

1
2 A unified model for the surveillance of translation in diverse noncoding sequences
3

4 Jordan S Kesner^{1,*}, Ziheng Chen^{1,2,*}, Alexis A Aparicio¹, Xuebing Wu^{1,#}
5

6 ¹Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center,
7 New York, NY 10032, USA

8
9 ²Current address: Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213,
10 USA

11
12 *These authors contributed equally

13
14 #Correspondence to: xw2629@cumc.columbia.edu (X.W.)

16 **ABSTRACT (150 words)**

17 Translation is pervasive outside of canonical coding regions, occurring in lncRNAs, UTRs, and introns. While
18 the resulting polypeptides are often non-functional, translation in noncoding regions is nonetheless
19 necessary for the birth of new coding regions. The mechanisms underlying the surveillance of translation
20 in diverse noncoding regions and how escaped polypeptides evolve new functions remain unclear.
21 Intriguingly, noncoding sequence-derived functional peptides often localize to membranes. Here, we show
22 that the intrinsic nucleotide bias in the noncoding genome and in the genetic code frequently results in
23 polypeptides with a hydrophobic C-terminal tail, which is captured by the ribosome-associated BAG6
24 membrane protein triage complex for either proteasomal degradation or membrane targeting. In contrast,
25 canonical proteins have evolved to deplete C-terminal hydrophobic residues. Our results uncovered a fail-
26 safe mechanism for the surveillance of unwanted translation from diverse noncoding regions and suggest
27 a possible biochemical route for the preferential membrane localization of newly evolved proteins.

28

29

30

31 **Highlights**

- 32 • Translation in diverse noncoding regions is mitigated by proteasomal degradation
- 33 • C-terminal hydrophobicity is a hallmark of noncoding sequence derived polypeptides
- 34 • A genome-wide CRISPR screen identified the BAG6 membrane protein triage pathway
- 35 • Ribosome-associated BAG6 complex targets C-terminal hydrophobicity for degradation

36

37 **Keywords:** noncanonical ORF translation, noncoding, BAG6, hydrophobicity, proteasome, membrane

38

39

40 **INTRODUCTION**

41 How cells faithfully decode the genetic information in the genome to synthesize a functional proteome is a
42 fundamental question of modern biology. While the fidelity of transcription and translation are high, the
43 substrate specificity for which DNA regions to transcribe and which RNA molecules to translate are rather
44 low, resulting in pervasive transcription of the genome (Djebali et al., 2012; Jensen et al., 2013; Selinger et
45 al., 2000) and widespread translation of noncoding transcripts (Ingolia et al., 2014), two daunting
46 challenges the cell faces when synthesizing a healthy proteome from a genome containing mostly
47 noncoding sequences. Previously, we and others have uncovered a fail-safe mechanism that relies on a
48 high abundance of poly(A) signals in the noncoding genome to suppress pervasive transcription in
49 mammalian cells (Almada et al., 2013; Ntini et al., 2013), an observation that also sheds lights on the
50 evolutionary origination and maturation of new protein-coding genes from transcribed noncoding regions
51 (Wu and Sharp, 2013).

52 In addition to pervasive transcription generating thousands of long noncoding RNAs (lncRNAs), widespread
53 alternative RNA splicing and polyadenylation often generates aberrant mRNAs carrying introns and UTRs in
54 their open reading frames (ORFs) (Derti et al., 2012; Pan et al., 2008; Wang et al., 2008). Given the need to
55 translate a diverse pool of mRNAs, the ribosome is expected to translate any capped and polyadenylated
56 cytoplasmic RNA with a start codon, including most lncRNAs and aberrant mRNAs that escape mRNA quality
57 control mechanisms such as nonsense-mediated decay (NMD) (Lykke-Andersen and Jensen, 2015; Popp
58 and Maquat, 2018). Indeed, transcriptome-wide mapping of ribosome footprints by ribosome profiling
59 (Ingolia et al., 2009) has uncovered pervasive translation outside of canonical coding sequences (CDS)
60 (hereinafter referred to as noncanonical ORF translation). For example, most cytoplasmic lncRNAs in mouse
61 embryonic stem cells are translated, with ribosome footprints largely indistinguishable from those in mRNA
62 ORFs (Ingolia et al., 2014). A similar analysis in human cells estimated that 40% of lncRNAs, 35% of mRNA
63 5' UTRs (upstream ORF, uORF), and 4% mRNA 3' UTRs are translated (Ji et al., 2015). Introns may also
64 become integrated into ORFs via intron retention or intronic polyadenylation, and ribosome profiling data
65 has suggested that cytosolic retained introns are frequently translated (Weatheritt et al., 2016). Similarly,
66 most products of intronic polyadenylation are translated, as evidenced by truncated proteins being
67 frequently detected by western blotting (Lee et al., 2018).

68 Increasing evidence supports widespread noncanonical ORF translation in cancer, aging,
69 neurodegeneration, and as a side effect of certain therapeutic treatments. Many pathological conditions
70 result in an overall decline of mRNA processing fidelity and loss of mRNA quality control (e.g., NMD), leading
71 to the accumulation of aberrant mRNAs. For example, the spliceosome is frequently mutated or overloaded
72 in cancer cells (Hsu et al., 2015; Wang et al., 2011b; Yoshida et al., 2011). Consequently, intron retention is
73 globally upregulated in most cancer types compared to their matched control samples (Dvinge and Bradley,
74 2015), and widespread intronic polyadenylation generates many truncated proteins in leukemia (Lee et al.,
75 2018). In addition, inhibition of NMD by the hypoxia stress response in tumors further stabilizes aberrant
76 mRNAs in the cytoplasm (Gardner, 2008; Popp and Maquat, 2018; Wang et al., 2011a). Recently, recurrent
77 stop codon mutations leading to readthrough into 3' UTRs have been detected in over 400 cancer-related
78 genes (Dhamija et al., 2020). Further supporting elevated noncanonical ORF translation in cancer, peptides
79 derived from noncoding regions account for the majority of tumor-specific antigens (Laumont et al., 2018;
80 Smart et al., 2018; Xiang et al., 2021), and tend to be associated with unfavorable prognoses for patients
81 (Dong et al., 2021). Similarly, increased intron retention and other aberrant splicing events are associated
82 with aging and neurodegeneration (Adusumalli et al., 2019; Hsieh et al., 2019; Mariotti et al., 2022; Mazin
83 et al., 2013). This is again potentially associated with a decline of NMD activity in aging (Son et al., 2017),
84 as well as the disruption of the spliceosome (Hsieh et al., 2019) or the aggregation of spliceosome
85 components (Bai et al., 2013) mediated by Tau in Alzheimer's disease (AD) or the inhibition of NMD by

86 C9orf72 dipeptide-repeat in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) (Sun et
87 al., 2020; Xu et al., 2019). Widespread translation of 3' UTRs also occurs naturally in the aging brain due to
88 increasing levels of malfunction in the translational machinery (Sudmant et al., 2018). Similar effects are
89 observed as a side effect of aminoglycoside treatment, a class of drugs developed to enhance readthrough
90 of premature stop codons in genes implicated in approximately 10% of all genetic diseases (Wangen and
91 Green, 2020).

92 Despite the prevalence of noncanonical ORF translation and its likely significant contributions to disease
93 pathogenesis and therapeutic side-effects, the surveillance mechanisms preventing the accumulation of
94 the potentially toxic noncanonical ORF translation products remain poorly understood. To date, studies
95 investigating these surveillance mechanisms have primarily focused on 3' UTR translation in a small set of
96 genes, and have reached very different conclusions regarding the mechanistic details of this process
97 (Arribere et al., 2016; Dhamija et al., 2020; Hashimoto et al., 2019; Kramarski and Arbely, 2020; Shibata et
98 al., 2015; Yordanova et al., 2018). In particular, it remains unclear if the ribosome itself can sense the
99 difference between coding and noncoding sequences, which differ in sequence composition, RNA
100 structures, and codon optimality. For example, it has been proposed that ribosomes which read through
101 the 3' UTR of the *AMD1* mRNA eventually stall, resulting in a ribosome queue that suppresses translation
102 elongation in the main ORF (Yordanova et al., 2018). Similar models of ribosome arrest have been used to
103 explain mitigation of translation readthrough in several other mRNAs (Hashimoto et al., 2019). Despite this,
104 direct evidence of ribosome queueing has been missing, and other studies in worms and human cell lines
105 have suggested that proteasomal degradation, rather than translational inhibition, is responsible for
106 translational readthrough mitigation (Arribere et al., 2016; Dhamija et al., 2020; Shibata et al., 2015).
107 Intriguingly, a separate study focusing on a different set of human genes concluded that the readthrough
108 products were not degraded, but instead aggregated in lysosomes (Kramarski and Arbely, 2020). These
109 different conclusions drawn from non-overlapping and small sets of 3' UTRs, as well as the lack of studies
110 on other classes of noncoding sequences, such as lncRNAs, introns, and 5' UTRs, underscores the need for
111 more systematic studies aimed at uncovering potential unifying principles for the surveillance of translation
112 in diverse types of noncoding sequences.

113 While most peptides synthesized from noncanonical ORFs are likely nonfunctional, on the evolutionary
114 timescale noncanonical ORF translation is necessary to expose the noncoding genome to natural selection,
115 and ultimately, the origination of new protein-coding genes. There have been numerous recent discoveries
116 of functional peptides translated from 5' UTRs and previously annotated lncRNAs in mammalian cells
117 (Anderson et al., 2015; Chen et al., 2020; Li et al., 2021; Nelson et al., 2016; Polycarpou-Schwarz et al., 2018;
118 Senís et al., 2021; Wang et al., 2020). Intriguingly, of the 64 functional peptides whose cellular localization
119 had been determined experimentally, about three quarters (47) localize to membranes, including the
120 plasma membrane and membranes of ER, mitochondria, and lysosome (Table S1). Similarly, studies in yeast
121 show that proto-genes (translated non-genic sequences) tend to encode putative transmembrane regions
122 (Carvunis et al., 2012; Vakirlis et al., 2020). However, the biochemical mechanism allowing polypeptides
123 derived from noncoding sequences to escape cellular surveillance and preferentially localize to membranes
124 remains elusive.

125 In this study, by combining unbiased high-throughput screens with in-depth dissection of individual cases,
126 we present a unified model for the mitigation of translation in diverse noncoding sequences, which also
127 provides insights into the preferential membrane targeting of newly evolved proteins.

128 **RESULTS**

129 **Diverse noncanonical ORF translation products are largely degraded by the proteasome**

130 A common outcome of noncanonical ORF translation in various contexts is that the resulting polypeptide
131 has a C-terminal tail derived from annotated noncoding sequences (**Fig. 1A**, blue). We therefore
132 constructed reporters fusing various noncoding sequences to the C-terminal end of the EGFP ORF in an
133 mCherry-2A-EGFP bicistronic reporter (**Fig. 1B**, top), which has previously been used for studying 3' UTR
134 translation (Arribere et al., 2016; Kramarski and Arbely, 2020). The 2A self-cleaving sequence allows
135 mCherry to be translated from the same mRNA molecule as the extended EGFP, allowing the EGFP/mCherry
136 ratio to be used to quantify the impact of noncanonical ORF translation on EGFP levels in single cells while
137 also normalizing for variations in transfection, transcription, and translation rates. As a control, we
138 generated a similar plasmid with a single nucleotide difference that creates a stop codon preventing
139 translation into the noncoding sequence (**Fig. 1B**, bottom). Using this reporter system in HEK293T cells, we
140 successfully replicated a previous study (Arribere et al., 2016) showing a substantial decrease in EGFP levels
141 caused by readthrough translation of the *HSP90B1* 3' UTR (**Fig. 1C**), with a 9.5-fold median decrease in
142 EGFP/mCherry ratio (**Fig. 1D**). We next generated reporters modeling the translation of intron 3 of the *ACTB*
143 gene caused by intronic polyadenylation, as well as translation of the last intron in the gene *GAPDH* caused
144 by intron retention (**Fig. 1C**). Both intron-containing transcripts lack a downstream intron and thus are
145 expected to escape NMD (Lindeboom et al., 2016). In both cases, we observed a large decrease of EGFP
146 relative to mCherry when the introns were translated (18.1 and 4.2-fold decrease of the EGFP/mCherry
147 ratio, respectively, **Fig. 1D**), suggesting that similar to readthrough translation in the 3' UTR, translation in
148 introns is also mitigated. Given that previous studies have suggested that degradation of readthrough
149 polypeptides occurs by either the proteasome (Dhamija et al., 2020; Shibata et al., 2015) or the lysosome
150 (Kramarski and Arbely, 2020), we treated cells expressing the *ACTB* intron reporter with either the
151 proteasome inhibitor lactacystin or the lysosome inhibitor chloroquine. While lysosome inhibition had a
152 very small effect, proteasome inhibition almost completely rescued the loss of EGFP caused by *ACTB* intron
153 translation (1.4-fold loss of EGFP/mCherry ratio relative to control) (**Fig. 1E**), suggesting that the *ACTB*
154 intron-coded peptide is primarily degraded by the proteasome.

155 To systematically investigate noncanonical ORF translation in diverse sequences, we generated a library of
156 12,000 reporters with EGFP fused to a C-terminal peptide encoded by endogenous sequences (90-nt) from
157 thousands of randomly selected human 5' UTRs, 3' UTRs, introns, lncRNAs, as well as coding sequences
158 from both internal and terminal coding exons (Pep30 library, **Fig. 1F**. Sequences listed in **Table S2**). The
159 reporter library was used to generate a cell library using a low multiplicity-of-infection (MOI) lentiviral
160 integration such that each cell stably expressed a single reporter. Using flow cytometry analysis, we
161 observed a substantial loss of EGFP for almost all reporters, with no significant change in mCherry (**Fig. 1G**,
162 median 6.9-fold decrease of EGFP/mCherry). These results suggest that most noncanonical ORF translation
163 events cause a decrease in the accumulation of the protein without affecting mRNA abundance. A similar
164 effect was observed using another library (Pep13) in which EGFP was fused to ~500,000 random sequences
165 of 39 nt (encoding peptides up to 13 amino acids, **Fig. 1H**), suggesting that translation in “unevolved”
166 sequences is mitigated by default. Similar to our observation in translation of the *ACTB* intron (**Fig. 1E**), the
167 6.9-fold loss of EGFP in the Pep30 cell library was reduced to 2.3-fold after 24 hours of proteasome
168 inhibition (**Fig. 1I**, magenta line). The long half-life of mCherry (Shaner et al., 2004) likely contributed to the
169 incomplete rescue, as a substantial amount of mCherry but not the unstable EGFP fusion protein produced
170 prior to proteasome inhibition remains at the time of measurement. Similar results were observed with
171 MG132, another commonly used small molecule inhibitor of the proteasome (**Fig. S1A**), while no significant
172 change was observed with multiple autophagy/lysosome inhibitors (chloroquine in **Fig. 1I**, three other

173 inhibitors in **Fig. S1B**). These results demonstrate that noncanonical ORF translation products generated
174 from diverse contexts are primarily degraded by the proteasome in human cells.

175 **Degradation of noncanonical ORF translation products is primarily associated with C-terminal**
176 **hydrophobicity**

177 To further understand the characteristics of noncanonical ORF peptides that trigger degradation, Pep30
178 cells were sorted into distinct populations based on EGFP level and subsequently the noncanonical ORF
179 region was cloned and sequenced (**Fig. 2A**). Using the \log_2 ratio of the read count in the EGFP-low bin
180 compared to the EGFP-high bin as a measurement of protein degradation (**Fig. 2A**), we found that EGFP
181 loss is strongly correlated with the length of the tail peptide (peptides can be shorter than 30-aa due to in-
182 frame stop codons), with most peptides 15-aa or longer eliciting strong degradation (**Fig. 2B**). The strong
183 dependence on tail peptide length, and therefore stop codon recognition, indicates that the loss of EGFP
184 is largely due to translation of the noncoding sequence, ruling out a major contribution of translation-
185 independent mechanisms, such as RNA degradation or sequestration mediated by the noncoding sequence.

