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Abstract

Frailty indexes provide quantitative measurements of non-specific health decline and are
particularly useful as longitudinal monitors of pre-mortal morbidity in aging studies. For mouse
studies, frailty assessments can be taken non-invasively, but they require handling and direct
observation that is labor-intensive to the scientist and stress-inducing to the animal. Here, we
implement, evaluate, and provide a digital frailty index composed entirely of computational
analyses of home-cage video and compare it to manually obtained frailty scores in genetically
diverse mice. We show that the frailty scores assigned by our digital index correlate with both
manually obtained frailty scores and chronological age. Thus, we provide a tool for frailty
assessment that reduces stress to the animal and can be collected consistently, at scale,
without substantial labor cost.

Introduction

For many organisms on the planet Earth, increasing age for an individual is accompanied by
physiological deterioration and an increase in mortality hazard. At a population level,


mailto:graham@calicolabs.com
mailto:ellie@calicolabs.com
https://doi.org/10.1101/2022.07.19.500666
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.19.500666; this version posted July 20, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

physiological decline with age can be measured using mortality statistics, and for many species,
the risk of death increases exponentially with age (Jones et al, 2014). While useful for

performing comparisons between species or populations, mortality provides only one datum per
individual and therefore requires large cohorts and precludes longitudinal analysis of individuals.

In humans, the physiological decline that accompanies age can also be measured in terms of a
“frailty index” (FI): a tally of health-related deficits that are clinically observable (Clegg et al,
2013). Many varieties of human FI exist, with variable focus on performance-based phenotypic
assessment (e.g. Fried et al, 2001) or the accumulation of overt pathologies (e.g. Song et al,
2010) but consistently predict the likelihood of future disability and mortality (e.g. Rockwood et
al, 1999). Due to their implicitly multifaceted nature, frailty assessments often require
substantial time, cost, and expertise to administer. Many variants of human Fl implementation
attempt to reduce those practical constraints: among them, a version requiring minimal and
non-expert examination (Rolfson et al, 2006); a version derived exclusively from blood-test
measurements (Howlett et al, 2014); and a version based solely on retrospective analysis of
electronic health records (Clegg et al, 2016).

The FI concept is also applied to mice in preclinical research (Parks et al, 2011). As with
humans, alternative versions of a mouse F| have been implemented that reflect diverging
priorities: some emphasize thoroughness and include laboratory tests (e.g. Kane et al, 2019);
others attempt to maximize similarity to human FI (Liu et al, 2014). Most of these
implementations involve subjective scoring by a technician, which poses two challenges to the
practical application of FI. Firstly, the multitude of traits to be examined places substantial
demand on the time of the researcher performing Fl assessments. Secondly, substantial
inter-rater variance has been documented. The sources of that variance remain debatable, but
it can be exacerbated by variance across raters in years of education or direct experience
(Feridooni et al, 2015; Kane et al, 2015; Howlett & Rockwood, 2015).

Consistency of mouse Fl across raters has been mitigated through automation of analysis. For
grimace — a commonly-included component of manual mouse FI’s that indicates the mouse’s
experience of discomfort (Langford et al, 2010) — machine-learning (ML) assessments perform
similarly to human raters when applied to images captured in tabletop cubicles (Tuttle et al,
2018). Parameters derived from the open-field assay (Walsh & Cummins, 1976), for which
mouse behavior is often analyzed using computer vision (Seibenhener & Wooten, 2015), are
often included in traditional frailty assessments (e.g. Parks et al, 2011). The convenience of the
open-field paradigm for analysis of multiple traits has motivated the development of mouse Fl
versions that rely mostly (Whitehead et al, 2013) or entirely (Hession et al, 2021) on analytics of
data from that assay. In addition to improved consistency/reliability, these cases greatly ease
the practical application of FI by consolidating data collection to a single, low-labor assay.

The approaches to mouse frailty assessment described above vary in terms of their
invasiveness, but they invariantly require handling and/or exposure to a non-standard
environment in order to be performed. Handling and exposure to novel environments both
cause stress in laboratory mice (Balcombe et al, 2004; Baran et al, 2022). The frailty indexes
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described above invariantly include parameters known to be modified by handling-related
stress: posture, response to stimuli, exploratory behavior, and blood chemistry among them
(Hurst & West, 2010; Ghosal et al, 2015; Gouveia & Hurst, 2017). Handling could also further
stress already compromised or frail animals and push them towards humane endpoints,
exacerbating survivor bias in aging studies. The recent development of systems capable of
continuously monitoring laboratory mice in their home-cage environment (Lim et al, 2017; Baran
et al, 2021) provides an avenue to refine longitudinal aging studies and avoid these stresses as
confounders of frailty assessment and longevity. But that advancement requires the
development of analytics capable of measuring frailty from home-cage video data.

Here, we implemented a digital frailty index (DFI) for mice based on the computational analysis
of continuously-collected home-cage video footage. To evaluate its effectiveness, we performed
a study involving over 200 mice in which video was collected longitudinally, in parallel with
manual frailty indexes (MFI) collected at a massive scale, all by a single researcher. Our
implementation of DFI correlated with both chronological age and MFI, the correlation between
DFI and MFI was maintained when the age-related components of both measurements were
regressed out. While the inclusion of additional parameters may enhance DFI value in the
future, here we prove the feasibility, scalability and relevance of frailty assessment in mice
through passive observation in a home-cage environment.

Methods

Mice, animal husbandry, and in vivo study design

For the main Frailty study, 228 Diversity outbred (J:DO) mice (138 female, 90 male; The
Jackson Laboratory, Strain #009376) across eight aged cohorts were obtained from The
Jackson Laboratory. Mice were aged to 6, 9, 12, 15, 19, 21, 25, 27 and 30 months at the
beginning of the study period and weighed between 18g and 67g. Video collection and manual
frailty assessments were each performed at three time points, at six week intervals. Females
were group housed when not in video cages, and males were singly housed throughout the
study. Mice were shipped from The Jackson Laboratory (Bar Harbor, ME) and acclimated for at
least 2 weeks. Census data on these mice are provided in Supplemental Table 1.

