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Abstract

Mycobacterium abscessus is an emerging pathogen resistant to most frontline antibiotics. M.
abscessus causes lung infection, predominantly in patients with lung disease or structural
abnormalities. To interrogate mechanisms required for M. abscessus survival in the lung, we
developed a lung infection model using air-liquid interface culture and performed a screen to
identify differentially required genes. In the lung model, synthesis of the cofactor biotin is
required due to increased intracellular biotin demand, and pharmacological inhibition of biotin
synthesis halts M. abscessus proliferation. Increased quantities of biotin are required to sustain
fatty acid remodeling that serves to increase cell envelope fluidity, which in turn promotes M.
abscessus survival in the alkaline lung environment. Together, these results indicate that biotin-
dependent fatty acid remodeling plays a critical role in pathogenic adaptation to the lung niche
and suggests that biotin synthesis and fatty acid metabolism are therapeutic targets for

treatment of M. abscessus infection.
Introduction

Mycobacterium abscessus is a pathogenic bacterium that has produced an increasing
number of human infections over the last two decades'3. Unlike the related organism
Mycobacterium tuberculosis, M. abscessus is not a professional pathogen; it is widespread in
the environment and can exist as a free-living bacterium in soil and water. M. abscessus can
productively infect a large range of organisms, from amoebae to fish to mammals, including
humans*®. Though M. abscessus can produce systemic infection or localized infection at wound

sites, the majority of human disease caused by M. abscessus is in the lung”2.

M. abscessus predominantly infects individuals with bronchiectasis, chronic obstructive
pulmonary disease (COPD), or cystic fibrosis (CF), diverse conditions which share the feature of
structurally altered lung parenchyma®. During lung infection, M. abscessus displays
characteristics more akin to opportunistic lung pathogens than to M. tuberculosis; for instance,
M. abscessus resides primarily within the lumen of airways rather than within phagocytic host

cells'®!1 and the majority of end stage M. abscessus patients do not display granuloma
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formation?. Thus, M. abscessus may represent an intermediate stage in the evolution of an

environmental bacterium to a professional pathogen!34,

To survive in the pulmonary milieu, M. abscessus must adapt to the conditions within
the airways. This environment presents unique challenges; among these obstacles are
biophysical stress induced by the presence of mucus?®, alkaline pH that is higher than most
niches in the human body!®!’, and the requirement to grow in the presence of relatively high
oxygen tension at the interface of air and liquid present on the lung surface. The genetic
requirements for M. abscessus survival in this setting might illuminate the biology that enables
environmental bacteria to transition to a pathogenic lifestyle. Furthermore, those constraints

may also suggest therapeutic approaches to treat M. abscessus infections.

Alternative therapeutic approaches to treat M. abscessus are needed, as it is intrinsically
resistant to a wide range of antibiotics, and treatment outcomes for individuals with M.
abscessus infection are poor. Antibiotic treatment produces a cure in only 30-50% of cases, and
many patients require surgical resection of lung tissue to control the infection®'2%8-23, Drugs
that successfully treat M. tuberculosis frequently fail to eradicate M. abscessus, and in vitro M.
abscessus drug susceptibility correlates poorly to antibiotic efficacy in patients?*. Though M.
abscessus gene essentiality has been cataloged under standard laboratory conditions?>2¢,
environmental context can substantially affect gene essentiality and antibiotic
susceptibility?”-28, Thus, examining genes required for M. abscessus infection in a system that
models the lung environment may highlight new pathways to target with antibiotics. Many
studies have scrutinized how M. abscessus behaves in phagocytic cells such as macrophages?®
35 and a variety of animal models have been developed for M. abscessus infection36-43;
however, these systems often represent systemic or invasive disease, and typically do not
recapitulate the extracellular, luminal niche occupied by M. abscessus during human lung
infection. Tissue culture systems represent an alternative approach to model lung infection,
and can be successfully applied to M. abscessus***’. Thus, to isolate the role of the lung
environment in shaping M. abscessus gene essentiality, we have adapted an air-liquid interface

tissue culture model for M. abscessus infection and used genome-wide saturating transposon
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mutagenesis and sequencing (TnSeq) to identify genes essential for survival in the lung

environment.
Results

Development of an air-liguid interface culture system for M. abscessus infection

To both recapitulate the environmental conditions present in the lung and preserve
tractability to enable genetic screening, we developed an air-liquid interface culture model
(Figure 1A) using an immortalized bronchial epithelial cell line, NuLi-1%8. As previously
reported*, NuLi-1 cells grown at an air-liquid interface partially differentiate and display
features characteristic of bronchial epithelial cells, including epithelial morphology (Figure 1B),
partial cilia formation (Supplemental Figure 1A), mucin production (Supplemental Figure 1B),
and reduced permeability to small molecules (Supplemental Figure 1C). To monitor whether M.
abscessus is capable of productively colonizing these lung cell cultures, bacterial luciferase*
was constitutively expressed in the M. abscessus type strain (ATCC 19977). Luciferase activity
correlates well with viable cell numbers in mycobacteria®®, so M. abscessus growth could be
observed over time in lung cultures. M. abscessus was added apically to lung culture and
allowed to attach for 4 hours. Then, liquid was aspirated off of the apical surface to restore the
air-liquid interface. A consistent fraction of the bacteria was retained after aspiration
(Supplemental Figure 1C), and luminescence was tracked post-aspiration. Infection of lung cell
cultures with M. abscessus resulted in continuous growth until the cultures reached saturation.
The time that cultures took to reach saturation was dependent on the multiplicity of infection
(MOI) used for infection (Figure 1D) and was similar for a distantly related clinical isolate of M.
abscessus, T35 (Supplemental Figure 1E). Infection for 48 hours starting at an MOI of 1 allowed
for continuous growth without causing detectable damage to the lung cells as measured by
release of the intracellular enzyme lactate dehydrogenase (Figure 1D, Supplemental Figure 1F).

As a result, this condition was chosen for all subsequent experiments.

In human lung, M. abscessus forms aggregates on the surface of epithelial cells®!?, a
behavior that has been observed in other models for M. abscessus lung infection**. To examine

whether our air-liquid interface model recapitulates this physiological mode of M. abscessus
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growth, infected cultures were observed by scanning electron microscopy (SEM) at 24 and 48
hours after infection. At both time points, M. abscessus was visible growing on the surface of
the lung cell layer (Figure 1E). To test whether the lung epithelial cells were also phagocytosing
M. abscessus, a fluorescent strain of M. abscessus expressing mScarlet>® was generated and
used to infect lung cultures. After washing away all surface-attached bacteria, fluorescence
microscopy revealed that phagocytosed M. abscessus were present (Supplemental Figure 1G-
H), but very rare in comparison to the fraction of cells growing on the surface of the epithelial
layer (Figure 1E). Together, these data suggest that this model can effectively recapitulate

clinical characteristics of M. abscessus lung infection.

Genetic screening in lung infection model

To interrogate the genetic requirements for survival and growth in an environment
mimicking the lung, we carried out a genetic screen in the lung infection model using TnSeqg>?.
To identify genes that might be relevant in the context of infection, we utilized a clinical isolate
of M. abscessus, T35, that has not been passaged in culture as the M. abscessus type strain has.
Gene essentiality was compared among 3 conditions: the input library grown on standard agar
plates, M. abscessus grown in the lung infection model, and M. abscessus cultured directly in
the tissue culture medium used for the lung model. This tissue culture medium is relatively
close in composition to human serum (Supplemental File 1) and represents a more
physiological environment than mycobacterial culture medium?®°2, Further, tissue culture
medium supports proliferation at a similar rate as the lung infection model (Supplemental
Figure 2A), which allows direct comparisons between screen conditions. We reasoned that
comparison of gene essentiality among these three conditions might both illuminate genes
important for growth in more physiological nutrient conditions and genes that are specifically

made essential by growth on the surface of lung cells.

Biotin biosynthetic enzymes are required for growth in lung infection model

Growth in the lung infection model renders 237 genes significantly depleted for
transposon insertions compared to the input library (Figure 2A, Supplemental File 2,

Supplementary Table 1). To isolate the genes most critical for lung infection, we focused
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112 primarily on genes that are further required in the lung infection model beyond their need in
113 tissue culture medium. From this more stringent comparison, the two genes most differentially
114  required in the presence of lung cells are both members of the biotin biosynthetic pathway

115  (Figure 2B, Supplemental Figure 2B)>3, suggesting that growth in the lung infection model

116  imposes an increased requirement for biotin synthesis. Further, all of the members of the biotin
117  biosynthetic pathway display greatly reduced insertion counts in the lung infection model

118  (Figure 2C), consistent with an increased need for endogenous biotin synthesis. Of note, genes
119 in the biotin synthesis pathway are significantly more required in tissue culture medium alone
120 than on agar plates, but the presence of lung epithelial cells further increases the requirement
121 for biotin biosynthetic genes (Figure 2C). Indeed, deletion of bioA (MAB_2688c) (Supplemental
122 Figure 2C-E) impedes growth both in the lung infection model and in tissue culture medium
123 (Figure 2D). This growth defect is a result of biotin insufficiency, as high levels of exogenous

124  biotin or re-expression of BioA can rescue growth of the AbioA strain (Figure 2D).

125 Lung infection model imposes increased demand for biotin synthesis despite biotin in medium

126 Biotin is present in the lung culture medium at levels 20-100 times greater than in

127  human serum>* (Figure 2E), though at lower levels than in standard mycobacterial medium
128  (Supplemental File 1). Free biotin levels available in the lung infection model do not differ from
129  those present in tissue culture medium alone (Figure 2E), nor do lung cells selectively deplete
130  biotin on the apical surface compared to basal medium (Figure 2F), suggesting that altered

131  biotin availability does not fully explain the differential requirement for biotin synthetic

132  enzymes. Thus, we questioned whether growth in more physiological environments might

133  cause bacteria to have a higher absolute demand for biotin.

134 To evaluate whether growth in tissue culture medium increases demand for biotin, we
135  cultured the AbioA M. abscessus strain in increasing concentrations of exogenous biotin to

136  determine the minimal amount of biotin required to sustain proliferation. When grown in tissue
137  culture medium, AbioA M. abscessus requires a higher concentration of exogenous biotin to
138  support growth than when cultured in mycobacterial medium (Figure 3A). This phenomenon
139  holds true in tissue culture medium lacking all supplements and protein components (Figure
140  3A), suggesting that there are not factors present sequestering biotin in tissue culture medium.