186 To understand the determinants of degradation beyond the length of the tail peptide, we next focused on
187 peptides of identical length (30-aa, $n = 4,726$). We found that translation in all classes of noncoding
188 sequences often led to protein degradation, with the strongest effect observed in introns, followed by 3'
189 UTRs, lncRNAs, and 5' UTRs (**Fig. 2C**). Interestingly, internal coding sequences, regardless of whether they
190 are fused to EGFP in-frame or out-of-frame, often resulted in degradation comparable to that of noncoding
191 sequences (**Fig. 2C, CDS-inframe and CDS-frameshift**), with frameshifted CDS being more destabilizing than
192 those preserving the reading frame. In contrast, endogenous C-terminal coding sequences, which are fused
193 to EGFP in-frame, comprise the only group that is more associated with protein stabilization than
194 degradation (**Fig. 2C, C-termini**). These results indicate that the signal that triggers proteasomal degradation
195 of diverse noncanonical ORF peptides is also present in annotated coding sequences (albeit weaker), but is
196 depleted from the C-terminal ends of annotated proteins. Our data thus underscore the importance of
197 protein C-termini in mediating protein degradation and suggest that functional proteins may have evolved
198 to avoid proteasomal degradation, while proteins carrying an “un-evolved” C-terminal tail are degraded by
199 default, as is the case with truncated proteins, products of noncanonical ORF translation, and random
200 sequences.

201 To uncover the exact nature of the degradation signal, we next examined the amino acid composition and
202 various physicochemical and structural properties of the tail peptides. Using the kpLogo tool we previously
203 developed for position-specific sequence analysis ([Wu and Bartel, 2017](#)), we performed a Student's *t*-test
204 for every amino acid at every position in the 30-aa tail to test if the presence of a given amino acid at a
205 particular position is associated with stronger degradation. Strikingly, we found that almost all hydrophobic
206 residues are associated with increased degradation at most positions in the 30-aa tail (**Fig. 2D**). The only
207 exception is alanine (A), which is the least hydrophobic of the nine hydrophobic residues, and is only
208 associated with degradation at the last two positions, consistent with its function as a C-terminal end
209 degron (C-degron) that is recognized by Cullin-RING E3ubiquitin ligases ([Koren et al., 2018](#); [Lin et al., 2018](#)).
210 We also confirmed two other C-degrons, arginine (R) at the 3rd to last position and glycine (G) at the last
211 position ([Koren et al., 2018](#); [Lin et al., 2018](#)) (**Fig. 2D**). However, a 30-variable regression model using A/G/R
212 residues in the last 10 positions is only weakly predictive of degradation (Spearman correlation coefficient,
213 $R_s = 0.22$). In contrast, the average hydrophobicity (Miyazawa scale ([Miyazawa and Jernigan, 1985](#))) of
214 residues in the 30-aa peptide has a much stronger correlation with degradation ($R_s = 0.67$, **Fig. 2E**). Similar
215 results with other hydrophobicity scales, **Fig. S2**).

216 Among all the physicochemical and structural properties examined, average hydrophobicity has the
217 strongest correlation with degradation (**Fig. 2F**). While several other properties, including transmembrane
218 potential, also showed a strong positive or negative correlation with degradation (**Fig. 2F** light bar), these

219 associations are largely due to their correlation with hydrophobicity, as when controlling for hydrophobicity
220 (i.e., partial correlation), most of these associations became much weaker (**Fig. 2F** dark bar), but not vice
221 versa. One striking example is the tendency to be disordered (intrinsic disorder): while sometimes
222 perceived as a trigger for protein degradation, protein disorder is negatively correlated with degradation
223 ($R_s = -0.65$). However, the correlation was largely gone when controlling for hydrophobicity ($R_s = -0.08$). This
224 is due to a strong negative correlation between protein disorder and hydrophobicity ($R_s = -0.93$), as has
225 been documented ([Dyson and Wright, 2005](#)). Similarly, peptides predicted to fold into either α -helices or
226 β -sheets are strongly degraded, whereas peptides predicted to be unstructured (coil/loop) are more stable.
227 These results highlight the dominant role of C-terminal hydrophobicity, and not C-degron or protein
228 disorder, in triggering proteasomal degradation of noncanonical ORF translation products in human cells.

229 **Depletion of C-terminal hydrophobicity in annotated proteins**

230 To determine if C-terminal hydrophobicity underlies the aforementioned differential stability between
231 canonical protein C-termini and all other sequences, including internal protein sequences and peptides
232 derived from noncoding sequences (**Fig. 2C**), we performed genome-wide *in silico* analysis of C-terminal
233 hydrophobicity in both the canonical proteome and the predicted noncoding proteome. Specifically, we
234 calculated the average hydrophobicity for each of the last 100 residues coded by both the annotated coding
235 sequences (CDS, $n = 40,324$ unique amino acid sequences, ≥ 200 -aa) and predicted peptides (≥ 30 aa)
236 from various noncoding sequences, including in-frame ORFs extended into introns ($n=200,284$) and 3' UTRs
237 ($n = 14,057$) as well as the longest ORFs in 5' UTRs ($n = 11,790$) and lncRNAs ($n = 29,788$). Indeed, we found
238 that hydrophobic residues are progressively depleted towards the C-terminal end of canonical proteins
239 (CDS), especially the last 30 aa, whereas the opposite trend is present for all noncanonical peptides (**Fig.**
240 **3A**). Notably, the very C-termini of peptides from introns, 3' UTRs, and lncRNAs have a hydrophobicity
241 approaching that of entirely random amino acid sequences, suggesting that by default, unevolved
242 nonfunctional proteins will have a relatively high average hydrophobicity, and are subjected to proteasomal
243 degradation. The difference in hydrophobicity disappears further away from the very C-termini (50-100aa
244 upstream) of proteins. Given that only longer ORFs (> 50 -aa) were used in calculating the average
245 hydrophobicity in the upstream region, these results suggest that longer noncanonical ORF peptides are
246 either also under selection to deplete hydrophobicity and thus may be functional, or they are in fact
247 alternative or mis-annotated isoforms of functional proteins. Similar results were obtained with a different
248 hydrophobicity scale (**Fig. S3**).

249 Further supporting the evolutionary selection against protein C-tail hydrophobicity, we found that in both
250 human and mouse, evolutionarily young protein-coding genes tend to have higher hydrophobicity at the
251 C-terminal tail (last 30aa) than evolutionarily older genes (**Fig. 3B**). For example, human-specific genes - the
252 youngest human genes originated after the human-chimpanzee divergence 4 to 6 million years ago ([Zhang
253 et al., 2010](#)) - have the highest C-terminal hydrophobicity as a group than that of older genes in the human
254 genome. A strong negative correlation ($R_s = -0.97, p < 10^{-15}$) is observed between estimated gene age and
255 average protein C-tail hydrophobicity in the mouse genome, supporting the idea that as genes evolve, they
256 progressively lose hydrophobic residues in the C-terminal tail, potentially resulting in longer protein half-
257 lives. A similar albeit weaker trend is observed in the human genome, especially for genes originating within
258 the last 100 million years (**Fig. 3B**).

259 **Nucleotide bias in both the genetic code and the genome drives hydrophobicity in noncanonical peptides**

260 To further understand the propensity of noncoding sequence to code for hydrophobic amino acids, we first
261 used kpLogo to test if hydrophobic residues are associated with nucleotide bias in the genetic code, as has
262 been suggested previously ([Prilusky and Bibi, 2009](#); [Wolfenden et al., 1979](#)). We confirmed that codons
263 coding for hydrophobic residues are more likely to have Uracil (U) at all three positions, and especially at

264 the center position of the codon (**Fig. 3C**). Indeed, all 16 codons with U at the center code for highly
265 hydrophobic amino acids (**Fig. 3D**). The strong frame-specific association of U content with hydrophobicity
266 in the genetic code potentially contributes to the decreased stability of frameshifted coding sequences (**Fig.**
267 **2C**). Because canonical coding sequences have evolved to be GC-rich / AT-poor (47.0% AT) relative to the
268 AT-rich genome background (54.6% AT), sequences outside of functional coding regions are thus T/U-rich
269 and will tend to code for more hydrophobic residues. Indeed, we found a strong agreement between U-
270 content and C-tail hydrophobicity across different regions (comparing **Fig. 3A** and **Fig. 3E**). For example,
271 introns have the highest U-content (31.0%) and also have the highest C-tail hydrophobicity, whereas 5'
272 UTRs have a U-content comparable to coding regions and are also associated with moderate
273 hydrophobicity. The high GC-content in 5' UTRs is largely due to the presence of CpG islands in most human
274 gene promoters ([Vavouri and Lehner, 2012](#)).

275 Taken together, our massively parallel reporter assays and integrative genomic analysis support a unified
276 model for the mitigation of translation in diverse noncoding sequences: noncoding sequences tend to have
277 high U-content and are therefore more likely to code for hydrophobic residues, resulting in a hydrophobic
278 C-tail that triggers proteasomal degradation. Functional proteins, on the contrary, have evolved to deplete
279 hydrophobic residues near the C-termini.

280 **Proteasomal degradation, but not ribosome queueing, underlies AMD1 3' UTR readthrough translation 281 mitigation**

282 A major question that remains to be addressed is how C-terminal hydrophobicity is sensed and coupled to
283 proteasomal degradation, with one possibility being that the ribosome itself is the sensor. For example, C-
284 terminal hydrophobic tails can interact with hydrophobic residues in the ribosome exit tunnel and delay
285 the release of the nascent protein ([Bui and Hoang, 2021](#); [Mariappan et al., 2010](#)), which may induce
286 ribosome collisions and trigger ribosome-associated quality control (RQC), in which the nascent peptide is
287 degraded by the proteasome ([Brandman and Hegde, 2016](#); [Schuller and Green, 2018](#)). Independent of the
288 peptide, at the RNA level the noncoding sequences may also form strong RNA secondary structures or
289 enrich for rare/non-optimal codons that can stall ribosomes and trigger RQC to degrade the nascent
290 polypeptide.

291 Previously, formation of a ribosome queue induced by ribosome stalling was proposed to explain the
292 translation readthrough mitigation in the 3' UTR of the gene *AMD1* (adenosylmethionine decarboxylase 1)
293 ([Yordanova et al., 2018](#)). Stop codon readthrough occurs naturally in *AMD1* at a frequency of approximately
294 2%, and translation of the 3' UTR extends the original protein by 127 amino acids to the first in-frame stop
295 codon (hereinafter referred to as the *AMD1* tail). Intriguingly, a peak of ribosome footprints was observed
296 at the end of the *AMD1* tail ORF ([Yordanova et al., 2018](#)), suggesting ribosome pausing occurs *in vivo*. The
297 last 21 codons in the *AMD1* tail ORF (**Fig. 4A**) were found necessary to induce ribosome pausing in cell-free
298 assays ([Yordanova et al., 2018](#)). It was proposed that ribosome stalling at the end of the *AMD1* tail ORF
299 results in a queue of stalled ribosomes in the 3' UTR that extends into the main ORF, preventing further
300 downstream translation ([Yordanova et al., 2018](#)). However, no ribosome footprints indicative of a ribosome
301 queue in the *AMD1* 3' UTR can be observed ([Wangen and Green, 2020](#); [Yordanova et al., 2018](#)), raising
302 questions as to whether a ribosome queue forms *in vivo*, and if not, what the alternative mechanism is that
303 suppresses the accumulation of the readthrough translation product.

304 In our reporter system, readthrough translation of the *AMD1* tail led to a 19.4-fold decrease of
305 EGFP/mCherry (**Fig. 4A**), similar to what has been reported previously ([Yordanova et al., 2018](#)). Western
306 blot confirms the loss of EGFP protein, ruling out EGFP misfolding as the cause of reduced fluorescence in
307 flow cytometry assays (**Fig. S4A**). However, unlike the conclusion from the previous study, we found that
308 proteasome inhibition by MG132 almost completely rescued the decrease in EGFP/mCherry ratio (from
309 19.4-fold to 1.9-fold, **Fig. 4A**), similar to other reporters used in our study.

310 Further supporting the degron-like role of the AMD1 tail peptide in triggering protein degradation, we
311 found that EGFP can be almost completely stabilized by a P2A peptide that results in co-translational
312 cleavage of the AMD1 tail from EGFP (**Fig. 4B**), a rescue that cannot be explained by the ribosome queueing
313 model. In addition, there are multiple hydrophobic regions within the 127-aa AMD1 tail that may serve as
314 the degron (**Fig. 4A**). While no rescue was observed when deleting individual hydrophobic regions (**Fig. S4B-C**),
315 substantial rescue was observed when the three most C-terminal hydrophobic regions were deleted
316 simultaneously while retaining most of the ribosome pausing signal (**Fig. 4C**). These results suggest that the
317 hydrophobic regions act redundantly to mediate degradation of the AMD1 tail.

318 Importantly, deleting the last 21-codon ribosome pausing sequence in the reporter failed to rescue the loss
319 of EGFP (**Fig. 4D**). To directly test whether the *AMD1*-tail ORF can act as a roadblock for ribosomes, we
320 adapted a tricistronic reporter system previously used to assess ribosome stalling by a poly(A) sequence
321 ([Juszkiewicz and Hegde, 2017](#)). Specifically, a poly(A) sequence (A₆₃) inserted between mCherry and EGFP
322 (separated by T2A and P2A) caused a 136-fold decrease of EGFP relative to mCherry that cannot be rescued
323 with proteasome inhibition (**Fig. 4E**), consistent with the model that ribosomes stall in the poly(A) region
324 and fail to translate the downstream EGFP. In contrast, replacing A₆₃ with the *AMD1*-tail ORF caused only a
325 ~2-fold decrease of EGFP (**Fig. 4F**), suggesting that unlike A₆₃, most ribosomes experience no difficulty
326 translating through the *AMD1*-tail ORF. The 2-fold effect persists after deleting the 21-codon ribosome
327 pausing signal (**Fig. 4G**), suggesting this effect is attributable to factors other than ribosome stalling, such
328 as incomplete cleavage by T2A and/or ribosome fall-off after the T2A sequence ([Liu et al., 2017](#)). Our results
329 thus argue against the formation of a ribosome queue caused by stable ribosome stalling at the *AMD1*-tail
330 ORF in cells.

331 Taken together, our results strongly suggest that like other noncanonical ORF translation events we have
332 tested, the loss of protein output from *AMD1* 3' UTR readthrough translation is mainly caused by C-terminal
333 hydrophobicity-mediated proteasomal degradation, rather than ribosome queueing-mediated inhibition of
334 translation elongation.

335 **The BAG6 pathway mediates proteasomal degradation of noncanonical ORF translation products**

336 To unravel the molecular pathway that captures noncanonical ORF peptides for proteasomal degradation,
337 we performed a genome-wide CRISPR knock out (KO) screen using the *AMD1* 3' UTR readthrough reporter
338 (**Fig. 5A**). Specifically, a stable cell line was generated by lentiviral integration of the *AMD1* 3' UTR
339 readthrough reporter into HEK293T cells, which were then transduced with a genome-wide CRISPR/Cas9
340 library ([Wang et al., 2014](#)) to systematically knock out each of the 18,166 human protein-coding genes in
341 individual cells. Cells were then sorted into high (top ~18%) and low (bottom ~18%) EGFP/mCherry ratio
342 populations, and the guide RNAs in each group were sequenced as barcodes of the gene knockout. The
343 unbiased screen unambiguously supported the role of the proteasome: of the genes whose knockout
344 resulted in a rescue (higher EGFP/mCherry ratio), most (17/20) of the top hits (FDR < 0.01) are components
345 of either the 20S core particle or 19S regulatory particle of the 26S proteasome in the ubiquitin-dependent
346 protein degradation pathway (**Fig. 5B**, red). In contrast, none of the genes known to be involved in resolving
347 ribosome stalling, such as the RQC factor *NEMF* and *LTN1*, has any impact on the EGFP/mCherry ratio (**Fig.**
348 **5B**, green), again arguing against a role of ribosome stalling and queueing in the mitigation of *AMD1* 3' UTR
349 translation. Similarly, knockout of lysosomal genes has no effect on the EGFP/mCherry ratio.

