

1 **Gabapentin Disrupts Binding of Perlecan to the $\alpha_2\delta_1$ Voltage Sensitive Calcium
2 Channel Subunit and Impairs Skeletal Mechanosensation**
3

4 Perla C. Reyes Fernandez¹, Christian S. Wright¹, Adrianna N. Masterson², Xin Yi¹,
5 Tristen V. Tellman³, Andrei Bonteanu^{3,4}, Katie Rust¹, Megan L. Noonan⁵, Kenneth E.
6 White⁵, Karl J. Lewis⁶, Uma Sankar⁷, Julia M. Hum⁸, Gregory Bix⁹, Danielle Wu^{3,4},
7 Alexander G. Robling⁷, Rajesh Sardar², Mary C. Farach-Carson^{3,4}, William R.
8 Thompson^{1,7,8*}
9

10 ¹Department of Physical Therapy, School of Health and Human Sciences, Indiana
11 University, Indianapolis, IN 46202
12

13 ²Department of Chemistry and Chemical Biology, School of Science, Indiana
14 University, Indianapolis, IN 46202
15

16 ³Department of Diagnostic and Biomedical Sciences, School of Dentistry, The
17 University of Texas Health Science Center at Houston, Houston, TX 77054
18

19 ⁴Department of Bioengineering, George R. Brown School of Engineering, Rice
20 University, Houston, TX 77005
21

22 ⁵Department of Medical and Molecular Genetics, School of Medicine, Indiana
23 University, Indianapolis, IN 46202
24

25 ⁶Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
26

27 ⁷Department of Anatomy, Cell Biology, & Physiology School of Medicine, Indiana
28 University, Indianapolis, IN 46202
29

30 ⁸Division of Biomedical Science, College of Osteopathic Medicine, Marian
31 University, Indianapolis, IN 46222
32

33 ⁹Departments of Neurosurgery and Neurology, School of Medicine, Tulane
34 University, New Orleans, LA 70112
35

36 ***Corresponding Author:** William R. Thompson, DPT, PhD
37

38 Email: thompwil@iu.edu
39

40 Ph.: (205) 975-2788
41

42 Running Title: Gabapentin impairs binding of perlecan and $\alpha_2\delta_1$
43

44 **Disclosures:** KEW receives royalties for licensing FGF23 to Kyowa Hakko Kirin Co.,
45 Ltd; had previous funding from Akebia, and current funding from Calico Labs. KEW also
46 owns equity interest in FGF Therapeutics. All other authors have nothing to disclose.
47

48 **This PDF file includes:**
49

50 Main Text
51

52 Figures 1 to 5
53

54 Tables 1 to 3
55

42 **Abstract**

43 Our understanding of how osteocytes, the principal mechanosensors within bone,
44 sense and perceive force remains unclear. Previous work identified “tethering elements”
45 (TEs) spanning the pericellular space of osteocytes and transmitting mechanical
46 information into biochemical signals. While we identified the heparan sulfate
47 proteoglycan perlecan (PLN) as a component of these TEs, PLN must attach to the cell
48 surface to induce biochemical responses. As voltage-sensitive calcium channels
49 (VSCCs) are critical for bone mechanotransduction, we hypothesized that PLN binds the
50 extracellular $\alpha_2\delta_1$ subunit of VSCCs to couple the bone matrix to the osteocyte
51 membrane. Here, we showed co-localization of PLN and $\alpha_2\delta_1$ along osteocyte dendritic
52 processes. Additionally, we quantified the molecular interactions between $\alpha_2\delta_1$ and PLN
53 domains and demonstrated for the first time that $\alpha_2\delta_1$ strongly associates with PLN via its
54 domain III. Furthermore, $\alpha_2\delta_1$ is the binding site for the commonly used pain drug,
55 gabapentin (GBP), which is associated with adverse skeletal effects when used
56 chronically. We found that GBP disrupts PLN: $\alpha_2\delta_1$ binding *in vitro*, and GBP treatment *in*
57 *vivo* results in impaired bone mechanosensation. Our work identified a novel
58 mechanosensory complex within osteocytes composed of PLN and $\alpha_2\delta_1$, necessary for
59 bone force transmission and sensitive to the drug GBP. This work provides insights into
60 the mechanisms underlying mechanotransduction and will inform future studies to
61 understand the mechanisms responsible for the negative effects of GBP on bone.

62

63 **Keywords:** Perlecan, Voltage Sensitive Calcium Channels, Gabapentin,
64 Mechanosensation, Bone

65

66

67 **Introduction**

68 Osteocytes reside deep within the mineralized matrix of bone and have long
69 dendrite-like processes that run through microscopic channels called canaliculi¹. As
70 osteocytes are uniquely positioned in the bone matrix to communicate with other bone
71 cell types via paracrine signaling and through direct contact with the cellular processes,
72 they are considered the primary mechanosensory skeletal cells^{1,2}. Transmission of
73 mechanical force from the bone matrix to the osteocyte cell membrane was initially
74 thought to occur via direct sensing of whole-tissue strains on the osteocyte surface.
75 However, strains applied to whole bone *in vivo* during normal locomotion are typically
76 between 0.04-0.3% (ref. 3,4), an order of magnitude smaller than the strain necessary to
77 elicit a biochemical response at the osteocyte plasma membrane (1-10%) (ref. 5-7).
78 Thus, a mechanism other than direct force transmission from the bone matrix must
79 account for the ability of osteocytes to perceive mechanical input.

80 The pericellular space between (PCS) the bone matrix and the osteocyte plasma
81 membrane contains non-mineralized extracellular matrix molecules, including
82 proteoglycans, which are collectively termed the pericellular matrix (PCM)^{8,9}. To explain
83 the mechanism by which tissue-level mechanical strains are transmitted into biochemical
84 responses in osteocytes, the presence of matrix-based "tethering elements" (TEs) able
85 to span the PCS and anchor the osteocyte processes to the mineralized matrix was
86 proposed¹⁰. This theoretical model was followed by ultrastructural studies using electron
87 microscopy that visually revealed the tethering elements within the PCS¹¹. However, the
88 molecular identity of these TEs remained unknown.

89 Using immunostaining and immunogold assays, we showed that the large heparan
90 sulfate proteoglycan perlecan (HSPG2, PLN) is expressed along osteocyte cell bodies
91 and dendritic processes in cortical bone but not within the mineralized matrix¹².
92 Furthermore, PLN-deficient mice had fewer TEs within osteocyte canaliculi¹², lower

93 canalicular drag forces, and decreased responses to exogenous loading¹³. Together,
94 these studies identified PLN as a component of the tethering complex in osteocytes
95 necessary for anabolic responses to mechanical loading. While this finding helped
96 explain how force is transmitted to the osteocyte cell membrane, the PLN-containing
97 tethers must attach to the cell surface to induce biochemical responses.

98 Intracellular calcium (Ca^{2+}) influx is a potent signal in response to force¹⁴. Ca^{2+} influx
99 is regulated by voltage sensitive Ca^{2+} channels (VSCCs), and *in vitro* and *in vivo* studies
100 have shown that VSCCs are necessary for anabolic responses to skeletal loading^{15,16}.
101 As PLN deficiency impairs mechanically-induced Ca^{2+} signaling in bone¹⁷, we
102 hypothesized that PLN tethers bind VSCC ectodomains, forming what we call a matrix-
103 channel tethering complex (M-CTC), and that this interaction facilitates intracellular Ca^{2+}
104 influx in response to mechanical force.

105 VSCCs are integral membrane proteins composed of the pore-forming α_1 subunit,
106 which enables calcium (Ca^{2+}) entry, and auxiliary subunits including $\alpha_2\delta$, β , and γ ¹⁸ (**Fig.**
107 **1**). While the pore-forming (α_1) subunit enables Ca^{2+} entry across the membrane,
108 auxiliary subunits influence gating kinetics of the channel pore. In particular, the $\alpha_2\delta_1$
109 subunit is anchored in the plasma membrane, with the majority of the protein positioned
110 extracellularly, an optimal location to interact with extracellular molecules, such as PLN-
111 containing tethering elements. Interestingly, the $\alpha_2\delta_1$ subunit is the binding site of the
112 antiepileptic and neuropathic pain drug gabapentin (GBP)^{19,20} (**Fig. 1**). Chronic GBP use
113 is associated with increased fracture risk in humans²¹ and impaired bone formation in
114 both human and animal studies^{22,23}. However, the mechanism(s) mediating GBP-
115 associated adverse skeletal effects are unclear. Thus, in addition to establishing if PLN
116 directly binds the $\alpha_2\delta_1$ subunit of VSCCs, we sought to determine if GBP interferes with
117 binding of the PLN/ $\alpha_2\delta_1$ complex.

118

119 **$\alpha_2\delta_1$ and PLN co-localize in murine osteocyte-like cells.** We conducted double
120 immunostaining to test whether PLN co-localizes with the pore-forming $\text{Ca}_v3.2$ (α_{1H})
121 VSCC subunit, with wheat germ agglutinin (WGA), and/or $\alpha_2\delta_1$ in MLO-Y4 osteocytic
122 cells. As we previously reported, $\text{Ca}_v3.2$ (α_{1H}) is the primary α_1 VSCC subunit in
123 osteocytes²⁴. In MLO-Y4 cells, $\text{Ca}_v3.2$ (α_{1H}) is expressed within the cell, but also along
124 the cell periphery (**Suppl. Fig. S1a, d**). As WGA binds N-acetyl glucosamine sugars,
125 which are present on the extracellular α_2 portion of $\alpha_2\delta_1$, we performed double staining
126 with $\text{Ca}_v3.2$ and WGA-FITC (**Suppl. Fig. S1a, b**). Areas of overlap (yellow) validated our
127 previous findings that $\text{Ca}_v3.2$ associates with $\alpha_2\delta_1$ in osteocytes (**Suppl. Fig. S1c**). To
128 determine if PLN associates with $\text{Ca}_v3.2$ (α_{1H}) channels, double staining with $\text{Ca}_v3.2$
129 (α_{1H}) and PLN was performed (**Suppl. Fig. S1d-f**). Several areas of overlapping signal
130 demonstrated that PLN associates with $\text{Ca}_v3.2$ (α_{1H}) (**Suppl. Fig. S1f**).

131 Consistent with these findings, PLN and WGA staining overlapped in areas along the
132 cell membrane (**Fig. 2a-c**). Immunostaining of MLO-Y4 cells using antibodies specific to
133 $\alpha_2\delta_1$ and PLN, demonstrated that both $\alpha_2\delta_1$ (**Fig. 2d**) and PLN (**Fig. 2e**) are produced in
134 osteocytic cells. Merged images showed strong overlapping fluorescent signal of these
135 two proteins (**Fig. 2f**, yellow areas). Importantly, the signal was most prominent along
136 osteocytic processes, demonstrating co-localization of PLN and $\alpha_2\delta_1$ in the area of
137 greatest mechanosensitivity (**Fig. 2d-f**). All cell culture immunostaining assays showed
138 no signal when probed with normal IgG in place of the primary antibodies or when using
139 N, N', N''- triacetylchitotriose as a negative control for WGA-FITC staining. Consistent
140 with the immunostaining results, co-immunoprecipitation assays using MLO-Y4 lysates,
141 showed that $\alpha_2\delta_1$ and PLN interact forming a complex *in vitro* (**Fig. 2g**). Overall, these
142 data suggest that this matrix (PLN)-channel ($\alpha_2\delta_1$) tethering complex is a critical
143 component for mechanosensory responses in osteocytes.