5
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Similarly, conditioned media taken from the lung infection model that was dialyzed to retain
protein components while refreshing small molecule metabolites does not impose an altered
demand for biotin synthesis (Supplemental Figure 3A), arguing that lung cells do not produce

protein factors that sequester biotin.

To orthogonally examine whether M. abscessus requires more biotin in tissue culture
medium, we sought to determine whether M. abscessus was more susceptible to inhibition of
biotin synthesis. Inhibitors of biotin synthesis have been developed for use in M. tuberculosis®>
>8 and we found that an M. tuberculosis Rv1568 (BioA) inhibitor, compound 36 (PubChem CID:
137348519)°’, is effective at inhibiting M. abscessus growth in the absence of biotin (Figure 3B).
Compound 36 does not inhibit growth in the presence of biotin (Figure 3B), indicating that its
anti-proliferative effects are specifically caused by biotin synthesis inhibition. BioA inhibition
impedes proliferation more effectively in tissue culture medium than in mycobacterial medium
(Figure 3B), consistent with an increased demand for biotin in the more physiological medium.
Further, BioA inhibition by compound 36 prevents growth in an assortment of M. abscessus
clinical isolates (Supplemental Figure 3B) and is active in the lung infection model (Figure 3C,
Supplemental Figure 3C) without detectable toxicity to the lung cells (Supplemental Figure 3D),
which suggests that BioA inhibition may represent a therapeutic strategy for treating M.

abscessus infection.

Biotin synthesis inhibition is rescued by propionate metabolism

An increased demand for biotin synthesis suggests a larger requirement for biotin-
utilizing enzymes. M. abscessus possesses several biotin-dependent enzymes>>°, and these
proteins broadly display diminished biotinylation upon biotin synthesis inhibition (Figure 3D).
Two biotin-dependent enzymes are significantly more required in the lung infection model than
in the input library: a pyruvate carboxylase, MAB_3267c, and an acetyl-CoA/propionyl-CoA
carboxylase, MAB_1876c. Pyruvate carboxylase is essential for induction of biotin synthesis in
mycobacteria®, so we instead focused on whether an activity catalyzed by the acetyl-
CoA/propionyl-CoA carboxylase gene is more critical in physiological environments than in
mycobacterial medium. We posited that if metabolism of acetyl-CoA or propionyl-CoA was
selectively more important for growth in physiological environments, we might be able to

6


https://doi.org/10.1101/2022.07.20.500843
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.20.500843; this version posted July 21, 2022. The copyright holder for this preprint (which

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

rescue partial biotin synthesis inhibition by adding excess acetate or propionate to drive
forward those metabolic pathways. Indeed, propionate rescues growth upon BioA inhibition,
while acetate fails to rescue (Figure 3E). Propionate rescues growth without increasing protein
biotinylation (Figure 3D), suggesting that propionate acts downstream of biotin and allows cells
to proliferate despite low biotin levels. Further, cholesterol, a biologically relevant source of
propionate for mycobacteria®?, rescues biotin synthesis inhibition (Supplemental Figure 3E).
Together, these results suggest that downstream utilization of propionate partly protects M.

abscessus against biotin synthesis inhibition.

Physiological medium imposes altered demands for fatty acid synthesis

Propionate has three major fates in mycobacteria; it can be used to generate methyl-
branched fatty acids, synthesize odd-chain fatty acids, or can be recycled back into the
tricarboxylic acid (TCA) cycle through either the methylcitrate cycle or through methylmalonyl-
CoA epimerase and mutase®3. Given that all of the genes required for recycling of propionyl-
CoA into the TCA cycle are non-essential in all tested conditions (Supplemental Table 2), we
focused on whether growth in physiological environments imposes altered demands for fatty
acid synthesis. Using gas chromatography/mass spectrometry (GC/MS), we determined that the
profile of fatty acids in M. abscessus cultured in tissue culture medium differs from that of cells
grown in mycobacterial medium (Figure 4A, Supplemental File 3). Strikingly, growth in tissue
culture medium increases the number of branched, unsaturated, and odd-chain fatty acids with

concomitant decreases in most even-chain saturated fatty acid species.

To determine whether this shift in fatty acid composition has biologically relevant
consequences, we tested whether the physical characteristics of the cell envelope are different
in M. abscessus cultured in tissue culture medium compared to mycobacterial medium.
Membrane fluidity is known to increase with higher fractional composition of unsaturated and
branched fatty acids®*, so we predicted that fluidity of the cell envelope would increase in M.
abscessus cultured in tissue culture medium. To assess envelope fluidity, we adapted a
previously described assay using laurdan®, a dye that displays shifts in the maximum of its
fluorescence emission spectrum based on the fluidity of the surrounding membrane®®®’.
Laurdan can be used to probe bulk cell envelope fluidity in M. abscessus (Supplemental Figure

7
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4A-B), similar to methods used in other microbes®®®°, The laurdan generalized polarization (GP)
(see Materials and Methods) is a standardized ratio of fluorescence emission intensities that
anti-correlates with membrane fluidity’. The observed shift towards less saturated fatty acid
chains in tissue culture medium is accompanied by an increase in envelope fluidity, which is
indicated by a decrease in laurdan GP (Figure 4B). This change in cell envelope physical
properties signifies that substantial membrane remodeling has occurred, and suggests that
culture medium may alter demand for fatty acid synthesis and, therefore, requirement for

biotin.

Biotin availability supports fatty acid remodeling

To address whether fatty acid composition is impacted by biotin deficiency, fatty acid
abundance was measured upon partial inhibition of BioA (Supplemental Figure 4C). A selection
of unsaturated and branched fatty acids were depleted by BioA inhibition, with no changes
observed to the abundant straight-chain fatty acid, hexadecanoate (Figure 4C). Notably, BioA
inhibition results in a decrease in envelope fluidity as indicated by increased laurdan GP (Figure
4D). Together, these results suggest that BioA inhibition results in meaningful membrane
remodeling and that biotin availability is required to sustain production of non-straight chain

fatty acids that make up a larger fraction of the membrane in physiological environments.

BioA inhibition is rescued by envelope fluidizing agents

Since propionate rescues BioA inhibition, we hypothesized that propionate
supplementation would restore synthesis of fatty acids depleted by BioA inhibition. However,
while propionate provided minor rescues to some unsaturated and branched fatty acids, its
most notable effect was to dramatically increase synthesis of odd-chain fatty acids (Figure 4E,
Supplemental Figure 4D). Odd-chain fatty acids also increase membrane fluidity’*’?, while
bypassing the biotin-dependent propionyl-CoA carboxylase reaction that is required to utilize
propionate for methyl-branched fatty acid synthesis (Supplemental Figure 4E). This result
suggests that BioA inhibition does not deprive M. abscessus of a single critical fatty acid, but
instead alters the envelope’s physical properties in a way that can be remedied by various non-

straight chain fatty acids. Consistent with this model, supplementation of either unsaturated or
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odd-chain fatty acids rescues BioA inhibition, while provision of saturated, even-chain fatty
acids does not (Figure 4F). Further, exogenous supplementation of the unsaturated fatty acid
(92)-octadec-9-enoate rescues biotin synthesis inhibition in the lung infection model, while

provision of a saturated, even-chain fatty acid, octadecanoate, does not (Figure 4G).

Since fatty acids can be metabolized by M. abscessus and potentially produce secondary
effects, we sought to determine whether modulating envelope fluidity through non-
metabolizable chemical interventions could rescue biotin deprivation. Supplementation of the
detergent tyloxapol, which is not metabolized by cells’? but alters envelope properties, partially
rescues BioA inhibition (Figure 4H). Similarly, addition of benzyl alcohol, a membrane fluidizing
agent’4 that also alters membrane partitioning’, allows M. abscessus to better tolerate biotin
synthesis inhibition (Figure 4l1). Together, these results argue that biotin is required in more
physiological environments to maintain synthesis of fatty acid species that increase envelope

fluidity.

Anti-proliferative effects of BioA inhibition are not caused by depletion of a specific lipid

Though these results are consistent with a model in which modulation of bulk envelope
properties is the primary effect of BioA inhibition, we sought to evaluate the possibility that
biotin deficiency also inhibits proliferation by curtailing production of a specific, critical lipid.
Given that changes in a single lipid species might not be detectable by bulk methods like fatty
acid methyl ester analysis, we characterized the lipid content of M. abscessus grown in tissue
culture medium using high performance liquid chromatography/mass spectrometry
(HPLC/MS)’®77 Upon BioA inhibition, the majority of differentially abundant compounds
detected by HPLC/MS were directly derived from the BioA inhibitor, compound 36, and only
one compound was significantly depleted by BioA inhibition (Supplemental Figure 4F-G). Since
propionate is sufficient to rescue M. abscessus growth under these conditions, propionate
supplementation would be predicted to rescue the abundance of any critical, depleted lipid
species that are required for proliferation. However, propionate fails to rescue the compound
significantly depleted upon BioA inhibition (Supplemental Figure 4F), suggesting there is not a

specific lipid that mediates the anti-proliferative effects of BioA inhibition. Collectively, these
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results support a model in which BioA inhibition is predominantly deleterious to M. abscessus

by preventing bulk membrane remodeling required to promote envelope fluidity.

Alkaline pH imposes demand for biotin and alters fatty acid composition of M. abscessus

Given that tissue culture medium imposes an increased demand for biotin to support
non-straight chain fatty acid synthesis, we posited that some element of the physiological
environment must create a stress that necessitates a change in cell envelope properties. To
identify this stress, we added pools of the individual components of mycobacterial medium to
tissue culture medium to determine whether any components of mycobacterial medium could
rescue biotin synthesis inhibition. We observed a striking correlation between the medium pH
and sensitivity to BioA inhibition (Supplemental Figure 5A) that was independent of the
nutrients present in each pool. Indeed, lowering the pH of tissue culture medium from 7.8 to
6.8 to match mycobacterial medium decreases sensitivity to BioA inhibition (Figure 5A), without
rescuing protein biotinylation (Figure 5B). This suggests that the activity of the BioA inhibitor is
not altered by pH, as biotin levels are unchanged. Further, increasing the pH of mycobacterial
medium increases sensitivity to BioA inhibition (Figure 5C), indicating that the pH of the

medium represents one determinant of biotin synthesis demand.