350 Interestingly, the remaining 3 top hits with FDR < 0.01, *BAG6(BAT3)*, *TRC35(GET4)*, and *RNF126*, are all key
351 components of the highly conserved BAG6 pathway for membrane protein triage in the cytosol (**Fig. 5C**).
352 The BAG6 pathway is embedded as a quality control module in the Transmembrane domain Recognition
353 Complex (TRC) pathway, also called Guided Entry of Tail-anchored proteins (GET) pathway, for the triage
354 of tail-anchored (TA) proteins. Similar to noncanonical ORF translation products, TA proteins have a
355 hydrophobic C-terminal tail that functions as a transmembrane domain (TMD), while also serving as the

356 membrane targeting signal. Unlike most membrane proteins with an N-terminal signal peptide mediating
357 co-translational targeting to membranes, TA proteins can only be targeted post-translationally, after the C-
358 terminal targeting signal has emerged from the ribosome exit tunnel. Immediately after being released
359 from the ribosome, TA proteins are captured by the ribosome-associated co-chaperone SGTA, which binds
360 and shields the hydrophobic TMD in nascent TA proteins (Hessa et al., 2011; Leznicki et al., 2010; Leznicki
361 and High, 2020; Mariappan et al., 2010; Shao et al., 2017; Wunderley et al., 2014). SGTA then delivers the
362 substrate to the BAG6-UGL4A-TRC35 heterotrimeric complex by binding to UBL4A (Mock et al., 2015; Xu
363 et al., 2012). Authentic TA proteins will be transferred directly from SGTA to TRC40, which is associated
364 with the trimeric complex via TRC35, and are then committed to membrane targeting. Defective TA
365 proteins, however, will be released from SGTA and re-captured by BAG6, which recruits the E3 ubiquitin
366 ligase RNF126 that catalyzes the ubiquitination of the substrate, committing it to proteasomal degradation
367 (Hu et al., 2020; Rodrigo-Brenni et al., 2014). The BAG6 pathway also mediates the degradation of
368 misfolded ER proteins extracted to the cytosol by p97/VCP in the ER-associated degradation (ERAD)
369 pathway (Xu et al., 2012).

370 Three features of the BAG6 pathway make it especially appealing for the surveillance of noncanonical ORF
371 translation products. First, the pathway recognizes C-terminal hydrophobic tails, a defining feature of
372 noncanonical ORF translation products that is also associated with their degradation (Fig. 2). Second,
373 multiple components of this pathway, including BAG6, TRC35, and SGTA have all been shown to be
374 physically associated with the ribosome (Hessa et al., 2011; Leznicki and High, 2020; Mariappan et al., 2010;
375 Zhang et al., 2016), positioning the complex for rapid surveillance of noncanonical ORF translation products
376 before they are released to the cytoplasm. Consistent with this, it has also been reported that BAG6 is
377 associated with polyubiquitinated nascent polypeptides and targets them for proteasomal degradation
378 (Minami et al., 2010), although the identities of these nascent polypeptides remain unknown. Lastly, the
379 BAG6 complex functions at the intersection of membrane targeting and proteasomal degradation,
380 potentially explaining why most evolutionary young proteins derived from noncoding sequences are
381 preferentially localized to membranes (Table S1).

382 To validate the role of the BAG6 pathway in mediating the degradation of noncanonical ORF translation
383 products, we used CRISPR/Cas9 to generate clonal knockout (KO) HEK293T cell lines for the 3 screen hits
384 *BAG6*, *TRC35*, and *RNF126*, as well as for *SGTA* and *UBL4A*, although the latter two were missed by the
385 CRISPR screen. We confirmed the presence of frameshifting mutations in both alleles by using Sanger
386 sequencing (Fig. S5A) and the absence of the corresponding proteins with Western blots (Fig. 5D). While
387 these KO cells are viable, they grow significantly slower than wild type cells in a co-culture assay (Fig. S5B).
388 When we transfected the *AMD1* 3' UTR translation reporter in these KO cells we observed substantial
389 rescue in all knockout cell lines with the strongest rescue in *RNF126* KO cells, followed by *BAG6*, *TRC35*,
390 *SGTA*, and *UBL4A* KO cells (Fig. 5E). The partial rescue in *SGTA* and *UBL4A* KO cells suggests that *SGTA* and
391 *UBL4A* were likely false negatives in the CRISPR screen, possibly due to low guide RNA efficiencies.
392 Nonetheless, the stronger rescue in *BAG6*/*TRC35*/*RNF126* compared to *SGTA*/*UBL4A* is consistent with the
393 results from the genome-wide CRISPR screen and suggests that noncanonical ORF translation products may
394 be directly captured by BAG6 without first being captured by SGTA/UBL4A, as in the case of TA protein
395 triage (Shao et al., 2017).

396 To systematically test the role of BAG6 in mediating the proteasomal degradation of diverse noncanonical
397 ORF translation products beyond the *AMD1* tail, we repeated the Pep30 high-throughput reporter assay in
398 both wild-type and *BAG6* KO cells (Fig. 5F). Following cell sorting and sequencing, we calculated the
399 degradation effect of each tail sequence as the fraction of cells in the low EGFP/mCherry ratio bin, and
400 found that the majority of highly destabilizing noncoding sequences are stabilized in the *BAG6* KO cells (Fig.

401 5G). Importantly, noncanonical ORF translation products stabilized by *BAG6* KO have significantly higher
402 hydrophobicity than the non-stabilized noncoding sequences (Fig. 5H).

403 Taken together, our genome-wide screen and systematic follow-up validations uncovered an unexpected
404 role of the *BAG6* membrane protein triage pathway in mediating proteasomal degradation of diverse
405 noncanonical ORF translation products.

406 **BAG6 captures C-terminal hydrophobic tails of noncanonical ORF translation products for degradation**

407 In the TRC/GET pathway, *BAG6* captures substrates by directly binding to their C-terminal hydrophobic
408 transmembrane domains (Hessa et al., 2011; Leznicki et al., 2010; Mariappan et al., 2010). To test if *BAG6*
409 also binds the C-terminal hydrophobic region in noncanonical ORF translation products, we performed co-
410 immunoprecipitation (co-IP) experiments between *BAG6* and EGFP-AMD1tail with and without the
411 hydrophobic regions required for full mitigation in the AMD1tail reporter (Fig. 4C). We found that while
412 deletion of the hydrophobic region drastically increases the abundance of the EGFP-AMD1 fusion protein
413 (Fig. 6A), the fusion protein is associated with significantly less *BAG6* protein (Fig. 6B). This biochemical
414 evidence supports the model that *BAG6* captures noncanonical ORF translation products by directly binding
415 to their C-terminal hydrophobic regions, complementing our genetic data that removing either the
416 hydrophobic regions (Fig. 4C) or *BAG6* (Fig. 5E) rescues AMD1 readthrough translation.

417 **BAG6 mitigates endogenous noncanonical ORF translation of the tumor suppressor gene SMAD4**

418 To validate the role of the *BAG6* pathway in the surveillance of noncanonical ORF translation in endogenous
419 mRNAs in addition to exogenously expressed reporters, we next focused on the tumor suppressor gene
420 *SMAD4*. Multiple mutations identified from the COSMIC cancer mutation database disrupt the stop codon
421 and result in translation into the 3' UTR of *SMAD4* (Dhamija et al., 2020). Consistent with our model, the
422 *SMAD4* 3' UTR encodes a short hydrophobic sequence which leads to proteasomal degradation of the
423 *SMAD4* readthrough product (Dhamija et al., 2020). Utilizing our dual color reporter system with a flow
424 cytometry readout (Fig. 1), we confirmed that fusing *SMAD4* 3' UTR encoded peptide to EGFP resulted in
425 substantial (20.5-fold) loss of EGFP fluorescence, which was partially rescued in *BAG6* KO cells (Fig. S6).

426 Using a previously generated HEK293T cell line carrying a homozygous *SMAD4* readthrough mutation
427 T1657C (Dhamija et al., 2020), we confirmed that the endogenous *SMAD4* readthrough protein is almost
428 completely degraded (Fig. 6C, lane 4). We then derived a clonal *BAG6* KO cell line from the *SMAD4* T1657C
429 readthrough cell line and found that the endogenous *SMAD4* readthrough protein can be partially stabilized
430 by *BAG6* knockout (Fig. 6C, lane 5). Inhibiting the proteasome with Bortezomib similarly stabilizes *SMAD4*
431 readthrough protein (Fig. 6D). Immunoprecipitation of endogenous *SMAD4* also pulled down *BAG6* in
432 readthrough cells, but not in *SMAD4* wild-type cells, despite the wild-type protein being much more
433 abundant (Fig. 6E). Taken together, these results show that in addition to exogenously expressed reporters,
434 *BAG6* also mediates the degradation of endogenous readthrough proteins, such as *SMAD4* readthrough via
435 binding to the 3' UTR coded C-terminal tail.

436 **DISCUSSION**

437 We have combined massively parallel reporter assays, genome-wide CRISPR screens, integrative genomic
438 analysis, as well as in-depth genetic and biochemical dissections to uncover the unifying principle
439 underlying the surveillance of widespread translation in diverse noncoding sequences in human cells. Our
440 results reveal insights into how cells address a fundamental challenge: synthesize a healthy proteome in
441 the presence of a highly complex transcriptome, in which most of the sequences are noncoding and are
442 not meant to be translated into proteins. Our results also suggest a potential biochemical pathway for
443 balancing protein quality control in cells and the innovation of new proteins, especially membrane proteins
444 during evolution.

445 **A unified model for the surveillance of translation in diverse noncoding sequences**

446 The noncoding sequences that can be translated are heterogeneous at three levels: they are located
447 differently relative to annotated coding regions (i.e., lncRNAs, 5' UTRs, 3' UTRs, and introns of mRNAs); they
448 are translated when different quality control mechanisms fail (e.g., mis-splicing, mis-polyadenylation, and
449 stop codon readthrough), and they are very diverse in terms of their primary nucleotide sequence and
450 therefore codon usage and RNA structures. It has thus far been unclear whether a common mechanism is
451 used for the surveillance of unintended translation in such heterogeneous sequences. Our data suggests
452 that, despite these differences, there are at least two common features shared by various noncoding
453 sequences, i.e., compositional bias and positional bias, that together distinguish peptides translated from
454 noncoding sequences to that of functional proteins. Specifically, noncoding sequences tend to have a
455 higher U-content than typically GC-rich coding sequences (Fig. 3E), and that when noncoding sequences
456 are translated, they tend to code for the C-terminal part of the resulting polypeptides (Fig. 1A). Given the
457 biased association between U-rich codons and hydrophobic amino acids in the genetic code (Fig. 3C), the
458 compositional bias and positional bias tends to result in a polypeptide with higher hydrophobicity at the C-
459 terminal tail. Because a C-terminal hydrophobic tail is a defining feature of tail-anchored (TA)
460 transmembrane proteins that are sorted by the ribosome-associated BAG6 complex, noncoding sequence-
461 derived polypeptides are readily captured by the BAG6 complex via direct binding to the hydrophobic tail.
462 Most noncoding sequence-derived peptides do not code for authentic transmembrane domains and thus
463 are likely treated as defective TA proteins, ubiquitinated by RNF126, and committed for proteasomal
464 degradation. Functional proteins, especially highly conserved non-TA proteins, have evolved to deplete C-
465 terminal hydrophobicity, allowing them to escape being targeted for degradation.

466 While it is not entirely unexpected that nonfunctional polypeptides derived from noncoding sequences are
467 degraded by the proteasome, our systematic study of thousands of human noncoding sequences
468 establishes proteasomal degradation, rather than lysosomal aggregation (Kramarski and Arbely, 2020) or
469 ribosome stalling (Yordanova et al., 2018), as the predominant mechanism for the surveillance of
470 translation in diverse noncoding sequences. Furthermore, we provide mechanistic details of how these
471 substrates are sensed and targeted for proteasomal degradation. While the association between
472 hydrophobicity and protein degradation has been reported before (Koren et al., 2018), it is often
473 understood as a consequence of protein misfolding that exposes the hydrophobic core of proteins. Here
474 our results highlight the unique role of C-terminal hydrophobicity in triggering proteasomal degradation.
475 Additionally, we delineate the molecular pathway, namely, the BAG6 pathway, for sensing and capturing
476 the substrates for degradation.

477 The “degradation-by-default” mechanism uncovered here, i.e. most proteins are expected to be degraded
478 unless they evolve to lose a C-terminal hydrophobic tail, shares certain similarities with mechanisms limiting
479 pervasive transcription in the noncoding genome (Almada et al., 2013; Jensen et al., 2013; Wu and Sharp,
480 2013). Our previous work (Almada et al., 2013; Wu and Sharp, 2013) has shown that pervasive transcription
481 is rapidly terminated by an abundance of poly(A) signals in the noncoding genome. Poly(A) signals are
482 specifically depleted on the coding strand of genes, allowing productive transcription within genes while
483 simultaneously preventing productive transcription outside of genes. These shared principles allow cells to
484 suppress all unwanted events without having to maintain selective pressure on most of the genome (i.e.,
485 noncoding sequences). Another similarity between the surveillance mechanisms of noncoding transcription
486 and noncanonical ORF translation is that both are fail-safe mechanisms, i.e., instead of preventing the
487 initiation of noncoding transcription/translation, both act at the end of the process when other surveillance
488 mechanisms have failed.

489 **The evolutionary impact of translation surveillance in noncoding sequences**

490 The unexpected discovery that polypeptides translated from noncoding sequences are fed into a
491 membrane protein biogenesis and triage pathway has important implications for understanding gene
492 evolution, including the evolution of new genes or new isoforms of existing genes, as well as the balance
493 between protein quality control at the cellular level and innovation of new proteins at the organism level
494 over evolutionary timescale.

495 The noncoding genome is a rich source of materials for the evolution of new protein-coding sequences.
496 Because in this case natural selection works on the protein, translation of the noncoding sequences is
497 required to expose the noncoding genome to natural selection. In this regard, low level but widespread
498 translation in noncoding sequences is beneficial for the evolution of new protein-coding sequences. Indeed,
499 systematic analysis in yeast has revealed hundreds of proto-genes (translated non-genic sequences) that
500 are potentially functional, as suggested by differential regulation upon stress and by signatures of retention
501 by natural selection (Carvunis et al., 2012; Vakirlis et al., 2020). Similarly in human cells, widespread
502 translation in annotated lncRNAs and UTRs can generate functional peptides, and hundreds of them appear
503 to be required for optimal growth of a human iPS cell line (Chen et al., 2020).

504 While many peptides derived from noncoding sequences may be functional, most of them are likely non-
505 functional or toxic to the cell, and therefore need to be degraded. How cells balance the need to remove
506 nonfunctional proteins and the need to evolve new functional proteins has not been well understood. Our
507 results here show that the BAG6 complex may play an important role in balancing these processes.
508 Specifically, both functional (TA proteins) and nonfunctional proteins (e.g., derived from noncoding
509 sequences) are fed into the BAG6 complex for sorting, and are then either targeted for membrane insertion
510 or for proteasomal degradation. What determines whether a substrate will be targeted to membranes or
511 to the proteasome remains elusive, although the affinity for SGTA appears to be an important factor (Shao
512 et al., 2017). Systematic comparison between TA proteins and noncanonical ORF translation products may
513 uncover differences in their sequence and structure that dictate their fate. One possible feature affecting
514 this decision is the length of the C-terminal hydrophobic tails (Sun and Mariappan, 2020).

515 The role of BAG6 in sorting membrane proteins may also provide a biochemical pathway for the preferential
516 membrane localization of newly evolved proteins, as has been predicted for many proto-gene encoded
517 peptides in yeast (Carvunis et al., 2012; Vakirlis et al., 2020), and our curation of experimentally verified
518 functional micropeptides derived from annotated lncRNAs in human (Table S1). While it has been noted
519 before in yeast that noncoding sequence-derived peptides, especially those from thymine-rich regions, are
520 more hydrophobic and thus more likely to form transmembrane regions (Carvunis et al., 2012; Vakirlis et
521 al., 2020), it remains unclear whether such a trend is also found in higher eukaryotes and biochemically
522 how these newly evolved proteins are targeted to membranes. For example, many membrane proteins are
523 targeted co-translationally, requiring an N-terminal signal peptide, which may be missing from most
524 noncanonical ORF peptides. This is especially true for translation in introns and 3' UTRs, in which the N-
525 terminal part of the resulting peptide is derived from canonical proteins, most of which do not carry a signal
526 peptide. Our results suggest that in addition to lncRNA-derived peptides, peptides translated from
527 alternatively processed mRNAs (e.g., via intron retention/polyadenylation) may also occasionally evolve
528 into membrane proteins, allowing functions carried out by the N-terminal part of a protein to become
529 specialized in membranes.