144

145 **$\alpha_2\delta_1$ and PLN bind with high affinity, which is mediated by PLN Dm III-2.** To quantify
146 the molecular interactions between PLN and $\alpha_2\delta_1$ we first tested the binding affinity of
147 full-length PLN protein (native form/undigested and enzymatically digested) and the α_2
148 portion of $\alpha_2\delta_1$, followed by quantifying the binding affinity of individual PLN
149 domains/subdomains (Dm I, III-2, IV-1, IV-2, IV-3, and V) with α_2 . Using LSPR-based
150 experiments (**Suppl. Fig. S2, S3**), we obtained the dissociation constant (the constant
151 describing the drug/receptor interactions at equilibrium) between α_2 -bound sensors and
152 PLN. With a dissociation constant (K_D) of 6.6×10^{-11} M, full-length PLN (undigested)
153 bound with high affinity to the α_2 portion of $\alpha_2\delta_1$ (**Table 1**). Removal of heparan sulfate
154 and chondroitin sulfate groups from PLN (digested) resulted in a K_D of 2.6×10^{-7} M.

155 When examining the individual domains/subdomains of PLN, Dm III-2 had the
156 greatest affinity to the α_2 polypeptide, displaying a K_D of 8.0×10^{-11} M. We also tested
157 binding of α_2 to Dm III-2 followed by a cysteine-rich sequence. We found that the K_D
158 value for this domain was 7.7×10^{-6} , suggesting that binding of PLN to $\alpha_2\delta_1$ via Dm III-2
159 is less likely to be mediated through cysteine rich regions. The K_D values of other PLN
160 domains were, Dm I: 7.7×10^{-6} , Dm IV-1: 1.4×10^{-7} , Dm IV-2: 4.3×10^{-4} , Dm IV-3: $1.6 \times$
161 10^{-3} , and Dm V: 5.1×10^{-3} . These values each demonstrated moderate to weak binding
162 to α_2 (**Table 1**). The raw data used to obtain the final dissociation constant values are
163 provided as supplementary information (**Suppl. Fig. S4, Suppl. Table S1**).

164 To evaluate binding of PLN and $\alpha_2\delta_1$ *in silico*, computational 3D protein-protein
165 docking models between the von Willebrand Factor A (vWFA) domain of $\alpha_2\delta_1$ (4FX5) and
166 PLN domain III-2 (4YEP) were generated. The quality report for structure accuracy
167 confirmed that the models used for receptor (4FX5, 95.7 %) and ligand (4YEP, 100%)
168 had high sequence identities with the input structures, where a sequence ID > 30% is
169 considered reliable. Quality criteria of input protein structures were analyzed by ProQ
170 (v1) (ref. 25), a neural network-based method that predicts the quality of a protein model,

171 as measured by LGscore or MaxSub²⁶. Suitable scores for these parameters are
172 classified as correct (LGscore >1.5; MaxSub > 0.1), good (LGscore ≥3 to <5; MaxSub
173 ≥0.5 to <8) or very good (LGscore ≥ 5; MaxSub ≥ 0.8). Input models for receptor 4FX5
174 (LGscore = 5.77; MaxSub =0.428) and ligand 4YEP (LGscore = 5.811; MaxSub =0.234)
175 were within the appropriate quality ranges for docking modeling. In the HDOCK server,
176 putative binding modes are ranked according to their binding energy scores^{27,28}. The first
177 of the top ten prediction models for 4FX5 and 4YEP scored a docking energy of -272.35,
178 indicating strong protein-protein interactions. Cartoon and surface 3D representations of
179 the highest ranked surface binding prediction model are shown in **Figure 3**.

180 **Gabapentin interferes with PLN:α₂δ₁ binding.** Since PLN Dm III-2 showed the highest
181 affinity for α₂, we then used LSPR assays to determine if binding of PLN Dm III-2 or full-
182 length PLN with α₂δ₁ is disrupted by GBP. This was achieved with a series of assays
183 adding either PLN or GBP to the α₂ peptide bound to the nanoplasmonic sensor. With α₂
184 bound to the nanoplasmonic sensor, we first added full-length PLN, which generated a
185 +14.4 nm shift ($Δλ$). Subsequent addition of GBP resulted in a -4.1 nm shift, suggesting
186 dissociation of PLN from α₂ in the presence of GBP (**Table 2. Exp. 1**).

187 Next, instead of first adding PLN to the nanoprism-bound α₂ polypeptide, GBP was
188 added which resulted in a +5.8 nm shift. Binding of GBP, then was followed by addition
189 of full-length PLN which generated a shift of only +0.1 nm, indicating an inability of PLN
190 to bind α₂ in the presence of GBP (**Table 2. Exp. 2**).

191 Using a third approach, full-length PLN was pre-incubated with GBP, and this
192 combination then was added to the α₂-bound nanoprism. Addition of the PLN/GBP
193 mixture resulted in a +2.7 nm $Δλ$ shift. As the +2.7 nm shift was similar to the +5.8 nm
194 shift observed with GBP binding α₂ than the +14.4 nm shift found when PLN bound
195 alone, this indicated that in the presence of both GBP and PLN, with equal opportunity to
196 bind, GBP but not PLN bound to the α₂ polypeptide (**Table 2. Exp. 3**).

197 A similar series of experiments were conducted to quantify the interactions between
198 PLN Dm III-2, α_2 , and GBP. Here, α_2 bound with high affinity to Dm III-2 (+12.7 nm shift),
199 and the addition of GBP interfered with this association (-4.3 nm shift) (**Table 2, Exp. 4**).
200 When GBP was bound to α_2 prior to addition of PLN Dm III-2, the presence of GBP
201 restricted binding of Dm III-2 (+0.4 nm shift) to α_2 (**Table 2, Exp. 5**), and incubation of α_2
202 with a mixture of Dm III-2 and GBP resulted in a shift in the wavelength of +4.9 nm,
203 indicating that GBP bound to α_2 , but not PLN Dm III-2 (**Table 2, Exp. 6**).

204

205 **Gabapentin impairs bone mechanosensation *in vivo*.** To determine the effects of
206 GBP on skeletal mechanosensitivity we examined changes in anabolic bone responses
207 to mechanical loading in mice treated with GBP or saline (vehicle, VEH). At the time of
208 experiment mice in the VEH and GBP groups had body weights of 29.3 ± 0.41 and $29.9 \pm$
209 0.43 g, respectively (mean \pm SEM). The body weight was not different between groups
210 ($p=0.41$) and remained stable over the 4 weeks of treatment. In VEH treated mice, as
211 expected, dynamic histomorphometry analyses of loaded ulnas revealed a significant
212 increase in periosteal mineralizing surface (MS/BS) (+17.1 %, $p=0.005$), bone formation
213 rate (BFR/BS) (+40.4%, $p=0.004$) and mineral apposition rate (+23.5%, $p=0.038$)
214 compared to non-loaded controls (**Fig. 4a-b, Table 3**). In contrast, GBP treatment
215 resulted in blunted bone mechanosensitivity and impaired bone formation. While mice
216 treated with GBP had increased MAR (+17.9% vs non-loaded, $p=0.012$) there was no
217 change in MS/BS ($p=0.67$) or BFR/BS ($p=0.38$) following mechanical loading (**Fig. 4a-b**,
218 **Table 3**). The final number of animals included in the analysis was $n=9$ for the VEH-
219 treated mice and $n=7$ for the GBP treated mice. One animal from the GBP group was
220 euthanized before completion of the experiment (broken ulna during initial loading) and
221 another mouse from the same group was removed due poor histological quality of
222 control (non-loaded) sections, and thus inability to conduct proper paired comparisons.

223 **Discussion**

224 Mechanotransduction requires physical coupling of mechanosensory components
225 and the ability of those components to transduce mechanical signals into biochemical
226 responses²⁹. Numerous studies have identified molecules that contribute to mechanical
227 signaling within bone such as sclerostin^{30,31}, connexins³²⁻³⁴, and focal adhesions³⁵⁻³⁹.
228 However, the mechanism by which force is directly transmitted from the bone matrix to
229 the osteocyte cell membrane remains unclear. Likewise, while the presence of
230 transverse TEs in osteocytes has been established^{11,13,24,40}, the cell membrane
231 molecules to which PLN-containing tethers bind is unknown.

232 Our hypothesis that PLN binds to the $\alpha_2\delta_1$ subunit of VSCCs was formed through
233 several observations. First, various studies showed that VSCCs regulate skeletal
234 mechanosensitivity^{16,41,42}. Second, spatial positioning of $\alpha_2\delta_1$ is optimal for interaction
235 with PLN, in that $\alpha_2\delta_1$ has a large extracellular region (α_2) capable of interacting with
236 ligands. And third, the ability of $\alpha_2\delta_1$ to regulate gating kinetics of the α_1 pore of VSCCs⁴³
237 made $\alpha_2\delta_1$ a strong candidate receptor for PLN binding. Our data showed that PLN
238 matrix tethers bind $\alpha_2\delta_1$ with high affinity, connecting the mineralized bone matrix with
239 the osteocyte cell membrane (**Fig. 5a**).

240 We previously demonstrated that $\alpha_2\delta_1$ modulates mechanically-regulated ATP
241 release in osteocytes via its association with Ca_v3.2 (α_{1H}), the predominant α_1 pore-
242 forming subunit within these cells^{24,44}. The extracellular portion (α_2) of the $\alpha_2\delta_1$ subunit is
243 known to be glycosylated with N-acetyl glucosamine sugars. These glycosylation sites
244 are essential for surface expression of $\alpha_2\delta_1$ and have high affinity to WGA⁴⁵. In this work
245 we confirmed expression of α_{1H} in MLO-Y4 cells and found that PLN staining
246 independently overlapped with α_{1H} and WGA fluorescent signals at the cell surface of
247 osteocytic cells, suggesting close physical proximity of PLN and the α_{1H} pore and the
248 sugars attached to $\alpha_2\delta_1$. In addition, $\alpha_2\delta_1$ and PLN co-localize in osteocytic cells along

249 the dendritic processes of osteocytes, the area most sensitive to mechanical force⁴⁶.
250 Furthermore, by quantifying the molecular interactions between the extracellular portion
251 of $\alpha_2\delta_1$ and different PLN domains/subdomains, we demonstrated that $\alpha_2\delta_1$ and PLN
252 binding is facilitated within the cysteine-free region of PLN Dm III-2, with K_D values in the
253 low nanomolar range compared to other PLN subdomains, showing K_D values in the
254 milli- and micromolar ranges. As a reference, binding of biotin and avidin is among the
255 strongest non-covalent affinities known⁴⁷ with a dissociation constant of about 1.3×10^{-15} .
256 This aligns with literature reports in which Dm III mediates the binding of other
257 molecules with PLN, including the fibroblast growth factor (FGF)-7 (N-terminal half of Dm
258 III)⁴⁸, platelet-derived growth factor (PDGF) (Dm III-2)⁴⁹, and FGF18 (Dm III, cysteine-
259 free region)⁵⁰. Further, previous work showed that PLN binds to another matrix molecule
260 called von Willebrand Factor A-domain-Related Protein (WARP)⁵¹. Notably, the
261 interaction between WARP and PLN is mediated through Dm III-2 of PLN and the von
262 Willebrand Factor A (vWFA) domain of WARP⁵¹. As the α_2 portion of the $\alpha_2\delta_1$ subunit
263 contains a vWFA domain⁵² which enables binding to extracellular matrix molecules⁵³,
264 these findings provided further reasoning that PLN and $\alpha_2\delta_1$ form a functional complex.

