

1 **Epinephrine inhibits PI3K alpha via the Hippo kinases.**

2
3 Ting-Yu Lin^{1,2}, Shakti Ramsamooj^{1,3}, Katarina Liberatore¹, Louise Lantier⁴, Neil Vasan⁵, Kannan Karukurichi⁶,
4 Seo-Kyoung Hwang^{1,3}, Edward A. Kesicki⁶, Edward R. Kastenhuber¹, Thorsten Wiederhold⁷, Tomer M. Yaron^{1,8},
5 Mengmeng Zhu⁹, Yilun Ma¹, Marcia N. Paddock¹, Guoan Zhang⁹, Benjamin D. Hopkins¹, Owen McGuinness⁴,
6 Robert E. Schwartz¹⁰, Lewis C. Cantley¹, Jared L. Johnson^{1*}, and Marcus D. Goncalves^{1,3*}

7
8 ¹Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.

9 ²Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.

10 ³Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA.

11 ⁴Molecular Physiology & Biophysics, Vanderbilt University, Nashville TN 37232, USA.

12 ⁵Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New
13 York, NY, USA.

14 ⁶Petra Pharma Corporation, New York, NY 10016, USA.

15 ⁷Cell Signaling Technology, Beverly, MA, USA.

16 ⁸Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology
17 and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA.

18 ⁹Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA

19 ¹⁰Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, USA.

20

21 *Correspondence: mdg9010@med.cornell.edu and jaj2017@med.cornell.edu

22

23

24 **SUMMARY**

25

26 The phosphoinositide 3-kinase, p110 α , is an essential mediator of insulin signaling and glucose
27 homeostasis. We systematically interrogated the human serine, threonine, and tyrosine kinase to search
28 for novel regulators of p110 α and found that the Hippo kinases phosphorylate and completely inhibit its
29 activity. This inhibitory state corresponds to a conformational change of a membrane binding domain on
30 p110 α , which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines,
31 and rodent tissues, activation of the Hippo kinases, MST1/2, using forskolin or epinephrine is associated
32 with phosphorylation and inhibition of p110 α , impairment of downstream insulin signaling, and
33 suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are
34 genetically deleted or inhibited with small molecules. Our study reveals a novel inhibitory pathway of
35 PI3K signaling and a previously unappreciated link between epinephrine and insulin signaling.

36

37 Keywords: PI3K signaling, Epinephrine signaling, Glycogen Metabolism, Hippo Kinases

38

39 **INTRODUCTION**

40

41 The binding of insulin to the insulin receptor initiates a surge of tyrosine phosphorylations that promote
42 membrane recruitment of phosphoinositide 3-kinase (PI3K α), an intracellular lipid kinase(Chen et al.,

43 2019; Fritsch et al., 2013; Nolte et al., 1996). PI3K α is composed of a catalytic subunit, p110 α , which
44 functions as an obligate heterodimer with the regulatory subunit, p85 α . Binding of the regulatory subunit
45 to phosphotyrosines relieves its inhibitory contacts on p110 α and localizes the complex to the plasma
46 membrane(Fruman et al., 2017), where p110 α then engages the lipid bilayer and phosphorylates the D3-
47 positions of the resident phosphoinositide lipids to set off signaling cascades that guide the cellular actions
48 of insulin, including glucose uptake, enhanced glycolysis, and glycogen synthesis(Hopkins et al., 2020;
49 Manning and Toker, 2017).

50

51 The glycemic actions of insulin and PI3K α are opposed by counter-regulatory hormones like glucagon
52 and epinephrine (Epi). Epi is released from the adrenal gland in response to stresses like hypoglycemia. It
53 then binds to β -adrenergic receptors (β_2 -AR) in the liver to stimulate glycogenolysis and impair the actions
54 of insulin(Cori et al., 1930; Deibert and DeFronzo, 1980; Dufour et al., 2009). The molecular pathways
55 by which Epi acutely blocks insulin action are unclear(Battram et al., 2007; Cori and Cori, 1929; Deibert
56 and DeFronzo, 1980; Dufour et al., 2009; Rizza et al., 1980).

57

58 Most of what is known about the regulation of p110 α has come from experimental work with accessible
59 cellular model systems, using indirect readouts as a surrogate for PI3K α activation. We have taken a more
60 direct approach and asked if the production of phosphatidylinositol 3,4,5-triphosphate (PIP₃), the product
61 of p110 α , can be regulated through phosphorylation by a broad sample of the human protein kinase. This
62 approach has unveiled a novel inhibitory pathway of PI3K signaling that is used by Epi to block insulin
63 signaling.

64

65 RESULTS

66

67 The Hippo kinases inhibit p110 α through phosphorylation of threonine 1061 at its C-terminus.

68

69 To investigate phospho-regulation of PI3K α (i.e., the p110 α /p85 α complex), we developed an *in vitro*
70 reconstitution assay to screen for the effects of recombinant protein kinases on its catalytic activity.
71 Recombinant, full length p110 α was purified from human suspension cultures as a complex with
72 polyhistidine-tagged p85 α (Dickson et al., 2013; Sun et al., 2011; Vasan et al., 2019). This complex was
73 then pre-incubated with a panel of 31 functionally diverse human protein kinases from the major branches
74 of the protein kinase evolutionary tree(Manning et al., 2002), and we evaluated the ability of PI3K α to
75 phosphorylate phosphatidylinositol 4,5-bisphosphate (PIP₂), its endogenous substrate (Figs. 1A/B). Of the
76 31 kinases, only MST1 (encoded by *Stk4*) had a major effect on PI3K α catalytic activity, causing nearly
77 complete inhibition with dose-dependence at the level of the protein kinase (Fig. 1C).