530 **Limitations of the study**

531 While BAG6/TRC35/RNF126 and the 17 proteasomal component genes are the only significant hits (FDR <
532 0.01) whose knockout stabilizes the *AMD1* readthrough translation product, we cannot rule out that other
533 pathways are also involved in the degradation of the *AMD1* 3' UTR encoded peptide and other noncanonical

534 ORF translation products. Such alternative pathways may compensate for the deficiency of
535 BAG6/TRC35/RNF126 (and SGTA/UBL4A), explaining the partial rescue in the KO cells. For example, our
536 genome-wide CRISPR screen identified three other proteins with FDR < 0.1: FASN (FDR=0.02), EMR3
537 (FDR=0.07), and VCP/p97 (FDR=0.09) (Fig. 4). Among them, VCP is an unfoldase with a well-established role
538 in protein quality control, including in BAG6-mediated degradation (Ganji et al., 2018; Wang et al., 2011c).
539 Further studies will be needed to test whether VCP/p97 and other hits function in the same pathway as
540 BAG6 or independently to mitigate noncanonical ORF translation. Moreover, while this study focuses on
541 the surveillance mechanism and the evolutionary impact of translation in noncoding sequences, the
542 physiological regulation of BAG6 and widespread noncanonical ORF translation remains to be understood.
543 Future studies will address to what extent noncanonical ORF translation and BAG6 deregulation contributes
544 to the progression of cancer, aging, and neurological disorders.

545

546 DATA AVAILABILITY

547 Illumina sequencing data were deposited in Gene Expression Omnibus (GEO) with the accession number
548 ***.

549

550 CODE AVAILABILITY

551 Scripts for data analysis are available upon request.

552

553 ACKNOWLEDGEMENTS

554 We thank David Bartel for supporting some of the early work on this project. We thank Natura Myku,
555 Peter Sims, Chaolin Zhang for discussion. We thank Sven Diederichs for sharing the SMAD4 HEK293T cells.
556 We also thank members of the Wu laboratory for critical reading of the manuscript. X.W. is supported by
557 NIH Director's New Innovator Award (1DP2GM140977), Pershing Square Sohn Prize for Cancer Research,
558 Pew-Stewart Scholar for Cancer Research Award, and the Impetus Longevity Grants. This research was
559 funded in part through the NIH/NCI Cancer Center Support Grant P30CA013696 and used the Genomics
560 and High Throughput Screening Shared Resource and CCTI Flow Cytometry Core. The CCTI Flow Cytometry
561 Core is supported in part by the Office of the Director, National Institutes of Health under awards
562 S10RR027050 and S10OD020056. The content is solely the responsibility of the authors and does not
563 necessarily represent the official views of the National Institutes of Health.

564

565 AUTHOR CONTRIBUTIONS

566 J.S.K., Z.C., and X.W. conceived the project. J.S.K. and Z.C. performed all experiments and data analysis with
567 assistance from A.O.A. J.S.K. and X.W. drafted the manuscript with input from all authors.

568

569 CONFLICT OF INTEREST

570 None.

571

572 REFERENCES

573 Adusumalli, S., Ngian, Z.K., Lin, W.Q., Benoukraf, T., and Ong, C.T. (2019). Increased intron retention is a
574 post-transcriptional signature associated with progressive aging and Alzheimer's disease. *Aging Cell* 18,
575 e12928.

576

577 Almada, A.E., Wu, X.B., Kriz, A.J., Burge, C.B., and Sharp, P.A. (2013). Promoter directionality is controlled
578 by U1 snRNP and polyadenylation signals. *Nature* 499, 360-U141.

579

580 Anderson, D.M., Anderson, K.M., Chang, C.L., Makarewich, C.A., Nelson, B.R., McAnally, J.R., Kasaragod,
581 P., Shelton, J.M., Liou, J., Bassel-Duby, R., *et al.* (2015). A micropeptide encoded by a putative long
582 noncoding RNA regulates muscle performance. *Cell* 160, 595-606.

583

584 Arribere, J.A., Cenik, E.S., Jain, N., Hess, G.T., Lee, C.H., Bassik, M.C., and Fire, A.Z. (2016). Translation
585 readthrough mitigation. *Nature* 534, 719--723.

586

587 Bai, B., Hales, C.M., Chen, P.C., Gozal, Y., Dammer, E.B., Fritz, J.J., Wang, X., Xia, Q., Duong, D.M., Street,
588 C., *et al.* (2013). U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's
589 disease. *Proc Natl Acad Sci U S A* 110, 16562-16567.

590

591 Brandman, O., and Hegde, R.S. (2016). Ribosome-associated protein quality control. *Nat Struct Mol Biol*
592 23, 7-15.

593

594 Bui, P.T., and Hoang, T.X. (2021). Hydrophobic and electrostatic interactions modulate protein escape at
595 the ribosomal exit tunnel. *Biophys J* 120, 4798-4808.

596

597 Carvunis, A.R., Rolland, T., Wapinski, I., Calderwood, M.A., Yildirim, M.A., Simonis, N., Charlotteaux, B.,
598 Hidalgo, C.A., Barbette, J., Santhanam, B., *et al.* (2012). Proto-genes and de novo gene birth. *Nature* 487,
599 370-374.

600

601 Chen, J., Brunner, A.D., Cogan, J.Z., Nunez, J.K., Fields, A.P., Adamson, B., Itzhak, D.N., Li, J.Y., Mann, M.,
602 Leonetti, M.D., *et al.* (2020). Pervasive functional translation of noncanonical human open reading
603 frames. *Science* 367, 1140-1146.

604

605 Derti, A., Garrett-Engele, P., Macisaac, K.D., Stevens, R.C., Sriram, S., Chen, R., Rohl, C.A., Johnson, J.M.,
606 and Babak, T. (2012). A quantitative atlas of polyadenylation in five mammals. *Genome research* 22,
607 1173--1183.

608

609 Dhamija, S., Yang, C.M., Seiler, J., Myacheva, K., Caudron-Herger, M., Wieland, A., Abdelkarim, M.,
610 Sharma, Y., Riester, M., Gross, M., *et al.* (2020). A pan-cancer analysis reveals nonstop extension
611 mutations causing SMAD4 tumour suppressor degradation. *Nat Cell Biol* 22, 999-1010.

612

613 Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W.,
614 Schlesinger, F., *et al.* (2012). Landscape of transcription in human cells. *Nature* 489, 101-108.

615

616 Dong, C., Cesarano, A., Bombaci, G., Reiter, J.L., Yu, C.Y., Wang, Y., Jiang, Z., Zaid, M.A., Huang, K., Lu, X., *et*
617 *al.* (2021). Intron retention-induced neoantigen load correlates with unfavorable prognosis in multiple
618 myeloma. *Oncogene* 40, 6130-6138.

619
620 Dvinge, H., and Bradley, R.K. (2015). Widespread intron retention diversifies most cancer transcriptomes.
621 Genome Med 7, 45.
622
623 Dyson, H.J., and Wright, P.E. (2005). Intrinsically unstructured proteins and their functions. Nat Rev Mol
624 Cell Biol 6, 197-208.
625
626 Ganji, R., Mukkavalli, S., Somanji, F., and Raman, M. (2018). The VCP-UBXN1 Complex Mediates Triage of
627 Ubiquitylated Cytosolic Proteins Bound to the BAG6 Complex. Mol Cell Biol 38.
628
629 Gardner, L.B. (2008). Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and
630 the integrated stress response. Mol Cell Biol 28, 3729-3741.
631
632 Hashimoto, S., Nobuta, R., Izawa, T., and Inada, T. (2019). Translation arrest as a protein quality control
633 system for aberrant translation of the 3'-UTR in mammalian cells. FEBS Lett 593, 777-787.
634
635 Hessa, T., Sharma, A., Mariappan, M., Eshleman, H.D., Gutierrez, E., and Hegde, R.S. (2011). Protein
636 targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475, 394-397.
637
638 Hezroni, H., Koppstein, D., Schwartz, M.G., Avrutin, A., Bartel, D.P., and Ulitsky, I. (2015). Principles of long
639 noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep 11,
640 1110-1122.
641
642 Hsieh, Y.C., Guo, C., Yalamanchili, H.K., Abreha, M., Al-Ouran, R., Li, Y., Dammer, E.B., Lah, J.J., Levey, A.I.,
643 Bennett, D.A., *et al.* (2019). Tau-Mediated Disruption of the Spliceosome Triggers Cryptic RNA Splicing
644 and Neurodegeneration in Alzheimer's Disease. Cell Rep 29, 301-316 e310.
645
646 Hsu, T.Y., Simon, L.M., Neill, N.J., Marcotte, R., Sayad, A., Bland, C.S., Echeverria, G.V., Sun, T., Kurley, S.J.,
647 Tyagi, S., *et al.* (2015). The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525,
648 384-388.
649
650 Hu, X., Wang, L., Wang, Y., Ji, J., Li, J., Wang, Z., Li, C., Zhang, Y., and Zhang, Z.R. (2020). RNF126-Mediated
651 Reubiquitination Is Required for Proteasomal Degradation of p97-Extracted Membrane Proteins. Mol Cell
652 79, 320-331 e329.
653
654 Ingolia, Nicholas T., Brar, Gloria A., Stern-Ginossar, N., Harris, Michael S., Talhouarne, Galle J.S., Jackson,
655 Sarah E., Wills, Mark R., and Weissman, Jonathan S. (2014). Ribosome Profiling Reveals Pervasive
656 Translation Outside of Annotated Protein-Coding Genes. Cell Reports 8, 1365--1379.
657
658 Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., and Weissman, J.S. (2009). Genome-wide analysis in vivo
659 of translation with nucleotide resolution using ribosome profiling. Science 324, 218-223.
660
661 Jensen, T.H., Jacquier, A., and Libri, D. (2013). Dealing with pervasive transcription. Molecular cell 52, 473-
662 -484.
663
664 Ji, Z., Song, R., Regev, A., and Struhl, K. (2015). Many lncRNAs, 5'UTRs, and pseudogenes are translated
665 and some are likely to express functional proteins. Elife 4, e08890.
666

667 Juszkiewicz, S., and Hegde, R.S. (2017). Initiation of quality control during poly(A) translation requires site-
668 specific ribosome ubiquitination. *Mol Cell* 65, 743-750 e744.

669

670 Koren, I., Timms, R.T., Kula, T., Xu, Q., Li, M.Z., and Elledge, S.J. (2018). The Eukaryotic Proteome Is Shaped
671 by E3 Ubiquitin Ligases Targeting C-Terminal Degrons. *Cell* 173, 1622-1635 e1614.

672

673 Kramarski, L., and Arbely, E. (2020). Translational read-through promotes aggregation and shapes stop
674 codon identity. *Nucleic Acids Res* 48, 3747-3760.

675

676 Laumont, C.M., Vincent, K., Hesnard, L., Audemard, E., Bonneil, E., Laverdure, J.P., Gendron, P.,
677 Courcelles, M., Hardy, M.P., Cote, C., *et al.* (2018). Noncoding regions are the main source of targetable
678 tumor-specific antigens. *Sci Transl Med* 10.

679

680 Lee, S.H., Singh, I., Tisdale, S., Abdel-Wahab, O., Leslie, C.S., and Mayr, C. (2018). Widespread intronic
681 polyadenylation inactivates tumour suppressor genes in leukaemia. *Nature* 561, 127-131.

682

683 Leznicki, P., Clancy, A., Schwappach, B., and High, S. (2010). Bat3 promotes the membrane integration of
684 tail-anchored proteins. *J Cell Sci* 123, 2170-2178.

685

686 Leznicki, P., and High, S. (2020). SGTA associates with nascent membrane protein precursors. *EMBO Rep*
687 21, e48835.

688

689 Li, M., Shao, F., Qian, Q., Yu, W., Zhang, Z., Chen, B., Su, D., Guo, Y., Phan, A.V., Song, L.S., *et al.* (2021). A
690 putative long noncoding RNA-encoded micropeptide maintains cellular homeostasis in pancreatic beta
691 cells. *Mol Ther Nucleic Acids* 26, 307-320.

692

693 Lin, H.C., Yeh, C.W., Chen, Y.F., Lee, T.T., Hsieh, P.Y., Rusnac, D.V., Lin, S.Y., Elledge, S.J., Zheng, N., and
694 Yen, H.S. (2018). C-Terminal End-Directed Protein Elimination by CRL2 Ubiquitin Ligases. *Mol Cell* 70, 602-
695 613 e603.

696

697 Lindeboom, R.G., Supek, F., and Lehner, B. (2016). The rules and impact of nonsense-mediated mRNA
698 decay in human cancers. *Nat Genet* 48, 1112-1118.

699

700 Liu, Z., Chen, O., Wall, J.B.J., Zheng, M., Zhou, Y., Wang, L., Ruth Vaseghi, H., Qian, L., and Liu, J. (2017).
701 Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. *Sci Rep* 7, 2193.

702

703 Lykke-Andersen, S., and Jensen, T.H. (2015). Nonsense-mediated mRNA decay: an intricate machinery
704 that shapes transcriptomes. *Nature reviews Molecular cell biology*.

705

706 Mariappan, M., Li, X., Stefanovic, S., Sharma, A., Mateja, A., Keenan, R.J., and Hegde, R.S. (2010). A
707 ribosome-associating factor chaperones tail-anchored membrane proteins. *Nature* 466, 1120-1124.

708

709 Mariotti, M., Kerepesi, C., Oliveros, W., Mele, M., and Gladyshev, V.N. (2022). Deterioration of the human
710 transcriptome with age due to increasing intron retention and spurious splicing. *bioRxiv*,
711 2022.2003.2014.484341.

712

713 Mazin, P., Xiong, J., Liu, X., Yan, Z., Zhang, X., Li, M., He, L., Somel, M., Yuan, Y., Phoebe Chen, Y.P., *et al.*
714 (2013). Widespread splicing changes in human brain development and aging. *Mol Syst Biol* 9, 633.

715
716 Minami, R., Hayakawa, A., Kagawa, H., Yanagi, Y., Yokosawa, H., and Kawahara, H. (2010). BAG-6 is
717 essential for selective elimination of defective proteasomal substrates. *J Cell Biol* **190**, 637-650.
718
719 Miyazawa, S., and Jernigan, R.L. (1985). Estimation of effective interresidue contact energies from protein
720 crystal structures: quasi-chemical approximation. *Macromolecules* **18**, 534-552.
721
722 Mock, J.Y., Chartron, J.W., Zaslaver, M., Xu, Y., Ye, Y., and Clemons, W.M., Jr. (2015). Bag6 complex
723 contains a minimal tail-anchor-targeting module and a mock BAG domain. *Proc Natl Acad Sci U S A* **112**,
724 106-111.
725
726 Moffat, L., and Jones, D.T. (2021). Increasing the Accuracy of Single Sequence Prediction Methods Using a
727 Deep Semi-Supervised Learning Framework. *Bioinformatics*.
728
729 Nelson, B.R., Makarewich, C.A., Anderson, D.M., Winders, B.R., Troupes, C.D., Wu, F., Reese, A.L.,
730 McAnally, J.R., Chen, X., Kavalali, E.T., *et al.* (2016). A peptide encoded by a transcript annotated as long
731 noncoding RNA enhances SERCA activity in muscle. *Science* **351**, 271-275.
732
733 Ntini, E., Jrvelin, A.I., Bornholdt, J., Chen, Y., Boyd, M., Jrgensen, M., Andersson, R., Hoof, I., Schein, A.,
734 Andersen, P.R., *et al.* (2013). Polyadenylation site-induced decay of upstream transcripts enforces
735 promoter directionality. *Nature structural \& molecular biology* **20**, 923-928.
736
737 Osorio, D., Rondon-Villarreal, P., and Torres, R. (2015). Peptides: A package for data mining of
738 antimicrobial peptides. *The R Journal* **7**, 4-14.
739
740 Pan, Q., Shai, O., Lee, L.J., Frey, B.J., and Blencowe, B.J. (2008). Deep surveying of alternative splicing
741 complexity in the human transcriptome by high-throughput sequencing. *Nat Genet* **40**, 1413-1415.
742
743 Polycarpou-Schwarz, M., Gross, M., Mestdagh, P., Schott, J., Grund, S.E., Hildenbrand, C., Rom, J.,
744 Aulmann, S., Sinn, H.P., Vandesompele, J., *et al.* (2018). The cancer-associated microprotein CASIM01
745 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation.
746 *Oncogene* **37**, 4750-4768.
747
748 Popp, M.W., and Maquat, L.E. (2018). Nonsense-mediated mRNA Decay and Cancer. *Curr Opin Genet Dev*
749 **48**, 44-50.
750
751 Prilusky, J., and Bibi, E. (2009). Studying membrane proteins through the eyes of the genetic code
752 revealed a strong uracil bias in their coding mRNAs. *Proc Natl Acad Sci U S A* **106**, 6662-6666.
753
754 Rodrigo-Brenni, M.C., Gutierrez, E., and Hegde, R.S. (2014). Cytosolic quality control of mislocalized
755 proteins requires RNF126 recruitment to Bag6. *Mol Cell* **55**, 227-237.
756
757 Schuller, A.P., and Green, R. (2018). Roadblocks and resolutions in eukaryotic translation. *Nat Rev Mol Cell
758 Biol* **19**, 526-541.
759
760 Selinger, D.W., Cheung, K.J., Mei, R., Johansson, E.M., Richmond, C.S., Blattner, F.R., Lockhart, D.J., and
761 Church, G.M. (2000). RNA expression analysis using a 30 base pair resolution Escherichia coli genome
762 array. *Nat Biotechnol* **18**, 1262-1268.

