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Abstract

Use of prescription opioids, particularly oxycodone is an initiating factor driving the current
opioid epidemic. There are several challenges with modeling oxycodone abuse. First,
prescription opioids including oxycodone are orally self-administered and have different
pharmacokinetics and dynamics than morphine or fentanyl which have been more commonly
used in rodent research. This oral route of administration determines the pharmacokinetic
profile, which then influences the establishment of drug-reinforcement associations in animals.
Moreover, the pattern of intake and the environment in which addictive drugs are self-
administered are critical determinants of the levels of drug intake, of behavioral sensitization,
and of propensity to relapse behavior. These are all important considerations when modeling
prescription opioid use, which is characterized by continuous drug access in familiar
environments. Thus, to model features of prescription opioid use and the transition to abuse, we
designed an oral, homecage-based oxycodone self-administration paradigm. Mice voluntarily
self-administer oxycodone in this paradigm without any taste modification such as sweeteners,
and the majority exhibit preference for oxycodone, escalation of intake, physical signs of
dependence, and reinstatement of seeking after withdrawal. In addition, a subset of animals
demonstrate drug taking that is resistant to aversive consequences. This model is therefore
translationally relevant and useful for studying the neurobiological substrates of prescription

opioid abuse.
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Introduction

Misuse of prescription opioids continues to present a significant public health and economic
burden worldwide. In 2019 in the United States, 9.7 million people reported misuse of
prescription pain relievers, and one-third of this population reported misusing of oxycodone [1].
Despite its importance, modeling prescription opioid abuse in rodents has been challenging [2-
4]. Certain aspects of prescription opioid use, such as the oral route of administration and
regular, long-term intake, may contribute to abuse liability and propensity toward relapse. As
such, a representative preclinical model of prescription opioid abuse is critical for understanding

the neurobiology underlying this disorder.

In contrast to many reinforcing substances, prescription opioids such as oxycodone (OxyContin
™ Tylox™or Percodan™, abbreviated OXY) are most often orally self-administered: among
chronic and recreational opioid users, oral self-administration is decidedly preferred over non-
oral routes (e.g., insufflation, injection) [5]. The pharmacokinetic and pharmacodynamic profiles
of opioids and therefore their physiology, time-course of action, and metabolism vary widely
across routes of administration [6] and among subclasses of opioids [7-9]. Specifically, OXY
exhibits higher bioavailability in the Gl tract relative to morphine or fentanyl when administered
orally [7-11]. It is also important to note that while all prescription opioids are thought to exert
their reinforcing properties via activation of p-opioid receptors, OXY exhibits differentially binding
affinities to other subclasses of opioid receptors relative to morphine or fentanyl [12] . Further,
the OXY is subject to different primary enzymatic degradation pathways relative to other p-
opioid agonists [13]. These differences between classes of p-opioid agonists with respect to
receptor binding, signaling and enzymatic degradation result in differential engagement of
downstream signaling pathways with variable efficacy and rates of receptor desensitization [14],
Emery 2016. The rate at which brain levels of a drug rise is critical for establishing associations
between drug intake and its euphoric properties [15, 16]. Since OXY exhibits slower absorption
and distribution orally relative to intravenous or subcutaneous routes [17] modelling oral OXY
intake would provide a potentially more relevant comparsion to the clnical features of OXY

intake and misuse.

The pattern of intake of drugs of abuse is also relevant for establishing learned drug
associations [18], which contribute to the subjective reinforcing properties of the drug, escalation
of intake, and propensity toward reinstatement [19-25]. Specifically, intermittent drug access,
which produces fluctuating brain drug levels, exacerbates mesolimbic adaptations induced by

both cocaine [26, 27] and opioid self-administration [28, 29] and increases motivation to self-
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administer the drug later on [30]. In contrast, prescription opioids, particularly extended release
formulations, are designed to deliver a consistent analgesic response without rapid fluctuations
in drug concentrations in the brain. Recapitulating this continuous access pattern should also be
considered when modeling prescription opioid abuse. Prescription opioids are also most
frequently self-administered in a familiar setting such as the home (see Caprioli et al. (2007) for
a review[31]). Environmental context (i.e., setting of drug taking) plays an important role in both
drug taking and reinstatement, a finding that has been well-documented in humans and
recapitulated by animal models [31-35]. Yet, prior models of oral opioid self-administration have
taken place in novel contexts (e.g., operant chamber) and under food restriction [2-4]. Thus,
modelling continuous prescription opioid access in a familiar environment may provide a more

clinically relevant comparison to prescription opioid self-administration

Previous investigations have investigated the oral route of self-administration by implementing
two-bottle choice procedures, where animals are free to choose between bottles containing
drug- and drug-free solutions. Because the opioid alkaloid structure confers a bitter taste to
opium derivatives, sweeteners were added to encourage animals to self-administer opioids, or
adulterants to the drug-free bottle to control for aversive taste [36-38]. However, the addition of
these extraneous reinforcers or adulterants may introduce experimental confounds [39]. For
example, sucrose itself can support seeking after abstinence [40], disrupt overall patterns of
fluid intake [41], and stimulate dopamine and opioid receptors in the mesolimbic pathway [42-
45]. Therefore, we sought to develop a preclinical model for studying prescription opioid use
disorder that recapitulates continuous access pattern and oral route of administration without

adulterants.