All mice were housed in solid-bottom 100% PET plastic, BPA-Free IVC cages (Innovive) . All
cages and bedding were irradiated prior to use. Mice were housed on 1/8-in. corn cob bedding
(Innovive, San Diego, CA), received acidified (pH 2.5 to 3.0) reverse osmosis—purified water
from water bottles (Innovive, San Diego, CA), and were fed irradiated diet chow (LabDiet Pico
5L0D, Purina, St. Louis, MO). Mice received 8g shredded paper nesting material and a paper
hut enrichment (Enviro-Dri and Shephard Shack, Shephard Specialty Papers, Watertown, TN)
while in their non-video cages. Mice were provided two cotton nesting squares (NES 3600,
Ancare, Bellmore, NY) for enrichment, along with a climbing ladder and running wheel (Vium)
while in video cages. All mice were housed under a 12:12-h light:dark cycle at a density of 1 to 4
mice per cage in a temperature-controlled vivarium, in compliance with the Guide for the Care
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and Use of Laboratory Animals. Male mice were singly housed throughout the study, while
female mice were single housed in video cages (1 week out of every 6 weeks for a total of 18
weeks). Animal cages were changed every 2 weeks within a cage change station (NuAire,
Plymouth, MN). Mice were transferred between cages using red transparent acrylic tunnels
(Bio-Serv, NJ) or by cupping technique.

Manual frailty was assessed longitudinally by the same experimenter as described in the
original 31-item mouse clinical Fl (Whitehead 2014), omitting the two parameters that rely on
population-specific statistics (body weight and temperature). Mice were allowed to acclimatize to
the testing room for 30-45 minutes before testing. The observation was carried out on an open
bench at the same time of the day, between 9-11am. Mice were scored 0, 0.5, or 1 based on the
severity of deficit they showed in each of the 29 items, with 0 representing no sign of deficit, 0.5
mild deficit and 1 severe deficit. Those 29 items were: alopecia, loss of fur color, dermatitis, loss
of whiskers, coat condition, breathing rate/depth, mouse grimace scale, piloerection, tumors,
distended abdomen, kyphosis, gait disorders, tremor, vestibular disturbance, tail stiffening,
cataracts, corneal opacity, eye discharge/swelling, microphthalmia, nasal discharge,
malocclusions, rectal prolapse, vaginal/uterine/penile prolapse, diarrhea, body condition score,
forelimb grip strength, menace reflex, vision loss, and hearing loss. The overall manual frailty
index (MFI) was taken as the average score across those 29 parameters. These data are
provided in Supplemental Table 2.

Body weight was measured at the beginning of each test and body surface temperature was
measured averaging three readings obtained with an infrared temperature probe directed at the
abdomen. Because of the potential for genetic variance in the J:DO population to confound the
interpretation of specific values for these parameters as frailty-related, they were not included in
the MFI scores but are provided in Supplemental Table 2, along with other MFI scores.

Video collection was performed by placing cages with singly-housed mice into video
camera-equipped racks for approximately one week. Video footage of mouse cages was
streamed 24 hours a day, 7 days a week to a cloud-based data infrastructure. Video acquisition
hardware and compatible cage furniture were purchased from Vium (https://www.vium.com).
Data management infrastructure was created by the authors of this study.

Video data for model training and parameterization were collected separately, under similar
conditions as for the main Frailty study (described above). Those data included Diversity
outbred (J:DO) mice, aged to 19 months (n = 40), 26 months (n = 37), and 32 months (n = 31)
and monitored for one week; and C57BL/6J mice, aged to 7, 19, and 35 months (n = 10 per age
cohort) and monitored for three weeks. All videos were collected at 864 pixel (width) by 648
pixel (height) resolution, approximately 24 frames per second, from cameras mounted in
consistently fixed positions versus the cage and furniture (e.g. Fig. 1A).

All research was performed as part of Calico Life Sciences LLC AAALAC-accredited animal
care and use program. All research and animal use in this study was approved by the Calico
Institutional Animal Care and Use Committee (IACUC).
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Calculation of Digital Frailty Index (DFI) score

Eight frailty parameters were scored: average per-day distance run on the wheel; gait speed on
the wheel; gait speed on the floor of the cage; circadian distribution of wheel-running activity;
circadian distribution of movement on the floor of the cage; rate of change in body weight; coat
quality; and average displacement of nesting material. The derivation of each measure from
raw video footage is described below, followed by the parameterization rules for converting each
measure to a frailty score component.

Wheel-derived DFI parameters

Three parameters derived from analysis of wheel spins: average per-day distance run on the
wheel; gait speed on the wheel; and circadian distribution of wheel-running activity.
Wheel-running activity was monitored using an ML pipeline that identified the timing of individual
rotations of the running wheel using a black stripe on the wheel’s surface (Fig. 1A). In our video
cages, the running wheel always appeared in the upper-right quadrant of the image, so all ML
models in this pipeline were trained on and applied to only that quadrant of each video frame.

The pipeline first applied two independent, two-channel image-segmentation models: the first to
draw a mask covering the open face of the running wheel, the second to draw a mask covering
the black stripe. Those masks were used to construct a synthetic image, with the wheel-face
mask displayed in the blue channel and the black-stripe mask displayed in the green channel.
Overlap of the two masks, which occurred when either the stripe was under but still visible
through the translucent-plastic wheel or when a black mouse was confused as a stripe,
therefore appeared as cyan in the synthetic image. That synthetic image was provided as input
to an image-classification ML model, which returned probabilities for each of two classes,
corresponding to the black stripe being on the “top” or “bottom” of the wheel. Those
probabilities were used as emission probabilities for those two respective states, and a
two-state Hidden Markov Model (HMM) was parsed across those emissions using the Viterbi
algorithm (Viterbi, 1967) across all frames of each full 10-minute video. From the resulting
parse, every full transition cycle (from “top” to “bottom” and back to “top”, or vice-versa,
depending on the initial state for that video) was recorded as one spin of the wheel, across a
length of time determined by the video frame rate and the number of frames traversed through
the spin.