78

79 MST1, the human ortholog of hippo (hpo) in *Drosophila*, is a growth suppressing kinase in the group II
80 germinal center kinase (GCK II) family, and a core member of the well-conserved Hippo pathway(Dong
81 et al., 2007; Harvey et al., 2003; Wu et al., 2003). Because the GCK family members have overlapping
82 cellular functions and similar substrate specificities(Meng et al., 2015; Miller et al., 2019), we tested

83 whether additional GCK family members (Fig. S1) can inhibit PI3K α 's catalytic activity. We found that
84 HGK, OXSR1, TAOK1, and MST3 could also inhibit PI3K α , suggesting that PI3K α may be under broader
85 regulation by the GCK family (Fig. 1D). Next, we investigated MST1's ability to inhibit other class I
86 PI3K isoforms. MST1 had little effect on the catalytic activities of p110 β , p110 δ , and p110 γ , indicating a
87 selective regulation of p110 α (Fig. 1E). Like the p110 α preparation, the p110 β and p110 δ proteins were
88 prepared as complexes with p85 α . Given their insensitivity to MST1 inhibition, we inferred that MST1
89 was directly phosphorylating p110 α , and not p85 α .

90
91 To locate the MST1 phosphorylation site(s) on p110 α , we profiled MST1's *in vitro* substrate specificity
92 using positional scanning peptide arrays (PSPA). This technique utilizes a combinatorial peptide library
93 that systematically substitutes each of 22 amino acids (20 natural amino acids plus phospho-Thr and
94 phospho-Tyr) at nine positions surrounding a central phospho-acceptor containing equivalent amounts of
95 Ser and Thr (Hutti et al., 2004). MST1 preferentially phosphorylated threonine over serine and favored
96 aliphatic amino acids at position +1, aromatic amino acids at position -2, and positively charged amino
97 acids at position +2 (Figs. 2A). The PSPA data were converted into a positional specific scoring matrix
98 (PSSM) and used to score all threonine residues in the amino acid sequence of p110 α . The most favorable
99 *in silico* MST1 threonine target was T1061, located in p110 α 's C-terminal tail (C-tail), a disordered region
100 spanning residues 1049 to 1068 (Fig. 2B). To validate this finding, we incubated recombinant PI3K α with
101 MST1 and analyzed peptide fragments by mass spectrometry. This approach confirmed that
102 phosphorylation of T1061 increased after MST1 treatment (Fig. S2A). Furthermore, we generated the
103 recombinant threonine-substituted phospho-null mutant, T1061A, of p110 α and found its catalytic activity
104 to be completely unaffected by MST1 and HGK (Fig. 2C and S2B).

105
106 Next, we generated and validated polyclonal antibodies against a p110 α peptide containing
107 phosphothreonine at 1061 (pT1061). The antibodies detected wild-type p110 α only after MST1-treatment
108 and failed to identify MST1-treated T1061A, confirming their utility for readout of pT1061 (Fig. 2D). We
109 also showed that blocking MST1/2 or HGK activity using Neratinib or DMX-5804, respectively, reversed
110 the inhibition of PI3K α activity and reduced pT1061 phosphorylation (Fig. 2D/E). Finally, we performed
111 SDS-PAGE using Phos-tag gels to measure the extent of phosphorylation of p110 α by MST1 and
112 HGK(Kinoshita et al., 2006). Following exposure to MST1 or HGK, the protein band blotted by an anti-
113 p110 α antibody exhibited a delay in migration, suggesting stoichiometric modification of p110 α (Fig.
114 2F). In contrast, the T1061A protein migrated alongside that of unphosphorylated wild type p110 α in
115 both control and MST1/HGK-treated samples, indicating that pT1061 is the prominent phosphorylation
116 event. Together, these data indicate that PI3K catalytic activity is inhibited through phosphorylation of
117 T1061 on p110 α by the Hippo kinases.

118
119 **Phosphorylation of T1061 inhibits p110 α 's interaction with membranes.**
120
121 To investigate the stability of the PI3K complex following inhibition at pT1061, we performed thermal
122 shift assays. Recombinant PI3K α complexes were phosphorylated by MST1 and subjected to increasing

123 temperatures. Denatured proteins were removed by centrifugation and the remaining soluble proteins were
124 examined by Western blotting. MST1-mediated phosphorylation led to a significant stabilization of wild
125 type p110 α , and not p110 α (T1061A), at higher temperatures (Fig. 3A), indicating that pT1061 induces a
126 stabilizing conformational change. The stabilizing action of pT1061 suggests an ordering of the C-tail.
127 Only ~15% (8/55) of publicly available structures of PI3K α can resolve T1061 and when resolved its side
128 chain faces the solvent(Barsanti et al., 2015; Furet et al., 2013; Han et al., 2016; Heffron et al., 2016; Hon
129 et al., 2012; Mandelker et al., 2009). In general, the tail adopts two conformations: one that is directed
130 towards the catalytic site in a ‘frontside conformation,’ or one where T1061 undergoes a ~42 angstrom
131 shift to the opposite side of the protein in a ‘backside conformation’ (Figs. 3B/C)(Walker et al., 2000;
132 Walker et al., 1999). We generated and purified a phosphomimetic mutant of p110 α (T1061E) and showed
133 that it partially inhibits PI3K activity (Fig S3 A-C). To determine the structural basis for PI3K α inhibition
134 by T1061 phosphorylation, we solved the crystal structure of the p110 α T1061E protein in complex with
135 the nSH2-iSH2 domains of p85 α and catalytic inhibitor GDC-0077, at 2.95 angstrom. The C-tail was
136 resolved up to and not beyond the phosphomimetic glutamate and adopted the backside conformation
137 observed in previous structures of wild type p110 α (Figs. 3B/C). However, the side chain of E1061, unlike
138 T1061 from previous structures, did not face the solvent but was directed into the protein. The carboxylate
139 of E1061 was positioned to form an ion-dipole interaction with the amino terminal end of the helical
140 dipole generated by helix α 11, encompassing residues 1031-1048(Hol et al., 1978). These structural
141 findings suggest an allosteric model of inhibition by T1061 phosphorylation.
142

