

Coupling of oxytocin and cholecystokinin pathways in the hypothalamus is required for gut-to-brain homeostatic feeding control

Gruber T^{1,2#}., Lechner F^{1,2}., Murat C^{1,2}., Contreras RE^{1,2}., Sanchez-Quant E³., Miok V^{1,2}., Le Thuc O^{1,2}., González-García I^{1,2}., Williams RH⁴., Pfluger PT^{1,2,5,6}., Müller TD^{1,2,7}., Woods SC⁸., Martinez-Jimenez CP^{3,9}., Tschöp MH^{1,2,10}., Grinevich V^{11,12#}., García-Cáceres C^{1,2,13#}.

¹ Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.

² German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.

³ Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany.

⁴ Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Neurogenomics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.

⁵ Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany.

⁶ Neurobiology of Diabetes, TUM School of Medicine, Technical University Munich, 80333 Munich, Germany.

⁷ Department of Pharmacology and Experimental Therapy, Institute for Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls Hospitals and Clinics, Tübingen, Germany.

⁸ Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.

⁹ TUM School of Medicine, Technical University of Munich, Munich, Germany.

¹⁰ Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany.

¹¹ Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

¹² Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.

¹³ Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.

[#]Correspondence should be addressed to:

Tim Gruber, tim.gruber@helmholtz-muenchen.de

Cristina García-Cáceres, garcia-caceres@helmholtz-muenchen.de

Valery Grinevich, valery.grinevich@zi-mannheim.de

1 **Summary**

2 Oxytocin-expressing paraventricular hypothalamic neurons (PVN^{OT} neurons) integrate afferent
3 signals from the gut including cholecystokinin (CCK) to adjust whole-body energy
4 homeostasis. However, the molecular underpinnings by which PVN^{OT} neurons orchestrate gut-
5 to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation
6 of PVN^{OT} neurons fail to reduce food intake in response to CCK and develop hyperphagic
7 obesity on chow diet. Notably, exposing wildtype mice to a high-fat/high-sugar (HFHS) diet
8 recapitulates this insensitivity towards CCK, which is linked to diet-induced transcriptional and
9 electrophysiological aberrations specifically in PVN^{OT} neurons. Restoring OT pathways in DIO
10 mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic
11 effects. Lastly, by single-cell profiling, we identify a specialized PVN^{OT} neuronal
12 subpopulation with increased κ -opioid signaling under HFHS diet, which restrains their CCK-
13 evoked activation. In sum, we here document a novel (patho)mechanism by which PVN^{OT}
14 signaling uncouples a gut-brain satiation pathway under obesogenic conditions.

15

16 **Key words:** obesity, gut-brain axis, oxytocin, paraventricular hypothalamic nucleus, CCK,
17 opioids.

18 **Introduction**

19 Despite historical evidence, as well as recent large-scale genetic studies (Locke et al. 2015)
20 cogently linking obesity pathogenesis to central nervous system (CNS) defects, we still do not
21 know the exact cellular and molecular mechanism(s) involved in the initiation and progression
22 of obesity and related metabolic disorders. Multiple studies have highlighted various sets of
23 hypothalamic neurons that release specific neuropeptides that critically govern energy intake
24 versus expenditure. Among these, oxytocin (OT), a nine-amino acid neuropeptide traditionally
25 recognized for its role in reproductive physiology and social behavior, is increasingly gaining
26 attention as an anti-obesity drug due to its favorable metabolic effects in multiple pre-clinical
27 and clinical studies (McCormack, Blevins, and Lawson 2020).

28 In the brain, endogenous OT is exclusively synthesized by neurons of the supraoptic (SON),
29 accessory (AN) and paraventricular (PVN) nuclei of the hypothalamus (Swanson and
30 Sawchenko 1983). Among these, the PVN has a particularly paramount role with regard to
31 metabolic homeostasis as both electrolytic lesions as well as human genetic defects that impede
32 PVN development result in severe obesity (Cox and Sims 1988; Michaud et al. 2001; Faivre et
33 al. 2002; Tolson et al. 2010). In contrast to the evolutionarily more ancient, anatomically
34 simpler SON and AN (Grinevich et al. 2014; Knobloch and Grinevich 2014), the PVN exhibits
35 a more complex cytoarchitecture (Swanson and Sawchenko 1980; Biag et al. 2012) and harbors
36 multiple cell types including two types of OT neurons: ‘magnocellular’ and ‘parvocellular’
37 neurons (magnOT and parvOT, respectively), which differ in size, morphology,
38 electrophysiological properties, axonal projection targets, and other properties (Althammer and
39 Grinevich 2017).

40 Several investigations have found that gastric distension upon meal ingestion, and particularly
41 the associated release of the gut peptide cholecystokinin (CCK), powerfully stimulate electrical
42 activity of certain subsets of OT neurons (Verbalis et al. 1986; Renaud et al. 1987; Leng, Way,
43 and Dyball 1991; Kutlu et al. 2010; Caquineau, Douglas, and Leng 2010). Chronic exposure to
44 hypercaloric diets and the consequent obesity lead to defects in this gut-brain crosstalk and
45 these in turn have been proposed to further aggravate metabolic derailment (Clemmensen et al.
46 2017; Brandsma et al. 2015). Indeed, the food intake-suppressing effect of CCK is severely
47 attenuated upon high-fat diet feeding, and it in turn is associated with reduced neural activation
48 in several hypothalamic nuclei, including the PVN (French et al. 1995; Covasa 2010; Troy et
49 al. 2016).

50 We first found that the hypothalamic OT system undergoes maladaptive changes during chronic
51 overnutrition in mice, including blunting the integration and propagation of the afferent CCK
52 signal at the level of the OT system; i.e., a compromised OT response in the PVN is paramount
53 for the loss of CCK’s appetite suppression under high-fat/high-sugar (HFHS) diet feeding. We
54 then, by taking advantage of various gain-and-loss-of-function models, systematically

55 interrogated the physiological relevance and therapeutic potential of the OT system in obesity
56 and diabetes pathogenesis. Last, we employed single-nucleus RNA sequencing-2 (snRNA-
57 seq2) and identified significant disruptions in the transcriptional profiles of specific OT
58 subpopulations upon exposure to a HFHS diet. In sum, we shed important new light on the
59 hitherto elusive molecular underpinnings of how OT neurons influence CCK-induced
60 hypophagia in the orchestration of whole-body metabolic homeostasis.

61

62 **Results**

63 **Selective adult-onset PVN^{OT} neuron ablation induces rapid hyperphagic obesity**

64 To assess if OT neurons located in the PVN (PVN^{OT} neurons) have a significant role in the
65 control of energy homeostasis, we targeted these cells for selective ablation in mice using a
66 diphtheria toxin A (DTA)-based genetic approach. Therefore, we stereotactically injected adult
67 male mice that carry the DTA gene downstream of a LoxP-STOP-LoxP (LSL) with adeno-
68 associated viruses (AAV) that drive expression of iCre or the fluorescent reporter Venus under
69 an OT promoter (Knobloch et al. 2012; Grinevich et al. 2016) (Figure 1A). As expected, iCre-
70 mediated excision of the LSL cassette resulted in prominent induction of cleaved caspase 3 (C-
71 CASP3; an apoptosis marker) in PVN^{OT} neurons at three days post AAV injection (Figure 1B).
72 Importantly, while PVN^{OT} neurons were greatly reduced in number at the end of the experiment
73 (8 weeks post AAV injection), neighboring neurons expressing arginine-vasopressin (AVP)
74 (Figure S1A, S1B) as well as OT and AVP neurons of the SON and accessory nuclei remained
75 unaffected (data not shown). At two weeks post stereotaxic surgery, DTA^{OT+/PVN} mice had
76 already substantially and significantly increased body weight compared to their control
77 littermates and eventually developed pronounced obesity on standard chow (SC) diet with age
78 (Figure 1C, D).

79 Indirect calorimetry conducted between the third and fourth week post AAV injection did not
80 reveal differences between DTA^{OT+/PVN} mice and littermate controls with regard to uncorrected
81 energy expenditure (Figure S1D), nor in the relationship between total energy expenditure and
82 body weight (Figure 1E). Further, no change was observed in the respiratory exchange ratio
83 (RER), in locomotor activity, or in cumulative food intake when single-housed in metabolic
84 cages (Figure S1D-F). When pair-housed in their habitual home cages, however, a separate
85 cohort of DTA^{OT+/PVN} mice displayed marked hyperphagia relative to littermate controls four
86 weeks post AAV injection (Figure 1F), which led us to presume that differences in social
87 isolation stress associated with the metabolic cages might have partly masked normal feeding
88 behavior. Consistent with a persistent positive energy balance due to a higher food intake,
89 DTA^{OT+/PVN} mice exhibited substantial differences in body composition at the end of the
90 experiment (seven weeks post AAV injection), with significantly greater accrual of both fat
91 mass and lean mass relative to littermate control mice (Figure 1G). Moreover, DTA^{OT+/PVN} mice

92 had significantly impaired glucose tolerance (Figure 1H) and higher levels of glycated
93 hemoglobin A_{1C} (HbA_{1C}), implying a defect of long-term glycemic control relative to control
94 mice (Figure S1G). Presupposing that these changes in DTA^{OT+/PVN} mice were due to
95 diminished endogenous OT signaling, we asked whether pharmacologically resubstituting OT
96 could normalize feeding and/or the metabolic derailments. While bi-daily administration of
97 exogenous OT (500 nmol/kg BW; *s.c.*) did not significantly alter body weight in lean control
98 mice, it led to a rapid body weight reduction in DTA^{OT+/PVN} mice (Figure 1I; treatment initiated
99 eight weeks post AAV injection). Notably, changes in body weight were accompanied by
100 reduced food intake (Figure 1K) and improved 3h-fasted blood glucose (Figure S1H), as well
101 as in insulin sensitivity (HOMA-IR; Figure S1I). Intriguingly, we noted that the potency of
102 exogenous OT in DTA^{OT+/PVN} mice greatly surpassed the weight-lowering effect that has been
103 previously reported in diet-induced obese (DIO) C57BL/6J wildtype mice of similar adiposity
104 using comparable OT dosing (Snider et al. 2019). To determine if this heightened sensitivity of
105 DTA^{OT+/PVN} mice to exogenous OT is consequent of diminished endogenous production, we
106 observed a compensatory up-regulation of *Otr* mRNA expression (encoding for the OT
107 receptor) in the hypothalami of DTA^{OT+/PVN} mice relative to littermate controls (Figure S1J). In
108 sum, the selective ablation of hypothalamic PVN^{OT} neurons promotes hyperphagic obesity,
109 likely via a paucity of endogenous OT signaling that can be rectified by pharmacological
110 substitution.

111

112 **Selective adult-onset PVN^{OT} neuron ablation renders mice insensitive to systemic CCK**

113 PVN^{OT} neurons are strongly excited in response to meal-related gastrointestinal stimuli
114 including gastric distension and particularly the associated release of the intestinal peptide CCK
115 (Verbalis et al. 1986; Renaud et al. 1987; Leng, Way, and Dyball 1991; Kutlu et al. 2010;
116 Caquineau, Douglas, and Leng 2010). Given that CCK administration robustly suppresses acute
117 feeding, we assessed the necessity of PVN^{OT} neuron activation for CCK-elicited food intake
118 suppression using mice devoid of PVN^{OT} neurons fed an SC diet (four weeks post AAV
119 injection). After acclimating DTA^{OT+/PVN} mice and littermate controls to single housing, SC diet
120 removal (3pm-6pm), and sham injections within metabolic cages for three days, we
121 administered CCK (20 µg/kg BW; *i.p.*) on the fourth day to all mice 10 minutes before dark
122 onset and food return. Consistent with the literature (Fan et al. 2004), CCK injections at this
123 dose produced a significant suppression of food intake in control mice (Figure 1K). In contrast,
124 however, feeding behavior of DTA^{OT+/PVN} mice was not significantly altered by CCK relative
125 to sham treatments (Figure 1L). We conclude that PVN^{OT} neurons are necessary for CCK-
126 mediated hypophagia under physiological conditions.

127

128 **Chronic exposure to a HFHS diet diminishes the activation of PVN^{OT} neurons to**
129 **peripheral CCK**

130 These findings suggest a prominent role of PVN^{OT} neurons in feeding control by CCK. We then
131 asked whether this same gut-brain communication is altered by exposure to an obesogenic diet.
132 Indeed, it has been reported that the food intake-suppressing effect of CCK is severely
133 attenuated upon high-fat diet feeding, and this is associated with reduced neural activation in
134 several hypothalamic nuclei including the PVN (French et al. 1995; Covasa 2010; Troy et al.
135 2016). Thus, we asked whether the hypothalamic OT system undergoes diet-induced
136 desensitization to CCK upon HFHS diet feeding. Consistent with previous reports in rats (Olson
137 et al. 1992; Motojima et al. 2016), C57BL/6J mice fed a SC diet and receiving CCK (20 µg/kg
138 BW; *i.p.*) had robustly induced neuronal activation in a large proportion of PVN^{OT} neurons as
139 indicated by increased co-localization with c-fos immunoreactivity (Figure 2A, B). To discern
140 if peripheral CCK administration similarly affected both magnOT or parvOT subtypes, we next
141 quantified c-fos⁺ PVN^{OT} neurons in a separate cohort of SC diet-fed reporter mice expressing
142 tdTomato specifically in OT neurons (*OT:Ai14*), which received peripheral injections of
143 Fluorogold (15 mg/kg BW; *i.p.*) 7 days prior to sacrifice. Fluorogold selectively marks neurons
144 projecting beyond the blood-brain-barrier and thus can distinguish for magnOT cells (FG⁺;
145 Tang et al. 2020; Eliava et al. 2016). We found that 25% of CCK-activated PVN^{OT} neurons
146 were FG⁺ magnOT neurons (Figure 2C, S2A-C), while CCK treatment induced c-fos only in
147 8% of FG⁻ parvOT neurons. Conversely, mice chronically fed an HFHS diet failed to
148 significantly increase c-fos immunoreactivity in PVN^{OT} neurons following CCK injection
149 suggesting a blunted activation in the course of consuming an obesogenic diet (Figure 2A, B).

150

151 **Peripheral CCK induces a characteristic transcriptional profile specifically in**
152 **hypothalamic OT neurons of lean but not obese mice**

153 To identify CCK-inducible gene expression modules in a population-specific manner, we
154 explored the effects of peripheral CCK on gene regulatory networks within OT neurons. We
155 generated *OT:RiboTag* mice (*OT-ires-Cre* mice intercrossed to floxed *Rpl22^{HA}* mice), allowing
156 us to employ translating ribosome affinity purification (TRAP) and RNA sequencing (RNA-
157 seq) of actively translated mRNA selectively in OT neurons (Figure 2D). HA-tagged ribosomes
158 derived from OT neurons were immunoprecipitated (IP) from whole hypothalamic lysate
159 (input) using an anti-HA antibody resulting in an > 80-fold enrichment of *Ot* mRNA in the IP
160 as compared to the input fraction (Figure 2E). Notably, the IP fraction was significantly
161 enriched for *Cckar* mRNA while being de-enriched for *Cckbr* mRNA as compared to the input
162 (Figure 2F). Importantly, mice chronically fed a HFHS diet tended to have lower *Cckar* mRNA
163 and higher *Cckbr* mRNA abundance compared to lean, SC diet-fed control mice (Figure 2G).
164 We next explored more broadly how HFHS diet exposure affects gene expression networks and

165 pathways in OT neurons. Thus, we performed GO enrichment analysis of a total of 3127
166 differentially expressed genes (DEG), regarded significant with FDR adjusted p-value < 0.05
167 using the Wald significance test, between vehicle-treated SC diet- versus HFHS diet-fed mice.
168 By employing the cellular component category analysis, we found that HFHS diet-exposure
169 strongly modifies pathways involved in organelle localization, Golgi apparatus function, and
170 synaptic vesicle transport and recycling as well as exocytosis (Figure S2D). Lastly, we injected
171 SC diet- or HFHS diet-fed cohorts of *OT:RiboTag* mice with either CCK (20 µg/kg BW; *i.p.*)
172 or vehicle in order to conduct TRAP followed by high-throughput RNA-seq for both input and
173 IP samples. Strikingly, in mice maintained on SC diet, administration of CCK two-hours before
174 sacrifice elicited widespread and profound changes in the gene expression profile of OT
175 neurons compared to vehicle (158 DEG with p-value <0.05 after FDR correction, employing
176 Wald significance test; Figure 2H, I). Of note, the respective input samples did not exhibit any
177 significant gene expression signatures upon CCK delivery further supporting the notion that
178 OT neurons represent a major CCK-responsive population within the hypothalamus (Figure
179 S2E, F). Strikingly, all CCK-related transcriptomic changes were completely abolished if mice
180 were chronically fed a HFHS diet (Figure 2H). In sum, an acute increase of circulating CCK
181 elicits characteristic changes in mRNA translational activity at the level of OT neurons in lean
182 but not in obese mice.

183
184 **CCK triggers the activation of PVN^{OT} neurons via CCK_AR-mediated mechanism in lean**
185 **but not in obese mice**

186 We next investigated the mechanism of action to discern if PVN^{OT} neurons directly sense CCK
187 levels or whether the response is mediated via relay pathways downstream of a vagal
188 mechanism (Miller et al. 1993; Luckman et al. 1993). Selective expression of a genetically
189 encoded Ca²⁺ indicator, GCaMP6f, was specifically targeted to PVN^{OT} neurons by
190 stereotactically injecting AAV-DIO-EF1 α -GCaMP6f into OT-*ires*-Cre mice. Using 2-photon
191 excitation Ca²⁺ imaging of ex vivo brain slices, we found that bath application of CCK in the
192 presence of synaptic blockers evoked robust and immediate increases in fluorescent signals in
193 putative magnocellular PVN^{OT} neurons (Figure 3A-D; Figure S3A, S3B; video S1). This
194 indicates that this population is directly responding to CCK with increased cytosolic Ca²⁺
195 transients. To identify the molecular mechanisms that enable PVN^{OT} neurons to directly sense
196 systemic CCK, we next applied single molecule fluorescent *in-situ* hybridization (FISH;
197 RNAscope) and assessed the expression of the CCK_A receptor subtype in PVN^{OT} neurons.
198 CCK_AR, which is predominantly found in vagal sensory neurons along the alimentary canal
199 (Dourish and Hill 1987; Williams et al. 2016), constitutes the major subtype mediating the food
200 intake-suppressive effect of CCK and has previously been implicated in the activation of OT
201 neurons in rodents (Luckman et al. 1993; Miller et al. 1993). Contrary to the initially proposed

202 vagally mediated mechanism, and consistent with our ribosomal profiling results, we here
203 detected abundant *Cckar* mRNA expression in PVN^{OT} neuronal somata (Figure 3E), which was
204 significantly lower in mice chronically exposed to HFHS diet as compared to SC diet-fed
205 control mice (Figure 3F). To further substantiate a direct CCK_{AR}-mediated mechanism in
206 PVN^{OT} neurons, we next conducted whole-cell patch-clamp recordings from putative magnOT
207 neurons *ex vivo*. We identified magnOT cells based on their distinct electrophysiological
208 profile, e.g. characteristic transient outward rectification during depolarizing current injections
209 (Eliava et al. 2016). Superfusion with a potent and selective CCK_{AR} agonist (A-71623; 25 nM)
210 elicited robust increases in action potential frequency of putative magnOT neurons from SC
211 diet-fed mice. In contrast, mice chronically fed a HFHS diet did not show any significant
212 increases in action potential frequency when A-71623 nor native CCK-8s (engaging both
213 CCK_{AR} and CCK_{BR}; 50 nM) were bath applied (Figure 3G, 3H). Notably, magnOT neurons
214 from SC diet- versus HFHS diet-fed mice did not exhibit differences in electrophysiological
215 properties, such as basal action potential frequency, FI curve (firing frequency as a function of
216 injected current), and input resistance (Figure S3C-E). Based on these results, we thus conclude
217 that mice on a SC diet can detect systemic CCK on the level of PVN^{OT} neurons via a direct
218 CCK_{AR}-mediated mechanism that becomes aberrant upon feeding mice with a HFHS diet.
219

220 **Targeted PVN^{OT} neuron activation restores CCK-induced satiety in HFHS diet-fed mice**
221 Based on our previous finding, we hypothesized that CCK's inability to suppress high-fat diet
222 intake (Covasa and Ritter 1998, 2000; French et al. 1995; Torregrossa and Smith 2003) is a
223 consequence of its decoupling from the hypothalamic OT system, which we have observed
224 upon chronic HFHS diet exposure. To test the pathophysiological relevance of this particular
225 gut-brain pathway, we circumvented this diet-associated impediment of PVN^{OT} neuron
226 engagement by administering systemic CCK to HFHS diet-fed mice while concomitantly
227 activating PVN^{OT} neurons using designer receptors exclusively activated by designer drugs
228 (DREADDs). To accomplish this, we stereotactically injected either AAV-DIO-hSYN1-
229 hM3Dq-mCherry (an activating DREADD) or a control virus into the PVN of adult male OT-
230 *ires-Cre* mice. After four weeks, mice underwent dosing acclimatisation with sham *i.p.*
231 injections within metabolic cages for three consecutive days. Consistent with the literature,
232 CCK administration on the fourth day 10 min before dark onset produced a significant
233 suppression of food intake. In addition, a prolonged feeding latency in SC diet-fed control mice
234 relative to vehicle injection was recorded (Figure 4A); in contrast, CCK injections did not
235 reduce food intake in obese control mice chronically fed a HFHS diet (Figure 4B), as previously
236 observed by others (Covasa and Ritter 1998, 2000; Swartz, Savastano, and Covasa 2010). Next,
237 we asked whether the chemogenetic activation of PVN^{OT} neurons is sufficient to restore CCK-
238 mediated hypophagia in HFHS diet-fed mice that selectively express hM3Dq (hM3Dq^{OT+/PVN}

239 mice). To do this, we pre-injected HFHS diet-fed hM3Dq^{OT+/PVN} mice with the DREADD-
240 activating ligand clozapine-N-oxide (CNO) 20 minutes prior to the systemic administration of
241 CCK and closely assessed their feeding behavior. Strikingly, the simultaneous chemogenetic
242 activation of PVN^{OT} neurons readily restored the sensitivity to CCK and produced a durable
243 suppression of HFHS diet intake over the course of 2 h (Figure 4C). Importantly, in the same
244 cohort of mice, chemogenetic activation of PVN^{OT} neurons without CCK administration did
245 not alter HFHS diet intake relative to control mice (control mice: 1.03 ± 0.19 kcal versus
246 hM3Dq^{OT+/PVN} mice: 0.79 ± 0.17 kcal over 2 hours post CNO). Based on these findings, we
247 inferred that activation of PVN^{OT} neurons is necessary to mediate CCK-induced satiation, but
248 that their activation is not sufficient to suppress HFHS diet intake on its own. To determine
249 how PVN^{OT} neurons are required for co-executing intake suppression with CCK, we next
250 assessed changes in neuronal activity patterns in control mice versus hM3Dq^{OT+/PVN} mice
251 receiving either CNO alone or CNO+CCK (Figure 4D). In control mice, HFHS diet feeding
252 greatly blunted the induction of c-fos immunoreactivity in virus-targeted OT^{mCherry+} neurons by
253 CNO+CCK co-administration relative to CNO alone. In contrast, hM3Dq^{OT+/PVN} mice had
254 robust and near-complete activation of virus-targeted OT^{hM3Dq-mCherry} neurons, regardless if
255 given CNO-only or CNO+CCK in combination (Figure 4E). Importantly, combined
256 CNO+CCK administration in these mice also resulted in a greatly potentiated activation of the
257 PVN overall, including neighboring non-OT neurons (Figure 4F). Thus, this pronounced c-fos
258 response in the PVN upon CNO+CCK, which was observed in hM3Dq^{OT+/PVN} mice but not in
259 control mice or hM3Dq^{OT+/PVN} mice given CNO only, precisely reflected the changes in feeding
260 behavior and further suggests that PVN^{OT} engagement is a prerequisite for broader PVN
261 activation and suppression of food intake upon CCK.