265 *In silico* docking models between the vWFA domain of α_2 and PLN Dm III-2 predicted
266 strong interactions between these molecules. Although there are limitations in the
267 interpretation of HDOCK results^{27,28}, the quality results for structure accuracy indicate
268 that the docking predictions obtained are reliable. Our 3D models, combined with the
269 LSPR data, confirm that Dm III-2 is a binding site for α_2 , mediating the interaction of the
270 PLN/ $\alpha_2\delta_1$ complex. Together, this M-CTC, composed of PLN and $\alpha_2\delta_1$, is thus spatially,
271 structurally, and biochemically positioned to activate osteocytes in response to
272 mechanical force (**Fig. 5a**).

273 Whereas several clinical studies link chronic use of GBP with adverse skeletal side
274 effects, including increased fracture risk^{22,54}, the molecular mechanisms underlying these

275 effects and whether they occur directly in bone are entirely unknown. We hypothesized
276 that GBP disrupts PLN/α₂δ₁ binding, affecting the function of the M-CTC, which may
277 explain the skeletal side effects of this medication. GBP recognizes an Arg-Arg-Arg
278 (RRR) motif within the α₂ region of the α₂δ₁ subunit²⁰, located upstream and in close
279 proximity to the vWFA domain (**Fig. 1**). Interactions occurring in regions flanking the
280 vWFA can restrict the conformation of the domain (i.e., close, low affinity vs open, high
281 affinity ligand binding states)⁵⁵. Thus, binding of GBP to the RRR motif may disrupt
282 vWFA-mediated interactions of α₂δ₁ with other proteins, such as was demonstrated in a
283 recent study where GBP blocked binding of α₂δ₁ and thrombospondins⁵⁶. Here, we
284 demonstrated that GBP interferes with binding of PLN (full-length and Dm III-2) and α₂δ₁
285 *in vitro*, effectively uncoupling the M-CTC (**Fig. 5b**). We also showed that acute GBP
286 treatment in mice blunts the anabolic bone responses to mechanical loading. Previous
287 studies have shown that both PLN¹³ and α₂δ₁ (ref. 24) are necessary for
288 mechanotransduction in skeletal cells. Thus, GBP may impair osteocyte
289 mechanosensation by disrupting the function of the PLN::α₂δ₁ complex and contribute to
290 the deleterious skeletal effects observed with chronic use of these drugs²¹⁻²³.

291 Limitations of this study include the use of only male mice for evaluating the *in vivo*
292 effects of GBP on bone. Ongoing work is focused on understanding the tissue level
293 impact of GBP in female mice. Furthermore, we did not assess binding of PLN Dm II
294 with α₂δ₁. However, as we found that Dm III-2 bound with equivalent affinity to that of full-
295 length PLN, we were confident that the observed binding between the full-size core
296 protein of PLN was mediated through Dm III-2. Additionally, in contrast to that of PLN
297 Dm III and α₂δ₁, there are no previous studies that support a potential interaction
298 between Dm II and α₂δ₁.

299 Notable strengths of this work included the use of LSPR-based experiments to
300 determine the interactions between PLN and α₂δ₁. In this regard, the nanoplasmmonic

301 sensors provided reproducible limit of detection at the low zeptomolar range, along with
302 quantitative dissociation constant values (K_D) between biomolecules^{57,58} with far greater
303 sensitivity than conventional SPR methods. Additionally, while our interest in the M-CTC
304 lie in osteocyte physiology, it is likely that the function of this complex is conserved
305 across numerous tissues. As such, identification of this novel mechanosensory complex
306 may have a dramatic impact on understanding how other tissues regulate
307 mechanosensation, especially as PLN serves mechanotransduction functions in other
308 cell types⁵⁹.

309 In summary, this work identified novel interactions between the large heparan sulfate
310 proteoglycan PLN and an extracellular auxiliary subunit of VSCCs. Formation of this
311 complex revealed how the transverse tethers previously identified as force transducers
312 in osteocytes attach to the cell membrane, but also provided a greatly expanded
313 understanding of how VSCCs are capable of being activated by mechanical force. Most
314 importantly, our data demonstrate how GBP may negatively regulate bone remodeling
315 by interfering with osteocyte mechanosensation. Better understanding of the
316 mechanisms by which GBP regulates skeletal mechanotransduction will guide the
317 treatment of patients using these drugs and may lead to the design of precision agents
318 efficacious at their target tissues, but devoid of detrimental skeletal effects.

319

320 **Materials and Methods**

321 **Cell culture and immunofluorescence.** Immunofluorescence experiments were
322 performed using the osteocytic cell line MLO-Y4. Approximately 1,000 MLO-Y4 cells
323 were seeded onto collagen-I coated 8-well chambers (NUNC™, Rochester, NY) and
324 cultured as described previously⁶⁰. When cells were 80-90% confluent, media was
325 removed, cells were washed with Tris-buffered saline (TBS) and fixed with
326 paraformaldehyde (4%, v/v) diluted in TBS for 45 min at room temperature (RT). Cells

327 were washed with TBS to remove residual fixative and incubated for 1h at RT in donkey
328 serum (5%, v/v) diluted in TBS with Tween 20 (0.1 %, v/v). Cells were incubated with the
329 appropriate primary antibodies (Abs) diluted in blocking buffer for 1h at RT. For co-
330 localization experiments, where association between Ca_v3.2 (α_{1H}), α_{2δ}₁, and PLN were
331 performed in osteocytic cells, the following primary Abs were used: affinity-purified rabbit
332 anti-Ca_v3.2 (α_{1H}) polyclonal antibody (1:100) was raised against a synthetic peptide
333 sequence and prepared for our laboratory commercially by ResGen (Invitrogen,
334 Carlsbad, CA, USA), as described⁶¹. Staining for α_{2δ}₁ was performed as previously
335 reported²⁴, affinity purified rabbit anti-α_{2δ}_{1A} isoform polyclonal antibody (1:500) produced
336 by Bethyl Laboratories (Montgomery, TX)⁶² was used. For PLN staining, cells were
337 incubated with rat monoclonal anti-PLN domain-IV (A7L6) primary antibody (1:40)
338 (Abcam, Boston, MA, USA). Following incubation with the primary Abs, cells were
339 washed with blocking solution and incubated with species-specific Alexa Fluor 488 and
340 555 conjugated secondary Abs (1:200) (Invitrogen, Carlsbad, CA, USA) and DRAQ5™
341 nuclear stain (1:1000) (Biostatus, Ltd, Shepshed Leicestershire, UK) diluted in blocking
342 solution. To visualize cell membrane glycoproteins, cells were stained with fluorescein
343 conjugated wheat germ agglutinin (WGA) (Invitrogen, Carlsbad, CA, USA). Samples
344 were washed with TBS, mounted, and stored at 4°C until imaged. Negative controls for
345 cultured cells were performed using non-immune IgGs diluted at concentrations
346 equivalent to primary Abs or without primary Abs. For cells stained with WGA, an N, N',
347 N"- triacetylchitotriose control was used. Samples were imaged with an LSM 510 VIS
348 confocal microscope using a 40X C-apochromat water immersion objective (NA 1.2)
349 (Zeiss, Inc, Thornwood, NY).

350

351 **Co-immunoprecipitation and western blotting.** To determine if α_{2δ}₁ associates with
352 PLN, co-immunoprecipitation assays were performed. MLO-Y4 cells (~90% confluent)

353 cultured on 100 mm dishes were exposed to 500 μ L of radio immunoprecipitation (RIPA)
354 lysis buffer containing a protease inhibitor cocktail added just prior to cell lysis (1:100)
355 (Sigma-Aldrich, USA). Plates were incubated with lysis buffer at 4°C for 1 min. Lysates
356 were scraped from each plate and placed in 1.5 mL tubes. Samples were sonicated and
357 centrifuged (14,000 g) for 10 min at 4°C. Protein concentration was determined using the
358 Pierce BCA protein assay kit (ThermoFisher Scientific, MA, USA). Samples were diluted
359 in RIPA buffer to achieve equal protein concentrations. Pre-cleared lysates were added
360 to 100 μ L of magnetic Dynabeads (Invitrogen, Carlsbad, CA, USA) complexed to 5 ug of
361 monoclonal anti-PLN A7L6 antibody (Abcam, Boston, MA, USA) or Rat IgG. Lysates and
362 beads were incubated on a rotator at RT for 45 min. The Dynabead-Ab-Ag complex was
363 washed three times with 1X phosphate-buffered saline (PBS). Beads then were
364 resuspended in PBS and the supernatant was transferred to a new tube. Supernatants
365 were diluted in Laemmli buffer containing β -mercaptoethanol (2%, v/v) and boiled for 10
366 min. Western blotting was performed as described³⁸. Equal volumes of each sample (20
367 μ L) were electrophoresed in 8-12% Tris-Acetate gels and probed with the anti- $\alpha_2\delta_1$ _A
368 (Bethyl Laboratories) and anti-PLN A7L6 (Abcam, Boston, MA, USA) primary antibodies
369 (1:500). Blots were probed for β -actin Ab (Cell signaling) (1:500) as a loading control.
370

371 **Recombinant $\alpha_2\delta_1$ polypeptides.** The α_2 portion of the human $\alpha_2\delta_1$ protein (NCBI
372 reference sequence NP_00713.2) was produced by *GenScript Protein Expression and*
373 *Purification Services* (GenScript Corp, Piscataway, NJ). Briefly, the α_2 target DNA
374 sequence was designed, optimized, and synthesized by sub-cloning into a pcDNA3.4
375 vector and transfection-grade plasmid was maxi-prepared for cell expression. Expi293F
376 cells were grown in serum-free Expi293FTM Expression Medium (ThermoFisher
377 Scientific, MA, USA). Cells were maintained in Erlenmeyer flasks (Corning, NY, USA) at
378 37°C with CO₂ (8% v/v) on an orbital shaker (VWR Scientific). One day before

379 transfection, cells were seeded at an appropriate density in flasks. On the day of
380 transfection, DNA and transfection reagent were mixed at an optimal ratio and added to
381 the cells. The recombinant plasmid encoding the target protein was transiently
382 transfected into Expi293F cells. Culture supernatants, collected on day 6, were used for
383 protein purification. Conditioned media was centrifuged, filtered, then passed through a
384 HisTrapTM FF crude affinity purification column at an appropriate flowrate. After washing
385 and elution with appropriate buffers, the eluted fractions were pooled, and buffer
386 exchanged to the final formulation buffer. Purified protein was analyzed by western blot
387 to confirm the molecular weight and purity. The concentration was determined by Micro-
388 Bradford assay with BSA as a standard (ThermoFisher Scientific, MA, USA). Purified
389 protein was stored in 1x PBS (pH 7.2), filter sterilized (0.22 μ m), and packaged
390 aseptically at a concentration of 37 μ g/mL.