143 Our crystal structure indicates that phosphorylation of p110 α T1061 diverted its C-tail away from the
144 catalytic site, so we investigated how this change causes inhibition. Given that p110 α is activated chiefly
145 through enhancement of its catalytic turnover rate and/or membrane binding(Burke, 2018; Carson et al.,
146 2008; Chaussade et al., 2009; Gkeka et al., 2014; Gymnopoulos et al., 2007; Huang et al., 2007; Mandelker
147 et al., 2009; Miled et al., 2007; Shekar et al., 2005; Vasan et al., 2019), we considered both of these
148 possibilities for MST1-mediated phosphorylation. In the absence of substrate, p110 α exhibits a basal
149 ATPase activity that is a small fraction of the rate of phosphate transfer to PIP₂(Hon et al., 2012). This basal
150 ATPase activity was inhibited by the ATP competitive PI3K α -specific inhibitor, alpelisib, indicating that
151 it is intrinsic to p110 α (Furet et al., 2013). Phosphorylation of p110 α at T1061 caused a modest reduction
152 in this activity, indicating that the phosphorylation at T1061 does not significantly affect ATP binding and
153 phosphate transfer to water (Fig. 3D).
154

155 Next, we determined if p110 α phosphorylation affects its interaction with membranes using liposomes
156 that were modeled after the inner leaflet of the plasma membrane. The liposomes were incubated with
157 p110 α and pelleted by centrifugation. The amounts of p110 α recovered from supernatant and pellet were
158 then quantified. Under control conditions, p110 α was mostly lipid-bound (Fig. 3E). However, in HGK-
159 treated samples, we saw an appreciable shift into the supernatant, measured as a 6-fold increase in the
160 ratio of p110 α recovered from supernatant versus pellet (Figs. 3E/F). These data indicate that T1061
161 phosphorylation impairs membrane binding. Indeed, MST1 treatment and introduction of glutamate to
162 position 1061 also reduced membrane binding of p110 α (Figs. S4A/B). Given that the C-tail interacts with

163 membranes, we examined the possibility that membrane dissociation is driven by electrostatic repulsion
164 between the phosphorylated C-tail and the negatively charged membrane surface. To test this, cationic
165 liposomes containing phosphatidylinositol (PI) were prepared as substrates. HGK-treatment reduced
166 p110 α ‘s conversion of PI to PI3P in both our anionic control liposomes and the cationic liposomes,
167 indicating that charge repulsion is not a significant contributor (Fig. 3G). The C-tail of p110 α contains a
168 hydrophobic patch, composed of residues 1057-1059, that has been reported to be essential for membrane
169 binding(Hon et al., 2012). Within this patch, tryptophan 1057 is universally conserved across all examined
170 p110 α orthologs (Fig. S4C). In the reported structures of wild type p110 α , the W1057 sidechain only
171 resolves in the frontside conformations of the tail to form part of the predicted membrane binding interface.
172 Our structure of the T1061E phosphomimetic mutant is a novel case where W1057 can be stabilized and
173 resolved in the backside conformation where it cannot directly contribute to membrane binding (Fig 3H).
174 Our findings are consistent with a model where T1061 phosphorylation acts by redirecting the C-terminus
175 away from the catalytic face of p110 α , sequestering a membrane binding domain, and thereby reducing
176 its ability to engage membranes and phosphorylate PIP₂.
177

178 Activation of adenylyl cyclase promotes phosphorylation and inhibition of p110 α .

179

180 We proceeded to explore the biological implications of p110 α regulation by the Hippo kinases. Recent
181 work has identified the Hippo pathway as a downstream branch of G-protein-coupled receptor (GPCR)
182 signaling.(Yu et al., 2012) Stimulation of the G_{as}-coupled receptors or adenylyl cyclase using receptor
183 agonists or forskolin (FSK), respectively, results in activation of the PKA and Hippo kinase signaling
184 pathways(Yu et al., 2013). To determine if p110 α can be regulated by the Hippo pathway under these
185 contexts, we first treated primary mouse hepatocytes with FSK(Yu et al., 2012). FSK strongly induced
186 phosphorylation of p110 α at T1061 as well as PKA activity as denoted by the increase of CREB
187 phosphorylation at S133 (Fig. 4A). We confirmed this finding in multiple cell lines (Figs. S5A-C). To
188 further clarify the effects of pT1061 on PI3K activity, we treated freshly isolated primary human
189 hepatocytes with insulin followed by FSK. Insulin robustly stimulated p110 α activity as determined by
190 AKT phosphorylation at T308 and S473, and the addition of FSK led to increased PKA activity, p110 α
191 phosphorylation at T1061, and a reduction of AKT phosphorylation (Fig. 4B). This was also demonstrated
192 in MCF10A and AML12 cells (Figs. S5D-E). The activation of PI3K results in multiple downstream
193 feedback pathways so we directly examined the catalytic activity of p110 α using an *in vitro* activity assay
194 with immunopurified enzyme taken from cells treated with insulin and FSK (Figs. 4C/D). In the presence
195 of insulin stimulation, the production of PIP₃ was increased over 100-fold, and this was greatly reduced
196 when FSK was added. The phosphorylation and inhibition of p110 α by FSK in HEK293A cells also
197 correlated with suppression of the extracellular acidification rate (ECAR), suggesting acute reductions in
198 glycolysis (Figs. 4E/F). Taken together, these results demonstrate that FSK-induced adenylyl cyclase
199 activity leads to phosphorylation and inhibition of p110 α and glucose metabolism.
200

201 Epinephrine stimulates p110 α phosphorylation at T1061 *in vivo*.

202 Epinephrine (Epi) also stimulates adenylyl cyclase activity and regulates the Hippo pathway through
203 GPCRs including the β_2 -AR, a G_{as} - coupled receptor.(Yu et al., 2013; Yu et al., 2012) Therefore, we
204 hypothesized that Epi could result in phosphorylation and inhibition of p110 α . First, we confirmed that
205 Epi induces p110 α phosphorylation at T1061 using primary mouse hepatocytes (Fig 4A). Next, we
206 injected wild-type C57BL/6J mice with Epi and collected liver tissue for Western blot analysis. In the Epi-
207 treated mice, we observed a significant increase in the phosphorylation of T1061 in liver (Figs. 5A). This
208 increase was not observed in mice with genetic deletion of the β_1 and β_2 -AR (Fig. 5B), confirming the
209 importance of β -adrenergic signaling in this response. Next, we exposed mice to several physiologic
210 stressors to induce endogenous Epi release and assess the phosphorylation status of p110 α . For example,
211 hypoglycemia is known to induce the sympathoadrenal response and cause an acute and robust release of
212 Epi so we fasted the mice for 18 h. Fasting increased blood Epi levels and significantly increased the
213 abundance of p110 α phosphorylation at T1061 in the liver as compared to “Fed” mice that were food
214 restricted for 18 h and then given access to food for 4 h (Figs. 5C-E). The fasted mice also displayed
215 reduced levels of phosphorylated AKT, as expected in conditions of low circulating insulin levels (Fig.
216 S6A). Next, we imposed hyperinsulinemic conditions by treated wild-type mice with insulin until
217 hypoglycemia developed (30 min) and harvested blood and liver tissues. At this time point, Epi levels in
218 the blood were elevated, the abundance of T1061 phosphorylation was significantly increased, and
219 phosphorylation of AKT was reduced, suggesting that Epi blocks PI3K activity in the liver (Figs. 5F-H).
220 Lastly, we fed mice a high-fat diet (HFD), which is known to increase endogenous Epi levels(Gomes et
221 al., 2019). Following 2 weeks of HFD, systemic Epi levels were elevated, and the abundance of pT1061
222 was increased as compared to mice fed with normal chow (Figs. S6B-D).