262

263 **Chemogenetic PVN^{OT} neuron stimulation potentiates the CCK-induced activation of**
264 **hindbrain NTS neuron in HFHS diet-fed mice.**

265 Intrigued by this broad PVN activation in CNO+CCK-injected hM3Dq^{OT+/PVN} mice, we next
266 pondered whether this effect would extend beyond the PVN also re-sensitizing other critical
267 circuit nodes of central GI hormone signaling. As extensively described elsewhere (Blevins and
268 Baskin 2010), peripheral CCK co-activates a dispersed neurocircuitry including the PVN as
269 well as the nucleus tractus solitarius (NTS) in the caudal brainstem – two regions that are
270 heavily interconnected and are both critical for the orchestration of the behavioral and
271 physiological responses towards CCK (Rinaman et al. 1993; Ueta et al. 2000). In order to
272 interrogate whether HFHS diet-induced aberrations in PVN^{OT} neurons would impact the
273 structure and function of this hypothalamus-brainstem neurocircuit, we employed dual-color
274 3D whole-brain imaging (iDISCO; (Renier et al. 2014)) of OT:Ai14 reporter mice in
275 combination with immunostaining against tyrosine hydroxylase (TH). By this, we were able to

276 resolve the descending axonal projections from PVN^{OT} neurons as well as their extensive
277 innervation of subregions throughout the NTS, including the catecholaminergic A2/C2 cell
278 group (TH⁺) (Figure S4A-D; video S2). Next, we analyzed the activation state of NTS neurons,
279 including the A2/C2 cell group, upon CNO+CCK co-injections of the same cohort of
280 hM3Dq^{OT+/PVN} mice and controls as in Figure 4. Strikingly, we observed that hM3Dq^{OT+/PVN}
281 mice exhibited significantly more c-fos⁺ neurons in the NTS upon CNO+CCK co-
282 administration relative to control mice (Figure 4G), which was particularly prominent for the
283 catecholaminergic A2/C2 cell group in the caudal medial portion of the NTS (Figure S4E, F).
284 In sum, our data suggests that defective sensing of gut-born CCK upon chronic HFHS diet
285 exposure is a consequence of a disturbed hypothalamus-brainstem network. Importantly, our
286 data further highlights the hitherto unrecognized fact that PVN^{OT} neurons constitute a key
287 population within the hierarchical structure of this network, which is evidenced by the fact that
288 their selective activation readily re-sensitized mice to the feeding-suppressive effect of systemic
289 CCK. We thus conclude that PVN^{OT} neurons function as a pivotal central hub whose targeted
290 activation can restore the transmission of the gut-derived anorexigenic signal CCK under
291 obesogenic conditions.

292

293 **Combined OTR-CCK_{AR} co-agonism improves metabolic outcomes in diet-induced obese
294 mice**

295 Since the hypothalamic OT system co-executes food intake suppression together with CCK, a
296 process that is disrupted upon HFHS diet exposure, we hypothesized that the pharmacological
297 combination of synthetic OT and a potent and selective CCK_{AR} agonist (A-71263) (Asin et al.
298 1992) would confer significant metabolic improvements in DIO C57BL/6J mice. As compared
299 to respective mono-agonism, co-treatment with OT (500 nmol/kg BW; *s.c.*) and A-71263 (30
300 nmol/kg BW; *i.p.*) twice daily for 10 days resulted in increased body weight loss (Figure 4H)
301 which was associated with a significant reduction in food intake relative to what occurred in
302 vehicle-treated control mice (Figure 4I). Body composition analyses further revealed that the
303 substantial weight-lowering effect of combined OT and A-71263 was primarily due to a loss in
304 fat mass (Figure 4J). Importantly, combined OT and A-71263 treatment had no effect on body
305 weight or composition in mice that globally lack OT receptor upon tamoxifen-induced Cre-
306 loxP recombination in adulthood (OTR^{iΔ} mice). Thus, we conclude that integrating OTR- and
307 CCK_{AR} agonism promotes favorable metabolic effects in DIO mice and might emerge as a
308 promising new combination to be added to the current arsenal of anti-obesity polypharmacies.

309

310 **Single-nucleus RNA-seq2 reveals intersectional regulation of hypothalamic OT neurons
311 by CCK_{AR} and κ-opioid receptors that is dependent on dietary context**

312 We next sought to explore the transcriptional diversity across hypothalamic OT neurons at the
313 resolution of single cells. To accomplish this we generated mice in which the nuclei of OT
314 neurons are tagged with super-folded (sf)GFP; specifically, we back-crossed OT-*ires*-Cre mice
315 with a reporter mouse line that Cre-dependently expresses the nuclear membrane protein SUN-
316 domain containing protein 1 (SUN1) fused to sfGFP (*OT:Sun1-sfGFP* mice; Figure 5A). Being
317 therefore amenable to fluorescence-activated cell sorting (FACS), we then isolated
318 hypothalamic OT neuronal nuclei from SC diet- or HFHS diet-fed mice and individually sorted
319 them into 384-well plates (Figure 5B). Per mouse brain, we yielded circa 500 sfGFP⁺ nuclei,
320 which is consistent with stereological counting studies of OT neuron numbers (Lewis et al.
321 2020). To assess the overall impact of chronic HFHS diet-feeding, we performed differential
322 gene expression analyses (123 DEG with adjusted p-values <0.05) comparing the entirety of
323 single nuclei transcriptomes between mice fed SC diet versus HFHS diet. HFHS diet exposure
324 was associated with substantial changes in gene expression throughout the OT neuronal
325 population (Figure 5C). We then queried our snRNA-seq2 data set for the expression of
326 receptors related to hormonal, neuropeptide and low-molecular transmitter signaling implicated
327 in energy homeostasis. We found multiple OT neurons to express varying combinations of
328 metabolism-related receptors, reassuringly including *Cckar*, suggesting substantial
329 convergence in metabolic information processing at the level of distinct OT neuronal subsets
330 (Figure 5D). We then focused on OT neurons exhibiting transcript intersections between *Cckar*
331 and *Oprk1* (κ -opioid receptor 1; KOR), which constitutes an inhibitory G_i/G_o-coupled receptor
332 that stands out by its highly abundant expression across OT neurons. Chronic exposure to a
333 HFHS diet increased the proportion of *Cckar*⁺ OT neurons co-expressing *Oprk1* mRNA (Figure
334 5D, E).

335

336 **κ -opioid tone restrains PVN^{OT} neuronal activation by CCK under HFHS diet feeding**

337 Given that signaling through KOR is associated with inhibitory neuromodulation, we
338 hypothesized that HFHS diet-induced κ -opioid tone in *Cckar*⁺ OT neurons might indirectly and
339 tonically blunt their responsiveness to systemic CCK. To test this hypothesis, we carried out patch-
340 clamp recordings of PVN^{OT} neurons in acute brain slices derived from mice that selectively
341 express tdTomato in OT neurons (*OT:Ai14-tdTomato*). In agreement with our previous
342 findings, we observed that bath-application of the selective CCK_{AR} agonist A-71623 (25 nM)
343 dramatically increased action potential frequency in magnocellular PVN^{OT} neurons from SC
344 diet-fed mice independently of presynaptic inputs (Figure 5F, G and S4A, B), whereas this
345 response was significantly blunted if mice were chronically fed HFHS diet (Figure 5F).
346 However, when brain sections from HFHS diet-fed mice were pre-incubated with the potent
347 and highly selective KOR antagonist *nor*-binaltorphimine (*nor*-BNI; 200 nM in aCSF for 20
348 min), the CCK_{AR} agonist A-71623 was readily able to trigger significant action potentials in

349 PVN^{OT} neurons (Figure 5F, G). Thus, as revealed by our snRNAseq2 data set, these
350 electrophysiological insights further underscored the notion that increased κ-opioid signaling
351 within CCK-sensitive OT subsets underlies their tonically restrained excitability under
352 obesogenic diet.

353

354 **Discussion**

355 Gut-to-brain communication is pivotal for the control of whole-body energy homeostasis
356 (Clemmensen et al. 2017) and pharmacological targeting of select pathways within this
357 communication network has recently been found to effectively lower body weight in clinically
358 obese populations (Wilding et al. 2021). Spurred by this translational success story, we sought
359 out to explore alternative brain-targeted gut peptide therapeutics that – if rationally combined
360 – might better mimic the pluri-hormonal physiology of eating (Gribble and O'Rahilly 2021).
361 Here, we have elucidated how the anorexigenic gut peptide CCK fails to suppress food intake
362 under obesogenic diets. Specifically, we observed that feeding a HFHS diet induces aberrations
363 in hypothalamic OT neurons on both the transcriptional and electrophysiological levels by
364 which this pivotal cell population ultimately decouples from gut-borne CCK signaling.

365

366 **CCK induces a gene expression signature at the level of PVN^{OT} neurons in lean but not 367 obese mice**

368 By employing affinity purification of tagged ribosomes followed by in-depth translatome
369 profiling, we have identified a highly coordinated translational program of distinct mRNA
370 classes that is induced in hypothalamic OT neurons upon systemic CCK injection. In agreement
371 with what occurs in another population of hypothalamic neurons (Cedernaes et al. 2019), our
372 data add to the evidence suggesting that hormonal cues can readily induce robust and
373 characteristic gene expression signatures in specialized cell types to adjust neuronal physiology
374 to the nutritional state. Besides a pronounced enrichment of mRNA species involved in
375 neuroplasticity including retinoic acid signaling (*Rdh9*) (Shearer et al. 2012), two of the
376 transcripts most robustly induced by CCK were *Exoc3l2* and *Trappc9/Nbp*, genes that encode
377 for proteins crucially involved in vesicular trafficking and neuropeptide signaling. Intriguingly,
378 mutations in *Trappc9/Nbp* have previously been linked to a Prader-Willi-like obesity syndrome
379 (PWS) in humans (Marangi et al. 2013; Liang et al. 2020). We further revealed that chronic
380 HFHS diet feeding abolishes the induction of this characteristic gene expression signature,
381 suggesting that long-term caloric excess might uncouple episodic hormonal information from
382 molecular processes promoting OT neuronal plasticity and cell-cell communication. However,
383 future investigations are yet required to reveal further intricacies as to how hormone-inducible
384 gene expression signatures modulate hypothalamic function and energy homeostasis and
385 whether they might bear therapeutic potential for dietary and/or genetic forms of obesity.

386

387 **Targeted co-activation of OT and CCK signaling elicits enhanced food intake suppression**
388 **and weight loss despite obesogenic diet exposure**

389 Physiological energy homeostasis crucially depends on the gastrointestinal system informing
390 the brain about the nutritional status quo in the form of gut-derived humoral and neural signals
391 such as CCK (Clemmensen et al. 2017). CCK, as the first-described and paradigmatic
392 anorexigenic gut hormone, suppresses feeding in a variety of species ranging from rodents
393 (Gibbs, Young, and Smith 1973; Crawley et al. 1981) to primates (Falasco, Smith, and Gibbs
394 1979) including humans (Sturdevant and Goetz 1976). However, its hoped-for therapeutic
395 potential as an anti-obesity drug was questioned based on early observations reporting that
396 chronic intake of fat-rich diets greatly blunts its anorexigenic effect (Covasa and Ritter 1998,
397 2000; French et al. 1995; Torregrossa and Smith 2003; Beutler et al. 2020). Despite chronic
398 exposure to an obesogenic diet, mice administered CCK had fully restored food intake
399 suppression due to artificially reinstated OT signaling using chemogenetic or
400 polypharmacological means. Besides PVN^{OT} neurons, prior studies have suggested that the
401 nucleus tractus solitarius (NTS) in the brainstem constitutes another pivotal brain region that
402 mediates CCK-induced hypophagia (Brown et al. 1998; Ho et al. 2014; Rinaman and Rothe
403 2002; Olson et al. 1992). Within the NTS, the catecholaminergic A2/C2 cell group in particular
404 is robustly activated by systemic CCK injections (Rinaman et al. 1993). Notably, this group of
405 brainstem cells is reciprocally interconnected with the hypothalamic OT system and receives
406 dense innervation from parvOT neurons residing in the PVN (Blevins et al. 2003). Conversely,
407 ascending catecholaminergic projections emanating from the NTS target the PVN. In fact,
408 norepinephrine release within the hypothalamus is highly correlated with systemic OT secretion
409 following peripheral CCK injections (Brown et al. 1998), strongly implying that PVN^{OT}
410 neurons and the A2/C2 cell group constitute a pivotal, interrelated tandem for processing CCK-
411 mediated information. Besides the catecholaminergic A2/C2 cell group, the NTS additionally
412 harbors neurons that produce glucagon-like peptide 1 (GLP-1), another potent anorexigen,
413 whose central signaling profoundly intersects with both OT (Rinaman and Rothe 2002; Brierley
414 et al. 2021) and CCK pathways (Borgmann et al. 2021). Together, these novel insights into the
415 intricate crosstalk among various gut-to-brain-pathways make it ever clearer that we are still
416 far from a comprehensive understanding of the poly-hormonal control of eating. Notably, our
417 data now add to the body of literature whose emergent complexity demands a deeper
418 understanding of how various gut peptide signaling axes intersect at the central level and how
419 these interactions are altered in disease states such as obesity.

420

421 **Obesity is associated with increased *Oprk1* mRNA expression and inhibitory κ-opioid**
422 **signaling in PVN^{OT} neurons that restrains their excitability in response to CCK**

423 By devising a novel approach for single-nuclei isolation in combination with snRNA-seq2, we
424 mapped the molecular heterogeneity across the entire hypothalamic OT system. We
425 demonstrated that multiple individual OT neurons express a series of different metabolism-
426 related receptors, suggesting distinct populations with partly overlapping sensitivities towards
427 metabolic cues. One of the most abundant receptors, *Oprk1*, which encodes for the κ -opioid
428 receptor type 1 that is typically associated with inhibitory neuromodulation and is increased in
429 *Cckar*⁺ OT neurons by chronic HFHS diet exposure, was highly expressed. *Oprk1* mRNA
430 expression additionally overlapped pronouncedly with that of *Fam19a1* (family with sequence
431 similarity 19, member 1a), a brain-enriched and metabolically responsive neuropeptide (Lei et al.
432 2019) that has been associated with human obesity and insulin resistance in a recent genome-
433 wide association study (Rausch et al. 2018). Prompted by the striking *Oprk1* expression levels
434 as well as by the suggested crosstalk with CCK_{AR} signaling, we went on to functionally probe
435 for tonic inhibition of CCK-evoked PVN^{OT} neuron activation under HFHS feeding using *ex-*
436 *vivo* electrophysiology. Indeed, we were able to restore excitability towards CCK_{AR} agonism
437 by selectively blocking KOR signaling in brain slices of HFHS diet-fed mice. Consistent with
438 previous reports (Onaka et al. 1995; Leng, Dye, and Bicknell 1997), we now provide additional
439 evidence for the functional significance of increased κ -opioid tone onto hypothalamic OT
440 neurons and propose that it is a major mechanism that contextually restrains the CCK-evoked
441 activation under obesogenic diets. The elucidation of this hitherto elusive mechanism might
442 shed new light on prior observations that pharmacological blockade of opioid signaling
443 specifically in the PVN reduces both homeostatic and hedonic feeding in rats (Koch et al. 1995)
444 and on the fact that mice globally lacking KOR (*Oprk1*^{-/-} mice) are protected from developing
445 dietary obesity (Czyzyk et al. 2010). Further *in-vivo* studies will be required to disentangle the
446 functional intersections between the OT system, CCK, endogenous opioids, and perhaps other
447 factors such as FAM19A1, in the context of metabolic disorders. In sum, we have shed new
448 light on the molecular heterogeneity within the OT system as well as on its (mal)adaptive
449 plasticity that occurs under (patho)physiological contexts. Future studies will be required to
450 ascertain if these insights might aid to harness OT as such, or in combination with synergistic
451 hormones like CCK and/or KOR blockers, for the development of next-generation precision
452 medicine to correct metabolic physiology.

453

454 **Conclusion**

455 In conclusion, we have identified the hitherto elusive mechanisms as to why systemic CCK
456 fails to activate hypothalamic OT neurons under obesogenic diets and delineated approaches
457 such as endogenous opioid modulation to recouple CCK signaling with hypothalamic OT
458 pathways for restoration of gut-brain satiation signaling. These experiments ultimately
459 reinforce the concept that PVN^{OT} neurons constitute a molecularly and functionally diverse

460 assembly of neurons that are tightly enmeshed within a widespread metabolic control network
461 in which they occupy a key position completing a feedback loop between afferent peripheral
462 signals, central circuits and behavior.

463

464 **Acknowledgments**

465 The authors thank Cassie Holleman, Elisavet Lola, Clarita Layritz and Nicole Klas for their
466 excellent technical assistance. We thank Dr. Sandrine Lefort for contributing to Ca^{2+} imaging
467 and Maria Richter for critical feedback regarding bioinformatic analyses. This work was
468 supported in part by funding to R.E.C. and P.T.P. from Marie Skłodowska-Curie Grant
469 (ChroMe # 675610), I.G.-G. is a recipient of a fellowship from European Union's Horizon 2020
470 research and innovation program under the Marie Skłodowska-Curie actions (842080 – H2020-
471 MSCA-IF-2018), R.H.W received funding from the European 748 Research Council ERC
472 under the European Union's Horizon 2020 research and innovation 749 programme (#715933),
473 C.P.M.J. and E.S.Q. were supported by the Helmholtz Pioneer Campus, V.G. received funding
474 from German Research Foundation DFG (GR 3619/13-1, GR 3619/15-1, GR 3619/16-1, DFG
475 TRG (GRK) 2174, and SFG Consortium 1158-2), and M.H.T. and C.G.-C. received funding
476 from the European Research Council ERC (AdG grant Hypoflam # 695054 and STG grant
477 AstroNeuroCrosstalk # 757393 respectively), and the German Research Foundation DFG under
478 Germany's Excellence Strategy within the framework of the Munich Cluster for Systems
479 Neurology (EXC 2145 SyNergy – ID 390857198) and Helmholtz Excellence Network. T.G.
480 and C.G.-C. received funding from the German Center for Diabetes Research (DZD) twinning
481 grant 2020.

