 <https://doi.org/10.1016/j.medmal.2014.03.010>

325 28. Moghaddam MN, Beidokhti MH, Jamehdar SA, Ghahraman M. Genetic properties of blaCTX-M
326 and blaPER β -lactamase genes in clinical isolates of Enterobacteriaceae by polymerase chain
327 reaction. Iran J Basic Med Sci. 2014;17: 378–383.
328 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069837/>

329 29. Zong Z, Partridge SR, Thomas L, Iredell JR. Dominance of blaCTX-M within an Australian
330 Extended-Spectrum β -Lactamase Gene Pool. Antimicrob Agents Chemother. 2008;52: 4198–4202.
331 <https://doi.org/10.1128/AAC.00107-08>


332 30. Pavez M, Troncoso C, Osses I, Salazar R, Illesca V, Reydet P, et al. High prevalence of CTX-M-1
333 group in ESBL-producing *enterobacteriaceae* infection in intensive care units in southern Chile.
334 Braz J Infect Dis. 2019;23: 102–110. <https://doi.org/10.1016/j.bjid.2019.03.002>

335 31. Carattoli A. Plasmids in Gram negatives: molecular typing of resistance plasmids. Int J Med
336 Microbiol IJMM. 2011;301: 654–658. <https://doi.org/10.1016/j.ijmm.2011.09.003>