Here, we characterize a home cage-based, oral OXY self-administration paradigm. Our
paradigm produced behavioral features of opioid use disorder (OUD) as defined by the fifth
version of the diagnostic and statistics manual (DSM)[46] including escalation of drug intake,
physical signs of dependence, drug craving after withdrawal and drug use despite negative
consequences. These behaviors were also accompanied by neural changes that included
potentiation of excitatory synapses in the nucleus accumbens (NAc), which is a conserved
neurobiological substrate of drug reinstatement [47-49]. We demonstrate that the high-
throughput nature of our model is valuable for studying individual variability in both the amount
and pattern of drug intake, as well as individual susceptibility to aversion-resistant drug

consumption and reinstatement of drug-seeking behaviors after withdrawal.
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Materials and Methods

Subjects. A total of 112 adult mice (C57BL/6J background; age, 8—-16 weeks) were used in this
study. Both males (n=58) and females (n=67) were included and balanced across experiments
and treatment groups. Mice were housed in standard mouse vivarium caging and kept on a 12 h
light/dark cycle (light onset, 7:00 A.M.; light offset, 7:00 P.M., temperature (22-26°C), in-cage
humidity (22-50%). Mice had ad libitum access to food and were single housed during self-
administration experiments. Experiments were run in successive waves of treatment- and sex-
matched cohorts with up to 20 mice being run simultaneously. All studies were approved by the

internal animal care and use committee at Washington University in St. Louis.

OXY self-administration. Habituation: Mice were single housed and cages were equipped with
an in-cage two-bottle choice apparatus prior to the start of the escalation protocol, during which
two 15 mL conical tubes equipped with a drinking valve in a 3D printed in-cage holder was the
only source of drinking water (water was supplied in both tubes). Phase I: Mice in the
experimental group (“OXY mice”) were supplied with a single bottle of oxycodone hydrochloride
(Sigma Aldrich) dissolved in drinking water as their only source of liquid; 0.1 mg/mL was
available for 24 hours, 0.3 mg/mL was available for 48 hours, and 0.5 mg/mL was available for
48 hours (Fig 1A), based on an operant protocol developed by Phillips et al. [2]. Mice in the
control group (“CTRL mice”) had access to drinking water only throughout the protocol. The
position of the bottle within the two-bottle apparatus was switched daily. Phase II: OXY (1.0
mg/mL in drinking water) and drinking water were supplied to OXY mice ad libitum in the two-
bottle choice apparatus, position of bottles was balanced within groups at the population level.
Both solutions were available 24 hours a day for 7 days. Drinking water was supplied in both
bottles for CTRL mice. Withdrawal: The two-bottle lickometer was removed from the home cage
after the 7-day two-bottle choice period, and standard cage-top water bottles were replaced as
the source of drinking water. Separate groups of mice were used for the responder analysis,

OXY seeking, quinine adulteration and electrophysiology studies outlined below.

Home cage lickometer devices. Initial iterations of the OXY two-bottle choice procedure did not
include lickometer devices, and only focused on volumetric analysis. Devices used in these
experiments are low-cost and open-source, with detailed parts lists, code and fabrication
instructions published and available on-line [50, 51]. Drinking water and OXY solutions were
provided using an in-cage two-bottle lickometer apparatus which detects interactions with two

separate drinking spouts via a pair of photobeams [51]. In a subset of experiments, cages were
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also equipped with a wireless passive infrared (PIR) activity monitor [50] to measure mouse
activity levels (Models 4430 and 4610 from MCCI Corporation, Ithaca NY). Lickometer counts
on each lickometer and PIR activity data were transmitted via Low frequency Radio Wide Area
Network (LoRaWAN) using Internet of Things (loT) infrastructure (The Things Network,
Netherlands), saved in a cloud-database (InfluxDB), and visualized with an online dashboard
(Grafana). The wireless lickometer and PIR sensors were also equipped with back-up microSD

cards and liquid volumes were measured manually each day.

Responder analysis, Lickometer preference index and circadian index: Responder analysis was
performed on a subset of animals in which lickometer and volumetric data were available.
Volumetric intake was used to calculate whether animals were high or non-responders. Animals
were considered high responders if the overall amount of OXY consumed relative to water was
over >90%, and non-responders if the OXY solution accounted for less than 50% of their total
overall volume consumed over the 7 day 2 bottle choice period. The Lickometer Preference
Index ([Counts on OXY-containing bottle] / [Total Counts], Fig 2A), was used to determine the
number of general interactions between water and OXY containing bottles and the Circadian
Index ([Total Counts during the dark cycle] / [Total Counts during the light cycle]; Fig 2B) was

used to evaluate the microstructure of drinking activity as a proxy for circadian behavior.