482

483 **Author Contributions**

484 T.G., C.G.-C., and V.G. conceptualized all studies and designed all experiments. T.G.
485 (surgeries, immunohistochemistry, imaging, qPCR), T.G., F.L., I.G.-G. and O.L.T. (metabolic
486 phenotyping), R.E.C. (FACsorting), E.S.Q. (library preparation snRNA-seq2), V.M.
487 (bioinformatics), and C.D.B.M. (electrophysiology), conducted the experiments, collected, and
488 analyzed the data. T.G., C.G.-C., and V.G. wrote the manuscript in discussion with M.H.T.,
489 C.P.M.J., R.H.W., T.D.M., S.C.W., and P.T.P., who revised the article critically for important
490 intellectual content. All authors have read and approved the final version of the manuscript.

491

492 **Declaration of Interests**

493 The authors declare no competing interests. Dr. Matthias Tschöp is a member of the scientific
494 advisory board of ERX Pharmaceuticals, Inc., Cambridge, MA. He is on the scientific advisory
495 board of The LOOP Zurich Medical Research Center and the advisory board of the BIOTPIA

496 Naturkundemuseum Bayern. He is also a member of the board of trustees of the Max Planck
497 Institutes of Neurobiology and Biochemistry, Martinsried, and the scientific advisory board of
498 the Max Planck Institute for Metabolism Research, Köln. He was a member of the Research
499 Cluster Advisory Panel (ReCAP) of the Novo Nordisk Foundation between 2017-2019. He
500 attended a scientific advisory board meeting of the Novo Nordisk Foundation Center for Basic
501 Metabolic Research, University of Copenhagen, in 2016. He received funding for his research
502 projects by Novo Nordisk (2016-2020) and Sanofi-Aventis (2012-2019). He was a consultant
503 for Bionorica SE (2013-2017), Menarini Ricerche S.p.A. (2016), Bayer Pharma AG Berlin
504 (2016) and Böhringer Ingelheim Pharma GmbH & Co. KG (2020/2021). He delivered a
505 scientific lecture for Sanofi-Aventis Deutschland GmbH in 2020. As former Director of the
506 Helmholtz Diabetes Center and the Institute for Diabetes and Obesity at Helmholtz Zentrum
507 München (2011-2018) and since 2018, as CEO of Helmholtz Munich, he has been responsible
508 for collaborations with a multitude of companies and institutions, worldwide. In this capacity,
509 he discussed potential projects with and has signed/signs contracts for his institute(s) and for
510 the staff for research funding and/or collaborations with industry and academia, worldwide,
511 including but not limited to pharmaceutical corporations like Boehringer Ingelheim, Eli Lilly,
512 Novo Nordisk, Medigene, Arbomed, BioSyngen and others. In this role, he was/is further
513 responsible for commercial technology transfer activities of his institute(s), including diabetes
514 related patent portfolios of Helmholtz Munich as e. g. WO/2016/188932 A2 or
515 WO/2017/194499 A1. Dr. Tschöp confirms that to the best of his knowledge none of the above
516 funding sources were involved in the preparation of this paper.

517

518 **Material and Methods**

519 **Animals**

520 Animal studies were approved by the Animal Ethics Committee of the government of Upper
521 Bavaria (Germany). Wildtype mice (C57BL/6J, Janvier, Le Genest-Saint-Isle, France) or
522 genetically modified mice at adult age (>12 weeks) were provided *ad libitum* access to either a
523 pelleted standard chow (SC) diet (5.6% fat; LM-485, Harlan Teklad) or a high-fat, high-sucrose
524 (HFHS) diet (D12331; 58% of calories from lipids; Research Diets, New Brunswick, NJ).
525 Animals had continuous free access to water and were maintained at 23°C with constant
526 humidity on a 12-h light-dark cycle. OT-*ires-Cre* (also known as *OXT-IRES-Cre*) were
527 originally provided from Jackson Laboratory (strain name: B6;129S-Oxt^{tm1.1(cre)Dolsn}/J; #
528 024234); homozygous OT-*ires-Cre* males were interbred with non-Cre-carrying female mice
529 to obtain experimental cohorts of male mice containing the knock-in allele in heterozygosity.
530 RiboTag mice (strain name: B6N.129-Rpl22^{tm1.1Psam}/J; # 011029), Ai14 (strain name: B6.Cg-
531 Gt(ROSA)26Sor^{tm1(CAG-tdTomato)Hze}/J; # 007914), ROSA-DTA (strain name: B6.129P2-

532 Gt(ROSA)26Sor^{tm1(DTA)Lky}/J; # 009669), and CAG-Sun1sfGFP (strain name: B6;129-
533 Gt(ROSA)26Sor^{tm5(CAG-Sun1/sfGFP)Nat}/J; # 021039) were all provided from Jackson Laboratory and
534 used in heterozygosity in final cohorts.

535

536 **Genotyping of mouse lines.** Ear tags were obtained from mice at the age of 3 weeks and DNA
537 was isolated by boiling the eartags for 30 min in 200 μ l 50 mM NaOH at 95°C (ThermoMixer
538 C, Eppendorf). Afterwards, 20 μ l 1 M Tris was added to normalize the pH. 2 μ l of isolated
539 genomic DNA was used for the genotyping PCR (Promega) using respective protocols.

540

541 **Physiological measures and metabolic phenotyping.** For assessing acute feeding behavior,
542 mice were individually housed in metabolic cages (TSE PhenoMaster; TSE systems). After
543 48 h acclimatization, food was removed daily for 3 hours (3pm-6pm) and mice received sham
544 injections with Vehicle (0.9% NaCl) for two consecutive days. On day three, all mice received
545 first CNO (1 mg/kg BW; *i.p.*; 25 minutes before dark onset) and CCK-8s (20 μ g/kg BW; *i.p.*;
546 10 minutes before dark onset). With dark onset, food hoppers were given back and food intake
547 was automatically measured every 5 minutes. Normal baseline food intake (“Vehicle”) is
548 represented as the calculated mean intake upon the two sham injections. Mice that displayed
549 food spilling were excluded from analysis. Cumulative long-term food intake was measured by
550 co-housing mice (two per cage depending on cohort size). Body composition (fat and lean
551 mass) was assessed by using a magnetic resonance whole-body composition analyzer (Echo-
552 MRI, Houston, TX). Energy expenditure and respiratory exchange ratio (RER) of individual
553 mice were analyzed within metabolic cages of a combined indirect calorimetry system (TSE
554 PhenoMaster; TSE systems). Food and water intake, O₂ consumption, CO₂ production, and
555 locomotor activity (*i.e.*, horizontal and vertical beam breaks) were measured in 5-minute
556 intervals. EE (kcal/h) was calculated based on the Weir equation (3.815*10⁻³*VO₂+1.232*10<sup>-
557 3</sup>*VCO₂) and total EE (kcal) was correlated to the mean of body weight measured before and
558 after the measurement (Tschoop et al. 2011). Glucose tolerance was assessed by the
559 intraperitoneal administration of a glucose bolus (2 g/kg BW; 20% w/v in 1xPBS pH 7.4).
560 Before the glucose tolerance test, mice were fasted for 4 h and glycemia was measured by
561 sampling blood from the tail vein before (0 min) and at 15, 30, 60 and 120 min post injection
562 via a handheld glucometer (Abbott, Wiesbaden, Germany). To assess insulin sensitivity,
563 additional blood was collected at 0 min using EDTA-coated microvette tubes (Sarstedt,
564 Nürnbrecht, Germany) to obtain plasma (5,000 x g for 10 min at 4°C). Insulin concentration
565 was determined using a commercial insulin ELISA following the manufacturer’s instructions
566 (Ultra-sensitive Mouse Insulin ELISA Kit, #90080 Crystalchem, Netherlands). HOMA-IR was
567 calculated using the formula: HOMA-IR=[fasting insulin (mU/l) * fasting glucose (mg/dl)] /

568 405 (Matthews et al., 1985). Glycated HbA_{1C} was analyzed using DCA Vantage® Analyzer
569 (Siemens, City, Germany).

570

571 ***Ex-vivo* brain slices preparation**

572 Adult male mice were sacrificed by cervical dislocation and the brain quickly ablated and
573 placed in ice-cold artificial cerebrospinal fluid (aCSF) modified for slicing, containing (in mM):
574 87 NaCl, 2.69 KCl, 1.25 NaH₂PO₄, 26 NaHCO₃, 7 MgCl₂, 0.2 CaCl₂, 25 D-glucose, and 75
575 sucrose (330 mOsm/Kg H₂O, pH 7.4 bubbled with a carbogen mixture of 95% O₂ and 5% CO₂).
576 The specimen was glued to a sectioning stage and submerged in ice-cold slicing aCSF in a
577 vibratome (VT1200; Leica Biosystems) chamber. Coronal brain slices (250 µm) containing the
578 paraventricular nucleus of the hypothalamus were sectioned and incubated at 32-33° for 30 min
579 in aCSF, containing (in mM): 124 NaCl, 2.69 KCl, 1.25 NaH₂PO₄, 26 NaHCO₃, 1.2 MgCl₂, 2
580 CaCl₂, 2.5 D-glucose, and 7.5 sucrose (298 mOsm/Kg H₂O, pH 7.35 constantly bubbled with a
581 carbogen mixture of 95% O₂ and 5% CO₂). After this period, the slices were kept under the
582 same conditions but at room temperature for at least 40 min until electrophysiological
583 recordings.

584

585 **2-photon excitation calcium imaging**

586 Cytosolic calcium levels from PVN^{OT} neurons conditionally tagged by Ai14-tdTomato within
587 acute coronal brain slices (250 µm) of mice were monitored by 2-photon excitation microscopy
588 using the genetically encoded calcium indicator GCaMP6f. Single brain slices were transferred
589 to a chamber mounted on a stage of an upright multiphoton laser scanner microscope (FVMPE-
590 RS system, Olympus) and continuously perfused with bubbled-aCSF using a gravity-driven
591 perfusion system at a rate of ~3 mL/min in the presence of synaptic blockers (20 µM CNQX,
592 50 µM D-AP5, and 100 µM picrotoxin). Neurons were visualized with a 25x water immersion
593 objective. Excitation illumination was generated by an InSight X3 DUAL tunable laser system
594 (Spectra-Physics). The FluoView image acquisition software (FV31S-SW, Olympus) was used
595 to tune laser emission wavelength to 930 and 1045 nm in order to obtain 2-photon absorption
596 signals from GCaMP6f and tdTomato fluorophores, respectively, at an acquisition rate of 0.5
597 Hz. Calcium imaging from PVN^{OT} neurons consisted of a 3-min baseline recording followed
598 by bath application of CCK (50 nM) and drug washout. At the end of each experiment, 20 mM
599 KCl was bath-applied to check neuronal viability and calcium signal integrity. Only neurons
600 that responded to KCl were used for analysis. Calcium transients were estimated as changes in
601 GCaMP6f-based fluorescence intensity over the baseline ($\Delta F/F_0$), considering a calcium event
602 when $\Delta F/F_0 > 3$ standard deviations greater than the baseline fluorescence signal. The number
603 of calcium events were then plotted over time grouped into 1-min bins in order to quantify
604 changes in the frequency of calcium events in PVN^{OT} neurons in response to CCK application.

605

606 **Electrophysiological recordings**

607 Single brain slices were transferred to a chamber mounted on a stage of an upright microscope
608 (BX51WI; Olympus) coupled with a video camera (Prime 95B; Teledyne Photometrics) and
609 continuously perfused with carbogen-bubbled aCSF at a rate of ~2 mL/min by a gravity-driven
610 perfusion system. Neurons were visualized under infrared differential interference contrast (IR-
611 DIC) optics with a 20x immersion objective (2x post-magnification) using the μ Manager 1.4
612 software (Edelstein et al. 2010). Accordingly, Ai14-tdTomato⁺ neurons were identified by
613 epifluorescence-based signals excited at 555 nm wavelength (LedHUB; Omicron-Laserage
614 Laserprodukte GmbH). Patching pipettes were made with thick-walled borosilicate glass
615 (GC150TF-10; Harvard Apparatus) pulled using a horizontal puller (P-97; Sutter Instruments)
616 and filled with an internal solution, containing (in mM): 128 K-gluconate, 8 KCl, 10 HEPES,
617 0.5 EGTA, 4 Mg-ATP, 0.3 Na-GTP, and 10 Na-phosphocreatine (295 mOsm/Kg H₂O, pH 7.3),
618 resulting in a pipette tip resistance between 4 and 10 M Ω . Whole-cell recordings were
619 performed with a MultiClamp 700B amplifier (Molecular Devices) in current-clamp mode.
620 Data were acquired at 10-20 kHz and low-pass filtered at 5 kHz (Bessel) with a Digidata 1550B
621 (Molecular Devices) using the Clampex 11.2 acquisition software (pClamp; Molecular
622 Devices). Parvocellular neurons were identified by the presence of a transient outward
623 rectifying current triggered by the application of a hyperpolarizing pulse (ranging from -60 to
624 -40 pA for 1 s) followed by positive current injections (from 20 to 100 pA in five steps of 1 s)
625 (Tang et al. 2020). Membrane potential was monitored in response to bath-applied drugs at I =
626 0. In some experiments, 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 μ M), D-(-)-2-
627 Amino-5-phosphonopentanoic acid (D-AP5; 50 μ M), and picrotoxin (100 μ M) were applied to
628 block fast neurotransmission. Membrane input resistance was measured by the slope of the
629 curve obtained by the response of the membrane potential to injected negative currents (from -
630 40 to -60 pA in three steps of 1 s). Data were visualized and analyzed using custom-written
631 codes in MATLAB (MathWorks).

632

633 **Adeno-associated viruses (AAV) and stereotaxic surgery.** In order to assess PVN^{OT} neuronal
634 activity, we conducted stereotaxic surgeries to target the fluorescent Ca²⁺ indicator GCaMP6f
635 to PVN^{OT} neurons in OT-*ires*-Cre mice. AAV2/1-DIO-CAG-GCaMP6f was purchased from
636 Addgene (# 100839, titer: 1.4 x 10¹³ gc/ml). To chemogenetically activate PVN^{OT} neurons by
637 means of DREADD we employed AAV2/1-DIO-hSYN1-hM3Dq-mCherry (Addgene # 44361;
638 titer: 1.6 x 10¹³ gc/ml) versus a respective control virus AAV2/1-DIO-hSYN1-mCherry
639 (Addgene # 50459; titer: 9 x 10¹² gc/ml). To ablate PVN^{OT} neurons, we produced AAV2/1-
640 OTp-*iCre* (titer: 2.3 x 10¹² gc/ml) and AAV2/1-OTp-Venus (titer: 1.2 x 10¹³ gc/ml) according
641 to our previously published protocol (Knobloch et al. 2012), which contain a synthetic 2.6 kb

642 OT promoter element (OTp) faithfully restricting viral transgene expression to OT neurons.
643 Respective AAVs were injected bilaterally (300 nl per hemisphere) using a stereotaxic system
644 combined with a binocular 3.5x-90x stereomicroscope (AMScope, USA). Mouse skull was
645 exposed via a small incision and a craniotomy above the viral injection sites was performed
646 using a micro-precision drill. A pulled glass pipette with a 20-40 μ m tip diameter was carefully
647 lowered to reach the PVN on each side of the brain, respectively, and AAVs were applied at
648 low speed using manually-applied air pressure. Undesired diffusion of viral particles was
649 further prevented by slow retraction of the glass pipette 5 min post injection. The following
650 stereotaxic coordinates were obtained from 'The Mouse Brain in Stereotaxic Coordinates'
651 (Franklin and Paxinos, 2019) and used to target the PVN of the mouse brain: -0.7 mm posterior
652 and \pm 0.2 mm lateral to the bregma and -4.75 mm ventral from the dura mater. Anesthesia was
653 performed by a mixture of ketamine and xylazine (100 mg/kg body weight and 7 mg/kg
654 bodyweight, respectively) while acute Metamizol (200 mg/kg, subcutaneous) followed by
655 Meloxicam (1 mg/kg, on three consecutive days, subcutaneous) was administered for
656 postoperative analgesia.

657

658 **Transcardial perfusion, brain sectioning and immunohistochemistry.** Animals were
659 sacrificed with CO₂ and transcardially perfused with 20 ml phosphate-buffered saline (PBS)
660 (GibcoTM, pH 7.4) by using a peristaltic pump at 120 mmHG (Instech, High Flow P720
661 equipped with 21G canula). Perfusions were finalized with 20 ml of 4% paraformaldehyde
662 (PFA) in PBS, pH 7.4, brains were removed and post-fixed in 4% PFA at 4°C overnight. The
663 following day, brains were then equilibrated with 30% sucrose in Tris-buffered saline (TBS,
664 pH 7.2) for 48 h before being sectioned into 40 μ m coronal slices using a cryostat (CM3050S;
665 Leica, Germany). Three to four brain sections per mouse were selected containing the middle
666 portion of the PVN or NTS and further subjected to additional immunohistochemistry. Brain
667 sections were first washed with TBS and incubated overnight at 4°C with primary antibodies
668 in a solution containing 0.25% porcine gelatine and 0.5% Triton X-100 in TBS, pH 7.2. The
669 next morning, sections were serially rinsed in TBS, pH 7.2, and incubated with respective
670 secondary antibodies diluted in TBS, pH 7.2 containing 0.25% porcine gelatine and 0.5% Triton
671 X-100 for 2h. Sections were serially washed in TBS with the last washing additionally
672 containing fluorescent Nissl stain (1:100 NeuroTraceTM 435/455; ThermoFisher, Germany) in
673 order to identify neuronal cells and anatomical demarcations. Lastly, brain sections were
674 mounted on gelatine-coated glass slides, dried and cover-slipped with a polyvinyl alcohol
675 (mowiol®, Merck, Germany) mounting medium supplemented with DABCO (Merck,
676 Germany).

677

678 **Fluorogold injections.** To distinguish magnOT and parvOT neurons, fluorogold (15 mg/kg
679 BW; *i.p.*) was administered to adult male *OT:Ai14* reporter mice maintained on SC diet. Mice
680 were then perfused 7 days post injection of fluorogold following three hours of food removal
681 plus two additional hours after CCK-8s injection (20 µg/kg BW; *i.p.*).
682

683 **CCK-8s injections.**

684 For all *in-vivo* experiments, food was removed for 3 hours before dark onset (3– 6 pm) in order
685 to normalize feeding behavior. Cholecystokinin-octapeptide, sulfated (CCK-8s; Tocris, St.
686 Louis, USA) was reconstituted in 0.9% NaCl and administered 10 min before dark onset (20
687 µg/kg BW; *i.p.*).
688

689 **iDISCO-based whole brain clearing.** Clearing protocol was adopted from (Renier et al.
690 2014)) with slight adjustments. In brief, *OT:Ai14* mice were transcardially perfused with
691 1xPBS (pH 7.4) followed by 4% PFA and their brains were carefully removed. Following post-
692 fixation in 4% PFA overnight at 4°C, brains were washed three times in 1 x PBS (0.2 %
693 TritonX-100; v/v) for 1 h at room temperature. Brains were pre-treated by incubation in 1 x
694 PBS (0.2 % TritonX-100 and 20 % DMSO; v/v) for 48 h shaking at 37°C followed by 1 x PBS
695 (0.1 % Tween-20, 0.1 % TritonX-100, 0.1 % Deoxycholate, 0.1 % NP40 and 20 % DMSO; v/v
696 and w/v, respectively) for 48 h shaking at 37°C. After washing brains three times in 1 x PBS
697 (0.2 % TritonX-100; v/v) for 1 h at 37°C, they were incubated in permeabilization solution (1 x
698 PBS with 0.2 % TritonX-100, 0.3 mM glycine, and 20 % DMSO; v/v and w/v, respectively)
699 for 48 h shaking at 37°C. Thereafter, brains were incubated in blocking solution (1 x PBS with
700 0.2 % TritonX-100, 3 % donkey serum, 3 % rabbit serum, and 10 % DMSO; v/v) for 48 h
701 shaking at 37°C. After washing brains four to five times in 1 x PBS (0.2 % TritonX-100, and
702 10 µg/ml heparin; v/v) they were incubated with the primary antibody (rabbit-anti-dsRed at
703 1/300 dilution) in 1 x PBS with 0.2 % TritonX-100, 10 µg/ml heparin, 3 % rabbit serum, and 5
704 % DMSO (v/v) for four days shaking at 37°C. After washing brains four to five times in 1 x PBS (0.2 % TritonX-100,
705 and 10 ug/ml heparin; v/v) they were incubated with the secondary antibody (donkey-anti-rabbit Alexa Fluor 647) in 1 x PBS with 0.2 % TritonX-100, 10 µg/ml heparin,
706 3 % donkey serum, and 5 % DMSO (v/v) for four days shaking at 37°C. After
707 immunolabeling, brains were washed again for four to five times in 1 x PBS (0.2 % TritonX-
708 100, and 10 µg/ml heparin; v/v). Brains were cleared by an ascending dilution of methanol/H₂O
709 (20 %, 40 %, 60 %, 80 %, 100 %) for 1 hour each at room temperature and were left in fresh
710 100 % methanol overnight. Delipidation was achieved by incubation in 66 % dichloromethane
711 (DCM) and 33 % methanol for 6 hours at room temperature. After short incubations of brains
712 in 100 % DCM, they were finally placed in the refractive index matching solution consisting
713 of 100 % dibenzylether (DBE) until imaging.
714

715

716 **Translating ribosome affinity purification (TRAP).** Adult male *OT:RiboTag* mice with both
717 transgene alleles in heterozygosity were fed either SC diet or HFHS diet for 3 months. On the
718 day of experiments, food was removed for 3 hours (3 pm – 6 pm) and mice received either
719 vehicle or CCK-8s (20 µg/kg BW; *i.p.*; Tocris, St. Louis, USA) injection at dark onset (6 pm)
720 and were sacrificed 2 hours post injection. Hypothalami were rapidly removed, snap-frozen and
721 stored at -80°C until further processing. Per sample, two hypothalami were combined and
722 processed according to previously published protocol (Sanz et al. 2009). Yield of input and
723 immunoprecipitate were independently quantified using a Bioanalyzer (Agilent RNA 6000
724 Pico Kit; Agilent Technologies, Santa Clara, USA) and Quant-IT RiboGreen Kit
725 (ThermoFisher Scientific Inc., Rockford, IL USA) according to the manufacturer's instructions.
726 Samples were amplified and synthesized into cDNA according to the manufacturer's protocol
727 using the SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing (Takara Bio Inc.,
728 Shiga, Japan) and amplification yield was checked using a Bioanalyzer (Agilent High
729 Sensitivity DNA Kit, Agilent Technologies, Santa Clara, USA). Single-indexed libraries were
730 generated using ThruPLEX® DNA-seq Kit (Takara Bio Inc., Shiga, Japan), pooled and
731 checked again using a Bioanalyzer (Agilent High Sensitivity DNA Kit, Agilent Technologies,
732 Santa Clara, USA).