763
764 Senís, E., Esgleas, M., Najas, S., Jiménez-Sábado, V., Bertani, C., Giménez-Alejandre, M., Escriche, A., Ruiz-
765 Orera, J., Hergueta-Redondo, M., Jiménez, M., *et al.* (2021). TUNAR lncRNA Encodes a Microprotein that
766 Regulates Neural Differentiation and Neurite Formation by Modulating Calcium Dynamics. *Frontiers in*
767 *Cell and Developmental Biology* 9.
768
769 Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E., and Tsien, R.Y. (2004).
770 Improved monomeric red, orange and yellow fluorescent proteins derived from *Discosoma* sp. red
771 fluorescent protein. *Nat Biotechnol* 22, 1567-1572.
772
773 Shao, S., Rodrigo-Brenni, M.C., Kivlen, M.H., and Hegde, R.S. (2017). Mechanistic basis for a molecular
774 triage reaction. *Science* 355, 298-302.
775
776 Shibata, N., Ohoka, N., Sugaki, Y., Onodera, C., Inoue, M., Sakuraba, Y., Takakura, D., Hashii, N., Kawasaki,
777 N., Gondo, Y., *et al.* (2015). Degradation of stop codon read-through mutant proteins via the ubiquitin-
778 proteasome system causes hereditary disorders. *J Biol Chem* 290, 28428-28437.
779
780 Smart, A.C., Margolis, C.A., Pimentel, H., He, M.X., Miao, D., Adeegbe, D., Fugmann, T., Wong, K.K., and
781 Van Allen, E.M. (2018). Intron retention is a source of neoepitopes in cancer. *Nat Biotechnol* 36, 1056-
782 1058.
783
784 Son, H.G., Seo, M., Ham, S., Hwang, W., Lee, D., An, S.W.A., Artan, M., Seo, K., Kaletsky, R., Arey, R.N., *et*
785 *al.* (2017). RNA surveillance via nonsense-mediated mRNA decay is crucial for longevity in *daf-2*/*insulin/IGF-1* mutant *C. elegans*. *Nature Communications* 8, 14749.
786
787 Sudmant, P.H., Lee, H., Dominguez, D., Heiman, M., and Burge, C.B. (2018). Widespread Accumulation of
788 Ribosome-Associated Isolated 3' UTRs in Neuronal Cell Populations of the Aging Brain. *Cell Rep* 25, 2447-
789 2456 e2444.
790
791 Sun, S., and Mariappan, M. (2020). C-terminal tail length guides insertion and assembly of membrane
792 proteins. *J Biol Chem* 295, 15498-15510.
793
794 Sun, Y., Eshov, A., Zhou, J., Isiktas, A.U., and Guo, J.U. (2020). C9orf72 arginine-rich dipeptide repeats
795 inhibit UPF1-mediated RNA decay via translational repression. *Nat Commun* 11, 3354.
796
797 Vakirlis, N., Acar, O., Hsu, B., Castilho Coelho, N., Van Oss, S.B., Wacholder, A., Medetgul-Ernar, K.,
798 Bowman, R.W., 2nd, Hines, C.P., Iannotta, J., *et al.* (2020). De novo emergence of adaptive membrane
799 proteins from thymine-rich genomic sequences. *Nat Commun* 11, 781.
800
801 Vavouri, T., and Lehner, B. (2012). Human genes with CpG island promoters have a distinct transcription-
802 associated chromatin organization. *Genome Biol* 13, R110.
803
804 Wang, D., Zavadil, J., Martin, L., Parisi, F., Friedman, E., Levy, D., Harding, H., Ron, D., and Gardner, L.B.
805 (2011a). Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes
806 tumorigenesis. *Mol Cell Biol* 31, 3670-3680.
807
808 Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., Schroth, G.P., and
809 Burge, C.B. (2008). Alternative isoform regulation in human tissue transcriptomes. *Nature* 456, 470-476.
810

811
812 Wang, L., Fan, J., Han, L., Qi, H., Wang, Y., Wang, H., Chen, S., Du, L., Li, S., Zhang, Y., *et al.* (2020). The
813 micropeptide LEMP plays an evolutionarily conserved role in myogenesis. *Cell Death Dis* 11, 357.
814
815 Wang, L., Lawrence, M.S., Wan, Y., Stojanov, P., Sougnez, C., Stevenson, K., Werner, L., Sivachenko, A.,
816 DeLuca, D.S., Zhang, L., *et al.* (2011b). SF3B1 and other novel cancer genes in chronic lymphocytic
817 leukemia. *N Engl J Med* 365, 2497-2506.
818
819 Wang, Q., Liu, Y., Soetandyo, N., Baek, K., Hegde, R., and Ye, Y. (2011c). A ubiquitin ligase-associated
820 chaperone holdase maintains polypeptides in soluble states for proteasome degradation. *Mol Cell* 42,
821 758-770.
822
823 Wang, T., Wei, J.J., Sabatini, D.M., and Lander, E.S. (2014). Genetic screens in human cells using the
824 CRISPR-Cas9 system. *Science (New York, NY)* 343, 80-84.
825
826 Wangen, J.R., and Green, R. (2020). Stop codon context influences genome-wide stimulation of
827 termination codon readthrough by aminoglycosides. *Elife* 9.
828
829 Weatheritt, R.J., Sterne-Weiler, T., and Blencowe, B.J. (2016). The ribosome-engaged landscape of
830 alternative splicing. *Nat Struct Mol Biol* 23, 1117-1123.
831
832 Wolfenden, R.V., Cullis, P.M., and Southgate, C.C. (1979). Water, protein folding, and the genetic code.
833 *Science* 206, 575-577.
834
835 Wu, X., and Bartel, D.P. (2017). kpLogo: positional k-mer analysis reveals hidden specificity in biological
836 sequences. *Nucleic Acids Research* 45, W534-W538.
837
838 Wu, X.B., and Sharp, P.A. (2013). Divergent Transcription: A Driving Force for New Gene Origination? *Cell*
839 155, 990-996.
840
841 Wunderley, L., Leznicki, P., Payapilly, A., and High, S. (2014). SGTA regulates the cytosolic quality control
842 of hydrophobic substrates. *J Cell Sci* 127, 4728-4739.
843
844 Xiang, R., Ma, L., Yang, M., Zheng, Z., Chen, X., Jia, F., Xie, F., Zhou, Y., Li, F., Wu, K., *et al.* (2021). Increased
845 expression of peptides from non-coding genes in cancer proteomics datasets suggests potential tumor
846 neoantigens. *Commun Biol* 4, 496.
847
848 Xu, W., Bao, P., Jiang, X., Wang, H., Qin, M., Wang, R., Wang, T., Yang, Y., Lorenzini, I., Liao, L., *et al.*
849 (2019). Reactivation of nonsense-mediated mRNA decay protects against C9orf72 dipeptide-repeat
850 neurotoxicity. *Brain* 142, 1349-1364.
851
852 Xu, Y., Cai, M., Yang, Y., Huang, L., and Ye, Y. (2012). SGTA recognizes a noncanonical ubiquitin-like
853 domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. *Cell*
854 *Rep* 2, 1633-1644.
855
856 Yordanova, M.M., Loughran, G., Zhdanov, A.V., Mariotti, M., Kiniry, S.J., O'Connor, P.B.F., Andreev, D.E.,
857 Tzani, I., Saffert, P., Michel, A.M., *et al.* (2018). AMD1 mRNA employs ribosome stalling as a mechanism
858 for molecular memory formation. *Nature* 553, 356-360.

859

860 Yoshida, K., Sanada, M., Shiraishi, Y., Nowak, D., Nagata, Y., Yamamoto, R., Sato, Y., Sato-Otsubo, A., Kon,
861 A., Nagasaki, M., *et al.* (2011). Frequent pathway mutations of splicing machinery in myelodysplasia.
862 *Nature* 478, 64-69.

863

864 Zhang, Y., Schaffer, T., Wolfle, T., Fitzke, E., Thiel, G., and Rospert, S. (2016). Cotranslational Intersection
865 between the SRP and GET Targeting Pathways to the Endoplasmic Reticulum of *Saccharomyces*
866 *cerevisiae*. *Mol Cell Biol* 36, 2374-2383.

867

868 Zhang, Y.E., Vibranovski, M.D., Landback, P., Marais, G.A.B., and Long, M.Y. (2010). Chromosomal
869 Redistribution of Male-Biased Genes in Mammalian Evolution with Two Bursts of Gene Gain on the X
870 Chromosome. *Plos Biology* 8.

871

872

873

874

875

876 METHODS

877 Plasmids

878 HSP90B1, ACTB, GAPDH, and SMAD4 reporters: the 3' UTR of HSP90B1, intron 3 of ACTB, the last intron of
879 GAPDH, and the 3' UTR of SMAD4 were PCR-amplified from the genomic DNA of HEK293T cells with primers
880 listed in [Table S3](#). The PCR products were then either digested with NotI and SbfI (GAPDH and SMAD4) or
881 Nsil-HF/PspOMI (ACTB and HSP90B1), which generate the same overhangs. The inserts were then ligated
882 with NotI/SbfI-digested pJA291 (Addgene #74487) ([Arribere et al., 2016](#)).

883 AMD1 reporters: The AMD1 readthrough reporter ([Fig. 4A](#)) was generated by inserting genomic DNA-
884 amplified fragment into pJA291 using NotI/SbfI sites. Overlap extension PCR (OEP) cloning was used to
885 insert a P2A sequence between EGFP and the AMD1 tail in the readthrough reporter ([Fig. 4B](#)). Systematic
886 deletion of individual or combinations of hydrophobic regions from the readthrough reporter were done
887 using NEB Q5 Site-Directed Mutagenesis (SDM) Kit (#E0554) ([Fig. 4C](#) and [Fig. S4](#)). The AMD1 roadblock
888 reporter ([Fig. 4F](#)) was generated using OEP cloning. OEP cloning was again used to delete the putative
889 ribosome pausing signal from the roadblock reporter ([Fig. 4G](#)), or replace the AMD1 sequence with a poly(A)
890 sequence ([Fig. 4E](#)). Deletion of the ribosome stalling signal from the readthrough reporter was also
891 generated by OEP cloning ([Fig. 4D](#)). All primers used were listed in [Table S3](#).

892 CRISPR guide RNA plasmids: The parental lentiCRISPR v2 plasmid (Addgene # 52961) was digested with
893 BsmBI and purified using the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel). Forward and reverse
894 oligos containing the guide sequence of interest were phosphorylated and annealed and ligated into the
895 parental plasmid with T4 PNK and T4 DNA ligase. Targeting and non-targeting guide sequences are derived
896 from the CRISPR KO library described previously ([Wang et al., 2014](#)).

897 All plasmids were transformed into NEB Stable Competent E. coli (C3040) according to the manufacturer's
898 protocol. Positive clones were confirmed via sanger sequencing.

899 Cell culture

900 HEK293T cells used in this study were purchased from ATCC. Cells were cultured in DMEM with 4.5 g/L D-
901 Glucose supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin was added except when
902 producing lentivirus. Low passage number cells were used and maintained under 90% visual confluence.
903 Cells were maintained at 5% CO₂ and 37 °C. HEK293T cells used in this study were confirmed to be negative
904 for Mycoplasma Contamination and routinely tested using the MycoAlertTM Mycoplasma Detection Kit
905 (Lonza, LT07-418). For experiments involving the SMAD4 gene, clonal cell lines harboring SMAD4
906 readthrough mutations as well as the parental HEK293T cells were obtained as a generous gift from Dr.
907 Sven Diederichs. Transfection of plasmids was done using Lipofectamine 2000 or Lipofectamine 3000
908 according to the manufacturer's instructions. Flow cytometry analyses of transfected cells were typically
909 performed 24 or 48 hours after.

910 Lentivirus and stable cell line generation

911 For generating lentivirus, 750,000 HEK293T cells were seeded in 6-well plates with DMEM supplemented
912 with 10% FBS. After 24 hours, the cells were transfected with the second-generation lentiviral packaging
913 plasmids as well as the lentiviral plasmid of interest using Lipofectamine 3000. The virus-containing media
914 was collected 48 and 72 hours after transfection, combined, clarified by centrifugation at 500 RCF for 5
915 minutes, and then passed through a 45 µM PVDF filter. The purified virus was stored at 4°C for short term
916 use or aliquoted and frozen at -80°C.

917 For the generation of stable cell lines, HEK293T cells were reverse transduced in 6-well plates in media with
918 10 µg/mL polybrene using purified virus such that <30% of the cells are transduced. 24 hours after

919 transduction, the virus-containing media is removed, and fresh media added. After another 24 hours, the
920 cells are collected, and transduction efficiency is confirmed via flow cytometry. Transduced cells are then
921 selected with puromycin at 2 μ g/mL for 48 hours or via flow cytometry to generate a stable cell line for
922 downstream analysis.

923 [Flow cytometry analysis](#)

924 Cells were collected and resuspended in 1-4 mL of fresh media and passed through a 35 μ M mesh cell
925 strainer immediately prior to flow cytometry. Flow cytometry was performed on either a Bio-Rad ZE5 or
926 NovoCyte Quanteon analyzer. Gating of samples and export of data for downstream analysis was done
927 using the FCS Express software.

928 [Massively parallel reporter assays in HEK293T cells](#)

929 For the Pep30 library, a pool of 12,000 oligos were synthesized by Twist Bioscience, each containing a 90-
930 nt variable sequence flanked by a 15-nt constant sequence on each side. The left constant sequence
931 TACTGCGGCCGCTAC carries a NotI site, whereas the right constant sequence TGACTAGCTGACCTG contains
932 stop codons in all 3 reading frames, followed by a SbfI site (extended into the vector backbone) for cloning.
933 The variable sequences were picked from a set of randomly selected lncRNAs (Hezroni et al., 2015), as well
934 as the following regions in coding mRNAs (refSeq): the 5' end of coding exons, introns, 3' UTRs, 5' UTR ORFs,
935 and the 3' end of the last coding exon. Regions annotated to multiple classes or overlapping with each other
936 on either strands were discarded. For introns and 3' UTRs, the first 90 nt was used. For lncRNAs and 5' UTRs,
937 the first AUG was identified, and the next 90 nt were used. For C-termini of CDS, the last 90nt of the ORF
938 (excluding the stop codon) were used. For internal CDS, the first 90 nt were used, with about one third
939 being in-frame with the EGFP ORF. The oligo pool were PCR-amplified and then cloned into pJA291 using
940 the NotI/SbfI sites and primers listed in [Table S3](#). The Pep13 library was cloned into pJA291 using NEB Q5
941 Site-Directed Mutagenesis Kit (#E0554). Both the Pep30 and Pep13 libraries were then used to generate
942 stable cell libraries using lentiviral transduction such that each cell was integrated with at most one virus.
943 Cells were then sorted into EGFP-high (top 20%) or EGFP-low (bottom 20%) bins and the variable regions
944 of the reporter were then cloned and sequenced.

945 [Massively parallel reporter assays comparing WT and BAG6 KO HEK293T cells](#)

946 HEK293T as well as a clonal BAG6 knockout cell line were reverse transduced with the Pep30 library such
947 that less than 30% of cells were transduced (thus are most likely a single integration per cell). The virus-
948 containing media was removed after 24 hours and fresh media with 10% FBS and 1% PenStrep was added
949 to the plates. After another 24 hours, transduced cells were purified based on their expression of mCherry.
950 The transduced populations were returned to culture and allowed to grow out for an additional 6 days,
951 with passaging as necessary to maintain confluence below 80%. After 6 days, both populations were sorted
952 into 4 bins based on the ratio of EGFP/mCherry expression (High, mid-high, mid-low, and low) using a
953 FACSaria cell sorter. The same mCherry/EGFP ratio gates were used for both WT and BAG6 KO cells. Sorted
954 cells were spun down at 500 RCF for 5 minutes, washed once with 1000 μ L PBS, spun down again, then
955 frozen at -20 as a cell pellet.