OXY Seeking Test. In a subset of mice (ncrre =9M/10F, noxy = 13M/13F), an OXY seeking test
was performed under extinction conditions. 21 days following removal of the lickometer device,
a lickometer device containing 2 empty bottles was re-introduced to the cage for a 60-minute
probe trial, and interactions with the lickometer tubes as detected by the photobeam were

recorded. Trials were run between 12pm and 2:30 pm for all mice.

Quinine Adulteration. In a subset of mice (nctr. = 8M/7F, noxy = 8M/7F) we tested resistance of
OXY drinking to quinine adulteration. Following the conclusion of the 7 days of two-bottle choice
protocol, increasing concentrations of quinine were added to the OXY-containing bottle (OXY
mice), such that OXY mice had the choice between standard drinking water (one bottle) and 1.0
mg/mL OXY + quinine. CTRL mice had the choice between standard drinking water (one bottle)
and water + quinine. Mice were given 48 hours at each quinine concentration in increasing

order: 125 uM, 250 uM, 325 uM, volumes consumed from each tube were recorded daily.

Physical Withdrawal Signs. Markerless pose estimation was used to quantify physical signs of
opioid dependence in a subset of mice (ncrr. = 6M/6F, Noxy = 8M/12F) Acquisition: After either

24 hours (acute) or 21 days (protracted) of withdrawal, mice were habituated to the testing room
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for at least 1 hour. Fifteen minute videos were acquired of individual mice at > 60 fps in a 4” x 4”
x 8” plexiglass chamber with an unobstructed background and uniform overhead lighting.
Videos were scored for signs of withdrawal (jumps, tremors, movement speed) and anxiety
related behaviors (grooming, rearing, climbing). Markerless pose estimation was conducted
using DeepLabCut™ (DLC, version 2.2b6 [46,47]): 12 frames each from 64 videos representing
all treatment conditions were extracted using k-means clustering and subsequently manually
annotated for the following 9 body parts: left ear, right ear, left forepaw, right forepaw, left hind
paw, right hind paw, snout, tail base, back. The training fraction was set to 0.95, and the
resnet_50 network was trained for 1,030,000 iterations. A train error of 1.82 and test error of
11.47 were achieved with a cutoff value of p=0.6. DLC tracking data and generated videos were
then imported to the Simple Behavioral Analysis (SImBA) project workflow (version 1.2 [52]).
Within SimBA, single animal, 9-body part supplied configuration was used to extract behavioral
features from the pose estimation data after outlier and movement correction (both parameters
set to 7x outside the interaural distance. Extracted frames from four independent videos were

L]

annotated to build classifiers for the following behaviors: “climbing”, “jumping

” L]

, “tremor”, “rearing,
and “grooming”. Individual models were trained using a random forest machine model with
2000 estimators, and a training fraction of 0.2 (default hyperparameters). Videos were analyzed
using the random forest model, with the following p-cutoffs and minimum behavioral bout
lengths for each of the following behaviors: “climbing (p = 0.26, 35 ms)”, “jumping (p = 0.4, 35
ms)”, “tremor (p=0.0495, 50 ms”, “rearing (p = 0.45, 70 ms)”, and “grooming (p = 0.38, 70 ms)”,
wet dog shakes were manually scored by an investigator blind to treatment condition. The
SimBA pipeline is built primarily on scikit-learn [53], OpenCV[54], FFmpeg45[55], and
imblearn[56]. Number of events are reported for jumps, wet dog shakes and tremor episodes,
whereas rearing, grooming and climbing are reported in time spent exhibiting each behavior.
Euclidean distance of displacement of all body parts was also extracted from the pose-

estimation data and averaged to achieve one ‘movement’ score for each subject.

Patch Clamp Electrophysiology. Coronal mouse brain slices, 220 ym in thickness were
prepared in cooled artificial cerebrospinal fluid containing (in mM): 119 NacCl, 2.5 KClI, 1.3 MgCl,
2.5 CaCly, 1.0 NazHPO4, NaHCO3 26.2 and glucose 11, bubbled with 95% O, and 5% CO..
Slices were kept at 30- 32°C in a recording chamber perfused with 2.5 mL/min artificial
cerebrospinal fluid. Visualized whole-cell voltage-clamp recording techniques were used to
measure spontaneous and synaptic responses of NAc shell MSNs. Holding potential was
maintained at -70 mV, and access resistance was monitored by a depolarizing step of -10 mV

each trial, every 10 s. Currents were amplified, filtered at 2 kHz and digitized at 10 kHz. All
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experiments were performed in the presence of picrotoxin (100 uM) to isolate excitatory
transmission. Internal solution contained (in mM): 130 CsCl, 4 NacCl, 5 creatine phosphate, 2
MgCl,, 2 Na,ATP, 0.6 Naz GTP, 1.1 EGTA, 5 HEPES and 0.1 mm spermine. Synaptic currents
were electrically evoked by delivering stimuli (50 — 100 us) every 10 seconds through bipolar
stainless-steel electrodes. The AMPAR component was calculated as the peak amplitude at -70
mV, The NMDAR component was estimated as the amplitude of the outward current at +40 mV
after decay of the AMPA current, measured 50 msec after the electrical stimuli (Fig 5B). Paired-
pulse ratio PPR was calculated as the ratio of the second to first baseline-subtracted peak
elicited with an ISI of 50 msec (Fig 5B).