733

734 **TRAP transcriptomics analyses**

735 Sequencing was performed at the Helmholtz Zentrum München (HMGU) by the NGS-Core
736 Facility. After a final quality control, the libraries were sequenced in a paired-end mode (2x150
737 bases) in the Novaseq6000 sequencer (Illumina) with a depth of \geq 40 Million paired reads per
738 sample. BCL files were converted to FASTQ using Bcl2fastq v.2.20. The alignment was done
739 using STAR v.7.2a and was mapped to the mouse reference genome GRCm38 (mm10). The
740 counts and FPKM were generated using HTSeq v0.11.2. For transcriptomics downstream
741 analysis, sample distance matrix was generated using pheatmap package from R (Kolde 2015).
742 Differential expression analysis results were illustrated in the form of volcano plots using R-
743 package EnhancedVolcano (Blighe, Rana, and Lewis 2021). The expression profile of DEGs
744 over the samples was shown in the heatmap using R-package pheatmap (Kolde 2015). GO
745 enrichment analyses were performed, and the results were illustrated using clusterProfiler (Yu
746 et al. 2012) and ggplot2 (Wickham 2016) R-packages, respectively.

747

748 **RNA isolation and qPCR analysis.** RNA was isolated from tissues using a commercially
749 available kit (MicroRNeasy Kit, Qiagen, Hilden, Germany). Identical amounts of RNA were
750 reverse-transcribed to cDNA using Superscript III (Invitrogen, Darmstadt, Germany) and gene
751 expression was analyzed using TaqMan probes (ThermoFisher Scientific Inc., Rockford, IL
752 USA) using a Viia7 Real Time PCR System or QuantStudio 6 FLEX Real Time PCR
753 System (ThermoFisher Scientific Inc., Rockford, IL USA). Expression changes were calculated
754 using the $2^{-\Delta\Delta Ct}$ method normalized by *Hprt* as housekeeping gene. When indicated, qPCR
755 expression analysis was conducted on cDNA derived from immunoprecipitated RNA of
756 *OT:RiboTag* mice following reverse (SMARTer® PCR cDNA synthesis kit; Takara Bio Inc.,
757 Shiga, Japan).

758

759 **Isolation of nuclei tagged in specific cell types (INTACT).**

760 CAG-Sun1-sfGFP mice (INTACT mice) were crossed with OT-*ires*-Cre mice to generate
761 heterozygous mice (Deal and Henikoff 2011). Whole hypothalami were individually processed
762 to obtain single nuclei following a previously described protocol (Krishnaswami et al. 2016)
763 with slight modifications. Briefly, frozen hypothalami were transferred to a Dounce
764 homogenizer containing 1mL of freshly prepared ice-cold nuclei isolation buffer (0.25M
765 sucrose, 25 mM KCl, 5 mM MgCl₂, 20mM Tris pH 8.0, 0.4% IGEPAL 630, 1 mM DTT, 0.15
766 mM spermine, 0.5 mM spermidine, 1x phosphatase & protease inhibitors, 0.4 units RNasin
767 Plus RNase Inhibitor, 0.2 units SuperAsin RNase inhibitor). Homogenization was achieved by
768 carefully douncing 10 strokes with the loose pestle, incubating on ice for 5 min and further
769 douncing 15 more strokes with the tight pestle. The homogenate was filtered through a 20 µm
770 cell strainer, centrifuged at 1000 x g for 10 min at 4°C, the nuclei pellet resuspended in 450 µl
771 of staining buffer (PBS, 0.15 mM spermine, 0.5 mM spermidine, 0.4 units RNasin Plus RNase
772 Inhibitor, 0.4% IGEPAL-630, 0.5% BSA) and incubated for 15min on ice. Nuclei pellets were
773 resuspended in 1 mL of fresh staining buffer supplemented with DAPI 1 µg/µL. Nuclei integrity
774 was assessed in the DAPI channel under a Zeiss microscope (Axio Scope, Zeiss, Germany).
775 Doublet discrimination and DAPI staining were used for appropriate gating of single nuclei and
776 the signal on the 488 (FITC) channel of the IgG-isotype control determined the adequate gating
777 of GFP⁻ and GFP⁺ nuclei.

778

779 **Fluorescence-assisted cell sorting**

780 GFP⁺ nuclei were sorted with a 70 µm nozzle into 384-well PCR plates (thin-walled, BioRad,
781 HSP3901) prepared freshly with 940 nL of Lysis Buffer 1 (1 µL of 10X reaction buffer is
782 diluted in 2.75 µL of water) (SMART-Seq v4 Ultra Low input RNA kit; Takara Bio Inc.) per
783 well, aliquoted with the Mosquito HV (STP Labtech) liquid handling robot. The Reaction

784 buffer was prepared following the manufacturer's instruction adding 1 μ L of RNase Inhibitor
785 in 19 μ L of 10X Lysis Buffer.

786 We ensured maximum sorting accuracy into the wells of the 384-well plate, using a colorimetric
787 assay with tetramethyl benzidine substrate (TMB, BioLegend, Ref. 421501) and 50 μ g/mL of
788 Horseradish Peroxidase (HRP, Life Technologies, Ref. 31490) (Rodrigues and Monard 2016).
789 In the plate layout, we sorted nuclei from SC diet-fed animals in half of the 384-well plate and
790 nuclei from HFHS diet-fed animals in the remaining half. After sorting, every plate was firmly
791 sealed (MicroAmp Thermo Seal lid, #AB0558), shortly vortexed for 10 s, centrifuged (4°C,
792 2000 x g for 1 min), flash-frozen on dry ice, and stored at -80°C, until cDNA synthesis. A total
793 of four 384-well plates were sorted for this study.

794 **snRNA-seq2**

795 The single-nucleusRNA-seq2 methodology was used to capture a high number of transcripts
796 from frozen tissues, allowing for the generation of double-stranded full-length cDNA as
797 described and detailed by Richter *et al.* (Richter et al. 2021) In brief, the reaction volumes were
798 miniaturized with the aid of the Mosquito HV robot. Per well, 2190 nL of Lysis Buffer 2 (LB2)
799 were dispensed. The final volume of the mixture of Lysis Buffer (LB1 and LB2) was 3.125 μ L,
800 containing NP40 2%, Triton-X100 1%, 1/300,000 diluted ERCC RNA spike-in, 3' SMART-
801 seq CDS Primer II A and RNase-free water.

802 Every flash frozen sorted plate was thawed directly on a -20 °C chilled metallic holder while
803 LB2 was added by the Mosquito HV robot. The plate was immediately sealed, vortexed 20 s at
804 2000 rpm, centrifuged at 2000 x g for 30 s at 4°C and placed in a 72 °C for 6 min. ERCC spike-
805 ins (Thermo Fischer Scientific, Ref. 4456740; Lot num 00892098) were diluted 1 in 10, with
806 RNase-free water with 0.4 U/ μ L Recombinant RNase Inhibitor (Takara Clontech, Ref. 2313A)
807 and a fresh dilution of 1 in 300,000 was prepared before the first strand synthesis.

808 Reverse transcription and Pre-PCR amplification steps were followed as described by the
809 manufacturer with four-times reduced volumes for all steps. The PCR program for the cDNA
810 amplification was performed in a total of 21 cycles of: 1 min at 95 °C, [20 s at 95 °C, 4 min at
811 58 °C, 6 min at 68 °C] \times 5, [20 s at 95 °C, 30 s at 64 °C, 6 min at 68 °C] \times 9, [30 s at 95 °C, 30 s
812 at 64 °C, 7 min at 68 °C] \times 7, 10 min at 72 °C. After cDNA synthesis, the yield was assessed in
813 an Agilent Bioanalyzer with a High Sensitivity DNA kit.

814

815 **Library preparation for snRNA-seq2 and sequencing**

816 Sequencing libraries were prepared using the Illumina Nextera XT DNA Sample Preparation
817 kit (Illumina, Ref. FC-131-1096) and the combination of 384 Combinatorial Dual Indexes
818 (Illumina- Set A to D, Ref. FC-131-2001 to FC-131-2004). Using the Mosquito HV robot, the

819 reaction volumes of the Nextera XT chemistry were miniaturized, and the steps followed
820 minutely as described by Richter et al. 2021 (Richter et al. 2021; Mora-Castilla et al. 2016).
821 In brief, 500 nL of the undiluted cDNA were transferred to a new 384 well-plate containing
822 1500 nL of Tagmentation Mix (TD and ATM reagents). Accordingly, all Nextera XT reagents
823 (NT, NPM and i5/i7 indexes) were added stepwise to a final library volume of 5 μ L per well.
824 The final PCR amplification was performed through 12 cycles. Once the libraries were
825 prepared, 500 nL from each well were pooled together into a tube (total volume of ~192 μ L) to
826 perform a final AMPure XP bead (Beckman Coulter, Ref. A63882) clean-up step. For our
827 single nuclei libraries, two consecutive clean-ups with a ratio of sample to bead 0,9X led to
828 library sizes between 200 and 1000 bp. The final libraries were assessed using a HS DNA kit
829 in the Agilent Bioanalyzer, and prior to sequencing, the libraries were quantified using a
830 Collibri library quantification kit (Thermo Fischer Scientific, Ref. A38524100) in a
831 QuantStudio 6 Flex (Life Technologies) for higher accuracy. Each plate, counting with a total
832 of 384 libraries, was pooled together into one final library. A total of 4 final libraries were
833 sequenced using an Illumina NovaSeq 6000 NGS sequencer in an SP XP flowcell, in a paired-
834 end 150 bases length. Sequencing was performed at the Helmholtz Zentrum München (HMGU)
835 by the NGS-Core Facility.

836

837 **snRNA-seq2 analysis**

838 The snRNA-Seq2 pipeline used in this study was generated using *nextflow* (Di Tommaso et al.
839 2017). In the first step, technical replicates of the samples were merged, and reads were then
840 mapped to rRNA (from Ensembl, GRCm38 release 102) using Bowtie2 (version
841 2.3.4.3, (Langmead and Salzberg 2012)) and subsequently, unmapped reads were mapped to
842 the mm10 genome (from Ensembl, GRCm38 release 102) using STAR (2.7.0d, (Dobin et al.
843 2013)). Count matrices were generated by counting reads corresponding to gene exons using
844 featureCounts (version 1.6.3, (Liao, Smyth, and Shi 2014)). Counts were transformed to FPKM
845 and TPM using the actual feature length as described by Wagner et al. (Wagner, Kin, and Lynch
846 2012). The single-nuclei transcriptomics analysis of raw count matrix loaded into python and
847 stored as AnnData object was performed using Scanpy version 1.7.1 (Wolf, Angerer, and Theis
848 2018). Filtering of the cells was based on a minimum count number of 250. Filtering was
849 applied to the matrix of 1536 single nuclei and 55579 genes. Nuclei that had >1000 and <4500
850 detected genes were kept. Genes detected in fewer than 25 cells and with read count below 250
851 were filtered out. Hence, only the nuclei having less than 4500 genes detected and a library size
852 between 10000 and 200000 reads were kept. Applying this filtering strategy, the final matrix
853 comprises 1202 single nuclei and 13867 genes. The remaining cell vectors were normalized
854 using the R-package *scran* (Lun, McCarthy, and Marioni 2016) in the default
855 setting, employing the ERCC spik-ins. Batch effect corrections were performed

856 employing *combat* (Johnson, Li, and Rabinovic 2007) using plates as a covariate. To generate
857 UMAP plots, we took the top 15 PCs and used the PC space to compute a k-nearest neighbor
858 (kNN) graph (k=50, metho=umap). *Leiden* clustering (resolution=0.5, flavor=vtraag) was
859 computed based on the kNN graph. Differential gene expression analysis compared the groups
860 of interest using Welch's t-test while applying Benjamini-Hochberg for multiplicity
861 correction. In order to identify transcript intersections as well as their aggregates at single-cell
862 resolution, the novel *UpSet* visualization technique was applied according to the previously
863 published protocol (Lex et al. 2014) using R-package *UpSet* (Conway, Lex, and Gehlenborg
864 2017).

865

866

867 Statistics

868 Data analysis was conducted using GraphPad Prism (Version 5). Normally distributed data
869 were analyzed by student's T-test or one- or two-way analysis of variance (ANOVA) with
870 Bonferroni or Tukey post-hoc analyses to determine statically significant differences. Data
871 were screened using the maximum normal residual Grubb's test to screen for singular,
872 statistically significant outliers. P-values ≤ 0.05 were considered statistically significant. All
873 data are presented as mean \pm standard error (SEM).

874

875

876 References

877

878 Althammer, F., and V. Grinevich. 2017. 'Diversity of oxytocin neurons: beyond
879 magno- and parvocellular cell types?', *J Neuroendocrinol.*
880 Beutler, L. R., T. V. Corpuz, J. S. Ahn, S. Kosar, W. Song, Y. Chen, and Z. A.
881 Knight. 2020. 'Obesity causes selective and long-lasting desensitization of
882 AgRP neurons to dietary fat', *Elife*, 9.
883 Biag, J., Y. Huang, L. Gou, H. Hintiryan, A. Askarinam, J. D. Hahn, A. W. Toga, and
884 H. W. Dong. 2012. 'Cyto- and chemoarchitecture of the hypothalamic
885 paraventricular nucleus in the C57BL/6J male mouse: a study of
886 immunostaining and multiple fluorescent tract tracing', *J Comp Neurol*, 520:
887 6-33.
888 Blevins, J. E., and D. G. Baskin. 2010. 'Hypothalamic-brainstem circuits controlling
889 eating', *Forum Nutr*, 63: 133-40.
890 Blevins, J. E., T. J. Eakin, J. A. Murphy, M. W. Schwartz, and D. G. Baskin. 2003.
891 'Oxytocin innervation of caudal brainstem nuclei activated by
892 cholecystokinin', *Brain Res*, 993: 30-41.
893 Blighe, K., S. Rana, and M. Lewis. 2021. "EnhancedVolcano: publication-ready
894 volcano plots with enhanced colouring and labeling." In.
895 Borgmann, D., E. Ciglieri, N. Biglari, C. Brandt, A. L. Cremer, H. Backes, M.
896 Tittgemeyer, F. T. Wunderlich, J. C. Bruning, and H. Fenselau. 2021. 'Gut-

897 brain communication by distinct sensory neurons differently controls feeding
898 and glucose metabolism', *Cell Metab*, 33: 1466-82 e7.

899 Brandsma, E., T. Houben, J. Fu, R. Shiri-Sverdlov, and M. H. Hofker. 2015. 'The
900 immunity-diet-microbiota axis in the development of metabolic syndrome',
901 *Curr Opin Lipidol*, 26: 73-81.

902 Brierley, D. I., M. K. Holt, A. Singh, A. de Araujo, M. McDougle, M. Vergara, M. H.
903 Afaghani, S. J. Lee, K. Scott, C. Maske, W. Langhans, E. Krause, A. de Kloet,
904 F. M. Gribble, F. Reimann, L. Rinaman, G. de Lartigue, and S. Trapp. 2021.
905 'Central and peripheral GLP-1 systems independently suppress eating', *Nat
906 Metab*, 3: 258-73.

907 Brown, C. H., N. P. Murphy, G. Munro, M. Ludwig, P. M. Bull, G. Leng, and J. A.
908 Russell. 1998. 'Interruption of central noradrenergic pathways and morphine
909 withdrawal excitation of oxytocin neurones in the rat', *J Physiol*, 507 (Pt 3):
910 831-42.

911 Caquineau, C., A. J. Douglas, and G. Leng. 2010. 'Effects of cholecystokinin in the
912 supraoptic nucleus and paraventricular nucleus are negatively modulated by
913 leptin in 24-h fasted lean male rats', *J Neuroendocrinol*, 22: 446-52.

914 Cedernaes, J., W. Huang, K. M. Ramsey, N. Waldeck, L. Cheng, B. Marcheva, C.
915 Omura, Y. Kobayashi, C. B. Peek, D. C. Levine, R. Dhir, R. Awatramani, C.
916 A. Bradfield, X. A. Wang, J. S. Takahashi, M. Mokadem, R. S. Ahima, and J.
917 Bass. 2019. 'Transcriptional Basis for Rhythmic Control of Hunger and
918 Metabolism within the AgRP Neuron', *Cell Metab*, 29: 1078-91 e5.

919 Clemmensen, C., T. D. Muller, S. C. Woods, H. R. Berthoud, R. J. Seeley, and M. H.
920 Tschop. 2017. 'Gut-Brain Cross-Talk in Metabolic Control', *Cell*, 168: 758-74.

921 Conway, J. R., A. Lex, and N. Gehlenborg. 2017. 'UpSetR: an R package for the
922 visualization of intersecting sets and their properties', *Bioinformatics*, 33:
923 2938-40.

924 Covasa, M. 2010. 'Deficits in gastrointestinal responses controlling food intake and
925 body weight', *Am J Physiol Regul Integr Comp Physiol*, 299: R1423-39.

926 Covasa, M., and R. C. Ritter. 1998. 'Rats maintained on high-fat diets exhibit reduced
927 satiety in response to CCK and bombesin', *Peptides*, 19: 1407-15.
928 ———. 2000. 'Adaptation to high-fat diet reduces inhibition of gastric emptying by
929 CCK and intestinal oleate', *Am J Physiol Regul Integr Comp Physiol*, 278:
930 R166-70.

931 Cox, J. E., and J. S. Sims. 1988. 'Ventromedial hypothalamic and paraventricular
932 nucleus lesions damage a common system to produce hyperphagia', *Behav
933 Brain Res*, 28: 297-308.

934 Crawley, J. N., S. E. Hays, S. M. Paul, and F. K. Goodwin. 1981. 'Cholecystokinin
935 reduces exploratory behavior in mice', *Physiol Behav*, 27: 407-11.

936 Czyzyk, T. A., R. Nogueiras, J. F. Lockwood, J. H. McKinzie, T. Coskun, J. E. Pintar,
937 C. Hammond, M. H. Tschop, and M. A. Statnick. 2010. 'kappa-Opioid
938 receptors control the metabolic response to a high-energy diet in mice', *FASEB J*, 24: 1151-9.

940 Deal, R. B., and S. Henikoff. 2011. 'The INTACT method for cell type-specific gene
941 expression and chromatin profiling in *Arabidopsis thaliana*', *Nat Protoc*, 6: 56-
942 68.

943 Di Tommaso, P., M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and C.
944 Notredame. 2017. 'Nextflow enables reproducible computational workflows',
945 *Nat Biotechnol*, 35: 316-19.

946 Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M.
947 Chaisson, and T. R. Gingeras. 2013. 'STAR: ultrafast universal RNA-seq
948 aligner', *Bioinformatics*, 29: 15-21.

949 Dourish, C. T., and D. R. Hill. 1987. 'Classification and function of CCK receptors',
950 *Trends in Pharmacological Sciences*, 8: 207-08.

951 Edelstein, A., N. Amodaj, K. Hoover, R. Vale, and N. Stuurman. 2010. 'Computer
952 control of microscopes using microManager', *Curr Protoc Mol Biol*, Chapter
953 14: Unit14 20.