The two image-segmentation models described above, for the wheel’s face and marker, were
each trained using the tool provided by the “image-segmentation-keras” code base
(https://github.com/divamgupta/image-segmentation-keras commit f04852d from September 6,
2019), specifying the “vgg_unet” model architecture (Simonyan, 2014), with input widths and
heights of 128 and 96, respectively. These models were trained on and applied to only the
upper-right quadrant of the images, which consistently contained the entire wheel. The
classification model described above was a re-trained version of the TF-Slim implementation of
mobilenet_v1 with a depth multiplier of 1.0 and an input size of 224 by 224 (Howard et al, 2017).
The wheel-position HMM had initial state probabilities of 0.325 for “top” and 0.675 for “bottom”.
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Transition probabilities were set to %5 when returning to the same state and s when changing
state.

The wheel-spin ML pipeline was trained on frames taken from video of C57BL/6J mice. It was
tested on both an independent set of C57BL/6J mice and video from three cohorts of
differently-aged J:DO mice, using manually spin counts for 100 10-second clips from each
cohort. Correlation coefficients (Pearson’s R) between the model- and manual-derived spin
counts were 0.994 for the C57BL/6J cohort and 0.995 (young), 0.986 (middle), and 0.980 (old)
across the three J:DO cohorts (Fig. 1B). Across all four test cohorts, accuracy increased with
the mean number of manually-counted spins per clip — 5.73 spins/clip for the C57BL/6J cohort
and 1.52 spins/clip (old), 3.15 spins/clip (middle), and 6.08 spins/clip (young) for the J:DO
cohorts (Fig. 1C). By inspection: most errors were single frames at the beginning or end of the
clip for which the status of transition to a new state (“top” or “bottom”) was ambiguous.

To calculate the average per-day distance run on the wheel: for each ten-minute video,
frame-by-frame parsed HMM states were analyzed to count wheel spins by counting the number
of instances of the state changing (between the marker being on the “top” or “bottom” of the
wheel) and dividing by two. The wheel-spin sums from all videos within each designated DFI
measurement period (approx. one week) were summed and divided by the total length of
footage from that DFI measurement period, in days.

To calculate gait speed on the wheel: for each ten-minute video, frame-by-frame parsed HMM
states were analyzed to identify the number of frames that elapsed for each complete spin
(number of frames divided by frames-per-second for the video). For all complete spins
observed across the designated DFI measurement period, the median length of time t;, .., was
used to define the typical gait speed (1 / ts, meq)-

To calculate the circadian distribution of wheel-running activity: distance in wheel spins was
determined for each 10-minute video, as was done for total distance. For each designated DFI
measurement period, day versus night periods were defined as alternating non-overlapping,
12-hour blocks of clock time, and their phase was allowed to vary by 10-minute increments
across the full 24-hour cycle. For each phase, the average activities across “day” and “night”
videos were calculated, and the differences between the two were recorded. The maximum
absolute value from those differences was used to define circadian activity, normalized to twice
the weighted average across all “day” and “night” values.

Floor-of-cage movement DFI| parameters

Two DFI parameters derived from analysis of movement across the floor of the cage: gait speed
on the floor of the cage; and circadian distribution of movement on the floor of the cage.
Tracking of the mouse as it moved about the cage provided the foundational data for multiple
parameters. This tracking was achieved using an object-detection model, trained by transfer
learning using the COCO-trained ssd_mobilnet_v1 model (downloaded from
http://download.tensorflow.org/models/object detection/ssd_mobilenet_vi1_coco_11_06_2017.ta
r.gz) (Liu et al, 2016; Howard et al, 2017) using images taken from video feeds. Since all video
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footage was taken of singly-housed mice for this study, only the most confidently predicted box
was used from each frame, and it was used regardless of its confidence score.

To calculate gait speed on the cage floor, the position of the mouse was determined for each
frame of video using the center point of the highest-confidence box drawn by the
mouse-detector model. For each frame in a 10-minute video, a refined position estimate was
calculated using the mean position of the mouse across 15 adjacent frames (this truncated
seven frames each from the beginning and end of each video). Using those refined positions,
movement between each pair of frames was calculated as the linear distance between the
positions in the two frames, in units of pixel length, using the Pythagorean theorem. Per-second
distances were calculated for each non-overlapping second of video, using the integer of the
video-encoded frame rate (fps), multiplied by the ratio of the float-encoded fps to its integer
value (to compensate for under-estimates of distance due to frame-unit truncation). Gait speed
was calculated as the weighted average of distance-per-second values, weighted by the
distance-per-second value, which was mathematically equivalent to calculating the average gait
speed per unit of distance covered. These weighted averages were taken across all per-second
estimates available across a day. Overall gait-speed estimates for a mouse across a
frailty-measuring time segment were calculated as the weighted averages of all per-day
estimates from the time interval, weighted to the total distance traveled per day.

Circadian movement on the floor of the cage was calculated using the same distance-traveled
values described above for gait speed. The same method was applied as for the circadian
distribution of wheel-running activity, substituting distance-traveled for wheel-spins.

Body weight change DFI parameter

For the estimation of body weight and assessment of coat condition, pixels overlapping the
mouse (i.e. mouse masks) were identified through a two-step process, performed on each frame
of video. First, the most confidently predicted bounding-box from the mouse-detector model
described above was used to isolate a subset of the frame image, corresponding to the area of
the bounding box extended by 20% along each dimension (10% extension in each direction).
Second, that sub-image, which constituted a zoom-in on the mouse, was fed as input to an
image segmentation model that would provide a mask of the mouse as output. That
segmentation model was trained using “image-segmentation-keras” as described above, again
specifying the “vgg_unet” model architecture (Simonyan, 2014), with input width and height both
set to 256. That model was trained & tested using similarly-boxed images of J:DO mice and
achieved a mean loU of 0.905 (SD 0.050) across 296 test images.

For the per-frame body weight estimate, the area of the mouse mask was normalized to remove
fish-eye lens effects, based on each pixel’s position in the original image. The area of each
pixel a was up-weighted using the following equations, where x., and y,, are the x and y
coordinates of the pixel in the 864 pixel (width) by 648 pixel (height) image, relative to the center
of the image, and the focal length variable f was assigned a value of 415.0:
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That measurement of area of the mouse in the image, in pixels, was then converted to voxels by
accounting for the ratio of cross-sectional area to volume for a sphere (1 * r? versus 4/3 * 1 * r®),
by raising the pixel area to the power of 1.5 (the constant 4/3 was ignored). Based on
regression with training data (description of training data set to follow), the resulting volume in
voxels was converted to body weight in grams using the conversion factor: 1.309 * 10”° voxels
per gram.