956 Genomic DNA was subsequently isolated from the cell populations using a Machery Nagel Nucleospin
957 Tissue kit and genomic DNA was eluted in 50 μ L of elution buffer. Libraries were then amplified using PCR
958 with custom Illumina adapters, using Q5 high-fidelity PCR mix with 1000 ng input gDNA per sample.
959 Libraries were amplified for a total of 24-27 cycles. After amplification, libraries were cleanup up using
960 SPRISelect beads at a ratio of 0.7x. Purified library size was confirmed via gel and libraries were quantified
961 using the KAPA qPCR Illumina library quantification kit. Libraries were subsequently pooled in a ratio based
962 on the number of total cells collected from each sample. The pooled library was sequenced on a NextSeq

963 550 with 2.5% PhiX spike in, using the 75-cycle high-output kit with 80 cycles in read 1 and 8 cycles in index
964 read 1.

965 Reads were aligned to a custom index for the Pep30 library generated with the command *bowtie-build* in
966 *bowtie* version 1.2.3 and the option *-v 3 --best* (best alignment with up to 3 mismatches). The counts of
967 each Pep30 sequence were extracted from the alignment with the bash command *cut -f 3 / sort / uniq -c*.
968 The mitigation index of each sequence in a sample is calculated by dividing the number of reads in the low
969 EGFP/mCherry bin by the sum of read counts in all bins of the same sample.

970 [Genome-wide CRISPR screen](#)

971 The Human Activity-Optimized CRISPR Knockout Library (3 sub-libraries in lentiCRISPRv1) was obtained
972 from addgene (<https://www.addgene.org/pooled-library/sabatini-crispr-human-high-activity-3-sublibraries/>) and prepared according to the standard protocol. Library lentivirus was produced using Mirus
973 LT1 transfection reagent and second-generation packaging plasmids. 9.2×10^7 HEK293T cells carrying the
974 stable AMD1-EGFP reporter were reverse transduced with the CRISPR library with 8 $\mu\text{g/mL}$ polybrene.
975 Media was changed 24 hours after transduction. Selection with 2 $\mu\text{g/mL}$ puromycin was initiated 48 hours
976 after transduction. After 48 hours of puromycin selection, cells were collected and sorted, sorted cell
977 populations were frozen at -80 °C. Libraries were prepared for Illumina sequencing from the sorted cell
978 populations as described in Joung et. al., 2017. Libraries were amplified for a total of 28 PCR cycles, purified
979 using the Zymo DNA Clean & Concentrator-5 kit, and the correct-sized band was subsequently purified by
980 gel extraction. Fragment sizes of the libraries were confirmed by bioanalyzer and concentrations were
981 determined using the KAPA qPCR library quantification kit. The pooled library was then sequenced on a
982 NextSeq 550 with 86 cycles in Read 1 and 6 cycles in Index Read 1.
983

984 [Co-immunoprecipitation](#)

985 HEK293T cells were seeded in 10-cm plates with 3×10^6 cells per plate. Reporters were transfected into the
986 cells 24 hours after seeding using Lipofectamine 3000. 48 hours after transfection, cells were treated with
987 DMSO (vehicle) or 0.1 μM Bortezomib. After 24 hours of drug treatment, cells were collected, washed twice
988 in cold PBS, and resuspended in lysis buffer (0.025 M Tris pH 7.4, 0.15 M NaCl, 0.001 M EDTA, 1% NP-40
989 alternative, 5% Glycerol). Lysates were incubated at 4°C with rotation for 30 minutes, centrifuged at 12,000
990 RCF at 4°C for 20 minutes, and the supernatant was collected. The pulldowns were performed using Novex
991 DYNAL Dynabeads Protein G conjugated with a primary antibody according to the manufacturers protocol.
992 Following coimmunoprecipitation, western blots were performed as described below.

993 [Generation of knockout cell lines](#)

994 HEK293T cells (7.5×10^5) were seeded in 6-well plates and transfected the next day with 4 μg of the
995 lentiCRISPR v2 plasmid (<https://www.addgene.org/52961/>) containing a sgRNA sequence specific to the
996 targeted gene. After 24 hours, cells were passaged into media containing 2 $\mu\text{g/mL}$ puromycin. After two
997 days of puromycin selection, cells were collected, and single cells were sorted into 96-well plates. Individual
998 clones were allowed to grow for 1-4 weeks and then passaged into 6-well plates. Clones were then
999 screened for frameshift mutations in both alleles in the target gene using sanger sequencing and the ICE
1000 CRISPR analysis tool (<https://www.synthego.com/products/bioinformatics/crispr-analysis>). Full knockout
1001 of the target genes was then verified using western blotting. Additionally for BAG6 KO cells, the target locus
1002 was PCR-amplified and cloned into plasmids. Sanger sequencing of ten clones were confirmed two
1003 frameshifting alleles, one with a 5-nt deletion, and the other with a 11-nt deletion (Fig. 5SA).

1004 [Competitive growth assay](#)

1005 Wild-type HEK293T and BAG6 knockout cells were seeded at 2 million cells each into 10-cm plates with
1006 complete growth media. After 72 hours, cells were collected from both plates, passed through a 35 μM

1007 mesh cell strainer and quantified on a Countess II automated cell counter. The wild-type and BAG6
1008 knockout cells were then mixed in a 1:1 ratio and plated into three 10-cm plates. The cell mixtures were
1009 then cultured for an additional 15 days with genomic DNA collected every three days. The BAG6 target
1010 region was amplified from the genomic DNA from all samples using Q5 High-Fidelity Master Mix and
1011 subsequently purified using a NucleoSpin Gel and PCR Clean-up kit from Macherey-Nagel. The purified
1012 samples were sent for sanger sequencing and the proportion of BAG6 knockout cells in each sample was
1013 estimated using the ICE CRISPR analysis tool (<https://www.synthego.com/products/bioinformatics/crispr-analysis>).
1014

1015 Western blotting

1016 Cells were cultured and transfected where applicable as described above. Cells were collected on ice and
1017 washed with cold PBS and subsequently lysed in RIPA buffer supplemented with a 1X protease inhibitor
1018 cocktail for 30 minutes at 4 °C on a rotator. Lysates were then cleared by centrifugation at 16,000 RCF and
1019 4 °C for 20 minutes. Protein concentrations were determined using a BCA assay and samples were then
1020 prepared using LDS sample buffer supplemented with sample reducing agent and heated to 70 C for 10
1021 minutes. Samples were then run on an SDS-PAGE gel and transferred to an activated PVDF membrane for
1022 90 minutes at 30 volts or overnight at 10 volts. Membranes were blocked with 5% BSA in PBS-T for 1 hour
1023 at room temperature or overnight at 4 °C. Membranes were then cut and incubated with the appropriate
1024 primary antibody in blocking buffer supplemented with 0.02% sodium azide for 1 hour at room
1025 temperature or overnight at 4 °C. Secondary antibodies were added at a 1:10,000 dilution and incubated
1026 for 1 hour at room temperature. Immobilon ECL Ultra Western HRP Substrate was then added to the
1027 membranes and blots were visualized using an Amersham Imager 600.

1028 Correlation between mitigation and physiochemical and structural properties of tail peptides

1029 Secondary structures of each peptide was predicted using S4PRED ([Moffat and Jones, 2021](#)), which outputs
1030 a vector indicating whether each residue is in an α -helix, β -sheet, or coil. The number of residues in each
1031 of the secondary structure motif in a peptide is used to calculate the correlation with mitigation. Protein
1032 intrinsic disorder was calculated using the program *IUPred3*, specially for short disorder analysis without
1033 smoothing. The disorder score for each residue in a peptide is added together and the total disorder score
1034 is used to calculate correlation with mitigation. All other properties were calculated using the following
1035 functions in the R package *Peptides* ([Osorio et al., 2015](#)): Average_hydrophobicity: *hydrophobicity* using the
1036 Miyazawa scale([Miyazawa and Jernigan, 1985](#)) unless otherwise noted(Fig. S2); Hydrophobic_moment:
1037 *hmoment* , Amino acid composition(*.AA.count): *aacomp*, Mass-to-charge ratio: *mz*, Molecular_weight:
1038 *mw*, Net charge: *charge*, Interaction_potential: *boman*, Instability_index: *instaIndex*, and
1039 Transmembrane_potential: *membpos*.

1040 Genome-scale hydrophobicity analysis

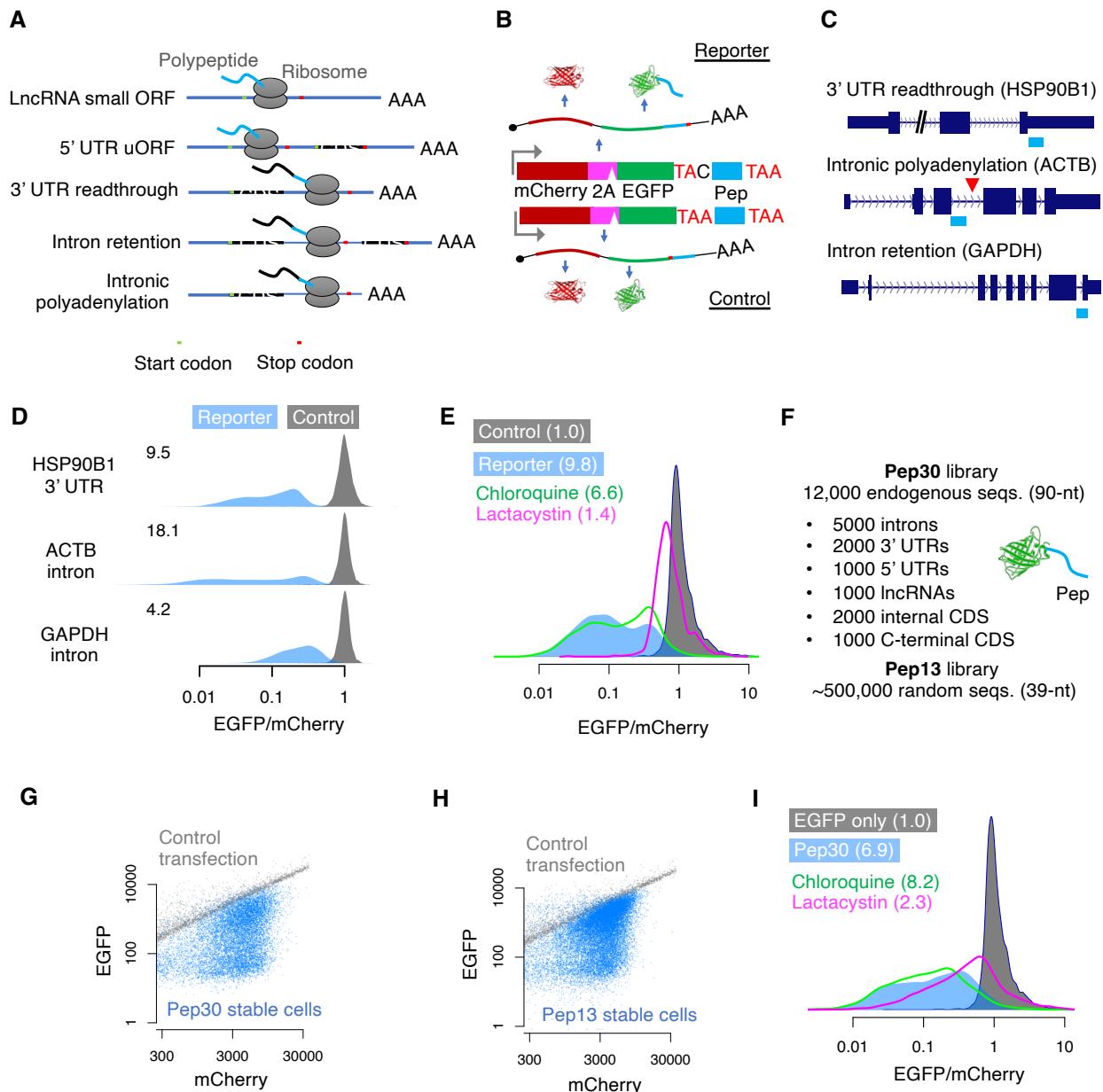
1041 We systematically compared C-terminal hydrophobicity of proteins encoded by coding and noncoding
1042 sequences (Fig. 2f). The coding sequences (CDS) of annotated proteins were downloaded from Ensembl
1043 (*Homo_sapiens.GRCh38.cds.all.fa*) and translated into proteins using BioPython. Only proteins with more
1044 than 200-aa were used for downstream analysis. The cDNA sequences for protein-coding and long
1045 noncoding RNA transcripts(IncRNA) were obtained from GENCODE v37. From the coding transcripts the 5'
1046 UTR and 3' UTR sequences were extracted. For both 5' UTR and IncRNA, the longest ORF was translated
1047 into peptides. For 3' UTR and introns, the first in-frame stop codon marks the end of the tail ORF and only
1048 those with at least 30 codons were used. Noncoding sequence encoded peptides were removed if found
1049 in the canonical proteome. For each group, the average hydrophobicity at each position relative to the last
1050 amino acid(the most C-terminal) was calculated using the *hydrophobicity* function in the R package *Peptides*
1051 ([Osorio et al., 2015](#)).

1052 Correlation between C-tail hydrophobicity and gene age

1053 Gene age was inferred by a previous study (Zhang et al., 2010). Briefly, human and mouse genes were
1054 assigned to branches of the vertebrate phylogenetic tree based on the presence and absence of orthologs
1055 in various species. The age of the genes in a branch is calculated as the middle point of each branch. The
1056 average hydrophobicity of the last 30aa of all genes in a branch was calculated using the R package
1057 described above.

1058

1059 [SUPPLEMENTARY TABLES](#)


1060 Table S1: Localization of functional peptides.

1061 Table S2: Sequences of the Pep30 library.

1062 Table S3: Oligo sequences.

1063

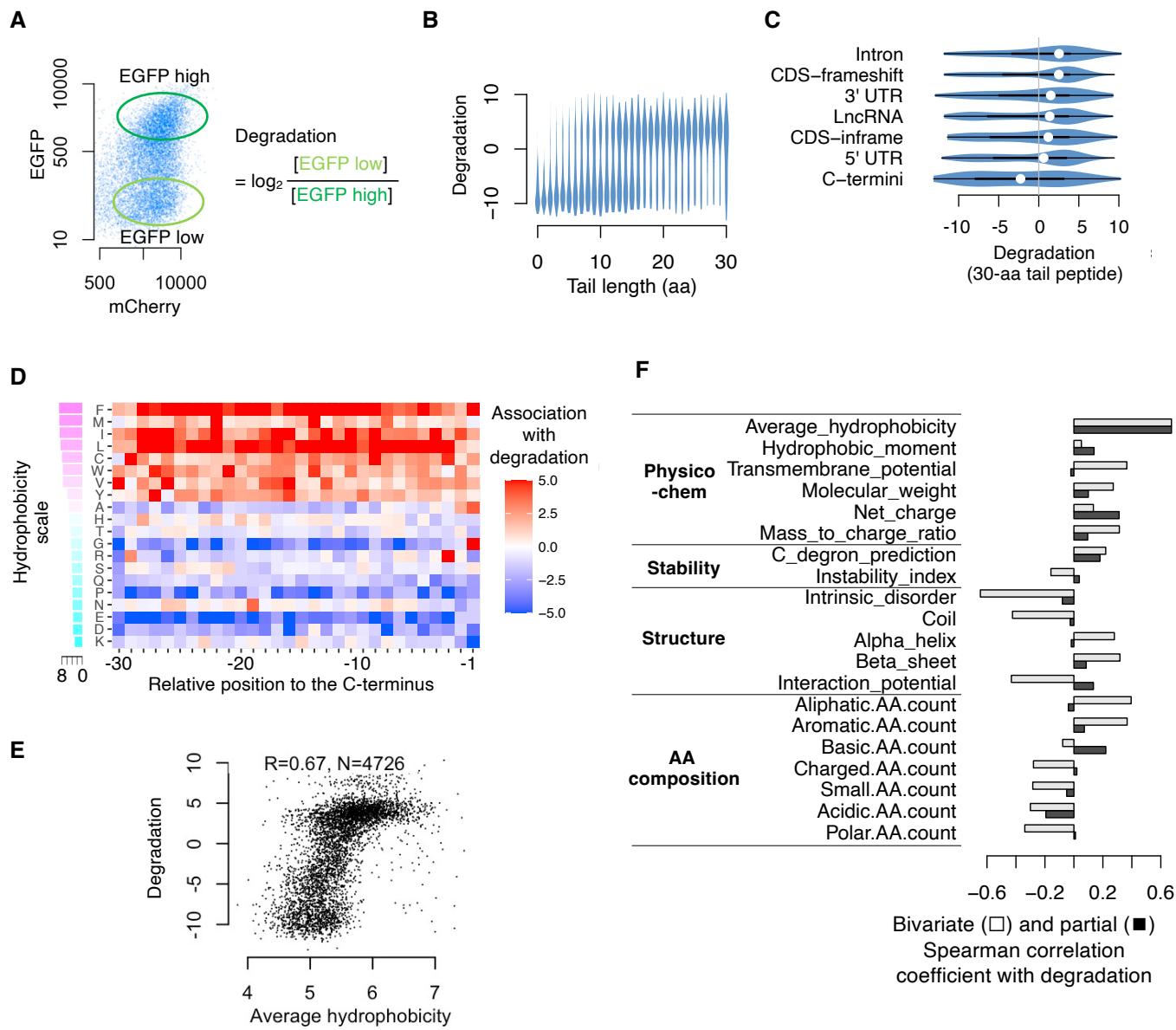
1064

Figure 1 Diverse noncanonical ORF translation products are largely degraded by the proteasome

(A) Noncanonical ORF translation in diverse contexts generates a C-terminal tail derived from noncoding sequences. Green/red bars indicate start/stop codons, respectively. CDS: canonical protein-coding sequences.