954 Eliava, M., M. Melchior, H. S. Knobloch-Bollmann, J. Wahis, M. da Silva Gouveia,
955 Y. Tang, A. C. Ciobanu, R. Triana Del Rio, L. C. Roth, F. Althammer, V.
956 Chavant, Y. Goumon, T. Gruber, N. Petit-Demouliere, M. Busnelli, B. Chini,
957 L. L. Tan, M. Mitre, R. C. Froemke, M. V. Chao, G. Giese, R. Sprengel, R.
958 Kuner, P. Poisbeau, P. H. Seeburg, R. Stoop, A. Charlet, and V. Grinevich.
959 2016. 'A New Population of Parvocellular Oxytocin Neurons Controlling
960 Magnocellular Neuron Activity and Inflammatory Pain Processing', *Neuron*,
961 89: 1291-304.

962 Faivre, L., V. Cormier-Daire, J. M. Lapierre, L. Colleaux, S. Jacquemont, D.
963 Genevieve, P. Saunier, A. Munnich, C. Turleau, S. Romana, M. Prieur, M. C.
964 De Blois, and M. Vekemans. 2002. 'Deletion of the SIM1 gene (6q16.2) in a
965 patient with a Prader-Willi-like phenotype', *J Med Genet*, 39: 594-6.

966 Falasco, J. D., G. P. Smith, and J. Gibbs. 1979. 'Cholecystokinin suppresses sham
967 feeding in the rhesus monkey', *Physiol Behav*, 23: 887-90.

968 Fan, W., K. L. Ellacott, I. G. Halatchev, K. Takahashi, P. Yu, and R. D. Cone. 2004.
969 'Cholecystokinin-mediated suppression of feeding involves the brainstem
970 melanocortin system', *Nat Neurosci*, 7: 335-6.

971 French, S. J., B. Murray, R. D. Rumsey, R. Fadzlin, and N. W. Read. 1995.
972 'Adaptation to high-fat diets: effects on eating behaviour and plasma
973 cholecystokinin', *Br J Nutr*, 73: 179-89.

974 Gibbs, J., R. C. Young, and G. P. Smith. 1973. 'Cholecystokinin decreases food intake
975 in rats', *J Comp Physiol Psychol*, 84: 488-95.

976 Grinevich, V., M. G. Desarmenien, B. Chini, M. Tauber, and F. Muscatelli. 2014.
977 'Ontogenesis of oxytocin pathways in the mammalian brain: late maturation
978 and psychosocial disorders', *Front Neuroanat*, 8: 164.

979 Grinevich, V., H. S. Knobloch-Bollmann, L. C. Roth, F. Althammer, A. Domanskyi,
980 I. A. Vinnikov, M. Eliava, M. Stanifer, and S. Boulant. 2016. 'Transgenesis
981 (Viral Vectors).' in David Murphy and Harold Gainer (eds.), *Molecular
982 Neuroendocrinology: From Genome to Physiology* (John Wiley & Sons).

983 Ho, J. M., V. T. Anekonda, B. W. Thompson, M. Zhu, R. W. Curry, B. H. Hwang, G.
984 J. Morton, M. W. Schwartz, D. G. Baskin, S. M. Appleyard, and J. E. Blevins.
985 2014. 'Hindbrain oxytocin receptors contribute to the effects of circulating
986 oxytocin on food intake in male rats', *Endocrinology*, 155: 2845-57.

987 Johnson, W. E., C. Li, and A. Rabinovic. 2007. 'Adjusting batch effects in microarray
988 expression data using empirical Bayes methods', *Biostatistics*, 8: 118-27.

989 Knobloch, H. S., A. Charlet, L. C. Hoffmann, M. Eliava, S. Khrulev, A. H. Cetin, P.
990 Osten, M. K. Schwarz, P. H. Seeburg, R. Stoop, and V. Grinevich. 2012.
991 'Evoked axonal oxytocin release in the central amygdala attenuates fear
992 response', *Neuron*, 73: 553-66.

993 Knobloch, H. S., and V. Grinevich. 2014. 'Evolution of oxytocin pathways in the
994 brain of vertebrates', *Front Behav Neurosci*, 8: 31.

995 Koch, J. E., M. J. Glass, M. L. Cooper, and R. J. Bodnar. 1995. 'Alterations in
996 deprivation, glucoprivic and sucrose intake following general, mu and kappa
997 opioid antagonists in the hypothalamic paraventricular nucleus of rats',
998 *Neuroscience*, 66: 951-7.

999 Kolde, R. 2015. "pheatmap: Pretty heatmaps " In.
1000 Krishnaswami, S. R., R. V. Grindberg, M. Novotny, P. Venepally, B. Lacar, K.
1001 Bhutani, S. B. Linker, S. Pham, J. A. Erwin, J. A. Miller, R. Hodge, J. K.
1002 McCarthy, M. Kelder, J. McCorrison, B. D. Aevermann, F. D. Fuertes, R. H.
1003 Scheuermann, J. Lee, E. S. Lein, N. Schork, M. J. McConnell, F. H. Gage, and
1004 R. S. Lasken. 2016. 'Using single nuclei for RNA-seq to capture the
1005 transcriptome of postmortem neurons', *Nat Protoc*, 11: 499-524.

1006 Kutlu, S., M. Aydin, E. Alcin, M. Ozcan, J. Bakos, D. Jezova, and B. Yilmaz. 2010.
1007 'Leptin modulates noradrenaline release in the paraventricular nucleus and
1008 plasma oxytocin levels in female rats: a microdialysis study', *Brain Res*, 1317:
1009 87-91.

1010 Langmead, B., and S. L. Salzberg. 2012. 'Fast gapped-read alignment with Bowtie 2',
1011 *Nat Methods*, 9: 357-9.

1012 Lei, X., L. Liu, C. E. Terrillion, S. S. Karuppagounder, P. Cisternas, M. Lay, D. C.
1013 Martinelli, S. Aja, X. Dong, M. V. Pletnikov, and G. W. Wong. 2019.
1014 'FAM19A1, a brain-enriched and metabolically responsive neurokine,
1015 regulates food intake patterns and mouse behaviors', *FASEB J*, 33: 14734-47.

1016 Leng, G., S. Dye, and R. J. Bicknell. 1997. 'Kappa-opioid restraint of oxytocin
1017 secretion: plasticity through pregnancy', *Neuroendocrinology*, 66: 378-83.

1018 Leng, G., S. Way, and R. E. Dyball. 1991. 'Identification of oxytoxin cells in the rat
1019 supraoptic nucleus by their response to cholecystokinin injection', *Neurosci
1020 Lett*, 122: 159-62.

1021 Lewis, E. M., G. L. Stein-O'Brien, A. V. Patino, R. Nardou, C. D. Grossman, M.
1022 Brown, B. Bangamwabo, N. Ndiaye, D. Giovinazzo, I. Dardani, C. Jiang, L.
1023 A. Goff, and G. Dolen. 2020. 'Parallel Social Information Processing Circuits
1024 Are Differentially Impacted in Autism', *Neuron*, 108: 659-75 e6.

1025 Lex, A., N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. 2014. 'UpSet:
1026 Visualization of Intersecting Sets', *IEEE Trans Vis Comput Graph*, 20: 1983-
1027 92.

1028 Liang, Z. S., I. Cimino, B. Yalcin, N. Raghupathy, V. E. Vancollie, X. Ibarra-Soria,
1029 H. V. Firth, D. Rimmington, I. S. Farooqi, C. J. Lelliott, S. C. Munger, S.
1030 O'Rahilly, A. C. Ferguson-Smith, A. P. Coll, and D. W. Logan. 2020.
1031 'Trappc9 deficiency causes parent-of-origin dependent microcephaly and
1032 obesity', *PLoS Genet*, 16: e1008916.

1033 Liao, Y., G. K. Smyth, and W. Shi. 2014. 'featureCounts: an efficient general purpose
1034 program for assigning sequence reads to genomic features', *Bioinformatics*,
1035 30: 923-30.

1036 Locke, A. E., B. Kahali, S. I. Berndt, A. E. Justice, T. H. Pers, F. R. Day, C. Powell,
1037 S. Vedantam, M. L. Buchkovich, J. Yang, D. C. Croteau-Chonka, T. Esko, T.
1038 Fall, T. Ferreira, S. Gustafsson, Z. Kutalik, J. Luan, R. Magi, J. C. Randall, T.
1039 W. Winkler, A. R. Wood, T. Workalemahu, J. D. Faul, J. A. Smith, J. H.
1040 Zhao, W. Zhao, J. Chen, R. Fehrman, A. K. Hedman, J. Karjalainen, E. M.
1041 Schmidt, D. Absher, N. Amin, D. Anderson, M. Beekman, J. L. Bolton, J. L.
1042 Bragg-Gresham, S. Buyske, A. Demirkhan, G. Deng, G. B. Ehret, B. Feenstra,
1043 M. F. Feitosa, K. Fischer, A. Goel, J. Gong, A. U. Jackson, S. Kanoni, M. E.
1044 Kleber, K. Kristiansson, U. Lim, V. Lotay, M. Mangino, I. M. Leach, C.

1045 Medina-Gomez, S. E. Medland, M. A. Nalls, C. D. Palmer, D. Pasko, S.
1046 Pechlivanis, M. J. Peters, I. Prokopenko, D. Shungin, A. Stancakova, R. J.
1047 Strawbridge, Y. J. Sung, T. Tanaka, A. Teumer, S. Trompet, S. W. van der
1048 Laan, J. van Setten, J. V. Van Vliet-Ostaptchouk, Z. Wang, L. Yengo, W.
1049 Zhang, A. Isaacs, E. Albrecht, J. Arnlov, G. M. Arscott, A. P. Attwood, S.
1050 Bandinelli, A. Barrett, I. N. Bas, C. Bellis, A. J. Bennett, C. Berne, R.
1051 Blagieva, M. Bluher, S. Bohringer, L. L. Bonnycastle, Y. Bottcher, H. A.
1052 Boyd, M. Bruinenberg, I. H. Caspersen, Y. I. Chen, R. Clarke, E. W. Daw, A.
1053 J. M. de Craen, G. Delgado, M. Dimitriou, A. S. F. Doney, N. Eklund, K.
1054 Estrada, E. Eury, L. FolkerSEN, R. M. Fraser, M. E. Garcia, F. Geller, V.
1055 Giedraitis, B. Gigante, A. S. Go, A. Golay, A. H. Goodall, S. D. Gordon, M.
1056 Gorski, H. J. Grabe, H. Grallert, T. B. Grammer, J. Grassler, H. Gronberg, C.
1057 J. Groves, G. Gusto, J. Haessler, P. Hall, T. Haller, G. Hallmans, C. A.
1058 Hartman, M. Hassinen, C. Hayward, N. L. Heard-Costa, Q. Helmer, C.
1059 Hengstenberg, O. Holmen, J. J. Hottenga, A. L. James, J. M. Jeff, A.
1060 Johansson, J. Jolley, T. Juliusdottir, L. Kinnunen, W. Koenig, M. Koskenvuo,
1061 W. Kratzer, J. Laitinen, C. Lamina, K. Leander, N. R. Lee, P. Lichtner, L.
1062 Lind, J. Lindstrom, K. S. Lo, S. Lobbens, R. Lorbeer, Y. Lu, F. Mach, P. K. E.
1063 Magnusson, A. Mahajan, W. L. McArdle, S. McLachlan, C. Menni, S.
1064 Merger, E. Mihailov, L. Milani, A. Moayyeri, K. L. Monda, M. A. Morken, A.
1065 Mulas, G. Muller, M. Muller-Nurasyid, A. W. Musk, R. Nagaraja, M. M.
1066 Nothen, I. M. Nolte, S. Pilz, N. W. Rayner, F. Renstrom, R. Rettig, J. S. Ried,
1067 S. Ripke, N. R. Robertson, L. M. Rose, S. Sanna, H. Scharnagl, S. Scholtens,
1068 F. R. Schumacher, W. R. Scott, T. Seufferlein, J. Shi, A. V. Smith, J.
1069 Smolonska, A. V. Stanton, V. Steinthorsdottir, K. Stirrups, H. M. Stringham,
1070 J. Sundstrom, M. A. Swertz, A. J. Swift, A. C. Syvanen, S. T. Tan, B. O.
1071 Tayo, B. Thorand, G. Thorleifsson, J. P. Tyrer, H. W. Uh, L. Vandenput, F. C.
1072 Verhulst, S. H. Vermeulen, N. Verweij, J. M. Vonk, L. L. Waite, H. R.
1073 Warren, D. Waterworth, M. N. Weedon, L. R. Wilkens, C. Willenborg, T.
1074 Wilsgaard, M. K. Wojczynski, A. Wong, A. F. Wright, Q. Zhang, Study
1075 LifeLines Cohort, E. P. Brennan, M. Choi, Z. Dastani, A. W. Drong, P.
1076 Eriksson, A. Franco-Cereceda, J. R. Gadin, A. G. Gharavi, M. E. Goddard, R.
1077 E. Handsaker, J. Huang, F. Karpe, S. Kathiresan, S. Keildson, K. Kiryluk, M.
1078 Kubo, J. Y. Lee, L. Liang, R. P. Lifton, B. Ma, S. A. McCarroll, A. J.
1079 McKnight, J. L. Min, M. F. Moffatt, G. W. Montgomery, J. M. Murabito, G.
1080 Nicholson, D. R. Nyholt, Y. Okada, J. R. B. Perry, R. Dorajoo, E. Reinmaa, R.
1081 M. Salem, N. Sandholm, R. A. Scott, L. Stolk, A. Takahashi, T. Tanaka, F. M.
1082 van 't Hooft, A. A. E. Vinkhuyzen, H. J. Westra, W. Zheng, K. T. Zondervan,
1083 A. DIPOGen Consortium, Agen-Bmi Working Group, C.
1084 ARDIOGRAMplusC4D Consortium, C. KDGen Consortium, Glgc, Icbp,
1085 Magic Investigators, Ther Consortium Mu, M. IGen Consortium, Page
1086 Consortium, Consortium ReproGen, Genie Consortium, Consortium
1087 International Endogene, A. C. Heath, D. Arveiler, S. J. L. Bakker, J. Beilby,
1088 R. N. Bergman, J. Blangero, P. Bovet, H. Campbell, M. J. Caulfield, G.
1089 Cesana, A. Chakravarti, D. I. Chasman, P. S. Chines, F. S. Collins, D. C.
1090 Crawford, L. A. Cupples, D. Cusi, J. Danesh, U. de Faire, H. M. den Ruijter,
1091 A. F. Dominiczak, R. Erbel, J. Erdmann, J. G. Eriksson, M. Farrall, S. B.
1092 Felix, E. Ferrannini, J. Ferrieres, I. Ford, N. G. Forouhi, T. Forrester, O. H.
1093 Franco, R. T. Gansevoort, P. V. Gejman, C. Gieger, O. Gottesman, V.
1094 Gudnason, U. Gyllensten, A. S. Hall, T. B. Harris, A. T. Hattersley, A. A.

1095 Hicks, L. A. Hindorff, A. D. Hingorani, A. Hofman, G. Homuth, G. K.
1096 Hovingh, S. E. Humphries, S. C. Hunt, E. Hypponen, T. Illig, K. B. Jacobs, M.
1097 R. Jarvelin, K. H. Jockel, B. Johansen, P. Jousilahti, J. W. Jukema, A. M. Jula,
1098 J. Kaprio, J. J. P. Kastelein, S. M. Keinanen-Kiukaanniemi, L. A. Kiemeney,
1099 P. Knekt, J. S. Kooner, C. Kooperberg, P. Kovacs, A. T. Kraja, M. Kumari, J.
1100 Kuusisto, T. A. Lakka, C. Langenberg, L. L. Marchand, T. Lehtimaki, V.
1101 Lyssenko, S. Mannisto, A. Marette, T. C. Matise, C. A. McKenzie, B.
1102 McKnight, F. L. Moll, A. D. Morris, A. P. Morris, J. C. Murray, M. Nelis, C.
1103 Ohlsson, A. J. Oldehinkel, K. K. Ong, P. A. F. Madden, G. Pasterkamp, J. F.
1104 Peden, A. Peters, D. S. Postma, P. P. Pramstaller, J. F. Price, L. Qi, O. T.
1105 Raitakari, T. Rankinen, D. C. Rao, T. K. Rice, P. M. Ridker, J. D. Rioux, M.
1106 D. Ritchie, I. Rudan, V. Salomaa, N. J. Samani, J. Saramies, M. A. Sarzynski,
1107 H. Schunkert, P. E. H. Schwarz, P. Sever, A. R. Shuldiner, J. Sinisalo, R. P.
1108 Stolk, K. Strauch, A. Tonjes, D. A. Tregouet, A. Tremblay, E. Tremoli, J.
1109 Virtamo, M. C. Vohl, U. Volker, G. Waeber, G. Willemsen, J. C. Witteman,
1110 M. C. Zillikens, L. S. Adair, P. Amouyel, F. W. Asselbergs, T. L. Assimes, M.
1111 Bochud, B. O. Boehm, E. Boerwinkle, S. R. Bornstein, E. P. Bottinger, C.
1112 Bouchard, S. Cauchi, J. C. Chambers, S. J. Chanock, R. S. Cooper, P. I. W. de
1113 Bakker, G. Dedoussis, L. Ferrucci, P. W. Franks, P. Froguel, L. C. Groop, C.
1114 A. Haiman, A. Hamsten, J. Hui, D. J. Hunter, K. Hveem, R. C. Kaplan, M.
1115 Kivimaki, D. Kuh, M. Laakso, Y. Liu, N. G. Martin, W. Marz, M. Melbye, A.
1116 Metspalu, S. Moebus, P. B. Munroe, I. Njolstad, B. A. Oostra, C. N. A.
1117 Palmer, N. L. Pedersen, M. Perola, L. Perusse, U. Peters, C. Power, T.
1118 Quertermous, R. Rauramaa, F. Rivadeneira, T. E. Saaristo, D. Saleheen, N.
1119 Sattar, E. E. Schadt, D. Schlessinger, P. E. Slagboom, H. Snieder, T. D.
1120 Spector, U. Thorsteinsdottir, M. Stumvoll, J. Tuomilehto, A. G. Uitterlinden,
1121 M. Uusitupa, P. van der Harst, M. Walker, H. Wallaschofski, N. J. Wareham,
1122 H. Watkins, D. R. Weir, H. E. Wichmann, J. F. Wilson, P. Zanen, I. B.
1123 Borecki, P. Deloukas, C. S. Fox, I. M. Heid, J. R. O'Connell, D. P. Strachan,
1124 K. Stefansson, C. M. van Duijn, G. R. Abecasis, L. Franke, T. M. Frayling, M.
1125 I. McCarthy, P. M. Visscher, A. Scherag, C. J. Willer, M. Boehnke, K. L.
1126 Mohlke, C. M. Lindgren, J. S. Beckmann, I. Barroso, K. E. North, E.
1127 Ingelsson, J. N. Hirschhorn, R. J. F. Loos, and E. K. Speliotes. 2015. 'Genetic
1128 studies of body mass index yield new insights for obesity biology', *Nature*,
1129 518: 197-206.
1130 Luckman, S. M., M. Hamamura, I. Antonijevic, S. Dye, and G. Leng. 1993.
1131 'Involvement of cholecystokinin receptor types in pathways controlling
1132 oxytocin secretion', *Br J Pharmacol*, 110: 378-84.
1133 Lun, A. T., D. J. McCarthy, and J. C. Marioni. 2016. 'A step-by-step workflow for
1134 low-level analysis of single-cell RNA-seq data with Bioconductor', *F1000Res*,
1135 5: 2122.
1136 Marangi, G., V. Leuzzi, F. Manti, S. Lattante, D. Orteschi, V. Pecile, G. Neri, and M.
1137 Zollino. 2013. 'TRAPPC9-related autosomal recessive intellectual disability:
1138 report of a new mutation and clinical phenotype', *Eur J Hum Genet*, 21: 229-
1139 32.
1140 McCormack, S. E., J. E. Blevins, and E. A. Lawson. 2020. 'Metabolic Effects of
1141 Oxytocin', *Endocr Rev*, 41.
1142 Michaud, J. L., F. Boucher, A. Melnyk, F. Gauthier, E. Goshu, E. Levy, G. A.
1143 Mitchell, J. Himms-Hagen, and C. M. Fan. 2001. 'Sim1 haploinsufficiency

1144 causes hyperphagia, obesity and reduction of the paraventricular nucleus of
1145 the hypothalamus', *Hum Mol Genet*, 10: 1465-73.

1146 Miller, T. R., B. R. Bianchi, D. G. Witte, and C. W. Lin. 1993. 'Peripheral
1147 cholecystokinin type A receptors mediate oxytocin secretion in vivo', *Regul
1148 Pept*, 43: 107-12.

1149 Mora-Castilla, S., C. To, S. Vaezeslami, R. Morey, S. Srinivasan, J. N. Dumdie, H.
1150 Cook-Andersen, J. Jenkins, and L. C. Laurent. 2016. 'Miniaturization
1151 Technologies for Efficient Single-Cell Library Preparation for Next-
1152 Generation Sequencing', *J Lab Autom*, 21: 557-67.

1153 Motojima, Y., M. Kawasaki, T. Matsuura, R. Saito, M. Yoshimura, H. Hashimoto, H.
1154 Ueno, T. Maruyama, H. Suzuki, H. Ohnishi, A. Sakai, and Y. Ueta. 2016.
1155 'Effects of peripherally administered cholecystokinin-8 and secretin on
1156 feeding/drinking and oxytocin-mRFP1 fluorescence in transgenic rats',
1157 *Neurosci Res*, 109: 63-9.