Increases in environmental pH correlate with increases in branched and unsaturated
fatty acid content’®80, and acidic stress leads to an altered fatty acid profile’®7°, suggesting that
extracellular pH may influence fatty acid metabolism. To address how alkaline stress might
increase demand for biotin, fatty acid abundance was measured in M. abscessus grown in tissue
culture medium either at pH 7.8 or pH 6.8. Fatty acid composition in M. abscessus is altered at
pH 6.8 (Figure 5D, Supplemental Figure 5C-D) despite the relatively small shift in pH, and the
altered fatty acid profile at pH 6.8 suggests two mechanisms by which lower pH reduces
demand for biotin synthesis. First, growth at pH 6.8 leads to decreased levels of many branched
fatty acids (Figure 5D), suggesting that M. abscessus has a lower demand for their synthesis at
pH 6.8. Second, lower pH increases the abundance of several unsaturated fatty acids (Figure
5D), which might partially alleviate the demand for increased non-straight chain fatty acid

synthesis.

10
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Alkaline pH stress is exacerbated by lung cells

Recent studies make clear that the fluid that lines the human airway is regulated to an
alkaline pH'®'7, which might serve as a luminal anti-bacterial mechanism?!®8!, Thus, we
guestioned whether the increased requirement for biotin synthesis in the lung infection model
is driven by heightened alkaline stress generated by the lung cells beyond that present in tissue
culture medium. NulLi-1 cells increase the alkalinity of their apical surface, both in monoculture
and during M. abscessus infection (Figure 5E) to a degree that closely matches the alkalinity of
the upper human airway'’. This suggests that exacerbation of alkaline stress may contribute to
the increased biotin synthesis demand in the lung environment. Consistent with this possibility,
reducing the pH of the culture medium in the lung infection model partially rescues the growth
defect caused by biotin synthesis inhibition (Figure 5F), though the degree of rescue is limited
by the continuous alkalinization of the apical medium by the lung cells (Supplemental Figure
5E). Together, these results suggest that the lung environment imposes alkaline stress on M.

abscessus that necessitates a shift in fatty acid profile that increases demand for biotin.
Discussion

Biotin synthesis has long been seen as an attractive target for antibiotic therapy>>->882-86,
as mammals lack homologous enzymes, and prior work in M. tuberculosis has shown that biotin
synthesis is essential in vivo8>87. Most effort towards clinical inhibition of biotin synthesis has
been in intracellular pathogens, with the rationale that these organisms will experience biotin
starvation caused by sequestration inside phagocytic cells. However, recent work in surface-
dwelling lung pathogens has suggested that these organisms may also be susceptible to biotin
synthesis inhibition, but that their sensitivity had been overlooked due to poor representation
of human biotin levels in mouse models of infection®. Similarly, our results suggest that biotin
synthesis represents a critical step for bacteria that are growing on the apical surface of the
human lung and that biotin synthesis inhibition may represent an effective therapy. Further,
given that biotin synthesis inhibition acts to limit growth of extracellular bacteria present in the
lung cavity, delivery of biotin synthesis inhibitors, either systemically or via aerosol, may enable
delivery of high concentrations of these drugs with limited side effects and could be combined
with other M. abscessus antibiotics that are delivered through inhalation248%-92,
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The apical surface of the lung is known to be a basic environment!®!’, and the growth of
pathogens is hindered by this alkalinity!®. Proper alkalinization of the apical surface of the lung
is impaired in various disease states that predispose individuals to M. abscessus infection,
notably cystic fibrosis'®. Given the role of alkalinization in pathogen defense, recent work has
focused on artificial alkalinization of the lung surface to augment immune defense against
pathogens®>%°, Potential synergy between alkalinizing treatments and biotin synthesis
inhibition might represent a method for eradicating opportunistic pathogens in vulnerable
individuals. Of note, alkaline pH appears to inhibit a wide range of clinically important lung
pathogens'®, many of which synthesize biotin de novo and might be sensitive to

pharmacological biotin deprivation .

Despite the evidence that elevated lung pH plays an important role in pathogen
defense, most consequences of dysfunctionally low pH have been linked with impaired host cell
function®® rather than with direct effects on bacteria. Some work has suggested that alkaline
environments directly hinder bacterial growth through high bicarbonate concentrations, rather
than through pH changes themselves®”8, and extracellular bicarbonate concentration has a
marked impact on the bacterial transmembrane pH gradient®?. Bicarbonate abundance does
not appear to be the sole causative factor underlying alkaline stress on M. abscessus given that
high pH is still detrimental to growth in mycobacterial medium without biotin, which lacks
bicarbonate (Figure 5C); however, bicarbonate levels are likely increased in the alkalinized lung
lumen, as well as in alkalinized culture medium!®, and thus may play an additional role in

limiting M. abscessus proliferation.

Regardless of the relative contributions of pH and bicarbonate in the lung environment,
we find that the stress imposed upon M. abscessus by high pH can be counteracted by fatty
acid remodeling that increases envelope fluidity, and that exogenous addition of fluidizing
agents can also alleviate this stress. Of note, several biosynthetically unique classes of fatty
acids counteract the excess demand for biotin and fatty acid synthesis, emphasizing that the
increased biotin requirement observed in the alkaline lung environment appears to be driven
by a need to adjust the physical properties of the envelope, rather than by a need for a specific

lipid species. This altered requirement for envelope fluidity suggests a number of possible
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mechanisms by which alkaline environments might be deleterious to bacterial growth. One
compelling candidate that might be influenced by both envelope properties and extracellular
pH is the activity and localization of membrane proteins. Membrane properties are critical to
support proper folding of membrane proteins, as membrane tension created by lipids with non-
linear fatty acid chains or conical head groups tends to promote appropriate folding and
insertion of proteins into the membrane??!. Further, membrane fluidity is a critical determinant
of the essential process of membrane partitioning displayed by many bacterial species®,
including mycobacteria’®, and alterations in partitioning may play a central regulatory role in
membrane protein function®. In addition, membrane composition is coupled to protein
oligomerization'®?, and fluid membranes are required for the activity of respiratory complexes
that rely upon diffusion of factors through the membrane?, providing several avenues by

which membrane composition might impact protein function.

Similarly, alkaline pH can affect membrane proteins in many ways. Low extracellular
proton concentration could impair proton-gradient dependent proteins, which constitute a
large fraction of cell-surface proteins. Additionally, direct exposure to high pH might cause
extracellular domains of proteins to unfold and function poorly, which could impose a higher
demand on membrane properties to maintain those proteins in a folded state. Further
exploration of which of these mechanisms are relevant might suggest additional therapeutic

synergies with both biotin synthesis inhibition and alkaline pH.

Together, these results suggest heretofore undescribed connections between the
alkaline environment of the lung and biotin-dependent fatty acid remodeling that serves to
preserve envelope fluidity. Future work to examine these connections may further illuminate
the mechanisms by which fatty acid remodeling is used by pathogens to respond to
environmental stresses like alkalinity and suggest additional therapeutic avenues for treating

apical lung pathogens.
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Methods
Strains

All experiments were performed in the M. abscessus abscessus type strain (ATCC 19977) unless
otherwise indicated. Clinical isolates of M. abscessus were isolated from patients in Taiwan.
Strain T35 was isolated from a surgical wound site, T37 was isolated from a lung biopsy, and

104

strains T40 and Bamboo'®* were isolated from sputum. All plasmid construction was performed

in DH5a Escherichia coli.
Mycobacterial culturing conditions

All M. abscessus strains were maintained in Middlebrook 7H9 broth (271310, BD Diagnostics,
Franklin Lakes, NJ, USA) with 0.2% (v/v) glycerol (GX0185, Supelco, Bellefonte, PA, USA), 0.05%
(v/v) Tween-80 (P1754, MilliporeSigma, Burlington, MA, USA), and 10% (v/v) oleic acid-albumin-
dextrose-catalase (OADC) (90000-614, VWR, Radnor, PA, USA). OADC and Tween-80 were
omitted from medium used for experiments. M. abscessus cultures were shaken at 150 rpm at

37°C.
Plasmid construction

Oligonucleotides used for all plasmid and strain construction are listed in Supplemental Table 3.
E. coli cells were made competent using rubidium chloride and transformed according to

standard protocolst®,

pL5-UV15-TetO-bioA plasmid was produced by PCR amplification of MAB_2688c with 20 bp
complementarity to pL5 PTetO Msm PonAl truncation A-FLAG clone 1% using Phusion High-
Fidelity Polymerase (M0530, NEB, Ipswich, MA, USA), followed by isothermal assembly*®” into
Ndel (R0O111, NEB) and HindllI-HF (R3104, NEB) digested pL5 PTetO Msm PonA1l truncation A-
FLAG clone 1.

pMV306G13+Lux+zeo was constructed by replacing the L5 integrase, AttP site, and
aminoglycoside-3’-phosphotransferase (aph) kanamycin resistance gene of pMV306G13+Lux*®
with the Tweety integrase and AttP site as well as the zeocin resistance gene using isothermal

assembly1%’,
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M. abscessus transformation