223 In addition to the effects on the liver, Epi increases rates of adipocyte lipolysis leading to the release of
224 non-esterified fatty acids (NEFA) and glycerol, which can then be used by tissues such as the liver. To
225 determine if the lipolytic products from adipose tissue contribute to p110 α phosphorylation, we injected
226 Epi into mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL aKO), an enzyme that
227 catalyzes the hydrolysis of triacylglycerols to diacylglycerols. Epi appropriately activated PKA signaling
228 in the adipose tissue of ATGL aKO , however there was no rise in NEFA or glycerol in the blood (Fig. S7A-
229 D). Nevertheless, Epi increased the abundance of pT1061 in the liver suggesting that the lipolytic products
230 to do not contribute to this inhibitory signaling event (Fig. S7E).

231 In order to more stringently assess the effects of Epi on glucose homeostasis, rats were infused with insulin
232 and glucose in order to maintain euglycemic conditions for 90 min prior to the introduction of either
233 vehicle (saline) or Epi (0.75 μ g/ kg/ min) for 10 or 30 minutes. At 30 minutes, Epi infusion reduced the
234 glucose infusion rate (GIR), increased pT1061 in hepatic lysates, and increased blood Epi levels (Fig. S8).
235 This increase was associated with markers of MST1/2 activation including LATS1 phosphorylation, and
236 a reduction in markers of PI3K signaling (Fig. S8B/C). Taken together, these experiments demonstrate
237 that endogenous or exogenous Epi stimulation results in MST1/2 activation, which is concomitant with
238 p110 α phosphorylation at T1061 and reduced PI3K activity.

239 **The Hippo kinases, MST1/2, regulate p110 α phosphorylation in cells and tissues via PKA.**

240 Next, we examined if the Hippo kinases play a role in the phosphorylation of p110 α . Primary mouse
241 hepatocytes were treated with FSK in the absence or presence of a selective MST1/2 inhibitor, XMU-MP-
242 1(Fan et al., 2016). This agent significantly reduced FSK and Epi-induced phosphorylation of T1061 (Figs.
243 6A and S9A). The Epi-induced increase in pT1061 was also significantly reduced when the hepatocytes
244 were pretreated with a non-specific β -adrenergic inhibitor (Propranolol HCl), and the PKA inhibitor, H89
245 (Fig. S9A). The dependence on PKA was confirmed using another PKA inhibitor, AT13148, and by
246 overexpressing a natural PKA inhibitor (PKIA) in HEK293 cells (Figs. S9B-C). These results implicate
247 PKA as a critical node connecting Epi and MST1/2 to PI3K.

248

249 We complemented the pharmacologic inhibition of MST1/2 with experiments using cells with CRISPR
250 deletion of MST1/2 (MST1/2 DKO)(Meng et al., 2015). Following treatment with FSK, the MST1/2 DKO
251 and parental cells displayed increased PKA signaling as determined by the phosphorylation of CREB, and
252 an increase in phosphorylation of T1061; however, the phosphorylation T1061 was greatly reduced in
253 MST1/2 DKO cells (Fig. 6B). We next determined if these changes in signaling correspond to changes in
254 PI3K-mediated glucose metabolism using ECAR as a readout. Both MST1/2 DKO cells and cells deficient
255 in Lats1/2 (Lats1/2 DKO), a key downstream node in the Hippo pathway, displayed similar rates of ECAR
256 as compared to parental cells following glucose exposure (Fig. 6C). However, the ability of FSK to
257 suppress ECAR was significantly abrogated in the MST1/2 DKO cells, suggesting that MST1/2 and not
258 the remainder of the Hippo pathway are important in this effect (Figs. 6C/D).

259 To determine whether MST1 and MST2 (encoded by the gene *Stk3* and *Stk4*) are involved in Epi-mediated
260 p110 α regulation *in vivo*, we generated mice with hepatocyte-specific genetic deletion of *Stk3* and *Stk4*
261 (*Alb-Cre*^{+/−}; *Stk3*^{f/f}; *Stk4*^{f/f}). These mice had significantly larger livers compared to their littermates without
262 the *Alb-Cre* transgene, consistent with previous reports of hepatocyte hypertrophy following loss of MST1
263 and MST2 (Fig. S9D)(Zhou et al., 2009). Loss of MST1 and MST2 in hepatocytes resulted in a significant
264 decrease in the phosphorylation of several target proteins including LATS1 (T1079) and MOB1 (T35)
265 (Figs. 6E and S9E). We subjected these mice to acute Epi exposure via IP injection to assess the impact
266 of these signaling changes on pT1061. While Epi increased the phosphorylation of T1061 in WT mice,
267 this effect was significantly reduced in liver specific MST1/2 DKO mice (Figs. 6E/F). Interestingly, these
268 mice also displayed increased AKT phosphorylation (pS473) following Epi, consistent with deletion of
269 an endogenous negative regulator of p110 α . We confirmed these results by inducing the deletion of MST1
270 and MST2 in adult mice by injecting an adenovirus containing Cre recombinase (AdCre) into *Stk3*^{f/f}; *Stk4*^{f/f}
271 mice (Fig. S9F/G).