For each body weight estimate, an image classification model was applied to identify and
compensate for the largest-error estimates. This model was trained empirically by applying the
above model to the training data set and categorizing images based on the magnitude and
direction of the estimates’ errors. Three classes were defined, separating training-set images
based on errors >1.8-fold from the true value (too low for class “a”; within that range for class
“b”; too high for class “c”). A classification model was trained using transfer learning, starting
from EfficientNet-BO (Tan & Le, 2019; downloaded from
https://tthub.dev/google/efficientnet/b0/classification/1). Input images for that model were
modified versions of the full original image, with the green and red channels of each pixel set to
its grayscale value (average brightness value across the three color channels) and the blue
value set to maximum brightness (255) in masked pixels and minimum brightness (0) in
un-masked pixels (e.g. Fig. 1D). That modified image was classified as likely to be either an
over-estimate, under-estimate, or appropriate estimate of body weight. Body weights from
over-estimate images were multiplied by 0.4, and body weights from under-estimate images
were multiplied by 2.174, based on training data error averages in these categories.

The same modified image was used by a second classification model to assign a reliability
weight to the body weight estimate. Two classes were defined: “mouse” or “other”. Training
and input images were colored in the same manner as input images for the estimate-error
classification model above, with the segmented “mouse” pixels differentially colored. Training
images were manually sorted based on a human rater’s opinion of whether the mask
substantially covered the mouse and not substantially other parts of the image. The
classification model was again trained using transfer learning, starting from EfficientNet-B0O (Tan
& Le, 2019). In the DFI-scoring pipeline, images classified as “other” were assigned reliability
weights of zero. Images classified as “mouse” were assigned a reliability weight w,,, derived
from the confidence score ¢ assigned to that class by the model: w,, = 2*(c - 0.5). Reliability
weights were recorded along with their corresponding body weight estimates for use in weighted
regression or mean estimates, performed later.

Body-weight prediction models were trained and evaluated using an independent data set of
J:DO mouse videos that were collected within a day of a manually-ascertained body weight
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measurement. From a pool of 2,246 weight measurements with matched video, 14,321 frames
corresponding to 974 ground-truth weights (37.6g mean; 8.6g SD; 19.18g minimum, 71.24
maximum weights) were selected for training, with frames corresponding to the same weight
measurement spaced at least 1.5 hours apart. For testing, 230 weight measurements were
selected that did not overlap with the training set, each of which had at least 50 ten-minute
video files captured on the same date as the weight measurement. For evaluation, body
weights were estimated from the first frame of each ten-minute video on the calendar day (up to
144 predictions), and the weighted mean of the predictions from each mouse & day was
compared to the ground-truth measurement for that mouse on that day.

For DFlI, the rate of change of body weight was calculated across each designated DFI
measurement period. Video frames were sampled once per minute, and estimates and
accompanying weights were ascertained as described above for each video frame image.
Rates of body-weight change were estimated using weighted linear regression with the time at
which the video frame was recorded as the independent variable.

Coat condition and nest movement DF| parameters

For the assessment of coat condition, the mouse detector model used above in the first step of
mouse identification was again used to define a zoomed-in image of the mouse (as above:
extended by 20% along each dimension). Sobel gradients (Sobel & Feldman, 1968) at each
pixel were calculated using the OpenCV “Sobel” function (Bradski, 2000), along the x-axis (s,)
and y-axis (s,) separately, then calculating the pixel value s, as V(s 2 + s,%). The overall Sobel
value s,, was calculated as the mean of s, values for all pixels overlapping the mouse mask,
defined as described for body weight. The brightness of the mouse’s coat c¢,, was also
calculated as the median pixel intensity for all pixels overlapping the mouse mask. For both s,
and c,,, the overall value for an animal, for a designated DFI measurement period, was taken as
the mean of all estimates collected from across that period, with one frame sampled per minute.
Due to systematic bias of the intensity of Sobel gradients across mice of different coat colors
(Fig. 1E), the final s,, value was adjusted based on coat color, as ascertained by coat
brightness. For mice with an average c,, less than 30 (black mice), the s,, value was increased
by 2; and for mice with an average c,, greater than 70 (albino mice), the s,, value was increased
by 4. For the remaining mice (agouti), the s,, value was not adjusted.

For the assessment of nest movement, a semantic segmentation model was trained to identify
nest material (cotton in the video cages). Nest material was manually labeled for training and
test-set images from an independent video data set. The segmentation model was trained
using “image-segmentation-keras” as described above, again specifying the “vgg_unet” model
architecture (Simonyan, 2014), with input width set to 768 and input height set to 512. That
model achieved mean loU’s of approximately 0.75 across two separately-annotated test sets
(both manually annotated, months apart but by the same rater). The position of nest material
was taken for each frame as the mean position of masked pixels. Positions were estimated for
each ten-minute video from across each designated DFI measurement period: for each video,
the position was calculated as the average of positions from frames sampled once per minute
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across the video. Position was specified in terms of the pixel grid of the source images.
Displacement was measured between time-adjacent videos, in pixels per ten-minute interval. In
cases of a missing video file, displacement rate was calculated between nearest-time-adjacent
videos, with the displacement rate still calculated per ten-minute interval. The output value was
the average of all displacement-rate values obtained across the designated DFI measurement
period.

Parameterization of measurements into frailty values

For each of the eight components of DFI, the measured value was converted into a frailty score,
meant to indicate observation of an exceptional value that reflects an abnormal, pathological
state. Threshold values were determined ad hoc, with guidance provided by two age-stratified
training sets (one of C57BL/6J mice, the other of J:DO mice; described above). To mimic the
structure and concept of MFI and similar frailty indexes, each of the eight components was
scored on a scale from zero to one, with zero indicating normal and one indicating frail behavior.
In MFI, quantification of intermediate or ambiguous frailty was permitted, to a very limited extent,
through the optional assignment of a score of 0.5. For DFI, threshold values were established
for scores of either zero or one, and intermediate scores were linearly represented in terms of
their relative proximity to those two thresholds. The overall DFI value was calculated as the
average of the eight parameterized scores. Those component scores and the overall score are
provided for each measurement of DFI in Supplemental Table 3.