391

392 ***Full-length perlecan and perlecan domains I, III, IV-1, IV-2, IV-3, and V.*** Full-length
393 PLN was isolated and purified from HT-29 human colorectal cancer cells (formerly called
394 WiDr) (ATCC, Manassas, VA, USA) as reported^{63,64} (**Suppl. Methods**). PLN domains
395 (Dm) I, Dm IV-1, Dm IV-2, and Dm IV-3 (ref. 63, 65, 66) and Dm V (ref. 67), were
396 produced and purified as described previously (**Suppl. Methods**). PLN Dm-III is
397 composed of three cysteine-free, laminin-like globular domains with alternating laminin
398 EGF-like cysteine-rich regions⁶⁸. We designed two Dm-III plasmids using SnapGene, the
399 first encoding the cysteine free, globular region of PLN Dm III-2 (laminin IV-A2) and the
400 second Dm III-2 (IV-A2) followed by a cysteine-rich laminin EGF-like region (Dm III-2 +
401 cysteine). Each contained an EF-1 α promoter and BM40 signal sequence for enhanced
402 secretion, as well as a C-terminal FLAG tag and 6x His-tag for purification
403 (VectorBuilder, IL, USA). Plasmids were transfected into HEK293A cells using
404 Lipofectamine 2000 (Life Technologies, CA, USA). Transfected cells were grown from

405 single-cell clones and selected with G418 (2 mg/mL). Dm III-2 and Dm III-2 + cys
406 production was confirmed via western blot using 6x His-tag Ab (Invitrogen, Carlsbad,
407 CA, USA). Positive clones were expanded, purified, and sequenced for verification.
408 Conditioned media from hyperflasks was collected and concentrated in bulk using the
409 Sartorius Vivaflow Cross-flow System (Sartorius, NY, USA) with Vivaflow 200 10,000
410 MWCO PES filters (Sartorius, NY, USA). Dm III-2 and Dm III-2 + cys were purified using
411 Ni-NTA resin as described for Dm IV recombinant proteins (**Suppl. Methods**) with one
412 additional wash of 500 mM NaCl after conditioned medium flow through and before the
413 imidazole (20 mM) wash. The purified protein was buffer exchanged and stored at -
414 80°C.

415

416 **Localized surface plasmon resonance (LSPR) experiments.** The LSPR-based assay
417 was used to delineate the region of each protein necessary for the structural integrity of
418 the matrix-channel tethering complex (M-CTC), which enabled quantification of the
419 binding interaction between full-length PLN, recombinant subdomains of PLN, and the α_2
420 portion of the $\alpha_2\delta_1$ subunit. In brief, noble metal nanoparticles display unique localized
421 SPR properties, which are dependent on the size and shape⁶⁹⁻⁷¹, and most importantly,
422 the dielectric constant of their surrounding environment^{72,73}. Utilizing the latter
423 dependency, solid-state, LSPR-based sensors have been developed employing simple
424 optical spectroscopy to detect biological constituents by monitoring the LSPR changes
425 ($\Delta\lambda$) induced by their presence^{58,74}. A schematic representation of LSPR experiments is
426 summarized in **Supplementary Figure S2. Synthesis of gold triangular nanoprisms**
427 (**Au TNPs**). Au TNPs were chemically synthesized according to published procedures⁷⁵⁻
428 ⁷⁷. Briefly, 10.4 mg (0.05 mM) of Et₃Pau(I)Cl were dissolved in N₂ purged acetonitrile (20
429 mL) and stirred at RT for 5-10 min. Then, 19 μ L (0.273 mM) of triethanolamine (TEA)
430 was added to the solution and heated. Upon solution temperature reaching 38 °C, 300

431 μ L of polymethylhydrosiloxane (PMHS) was added, and the reaction slowly stirred.

432 During the reaction, the solution color changed gradually from colorless to dark navy-

433 blue, indicating the formation of Au TNPs. Once a dark navy-blue color was achieved,

434 the LSPR dipole peak position (λ_{LSPR}) was monitored through UV-visible spectroscopy

435 until the solution was $\lambda_{\text{LSPR}} = \sim 800$ nm, indicating the formation of ~ 42 nm edge length

436 Au TNPs (**SI appendix, Fig. S3**). The Au TNP solution was centrifuged at 7,000 rpm for

437 10 s, transferred to 3-mercaptopropyltrimethoxysilane (MPTMS)-functionalized glass

438 coverslips (**SI appendix, Suppl. methods**) and incubated for 1 h. TNP bound coverslips

439 were rinsed with acetonitrile, dried with N_2 gas, and stored under N_2 at 4°C . Au TNP-

440 bound coverslips were used within 3 days of the attachment. **α_2 -functionalized Au**

441 **TNPs**. Au TNP-bound glass coverslips underwent a tape-cleaning procedure to remove

442 non-prismatic structures. Briefly, 3M adhesive tape was placed onto the Au TNP-bound

443 glass coverslip, pressed gently with the thumb, and then the tape was removed at a 90°

444 angle. Cleaned Au TNP-bound coverslips were cut into 6.25 mm x 25 mm pieces using a

445 diamond cutter to produce the sensors (**Suppl. Fig. S2a**). Each sensor was incubated in

446 6.0 mL of a 1.0 mM:1.0 μM ratio of 11-mercaptopoundecanoic acid (MUDA): 1-nanethiol

447 (NT) solution overnight (**Suppl. Fig. S2b**). The following day, the sensors were rinsed

448 with ethanol to remove loosely bound thiols. This thiol treatment created a self-

449 assembled monolayer (SAM) onto Au TNP surface. Next, SAM-modified Au TNPS were

450 incubated in an EDC/NHS (0.2 M) solution for 2 h to activate the acid group of MUDA,

451 rinsed with ethanol and PBS, and incubated overnight in a PBS buffer solution (pH 7.2)

452 containing the α_2 portion of $\alpha_2\delta_1$ (10 ng/mL) (**Suppl. Fig. S2c**). To determine the

453 dissociation constant (K_D) values for interactions between α_2 and PLN, each α_2 -

454 functionalized sensor was rinsed with PBS and incubated in a solution containing

455 different concentrations (1×10^{-16} to 1×10^{-8} M) of full-length PLN (digested with

456 heparanase and chondroitinase, or undigested) or each of PLN domains/subdomains

457 Dm I, III-2 (cys free), III-2 (cys), IV-1, -2 and -3 or V (**Suppl. Fig. S2d**). At the end of the
458 experiments, the sensors were removed for data collection. Once we established the
459 regions of PLN that mediate binding within the M-CTC, assays were repeated with the
460 addition of GBP (see *drug binding experiments*). **Protein binding curves and**
461 **spectroscopy characterization.** Before and after each incubation step, an extinction
462 spectrum of the sensor was collected through UV-visible spectroscopy, and the shift in
463 the LSPR dipole peak position ($\Delta\lambda_{\text{LSPR}}$) was obtained (**Suppl. Fig. S2e, S3**). All
464 absorption and extinction spectra were collected utilizing a Varian Cary 50 Scan UV-
465 visible spectrometer in the range of 300-1,100 nm, using 1 cm quartz cuvettes. All
466 spectra were collected in ethanol or PBS (pH 7.2) to keep the bulk refractive index
467 constant. The “background” was a coverslip immersed in ethanol/PBS. The reference
468 (blank) was a sensor incubated in ethanol/PBS (no analyte present). Scanning electron
469 microscopy (SEM) images of Au TNPs were characterized using a JEOL 7800F SEM.
470 **Data Processing.** For all UV-vis extinction spectra, λ_{LSPR} was determined through curve
471 fitting using OriginLab software. The $\Delta\lambda_{\text{LSPR}}$ was calculated by taking the difference
472 between the λ_{LSPR} before and after each fabrication step. $\Delta\lambda_{\text{LSPR}}$ values were reported as
473 the Mean \pm standard deviation (SD) of six individual measurements at each
474 concentration used. Using the statistics software GraphPad Prism, protein binding
475 curves were developed by plotting $\Delta\lambda_{\text{LSPR}}$ versus PLN [or PLN subdomains]
476 concentration in mol/L (M) (**Suppl. Fig. S2f**). Binding curves were fitted to a specific
477 binding Hill slope (**Suppl. methods**) to determine the K_D values between α_2 and PLN
478 domains/subdomains.

479

480 **Drug binding experiments.** LSPR-based experiments were also used to determine the
481 interactions among α_2 , PLN, and GBP. Three different approaches were performed. First,
482 to determine if GBP was capable of displacing PLN from α_2 following binding of PLN to

483 α_2 , the α_2 -functionalized sensors were incubated overnight with full-length PLN (10 nM)
484 or PLN Dm III-2 (100 nM), followed by overnight incubation with GBP (0.33 mg/mL).
485 Second, to determine if PLN could displace GBP from α_2 , the α_2 -functionalized sensors
486 were incubated overnight with GBP (0.33 mg/mL), followed by overnight incubation with
487 full-length PLN (10 nM) or PLN Dm III-2 (100 nM). Lastly, to determine if PLN or GBP
488 had greater affinity for α_2 when provided equal opportunity to bind, the α_2 -functionalized
489 sensors were incubated overnight in a mixture of full-length PLN (10 nM) or PLN Dm III-
490 2 (100 nM) and GBP (0.33 mg/mL). At the end of the experiments, sensors were
491 removed for data collection and processing as described above.

492

493 **3D docking models.** *In silico* protein-protein, functional interactions and 3D docking
494 models between the vWFA domain of $\alpha_2\delta_1$ and domain III-2 of PLN were simulated with
495 the free web HDOCK^{27,28} server (<http://hdock.phys.hust.edu.cn/>). To develop high
496 confidence homology models of protein structures, multiple sequence alignment was
497 conducted using Clustal Omega (1.2.4) (ref. 78)
498 (<https://www.ebi.ac.uk/Tools/msa/clustalo/>). For PLN, the sequences of the three
499 Laminin-IV A subdomains in PLN Dm III [P98160 residues 538-730 (Dm III-1); 941-1125
500 (Dm III-2), and 1344-1529 (Dm III-3)] were aligned first. Then, the sequence of PLN Dm
501 III-2 [P98160, residues 941-1125] was selected to be aligned against the sequences of
502 the Laminin IV type A1 (P24043; residues 531-723) and Laminin IV type A2 (P24043;
503 residues 1176-1379) domains of Laminin alpha-2. For the vWFA domain, the sequences
504 of the vWFA domains of human thrombospondin 1 (P07996; residues 316-373),
505 thrombospondin 2 (P35442, residues 318-375) and $\alpha_2\delta_1$ (residues 253–430 of
506 CACNA2D1 [P54289]) were used for ClustalO alignment. The amino acid sequences for
507 the vWFA domain of the α_2 peptide (residues 253–430 of CACNA2D1 [P54289]) and
508 PLN Dm III-2 (residues 941-1125 of HSPG2 [P98160]) were input into the protein fold

509 recognition server Phyre2 (ref. 79) to obtain structural 3D models using known protein
510 templates. The structures with the higher model confidence (the probability that the
511 match between the input sequence and the template is a true homology) and I.D. value
512 (the percentage identity between the input sequence and the template) were chosen for
513 docking. The protein template information and 3D structures were retrieved from the
514 RCSB protein data bank (<https://www.rcsb.org/>). For the vWFA domain of $\alpha_2\delta_1$, the
515 structure of the von Willebrand factor type A from Catenulispora acidiphila (4FX5)
516 (<https://www.rcsb.org/structure/4FX5>) was selected. For PLN Dm III-2, the structure of
517 the L4b domain of human Laminin alpha-2 (4YEP) (ref. 80)
518 (<https://www.rcsb.org/structure/4YEP>) was used as the best match. In the HDOCK
519 server, PDB files for 4FX5 (vWFA) and 4YEP (PLN Dm III-2) were used to populate the
520 information for receptor and ligand, respectively. The output with the highest docking
521 energy score from the top 10 predictions was selected for visualization.