M. abscessus was grown to OD600 = 0.5 then washed 3 times at 22°C by pelleting 5000 x g for 7
minutes then resuspending in the initial culture volume of 10% glycerol. After the final wash,
cells were resuspended in 1/100%™ the initial culture volume of 10% glycerol. 50 pL of this final
mixture was combined with 100 ng DNA in 1 uL water and incubated at 22°C for 5 minutes. This
mixture was transferred to a 2 mm electroporation cuvette (89047-208, VWR), and
electroporated at 2500 V, 125 Q, 25 uF using an ECM 630 electroporator (45-0651, BTX,
Holliston, MA, USA). 1 mL 7H9 broth was added to the electroporated cells, and cells were
incubated shaking at 150 rpm for 4 hr at 37°C. 100 uL of this mixture was spread on 7H10 +
0.5% (v/v) glycerol + 10% (v/v) OADC agar plates using 4 mm borosilicate glass beads, and

plates were incubated at 37°C for 4 days.
Strain construction

AbioA pMV306G13+Lux+zeo strains were generated by recombineering!®® knockout of
MAB_2688c (bioA). M. abscessus ATCC19977 was transformed with 100 ng pNit-RecET%, a
plasmid which contains a nitrile-inducible recombinase as well as the counter-selection SacBR
genes'®® and selected on 7H10 + 0.5% (v/v) glycerol + 10% (v/v) OADC agar plates containing 50
ug/mL kanamycin sulfate (K4000, MilliporeSigma). Successful transformants were identified by
colony PCR using oligonucleotides MRSO1 and MRS02. To generate the recombineering
template, 3 fragments were produced with 20 bp overlaps by PCR amplification with Phusion
High-Fidelity Polymerase using the indicated primer pairs: a fragment 500 bp upstream of
MAB_2688c (MRS03 + MRS04) using M. abscessus genomic DNA as a template, the zeocin
resistance cassette flanked by loxP sites using pKM-lox-zeo as a template®® (MRS05 + MRS06),
and a fragment 500 bp downstream of MAB_2688c (MRS07 + MRS08) using M. abscessus
genomic DNA as a template. Those three fragments were joined with a Notl-HF (R3189, NEB)
and Ndel digested vector, pL5 PTetO Msm PonAl truncation A-FLAG clone 1%, using
isothermal assembly!%’. The linear recombineering product was PCR amplified from the
resulting plasmid using Phusion High-Fidelity Polymerase and primers MRS09 + MRS10 and PCR
purified using the Monarch PCR & DNA Cleanup Kit (T1030, NEB). M. abscessus pNit-RecET was
grown to OD600 = 0.8, then 1 uM isovaleronitrile (308528, MilliporeSigma) was added to the
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culture for 8 hr, followed by addition of 200 mM glycine for 14 hr. M. abscessus pNit-RecET was
then transformed with 1 pg linear recombineering fragment as described above, with the
following modifications: final resuspension of electrocompetent cells was in 1/10% the initial
culture volume, electroporator settings were 2500 V;1000 Q;25 uF, and cultures were allowed
to recover at 37°C for 8 hr prior to plating. Successful recombineering deletions were confirmed
by colony PCR (Supplemental Figure 2D) using primers MRS09 + MRS10. bioA::zeoR strains were
passaged on 7H10 + 0.5% (v/v) glycerol + 10% (v/v) OADC agar plates containing 3% sucrose to
select for bacteria that lost the episomal plasmid pNit-RecET and its SacBR gene. Successful loss
of pNit-RecET was identified by failure to grow on 7H10 + 0.5% (v/v) glycerol + 10% (v/v) OADC
agar plates containing 50 ug/mL kanamycin along with ability to grow on 7H10 + 0.5% (v/v)
glycerol + 10% (v/v) OADC agar plates containing 100 ug/mL zeocin. M. abscessus bioA::zeoR
strains were then transformed with pCreRec-SacBR-kan'® to excise the zeoR gene and produce
AbioA strains, which were confirmed by colony PCR with primers MRS09 + MRS10
(Supplemental Figure 2D). AbioA strains were made luminescent by transformation with 100 ng
pMV306G13+Lux+zeo and selection on 7H10 + 0.5% (v/v) glycerol + 10% (v/v) OADC agar plates
containing 100 pg/mL zeocin (R25001, Thermo Fisher Scientific, Waltham, MA, USA). bioA
rescue constructs were generated by transforming AbioA pMV306G13+Lux+zeo strains with
pUV15-Tet-bioA and selecting on 7H10 + 0.5% (v/v) glycerol + 10% (v/v) OADC agar plates

containing 50 pug/mL kanamycin sulfate and 100 ug/mL zeocin.

Luminescent strains were generated by transforming 100 ng pMV306G13+Lux* into
electrocompetent M. abscessus and selecting on 7H10 + 0.5% (v/v) glycerol + 10% (v/v) OADC
agar plates containing 50 pg/mL kanamycin. Colonies were checked for luminescence using the

chemiluminescence setting of a c300 Gel Imaging System (Azure Biosystems, Dublin, CA, USA).

Fluorescent M. abscessus was generated by transformation with 100 ng plasmid pL5-MOP-
mScarlet containing mScarlet®® driven by a Mycobacterial Optimized Promoter (MOP)%,
followed by selection on 7H10 + 0.5% (v/v) glycerol + 10% (v/v) OADC agar plates containing 50
ug/mL kanamycin.
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824  Colony PCR

825 100 pL saturated M. abscessus culture was pelleted 10,000 x g 1 min. The pellet was

826  resuspended in 10 pl sterile water, then 1 pL was transferred to a PCR tube containing 500 nM
827  of each forward and reverse primer and 1X GoTaq mix (M7123, Promega, Madison, WI, USA) in
828 20 pl total volume. PCR tubes were incubated at 95°C for 30 minutes to sterilize cultures, then

829  PCR was performed according to manufacturer’s recommendations.
830  Air-liquid interface culture

831  NulLi-1 immortalized bronchial epithelial cells*®(ATCC CRL-4011) were expanded in bronchial
832  epithelial growth medium (BEGM)!!° (See Supplemental File 1 for formulation) on collagen

833  coated 75 cm? flasks (353136, Corning Inc., Corning, NY, USA). Cells were washed with

834  phosphate buffered saline (PBS) (10010031, Thermo Fisher Scientific), detached by addition of
835  0.25% trypsin-0.02% EDTA (59428C, MilliporeSigma) followed by 10 minute incubation at 37°C,
836 and counted using a Countess Il FL cell counter (Thermo Fisher Scientific) after addition of

837  trypan blue (T8154, MilliporeSigma) to assess viability. Cells were plated in either 24-well

838  (62406-173, VWR) or 6-well (62406-171, VWR) transwell inserts coated with collagen at

839  densities of 90,000 cells per 24-well insert or 800,000 cells per 6-well insert with BEGM medium
840 added to both the basal and apical compartments. Cells were allowed to expand in BEGM for 3
841  days to ensure formation of a confluent monolayer, then BEGM was removed from both

842  compartments and replaced with air-liquid interface culture (ALI) medium?° (See Supplemental
843  File 1 for formulation) only in the basal compartment. 24-well cultures were provided with 0.8
844  mLl basal medium, and 6-well cultures were provided 3 mL basal medium. ALl cultures were

845  maintained for 14 days, changing basal media and aspirating apical liquid every 2 days. For all
846  cell culture, cells were maintained in a humidified incubator with 5% CO; at 37°C. NulLi-1 cells
847  routinely tested negative for mycoplasma infection using MycoAlert Mycoplasma Detection Kit

848  (LT07-418, Lonza Group AG, Basel, Switzerland) according to the manufacturer’s instructions.
849  Collagen coating plates

850 Human placental collagen (C7521, MilliporeSigma) was resuspended at 0.1 mg/mL in PBS, left

851  overnight at 4°C to allow collagen to dissolve, and filtered through a 0.22 um filter
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(SEIM179M6, MilliporeSigma). Sterile filtering reduces collagen concentration to an unknown
degree, so collagen was always filtered using same type of filter. The following volumes of
collagen solution were added to plates or transwells: 3 mL for 75 cm? flasks, 1 mL for 6-well
transwell, and 0.3 mL for 24-well transwell. Collagen was left on plates and transwells overnight

at 4°C, then aspirated from plates the following day.
Lung infection model

Mature air-liquid interface cultures were infected with the indicated amounts of M. abscessus
by adding M. abscessus resuspended in PBS to the apical compartment of the culture. M.
abscessus was suspended in 50 pL PBS per well for 24-well cultures and 500 uL PBS per well for
6-well cultures. To ensure that the air-liquid interface was maintained, cultures were infected,
incubated for 4 hours, then excess liquid was removed from the surface. This process
consistently removed approximately 80% of the bacteria (Supplemental Figure 1D). MOI noted
on all graphs represents the targeted MOI after removal of excess medium. Infected cultures
were sealed with Breathe-Easy membranes (2380059, MilliporeSigma) and incubated in a
humidified incubator with 5% CO> at 37°C. Luminescent M. abscessus measurements were
taken using a Spark 10M plate reader (Tecan, Mannedorf, Switzerland) in the same culture
plates used for infection. To avoid luminescence bleed-through between wells, cultures were
spaced at intervals across the culture plate. Lung cell viability was monitored by lactate
dehydrogenase release using the LDH-Glo Cytotoxicity assay (J2380, Promega) according to

manufacturer’s instructions.
Fluorescein permeability assay

Sodium fluorescein (46960, MilliporeSigma) was added to the apical compartment of air-liquid
interface cultures, or control collagen-coated wells with no cells. Equal volumes of apical and
basal liquid were transferred to a black 96-well plate (3915, Corning), and fluorescence was
measured in a Tecan Spark 10M plate reader with an excitation wavelength of 482 nm and an
emission wavelength of 527 nm. Monolayer permeability represents the ratio of fluorescein in
the basal compartment compared to the apical compartment normalized to the ratio present in

collagen-coated, empty wells.
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Fluorescence microscopy