For gait speed on the wheel, frailty values of zero and one were thresholded at 0.5 and 0.1
spins per second, respectively. For gait speed on the floor of the cage, frailty values of zero and
one were thresholded at 60 and 20 pixel-lengths per second, respectively. For circadian
behavior on both the wheel and the floor of the cage, frailty values of zero and one were
thresholded at circadian ratios of 0.6 and 0.2, respectively. For total wheel-running distance,
frailty values of zero and one were thresholded at 5,000 and zero spins per day, respectively.
For nest movement, frailty values of zero and one were thresholded at 7.5 and 2.5 pixel-lengths
per ten-minute interval, respectively. For coat quality, frailty values of zero and one were
thresholded at Sobel values of 20 and 25, respectively. For body weight change, frailty values
of zero and one were thresholded for the absolute value of the per-day weight change, at 1 and
2 grams per day, respectively. For each component of each DFI measurement, the
pre-parameterized phenotype values are provided in Supplemental Table 4.

Data properties and statistical analyses

For analysis of MFI versus age, all recorded and properly formatted MFI measurements were
used, with age calculated as the difference between the animal’s cohorts’ date of birth and the
date of the MFI assay.
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For video monitoring, footage was streamed into cloud storage from a camera-enabled cage
rack, with one camera per cage position. Data were organized by the device ID of the camera
that collected it, and by date and time of acquisition. An electronic system maintained records
of which mouse occupied which cage position at what times and those records were used to
define DFI measurement period. For each DFI measurement, a mouse was recorded in a video
cage for approximately one week, singly housed, one week after MFI measurement. For
analysis of DFI, incomplete days of video at the beginning and end of the designated DFI
measurement period were excluded from the analysis. Only DFI periods with at least two full
days of observation were included; for observation periods with more than six full days of
observation, only the first six full days were considered.

Each DFI measurement was assigned to the first full day of video recording as the date of
measurement. For analysis of DFI versus age, all DFI measurements meeting the criteria
above were used, with age calculated as the difference between the animal’s cohorts’ date of
birth and the first date of the DFI measurement date. A table of the measurement intervals that
is compliant with the input requirements for the software system is provided in Supplemental
Table 5.

For the comparison of MFI versus DFI, measurement pairs were ascertained by seeking, for
each DFI measurement, the MFI measurement from the same mouse with the closest date of
acquisition. Only pairs of data collected fewer than eight days apart were considered, with the
DFI assay date corresponding to the beginning of DFI video acquisition. A table of qualifying
MFI/DFI pairs is provided in Supplemental Table 6. For comparisons between age-normalized
MFI and age-normalized DFI, linear regression was performed between age and the subset MFI
or DFI data for which paired data had been found. The slopes calculated from those two
regressions were used to calculate residuals of each datum versus its respective regression
against age, and the MFI residuals were regressed against and correlated with the DFI
residuals.

All regressions and correlations were calculated using the “scipy.stats.linregress” function from
Scipy (Virtanen et al, 2020), which in addition to slope and intercept returns Pearson R and
regression p-value. Clustering of phenotypes based on a matrix of correlation coefficients was

performed using Scipy’s “scipy.cluster.hierarchy” module: the “linkage” method was used with
the “weighted” option, invoking hierarchical WPGMA clustering.

Results

DFI values correlated with MFI and chronological age

Data collected for our study included 587 measurements of MFI, taken across 213 mice, aged
from 252 to 938 days (data supplied in Supplemental Table 2). As has been generally reported
for frailty indexes, MFI correlated positively with chronological age (Fig 2A; Pearson R = 0.27;
p-value = 1.7 * 10""). This correlation held for both females (348 measurements from 128
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animals; Pearson R = 0.37; p-value = 3.8 * 107"®) and males (239 measurements from 85
animals; Pearson R = 0.23; p-value = 2.7 * 10*).

Our study also included 576 instances of measured DFI (data supplied in Supplemental Table
3). Similar to MFI, DFI correlated positively with chronological age (Fig 2B; Pearson R = 0.29;
p-value = 8.0 * 10"). Again, this relationship held for both females (341 measurements from
136 animals; Pearson R = 0.30; p-value = 1.4 * 10®) and males (235 measurements from 88
animals; Pearson R = 0.26; p-value = 4.6 * 10).

Our study included 567 instances for which a DFI measurement was taken within seven days of
an MFI measurement of the same mouse (Supplemental Table 6). DFI values were positively
correlated with MFI values (Fig. 2C; Pearson R = 0.22; p-value = 1.8 * 107). This correlation
held for both females (337 MFI/DFI pairs from 126 animals; Pearson R = 0.29; p-value = 8.2 *
10®) and males (230 MFI/DFI pairs from 84 animals; Pearson R = 0.19; p-value = 3.1 * 107).

The correlation of both MFI and DFI with chronological age (Fig. 2C) implied that the correlation
between MFI and DFI could have been mediated by chronological age rather than the intended
mediator, physical frailty (Fig. 2D). To evaluate that possibility, the residuals of both MFI and
DFI from the regression of each with chronological age were compared. Though weakened
versus the raw values, the correlation between these residuals remained positive and
statistically significant (Fig. 2E; Pearson R = 0.15; p-value = 2.7 * 10*).

The significance of correlation between age-adjusted MFI and age-adjusted DFI provided
reassurance that these two metrics did indeed reflect overlapping aspects of physiological
decline. Furthermore, the low values of correlation coefficients amongst these two metrics and
chronological age were expected given the stochastic nature of the underlying phenotypes.
Nonetheless, each metric was likely to have captured aspects of age-related physiological
decline missed by the other. To assess the collective potential for improvement of both metrics,
we averaged their outputs into a combined frailty index and evaluated it versus chronological
age. The extent of correlation was greater (Pearson R = 0.34) and more significant (p-value =
3.5 *10"") than for either individual score (Fig. 2F), suggesting opportunities for further
improvement in this field.