522

523 **Animal experiments and in vivo ulnar loading.** Male C57BL/6J mice were purchased
524 from the Jackson Laboratory (JAX, Bar Harbor, Maine) and group-housed (2–4
525 mice/cage) on TEK-fresh bedding in ventilated cage systems at the Indiana University
526 School of Medicine animal facilities. Food and water were provided *ad libitum* and mice
527 were maintained under 12-h light/dark cycles and standard conditions of temperature
528 and humidity. At 16 weeks of age, mice were randomly assigned into 2 groups to receive
529 daily intraperitoneal injections of saline (vehicle, VEH) or gabapentin (GBP, 300mg/kg
530 BW; 50mg/mL stock diluted in saline) (Acros Organics AC458020050, ThermoFisher
531 Scientific, MA, USA) for 4 weeks (n=9 mice/treatment). Sample size calculations were
532 based on published data to detect histomorphometrically-measured changes in bone
533 formation induced by loading of $100 \mu\text{m}^3/\mu\text{m}^2/\text{yr}$, and a true difference between loaded
534 and non-loaded bones as small as $40 \mu\text{m}^3/\mu\text{m}^2/\text{yr}$ ($\alpha=0.05$ level; power $(1-\beta) = 80\%$).

535 GBP and VEH treated mice were subjected to axial ulnar compression to induce
536 anabolic skeletal responses as previously described³⁰. Briefly, mice were anesthetized
537 under gas isoflurane and the right ulna was loaded using a sinusoidal (haversine)
538 waveform (-2200 $\mu\epsilon$, 2 Hz, 180 cycles). Mice received one loading bout every other day
539 over a 10-day period, loading order of mice was randomized each time. Left ulnas were
540 used as non-loaded, contralateral controls. To monitor load-induced bone formation, the
541 fluorochromes calcein (10 mg/kg, Sigma-Aldrich, USA) and alizarin (20 mg/kg, Sigma-
542 Aldrich, USA) were injected intraperitoneally one day before the final loading bout and
543 11 days later, respectively. Mice were euthanized at 20 weeks of age by CO₂
544 asphyxiation, followed by cervical dislocation. Ulnas were harvested and processed for
545 dynamic histomorphometry as published³⁰. All experiments conducted were approved by
546 the Indiana University Institutional Animal Care and Use Committee.

547

548 **Dynamic histomorphometry.** Preparation and histological sectioning of ulnas was
549 conducted by the Histology and Histomorphometry Core within the Indiana Center for
550 Musculoskeletal Health at Indiana University. To detect bone formation changes in
551 double-labeled histological sections, the following parameters were assessed as
552 previously described³⁰: periosteal mineralizing surface (MS/BS, %), mineral apposition
553 rate (MAR, $\mu\text{m}/\text{day}$), and bone formation rate (BFR/BS, $\mu\text{m}^3/\mu\text{m}^2/\text{day}$). All
554 measurements were collected such that investigators were blinded to treatment.
555 Statistical analyses were conducted using the GraphPad Prism software version
556 9.3.1(471) (La Jolla, CA). Paired Student's t tests compared control, contralateral ulnas
557 to loaded ulnas. Results are reported as mean \pm standard error of the mean (SEM).
558 Significance level was defined as $p \leq 0.05$.

559

560 **Data availability:** All data generated or analyzed during this study are included in this
561 published article and its supplementary information files.

562

563 **Acknowledgements:** This study was supported by 1R01AR074473-01 and UL1
564 TR001108 to WRT, Indiana University Research Support Funds Grant to RS and WRT,
565 1F32AR074893-01 to CSW, and Faculty Research Development funds through Marian
566 University to JMH and WRT.

567

568 **Conflict of Interest:** KEW receives royalties for licensing FGF23 to Kyowa Hakko Kirin
569 Co., Ltd; had previous funding from Akebia, and current funding from Calico Labs. KEW
570 also owns equity interest in FGF Therapeutics. The other authors have nothing to declare.

571

572 **Author Contributions:** PCRF, XY, ANM, TVT, AB, WRT collection/assembly of data.
573 PCRF, XY, ANM, TVT, AB, CSW, KR, GB, DW, AGR, KR, MLN, KEW, KJL, US, JMH,
574 RS MCFC, WRT data analysis/interpretation. MLN, KEW, KJL, US, JMH, RS, MCFC,
575 WRT concept/design. PCRF, MCFC, WRT manuscript writing. All authors have seen
576 and approved the submitted manuscript.

577

578 **Supplementary Information:** Supplementary information accompanies the manuscript
579 on the Bone Research website <http://www.nature.com/boneres>

580

581 **References**

582 1 Bonewald, L. F. The amazing osteocyte. *Journal of Bone and Mineral Research*
583 **26**, 229-238, doi:10.1002/jbmr.320 (2011).

584 2 Wang, L. J. C. o. r. Solute transport in the bone lacunar-canalicular system
585 (LCS). **16**, 32-41 (2018).

586 3 Rubin, C. & Lanyon, L. Regulation of bone formation by applied dynamic loads. *J*
587 *Bone Joint Surg Am* **66**, 397-402 (1984).

588 4 Fritton, S. P., McLeod, K. J. & Rubin, C. T. Quantifying the strain history of bone:
589 spatial uniformity and self-similarity of low-magnitude strains. *J Biomech* **33**, 317-
590 325 (2000).

591 5 Klein-Nulend, J., Semeins, C. M., Veldhuijzen, J. P. & Burger, E. H. Effect of
592 mechanical stimulation on the production of soluble bone factors in cultured fetal
593 mouse calvariae. *Cell Tissue Res* **271**, 513-517 (1993).

594 6 You, J. *et al.* Substrate deformation levels associated with routine physical
595 activity are less stimulatory to bone cells relative to loading-induced oscillatory
596 fluid flow. *Journal of Biomechanical Engineering-Transactions of the Asme* **122**,
597 387-393 (2000).

598 7 Smalt, R., Mitchell, F. T., Howard, R. L. & Chambers, T. J. Induction of NO and
599 prostaglandin E₂ in osteoblasts by wall-shear stress but not mechanical strain.
600 *American Journal of Physiology* **273**, E751-E758 (1997).

601 8 Wang, L. *et al.* In situ measurement of solute transport in the bone lacunar-
602 canicular system. **102**, 11911-11916 (2005).

603 9 Burra, S., Nicolella, D. P., Jiang, J. X. J. C. & biology, i. Dark horse in osteocyte
604 biology: Glycocalyx around the dendrites is critical for osteocyte
605 mechanosensing. **4**, 48-50 (2011).

606 10 Han, Y., Cowin, S. C., Schaffler, M. B. & Weinbaum, S. Mechanotransduction
607 and strain amplification in osteocyte cell processes. *Proceedings of the national*
608 *academy of sciences* **101**, 16689-16694 (2004).

609 11 You, L. D., Weinbaum, S., Cowin, S. C. & Schaffler, M. B. Ultrastructure of the
610 osteocyte process and its pericellular matrix. *Anat Rec A Discov Mol Cell Evol*
611 *Biol* **278**, 505-513, doi:10.1002/ar.a.20050 (2004).

612 12 Thompson, W. R. *et al.* Perlecan/Hspg2 deficiency alters the pericellular space of
613 the lacunocanicular system surrounding osteocytic processes in cortical bone.
614 *J Bone Miner Res* **26**, 618-629, doi:10.1002/jbmr.236 (2011).

615 13 Wang, B. *et al.* Perlecan-containing pericellular matrix regulates solute transport
616 and mechanosensing within the osteocyte lacunar-canalicular system. *J Bone*
617 *Miner Res* **29**, 878-891, doi:10.1002/jbmr.2105 (2014).

618 14 Hung, C. T., Allen, F. D., Pollack, S. R. & Brighton, C. T. Intracellular Ca²⁺ stores
619 and extracellular Ca²⁺ are required in the real-time Ca²⁺ response of bone cells
620 experiencing fluid flow. *J Biomech* **29**, 1411-1417 (1996).

621 15 Li, J., Duncan, R. L., Burr, D. B., Gattone, V. H. & Turner, C. H. Parathyroid
622 hormone enhances mechanically induced bone formation, possibly involving L-
623 type voltage-sensitive calcium channels. *Endocrinology* **144**, 1226-1233,
624 doi:10.1210/en.2002-220821 (2003).

625 16 Li, J., Duncan, R. L., Burr, D. B. & Turner, C. H. L-type calcium channels mediate
626 mechanically induced bone formation in vivo. *J Bone Miner Res* **17**, 1795-1800,
627 doi:10.1359/jbmr.2002.17.10.1795 (2002).

628 17 Pei, S. *et al.* Perlecan/Hspg2 deficiency impairs bone's calcium signaling and
629 associated transcriptome in response to mechanical loading. *Bone* **131**, 115078
630 (2020).

631 18 Dolphin, A. C. Calcium channel auxiliary alpha2delta and beta subunits:
632 trafficking and one step beyond. *Nat Rev Neurosci* **13**, 542-555,
633 doi:10.1038/nrn3311 (2012).

634 19 Gee, N. S. *et al.* The novel anticonvulsant drug, gabapentin (Neurontin), binds to
635 the alpha2delta subunit of a calcium channel. *J Biol Chem* **271**, 5768-5776
636 (1996).

637 20 Wang, M., Offord, J., Oxender, D. L. & Su, T. Z. Structural requirement of the
638 calcium-channel subunit alpha2delta for gabapentin binding. *Biochem J* **342** (Pt
639 **2**), 313-320 (1999).

640 21 Jette, N. *et al.* Association of antiepileptic drugs with nontraumatic fractures: a
641 population-based analysis. *Arch Neurol* **68**, 107-112,
642 doi:10.1001/archneurol.2010.341 (2011).

643 22 Ensrud, K. E. *et al.* Antiepileptic drug use and rates of hip bone loss in older men:
644 a prospective study. *Neurology* **71**, 723-730,
645 doi:10.1212/01.wnl.0000324919.86696.a9 (2008).

646 23 Sofu, H. *et al.* Should orthopedic surgeons consider the effects of gabapentin
647 administration on bone healing while treating a long bone fracture: experimental
648 study in a rat model. *SICOT J* **2**, 36, doi:10.1051/sicotj/2016028 (2016).

649 24 Thompson, W. R. *et al.* Association of the $\alpha 2\delta 1$ subunit with Cav3.2 enhances
650 membrane expression and regulates mechanically induced ATP release in MLO-
651 Y4 osteocytes. *Journal of Bone and Mineral Research* **26**, 2125-2139,
652 doi:10.1002/jbmr.437 (2011).

653 25 Wallner, B. & Elofsson, A. Can correct protein models be identified? *Protein
654 science* **12**, 1073-1086 (2003).