Lung cells were fixed directly to transwells by treatment with 4% paraformaldehyde (15710,
Electron Microscopy Sciences, Hatfield, PA) in PBS for 1 hr at 22°C. After fixation, cells were
stored in PBS at 4°C until stained. Fixed cells attached to the transwell membrane were cut out
of the transwell and transferred to a 1.5 mL microcentrifuge tube. Cells were permeabilized by
treatment with 250 pL PBS + 1 mM CacCl; (0556, VWR), 1 mM MgCl, (M8266, MilliporeSigma),
and 0.2% (v/v) Triton X-100 (T8787, MilliporeSigma) for 15 minutes at 22°C, then washed 3x
with PBST (PBS + 1 mM MgCl, + 1 mM CaCl; + 0.1% Tween 20 (P1379, MilliporeSigma)). For f-
actin staining, membranes were incubated on a rocker in 100 uL phalloidin-iFluor 488
(ab176753, Abcam, Cambridge, UK) diluted 1:1000 in PBS + 1% bovine serum albumin (A9647,
MilliporeSigma) for 1 hr at 22°C. For MUC5AC staining, permeabilized membranes were
incubated on a rocker 1 hr at 22°C in PBST + 1% bovine serum albumin + 10% goat serum
(ab7481, Abcam), then incubated 16 hr at 4°C in anti-MUCS5AC antibody (ab3649, Abcam)
diluted 1:20 in PBST + 1% bovine serum albumin + 10% goat serum. Membranes were then
washed 3x with PBST and incubated 1 hr at 22°Cin 100 pL anti-mouse IgG AlexaFluor 594
secondary antibody (ab150116, Abcam) diluted 1:200 in PBST + 1% bovine serum albumin +
10% goat serum. After staining, all membranes were washed 3x in PBST. Where relevant, cells
were incubated 1 minute at 22°C in 100 pL 1 pg/mL 4',6-diamidino-2-phenylindole (DAPI)
(D9542, MilliporeSigma) in PBS, then washed once in PBS. Transwell membranes were
transferred to glass slides (16004430, VWR), 10 pL n-propyl gallate solution (50 mg/mL n-propyl!
gallate (MP210274780, Thermo Fisher Scientific) and 16.3 mg/mL Tris base (648310,
MilliporeSigma) dissolved in 70:30 glycerol:PBS) was added to the slides as an anti-fade
reagent, and slides were covered with 22 mm x 22 mm, 1.5 thickness glass cover slips (3406,
Erie Scientific, Ramsey, MN, USA). For widefield images (Supplemental Figure 1B), slides were
imaged on an inverted Nikon TI-E microscope at the indicated magnification. Phalloidin-iFluor
488 was excited at 470 nm, anti-mouse AlexaFluor 594 was excited at 555 nm, and DAP| was
excited at 395 nm. For confocal images (Figure 1B, Supplemental Figure 1G-H), images were
collected on a Zeiss LSM980 single point scanning confocal microscope with a 63x 1.4 NA oil-

immersion objective and a 1024x1024 pixel frame size. Phalloidin-iFluor 488 was excited at 488
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nm and emission was monitored over the range 482-677 nm. mScarlet-expressing M. abscessus
was excited at 561 nm and emission was monitored over the range 569-700 nm. DAPI was
excited at 405 nm and emission was monitored over the range 378-686 nm. For orthogonal
view (Supplemental Figure 1H), z-stack images were taken at increments of 0.25 um. Images

were processed using Fiji*!! running Imagel) v1.53q.
Scanning electron microscopy

Lung cells were fixed directly to transwells for 18 hr at 22°C in a mixture of 1.25%
formaldehyde, 2.5 % glutaraldehyde and 0.03% picric acid in 0.1 M Sodium cacodylate buffer,
pH 7.4. Fixed cells were washed with 0.1 M sodium cacodylate buffer and post-fixed with 1%
osmium tetroxide in 0.1 M sodium cacodylate buffer for 2 hours at 22°C. Cells were then rinsed
in ddH,0 and dehydrated through a series of ethanol (30%, 50%, 70%, 95%, (2x)100%) for 15
minutes per solution. Dehydrated cells were then placed in a 1:1 solution of
hexamethyldisilazane (HMDS) and 100% ethanol for 1 hour at 22°C, then washed 2x 30 minutes
at 22°C with 100% HMDS. Samples were left in a fume hood to air dry 18 hr at 22°C, then
mounted on aluminum stages with carbon dots and coated with platinum (6 nm) using a Leica
EM ACE600 Sputter Coater. The dried samples were observed in a Hitachi S-4700 Field Emission

Scanning Electron Microscope (FE-SEM) at an accelerating voltage of 3kV.
Luminescence growth curves

M. abscessus was thawed and grown to saturation in 7H9 broth with 0.2% (v/v) glycerol, 0.05%
(v/v) Tween-80, and 10% (v/v) OADC, then diluted back and grown overnight to an OD600 = 0.5-
0.8. Based on OD600 measurements, approximately 10,000 colony forming units were pelleted
and resuspended in PBS and then plated in each well of a white, 96-well plate (655074, Greiner
Bio-One, Frickenhausen, Germany) in 100 uL of relevant medium. For rescue experiments,
growth medium was prepared by adding small volumes of concentrated stock solutions of the
desired compound. Stock solutions were made as follows: 1 M stock solution of sodium acetate
(52889, MilliporeSigma) in water, 200 mM stock of sodium propionate (P1880, MilliporeSigma)
in water, 50 mM stock solution of octadec-9-enoate (07501, MilliporeSigma) in water, 50 mM

stock solutions of hexadecanoic acid (P5585, MilliporeSigma), hexadec-9-enoic acid (P9417,
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MilliporeSigma), octadecanoic acid (54751, MilliporeSigma), and pentadecanoic acid (P6125,
MilliporeSigma) in ethanol (MACR6777-16, VWR), and 20% tyloxapol (T8761, MilliporeSigma) in
water. Pure benzyl alcohol (24122, MilliporeSigma) was added directly to medium. For dialyzed
medium experiments, basal medium from air-liquid interface cultures was taken after 48 hr
incubation, then dialyzed against ALI medium using a Pur-A-Lyzer Maxi Dialysis Kit (PURX35015,
MilliporeSigma) according to manufacturer’s instructions. For all growth curves, plates were

sealed with Breathe-Easy membranes and incubated at 37°C without shaking.
Transposon library production

To create a transposon mutant library of strain T35, 100 mL of T35 culture was grown to an
0OD600 of 1.5. Cells were washed twice with 50 mL MP Buffer (50mM Tris-HCl pH 7.5, 150 mM
NaCl, 10 mM MgSQ4, 2 mM CaCly) and resuspended in 10 mL MP Buffer. 2 x 10! phage forming

112 carrying the Himarl transposon®!3 were

units of temperature sensitive dMycoMarT7 phage
added to bacteria. Phage and bacterial cultures were incubated at 37°C for 4 hr with shaking.
Transduced cultures were pelleted at 3200 x g for 10 min at 22°C and then resuspended in 12
mL of PBS + 0.05% Tween 80. Cultures were titered by plating on 7H10 + 0.5% (v/v) glycerol +
10% (v/v) OADC agar plates supplemented with 100 pg/mL kanamycin sulfate. 150,000

bacterial mutants were plated onto 7H10 + 0.5% (v/v) glycerol + 10% (v/v) OADC + 0.1% (v/v)
Tween 80 + 100 pug/mL kanamycin sulfate agar plates and grown for 4 days at 37°C. The

resulting mutant library was harvested and stored in 7H9 + 10% glycerol at —-80°C.
Transposon library selection in lung infection model

Transposon mutant libraries were inoculated at a final MOI = 1 onto mature air-liquid interface
cultures of Nuli-1 cells grown in 6-well transwells as described above. Libraries were also
inoculated into 3 mL ALI medium (Supplemental File 1) in 6-well plates without transwells for
the “Tissue culture medium” condition. 3 biological replicates of the lung infection and 3
biological replicates of the tissue culture medium condition were inoculated. After 48 hr, M.
abscessus was harvested from lung cultures by adding 500 pL PBS to the apical surface, scraping
the apical surface of the transwell with a scraper (734-2602, VWR), and transferring PBS to a

microcentrifuge tube. Bacteria were pelleted 5000 x g for 5 minutes at 22°C, resuspended in
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7H9 + 0.2% (v/v) glycerol + 0.05% (v/v) Tween-80 + 10% (v/v) OADC, mixed 1:1 with 50%
glycerol, and frozen at -80°C until titering. Cultures were titered by plating on 7H10 + 0.5% (v/v)
glycerol + 10% (v/v) OADC agar plates supplemented with 100 pg/mL kanamycin sulfate.
Approximately 150,000 bacterial mutants for each condition were plated across 6 245 mm x
245 mm (431111, Corning) 7H10 + 0.5% (v/v) glycerol + 10% (v/v) OADC + 0.1% Tween 80 + 100
ug/mL kanamycin sulfate agar plates and grown for 4 days at 37°C. All 6 plates for each
biological replicate were combined by scraping into a 50 mL conical tube containing 5 mL 7H9 +
0.2% (v/v) glycerol + 0.05% (v/v) Tween-80 + 10% (v/v) OADC and 5 mL 50% glycerol. Post-

selection libraries were then frozen in 2 mL aliquots at -80°C until gDNA isolation.
Genomic DNA Extraction

gDNA was isolated as previously described?®. 2 mL post-selection transposon mutant libraries
were pelleted, resuspended in TE Buffer (10 mM Tris HCI pH 7.4, 1 mM EDTA pH 8), and
transferred to 2 mL tubes containing 0.1 mm silica beads (116911500, MP Biomedicals, Irvine,
CA) as well as 600 pL 25:24:1 phenol:chloroform:isoamyl alcohol (P3803, MilliporeSigma).
Samples were homogenized using Bead Bug 3 Microtube Homogenizer (D1030, Benchmark
Scientific, Sayreville, NJ, USA) 4 x 45 s at 4000 rpm. Samples were cooled on ice for 45 s
between each successive round of homogenization. Samples were pelleted 21,130 x g 10
minutes at 22°C, then aqueous layer of supernatant was combined with 1 volume 25:24:1
phenol:chloroform:isoamyl alcohol and incubated on a rocker 1 hr at 22°C. Samples were then
transferred to pre-pelleted MaXtract High Density phase-lock tubes (129065, Qiagen, Hilden,
Germany), centrifuged 1500 x g 5 minutes at 4°C, re-extracted by adding % volume chloroform
(193814, MP Biomedicals), and centrifuged 1500 x g 5 minutes at 4°C. Upper aqueous layer was
transferred to a new MaXtract High Density phase-lock tube and samples were incubated
shaking at 150 rpm 1 hr at 22°C with RNase A (EN0531, Thermo Fisher Scientific) added to a
final concentration of 25 pg/mL. Samples were then re-extracted with 1 volume 25:24:1
phenol:chloroform:isoamyl alcohol, centrifuged 1500 x g 5 minutes at 4°C, extracted with
volume chloroform, and centrifuged 1500 x g 5 minutes at 4°C. The aqueous phase was
transferred to a conical tube, and DNA was precipitated by adding 1/10%™ volume 3 M sodium

acetate pH 5.2 and 1 volume isopropanol (3032-16, VWR) then incubating at 22°C for 18 hr.
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Pellet was washed 3x with 70% ethanol, dried 10 minutes to remove residual ethanol, then

resuspended in 1 mL nuclease free water.
Transposon sequencing, mapping, and analysis