Individual DFI components provided variable utility in the test
cohort.

Our implementation of DFI included eight measurements, reflecting four arenas of function:
physical fitness capability, environmental engagement, circadian rhythm, and body condition
(two measurements per arena; see Methods). In all cases, methods were developed and
parameterized using separately-collected training data, and the relevances to chronological age
and MFI in our large test cohort varied considerably (Fig. 3A). Generally, the gait/wheel and
circadian components of the DFI were correlated with both MFI and chronological age, though
to varying degrees. Meanwhile, components designed to detect frailty based on nesting
material, coat quality, and body weight change shared little correlation with those benchmarks.
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The clustering of DFI and MFI components based on the all-by-all correlation matrix revealed
little structure (Fig. 3B). Few instances of substantial correlation between frailty traits were
observed. Versus either the higher-order parameters (MFI, chronological age) or the
component parameters of MFI with seeming relevance, multiple explanations may account for
missing correlation aside from true irrelevance of the traits. Among them: poor model
performance at measuring phenotypes; inappropriate parameterization of frailty thresholds; or
sparsity of instances of certain types of frailty in a cohort of mostly healthy mice. Below, we
discuss the derivation and performance of each DF| parameter.

Walking and running statistics robustly captured age-related decline.

Voluntary wheel-running is an activity known to be influenced by the physical health of mice
(Greenwood & Fleshner, 2019). Our capture of elapsed time for each spin of the wheel (see
Methods) permitted multiple facets of health and behavior to be probed using those data. First,
the total amount of wheel running could be determined, measured as total number of spins per
day. This parameter captured an aspect of environment engagement (quantity of interaction
with an enrichment item) while also presumably reflecting physical endurance and athletic
performance. In both our C57BL/6J and J:DO training sets, this feature declined sharply with
chronological age, appearing to approach zero asymptotically as mice became old (Fig. 4A).
When parameterized to frailty, strong correlation with chronological age was maintained (Fig.
4B; R = 0.32, p-value = 1.4 * 10", and correlation with MFI was achieved (R=0.18,p=1.8*
10%).

Gait speed on the wheel, interpreted in terms of athletic performance, was also derived from the
wheel rotation frequencies (see Methods). Like total wheel-running, this parameter declined
sharply with chronological age in both C57BL/6J and J:DO training-set mice (Fig. 4C). This
relationship was maintained when parameterized to frailty (Fig. 4D; R = 0.32; p-value = 8.9 *
107"°), and correlation was achieved with MFI (R = 0.24; p-value = 3.3 * 10®). Gait speed on the
wheel has a lower-intensity counterpart in ambulation around the floor of the cage. The context
is different (slower ambulation in the context of everyday activity, versus purposeful
exercise-based enrichment), but the relationships with chronological age and MFI were similar.
A strong decline with age among both C57BL/6J and J:DO training-set mice (Fig. 4E) was
maintained when parameterized for frailty (Fig. 4F; R = 0.14; p-value = 8.6 * 10**) and was also
correlated with MFI (R = 0.21; p-value = 6.1 * 107).

Circadian regulation of movement decreased with age.

The multi-day, continuous-monitoring nature of our video data for DFI allowed us to uniquely
incorporate circadian rhythm into our assessment of frailty. We implemented a measure of
circadian behavior that contrasted the amount of observed movement between alternating
twelve-hour blocks. This intentionally coincided with the alternating 12-hour light/dark periods
experienced by the mice (see Methods), but we did not require strict adherence to the light cue.
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Rather, our implementation measured the overall periodicity of behavior. There are other
methods for evaluating circadian rhythms (Shimomura, 2001), but this one captures a known
pathology of aging: the maintenance of activity during what should be a rest period (Musiek &
Holtzman, 2016).

Circadian regulation of ambulatory activity was observed to lessen with age among both
C57BL/6J and J:DO training-set mice, both on the wheel (Fig. 5A) and on the floor of the cage
(Fig. 5B). When parameterized for frailty, the decline of circadian activity with age was
maintained, both for wheel-running activity (Fig. 5C; R = 0.18; p-value = 2.1 * 10°) and for
movement on the floor of the cage (Fig. 5D; R = 0.11; p = 6.9 *10?). Both metrics also
correlated with overall MFI, with correlation coefficients of 0.13 (p-value = 2.1 * 10°®) and 0.11
(p-value = 0.011) for wheel-based and cage floor-based activity, respectively.

Frailty measurements of coat quality, body-weight change, and nest
movement showed no statistical change with age.

Three components of our DFI implementation seemed justifiable to include but nonetheless
performed poorly against the chronological age and/or MFI values of our test set. The first of
these sought to quantify the movement of nest material. It is known that mice in pain or distress
will expend less effort constructing nests (Gaskill et al, 2013), a phenomenon that is most
effectively observed when mice are first provided with nesting material (Giménez-Llort &
Torres-Lista, 2021). Our DFI analysis was not timed to the specific time at which the mouse was
introduced to a new cage with new nest material and was therefore limited to the continued
maintenance and modification of existing nests. Frailty was therefore parameterized to only
capture instances of severely depleted engagement with the nest and was therefore only
sparsely observed (Fig. 6A). Though nest-moving frailty trended positively with both
chronological age (R = 0.05) and MFI (R = 0.07), in neither case was the association statistically
significant. This parameter had no obviously analogous component of MFI. The most highly
correlated MFI component was “whisker loss” (R = 0.14; p-value = 9.3 * 10™).