655 26 Siew, N., Elofsson, A., Rychlewski, L. & Fischer, D. MaxSub: an automated
656 measure for the assessment of protein structure prediction quality. *Bioinformatics*
657 **16**, 776-785 (2000).

658 27 Yan, Y., Zhang, D., Zhou, P., Li, B. & Huang, S.-Y. HDOCK: a web server for
659 protein–protein and protein–DNA/RNA docking based on a hybrid strategy.
660 *Nucleic acids research* **45**, W365-W373 (2017).

661 28 Yan, Y., Tao, H., He, J. & Huang, S.-Y. The HDOCK server for integrated
662 protein–protein docking. *Nature protocols* **15**, 1829-1852 (2020).

663 29 Thompson, W. R., Rubin, C. T. & Rubin, J. Mechanical regulation of signaling
664 pathways in bone. *Gene* **503**, 179-193, doi:10.1016/j.gene.2012.04.076 (2012).

665 30 Robling, A. G. *et al.* Mechanical stimulation of bone in vivo reduces osteocyte
666 expression of Sost/sclerostin. *J Biol Chem* **283**, 5866-5875, doi:M705092200 [pii]
667 10.1074/jbc.M705092200 (2008).

668 31 Compton, J. T. & Lee, F. Y. A review of osteocyte function and the emerging
669 importance of sclerostin. *J Bone Joint Surg Am* **96**, 1659-1668,
670 doi:10.2106/JBJS.M.01096 (2014).

671 32 Loiselle, A. E., Paul, E. M., Lewis, G. S. & Donahue, H. J. Osteoblast and
672 osteocyte-specific loss of Connexin43 results in delayed bone formation and
673 healing during murine fracture healing. *Journal of Orthopaedic Research* **31**, 147-
674 154, doi:10.1002/jor.22178 (2013).

675 33 Cherian, P. P. *et al.* Mechanical Strain Opens Connexin 43 Hemichannels in
676 Osteocytes: A Novel Mechanism for the Release of Prostaglandin. *Molecular
677 Biology of the Cell* **16**, 3100-3106, doi:10.1091/mbc.E04-10-0912 (2005).

678 34 Uzer, G. *et al.* Gap Junctional Communication in Osteocytes Is Amplified by Low
679 Intensity Vibrations In Vitro. *PLoS ONE* **9**, e90840,
680 doi:10.1371/journal.pone.0090840 (2014).

681 35 Cabahug-Zuckerman, P. *et al.* Potential role for a specialized $\beta 3$ integrin-based
682 structure on osteocyte processes in bone mechanosensation. *Journal of
683 Orthopaedic Research®* **36**, 642-652 (2018).

684 36 Lee, D. Y. *et al.* Oscillatory Flow-induced Proliferation of Osteoblast-like Cells Is
685 Mediated by alpha(v)beta(3) and beta(1) Integrins through Synergistic
686 Interactions of Focal Adhesion Kinase and Shc with Phosphatidylinositol 3-
687 Kinase and the Akt/mTOR/p70S6K Pathway. *Journal of Biological Chemistry*
688 **285**, 30-42, doi:10.1074/jbc.M109.010512 (2010).

689 37 Sen, B. *et al.* mTORC2 regulates mechanically induced cytoskeletal
690 reorganization and lineage selection in marrow-derived mesenchymal stem cells.
691 *J Bone Miner Res* **29**, 78-89, doi:10.1002/jbmr.2031 (2014).

692 38 Thompson, W. R. *et al.* Mechanically activated Fyn utilizes mTORC2 to regulate
693 RhoA and adipogenesis in mesenchymal stem cells. *Stem Cells* **31**, 2528-2537,
694 doi:10.1002/stem.1476 (2013).

695 39 Thompson, W. R. *et al.* LARG GEF and ARHGAP18 orchestrate RhoA activity to
696 control mesenchymal stem cell lineage. *Bone* **107**, 172-180,
697 doi:10.1016/j.bone.2017.12.001 (2018).

698 40 Yokoyama, Y., Kameo, Y., Kamioka, H. & Adachi, T. High-resolution image-
699 based simulation reveals membrane strain concentration on osteocyte processes
700 caused by tethering elements. *Biomechanics and modeling in mechanobiology*
701 **20**, 2353-2360, doi:10.1007/s10237-021-01511-y (2021).

702 41 Brown, G. N., Leong, P. L. & Guo, X. E. T-Type voltage-sensitive calcium
703 channels mediate mechanically-induced intracellular calcium oscillations in
704 osteocytes by regulating endoplasmic reticulum calcium dynamics. *Bone* **88**, 56-
705 63, doi:10.1016/j.bone.2016.04.018 (2016).

706 42 Genetos, D. C., Geist, D. J., Liu, D., Donahue, H. J. & Duncan, R. L. Fluid Shear-
707 Induced ATP Secretion Mediates Prostaglandin Release in MC3T3-E1
708 Osteoblasts. *Journal of Bone and Mineral Research* **20**, 41-49,
709 doi:10.1359/jbmr.041009 (2005).

710 43 Dolphin, A. C. Voltage-gated calcium channels and their auxiliary subunits:
711 physiology and pathophysiology and pharmacology. *J Physiol* **594**, 5369-5390,
712 doi:10.1113/JP272262 (2016).

713 44 Shao, Y., Alicknavitch, M. & Farach-Carson, M. C. Expression of voltage
714 sensitive calcium channel (VSCC) L-type Cav1.2 (alpha1C) and T-type Cav3.2

715 (alpha1H) subunits during mouse bone development. *Dev Dyn* **234**, 54-62,

716 doi:10.1002/dvdy.20517 (2005).

717 45 Tétreault, M.-P. *et al.* Identification of glycosylation sites essential for surface

718 expression of the CaV α 2 δ 1 subunit and modulation of the cardiac CaV1.2

719 channel activity. *Journal of Biological Chemistry* **291**, 4826-4843 (2016).

720 46 Wu, D., Schaffler, M. B., Weinbaum, S. & Spray, D. C. Matrix-dependent

721 adhesion mediates network responses to physiological stimulation of the

722 osteocyte cell process. *Proc Natl Acad Sci U S A* **110**, 12096-12101,

723 doi:10.1073/pnas.1310003110 (2013).

724 47 Wilchek, M. & Bayer, E. A. Introduction to avidin-biotin technology. *Methods in*

725 *enzymology* **184**, 5-13, doi:10.1016/0076-6879(90)84256-g (1990).

726 48 Mongiat, M. *et al.* The protein core of the proteoglycan perlecan binds specifically

727 to fibroblast growth factor-7. *Journal of Biological Chemistry* **275**, 7095-7100

728 (2000).

729 49 Göhring, W., Sasaki, T., Heldin, C. H. & Timpl, R. Mapping of the binding of

730 platelet-derived growth factor to distinct domains of the basement membrane

731 proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding

732 epitope. *European journal of biochemistry* **255**, 60-66 (1998).

733 50 Smith, S. M.-L., West, L. A. & Hassell, J. R. The core protein of growth plate

734 perlecan binds FGF-18 and alters its mitogenic effect on chondrocytes. *Archives*

735 *of biochemistry and biophysics* **468**, 244-251 (2007).

736 51 Allen, J. M. *et al.* WARP is a novel multimeric component of the chondrocyte

737 pericellular matrix that interacts with perlecan. *J Biol Chem* **281**, 7341-7349,

738 doi:10.1074/jbc.M513746200 (2006).

739 52 Dolphin, A. C. The alpha2delta subunits of voltage-gated calcium channels.

740 *Biochim Biophys Acta* **1828**, 1541-1549, doi:10.1016/j.bbamem.2012.11.019

741 (2013).

742 53 Garcia, K., Nabhani, T. & Garcia, J. The calcium channel alpha2/delta1 subunit is

743 involved in extracellular signalling. *J Physiol* **586**, 727-738,

744 doi:10.1113/jphysiol.2007.147959 (2008).

745 54 Ensrud, K. E. *et al.* Antiepileptic drug use increases rates of bone loss in older

746 women: a prospective study. *Neurology* **62**, 2051-2057 (2004).

747 55 Whittaker, C. A. & Hynes, R. O. Distribution and evolution of von

748 Willebrand/integrin A domains: widely dispersed domains with roles in cell

749 adhesion and elsewhere. *Molecular biology of the cell* **13**, 3369-3387 (2002).

750 56 Eroglu, C. *et al.* Gabapentin receptor alpha2delta-1 is a neuronal

751 thrombospondin receptor responsible for excitatory CNS synaptogenesis. *Cell*

752 **139**, 380-392, doi:10.1016/j.cell.2009.09.025 (2009).

753 57 Saha, K., Agasti, S. S., Kim, C., Li, X. & Rotello, V. M. Gold Nanoparticles in

754 Chemical and Biological Sensing. *Chemical Reviews* **112**, 2739-2779,

755 doi:10.1021/cr2001178 (2012).

756 58 Haes, A. J., Hall, W. P., Chang, L., Klein, W. L. & Van Duyne, R. P. A Localized

757 Surface Plasmon Resonance Biosensor: First Steps toward an Assay for

758 Alzheimer's Disease. *Nano Letters* **4**, 1029-1034, doi:10.1021/nl049670j (2004).

759 59 Guilak, F., Hayes, A. J. & Melrose, J. Perlecan in pericellular mechanosensory

760 cell-matrix communication, extracellular matrix stabilisation and

761 mechanoregulation of load-bearing connective tissues. *International journal of*

762 *molecular sciences* **22**, 2716 (2021).

763 60 Kato, Y., Windle, J. J., Koop, B. A., Mundy, G. R. & Bonewald, L. F.

764 Establishment of an osteocyte-like cell line, MLO-Y4. *Journal of bone and*
765 *mineral research* **12**, 2014-2023 (1997).

766 61 Shao, Y., Alicknavitch, M. & Farach-Carson, M. C. Expression of voltage
767 sensitive calcium channel (VSCC) L-type Cav1. 2 ($\alpha 1C$) and T-type Cav3. 2
768 ($\alpha 1H$) subunits during mouse bone development. *Developmental dynamics: an*
769 *official publication of the American Association of Anatomists* **234**, 54-62 (2005).

770 62 García, K., Nabhani, T. & García, J. The calcium channel $\alpha 2/\delta 1$ subunit is
771 involved in extracellular signalling. *The Journal of physiology* **586**, 727-738
772 (2008).

773 63 Grindel, B. *et al.* Matrilysin/matrix metalloproteinase-7 (MMP7) cleavage of
774 perlecan/HSPG2 creates a molecular switch to alter prostate cancer cell
775 behavior. *Matrix Biology* **36**, 64-76 (2014).

776 64 Tellman, T. V., Cruz, L. A., Grindel, B. J. & Farach-Carson, M. C. Cleavage of the
777 Perlecan-Semaphorin 3A-Plexin A1-Neuropilin-1 (PSPN) Complex by Matrix
778 Metalloproteinase 7/Matrilysin Triggers Prostate Cancer Cell Dyscohesion and
779 Migration. *International journal of molecular sciences* **22**, 3218 (2021).

780 65 Brasil da Costa, F. H., Lewis, M. S., Truong, A., Carson, D. D. & Farach-Carson,
781 M. C. SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate
782 cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models.
783 *PloS one* **15**, e0230354 (2020).