Statistical Analyses. Photobeam break data on the lickometer devices was extracted and
analyzed using custom python code (SipperViz graphical user interface,
https://github.com/earnestt1234/SipperViz). Statistics were performed in python (3.7 using
Spyder 4.1.5), using the pinguoin (0.3.10) and statsmodels (0.10.0) packages. Data were
analyzed with repeated measures ANOVA or two-factor ANOVA where appropriate, followed by
post-hoc t-tests. Sex and Treatment group were included as between-subject factors for all
analyses. Individual data points alongside boxplots marking interquartile distributions are

shown; aggregate data are presented as means +/- 90% confidence intervals.

Results

Mice exhibit preference for OXY over drinking water and escalate OXY intake over time.

We mimicked a prescribed course of OXY by escalating concentrations of OXY in the drinking
water in a single-bottle phase, followed by a two-bottle choice phase where mice could choose
between OXY solution (1.0 mg/mL in drinking water) and unadulterated drinking water (Fig 1A).
During the single bottle phase, mice increased their daily OXY consumption (Fig 1B-D), which
was predicted due to increasing concentrations of OXY in their drinking water (0.1, 0.3, 0.5
mg/mL). However, mice continued to escalate their drug intake during the two-bottle choice
phase where the drug concentration remained constant (1.0 mg/mL) and drinking water was
also available ad libitum (Fig 1D-F). While body weight was systematically higher in males
relative to females, it was not significantly different between control and OXY mice (CTRL male
= 27.44 + 0.55, female = 21.29 +0.54, OXY male = 25.65 + 0.56, female = 21.19 + 0.39, Fsex =
88.71, p< 0.0001, Fang = 2.71, p = 0.102, Fsexdrug = 2.153, p = 0.145).
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During the two-bottle choice phase, mice also exhibited a significant preference for 1.0 mg/mL
OXY over drinking water at the population level (Fig 1G-l), despite the lack of sweeteners or
tastants in the drinking water or OXY solution. There was no systematic preference for the left
or right bottle in CTRL mice (Fig 1G,1), while OXY mice exhibited higher levels of responding on
the OXY-containing bottle (Fig 1H,I), with no significant sex differences with respect to the total
amount of OXY consumed, escalation, or preference for OXY. However, female mice consumed
significantly higher weight-adjusted volumes of OXY during the single-bottle phase (Fig 1C,D,
Supp Fig 1A-C).

Mice exhibit individual differences in OXY intake

There was considerable variability in OXY preference among individual mice; while no mice
completely avoided OXY, a subset did prefer unadulterated drinking water over the OXY
solution (Fig 11, Supp Fig 1D-G). We therefore evaluated a subset of mice for variability in OXY
preference, and how OXY preference would alter the microstructure and circadian pattern of
drinking behavior (n=11F, 10M CTRL, and n=11F/12M OXY). We observed that in a subset of
mice (n=4F/4M), OXY accounted for less than 50% of the total liquid intake. We define these
mice as OXY Non-preferring. In contrast, we observed a larger number of mice that consumed
over 90% of their total fluid intake from the OXY solution (Fig 11, Supp Fig 1D-G), which we refer
to as OXY High-preferring (n=7F/8M).

OXY intake alters the microstructure and circadian pattern of drinking behavior regardless of

individual preference

In addition to total volumes, the home-cage lickometer device we employed registered
interactions with each bottle, which allowed for examination of patterns of drug intake. There
was no systematic preference for either the left or right H.O-containing bottle in control mice
(n=11F/10M, Fig 2A), and no difference in the distribution of inter-drink intervals on the left or
right bottles (Fig 2C) in control mice. The circadian index was significantly altered in both Non-
preferring and High-OXY preferring mice relative to controls (Fig 2B), which was driven by an
increase in both water and OXY interactions during the light cycle in OXY-consuming mice (Fig
S2A-F. As expected, OXY Non-preferring mice avoided the OXY-containing bottle and had
shorter inter-drink intervals on the water-containing bottle relative to the OXY-containing bottle
(Fig 2D). By contrast, OXY High-Preferring mice exhibited significantly higher lickometer counts

on the OXY-containing bottle and shorter inter-drink intervals on the OXY-containing bottle (Fig
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2E). These patterns in intake microstructure were recapitulated at the individual subject level in
male and female mice (Supp Fig 3A-F).