337

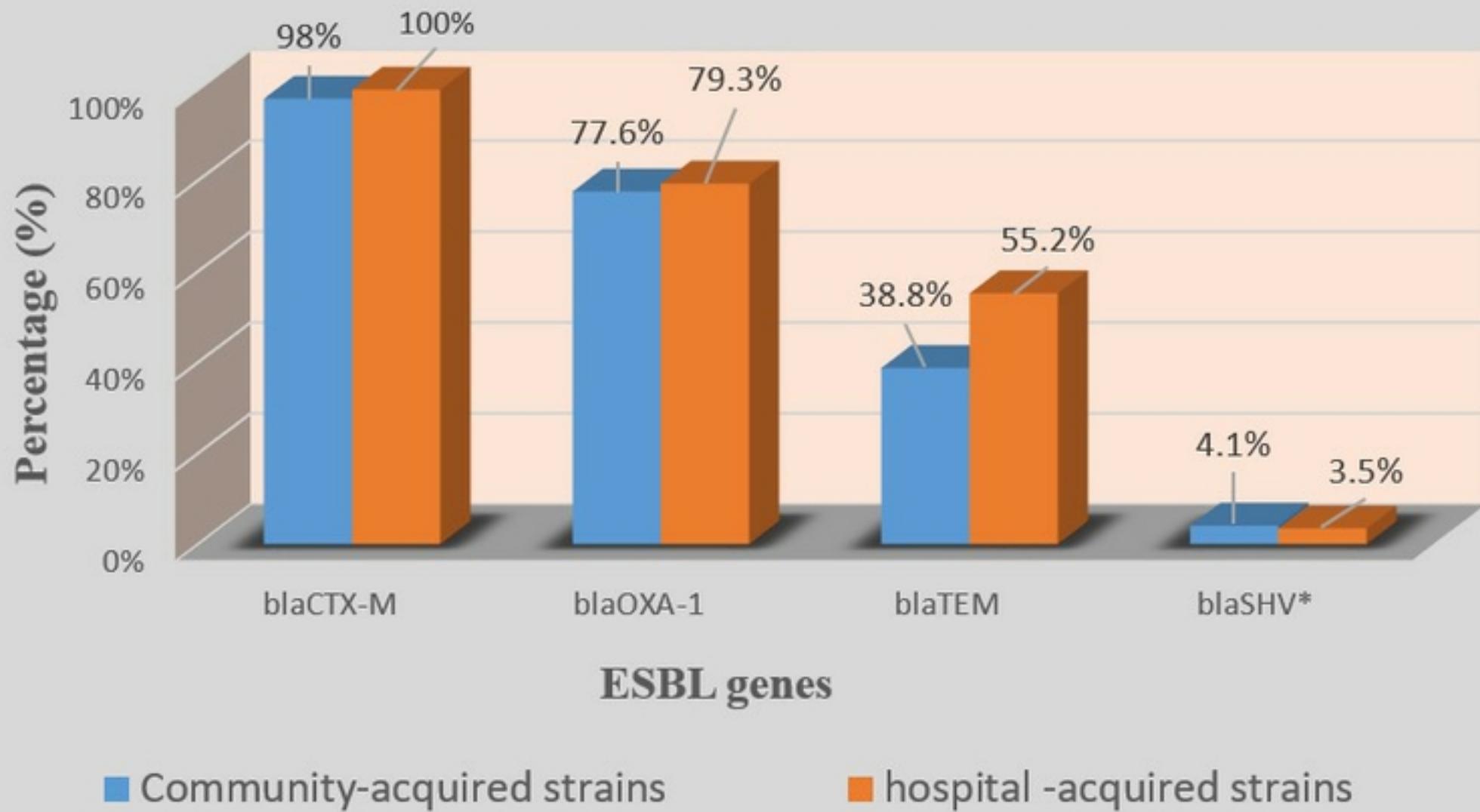


Fig. 1

* Significant p ($p = 0.01$)

Fig. 2

* Significant p ($p = 0.04$)

Fig. 3

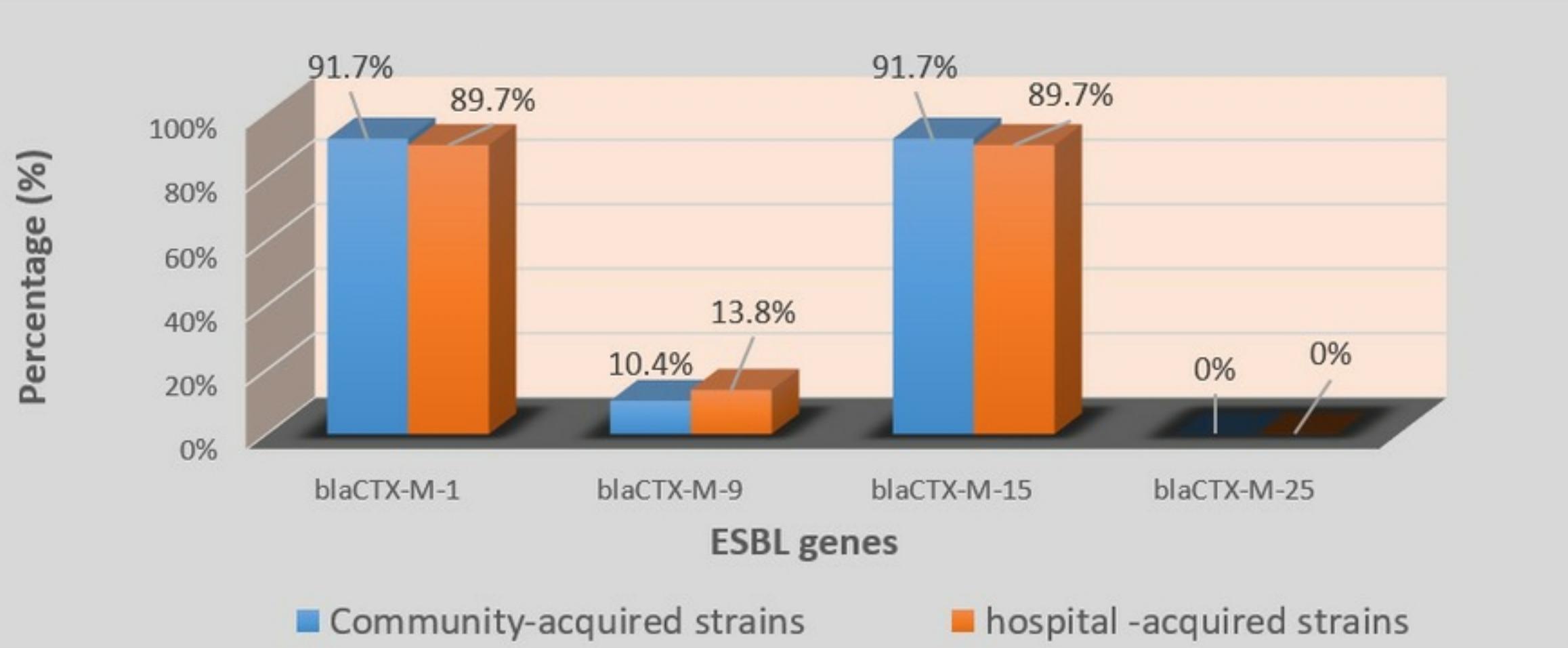


Fig. 4

Percentage (%)