784 66 Yang, W., Gomes Jr, R., Alicknavitch, M., Farach-Carson, M. & Carson, D.
785 Perlecan domain I promotes fibroblast growth factor 2 delivery in collagen I fibril
786 scaffolds. *Tissue engineering* **11**, 76-89 (2005).

787 67 Lee, B. *et al.* Perlecan domain V is neuroprotective and proangiogenic following
788 ischemic stroke in rodents. *J Clin Invest* **121**, 3005-3023, doi:10.1172/JCI46358
789 (2011).

790 68 Couchman, J. R., Ljubimov, A. V., Sthanam, M., Horchar, T. & Hassell, J. R.
791 Antibody mapping and tissue localization of globular and cysteine-rich regions of
792 perlecan domain III. *Journal of Histochemistry & Cytochemistry* **43**, 955-963
793 (1995).

794 69 Chen, H., Kou, X., Yang, Z., Ni, W. & Wang, J. Shape-and size-dependent
795 refractive index sensitivity of gold nanoparticles. *Langmuir* **24**, 5233-5237 (2008).

796 70 Sardar, R. & Shumaker-Parry, J. S. Spectroscopic and microscopic investigation
797 of gold nanoparticle formation: ligand and temperature effects on rate and
798 particle size. *Journal of the American Chemical Society* **133**, 8179-8190 (2011).

799 71 Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles.
800 *Langmuir* **12**, 788-800 (1996).

801 72 Joshi, G. K., McClory, P. J., Dolai, S. & Sardar, R. Improved localized surface
802 plasmon resonance biosensing sensitivity based on chemically-synthesized gold
803 nanoprisms as plasmonic transducers. *Journal of Materials Chemistry* **22**, 923-
804 931 (2012).

805 73 Joshi, G. K. *et al.* Designing Efficient Localized Surface Plasmon Resonance-
806 Based Sensing Platforms: Optimization of Sensor Response by Controlling the
807 Edge Length of Gold Nanoprisms. *The Journal of Physical Chemistry C* **116**,
808 20990-21000, doi:10.1021/jp302674h (2012).

809 74 Beeram, S. R. & Zamborini, F. P. Selective Attachment of Antibodies to the
810 Edges of Gold Nanostructures for Enhanced Localized Surface Plasmon
811 Resonance Biosensing. *Journal of the American Chemical Society* **131**, 11689-
812 11691, doi:10.1021/ja904387j (2009).

813 75 Liyanage, T., Sangha, A. & Sardar, R. Achieving biosensing at attomolar
814 concentrations of cardiac troponin T in human biofluids by developing a label-free
815 nanoplasmionic analytical assay. *Analyst (Cambridge, U. K.)* **142**, 2442-2450,
816 doi:10.1039/c7an00430c (2017).

817 76 Masterson, A. N. *et al.* A novel liquid biopsy-based approach for highly specific
818 cancer diagnostics: mitigating false responses in assaying patient plasma-
819 derived circulating microRNAs through combined SERS and plasmon-enhanced
820 fluorescence analyses. *Analyst (Cambridge, U. K.)* **145**, 4173-4180,
821 doi:10.1039/d0an00538j (2020).

822 77 Hati, S. *et al.* Photoswitchable Machine-Engineered Plasmonic Nanosystem with
823 High Optical Response for Ultrasensitive Detection of microRNAs and Proteins
824 Adaptively. *Anal. Chem. (Washington, DC, U. S.)* **93**, 13935-13944,
825 doi:10.1021/acs.analchem.1c02990 (2021).

826 78 Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of
827 many protein sequences. *Protein Science* **27**, 135-145 (2018).

828 79 Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The
829 Phyre2 web portal for protein modeling, prediction and analysis. *Nature protocols*
830 **10**, 845-858 (2015).

831 80 Moran, T., Gat, Y. & Fass, D. Laminin L4 domain structure resembles adhesion
832 modules in ephrin receptor and other transmembrane glycoproteins. *The FEBS
833 journal* **282**, 2746-2757 (2015).

834 81 Wright, C. S., Robling, A. G., Farach-Carson, M. C. & Thompson, W. R. Skeletal
835 Functions of Voltage Sensitive Calcium Channels. *Current osteoporosis reports*
836 **19**, 206-221 (2021).

837

838

839 **Figures Legends**

840 **Figure 1. Structure of voltage sensitive calcium channels.** The channel complex is
841 composed of the α_1 pore-forming subunit with auxiliary β , γ , and $\alpha_2\delta$ subunits bound to
842 the pore, positioned to alter gating kinetics of the channel. The $\alpha_2\delta$ subunit is anchored in
843 the membrane via the δ portion, with the α_2 region positioned extracellularly. In the
844 extracellular portion (α_2) of the $\alpha_2\delta$ subunit, the von Willebrand Factor A domain (vWFA)
845 sequence and the Arg-Arg-Arg (RRR) motif for Gabapentin binding are indicated.

846 Adapted from Wright *et al.*⁸¹.

847

848 **Figure 2. PLN colocalizes with WGA and $\alpha_2\delta_1$ in osteocyte-like cells.** MLO-Y4 cells
849 stained with **(a)** wheat germ agglutinin (WGA)-FITC (green) and **(b)** perlecan (PLN)
850 (red), **(c)** merge PLN and WGA. On the bottom panels, cells were stained for **(d)** $\alpha_2\delta_1$
851 (red) and **(e)** PLN (green), **(f)** merge PLN and $\alpha_2\delta_1$. White arrows in merged images
852 indicate overlapping fluorescent signal. **(g)** Co-immunoprecipitation assays from MLO-
853 Y4 lysates show that PLN and $\alpha_2\delta_1$ associate. IgG was used as a negative control. Blots
854 were probed for β -actin antibody as a loading control.

855

856 **Figure 3. Docking models of vWFA domain of $\alpha_2\delta_1$ and PLN Dm III-2. in silico**
857 protein-protein functional interactions and 3D docking models between the von
858 Willebrand Factor A (vWFA) domain of $\alpha_2\delta_1$ and perlecan (PLN) domain (Dm) III-2 were
859 generated with the free web server HDOCK. 4FX5 (brown) is the vWFA domain and
860 4YEP (yellow) is the L4b domain of human Laminin α_2 (PLN Dm III-2). Top, cartoon
861 ribbon-style 3D representations of receptor and ligand. Bottom, surface style
862 representation of the proteins. Each image is rotated 90° clockwise from the previous
863 one.

864

865 **Figure 4. Gabapentin treatment decreases ulnar mechanosensitivity and load-**
866 **induced bone formation** Male C57BL/6J mice were injected daily with saline (vehicle,
867 VEH) (n=9) or Gabapentin (GBP, 300mg/kg BW) (n=7) for 4 weeks while undergoing
868 axial ulnar loading. **(a)** Representative images of control (non-loaded) and loaded ulnas
869 from VEH and GBP treated mice. Changes in **(b)** mineralizing surface (MS/BS), mineral
870 apposition rate (MAR), and bone formation rate (BFR/BS) in response to mechanical
871 loading were assessed in VEH and GBP treated mice. Paired Student's t tests compared
872 control, contralateral ulnas to loaded ulnas. Values are shown as Mean \pm SEM;
873 $p\leq 0.01$ (**), $p\leq 0.05$ (*).

874

875 **Figure 5. Summary of results.** In this work we found that **(a)** the $\alpha_2\delta_1$ subunit of voltage
876 sensitive Ca^{2+} channels binds perlecan (PLN) creating a mechanosensory complex that
877 enables connection between the mineralized matrix and the osteocyte cell membrane.
878 **(b)** We also demonstrated that gabapentin (GBP) interferes with binding of PLN and $\alpha_2\delta_1$
879 *in vitro*. As the PLN/ $\alpha_2\delta_1$ complex is necessary for mechanotransduction, GBP
880 uncoupling of the complex results in impaired osteocyte mechanosensation *in vivo*,
881 which may account for the deleterious skeletal effects observed with chronic use of this
882 drug.

883 **Table 1.** Binding affinity experiments between the α_2 portion of the $\alpha_2\delta_1$ and perlecan

Perlecan Domain / Subdomain	K_D (M)
Undigested Full Length	6.6×10^{-11}
Digested Full Length	2.6×10^{-7}
Domain I	7.7×10^{-6}
Domain III-2	8.0×10^{-11}
Domain III-2 (w/cysteine)	7.7×10^{-6}
Domain IV-I	1.4×10^{-7}
Domain IV-2	4.3×10^{-4}
Domain IV-3	1.6×10^{-3}
Domain V	5.1×10^{-3}

884

885 **Table 2.** LSPR-based interactions among α_2 -functionalized sensors, PLN and GBP

Exp	Sensors	$\Delta\lambda_{\text{LSPR}}$ (nm)	Added first to the sensors	$\Delta\lambda_{\text{LSPR}}$ (nm)	Added second to the sensors	$\Delta\lambda_{\text{LSPR}}$ (nm)
1	α_2	+39 nm	Full length PLN	+14.4 nm	GBP	-4.1 nm
2	α_2	+39 nm	GBP	+5.8 nm	Full length PLN	+/- 0.1 nm
3	α_2	+39 nm	Full length PLN + GBP	+2.7 nm	-	-
4	α_2	+39 nm	PLN Dm III-2	+12.7 nm	GBP	-4.3 nm
5	α_2	+39 nm	GBP	+5.4 nm	PLN Dm III-2	+0.4 nm
6	α_2	+39 nm	PLN Dm III-2 + GBP	+4.9 nm	-	-

886 887 Exp = Experiment, LSPR = Localized surface plasmon resonance, PLN = Perlecan, GBP

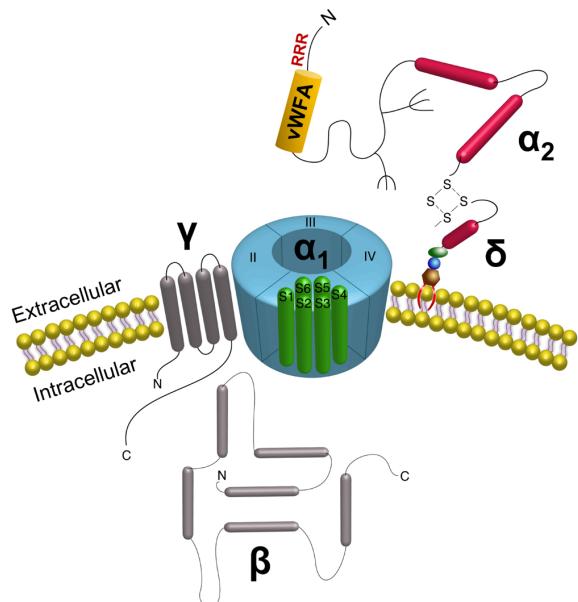
888 = Gabapentin.