OXY self-administration induces physical signs of intoxication and withdrawal

Acute injections of OXY [57-59], or vapor exposure [60] to opioids induce hyperactivity, which
are thought to reflect increased dopamine release in the NAc [61-63]. To examine this, we
equipped our home cages with PIR sensors to detect locomotor activity during the self-
administration protocol (Fig 3A,B). OXY mice exhibited higher levels of activity than CTRL mice
during both the single- and two-bottle choice phases of self-administration (Fig 3D-E),
suggesting that voluntary oral OXY self-administration results in sufficient brain levels to induce
hyperactivity [58, 64, 65]. We found no sex differences in OXY-induced locomotor activity (Fig
S4A-C).

We also determined whether withdrawal from oral OXY self-administration induces physical
withdrawal signs. During withdrawal from opioids such as morphine or heroin, mice exhibit
characteristic withdrawal signs including jumps, wet dog shakes and tremors [66, 67]. Relative
to CTRL mice, OXY mice exhibited significantly more jumps (Fig 3F), wet dog shakes (Fig 3G)
and paw and body tremor episodes (Fig 3H) in acute opioid withdrawal 24 hours following
sipper OXY removal. The increase in wet dog shakes was attenuated but still apparent in OXY
mice in protracted (3 weeks) withdrawal (Fig 3H). The number of jumps and wet dog shakes
correlated significantly with the total OXY dose an animal consumed over the 12 day protocol
(Fig 3, J), while the number of tremor episodes did not (Fig 3K).

Finally, we quantified grooming and rearing, which have been used as a proxy for anxiety-like
behavior and have also been reported to be increased following withdrawal from opioids[68].
OXY mice did not exhibit significantly more rearing or grooming relative to CTRL mice (Supp Fig
5A-C). There were no significant differences between male and female mice for any physical
symptom measured. Together, these results demonstrate that oral OXY self-administration
induces physical signs of dependence that are consistent with prior reports of an opioid

withdrawal syndrome in rodents.
The two-bottle choice paradigm induces drug seeking under extinction conditions.

Drug seeking behavior is operationally defined as performance of an action that previously led
to consumption of the drug, in the absence of the drug itself [69, 70]. In the case of intravenous

drug self-administration, this response may be operationalized as lever-pressing or nose-poking


https://doi.org/10.1101/2022.07.19.500655
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.19.500655; this version posted July 20, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

on an operant device that previously resulted in drug infusions. In the current paradigm, OXY
was delivered through a lickometer device which was distinct from the standard cage-top water
bottle. Therefore, we assayed drug seeking behavior by measuring photobeam breaks on the
lickometer devices under extinction conditions, with no OXY or drinking water in the tubes (Fig
4A). After 3 weeks of forced abstinence, OXY mice exhibited significantly higher lickometer
counts in extinction than CTRL mice (Fig 4B-C). This drug seeking behavior was not
significantly different between males and females (Fig 4D Supp Fig 6A-F) and did not correlate
with the total amount of OXY consumed during the self-administration paradigm (Fig 4E). This
establishes that the two-bottle choice paradigm supports drug seeking behavior that persists

after abstinence.

Oral OXY self-administration is associated with plasticity of excitatory synapses onto NAcSh
Medium Spiny Neurons (MSNs)

Extensive prior work has established that excitatory drive onto MSNSs in the nucleus accumbens
shell (NAcSh) is potentiated following withdrawal from self-administration of opioids [47, 71-74]
and psychostimulants [14, 75, 76]. Critically, this potentiation has been causally linked to
persistent cue- and context-induced drug seeking behavior [14, 48, 75, 77-80]. As this
potentiation is mediated by the insertion of AMPA receptors into the post-synaptic membrane of
accumbal MSNs, we performed whole cell recordings of accumbal MSNs in the NAcSh (Fig
5A,B, Supp Fig 7A,B) to determine whether an analogous form of plasticity would be observed
following oral OXY self-administration. Indeed, the AMPA-to-NMDA ratio of electrically-evoked
synaptic currents was significantly higher in mice who underwent OXY self-administration and
withdrawal relative to control mice, suggesting post-synaptic insertion of AMPA receptors (Fig
5C). Consistent with this interpretation, there were no differences in PPR of electrically-evoked
currents between OXY self-administering mice and control mice (Fig 5D), which suggests there
was no change in pre-synaptic release onto accumbal MSNs. There was no correlation between
total OXY intake and either electrophysiological parameter (Supp Fig 7 C,D). This finding is
consistent with prior electrophysiological assays of NAc plasticity following exposure to addictive
drugs; potentiation of excitatory transmission onto NAcSh MSNs is preferentially but not
selectively expressed onto D1-MSNs [81-83] (but see[75]), while morphine self-administration
potentiates excitatory drive onto both D1- and D2-MSNs[47, 73]. Since we used electrical
stimulation in wild-type mice, we cannot determine whether these adaptations are specific to a
particular excitatory accumbal input, nor whether they occur in both D1- and D2-MSNs within

the accumbens, although a bimodal distribution of the AMPA/NMDA ratios raises the possibility
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that adaptations may be cell-type specific which may be investigated in future studies. Together,
these experiments demonstrate that oral OXY self-administration induces behavioral
adaptations and associated excitatory synaptic plasticity in the NAcSh that persists into

withdrawal.