Chromosomal-transposon junctions were amplified following established protocols!!4. These
amplicons were sequenced using an lllumina NextSeq 500 sequencer, and reads were mapped
to the T35 genome using TRANSIT Pre-Processor and analyzed using TRANSIT!®, Insertion
counts were normalized to trimmed total reads, and comparisons of gene essentiality between
conditions were performed with permutation-based resampling analysis''>. Multiple

comparison-adjusted p-values were determined using the Benjamini-Hochberg method.
Biotin quantitation

Culture medium was sampled from the lung infection model, the liquid was centrifuged at 5000
x g for 5 minutes to pellet any cells, and the supernatant was transferred to a new
microcentrifuge tube and incubated at 85°C for 1 hr to ensure any remaining bacteria were
heat-killed. Standards were also incubated at 85°C for 1 hr. Biotin was quantitated using a
competitive enzyme-linked immunosorbent assay (ELISA) kit (K8141, Immundiagnostik,
Bensheim, Germany) according to manufacturer’s instructions. Samples were diluted 1:75 in
the ELISA kit sample dilution buffer. Absorbance was measured at 450 nm using a Tecan Spark

10M plate reader.
Protein isolation and western blot

Protein was isolated from M. abscessus by pelleting bacteria 3200 x g for 10 minutes at 4°C,
resuspending in Tris buffered saline (TBS) (28358 Thermo Fisher Scientific) + protease inhibitor
(11873580001, MilliporeSigma) (0.5 tablet per 10 mL TBS), transferring to 2 mL tubes with 0.1
mm silica beads (116911500, MP Biomedicals), and homogenizing using a Bead Bug 3
Microtube Homogenizer 4 x 45 seconds at 4000 rpm with 2 minutes of incubation on ice
between rounds of homogenization. Homogenized samples were pelleted 21,130 x g for 5
minutes at 4°C, and the supernatant was heat-killed by incubation at 80°C for 20 minutes.
Protein abundance was quantitated by absorbance at 280 nm using a Nanodrop 1000

spectrophotometer (Thermo Fisher Scientific), and samples were normalized to 2.5 mg/mL by
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dilution in TBS. After normalization, remaining DNA was digested by addition of TURBO DNase
buffer (AM2238, Thermo Fisher Scientific) (final concentration of 10%) and TURBO DNase (final
concentration of 2%) followed by incubation at 37°C for 15 minutes. Samples were mixed with
4X LDS NuPage sample buffer to a final concentration of 1X and dithiothreitol (71003-396,
VWR) to a final concentration of 50 mM. Samples were incubated at 70°C for 10 minutes, then
7 ug of protein along with PageRuler Prestained ladder 10 kDa to 180 kDa (26616, Thermo
Fisher Scientific) was loaded on a NuPage 4-12% gradient Bis-Tris pre-cast SDS-PAGE gel
(NP0321, Thermo Fisher Scientific), which was electrophoresed at 115 V for 90 minutes.
Proteins were transferred to a PVDF membrane (1704156, Bio-Rad Laboratories, Hercules, CA)
using TransBlot Turbo Transfer System (Bio-Rad) on the Mixed MW setting. Membranes were
blocked by incubating in TBS + 0.1% Tween 20 (TBST) + 5% bovine serum albumin 1 hr at 22°C,
and then were incubated with streptavidin-HRP (3999S, Cell Signaling Technology, Danvers, MA,
USA) diluted 1:400,000 in TBST + 5% bovine serum albumin for 18 hr at 4°C. Membranes were
washed 3x in TBST to remove unbound streptavidin-HRP and were developed by 1 minute
incubation in 1 mL Azure Radiance Plus luminol/enhancer solution and 1 mL Azure Radiance
Plus Peroxide Chemiluminescent Detection Reagent (AC2103, Azure Biosystems). Excess
reagent was allowed to drain off of the membrane, and membranes were imaged using the
chemiluminescence detector of a ¢c300 Gel Imaging System (Azure Biosystems). After blotting,
total protein was detected by staining membranes with SYPRO Ruby Protein Blot Stain (S11791,
Thermo Fisher Scientific) according to manufacturer’s instructions. SYPRO Ruby staining was

imaged using the Epi Blue setting of the ¢300 Gel Imaging System.
Fatty acid methyl ester production

To avoid detergent contamination for mass spectrometry, M. abscessus ATCC19977 Tween-free
glycerol stocks were generated by growing M. abscessus to saturation in 7H9 + 0.2% (v/v)
glycerol + 10% (v/v) OADC, then freezing at -80°C in 25% glycerol in 7H9. From these stocks,
luminescent M. abscessus was cultured in experimental medium to a luminescence value
equivalent to OD600 = 0.6, then collected by centrifugation at 3200 x g for 7 minutes at 4°C.
Cells were washed 2x in HPLC grade water (270733, MilliporeSigma), then resuspended in 1 mL

HPLC grade water and transferred to a glass tube with PTFE-lined cap. Total lipids were isolated
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by Folch extraction!'® by adding 24 mL 2:1:0.6 HPLC chloroform (C297-4, Thermo Fisher
Scientific) :HPLC methanol (A454-4, Thermo Fisher Scientific) :HPLC water with 10 pg/mL
butylated hydroxytoluene (B1378, MilliporeSigma) as an antioxidant and by then shaking the
samples 18 hr at 22°C. Samples were centrifuged 1600 x g for 10 minutes at 22°C to separate
layers, then the lower organic layer was transferred to a pre-weighed glass tube. Samples were
dried under continuous flow of atmospheric air and were then weighed to determine yield.
Fatty acid methyl esters were generated by acid-catalyzed methyl esterification. Samples were
dissolved at 10 mg/mL in toluene, then 50 uL of resuspended sample was evaporated to
dryness under continuous flow of nitrogen, and 450 uL 0.4 M HCl in methanol was added to the
samples and incubated for 18 hr at 50°C. 250 pL of 5% NaCl in water and 250 pL hexanes were
added, then samples were vortexed and set at 22°C to allow layers to separate. The upper

hexane layer was transferred to glass insert GC/MS vials.
Gas chromatography/mass spectrometry

1 uL of sample or of a fatty acid methyl ester standard (CRM18918, MilliporeSigma) was
injected into a 30 m x 250 um x 0.25 um DB-FastFAME column (G3903-63011, Agilent
Technologies, Santa Clara, CA, USA) using helium as a carrier gas at a constant pressure of 14
PSI. The GC oven temperature was held at 50°C for 30 s, then increased at a rate of 25°C/min to
194°C and held for 1 min. Temperature was then increased at a rate of 5°C/min to 245°C and
held for 3 min. The mass spectrometer (MS) was operated using electron impact ionization at
70 eV, with the MS source held at 230°C and the MS quadrupole held at 150°C. lons were

detected in normal scanning mode over an m/z range of 104-412.
GC/MS peak identification and quantitation

GC/MS peaks were identified using AMDIS'” by comparison to a fatty acid methyl ester
standard (CRM18918, MilliporeSigma) or by predicted retention time based on equivalent chain
length''8120 and by mass/charge ratio and fragmentation pattern. Double bond location could
not be determined confidently based on the small degree of retention time separation for
different positions, so unsaturated fatty acids are listed without assigning a position for double

bonds. Methyl-group position for branched fatty acids could be determined for some species,
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and species that could represent multiple branched fatty acids are indicated as such in figure
panels. Peaks identified may also contain chemically converted fatty acids produced by the
process of acid-catalyzed methyl esterification. Peak areas were quantitated using EI-MAVEN??%,
and samples were normalized by subtracting blank measurements and normalizing to total ion
counts within each sample. For heat maps and principal component analysis, the mean
normalized peak intensity for each metabolite was subtracted from the normalized peak
intensity of each sample, then that value was divided by the standard deviation of the peak
intensities for that metabolite across all samples. Plots were produced using Metaboanalyst
5.0'22, Heat maps were produced using Euclidean distance measurement and Ward clustering.
Samples were clustered for all heat maps, and metabolites were clustered for Supplemental

Figure 4C-D.
HPLC/MS lipidomics

M. abscessus was cultured from detergent-free stocks in biological quadruplicate, harvested,
and washed as described for fatty acid methyl ester production. Total lipids were extracted by
resuspending washed cell pellets in 1 mL HPLC grade methanol (A454-4, Thermo Fisher
Scientific), transferring to a glass vial with PFTE cap, adding 3 mL HPLC grade methanol and 2
mL HPLC grade chloroform (C297-4, Thermo Fisher Scientific), then shaking at 22°C for 1 hr.
Samples were centrifuged 750 x g for 30 minutes at 22°C, and supernatant was collected.
Insoluble pellets were re-extracted with 6 mL 1:2 methanol:chloroform using the same method,
and supernatants were pooled with those collected in the first extraction. Pooled supernatants
were evaporated to dryness under continuous nitrogen flow. HPLC/MS was carried out using an
Agilent 1260 Infinity LC system with a 6546 QTOF mass spectrometer using a previously
published method?® with minor modifications. 10 pL of pooled dried lipids dissolved to 1
mg/mL in 70:30 (v/v) hexanes:isopropanol was injected into a normal-phase Inerstil Diol
column (GL Sciences, Tokyo, Japan) and eluted with a binary gradient solvent system using
70:30 (v/v) hexanes:isopropanol as starting solvent and 70:30 (v/v) isopropanol:methanol as
the final solvent. Both solvents had 0.1% formic acid and 0.05% aqueous ammonia added to

improve ionization.
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Extracted ion chromatograms from MassHunter software (Agilent Technologies) were
generated for lipidomic analysis using the R package xcms'?* for peak identification and
alignment, statistical analysis using the linear model and Bayesian shrinkage of variance
methods in the R package limma'?°, and data visualizations using base R. Code for R analyses is

available by request. Visualization of mass spectra was carried out using MassHunter.
Membrane fluidity measurements

M. abscessus cultures were grown in the indicated media to OD600 = 0.6, then laurdan (D250,
Thermo Fisher Scientific) dissolved in dimethylformamide (DMF) was added to a final laurdan
concentration of 10 uM and a final DMF concentration of 1% (v/v). Laurdan cultures were
incubated 2 hr at 37°C with shaking and then collected by centrifugation at 3200 x g for 7
minutes at 22°C. Samples were washed 4x in the appropriate culture medium supplemented
with 1% (v/v) DMF, then resuspended in 1/50 initial culture volume of appropriate culture
medium + 1% (v/v) DMF. Samples were transferred to black 96-well plates (3915, Corning), and
fluorescence was measured in a Tecan Spark 10M plate reader first at 23°C, then at 37°C after
rapidly increasing the internal temperature of the plate reader. Laurdan was excited at 350 nm,
and emission was monitored over a range from 440 nm to 490 nm. Fluorescence intensity

measurements were converted into the laurdan generalized polarization (GP) metric’°:

I -1
Laurdan GP = =22 #%0
L440 + Lago

Higher values of laurdan GP indicate more ordered, less fluid membranes®”.7°,
pH measurements

pH of medium was measured either using a potentiometric pH meter (30019028, Mettler
Toledo, Columbus, OH, USA) or by measuring the ratio of 560 nm / 430 nm phenol red

100

absorbance!® compared to a standard curve that was generated using a potentiometric pH

meter.
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1132 Figure 1. Air-liquid interface culture model for M. abscessus lung infection.