1158 Olson, B. R., G. E. Hoffman, A. F. Sved, E. M. Stricker, and J. G. Verbalis. 1992.
1159 'Cholecystokinin induces c-fos expression in hypothalamic oxytocinergic
1160 neurons projecting to the dorsal vagal complex', *Brain Res*, 569: 238-48.

1161 Onaka, T., S. M. Luckman, R. Guevara-Guzman, Y. Ueta, K. Kendrick, and G. Leng.
1162 1995. 'Presynaptic actions of morphine: blockade of cholecystokinin-induced
1163 noradrenaline release in the rat supraoptic nucleus', *J Physiol*, 482 (Pt 1): 69-
1164 79.

1165 Rausch, J. C., J. E. Lavine, N. Chalasani, X. Guo, S. Kwon, J. B. Schwimmer, J. P.
1166 Molleston, R. Loomba, E. M. Brunt, Y. I. Chen, M. O. Goodarzi, K. D.
1167 Taylor, K. P. Yates, J. I. Rotter, and Nash Clinical Research Network. 2018.
1168 'Genetic Variants Associated With Obesity and Insulin Resistance in Hispanic
1169 Boys With Nonalcoholic Fatty Liver Disease', *J Pediatr Gastroenterol Nutr*,
1170 66: 789-96.

1171 Renaud, L. P., M. Tang, M. J. McCann, E. M. Stricker, and J. G. Verbalis. 1987.
1172 'Cholecystokinin and gastric distension activate oxytocinergic cells in rat
1173 hypothalamus', *Am J Physiol*, 253: R661-5.

1174 Renier, N., Z. Wu, D. J. Simon, J. Yang, P. Ariel, and M. Tessier-Lavigne. 2014.
1175 'iDISCO: a simple, rapid method to immunolabel large tissue samples for
1176 volume imaging', *Cell*, 159: 896-910.

1177 Richter, M. L., I. K. Deligiannis, K. Yin, A. Danese, E. Lleshi, P. Coupland, C. A.
1178 Vallejos, K. P. Matchett, N. C. Henderson, M. Colome-Tatche, and C. P.
1179 Martinez-Jimenez. 2021. 'Single-nucleus RNA-seq2 reveals functional
1180 crosstalk between liver zonation and ploidy', *Nat Commun*, 12: 4264.

1181 Rinaman, L., and E. E. Rothe. 2002. 'GLP-1 receptor signaling contributes to
1182 anorexigenic effect of centrally administered oxytocin in rats', *Am J Physiol
1183 Regul Integr Comp Physiol*, 283: R99-106.

1184 Rinaman, L., J. G. Verbalis, E. M. Stricker, and G. E. Hoffman. 1993. 'Distribution
1185 and neurochemical phenotypes of caudal medullary neurons activated to
1186 express cFos following peripheral administration of cholecystokinin', *J Comp
1187 Neurol*, 338: 475-90.

1188 Rodrigues, O. R., and S. Monard. 2016. 'A rapid method to verify single-cell
1189 deposition setup for cell sorters', *Cytometry A*, 89: 594-600.

1190 Sanz, E., L. Yang, T. Su, D. R. Morris, G. S. McKnight, and P. S. Amieux. 2009.
1191 'Cell-type-specific isolation of ribosome-associated mRNA from complex
1192 tissues', *Proc Natl Acad Sci U S A*, 106: 13939-44.

1193 Shearer, K. D., P. N. Stoney, P. J. Morgan, and P. J. McCaffery. 2012. 'A vitamin for
1194 the brain', *Trends Neurosci*, 35: 733-41.

1195 Sturdevant, R. A., and H. Goetz. 1976. 'Cholecystokinin both stimulates and inhibits
1196 human food intake', *Nature*, 261: 713-5.

1197 Swanson, L. W., and P. E. Sawchenko. 1980. 'Paraventricular nucleus: a site for the
1198 integration of neuroendocrine and autonomic mechanisms',
1199 *Neuroendocrinology*, 31: 410-7.

1200 ———. 1983. 'Hypothalamic integration: organization of the paraventricular and
1201 supraoptic nuclei', *Annu Rev Neurosci*, 6: 269-324.

1202 Tang, Y., D. Benusiglio, A. Lefevre, L. Hilfiger, F. Althammer, A. Bludau, D.
1203 Hagiwara, A. Baudon, P. Darbon, J. Schimmer, M. K. Kirchner, R. K. Roy, S.
1204 Wang, M. Eliava, S. Wagner, M. Oberhuber, K. K. Conzelmann, M. Schwarz,
1205 J. E. Stern, G. Leng, I. D. Neumann, A. Charlet, and V. Grinevich. 2020.
1206 'Social touch promotes interfemale communication via activation of
1207 parvocellular oxytocin neurons', *Nat Neurosci*, 23: 1125-37.

1208 Tolson, K. P., T. Gemelli, L. Gautron, J. K. Elmquist, A. R. Zinn, and B. M.
1209 Kublaoui. 2010. 'Postnatal Sim1 deficiency causes hyperphagic obesity and
1210 reduced Mc4r and oxytocin expression', *J Neurosci*, 30: 3803-12.

1211 Torregrossa, A. M., and G. P. Smith. 2003. 'Two effects of high-fat diets on the
1212 satiating potency of cholecystokinin-8', *Physiol Behav*, 78: 19-25.

1213 Troy, A. E., S. S. Simmonds, S. D. Stocker, and K. N. Browning. 2016. 'High fat diet
1214 attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat
1215 gastric vagal afferents', *J Physiol*, 594: 99-114.

1216 Tschop, M. H., J. R. Speakman, J. R. Arch, J. Auwerx, J. C. Bruning, L. Chan, R. H.
1217 Eckel, R. V. Farese, Jr., J. E. Galgani, C. Hambly, M. A. Herman, T. L.
1218 Horvath, B. B. Kahn, S. C. Kozma, E. Maratos-Flier, T. D. Muller, H.
1219 Munzberg, P. T. Pfluger, L. Plum, M. L. Reitman, K. Rahmouni, G. I.
1220 Shulman, G. Thomas, C. R. Kahn, and E. Ravussin. 2011. 'A guide to analysis
1221 of mouse energy metabolism', *Nat Methods*, 9: 57-63.

1222 Ueta, Y., H. Kannan, T. Higuchi, H. Negoro, K. Yamaguchi, and H. Yamashita. 2000.
1223 'Activation of gastric afferents increases noradrenaline release in the
1224 paraventricular nucleus and plasma oxytocin level', *J Auton Nerv Syst*, 78: 69-
1225 76.

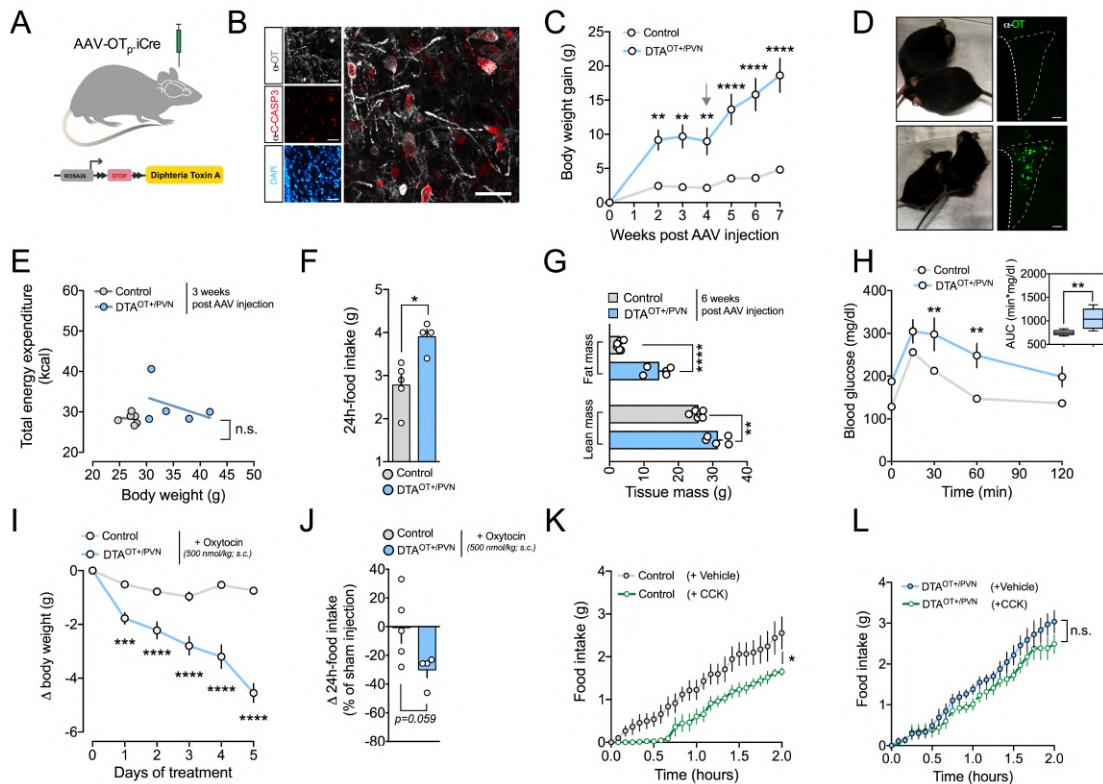
1226 Verbalis, J. G., M. J. McCann, C. M. McHale, and E. M. Stricker. 1986. 'Oxytocin
1227 secretion in response to cholecystokinin and food: differentiation of nausea
1228 from satiety', *Science*, 232: 1417-9.

1229 Wagner, G. P., K. Kin, and V. J. Lynch. 2012. 'Measurement of mRNA abundance
1230 using RNA-seq data: RPKM measure is inconsistent among samples', *Theory
1231 Biosci*, 131: 281-5.

1232 Wickham, H. 2016. "ggplot2-Elegant Graphics for Data Analysis." In.: Springer-
1233 Verlag New York978-3-319-24277-4.

1234 Williams, E. K., R. B. Chang, D. E. Strochlic, B. D. Umans, B. B. Lowell, and S. D.
1235 Liberles. 2016. 'Sensory Neurons that Detect Stretch and Nutrients in the
1236 Digestive System', *Cell*, 166: 209-21.

1237 Wolf, F. A., P. Angerer, and F. J. Theis. 2018. 'SCANPY: large-scale single-cell gene
1238 expression data analysis', *Genome Biol*, 19: 15.


1239 Yu, G., L. G. Wang, Y. Han, and Q. Y. He. 2012. 'clusterProfiler: an R package for
1240 comparing biological themes among gene clusters', *OMICS*, 16: 284-7.

1241

1242

1243 **Figures and figure legends**

1244

1245

1246 **Figure 1: Virus-mediated ablation of PVN^{OT} neurons induces hyperphagic obesity that is**
1247 **rectifiable by exogenous oxytocin treatment and associated with CCK insensitivity.**

1248 **(A)** Schematic illustration of the experimental paradigm in which an OT-specific AAV-OTp-iCre is used
1249 to induce the expression of diphtheria toxin A (DTA) selectively in PVN^{OT} neurons.

1250 **(B)** Representative confocal micrograph depicting immunoreactivity to cleaved caspase 3 (C-CASP3; red) in PVN^{OT} neurons (grey) five days post injection. Scale bar, 50 μ m.

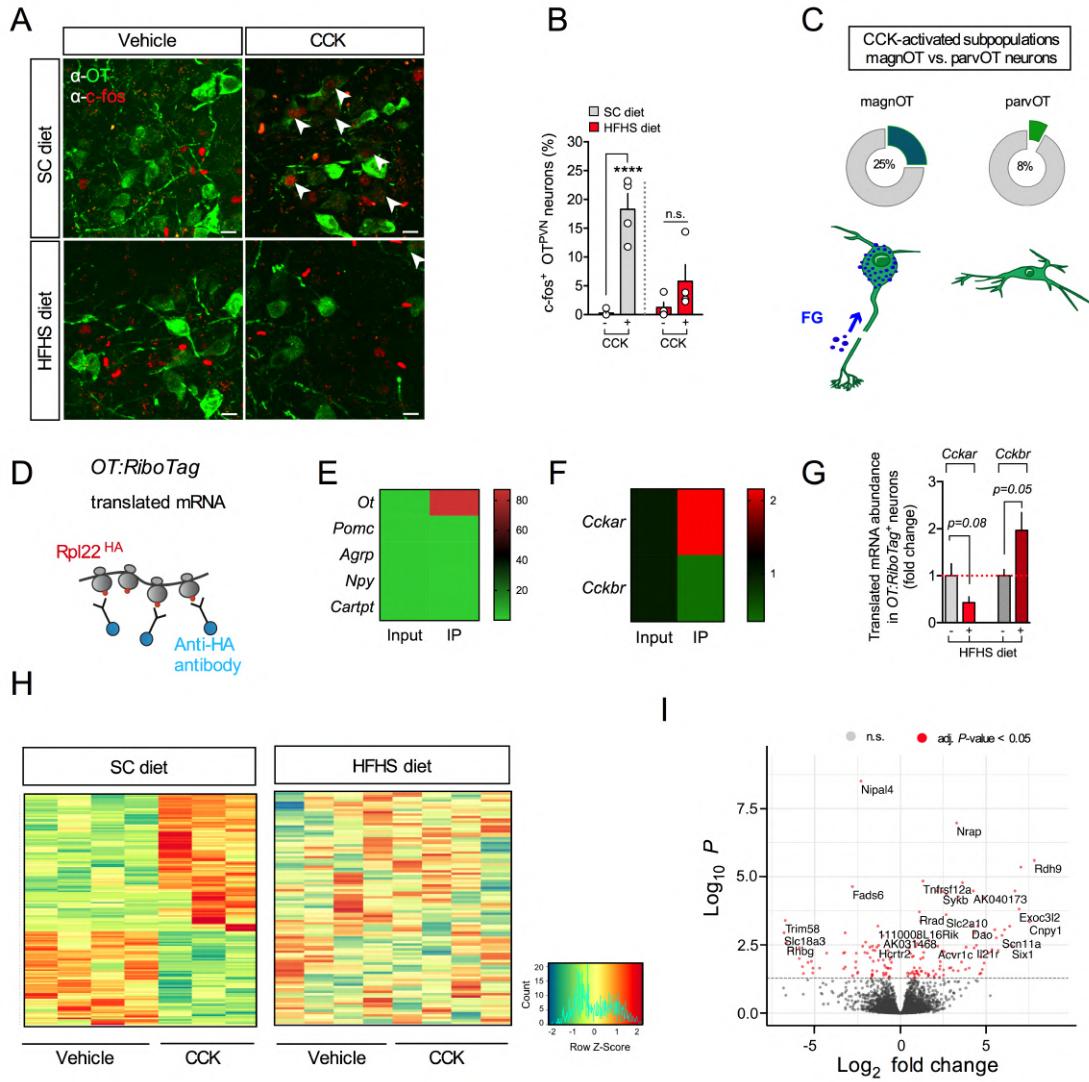
1252 **(C)** Body weight gain of DTA^{OT+PVN} and control mice fed SC diet. Arrow at three weeks post AAV
1253 injection indicates single housing in metabolic cages. Data are presented as mean \pm SEM. ** P < 0.01,
1254 **** P < 0.0001. n = 5-7 mice (two-way ANOVA).

1255 **(D)** Representative images of two pairs of DTA^{OT+PVN} and control mice five weeks post AAV injection
1256 (upper and lower panel, respectively) next to epifluorescent micrographs depicting absence and presence
1258 of PVN^{OT} neurons, respectively. Scale bar, 100 μ m.

1259 **(E)** Line graph of total energy expenditure (EE; assessed by indirect calorimetry) and
1260 body weight of DTA^{OT+PVN} and control mice two weeks post AAV injection. Data are presented as
1261 individual mice. n.s., not significant. n = 5-7 mice.

1262 **(F)** Daily food intake of a separate cohort of DTA^{OT+PVN} and control mice that were pair-housed in order
1263 to mitigate isolation stress (s. supplementary information). Data are presented as mean \pm SEM. * P <
1264 0.05. n = 4-5 pair of mice (unpaired Student's t-test).

1265 (G) Body composition analysis of DTA^{OT+/PVN} and control mice six weeks post injection. Data are
1266 presented as mean \pm SEM. ** P < 0.01, **** P < 0.0001. n = 5-7 mice (unpaired Student's *t*-test).


1267 (H) Blood glucose changes of DTA^{OT+/PVN} and control mice upon a glucose tolerance test (2 g/kg BW
1268 *i.p.*; left panel) and area under the curve (right panel). Data are presented as mean \pm SEM. ** P < 0.01,
1269 **** P < 0.0001. n = 5-7 mice (two-way ANOVA).

1270 (I) Body weight change in a separate cohort of DTA^{OT+/PVN} and control mice upon treatment with
1271 exogenous oxytocin (500 nM/kg BW *s.c.* twice daily). Data are presented as mean \pm SEM. **** P <
1272 0.0001. n = 8-10 mice (two-way ANOVA).

1273 (J) Change in food intake of pair-housed DTA^{OT+/PVN} and control mice upon treatment with exogenous
1274 oxytocin (500 nM/kg BW *s.c.* twice daily) relative to sham injections. Data are presented as mean \pm
1275 SEM. *** P < 0.0001. n = 4-5 pairs of mice (unpaired Student's *t*-test).

1276 (K) Cumulative food intake of control mice (nanoinjected with AAV-OTp-Venus) upon vehicle versus
1277 CCK (20 μ g/kg BW *i.p.*). Data are presented as mean \pm SEM. * P < 0.05, ** P < 0.01. n = 7 mice in a
1278 cross-over design (two-way ANOVA).

1279 (L) Cumulative food intake of DTA^{PVN(OT+)} mice (nanoinjected with AAV-OTp-iCre) upon vehicle
1280 versus CCK (20 μ g/kg BW *i.p.*). Data are presented as mean \pm SEM. n.s., not significant. n = 5 mice in
1281 a cross-over design (two-way ANOVA).

1282

1283 **Figure 2: Chronic exposure to a HFHS diet impairs the electrical and transcriptional**
1284 **activation of PVN^{OT} neurons in response to peripheral CCK.**

1285 (A) Representative confocal micrographs depicting neuronal activation by means of nuclear c-fos
1286 immunoreactivity (red) in PVN^{OT} neurons (green) in adult male C57BL/6J mice fed either SC or HFHS
1287 diet receiving CCK (20 µg/kg BW *i.p.*). Scale bar, 10 µm.

1288 (B) Corresponding quantification of c-fos⁺ PVN^{OT} neurons relative to total PVN^{OT} neurons counted. Data
1289 are presented as mean ± SEM. **** P < 0.0001, n.s., not significant. n = 4 mice, 4-8 hemisections per
1290 mouse (unpaired Student's *t*-test).

1291 (C) Quantification of CCK-activated (c-fos⁺) subpopulations of PVN^{OT} in a separate cohort pre-treated
1292 with fluorogold (FG; 15 mg/kg BW *i.p.*) to distinguish parvOT neurons (FG⁻) from magnOT neurons
1293 (FG⁺); data is represented as mean in percent relative to total parvOT and magnOT cell count,
1294 respectively, and visualized as pie charts. n = 3 mice, 46 hemisections, 2486 cells.

1295

1296 (D) Schematic illustration of the *OT:RiboTag* mouse model used to isolate actively translated mRNA
1297 specifically from OT⁺ neurons by immunoprecipitation of HA-tagged ribosomal subunit Rpl22.