The two-bottle choice paradigm induces aversion-resistant drug consumption in a subset of

mice.

Another DSM V criteria of substance use disorder is continued use of the substance despite
negative consequences. Negative consequences are frequently modeled by a physical
punishment such as foot shock [81, 84, 85] or adulteration with aversive tastants, such as
quinine[86, 87]. Given the analgesic properties of OXY that could confound responses to foot
shock punishment, we introduced increasing concentrations of quinine to the OXY-containing
drinking tube, such that the quinine concentration increased by 125 uM every 48 hours (Fig 6A).
Both male and female CTRL mice avoided the quinine-containing bottle at the lowest quinine
concentration (Fig 6B). By contrast, a subset of OXY mice exhibited quinine-resistant OXY
intake, as they persisted in drinking OXY beyond intermediate concentrations of quinine
(n=4F/3M out of 15 total mice; Fig 6C, D). There were no sex differences in the AUC of the
quinine preference curve (Fig 6E).

Discussion

Despite increased awareness of the abuse potential of prescription opioid use and altered
prescribing practices, there were still over 142 million prescriptions written for prescription
opioids in 2020[88] with opioid-related deaths reaching their highest rate ever in 2021[89]. To
develop effective prevention and treatment strategies to treat prescription opioid use disorder,
preclinical models that recapitulate behavioral phenomena specific to prescription opioid use are
needed. Environmental factors, route of administration, and pattern of intake strongly influence
many aspects of drug misuse, which emphasizes the need for preclinical models that

recapitulate these features.

One interesting feature of the oral OXY self-administration paradigm characterized here was
that considerable individual variability in OXY preference and intake among mice. Similar
variability in these factors occurs in people who take prescription opiates. However, at the

population level mice escalate their OXY consumption (Fig 1, S1), and alter their pattern of
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intake (Fig 2, S2, S3) which are two DSM-defined criteria of OUD [11,96,97]. Female mice
consumed more OXY (mg/day) during the single bottle phase and higher total dose of OXY
(mg/kg) compared to males (Fig 1), consistent with previous observations that female rodents
self-administer higher doses of opioids than males [2, 90-94]. While pharmacokinetic influences
on sex differences are beyond the scope of our study, plasma concentrations of OXY and its
active metabolite oxymorphone, was influenced by sex, presence of sex organs, and feeding
conditions, and was exacerbated following repeated administrations (31489746). This likely
arises because OXY metabolism is mediated largely by CYP3A4 and CYP2D6 [95, 96], whose
activity is modulated by sex hormones and food intake [97, 98]. However, sex effects on OXY
pharmacokinetics were either diminished or not observed with intravenous administration [99,
100], highlighting the importance of route of administration for studying sex differences in

preclinical studies.

A hallmark DSMV-defined criteria of substance use disorder is the continued use of an
addictive substance despite negative consequences. We modeled this feature by adulterating
OXY with increasing doses of quinine, which is commonly used to assess compulsive alcohol
drinking [101, 102]. We observed high variability in quinine-resistant OXY consumption, with
only a subset of mice persisting at the highest quinine doses (Fig 6). This is reminiscent of
intravenous opioid or psychostimulant self-administration, where typically only a subpopulation
(15-30%) of rodents persist in drug self-administration despite punishment [81, 103-105]. This is
critical, as many patients also use opioids as prescribed, with only a subpopulation transitioning
to compulsive drug use [104, 106]. This underscores the utility of this model for studying
individual differences in aversion-resistant OXY consumption and targeted interventions to

modulate this aversion-resistance.

A key challenge in treating patients with OUD is relapse following abstinence. The factors
driving relapse in opioid-self-administering patients are complex and are thought to involve a
combination of persistent drug craving and avoiding the aversive state of OXY withdrawal [107,
108]. Our results suggest that multiple features and neurobiological substrates relevant to
relapse are present with this oral self-administration paradigm. Specifically, drug craving [40] is
frequently modeled with reinstatement paradigms, in which an instrumental response previously
leading to the addictive drug is assayed under extinction conditions [20, 25, 109, 110]. Here, we
experimentally imposed abstinence for three weeks following OXY self-administration [69, 111],
to emulate withdrawal imposed by admission to in-patient treatment facilities, or loss of access

to prescription or recreational sources [102]. Lickometer interactions which had resulted in the
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delivery of OXY during the self-administration phase were significantly higher in OXY-self-
administering mice relative to controls following protracted withdrawal (Fig 3), consistent with
cue-induced OXY-seeking behavior [112-114]. Moreover, OXY self-administering mice exhibited
dose-dependent physical withdrawal signs, which persisted (albeit to a lesser extent) into this
protracted withdrawal period (Fig 2). In parallel, we found that OXY self-administration resulted
in post-synaptically-mediated potentiation of excitatory transmission into NAc MSNs (Fig 5),
which has been causally linked to both the persistence of reinstatement behavior and physical
symptoms following withdrawal from addictive drugs [14, 48, 80, 115-119]. It is important to note
that our electrophysiology studies used electrical stimulation to induce excitatory synaptic
currents and were performed in wild-type mice, and thus we do not know which specific
accumbal populations or excitatory inputs are potentiated following oral OXY self-administration,
although this represents an important future application of this preclinical model. Taken
together, these findings underscore the utility of this paradigm for studying diverse factors
contributing to opioid relapse (i.e. emergence of withdrawal symptoms and craving), along with

neural adaptations that may underlie the persistence of these behavioral symptoms.