272 Lastly, we evaluated the role of MST1/2 in the hepatic response to endogenous Epi by fasting the MST1/2
273 DKO mice and their littermate controls (*Stk3*^{f/f},*Stk4*^{f/f} referred to as Flox). Fasting increased the
274 phosphorylation of p110 α in Flox mice as compared to those that were “Fed,” however this change did
275 not occur in DKO mice. We also interrogated the abundance of phosphorylated glycogen synthase (pGS)
276 at site S641, an inhibitory modification controlled by PI3K signaling(Sakamoto et al., 2002). While the

277 Flox mice could appropriately phosphorylate GS and suppress GS activity during fasting, these effects
278 were absent in DKO mice (Figs. 7A-C). The activity of glycogen phosphorylase in the liver during fasting
279 and rate of glycogenolysis following Epi exposure during a hyperinsulinemic euglycemic clamp were
280 unchanged (Figs. 7D and S10). Together, the high glycogen synthase activity and normal glycogen
281 phosphorylase activity associated with more glycogen content in the DKO livers during fasting (Fig. 7E).
282 These data suggest that Epi acts via MST1/2 to suppress hepatic glycogen synthesis independent of
283 glycogen phosphorylase activity(Petersen et al., 1998).

284 **DISCUSSION**

285 This is the first reported evidence that a signaling enzyme can inhibit p110 α via direct modification and
286 reveals an unexpected connection between the PI3K and Hippo pathways. Following phosphorylation by
287 MST1/2, p110 α undergoes a conformational change that prevents membrane binding and inhibits PIP₂
288 phosphorylation. The p110 α C-terminus is known to be essential for its function and harbors one of the
289 most prevalent oncogenic point mutation of all cancers (H1047R), that conversely enhances membrane
290 binding to promote PIP₂ phosphorylation. Phosphorylation of p110 α by MST1/2 provides cells the
291 opportunity to regulate this process, and like the H1047R mutation, this effect is alpha isoform specific.
292 Our work also implicates p110 α as an essential mediator and regulatory control point linking cell growth
293 pathways with those regulating cell metabolism.

294 Several independent laboratories have observed the development of insulin resistance in humans exposed
295 to Epi(Bessey et al., 1983; Deibert and DeFronzo, 1980), but it has remained unclear how PI3K signaling
296 is dampened in this setting. Our data show that Epi results in PKA-mediated activation of MST1/2, which
297 then phosphorylate and inhibit p110 α . These data are in-line with those of Liu *et al.* who demonstrated
298 that hepatic MST1/2 is sequestered in glycogen via an interaction with Laforin(Liu et al., 2021). Together,
299 our results support a model where counter-regulatory hormones regulate hepatic insulin signaling by
300 activation of PKA-mediated glycogen degradation, MST1/2 release, and direct phosphorylation and
301 inhibition of p110 α . In this setting, MST1/2 is also freed to phosphorylate LATS1/2 and reduce the
302 abundance of YAP/TAZ in hepatocytes. Low levels of TAZ contribute to the activation of
303 gluconeogenesis in the liver via interactions with the glucocorticoid receptor(Xu et al., 2021).

304 Our study focused on the acute changes in hepatic PI3K signaling following administration of Epi.
305 Glycogen synthesis and the downstream phosphorylation events in the PI3K pathway are the most direct
306 readouts of hepatocellular insulin action(Petersen and Shulman, 2018). In the liver, insulin promotes
307 glycogen synthesis and inhibits glycogenolysis to suppress hepatic glucose production(Lewis et al., 2021).
308 In contrast, Epi increases hepatic glucose release by activating glycogenolysis and inhibiting glycogen
309 synthase(Cori and Cori, 1929; Jensen et al., 2011). The loss of MST1/2 in the liver creates a unique
310 scenario where Epi continues to activate glycogenolysis, but the crosstalk to PI3K is lost and glycogen
311 synthesis continues.

312 The long-term implications of this pathway on glucose homeostasis remain unclear. It is interesting to
313 note that other GCK family kinases have been reported as negative regulators of insulin sensitivity. For

314 example, the overexpression of YSK1/STK25 reduces glucose tolerance and insulin sensitivity in mice
315 fed a HFD(Cansby et al., 2013), the deletion of MST3/STK24 improves hyperglycemia and insulin
316 resistance(Iglesias et al., 2017), and the deletion of HGK improves insulin response in
317 adipocytes(Virbasius and Czech, 2016). Therefore, the GCK kinases could be an attractive therapeutic
318 target to improve glycemia.

319 **ACKNOWLEDGMENT:**

320 We thank Ismail Moarefi and Karine Roewer of CreLux WuXi AppTec for assisting in solving the
321 structure of the p110 α (T1061E)/ni-p85 α complex. We thank David McElliot of Petra Pharmaceuticals
322 for helping coordinate our work with CreLux. We thank Kun-Liang Guan for providing CRISPR-
323 engineered HEK293 cells. Isolation of primary hepatocytes was performed by the Metabolic
324 Phenotyping Core at Weill Cornell Medicine. Euglycemic clamp studies were performed by the Rodent
325 Metabolic Phenotyping Core supported by Penn Diabetes Research Center grant P30-DK1952, and the
326 Vanderbilt Mouse Metabolic Phenotyping Center (DK059637). The Vanderbilt Hormone Assay and
327 Analytical Core performed the insulin and catecholamine analyses (DK059637 and DK020593). This
328 work was supported in part by NIH CA230318 (M.D.G.), NIH R35 CA197588 (L.C.C.), a grant from
329 the Breast Cancer Research Foundation (L.C.C.)