1298 (E) Heat map of translating mRNA enrichment of various hypothalamic neuropeptides in the
1299 immunoprecipitate (IP) relative to input. n = 4 mice.
1300

1301 (F) Heat map representation of enrichment in *Cckar* mRNA and *Cckbr* mRNA in IP relative to input. n
1302 = 4 mice.
1303

1304 (G) Relative abundance of *Cckar* mRNA and *Cckbr* mRNA in the IP of *OT:RiboTag* mice fed HFHS
1305 diet relative to SC diet. n = 4 mice.
1306

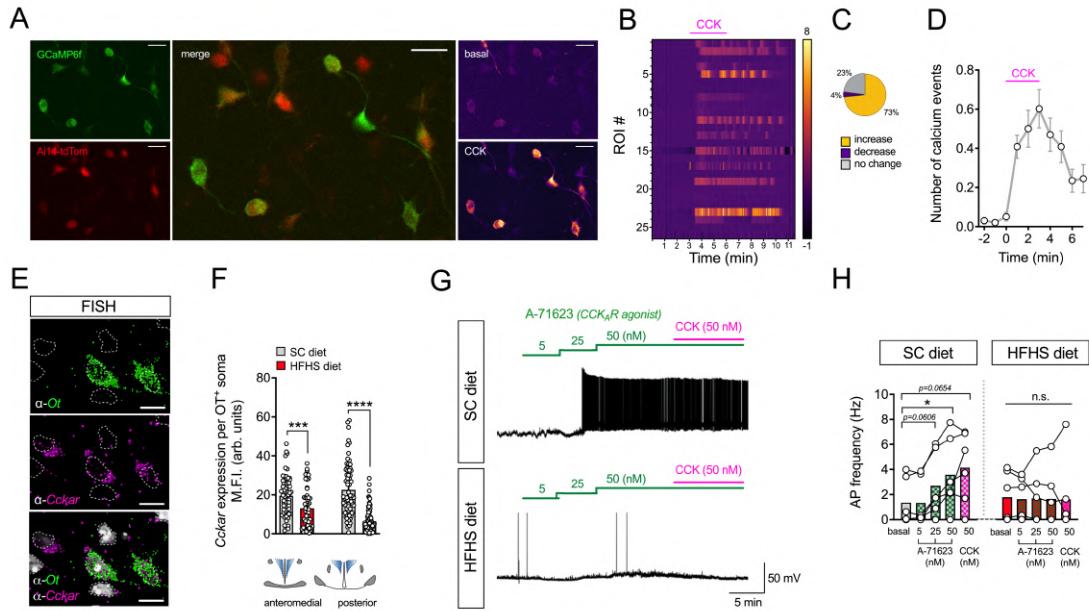
1307 (H) Heat map representation of DEG under SC diet in hypothalamic OT⁺ neurons of adult male
1308 *OT:RiboTag* mice fed either SC (left) and HFHS (right) diet upon injection of CCK (20 µg/kg BW *i.p.*;
1309 tissue collection 2 h post-injection). Rows reflect normalized (Z score) gene expression abundance. n =
1310 4 mice.
1311

1312 (I) Volcano plot highlighting the gene expression changes, where the log transformed adjusted p-values
1313 are plotted against fold changes in hypothalamic OT⁺ neurons from *OT:RiboTag* mice fed HFHS diet
1314 relative to SC diet-fed control mice
1315

1316

1317

1318


1319

1320

1321

1322

1323

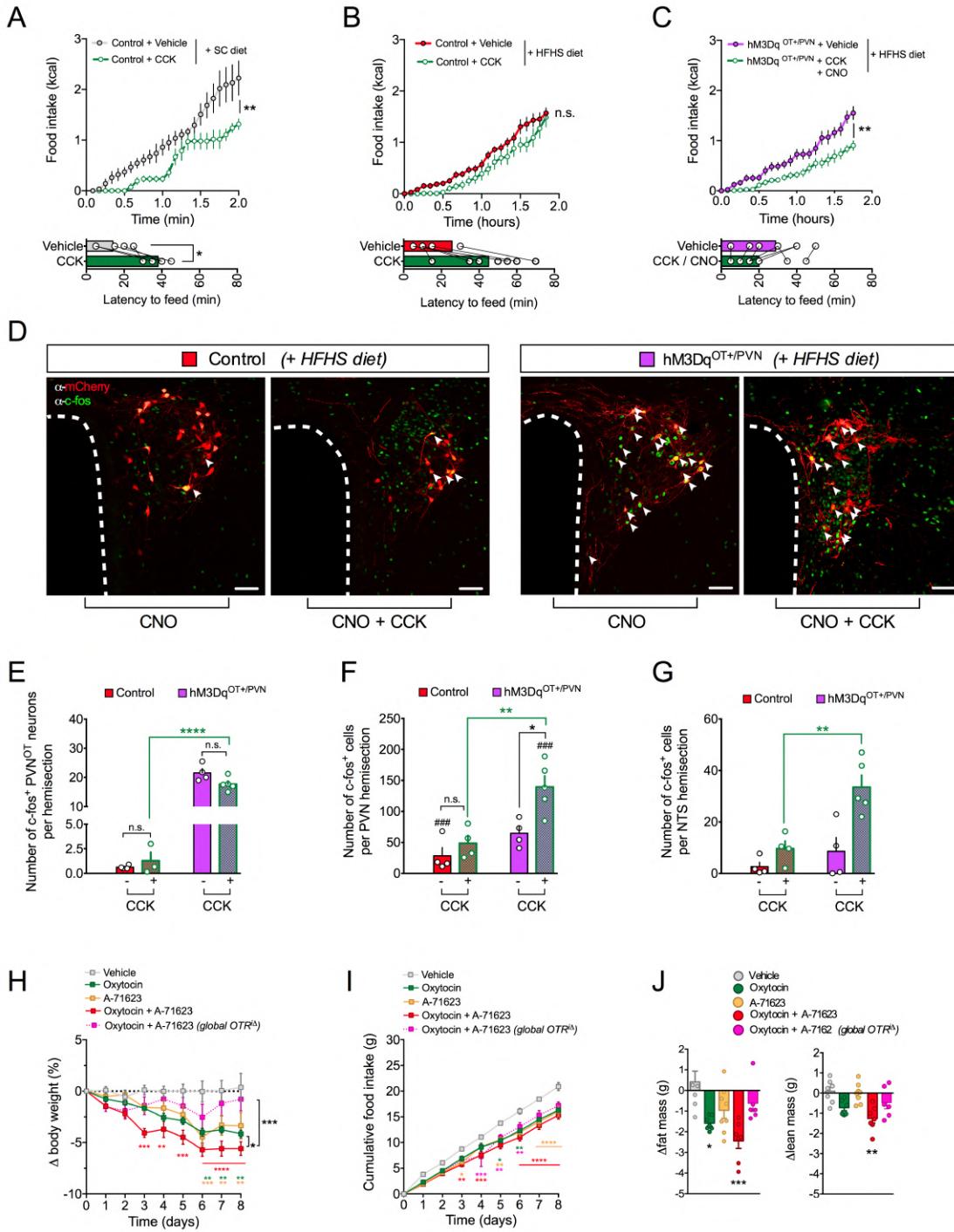
1324

1325 **Figure 3: PVN^{OT} neurons are activated by CCK via a direct, CCK_AR-dependent**
1326 **mechanism in lean but not obese mice.**

1327 (A) 2-photon excitation Ca^{2+} imaging of an acute brain slice expressing the genetically-encoded Ca^{2+}
1328 indicator GCaMP6f (green; top left panel) in PVN^{OT} neurons conditionally tagged by Ai14-tdTomato
1329 (red; bottom left panel) in a cell type-specific manner (merge; middle panel). Representative images
1330 taken during the timelapse recording before (basal; top right panel) and after bath-application of 50 nM
1331 CCK (CCK; lower right panel) in the presence of synaptic blockers. Scale bars, 25 μm .

1332 (B) Heatmap representation of cytosolic Ca^{2+} transients of individual PVN^{OT} neurons upon bath-
1333 application of CCK (50 nM) in the presence of synaptic blockers. $n = 1$ mouse, 49 neurons.

1334 (C) Pie chart diagram illustrating the percentages of PVN^{OT} neurons that increase (yellow) or decrease
1335 their activity (purple) upon CCK application, or that do not exhibit any change (gray).


1336 (D) Quantification of Ca^{2+} events over time displayed in 1-minute bins. $n = 1$ mouse, 49 neurons

1337 (E) 3D-rendered, high-power confocal micrograph depicting *Ot* mRNA (green), *Cckar* mRNA (magenta)
1338 and DAPI (grey) upon FISH (fluorescent *in situ* hybridization; RNAscope). Individual nuclei are outlined
1339 for demarcation within the field-of-view. Scale bar, 20 μm .

1340 (F) Corresponding quantification of FISH (RNAscope) using background-corrected mean fluorescence
1341 intensity (M.F.I.) of *Cckar* mRNA per *Ot*⁺ soma in the rostromedial and caudal PVN of adult male
1342 C57BL/6J mice fed either SC or HFHS diet. Data are presented as mean of all somata analyzed \pm SEM.
1343 **** $P < 0.0001$, *** $P < 0.001$. $n = 3$ mice, 4-8 hemisects per mouse (unpaired Student's *t*-test).

1345 (G) Representative traces of action potential frequency of putative magnOT neurons derived from SC
1346 diet-fed versus HFHS diet-fed mice in response to increasing concentrations of bath-applied A-71623
1347 (5, 25, and 50 nM) followed by superfusion with native CCK (50 nM).

1348 (H) Summary of changes in action potential frequency visualized in (G). Data are presented as mean
1349 superimposed with individual data points. * $P < 0.05$, n.s., not significant. $n = 2-3$ mice/ 6 neurons per
1350 mouse (two-way ANOVA).

1351

1352 **Figure 4: Blunted suppression of food intake in response to CCK on a HFHS diet is**
 1353 **reinstated by concomitant chemogenetic activation of PVN^{OT} neurons.**

1354 (A) Cumulative food intake of SC diet-fed control mice (nanoinjected with AAV-hSyn-DIO-mCherry)
 1355 upon vehicle versus CCK (20 μ g/kg BW *i.p.*) plus CNO (1 mg /kg BW *i.p.*). Data are presented as mean
 1356 \pm SEM. * $P < 0.05$. n = 5 mice in a cross-over design (two-way ANOVA).

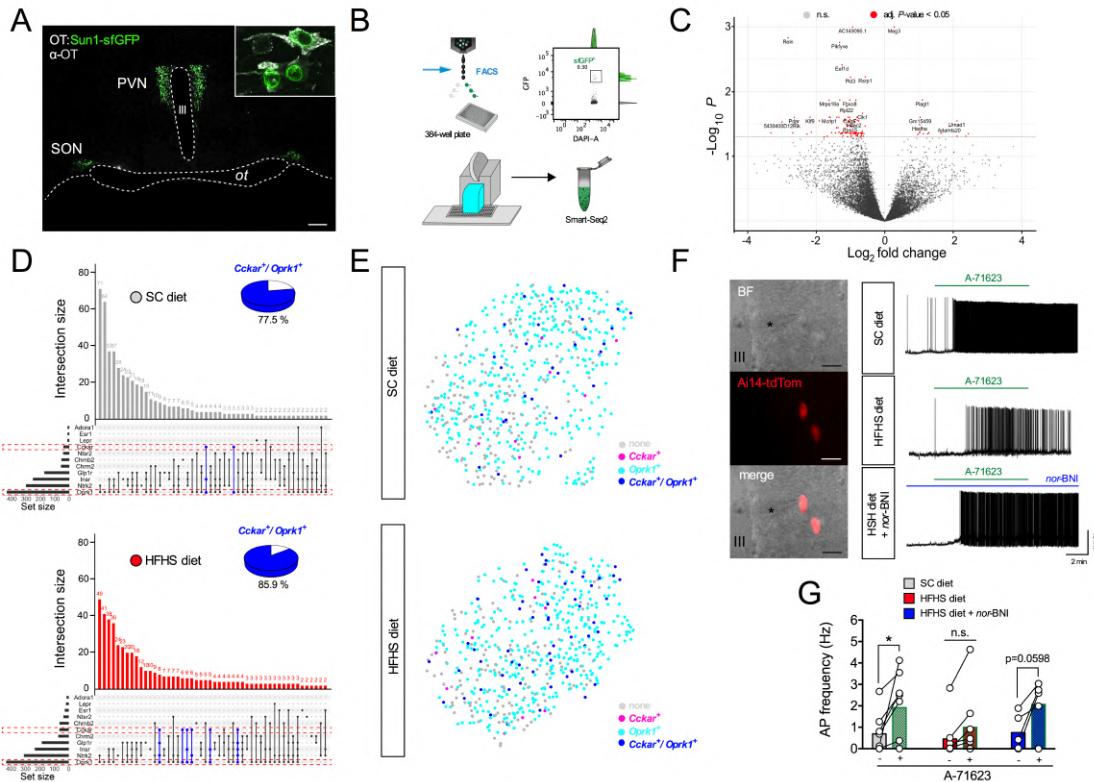
1357 (B) Cumulative food intake of HFHS diet-fed control mice (nanoinjected with AAV-hSyn-DIO-
 1358 mCherry) upon vehicle versus CCK (20 μ g/kg BW *i.p.*) plus CNO (1 mg /kg BW *i.p.*). Data are presented
 1359 as mean \pm SEM. n.s., not significant. n = 5 mice in a cross-over design (two-way ANOVA).

1360 (C) Cumulative food intake of HFHS diet-fed hM3Dq^{OT+/PVN} mice (nanoinjected with AAV-hSyn-DIO-
1361 hM3Dq-mCherry) upon vehicle versus CCK (20 µg/kg BW *i.p.*) plus CNO (1 mg /kg BW *i.p.*). Data are
1362 presented as mean ± SEM. * P < 0.05. n = 5 mice in a cross-over design (two-way ANOVA).

1363 (D) Representative confocal micrographs depicting neuronal activation by means of nuclear c-fos
1364 immunoreactivity (green) in virally transduced PVN^{OT} neurons (mCherry⁺; red). Scale bar, 50 µm.

1365 (E) Quantification of activated (c-fos⁺) virally transduced PVN^{OT} neurons (mCherry⁺) upon CCK (20
1366 µg/kg BW *i.p.*) plus CNO (1 mg /kg BW *i.p.*) injections in HFHS diet-fed hM3Dq^{OT+/PVN} mice or control
1367 mice. n = 4 mice / 3-8 hemisections.

1368 (F) Quantification of activated (c-fos⁺) PVN neurons overall upon CCK (20 µg/kg BW *i.p.*) plus CNO
1369 (1 mg /kg BW *i.p.*) injections in HFHS diet-fed hM3Dq^{OT+/PVN} mice or control mice. n = 4 mice / 3-8
1370 hemisections.


1371 (G) Quantification of activated (c-fos⁺) NTS neurons upon CCK (20 µg/kg BW *i.p.*) plus CNO (1 mg
1372 /kg BW *i.p.*) injections in HFHS diet-fed hM3Dq^{OT+/PVN} mice or control mice. n = 4 mice / 3-8
1373 hemisections.

1374 (H) Relative body weight changes of adult male wildtype mice and tamoxifen-inducible global OTR^{-/-}
1375 mice all fed HFHS diet and treated bi-daily with either OT (500 nmol/kg BW; *s.c.*), A-71623 (30 nmol/kg
1376 BW *i.p.*) or their combination. Data are presented in percent of initial body weight as mean ± SEM. * P
1377 < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, n.s. = not significant. n = 6-8 mice (two-way
1378 ANOVA).

1379 (I) Cumulative food intake of adult male wildtype mice and tamoxifen-inducible global OTR^{-/-} mice all
1380 fed HFHS diet and treated bi-daily with either OT (500 nmol/kg BW *s.c.*), A-71623 (30 nmol/kg BW
1381 *i.p.*) or their combination. Data are presented as mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001,
1382 **** P < 0.0001, n.s. = not significant. n = 6-8 mice (two-way ANOVA).

1383 (J) Changes in body composition of the cohort shown in (H, I) at the end of study. Data are presented
1384 relative to initial body composition as mean ± SEM ± SEM. ** P < 0.01, **** P < 0.0001. n = 5-7 mice
1385 (unpaired Student's *t*-test).

1386
1387

1388

1389 **Figure 5: Intersectional regulation of hypothalamic OT neurons by CCK_AR and κ-opioid**

1390 receptors is dependent on dietary context.

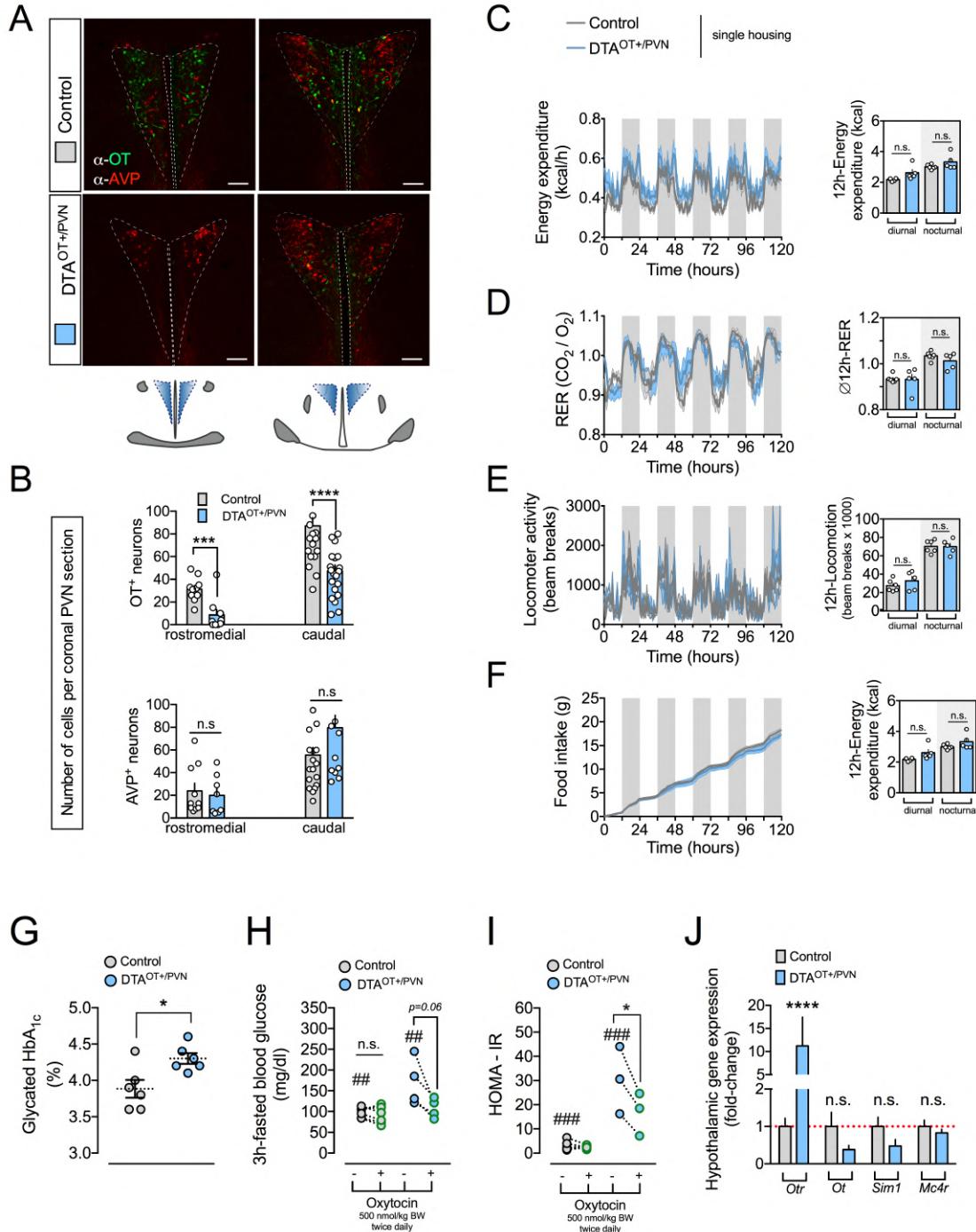
1391 **(A)** Representative confocal micrographs of coronal brain section from an adult male *OT:Sun1-sfGFP*
1392 depicting the nuclear localization of sfGFP (green) in hypothalamic OT neurons (grey). Scale bar, 200
1393 μ m.

1394 **(B)** Schematic illustration of the workflow used to sort individual sfGFP⁺ nuclei into 384-well plates
1395 using FACS (top left panel) with representative FACS plot displayed (top right panel); isolation was
1396 followed by low-volume pipetting robot-assisted single nuclei lysis, cDNA synthesis and library
1397 preparation for snRNA-seq2 (lower panel).

1398 **(C)** Volcano plot highlighting differential gene expression changes across the sum of individual OT
1399 nuclei from adult male *OT:Sun1-sfGFP* mice chronically fed HFHS diet relative to SC diet-fed littermate
1400 controls. $n = 2$ mice.

1401 **(D)** Upset plot visualization of intersectional expression of select receptors in individual OT nuclei from
1402 SC diet-fed (upper panel) and HFHS diet-fed (lower panel) *OT:Sun1-sfGFP* mice. Transcripts for *Cckar*
1403 and *Oprk1* are highlighted (red dash boxes) as well as their intersections (blue bars). Percentages of
1404 *Cckar*⁺ OT nuclei also expressing *Oprk1* are visualized as pie charts for each panel.

1405 **(E)** UMAP plot visualization of individual OT nuclei from SC diet-fed (upper panel) and HFHS diet-fed
1406 (lower panel) *OT:Sun1-sfGFP* mice colored according to their expression of either *Cckar* (magenta),
1407 *Oprk1* (cyan), their combination (blue), or none (grey). $N = 2$; 614 cells (SC diet) and 588 cells (HFHS
1408 diet).


1409 **(F)** Representative traces of action potential frequency of magnOT neurons derived from adult male
1410 *OT:Ai14-tdTomato* reporter mice fed either SC diet or HFHS diet fed mice in response to bath-applied
1411 A-71623 (25 nM) with or without pre-treatment with nor-BNI (200 nM). Scale bar, 25 μ m
1412 $n.s.$ indicates not significant.