(B) Top: a mCherry-2A-EGFP bicistronic reporter for monitoring noncanonical translation. Bottom: a control plasmid with a single base difference abolishing noncanonical ORF translation. Pep: noncoding sequence derived peptide.

(C) Diagram of noncoding sequences in the *HSP90B1* 3' UTR, an *ACTB* intron, and a *GAPDH* intron used for generating noncanonical translation reporters.


(D) Density plots showing the distribution of EGFP/mCherry ratios across cells as measured by flow cytometry 24 hours after transfection of reporters. The median fold loss of EGFP/mCherry ratio is shown on the top left.

(E) EGFP/mCherry ratio for cells transfected with either the control or the *ACTB* intron reporter, alone or with simultaneous treatment of either proteasome inhibitor (lactacystin) or lysosome inhibitor (chloroquine). The numbers indicate the median fold loss of EGFP/mCherry relative to control.

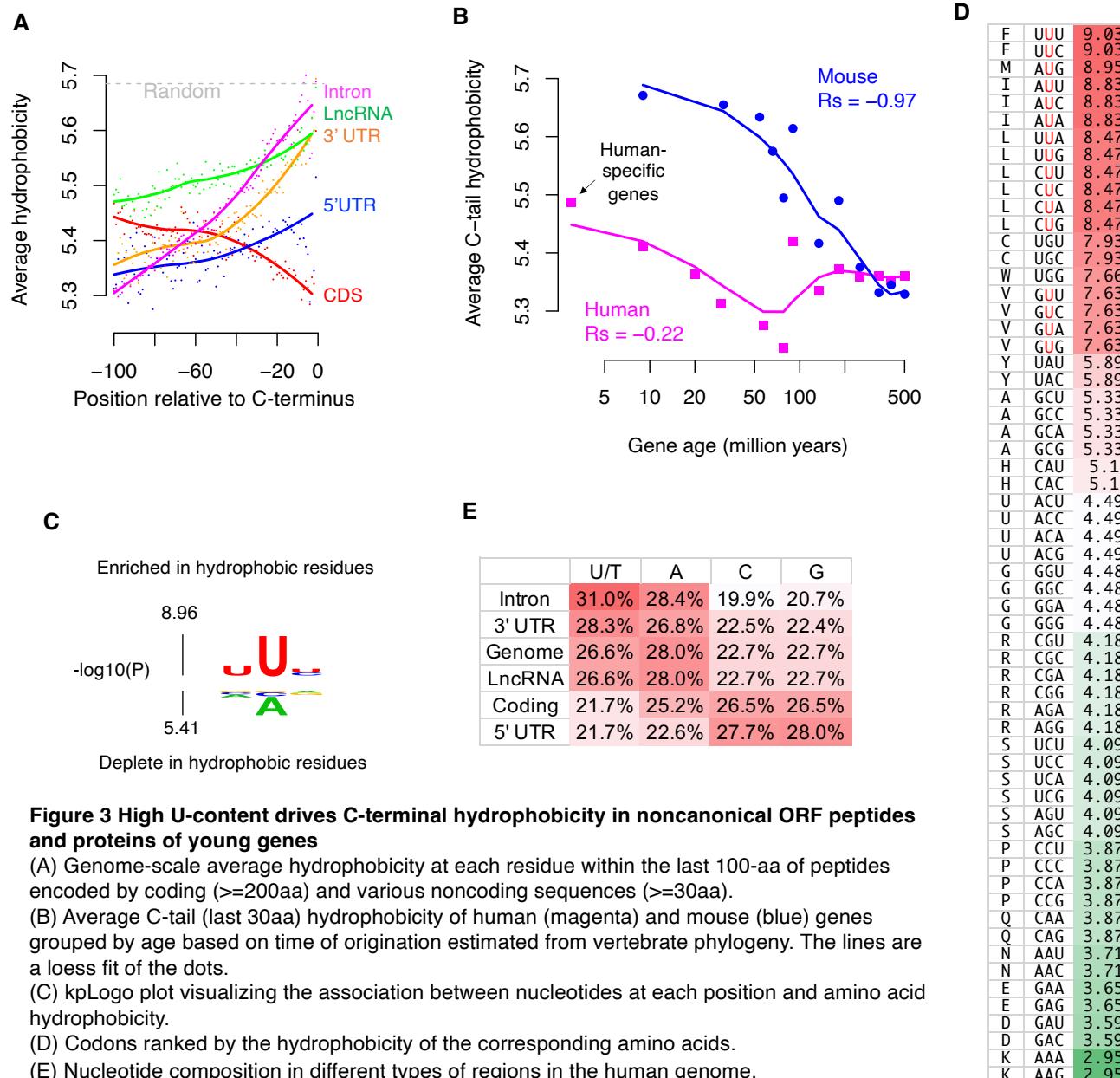
(F) Two cell libraries where each cell stably expresses EGFP extended with either a random sequence (up to 13 aa) or a sequence randomly selected from the human transcriptome (up to 30 aa).

(G-H), flow cytometry analysis of the Pep30 (G) or Pep13 cell library (H). Also shown are cells transfected with the EGFP-only control reporter (gray).

(I) Same as E for the Pep30 cell library treated with inhibitors of the proteasome or the lysosome.

Figure 2 Degradation of noncanonical ORF peptides is primarily associated with C-terminal hydrophobicity

(A) Pep30 stable cells were sorted into high and low EGFP bins and the tail sequences (DNA) were cloned and sequenced. The degradation score for each sequence is calculated as the log2 ratio of read counts in EGFP-low vs. EGFP-high bin.


(B) Violin plots of degradation score for tails of varying lengths.

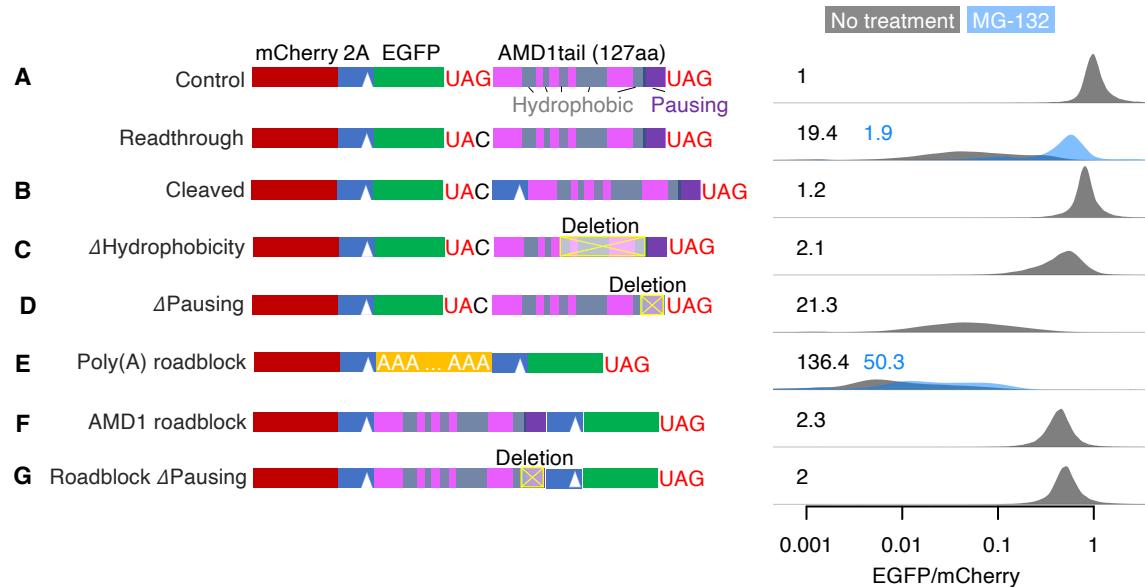
(C) Violin plots comparing degradation of 30-aa tails encoded by various types of sequences.

(D) A heatmap visualizing the association (Student's t-test statistics capped at 5.0) between degradation and the presence of each amino acid at every position in the Pep30 library. Amino acids (rows) are sorted by hydrophobicity (Miyazawa scale).

(E) A hydrophobicity-vs-degradation scatter plot for tails of 30-aa length.

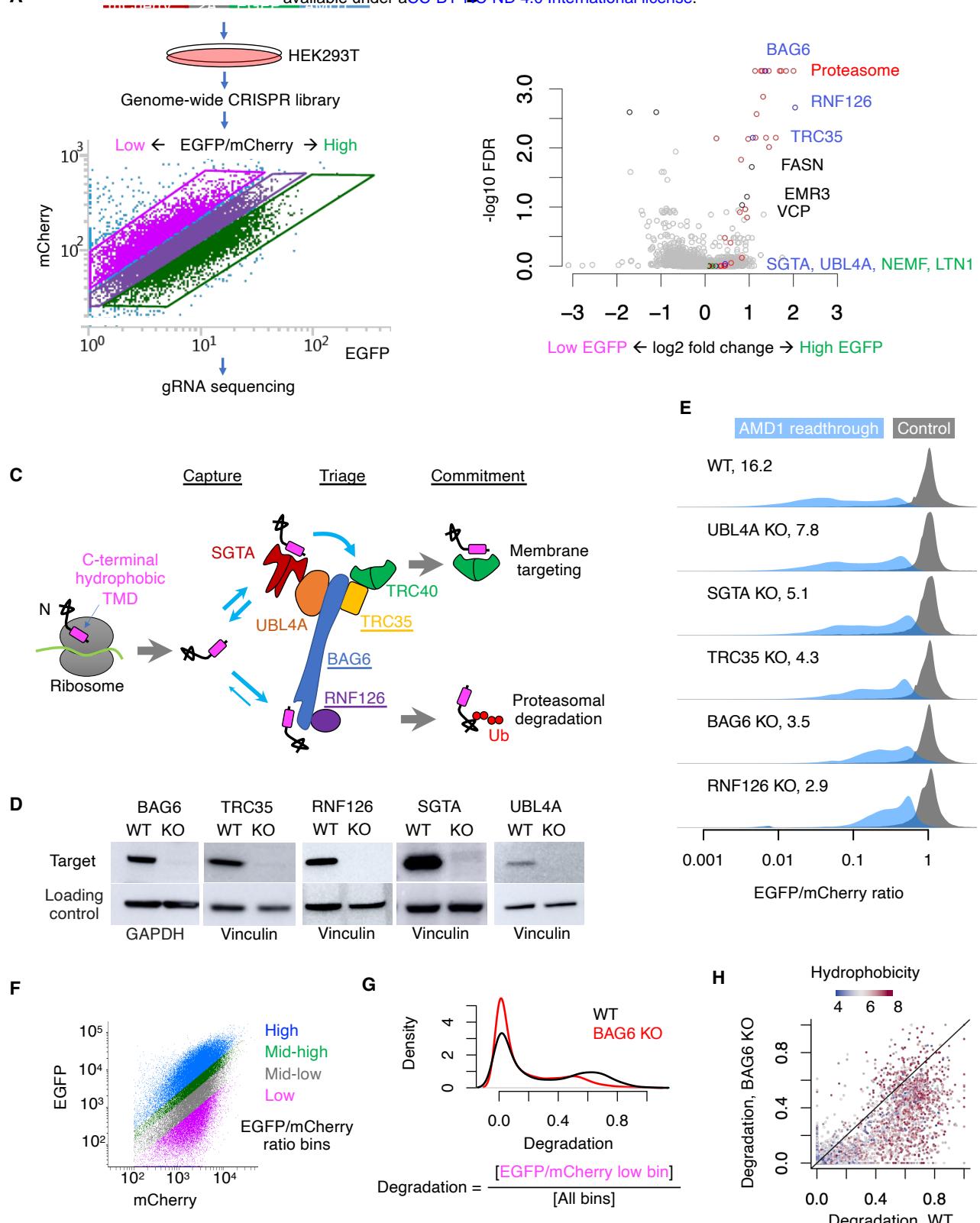
(F) Spearman correlation coefficient (light bar) between various properties of the tail peptides and degradation. Dark bar: partial correlation conditioned on average hydrophobicity.

Figure 3 High U-content drives C-terminal hydrophobicity in noncanonical ORF peptides and proteins of young genes


(A) Genome-scale average hydrophobicity at each residue within the last 100-aa of peptides encoded by coding (≥ 200 aa) and various noncoding sequences (≥ 30 aa).

(B) Average C-tail (last 30aa) hydrophobicity of human (magenta) and mouse (blue) genes grouped by age based on time of origination estimated from vertebrate phylogeny. The lines are a loess fit of the dots.

(C) KpLogo plot visualizing the association between nucleotides at each position and amino acid hydrophobicity.


(D) Codons ranked by the hydrophobicity of the corresponding amino acids.

(E) Nucleotide composition in different types of regions in the human genome.