330
331

332 **AUTHOR CONTRIBUTIONS:**

333 T.Y.L, J.L.J, L.C.C and M.D.G. conceived and designed the study. T.Y.L, K.L, J.L.J performed the
334 protein purification, molecular cloning and liposome sedimentations assays. T.Y.L and J.L.J performed
335 the thermal shift assays. J.L.J performed the activity screens, lipid kinase activity assay, peptide library
336 assays, and structural analyses. N.V., K.K., and E.A.K. provided structure insights. N.V. and K.K.
337 performed the ADP-Glo assays. T.M.Y. performed computational analyses on the peptide library data.
338 T.W. produced the phosphor-specific polyclonal antibody for this work. G.Z. and M.Z. performed mass
339 spectrometry analyses. Y.M. provided technical advances to the protein purification. T.Y.L, S.R, S.K.H,
340 K.L, E.R.K and B.D.H performed the mouse experiments. T.Y.L, S.K.H and K.L performed the
341 immunoblotting. T.Y.L performed the cultural assays. R.E.S isolated and cultured human hepatocytes.
342 M.D.G. performed the seahorse assay. T.Y.L, M.D.G, J.L.J and M.N.P. performed the data analysis.
343 T.Y.L, J.L.J, and M.D.G. wrote the manuscript. All authors assisted with data interpretation and
344 contributed to the editing of the manuscript.

345

346 **DECLARATION OF INTERESTS:**

347 L.C.C. is a founder and member of the board of directors of Agios Pharmaceuticals and is a founder and
348 receives research support from Petra Pharmaceuticals. N.V. reports consulting activities for Novartis,
349 Reactive Biosciences, and Magnet Biomedicine, and is on the scientific advisory board of Heligenics.
350 E.A.K. is a shareholder of Eli Lilly and Company and E.A.K. and K.K. are employees of Loxo
351 Oncology at Lilly. J.L.J. reports consultant activities for Petra Pharmaceuticals. M.D.G. reports personal
352 fees from Novartis, Petra Pharmaceuticals, and Scorpion Therapeutics. L.C.C., B.D.H. and M.D.G. are
353 inventors on patents (pending) for Combination Therapy for PI3K-associated Disease or Disorder, and

354 The Identification of Therapeutic Interventions to Improve Response to PI3K Inhibitors for Cancer
355 Treatment unrelated to this work. B.D.H., L.C.C., and M.D.G. are co-founders and shareholders in Faeth
356 Therapeutics. R.E.S. is on the sponsored advisory board for Miromatrix Inc. T.M.Y is a stockholder and
357 on the board of directors of DESTROKE, Inc., an early-stage start-up developing mobile technology for
358 automated clinical stroke detection. All other authors declare no competing interests.
359

360 **FIGURE LEGENDS:**

361

362 **Fig. 1 Kinase screen identifies GCK kinases as negative regulators of PI3K α activity.**

363 (A) Experimental schema. (B) Dendrogram of the human protein kinase that highlights the
364 kinases selected for our screen. (C) Thin layer chromatography (TLC)-autoradiography of
365 [³²P]PIP3 produced by recombinant PI3K α complexes (p110 α /p85 α , 500 nM) after incubation
366 with the indicated recombinant protein kinases at 10 nM (L) or 100 nM (H) concentrations or
367 with enzyme storage buffer (-). (D) PIP2 kinase assays with PI3K α after incubation with subset
368 of the GCK family, performed as described in (C). (E) PIP2 kinase assays with the class I PI3K
369 isoforms (PI3K α , PI3K β , PI3K γ , and PI3K δ , 500 nM) after incubation with MST1.
370

371 **Fig.2 MST1/2 and HGK inhibit catalytic activity of p110 α through phosphorylation at
372 T1061.**

373 (A) (Top) Peptide phosphorylation by MST1 to characterize its substrate consensus motif.
374 Positional scanning peptide arrays were utilized, where 22 residues (20 amino acids + 2 PTM
375 residues) were scanned across nine neighboring positions of the phospho-acceptor. The zero
376 controls (righthand side), consisting of serine only, threonine only, or a 1:1 mixture of both were
377 examined as phospho-acceptors. Phosphorylation was measured by autoradiography. (Bottom)
378 Sequence logo of the substrate consensus motif of MST1 as determined in top panel. Letter
379 height is proportional to favorability of corresponding amino acid. (B) p110 α 's threonine
380 residues scored by MST1's PSSM obtained from (A). (C) Incubation of p110 α (WT)/p85 α and
381 p110 α (T1061A)/p85 α with MST1. Top: Autoradiography of [³²P]PIP3 production by p110 α .
382 Bottom: Immunoblots of total p110 α and pT1061 p110 α . (D) Incubation of MST1 or MST2
383 with increasing concentrations of Neratinib, followed by incubation with PI3K α . Top:
384 Autoradiography of [³²P]PIP3 production by p110 α . Second from top: Autoradiography of
385 T1061-modeled peptidesubstrate peptide phosphorylation by MST1 or MST2. Bottom:
386 Immunoblots of total p110 α and pT1061. (E) Repeat of (D) using HGK and and its specific
387 inhibitor DMX-5804. (F) Immunoblot of p110 α (WT and T1061A) on Phos-tag gel after
388 treatment with MST1 or HGK.
389

390 **Fig. 3 Phosphorylation at T1061 prevents p110 α 's association with membranes.**

391 (A) Thermal shift assays of p110 α (WT and T1061A) after MST1 treatment. (B) Structure of
392 p110 α (T1061E)/p85 α -niSH2. Residues 1049-1061, constituting the C-tail, are displayed in
393 pink. E1061's side chain is displayed as spheres. Residues 1032-1048, constituting helix ka11,

394 are displayed in yellow. Catalytic residue side chains K776, H917, and H93635 are displayed as
395 dark blue spheres and the bound catalytic inhibitor GDC-0077 is displayed as teal spheres. (C)
396 Overlay of the crystal structure of p110 α (E1061) with six reported p110 α (WT) structures
397 where threonine 1061 was resolved. C-tails from frontside conformations (pdb ids: 4a55 and
398 5dxh) and backside conformations (pdb ids: 4jps, 4waf, 4zop, and 5fi4) of reported structures
399 are shown in purple. (D) ADP Glo measurements of ATPase activity of PI3K α -/+ HGK and -/+
400 1 μ M alpelisib. (E) Liposome sedimentation assays of PI3K α -/+ HGK, shown as immunoblots
401 of p110 α or p110 α (pT1061) recovered from membrane enriched pellet (P) and supernatant (S).
402 (F) Quantification of densitometries from (E), as ratios of p110 α or pT1061 recovery from
403 supernatant over pellet. Data were represented as means \pm SEMs. Significance was calculated
404 using student's t test (N=3). (G) Activity assays of PI3K α on PI in anionic and cationic
405 liposomes after incubation with HGK. [³²P]PIP3 products were resolved by TLC and measured
406 by autoradiography. (H) Overlay of p110 α (T1061E)'s crystal structure (C-tail in pink) with the
407 6 reported p110 α (WT) structures (in purple, C-tails shown only) selected in Figure 2C. The
408 coloring scheme corresponds to Figure 2C. W1057 sidechains are represented as spheres.
409 Catalytic site is indicated by residues K776, H917, and H936 (dark blue) and bound GDC-0077
410 (teal), shown as spheres. The phospholipid membrane model was obtained from RCSB PDB
411 (pdb id: 2mlr).