The second poorly-performing DFI component was “body weight delta”. The foundation of this
parameter was a body-weight prediction tool. First developed and tested on an independent
data set to predict body weight for a mouse by averaging from estimates taken across a day’s
worth of video (sampled every ten minutes; results averaged across 144 estimates/day), this
model produced daily estimates within ~4 grams of the laboratory measured body weights (R =
0.88 across a test-set of 250 measurements with an SD = 33.9 grams; p-value = 7.2 * 1077; Fig.
6B). For frailty, this prediction tool was used to identify rapid gain or loss of weight by
regressing across estimates taken once-per-minute across each designated DFI measurement
period

Rapid weight gain or loss is a known harbinger of mortality in mice that is often considered as a
humane endpoint (Toth, 1997). It is sometimes included in traditional frailty assessments, but


https://doi.org/10.1101/2022.07.19.500666
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.19.500666; this version posted July 20, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

doing so requires the manual collection of weights at disparate time points, therefore modifying
the nature of the frailty index into a longitudinal assessment (e.g. Mach et al, 2022). For DFl,
the trend in body weight across the ~one-week interval of observation time was used to
calculate body weight dynamics as a single-observation measurement. Among both C57BL/6J
and J:DO training-set mice, this method identified body weights as being highly stable, with a
limited number of outlier exceptions (Fig. 6C). For frailty, this metric was parameterized to
capture those outliers. The resulting frailty scores were significantly correlated with neither
chronological age (Fig. 6D; R =-0.01; p-value = 0.89) nor MFI (R = -0.00; p-value = 1.00). The
two most highly correlated individual MFI components were “body condition score” (R = 0.09;
p-value = 0.025) and “vision loss” (R = 0.13; p-value = 2.2 * 10%). The correlation with “body
condition score” suggested that some appropriate signal was captured by this metric, but that
signal was overwhelmed by the noise of the measurement. Reassuringly, MFI “body condition
score” had a negative, non-significant correlation with chronological age in our test cohort (R =
-0.04; p-value = 0.30), suggesting that the inability of this parameter to correlate with
chronological age was not entirely due to inaccuracy of the measurement.

The third poorly-performing DFI component was “coat quality”. For this metric, the Sobel
gradient estimator was used to quantify the roughness of the portion of images containing the
mouse, as determined by a segmentation model (see Methods). Parameterized for frailty, no
correlation was found with chronological age (Fig. XE; R = -0.06; p-value = 0.19), and a
negative correlation was found with MFI (R = -0.10; p-value = 0.018). Conceptually, “coat
quality” could have encompassed multiple components of the MFI: “alopecia”, “loss of fur color”,
“dermatitis”, “coat condition”, and/or “piloerection”. All of these were expected to increase the
visual unevenness of the mouse’s coat. However, only one of these five MFI components
positively correlated with DFI “coat quality”, and it was the only one of the five with a statistically
significant correlation: “loss of fur color” (R = 0.13; p-value = 2.7 * 10®). That MFI value also
had a negative correlation with chronological age in our frailty study, though that correlation was
not statistically significant (R = -0.04; p-value = 0.32). Taken together, these results suggested
that the Sobel estimate accurately captured the color-loss aspect of coat condition, and that
supplementation with additional measurements to better capture other aspects of coat condition
would be preferential to abandonment of this parameter.

Discussion

Here, we implemented a digital frailty index (DFI) for mice based entirely on the computational
analysis of continuously-collected home-cage video footage. We evaluated performance of our
DFI against both chronological age and manual frailty index - MFI - and found it to correlate with
both metrics in a cross-sectional study using J:DO mice. Importantly, the latter experimental
design condition (the use of genetically diverse mice, with varying builds and coat colors)
demonstrated our method to not be dependent for its effectiveness or relevance to a particular
inbred strain and therefore of potential use across a wide range of in vivo models.

Frailty indexes are so named because they are meant to reflect a lack of physical well-being.
They are not explicitly designed to be predictors of chronological age, but the natural
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physiological decline that accompanies age results in a natural and expected age-dependence.
Traditional frailty indexes are not strategically designed to capture chronological age aside from
its effect on disability. However, it has been shown that even the components of a traditional
mouse frailty index can be weighted to optimize the accurate prediction of age (Schultz et al,
2020). The correlation between DFI and MFI across an age-diverse cohort therefore did not
guarantee that DFI was actually performing as an index of frailty, but rather could have been
performing as a chronological age predictor (FIG. 2D). To allay that possibility, we evaluated
MFI versus DFI scores after regressing the age component out of each, observing the
correlation between the remaining age-independent frailty residuals to retain their correlation
(Fig. 2E).

Home-cage DFI represents a unique practical step forward for longitudinal health assessments
in terms of vivarium operational efficiency and scalability. Since observations are taken in a
home-cage environment, highly-trained personnel are not required to take measurements, just
the vivarium husbandry staff required for animal feeding and care. Furthermore, in order to be
meaningful, traditional frailty assessment requires consistent scoring across large and
longitudinal. In practice, substantial interobserver variability drives variance up as studies are
scaled up and additional researchers are required to collect data, negating much of the
statistical power that would otherwise accompany a larger data set. On the other hand, DFI can
be applied in a uniform manner regardless of the experimental scale. This advantage also
applies to the length of studies: for long-term aging studies, it can be difficult to guarantee the
consistent staffing required for meaningful longitudinal frailty data.

Home-cage DFI also represents a unique step forward for longitudinal health assessments in
terms of improving animal welfare. The home-cage context of the measurement eliminates a
substantial but otherwise almost unavoidable source of stress for the animals: handling. Frailty
assessments are generally non-invasive and therefore already considerate of animal welfare,
but animal handling remains and is difficult to avoid. The technical success of video-based DFl,
itself a multi-faceted measurement, demonstrates the utility of video as a physiological
measurement tool that can abrogate the need for animal handling.

While the DFI implementation presented here substantially advances the operational and animal
welfare aspects of longitudinal health studies and meets the correlative requirements for general
use, it certainly also leaves room for improvement. It will likely be refined and augmented in the
future, to provide greater sensitivity and nuance to the detection of animal frailty. Nonetheless,
even in its current state, it serves as a proof of principle for the aspirational concept of an
operationally efficient and humane digital vivarium (Baran et al, 2022).

Figure Legends

Figure 1. Example video stills and methodological details.
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A) An example frame of video footage, typical of nighttime video collected in this study.
Nighttime illumination was near-IR, resulting in grayscale images. Daytime images were
similar, but in RGB color.