Figure 4 AMD1 3' UTR translation mitigation

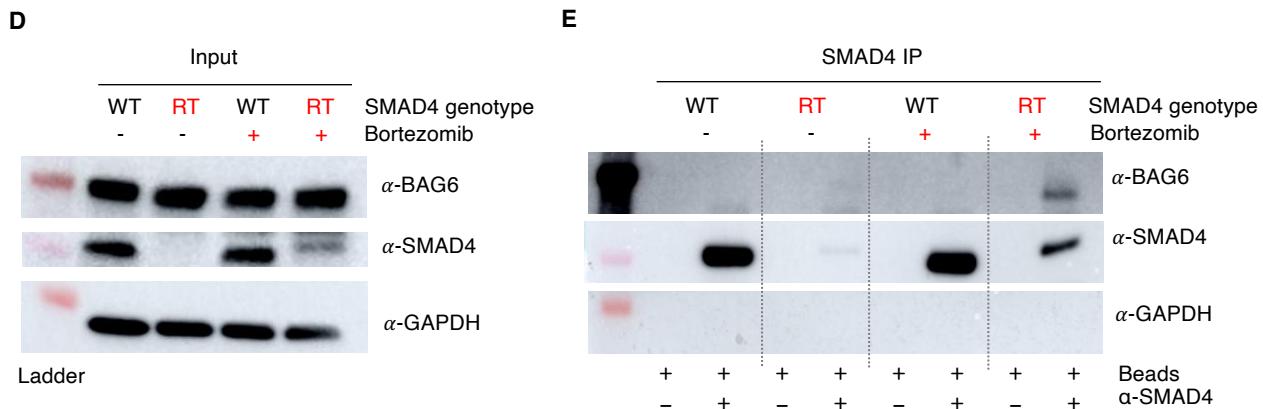
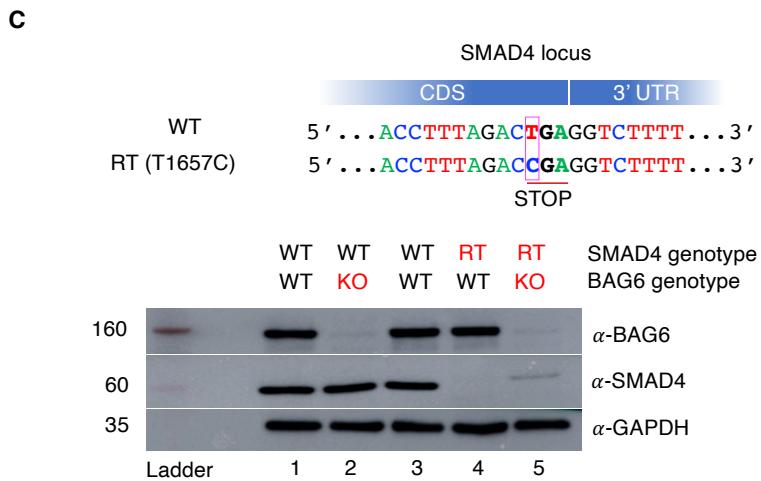
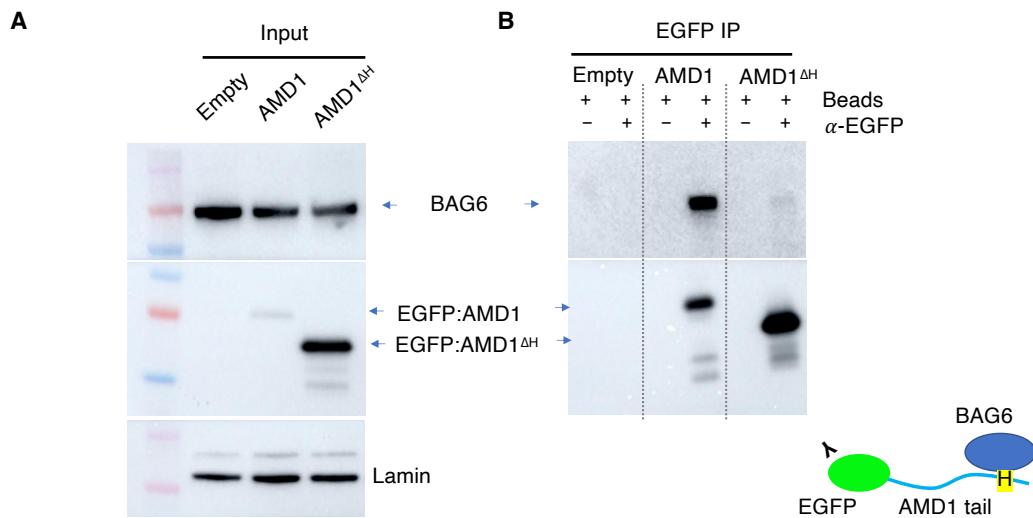
(A-G) Reporter constructs shown on the left were transfected into HEK293T cells. The EGFP/mCherry ratio was quantified in individual cells using flow cytometry with distributions shown on the right on a log-10 scale. The number in each plot is the median fold-decrease of the EGFP/mCherry ratio. Data from cells treated with the proteasome inhibitor MG-132 are shown in blue.

Figure 5 A genome-wide CRISPR screen identified the BAG6 pathway in mediating proteasomal degradation of noncoding translation products

(A) CRISPR screen using the AMD1 reporter stably integrated into HEK293T cells.

(B) Gene-level summary of the CRISPR screen from MAGeCK.

(C) Schematic of the TRC/GET pathway targeting proteins with a C-terminal hydrophobic region.




(D) Western blot confirming the depletion of TRC proteins in KO cells. GAPDH was used as loading control for BAG6 and vinculin was used for all other proteins.

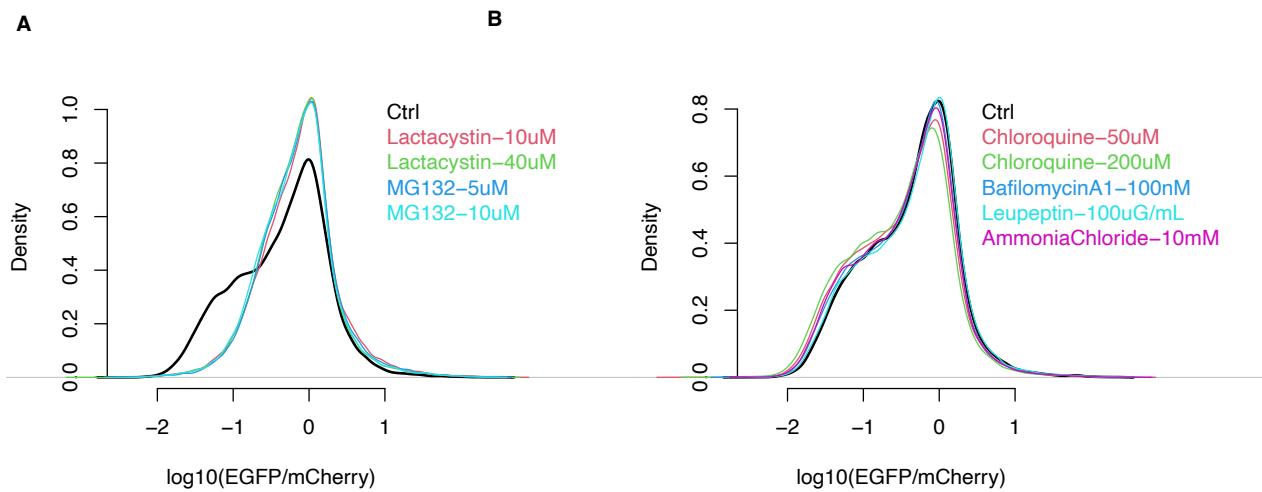
(E) EGFP/mCherry ratio of the AMD1 reporter in WT and KO cells.

(F) WT and BAG6 KO HEK293T cells were transduced with the Pep30 library and sorted into four bins with respect to EGFP/mCherry ratio and then sequenced.

(G) The degradation score of each sequence is calculated and the density in WT and BAG6 KO cells was plotted.

(H) Scatter plot of the degradation score color-coded by the average hydrophobicity of each tail peptide.

Figure 6 BAG6 mediates the degradation of AMD1 and SMAD4 readthrough products by binding to the C-terminal extension


(A) Input of the BAG6 co-IP with EGFP-AMD1tail or the mutant without the C-terminal hydrophobic region (AMD1^{ΔH}).

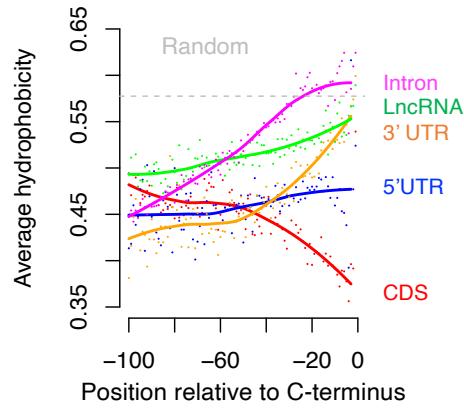
(B) BAG6 co-immunoprecipitates with EGFP-AMD1tail but not AMD1^{ΔH}.

(C) A homozygous nonstop T1657C mutation in HEK293T cells causes readthrough (RT) translation of SMAD4, which is barely detectable in BAG6 wild type (WT) cells (lane 4) but is stabilized in BAG6 KO cells (lane 5). RT: readthrough.

(D) Input of the BAG6 co-IP with SMAD4 readthrough product. Bortezomib: proteasome inhibitor.


(E) Co-IP of BAG6 with SMAD4 readthrough products.

Figure S1 Effect of proteasome inhibition or lysosome inhibition on the Pep30 library, related to Figure 1


(A) Pep30 cells were treated with proteasome inhibitors for 8 hours and then analyzed with flow cytometry. Ctrl: Pep30 cells without treatment.

(B) Same as (A) for lysosome inhibitors.

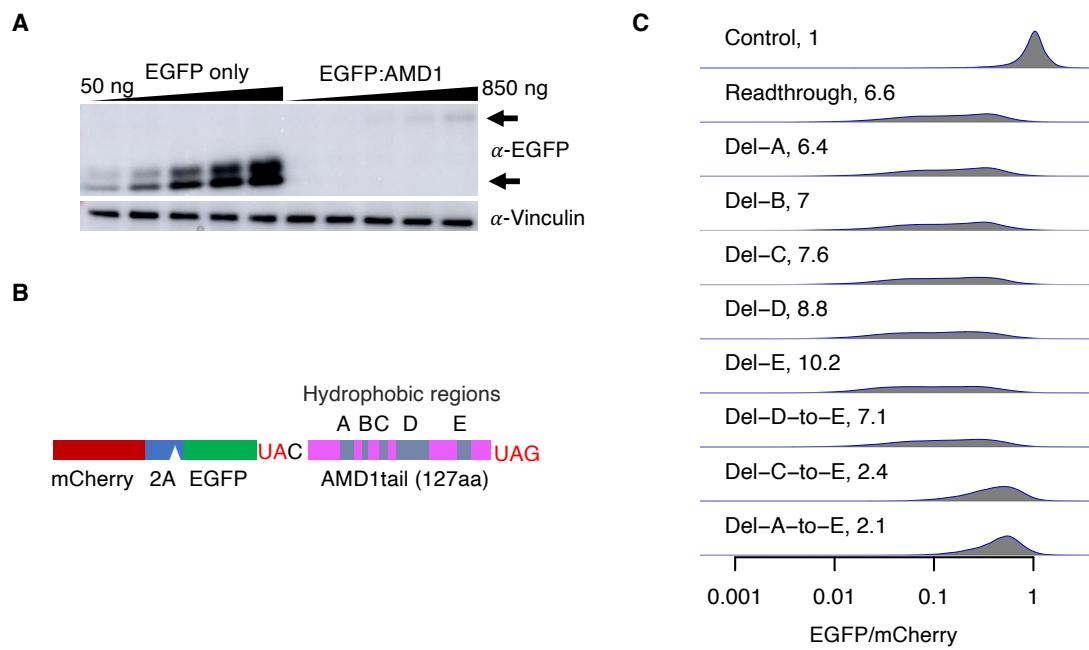


Figure S2 Spearman correlation coefficient between degradation and various hydrophobicity scales, related to Figure 2E

Degradation was measured using the Pep30 library. Hydrophobicity was calculated using the R package Peptides.

Figure S3 Genome-scale average hydrophobicity analysis, related to Figure 3A
Same as Figure 3A with a different hydrophobicity scale (Ponnuswamy instead of Miyazawa).

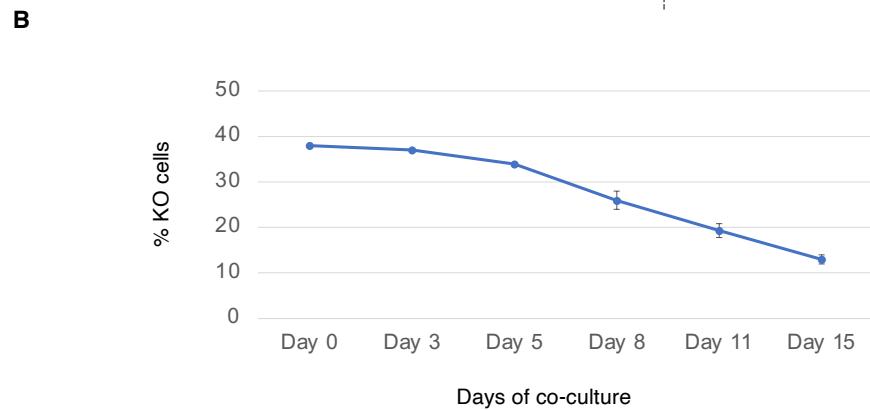
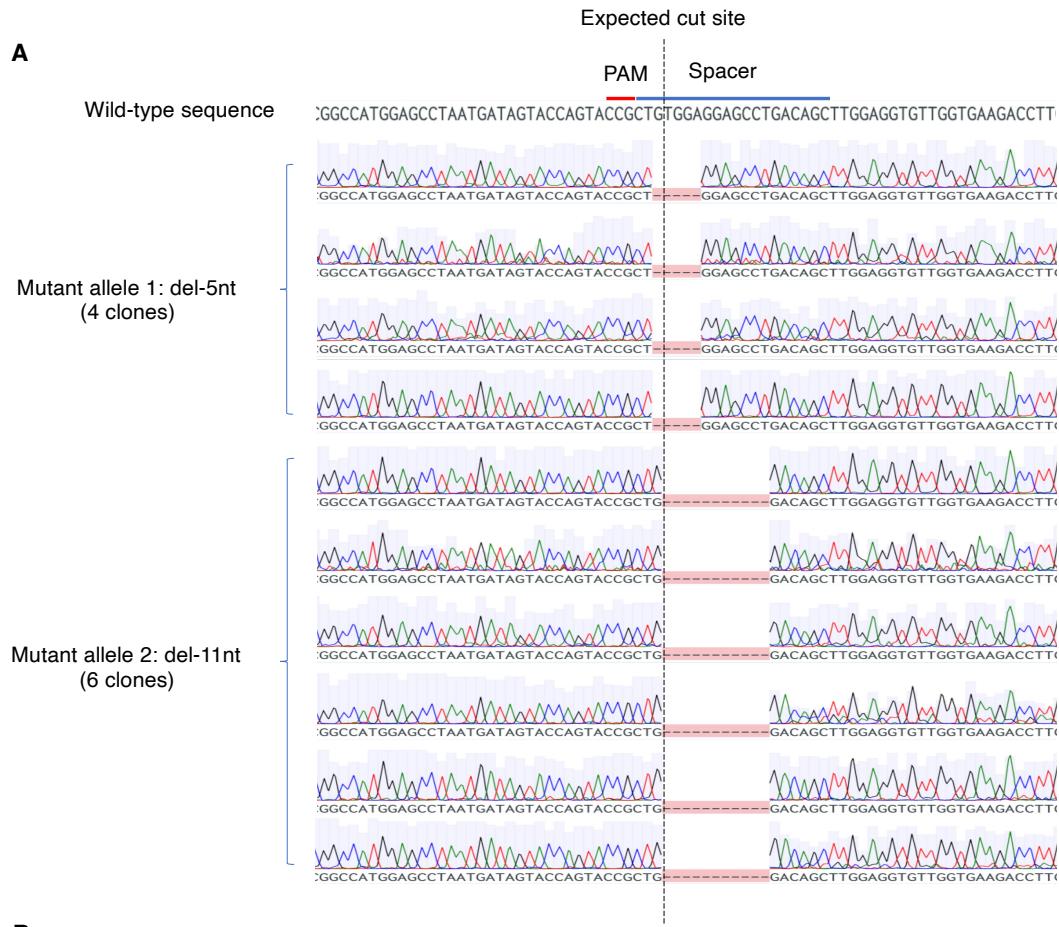
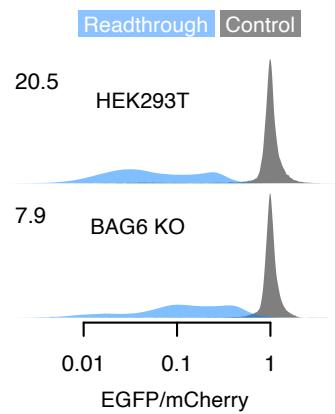



Figure S4 AMD1 3' UTR translation mitigation, related to Figure 4

(A) Western blot confirming the loss of the EGFP-AMD1 tail fusion protein. HEK293T cells were transfected with varying amount of the AMD1 3' UTR readthrough reporter plasmid, from 50ng to 850ng.


(B) The AMD1 3' UTR translation reporter with the hydrophobic region in the AMD1 tail highlighted (A-E).

(C) Impact of deleting individual hydrophobic regions or larger regions on the EGFP/mCherry ratio. The number in each plot is the median decrease of the EGFP/mCherry ratio relative to controls.

Figure S5 Characterizing the BAG6 clonal knockout cell line, related to Figure 5

(A) Sanger sequencing of 10 clones of PCR-amplified genomic DNA confirmed that the BAG6 KO cells contain a frameshift mutation in both alleles, one with a 5-nt deletion and the other with an 11-nt deletion around the expected Cas9 cut site.
 (B) Growth defect of the BAG6 KO cells when competing with wild-type cells in a co-culture assay. N=3.

Figure S6 BAG6 mediates the degradation of SMAD4 readthrough products, related to Figure 6
A dual color reporter fusing *SMAD4* 3' UTR encoded peptide to the C-terminal of EGFP is tested in wild-type and BAG6 KO HEK293T cells using flow cytometry as a readout.