412

413 **Fig. 4 Forskolin and epinephrine exposure phosphorylate and inhibit p110 α in cells.**

414 (A) Immunoblot for the indicated proteins using lysates from primary mouse hepatocytes that
415 were serum starved 12 h before stimulation with forskolin (FSK, 20 μ M) for 15 min or
416 epinephrine (Epi, 10 μ M) for 15 and 30 min. (B) Immunoblot for the indicated proteins using
417 lysates from primary human hepatocytes that were serum starved for 12 h, and treated with
418 insulin [100 nM] for different time points (0, 5, 15, 30 min) or insulin followed by FSK [20 μ M]
419 for 10 min. (C) Top: Radioautograph of a TLC separation demonstrating PIP3 production of
420 endogenous p110 α that was immunoprecipitated from serum starved MDA-MB-231 cells
421 treated with vehicle, insulin [100 nM] or insulin plus FSK [20 μ M] for 15 min. Bottom:
422 Corresponding immunoblot for p110 α using the same immunoprecipitate lysate. (D)
423 Quantification of the radioautograph from (C) averaged over three independent experiments.
424 Means \pm SEM. Comparisons made using ANOVA with Tukey's multiple comparisons post-test
425 (N=3). ***p< 0.001. (E) Immunoblot for the indicated proteins using lysates from HEK293A
426 cells that were serum starved for 2 h before stimulated with FSK [20 μ M] for 0, 2, 5, 10, and 30
427 min. (F) The extracellular acidification rate (ECAR) was monitored in serum starved HEK293A
428 cells with or without insulin [0.1 μ M] pre-treatment for 1 h. Arrows indicate injection of glucose
429 [10 mM], FSK [20 μ M], oligomycin [Oligo, 1 μ M], and 2-deoxy-D-glucose [2DG, 50 mM].
430 N=19.

431

432 **Fig. 5 Epinephrine exposure induces phosphorylation and inhibition of p110 α in the liver.**

433 (A) Immunoblot for the indicated proteins using lysates from livers taken from WT mice that
434 were injected with vehicle (normal saline) or epinephrine [0.3 μ g/g] for 10 min (n=4). (B)
435 Immunoblot for the indicated proteins using lysates from livers taken from WT and β 1/ β 2
436 double knockout mice (Adrb1/2 DKO) treated with vehicle (V, saline) or epinephrine (E, Epi)
437 via I.P. injection for 10 min. (C) Plasma Epi levels in WT mice that were fasted for 18 h
438 (Fasted) and then euthanized or provided food for 4 h (Fed). N=5. (D) Immunoblot for the
439 indicated proteins using lysates from liver taken from WT Fed and Fasted mice (n=5). (E)
440 Quantification of the ratios of pT1061 to total p110 α , pAKT2 to total AKT2 and pAKT1 to total
441 AKT1 using band intensity from (D). N=5. (F) Plasma Epi levels in WT mice that were injected
442 with insulin [0.75 mIU/g] for 0 and 30 min. N=3. (G) Immunoblot for the indicated proteins
443 using lysates from livers taken from WT mice injected with insulin [0.75 mIU/g] for different
444 time periods (0, 10, 15 and 30 min). (H) Quantification of the ratios of phosphorylated p110 α
445 (pT1061) to total p110 α and pAKT1 to total AKT1 using band intensity from (G). N=3. Lines
446 and bars indicate Mean \pm SEM. For C, E, F comparisons made via student's t-test. For H,
447 comparisons made via ANOVA with Dunnett's post-test comparing to insulin time 0 min.
448

449 **Fig. 6 Loss of MST1/2 activity in cells and liver reduces p110 α phosphorylation.**
450 (A) Immunoblot for the indicated proteins using lysates from serum starved primary mouse
451 hepatocytes isolated from WT mice that were stimulated with vehicle (DMSO), FSK [20 μ M],
452 or FSK and the MST1/2 inhibitor, XMU [10 μ M]. (B) Immunoblot for the indicated proteins
453 using lysates from HEK293A parental cells or a line with CRISPR deletion of MST1 and MST2
454 (MST1/2 DKO) that were serum starved for 2 h, and pretreated with vehicle (DMSO) or PKA
455 inhibitor, H-89 [10 μ M] for 1 h before stimulating with FSK [20 μ M] for 10 or 20 min. (C) The
456 extracellular acidification rate (ECAR) was monitored in HEK293A Parental, MST1/2 DKO and
457 Last1DKO cells for 1 h. Arrows indicate injection of glucose [10 mM], FSK [20 μ M],
458 oligomycin [1 μ M], and 2-deoxy-D-glucose [50 mM]. (D) The suppression (%) of ECAR
459 following the addition of FSK [20 μ M] using data from C. N= 15 (E) Immunoblot for the
460 indicated proteins using lysates from livers taken from animals (Stk3f/f,Stk4f/f, Alb-Cre -/- and
461 Stk3f/f; Stk4f/f, Alb-Cre+/-) that were injected with vehicle (normal saline) or Epi [0.3 μ g/g].
462 (F) Quantification of the ratios of pT1061 to total p110 α , and pAKT to total AKT using band
463 intensity from (E). In C, D, and F, data is represented as Mean \pm SEMs. Comparisons made via
464 two-way ANOVA with Sidak's multiple comparisons post-test (D) and ANOVA with Turkey's
465 multiple comparisons post-test (F).
466

467 **Fig. 7 Loss of MST1/2 alters fasting glycogen metabolism.**
468 (A) Immunoblot for the indicated proteins using lysates from livers taken from Stk3f/f,Stk4f/f,
469 Alb-Cre -/- (Flox) and Stk3f/f; Stk4f/f, Alb-Cre+/- (DKO) that were fasted for 18 h (Fast) and
470 then euthanized or provided food for 4 h (Fed). N=4. (B) Quantification of the ratio of
471 phosphorylated glycogen synthase (pGS) to total glycogen synthase (GS) using band intensity
472 for the Fasted mice in A. The ratio was normalized to the average of the Fasted Flox mice.