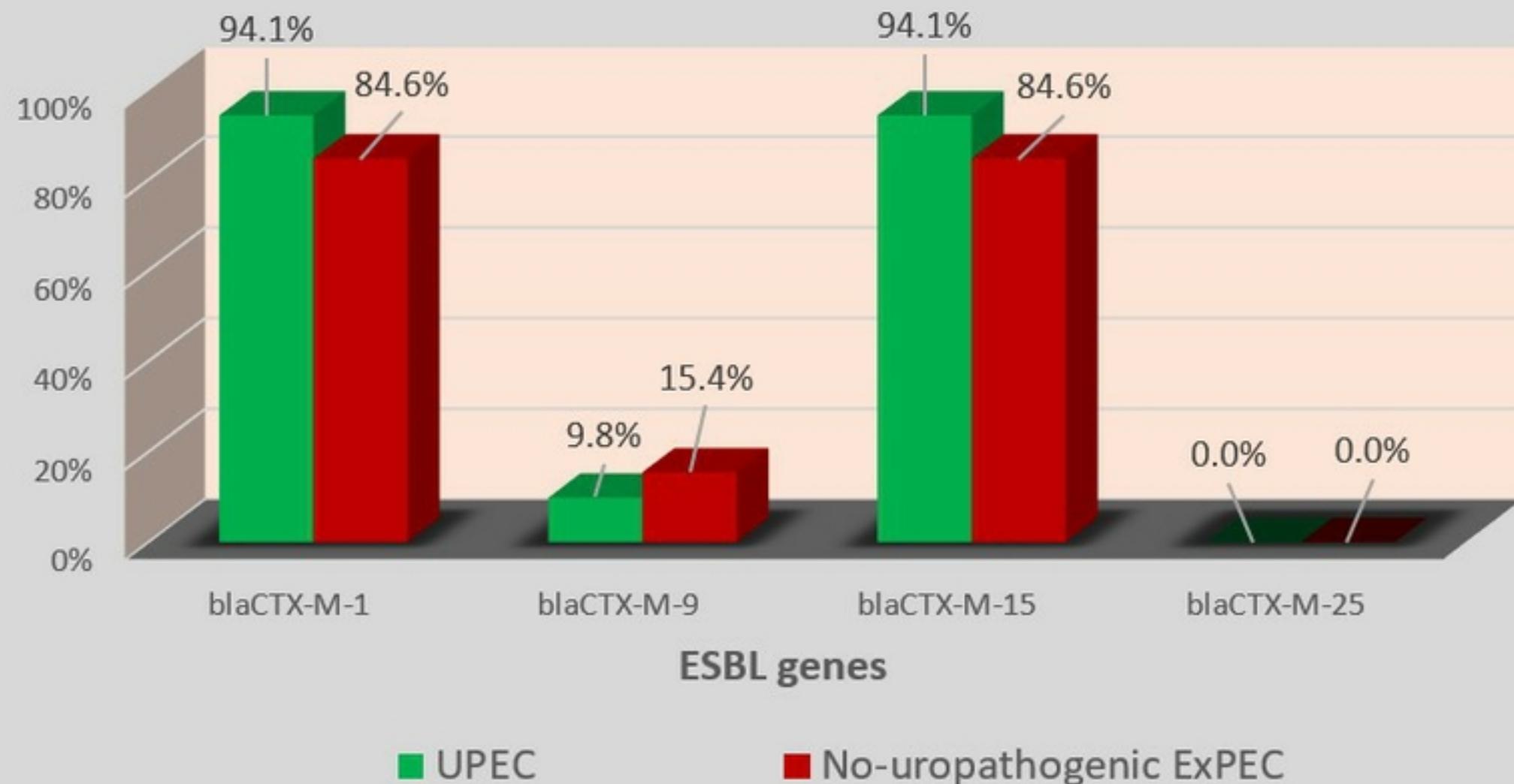


Fig. 5