1133  (A) Schematic of air-liquid interface M. abscessus culture. (B) Confocal microscope images of
1134  Nuli-1 lung epithelial cells stained for F-actin and with DAPI to highlight nuclei. Images were
1135 obtained at 63X magnification. Scale bar = 10 um. (C) Luminescence measurement of M.

1136  abscessus expressing bacterial luciferase infected at a multiplicity of infection = 1 on the apical
1137  surface of lung epithelial cells. n=3 biological replicates. Data are presented as mean +/- SD. (D)
1138  Lactate dehydrogenase (LDH) release from lung epithelial cells at 24 and 48 hr post-infection.
1139  LDH release is normalized to uninfected control cells. n=3 biological replicates. Data are

1140  presented as individual values along with mean +/- SD. (E) Scanning electron microscope

1141  images of apical surface of lung infection model at 24 and 48 hr post-infection. Images were
1142  obtained at 11000X magnification. Scale bar =1 pum.

1143
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1144  Figure 2. Biotin synthesis is required in culture media and lung infection model despite

1145  presence of biotin.

1146  (A) Logy-fold ratio of transposon insertion counts plotted against significance in (A) the lung
1147  infection model versus the input library and (B) the lung infection model versus tissue culture
1148  medium. p-values derived from permutation test. (C) Insertion counts for indicated genes in a
1149  representative replicate of the input library, tissue culture medium, or lung infection model.
1150 Insertion counts are normalized to the local maximum. (D) Luminescence of AbioA M. abscessus
1151  ATCC19977 with (bioA +) or without (bioA -) BioA expression genetically rescued after 48 hr in
1152  either tissue culture medium or in the lung infection model. Culture medium contained either
1153  no supplemental biotin or supplementation of 2 UM biotin. Data are presented as individual
1154  values along with mean +/- SD. n = 3 biological replicates. p-values derived from unpaired, two-
1155 tailed t-test. (E) Biotin concentration measured by enzyme-linked immunosorbent assay (ELISA)
1156  in either tissue culture medium or liquid taken from the apical or basal compartments of a

1157  mature air-liquid interface culture after 48 hours. Red bar represents the range of reported
1158  human serum biotin concentrations®*. Data are presented as individual values along with mean
1159  +/- SD. n = 3 biological replicates. (F) Ratio of biotin concentration measured by ELISA in the
1160 apical and basal compartments of the air-liquid interface culture model. Medium was sampled
1161  from either uninfected or infected air-liquid interface cultures at 24 and 48 hours after

1162 initiation of infection or mock infection. Data are presented as individual values along with
1163  mean +/- SD. n = 3 biological replicates.
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1165  Figure 3. Physiological environments impose demand for biotin synthesis

1166  (A) Luminescence of AbioA M. abscessus ATCC19977 grown in the indicated medium for 48 hr
1167  with the specified final concentrations of biotin in the medium. Values are normalized within
1168  each medium to 3 uM biotin. (B) Luminescence of M. abscessus ATCC19977 grown in the

1169 indicated medium for 48 hr with the specified final concentrations of the BioA inhibitor

1170  compound 36. Values are normalized within each medium to the vehicle treated condition. (C)
1171 Luminescence of M. abscessus ATCC19977 grown in the lung infection model for 48 hr with the
1172 specified final concentrations of compound 36. Values are normalized to the vehicle treated
1173  condition. (D) Western blot for total biotinylated protein in M. abscessus ATCC19977 grown in
1174  tissue culture medium with either vehicle or 16 uM compound 36 along with the indicated
1175 supplementation of propionate. A representative band of SYPRO Ruby staining for total protein
1176 s displayed for each condition. (E) Luminescence of M. abscessus ATCC19977 grown in tissue
1177  culture medium for 48 hr with either vehicle or 64 uM compound 36 along with the indicated
1178  supplementation of propionate or acetate. Values are normalized within each condition to

1179  vehicle-treated.

1180  For all graphs, data are presented as mean +/- SD. n = 3 biological replicates.
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Figure 4. Biotin is required to support fatty acid remodeling that sustains envelope fluidity

(A) Heatmap depicting relative abundance of 24 fatty acid species measured by GC/MS in M.
abscessus ATCC19977 grown 48 hr in either tissue culture medium or mycobacterial medium -
biotin. Samples are hierarchically clustered, while fatty acid species are ordered by their class
and are not clustered. (B) Laurdan generalized polarization (GP) for M. abscessus ATCC19977
grown 48 hr in either tissue culture medium or mycobacterial medium - biotin. Data are
presented as individual values along with mean +/- SD. n=3 biological replicates. p-value
derived from unpaired, two-tailed t-test. (C) GC/MS measurement of the indicated fatty acids in
M. abscessus ATCC19977 grown 48 hr in tissue culture medium treated with either vehicle or
16 UM compound 36. (D) Laurdan generalized polarization (GP) for M. abscessus ATCC19977
grown 48 hr in tissue culture medium treated with either vehicle or 16 uM compound 36. (E)
GC/MS measurement of the indicated fatty acids in M. abscessus ATCC19977 grown 48 hr in
tissue culture medium treated with 16 uM compound 36 along with either vehicle or 1 mM
sodium propionate. (F) Luminescence of M. abscessus ATCC19977 grown in tissue culture
medium for 48 hr treated with either vehicle or 16 uM compound 36 along with the indicated
supplementation of fatty acids. Values are normalized within each condition to vehicle-treated.
(G) Ratio of luminescence of M. abscessus ATCC19977 in air-liquid interface lung cultures
treated with 16 UM compound 36 compared to vehicle-treated. Basal medium was
supplemented with the indicated fatty acids, and infections lasted 48 hr. (H) Luminescence of
M. abscessus ATCC19977 grown in tissue culture medium for 48 hr treated with either vehicle
or 24 uM compound 36 along with the indicated concentration of tyloxapol (1) or benzyl alcohol

(H). Values are normalized within each condition to vehicle-treated. n = 6 biological replicates.

For all graphs, data are presented as individual values along with mean +/- SD. n = 3 biological

replicates unless otherwise indicated. All p-values derived from unpaired, two-tailed t-tests.
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Figure 5. Physiological pH alters fatty acid profile and imposes increased demand for biotin

(A) Luminescence of M. abscessus ATCC19977 grown in tissue culture medium adjusted to the
indicated pH and treated with either vehicle or 16 uM compound 36 for 48 hr. Values are
normalized within each condition to vehicle-treated. (B) Western blot for total biotinylated
protein in M. abscessus ATCC19977 grown in tissue culture medium adjusted to the indicated
pH and treated with either vehicle or 16 uM compound 36. A representative band of SYPRO
Ruby staining for total protein is displayed for each condition. (C) Luminescence of M. abscessus
ATCC19977 grown in mycobacterial medium - biotin adjusted to the indicated pH and treated
with either vehicle or 16 puM compound 36 for 48 hr. Values are normalized within each
condition to vehicle-treated. (D) Heatmap depicting relative abundance of 24 fatty acid species
measured by GC/MS in M. abscessus ATCC19977 grown 48 hr in tissue culture medium adjusted
to the indicated pH. Samples are hierarchically clustered, while fatty acid species are ordered by
their class and are not clustered. (E) pH of liquid sampled from the basal and apical surfaces of
infected or mock infected air-liquid interface lung cultures as measured by phenol red
absorbance. (F) Ratio of luminescence of M. abscessus ATCC19977 in air-liquid interface lung
cultures treated with 128 uM compound 36 compared to vehicle-treated after 48 hr infection.
Initial basal pH was adjusted to either 7.6 or 6.8, and final apical pH in each condition was

determined to be 7.8 and 7.1, respectively.

For all graphs, data are presented as individual values along with mean +/- SD. n = 3 biological

replicates. All p-values derived from unpaired, two-tailed t-tests.
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1229  Supplemental Figure 1. Air-liquid interface culture model system

1230  (A) Scanning electron microscope images of apical surface of lung epithelial cells at 0 and 14
1231  days after initiation of air-liquid interface. Images were obtained at 2000X magnification. Scale
1232 bar =10 um. (B) Widefield microscope images of NulLi-1 lung epithelial cells stained for F-actin,
1233  MUC5AC, and with DAPI to highlight nuclei. Images were obtained at 40X magnification. Scale
1234  bar =20 um. (C) Monolayer permeability as measured by amount of sodium fluorescein that
1235 penetrated through the epithelial layer at successive days after initiation of air-liquid interface.
1236  Data are normalized to empty, collagen-coated transwells and are presented as mean +/- SD. n
1237 =3 biological replicates. (D) Fraction of M. abscessus remaining after aspiration of excess liquid
1238  to re-generate air-liquid interface for the M. abscessus type strain ATCC19977 and clinical

1239  isolate T35. Data are presented as individual values along with mean +/- SD. n=6 biological
1240  replicates. (E) Luminescence emitted by M. abscessus ATCC1997 or clinical isolate T35 in lung
1241  infection model infected at the indicated multiplicity of infection (MOI) over 48 hr of infection.
1242  Data are presented as mean +/- SD. n = 3 biological replicates per condition. (F) Lactate

1243  dehydrogenase (LDH) release from lung epithelial cells at 0 and 24 hr post-infection. LDH

1244  release is normalized to uninfected control cells that were lysed to release maximal LDH. Data
1245  are presented as individual values along with mean +/- SD. n = 3 biological replicates per

1246  condition. (G) Confocal microscope images of Nuli-1 lung epithelial cells infected with M.