The high-throughput nature of the model characterized here enables high-powered studies
that facilitate understanding of individual variability in drug taking behavior, reinstatement and
persistence of drug taking despite negative consequences, while conserving the route of
administration, environmental factors pattern of access specifically relevant to prescription
opioid misuse. Future work is needed to understand the neural substrates underlying the
emergence of prescription opioid reinstatement or aversion-resistant intake, or to inform
strategies to manage prescription opioid abuse, including optimizing tapering schedules or
assaying pharmacological adjuvants to manage withdrawal symptoms. OXY is primarily
prescribed for the treatment of pain and is frequently used in combination with other prescription
medications or recreationally used substances. To this end, this model could be used in future
studies investigating how pre-existing chronic or post-surgical pain, or polysubstance use
modulates patterns of OXY-intake, and the consequences of this intake for the expression of
addiction-relevant behaviors. The current results present a first characterization of a preclinical

model that could be applied towards these goals.
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Figure 1. Mice voluntarily consume OXY in a two-bottle choice paradigm.
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Figure 1. Mice voluntarily consume oxycodone in a two-bottle choice paradigm. (a)
Schematic of experimental paradigm (n = CTRL: 33F/28M, OXY: 35F/30M). (b-c) Total daily
volume of liquid consumed throughout the self-administration protocol for (b) control and (c)
OXY-administering mice. Mice with OXY available consumed comparable total cumulative
volumes of liquid (Forg = 0.07, p=0.224); although there was a significant interaction between
drug and day (Fprugepay = 2.47, p < 0.005). (d) Daily self-administered doses of OXY. Self-
administered OXY doses increased with concentration throughout the protocol (Fpay = 52.76,
p<0.001), during which female mice self-administered higher daily doses than males during the
single-bottle phase (Fsex = 12.81, p < 0.001) but not two-bottle choice phase (Fsex = 1.51, p =
0.224) (e). (f) No difference in escalation index (Dosepay12 / Dosepays) was observed between
male and female mice (Fsex= 0.69, p = 0.409). (g-h) Preference for the OXY-containing bottle
over the 7 days of the two-bottle choice phase for (g) control and (h) OXY-administering mice.
OXY mice only exhibited a preference for the OXY-containing bottle (Fgug = 17.682, p<0.0001)
which increased over successive days (Fpaysprug = 3.78, p = 0.001 with no sex differences (Fsex =
1.636, p=0.13). (i)There was no systematic preference for drinking water from the left or right
bottle in CTRL mice, while OXY mice consumed significantly more OXY solution relative to
drinking water when available (Preference Index = OXY Volume (pay 12/ Total Volume(pay 12), Farug
= 22.67, p<0.001). There were no sex differences in OXY preference (Fsex = 0.188, p = 0.665,
Fsexedrug = 1.207, p = 0.274) ***p<0.001.
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Figure 2. Non- and high- oxycodone- preferring mice exhibit circadian disruption

and distinct patterns of drug intake.
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Figure 2. Non-preferring and high-preferring mice exhibit circadian disruption and
distinct patterns of drug intake. (a) Preference index of CTRL (11F/10M, 0.55 £ 0.05),
Non-Preferring (4F/4M, 0.17 + 0.04) and High-Preferring (7F, 6M, 0.98 + 0.01) OXY
mice with lickometer data represented. (b) Circadian index was altered in both Non-
(0.70 £ 0.04) and High-Preferring mice (0.68 + 0.06), relative to controls (CTRL: 0.80
0.01, Faroup = 3.42, p = 0.044). (c-e) Control mice exhibited no systematic difference in
lickometer counts (t=0.29, p=0.77) or inter-drink intervals on the left vs right bottle (KS:
0.07, p = 0.994). In contrast, Non-preferring and High-preferring mice exhibited
proportionately more counts on the H,O-containing (t=11.93, p<0.001) and OXY-
containing (t=12.84, p<0.001) bottles. Similarly, the distribution of interdrink-intervals on
the OXY-paired bottle was significantly different from the distribution of CTRL mice for
both Non-preferring (KS: 1.36, p = 0.049) and High-preferring mice (KS: 1.62, p=0.011).
*p<0.05, **p<0.01, ***p<0.001.
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Figure 3. Oral oxycodone self-administration induces somatic signs of