B) Performance of the wheel-spin detection pipeline versus test data. For each of four
different cohorts of mice, 100 10-second video clips were manually annotated for the
number of wheel spins that occurred, in increments of half-spins, based on appearance
and disappearance of the black marker. Those values are correlated against the
number of spins annotated by the ML pipeline across the same time segment. The four
cohorts included footage of either C57BL/6J mice or young, medium-age, or old J:DO
mice. See Methods for details.

C) The distributions of wheel-spin counts across 10-second clips from the four manually
annotated test sets from panel (B).

D) An example of a modified input image for body-weight prediction error-detection models,
with the blue channel modified to indicate masked (blue) versus unmasked (yellow)
output from the mouse semantic segmentation model. See Methods for details.

E) Sobel values versus median pixel brightness for training-set J:DO mice, colored
according to human assignment of coat color.

Figure 2: DFI positively correlated with MFI and chronological age.

A) Chronological age (x-axis) versus MFI (y-axis). Mean (horizontal bars), standard errors
(solid vertical bars), and standard deviations (dotted vertical bars) are shown for each of
three measurement instances taken for each of eight birth cohorts (with cohort 8 split
into two sub-groups: see Key). The linear regression of age versus MFI for all individual
values is shown in green.

B) Chronological age (x-axis) versus DFI (y-axis). Plotted as in (A).

C) MFI (x-axis) versus DFI (y-axis). For each of three MFI/DFI measurements taken for
each cohort, a cross is drawn whose center is the mean value on each axis for one
cohort/measurement, and whose bars indicate the standard errors of those means along
each axis. Colored according to the Key. The linear regression of MFI versus DFI for all
individual values is shown in green.

D) A path diagram depicting a model for consideration of the possible relationships between
MFI, DFI, and chronological age. See Results and Discussion.

E) Age-normalized MFI (x-axis) versus age-normalized DFI (y-axis), plotted as in (D).

F) Chronological age (x-axis) versus combined frailty index (CFl: the average of MFI and
DFI; y-axis). Plotted as in (A).

Figure 3: Most DFI components positively correlated with MFI and chronological age.

A) A heat map indicating the correlation coefficients between individual components of the
DFI (and, at bottom, the full DFI) versus MFI and chronological age.

B) Hierarchical clustering (left) of individual MFI and DFI components, and chronological
age, based on the correlation coefficients depicted in the heatmap (right). MFI
components are labeled in orange; DFI components are labeled in blue; chronological
age is labeled in green. Only MFI components observed with non-zero values >5 times
across the study are included.
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Figure 4. DFI components based on ambulatory activity captured age-related decline.

A)

C)
D)
E)

F)

Training set distributions and frailty parameterization for total wheel distance. Left:
statistics for three consecutive, week-long measurements each, for three cohorts of
differently-aged C57BL/6J mice. Right: similar statistics for single-week measurements
from differently-aged J:DO mice. For each cohort, green bars indicate the mean value;
dark blue bars indicate the median value; and light blue bars indicate the 10th and 90th
percentiles. Far right: red arrows indicate the threshold values for a frailty score of zero
(upper arrow) or one (lower value). Frailty values in between the thresholds (gray
rectangle) were given linearly intermediate frailty values (see Methods).

Chronological age (x-axis) versus wheel distance frailty scores (y-axis) for the main
study population. Mean (horizontal bars) and standard deviations (vertical bars) are
shown for each of three measurements taken for each of eight birth cohorts (with cohort
8 split into two sub-groups: see Key from Fig. 2). The linear regression of age versus
wheel distance frailty score, for all individual values, is shown in green.

Training set distributions and frailty parameterization for wheel gait speed. Plotted as in
(A).

Chronological age (x-axis) versus wheel gait speed frailty scores (y-axis) for the main
study population. Plotted as in (B).

Training set distributions and frailty parameterization for cage-floor gait speed. Plotted
as in (A).

Chronological age (x-axis) versus cage-floor gait speed frailty scores (y-axis) for the
main study population. Plotted as in (B).

Figure 5. DFI components based on circadian activity captured age-related decline.

A)
B)
C)

D)

Training set distributions and frailty parameterization for the circadian ratio of
wheel-running activity (see Methods). Plotted as described for Fig. 4A.

Training set distributions and frailty parameterization for the circadian ratio of movement
on the floor of the cage (see Methods). Plotted as described for Figure 4A.
Chronological age (x-axis) versus circadian wheel-running frailty scores (y-axis) for the
main study population. Plotted as in Fig. 4B.

Chronological age (x-axis) versus frailty scores for circadian movement on the floor of
the cage (y-axis) for the main study population. Plotted as in Fig. 4B.

Figure 6: DFI components based on nest movement, rapid body weight change, and coat
roughness failed to capture age-related decline.

A)

B)

Chronological age (x-axis) versus nest movement frailty scores (y-axis) for the main
study population. Plotted as in Fig. 4B.

Performance of the body weight prediction model using 24-hour averages. Measured
body weights (x-axis) versus predicted body weights based on statistical averaging of
model outputs from across the same 24-hour period (y-axis) are plotted in green: each
point is a measurement/prediction instance. Shown along with the calculated regression
line (blue) and identity line (red).
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C) Training set distributions and frailty parameterization for changes to body weight.
Plotted as described for Fig. 4A, but with individual values outside of the 10th and 90th
percentiles additionally plotted (purple), and with both positive and negative thresholds
for the absolute-value-based frailty score depicted (inner thresholds correspond to zero;
outer thresholds correspond to one; see Methods).

D) Chronological age (x-axis) versus frailty scores based on changes in body weight
(y-axis) for the main study population. Plotted as in Fig. 4B.

E) Chronological age (x-axis) versus frailty scores based on coat roughness (y-axis) for the
main study population. Plotted as in Fig. 4B.

Data & code availability

Code for running DFI analysis on a set of videos is available at
https://github.com/graham-calico/DFI_v1.

Supplemental Table 1: Census data on all mice obtained for this study.

Supplemental Table 2: MFI score data.

Supplemental Table 3: DFI score data: overall score and parameterized components.
Supplemental Table 4: pre-parameterized values for DFI components.

Supplemental Table 5: time intervals of DFI video collection, compliant with DFI software.
Supplemental Table 6: qualifying MFI/DFI pairs.
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