1247  abscessus expressing mScarlet fluorescent protein, then washed to remove M. abscessus not
1248 internalized by lung cells and stained for F-actin. Images were obtained at 63X magnification.
1249  Scale bar = 15 um. (H) Orthogonal view of cells pictured in (G). Images were obtained at 63X
1250  magnification. Scale bar = 15 um.
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1252  Supplemental Figure 2. Development of biotin synthesis pathway knockouts

1253  (A) Proliferation rate of M. abscessus ATCC19977 grown either in tissue culture medium or on
1254  the apical surface of air-liquid interface lung cultures. Data are presented as individual values
1255  along with mean +/- SD. n=3 biological replicates. p-value derived from unpaired, two-tailed t-
1256  test. (B) Schematic of biotin biosynthesis pathway. ACP: acyl carrier protein. CoA: coenzyme A.
1257  SAM: S-adenosyl methionine. ATP: adenosine triphosphate. AMP: adenosine monophosphate.
1258  PPi: inorganic phosphate. (C) Schematic of recombineering knockouts of bioA. zeoR: zeocin
1259  resistance cassette (D) Agarose gel electrophoresis of PCR products demonstrating insertion of
1260  zeoR into bioA. Expected PCR product sizes are indicated in (C). (E) Agarose gel electrophoresis
1261  of PCR products demonstrating excision of zeoR from bioA::zeoR. Expected PCR product sizes
1262  are indicated in (C).
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Supplemental Figure 3. Characterization of BioA inhibitor compound 36 in M. abscessus

(A) Luminescence of M. abscessus ATCC19977 grown 48 hr with either vehicle or 16 uM
compound 36 treatment. Media were either tissue culture medium or basal medium sampled
from infected or mock infected air-liquid interface lung cultures dialyzed against tissue culture
medium to replenish small molecules while retaining protein factors. Values are normalized
within each condition to vehicle-treated. (B) Luminescence of the indicated M. abscessus
clinical isolates grown in tissue culture medium for 48 hr with the specified final concentrations
of the BioA inhibitor compound 36 in the medium. Values are normalized within each medium
to the vehicle treated condition. (C) Luminescence of M. abscessus ATCC19977 grown in the
lung infection model for 48 hr in the presence or absence of 16 uM compound 36 and/or 2 uM
biotin added to the basal medium. Values are normalized to the vehicle treated condition. (D)
Trypan blue measurement of viability of lung epithelial cells after 48 hr treatment with the
indicated concentrations of compound 36. Values are normalized to vehicle treated condition.
(E) Uncropped western blot (corresponding to Figure 3D) for total biotinylated protein in M.
abscessus ATCC19977 grown in tissue culture medium with either vehicle or 16 uM compound
36 along with the indicated supplementation of propionate. SYPRO Ruby panel depicts total
protein. (F) Luminescence of M. abscessus ATCC19977 grown in tissue culture medium for 48 hr
with either vehicle or 64 uM compound 36 along with the indicated supplementation of

cholesterol. Values are normalized within each condition to vehicle-treated.

For all graphs, data are presented as mean +/- SD. n = 3 biological replicates. All p-values

derived from unpaired, two-tailed t-tests.
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Supplemental Figure 4. Altered biotin metabolism induces M. abscessus envelope remodeling
(A) Fluorescence intensity scan from 440 nm to 490 nm from either laurdan stained (+cells,
stained) or unstained (+cells, unstained) M. abscessus ATCC19977 samples or samples
containing laurdan but no cells (-cells, stained). One representative sample is depicted for each
condition. (B) Difference in laurdan generalized polarization (GP) between the same sample
measured at 23°C, then rapidly shifted to 37°C and re-measured. n=65 biological replicates. (C)
Heatmap depicting relative abundance of 24 fatty acid species measured by GC/MS in M.
abscessus ATCC19977 grown 48 hr in tissue culture medium treated either with vehicle or 16
UM compound 36. Samples and fatty acid species are both hierarchically clustered. n=3
biological replicates. (D) Heatmap depicting relative abundance of 24 fatty acid species
measured by GC/MS in M. abscessus ATCC19977 grown 48 hr in tissue culture medium treated
with 16 UM compound 36 along with either vehicle or 1 mM sodium propionate. Samples and
fatty acid species are both hierarchically clustered. n=3 biological replicates. (E) Schematic of
propionate utilization. CoA: coenzyme A. TCA: tricarboxylic acid. (F) Volcano plots depicting
log>-fold change in abundance versus significance for ‘molecular events’ with linked retention
time, mass, and intensity representing potential lipid species detected by HPLC/MS. Molecular
events detected in M. abscessus ATCC19977 grown 48 hr in tissue culture medium containing
vehicle are contrasted against those detected in cells treated with 16 uM compound 36 (left) or
with 16 uM compound 36 and 1 mM propionate (right). Peaks significantly changed (p < 0.05
after adjustment by the Benjamini-Hochberg method) in both contrasts (red circles) and a peak
with the mass of compound 36 (blue outline) are indicated. Peak that is significantly depleted
upon compound 36 treatment is depicted as an asterisk in both volcano plots. (G) Plot of
retention time versus mass to charge ratio for all significantly changed peaks depicted in (F),
which clusters peaks by shared chemical properties. Peaks significant in both contrasts (red), a
peak with the mass of compound 36 (blue, [M+H]+) and select alternate compound 36 adducts

(blue) are indicated.
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Supplemental Figure 5. pH is a determinant of biotin demand and fatty acid composition

(A) Correlation between medium pH and sensitivity to biotin synthesis inhibition as measured
by ratio of luminescence of M. abscessus ATCC19977 in tissue culture medium treated with 32
UM compound 36 compared to vehicle-treated after 48 hr. Medium pH changes are a
secondary effect of adding pools of metabolites from mycobacterial medium to tissue culture
medium (see Materials and Methods for composition of pools), and pH was measured by
potentiometric pH meter. Data are presented as mean +/- SD. R? and p-value derived from
Pearson correlation. Line of best fit derived from simple linear regression. (B) Uncropped
western blot (corresponding to Figure 5B) for total biotinylated protein in M. abscessus
ATCC19977 grown in tissue culture medium adjusted to the indicated pH and treated with
either vehicle or 16 uM compound 36. SYPRO Ruby panel depicts total protein. (C) Principal
component analysis of M. abscessus ATCC19977 grown in tissue culture medium adjusted to
the indicated pH based on GC/MS measurement of 24 fatty acid species. (D) Loading plot
depicting individual fatty acid contributions to the principal components displayed in (C). (E) pH
of liquid sampled from the basal and apical surfaces of infected air-liquid interface lung cultures
treated with 128 uM compound 36 as measured by phenol red absorbance. Data are presented

as individual values along with mean +/- SD. n=3 biological replicates.
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1332  Supplemental Table 1. Library statistics for TnSeq

Library Saturation (%) | Non-zero mean reads | Max read count = Skew
T35 input 55.6 34.0 1793 6.1
T35 lung infection-1 | 52.4 125.6 4327 3.6
T35 lung infection -2 | 38.1 94.7 2733 3.7
T35 lung infection -3 | 38.8 101.2 3246 3.9
T35 tissue culture
42.6 81.8 2513 4.0
medium - 1
T35 tissue culture
43.3 73.6 2489 4.4
medium - 2
T35 tissue culture
37.7 46.6 1599 4.0
medium - 3
1333
1334
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Supplemental Table 2. Relative requirement for genes responsible for recycling propionate

Insertion count log,-fold

change (lung infection

Gene Description model / input library) Adjusted p-value

MAB_1462c Methylmalonyl-CoA -0.01 1.00
epimerase

MAB_2711c Methylmalonyl-CoA -0.35 1.00
mutase subunit B

MAB_2712c Methylmalonyl-CoA -0.81 0.63
mutase subunit A

MAB_4616¢ Propionate regulator -0.37 1.00
(PrpR)

MAB_4617 Methylcitrate -0.12 1.00
dehydratase (PrpD)

MAB_4618 Methylcitrate lyase -0.52 1.00
(PrpB)

MAB_4619 Methylcitrate synthase 0.55 0.78

(PrpC)
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1338  Supplemental Table 3. Oligonucleotides used in this study

Oligonucleotide Sequence Purpose

GTATGAGTCAGCAACACCTTC Amplify 1.2 kb region

MRS01
of pNit-RecET

CAGCTGCAGGTCGACTC Amplify 1.2 kb region
MRS02

of pNit-RecET
Amplify ~500 bp
MRS03 CTTTAAGAAGGAGATATACAcgtctcccagegtgtttecg region upstream of
MAB_2688c

Amplify ~500 bp
MRS04 CAACTTAATCGCCTTGCAGCggtgtcaacttcggcacagtcag | region upstream of
MAB_2688c

MRSO05 GCTGCAAGGCGATTAAGTTGGGTA Amplify zeoR cassette

MRS06 AAACAGCTATGACCATGATTACGCCA Amplify zeoR cassette

Amplify ~500 bp
MRS07 AATCATGGTCATAGCTGTTTcctgaacaccgttcaggagagg | region downstream
of MAB_2688c

Amplify ~500 bp
MRS08 GGTGGTGGTGCTCGAGTGCgccaccgcttgegtgte region downstream
of MAB_2688c

Amplify linear
recombineering
MRS09 cgtctcccagegtgtttecg fragment to replace
MAB_2688c with

zeoR
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Amplify linear
recombineering
MRS10 gccaccgcettgegtgtc fragment to replace
MAB_2688c with

zeoR
1339
1340  Supplemental File 1. Formulation of tissue culture and mycobacterial media

1341  Supplemental File 2. Resampling analysis of relative gene requirements in lung infection model

1342  and tissue culture medium versus input library

1343  Supplemental File 3. Fatty acid quantitation in various media conditions
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