1413

1414

1415

1416 (G) Summary of changes in action potential frequency visualized in (G). Data are presented before and
 1417 after application of A-71623 as mean \pm SEM. * $P < 0.05$, n.s., not significant. n = 2-3 mice/ 5-8 neurons
 1418 per mouse (paired Student's *t*-test).
 1419

1420

1421 **Figure S1. Related to Figure 1: Virus-mediated ablation of PVN^{OT} neurons induces**
 1422 **hyperphagic obesity that is rectifiable by exogenous oxytocin treatment and associated**
 1423 **with CCK resistance.**

1424 (A) Representative confocal micrographs of brain sections showing OT⁺ neurons (green) and AVP⁺
 1425 neurons (red) of control mice and DTA OT+/PVN mice at the rostral and caudal levels of the PVN.
 1426 Scale bar, 100 μm.

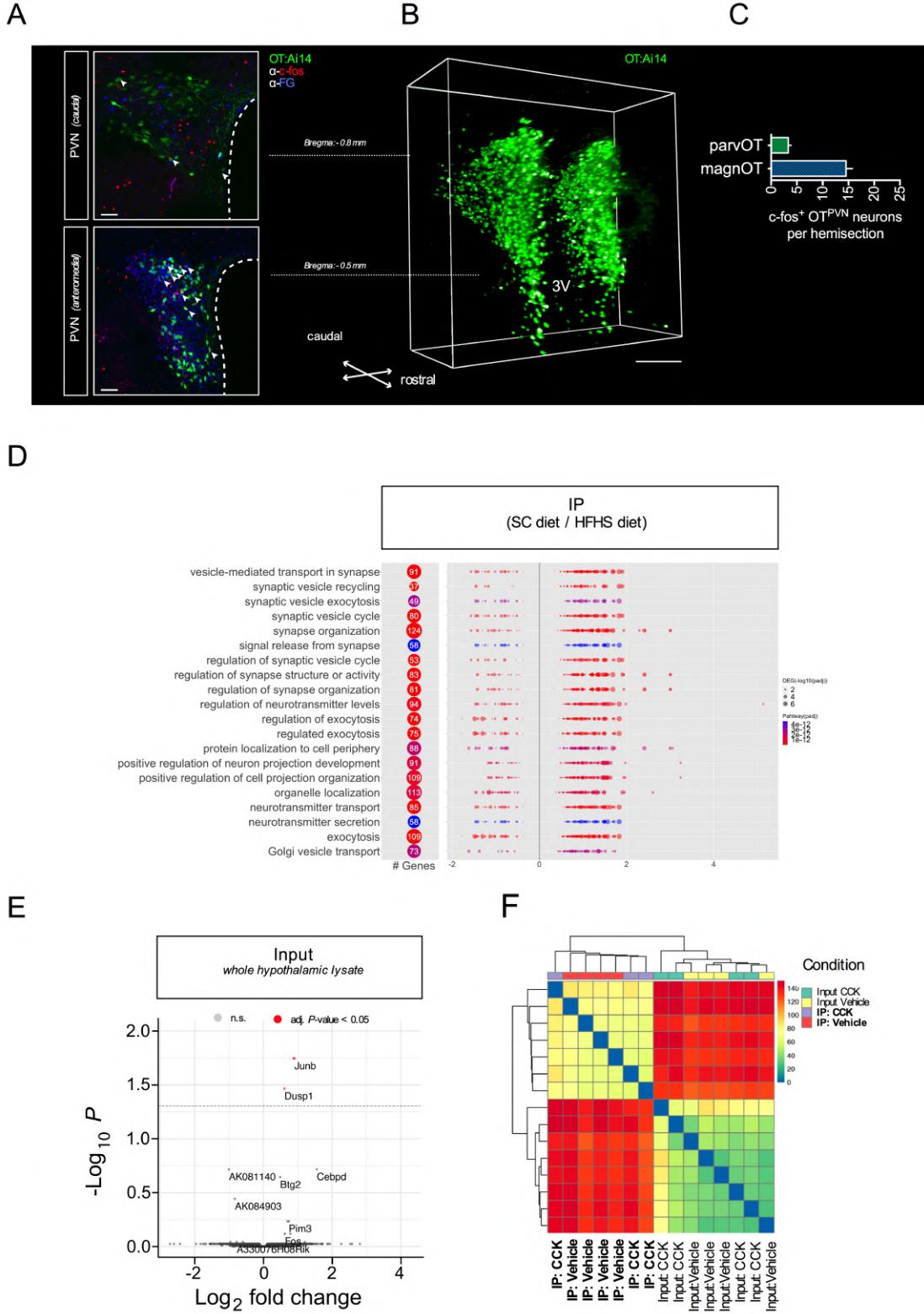
1427
1428 (B) Corresponding quantification of OT neuron count (upper panel) and AVP neuron count (lower panel)
1429 control mice and DTA^{OT+/PVN} mice at the rostromedial and caudal levels. n = 5-7, 3-5 hemisections per
1430 mouse.

1431
1432 (C) Hourly energy expenditure as measured by indirect calorimetry in metabolic cages of single-housed
1433 control mice and DTA^{OT+/PVN} mice (left panel) as well as average 12h-energy expenditure (right panel).
1434 Data are presented as mean ± SEM. ** P < 0.01, **** P < 0.0001. n = 5-7 mice (two-way ANOVA (left
1435 panel) and unpaired Student's *t*-test (right panel)).

1436
1437 (D) Hourly respiratory exchange ratio (RER) as measured by indirect calorimetry in metabolic cages of
1438 single-housed control mice and DTA^{OT+/PVN} mice (left panel) as well as average 12h-RER (right panel).
1439 Data are presented as mean ± SEM. n.s., not significant. n = 5-7 mice (two-way ANOVA (left panel) and
1440 unpaired Student's *t*-test (right panel)).

1441
1442 (E) Hourly locomotor activity as measured by beam breaks in metabolic cages of single-housed control
1443 mice and DTA^{OT+/PVN} mice (left panel) as well as average 12h-locomotion (right panel). Data are
1444 presented as mean ± SEM. n.s., not significant. n = 5-7 mice (two-way ANOVA (left panel) and unpaired
1445 Student's *t*-test (right panel)).

1446
1447 (F) Cumulative food intake of single-housed control mice and DTA^{OT+/PVN} mice (left panel) as well as
1448 average 12h-food intake (right panel). Data are presented as mean ± SEM. n.s., not significant. n = 5-7
1449 mice (two-way ANOVA (left panel) and unpaired Student's *t*-test (right panel)).


1450
1451 (G) Quantification of glycated HbA_{1C} in a separate cohort of DTA^{OT+/PVN} mice and control mice. Data
1452 are presented as mean ± SEM. n.s., not significant. * P < 0.05. n = 6 mice (unpaired Student's *t*-test).

1453
1454 (H) Quantification of 3h-fasted blood glucose before and after treatment with bi-daily OT (500 nmol/kg
1455 BW; *s.c.*) in DTA^{OT+/PVN} mice and control mice. Data are presented as mean ± SEM. ## P < 0.01, n.s.,
1456 not significant. n = 5-7 mice (one-way ANOVA and paired Student's *t*-test).

1457
1458 (I) Quantification of HOMA-IR before and after treatment with bi-daily OT (500 nmol/kg BW; *s.c.*) in
1459 DTA^{OT+/PVN} mice and control mice. Data are presented as mean ± SEM. * P < 0.05, ### P < 0.001, n.s.,
1460 not significant. n = 5-7 mice (one-way ANOVA and paired Student's *t*-test).

1461
1462 (J) Relative gene expression of mRNA for *Otr*, *Ot*, *Sim1* and *Mc4r* in the hypothalamus of DTA^{OT+/PVN}
1463 mice normalized to control mice. Data are presented as mean ± SEM. * P < 0.05, n.s., not significant. n
1464 = 4 mice (unpaired Student's *t*-test).

1465

1466
1467

1468 **Figure S2. Related to Figure 2: Chronic exposure to a HFHS diet impairs the electrical**
1469 **and transcriptional activation f PVN^{OT} neurons in response to peripheral CCK.**

1470 **(A)** Representative confocal micrographs of coronal brain sections from adult male OT:AI14 reporter
1471 mice containing the PVN at the caudal (upper panel) and anteromedial (lower panel) level relative to
1472 bregma. Mice received fluorogold (FG; 15 mg/kg BW *i.p.*) 7 days prior sacrifice in order to label
1473 magnOT neurons, which form neurohemal contacts at the posterior pituitary (FG⁺; blue). On the day of

1474 experiment, mice were injected with CCK (20 μ g/kg BW *i.p.*) and consequent activation of PVN^{OT}
1475 neurons (green) was quantified by means of nuclear c-fos immunoreactivity (red). Scale bar, 50 μ m.

1476 **(B)** 3D rendered confocal scan of iDISCO-cleared coronal brain section from an adult male *OT:Ai14*
1477 reporter mouse spanning the entirety of the PVN (1 mm). Scale bar, 1 mm.

1478 **(C)** Quantification of total c-fos⁺ PVN^{OT} neuronal subpopulations from (A) differentiating between
1479 parvOT (FG⁻) and magnOT (FG⁺) subsets.

1480 **(D)** GO enrichment analysis of DEG comparing IP of OT:RiboTag mice either fed SC diet or HFHS
1481 diet. Top enriched pathways number of DEG are indicated in the left panel, while the color indicates the
1482 adjusted p-value. Each pathway DEG are represented as dots, and plotted against log-fold changes, while
1483 the size indicates the adjusted p-values.

1484 **(E)** Volcano plot highlighting the DEG in the input from OT:RiboTag mice fed SC diet receiving CCK
1485 (20 μ g/kg BW *i.p.*) relative to vehicle.

1486 **(F)** Heat map of sample-to-sample distance matrix for overall normalized gene expression read counts
1487 of both input and IP samples of OT:RiboTag mice fed either SC diet or HFHS diet that were additionally
1488 treated with either CCK (20 μ g/kg BW *i.p.*) or vehicle. Euclidean distance clustering dendograms are
1489 displayed above.

1490

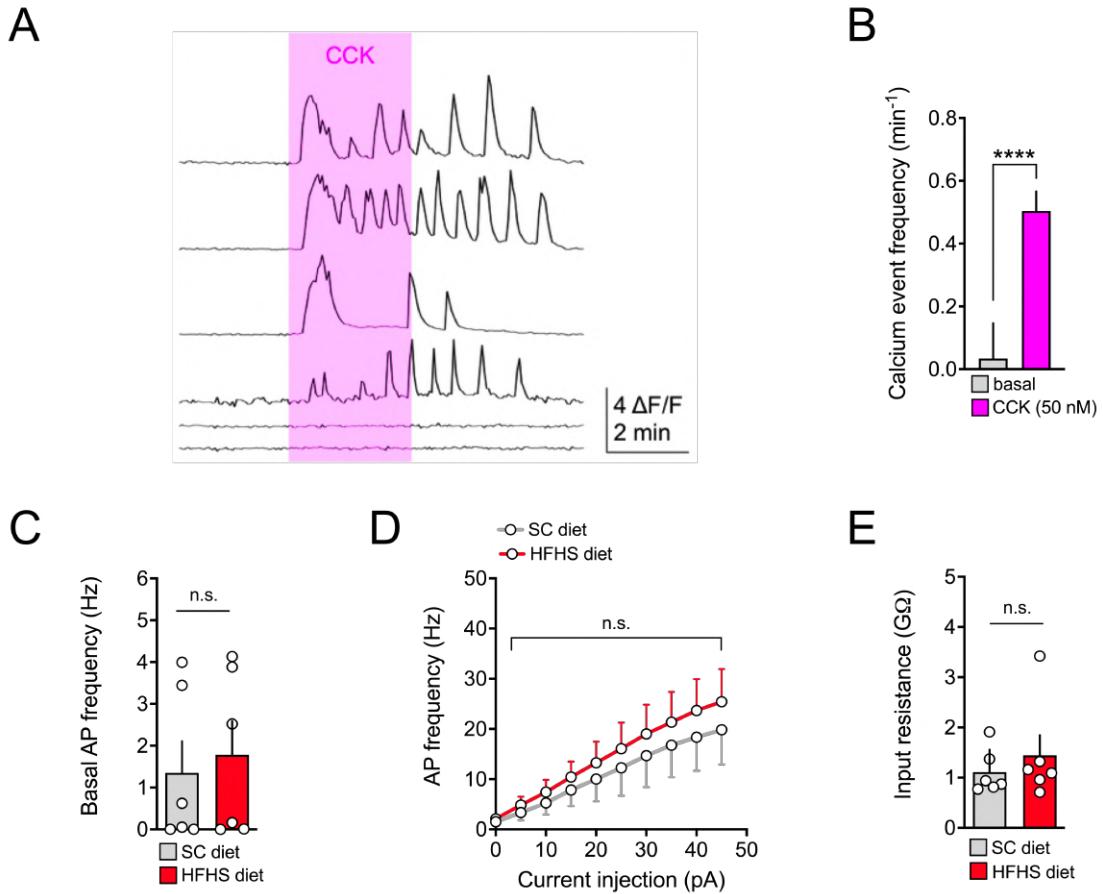
1491

1492

1493

1494

1495


1496

1497

1498

1499

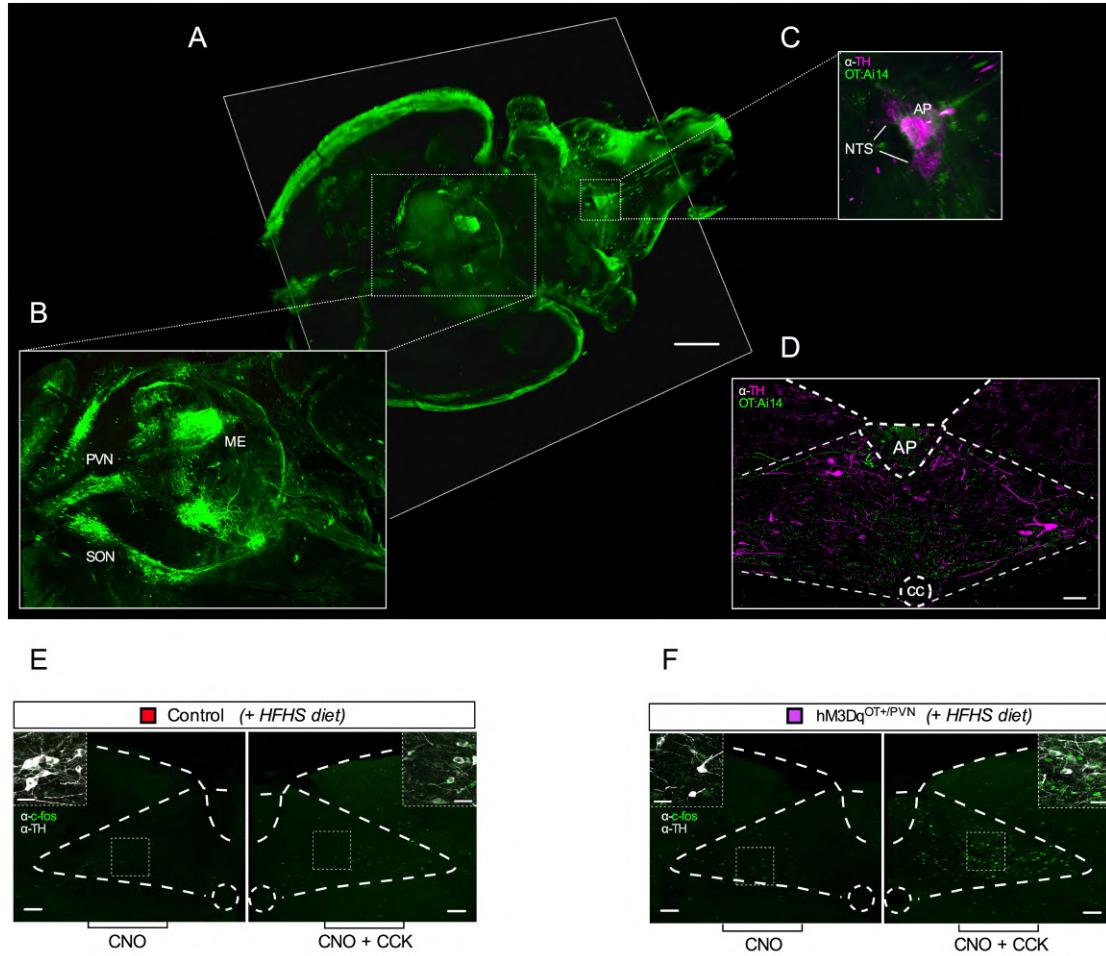

1500

Figure S3. Related to Figure 3: PVN^{OT} neurons are activated by CCK via a direct, CCK_{AR}-dependent mechanism in lean but not obese mice.

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513

(A) Cytosolic Ca^{2+} transients of individual PVN^{OT} neurons (lower panel) upon bath application of CCK (50 nM) in the presence of synaptic blockers.
(B) Quantification of Ca^{2+} event frequency as summary data of all imaged neurons. Data are presented as mean \pm SEM. **** $P < 0.0001$. n = 1 mouse, 49 neurons (unpaired Student's *t*-test).
(C) Quantification of basal action potential frequency of putative magnOT neurons. Data are presented as mean \pm SEM. n.s. = not significant. n = 2-3 mice/ 6 neurons per mouse (unpaired Student's *t*-test).
(D) Quantification of firing frequency as a function of injected current of putative magnOT neurons. Data are presented as mean \pm SEM. n.s. = not significant. n = 2-3 mice/ 6 neurons per mouse (unpaired Student's *t*-test).
(E) Quantification of input resistance of putative magnOT neurons. Data is represented as mean \pm SEM. n.s. = not significant. n = 2-3 mice/ 6 neurons per mouse (unpaired Student's *t*-test).

1519

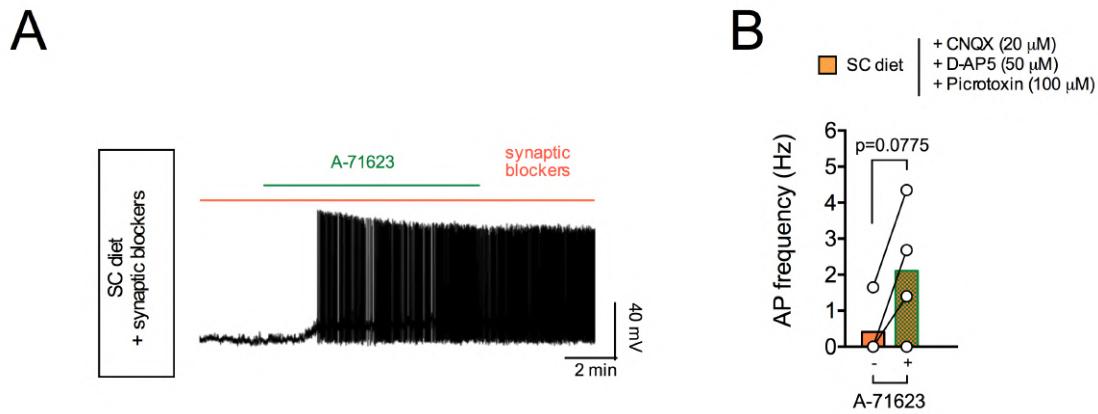
1520

1521 **Figure S4. Related to Figure 4: Blunted suppression of food intake in response to CCK on**
1522 **a HFHS diet is reinstated by concomitant chemogenetic activation of PVN^{OT} neurons.**

1523 (A) 3D whole-brain image (horizontal view) of an iDISCO-cleared OT:Ai14 reporter mouse brain
1524 subjected to light-sheet fluorescence microscopy. Scale bar, 1 mm.

1525 (B) 3D rendered zoom-in image (dashed line insert) of the hypothalamus showing the anatomical
1526 organization of the OT system.

1527 (C) 3D rendered zoom-in image (dashed line insert) of the dorsal vagal complex (NTS and AP) in the
1528 brainstem containing catecholaminergic TH⁺ neurons (magenta) and its innervation by OTergic fibres
1529 (green).


1530 (D) Confocal micrograph of a coronal brain section of the NTS displaying catecholaminergic TH⁺
1531 neurons (magenta) and their innervation by OTergic fibres (green) at high resolution. Scale bar, Scale
1532 bar, 100 μ m.

1533 (E) Representative confocal micrographs of NTS brain sections from HFHS diet-fed control mice
1534 showing c-fos immunoreactive cells (green) following either CNO or CNO+CCK; inserts displaying the
1535 extent of co-localization with TH (gray). Scale bar, 100 μ m and 20 μ m (insert).

1536 (F) Representative confocal micrographs of NTS brain sections from HFHS diet-fed hM3Dq^{OT+/PVN} mice
1537 showing c-fos immunoreactive cells (green) following either CNO or CNO+CCK; inserts displaying the
1538 extent of co-localization with TH (gray). Scale bar, 50 μ m and 20 μ m (insert).

1539

1540

1541
1542 **Figure S5. Related to Figure 5. Intersectional regulation of hypothalamic OT neurons by**
1543 **CCK_AR and κ -opioid receptors is dependent on dietary context.**

1544 (A) Representative traces of action potential frequency of magnOT neurons derived from adult male
1545 OT:AI14 reporter mice fed SC diet in response to bath-applied A-71623 (25 nM) pre-treated with
1546 synaptic blocker.

1547 (B) Summary of changes in action potential frequency (right panel). Data are presented before and after
1548 application of A-71623 as mean \pm SEM. n = 1 mouse/ 3 neurons per mouse (paired Students *t*-test).

1549

1550