intoxication and withdrawal.
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Figure 3. OXY self-administration induces somatic signs of intoxication and withdrawal.
(a) Experimental schematic. (b) Home cages were equipped with PIR sensors to monitor activity
during the single- and two-bottle choice phases of OXY-self administration. (c¢) Withdrawal
symptoms were quantified after 24 hours and after 3 weeks of withdrawal using post estimation
and supervised behavioral classification. (d-e) OXY mice exhibited significantly higher
homecage activity during self-administration relative to control mice (CTRL: 2072.189 + 196.455
n=10F/10M, OXY = 4530.370, n=15F/13M, Fsex = 0.956, p = 0.333, F4rug=19.549, p<0.001). (f)
There was no significant effect of OXY or sex on jumping behavior at the acute (CTRL

n=6F/6M: 0.5 £ 0.19, OXY n=12F/8M: 2.37 £ 0.91) or protracted time points (CTRL n=7F/6M:
0.62 £ 0.27, OXY n=7F/7M: 1.0 £ 0.49; Fprng = 3.229, p = 0.079, Fsex = 1.937, p = 0.170, Frimepoint
= 0.337, p = 0.94). (g) There a significant effect of OXY on the number of wet dog shakes mice
exhibited at both the early (CTRL: 0.83 + 0.24, OXY: 5.53 + 0.97) and protracted time points
(CTRL: 0.92 £ 0.33, OXY: 4.54 + 1.38; Fprg = 17.798, p < 0.001, Fsex = 0.108, p = 0.743,
Frimeroint = 0.239, p = 0.627). (h) There a significant effect of OXY on the number of tremor
episodes exhibited, with OXY mice exhibiting more episodes at the acute (CTRL: 18.25 + 1.64,
OXY: 36.32 + 3.01) but not protracted time point (CTRL: 16.08 + 1.59, OXY: 24.08 £ 3.61; Fpng
= 20.514, p < 0.001, Fsex = 6.657, p = 0.013, Frimeroint = 5.750, p = 0.020). (i-k) The number of
jumps and wet dog shakes, but not tremor episodes in acute withdrawal was significantly
correlated with the amount of self-administered OXY(p=0.004, 0.028, 0.169, respectively).
*p<0.05, **p<0.01, ***p<0.001.
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Figure 4. OXY self-administration supports persistent drug-seeking
behavior in extinction.
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Figure 4. OXY self-administration supports persistent drug seeking behavior in
extinction. (a) Experimental timeline. (b-¢c) Rolling average time course (a) and cumulative
counts (b) of photobeam lickometer counts made on empty bottles over the 60 minute probe
trial; mice that had self-administered OXY showed higher lickometer interactions relative to
controls throughout the session. (d) Both male and female mice that had self-administered OXY
exhibited higher sipper counts in extinction (CTRL 9M/10F: 18.32 £ 3.48, OXY 13F/13M: 54.78
1 6.43, Faryg = 18.75 p < 0.0001, Fsex = 0.575 p = 0.452). (e) Lickometer counts during the
seeking probe trial were not significantly correlated with total OXY consumed (p = 0.869).
**p<0.01
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Figure 5. Oral OXY self-administration is associated with plasticity
of excitatory synapses onto NAcSh MSNs.
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Figure 5. Oral OXY self-administration is associated with plasticity of excitatory
synapses onto NAcSh MSNs. (a) Experimental timeline and representative alexofluor-488
filled MSN (green), DAPI nuclear stain shown in blue. (b) Representative traces showing
calculation of AMPA/NMDA and paired pulse ratio in control (top) and OXY withdrawn (bottom)
groups; scale bar = 50 pA, 50 ms. (c) There was a significant increase in A/N following OXY
withdrawal (CTRL female = 1.69 + 0.19, male = 1.90 + 0.20, OXY female = 3.56 + 0.45, male =
3.36 + 0.53; Farug = 28.62 p < 0.0001). (d) PPR was not different between groups (CTRL female
=1.10 £ 0.09, male = 1.01 £ 0.07, OXY female = 0.94 + 0.12, male = 0.96 + 0.08; Fgrg = 1.09,
p=0.302). *p<0.05.
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Figure 6. A subset of mice persist in oxycodone consumption despite
quinine adulturation.
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Figure 6. Oral OXY self-administration is resistant to quinine adulteration. (a)
Experimental schematic. After seven days of two-bottle choice, the OXY-containing bottle (or
one H;0 bottle in CTRL mice) was adulterated with increasing concentrations of quinine. CTRL
= 7M/8F, OXY n=8M/7F. (b-c) Normalized volume consumed from the quinine-adulterated
bottle over the final three days of two bottle choice (before quinine adulteration) and for 6 days
of quinine adulteration. (d-e) Area under the curve of adulterated quinine drinking volumes.
There was a significant effect of Drug (Farug = 27.908, p<0.001), of day (Fday = 66.767, p<0.001)
and interaction (Farugeday = 7.485, p<0.001), with both male and female OXY mice exhibiting
significantly higher AUC relative to CTRL mice (Fsex = 0.6896, p = 0.414, CTRL female = 0.862
+ 0.130, male = 0.989 + 0.201, OXY female = 3.495 £ 0.662, male = 2.704 + 0.415). **p<0.01
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