889

890 **Table 3.** Ulnar dynamic histomorphometry measurements in response to mechanical
891 loading in vehicle and gabapentin treated mice

Bone Parameters ²	VEH ¹ treated mice			GBP ¹ treated mice		
	Non-loaded Ulna (Ctrl)	Loaded Ulna	p-value ³	Non-loaded Ulna (Ctrl)	Loaded Ulna	p-value ³
MS/BS (%)	72.81 ± 4.7 (9)	85.23 ± 2.2 (9)**	0.005	87.43 ± 5.12 (7)	85.38 ± 2.51 (7)	0.67
MAR (μm/day)	0.976 ± 0.11 (9)	1.21 ± 0.09 (9)*	0.038	1.072 ± 0.08 (7)	1.26 ± 0.08 (7)*	0.012
BFR/BS (μm ³ /μm ² /day)	268.5 ± 39.13 (9)	377 ± 34.25 (9)**	0.004	348.9 ± 37.24 (7)	398.1 ± 34 (7)	0.11

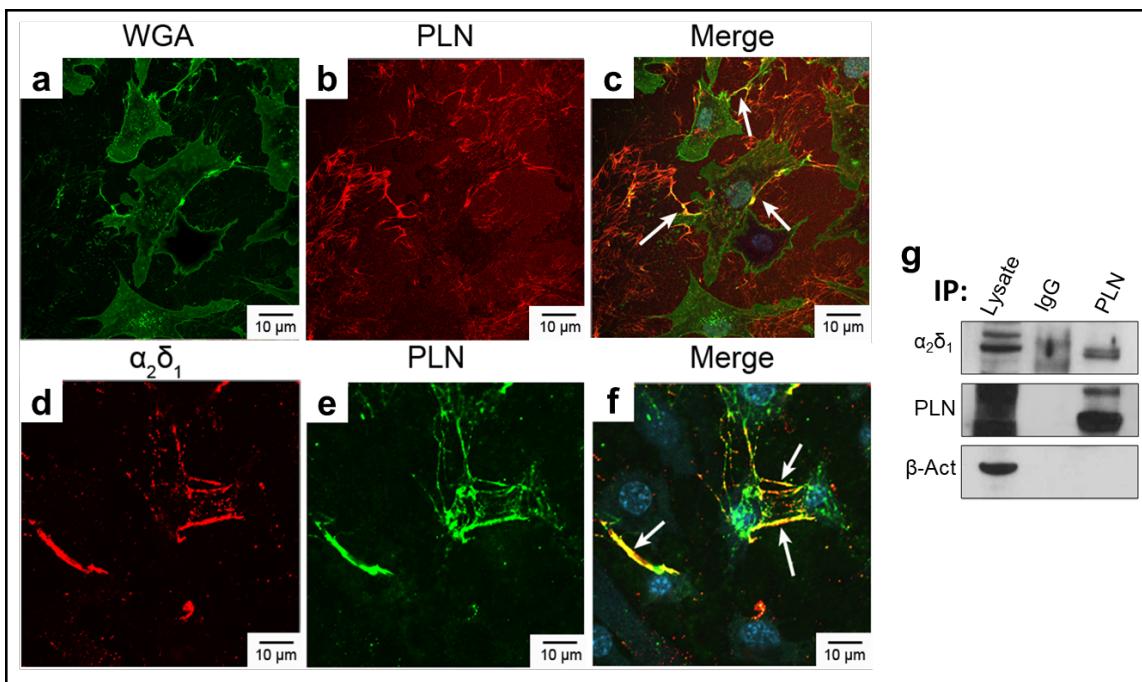
892
893 ¹Mice were injected with saline (VEH, vehicle) or gabapentin (GBP, 300mg/kg BW) for 4
894 weeks while undergoing axial ulnar loading. Data are expressed as mean ± SEM (n)

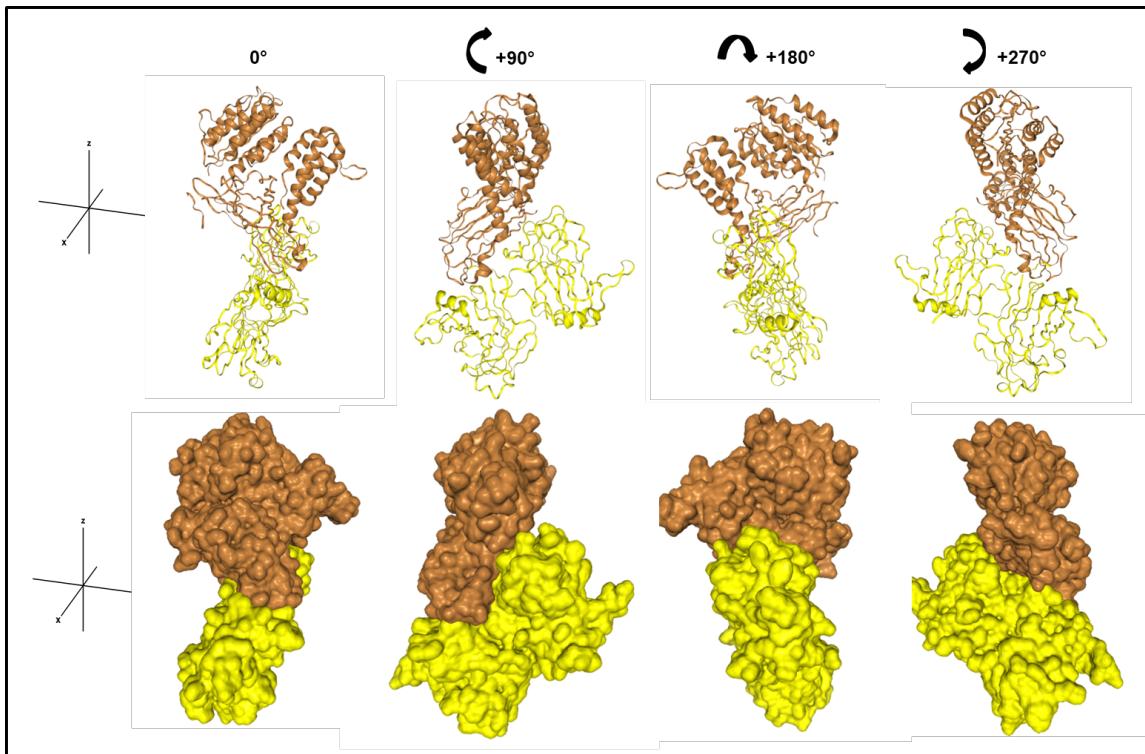

895 ²Periosteal mineralizing surface (MS/BS), mineral apposition rate (MAR), bone
896 formation rate (BFR/BS).

897 ³Statistical analyses were conducted to detect bone formation changes in response to
898 loading. Paired t-test compared non-loaded controls vs loaded limbs. (**) p<0.01; (*)
899 p<0.05.

900
901

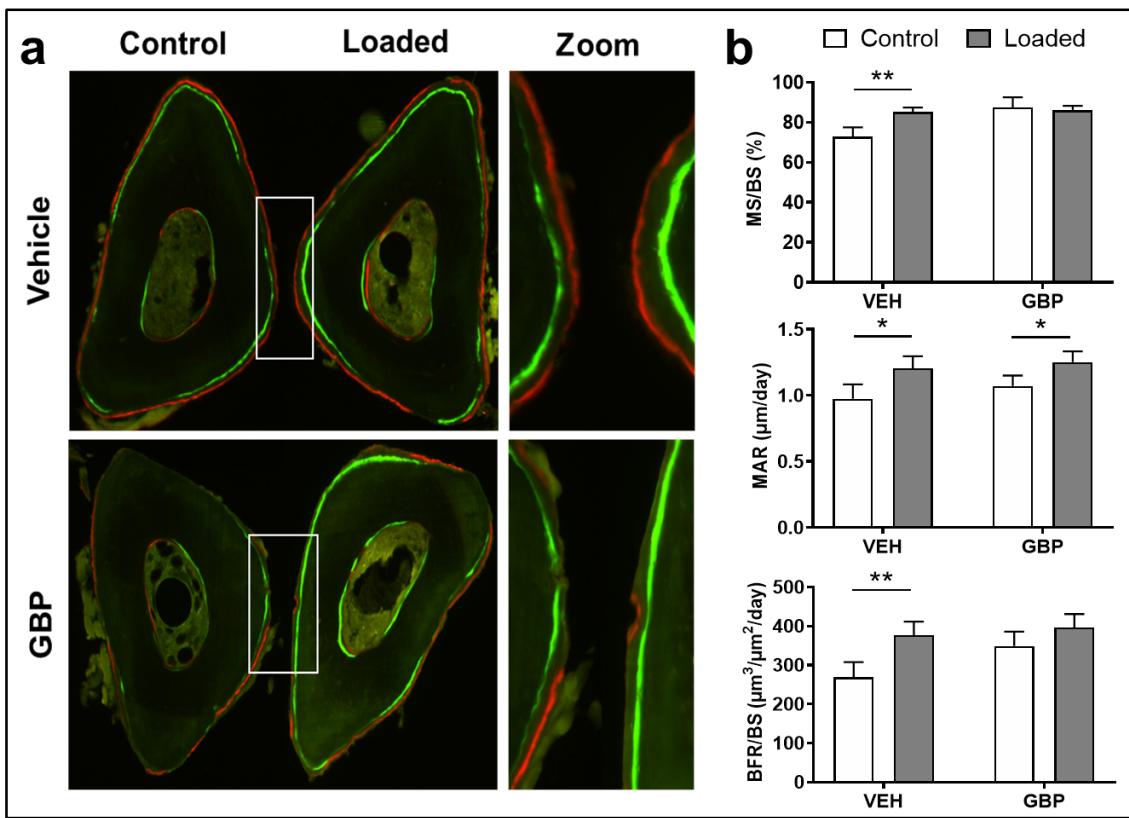
902 **Figure 1**

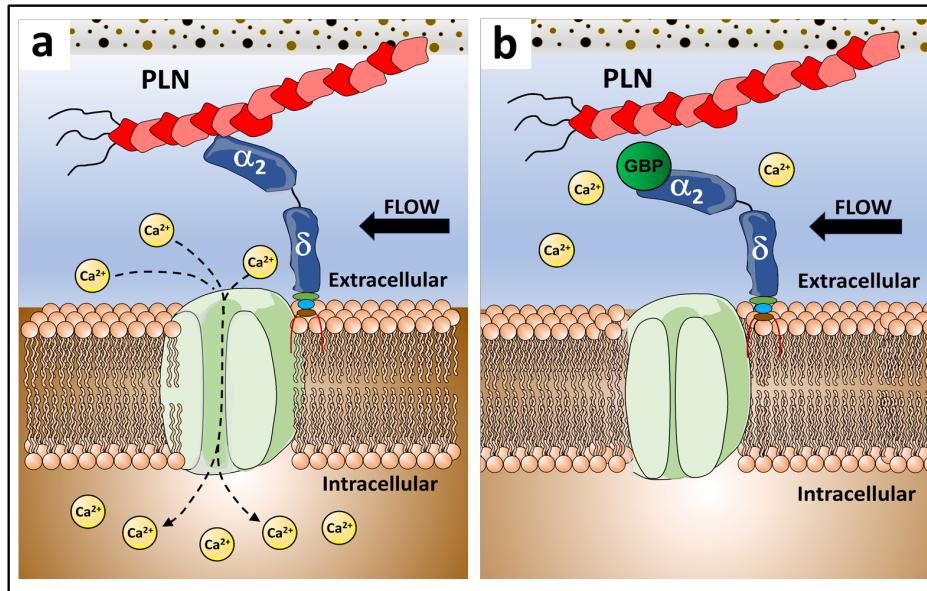

903


904

905

906 **Figure 2**


909 **Figure 3**


910

911

912 **Figure 4**

915 **Figure 5**

916