473 Hepatic GS activity (C, N=4), glycogen phosphorylase (GP) activity (D, N=4), and glycogen
474 content (E, N=10) were measured from Fasted Flox and DKO mice. Data is presented as Mean ±
475 SEMs. Comparisons made via student's t-test. (F) Schematic model depicting the normal
476 fasting-induced regulation of glycogen metabolism including the activation of MST1/2 activity
477 and subsequent phosphorylation and inhibition of PI3K α in WT mice. Loss of MST1/2 activity
478 in DKO mice leads to persistent GS activity during fasting, likely via persistent PP1 activity.
479

480 **MATERIALS and METHODS**

481

482 **Recombinant kinases**

483 Recombinant kinases MST1, HGK, MST2, MST3, TAOK1, GLK, AKT1, AMPK1, ERK2, PDK1,
484 CK1A, GSK3A, IKKB, IRAK4, ASK1, GCN2, EEF2K, JAK1, CHK1, CHK2, DAPK1, PKACA,
485 PKCA, PAK1, AurB, CDK1, DYRK1A, SRC, and ABL1 were purchased from SignalChem.
486 Recombinant kinases ATM, LKB1, and TAK1 were purchased from Millipore. Recombinant kinases
487 LATS2 and OXSR1 were purchased from Abnova. Recombinant CK2 was purchased from NEB.
488 Recombinant TGFBR1 was purchased from Proqinase. Recombinant kinase WEE1 was purchased from
489 BPS Biosciences. Recombinant PIK3CG was purchased from Thermo Fisher.
490

491 **Mutagenesis and cloning**

492 pBabe puro HA-PIK3CA was purchased from Addgene (plasmid #12522). This construct has an
493 artifactual amino acid change in its coding sequence (I143V) and site-directed mutagenesis (Quikchange
494 II XL, Agilent) was performed to convert it back to WT with following two primers (all primers were
495 ordered from Integrated DNA Technologies):

496 *PIK3CA* V143I to WT isoleucine Forward: GACTTCCGAAGAAATATTCTAACGTTGTAAA
497 *PIK3CA* V143I to WT isoleucine Reverse: TTTACAAACGTTCAGAATATTCTCGGAAGTC.
498

499 The coding sequence of PIK3CA was then cloned *PIK3CA* into the pcDNA3.4 vector through in-fusion
500 cloning (Clontech) as an untagged protein or with an N-terminal polyhistidine tag. Sequencing analysis
501 was performed with Snapgene.
502

503 ***PIK3CA* T1061A mutagenesis primers:**

504 *PIK3CA* T1061A_FW: 5'-caaaaatggattggatcttccacgcaattaaacagcatgcattgaac-3'
505 *PIK3CA* T1061A_RV: 5'-gttcaatgcatgcttttaattgcgttggaaagatccaatccatttttg-3'

506 ***PIK3CA* T1061E mutagenesis primers:**

507 *PIK3CA* T1061E_FW: 5'-cctcaggatcaatgcgtgtttaatctcggttggaaagatccaatccattttgttg-3'
508 *PIK3CA* T1061E_RV: 5'-caacaaaaatggattggatcttccacgagattaaacagcatgcattgaactgagg-3'
509

510 ***PIK3CA* W1057A mutagenesis primers:**

511 *PIK3CA* W1057A_FW: 5'-ctgttaattgtgtgaagatcgcatccattttgtgtccagcca-3'
512 *PIK3CA* W1057A_RV: 5'-tggctggacaacaaaatggatgcgttccacacaattaaacag-3'

513 **Protein purification**

514 Expi293F cells (Thermo Fisher) were cultured in Expi293 Expression Medium (Thermo Fisher) and
515 incubated in 2L spinner flasks on an orbital shaker at 90 rpm at 37 °C with 8% CO₂. 350 µg of pcDNA
516 3.4-PIK3CA and 150 µg pcDNA 3.4-His₆-flag-TEV-PIK3R1 were combined and diluted in Opti-MEM I
517 Reduced Serum Medium (Thermo Fisher). ExpiFectamine 293 Reagent (Thermo Fisher) was diluted
518 with Opti-MEM separately then combined with diluted plasmid DNA for 10 minutes at room
519 temperature. The mixture was then transferred to 500 mL EXPI-293F cells (3 × 10⁶ cells/mL) and
520 incubated. After 24 hours, ExpiFectamine 293 Transfection Enhancer 1 and Enhancer 2 (Thermo Fisher)
521 were added. Two days later, cells were centrifuged at 300 × g for 5 min, snap freezed in liquid nitrogen
522 and store at -80 °C (3 days post-transfection). All steps of protein purification were performed in the
523 cold room at 4°C. Cell pellets were solubilized in lysis buffer (50 mM Tris pH 8.0, 400 mM NaCl, 2
524 mM MgCl₂, 5% glycerol, 1% Triton X-100, 5 mM β-mercaptoethanol) supplemented with EDTA-free
525 phosphatase and protease inhibitor cocktail (Life technologies) and lysed by Dounce homogenization
526 (20 strokes). Lysates were centrifuged at 100,000 x g for 1 h and the supernatant were affinity purified
527 on Ni-NTA resin (Qiagen) by batch binding for 30 min-1h. Resin was washed with 10 column volumes
528 of base buffer (50 mM Tris pH 8.0, 500 mM NaCl, 2 mM MgCl₂, 2% glycerol, 20 mM imidazole) and
529 eluted in 10 column volumes of elution buffer (50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl₂, 2%
530 glycerol, 250 mM imidazole). Eluted protein was concentrated using 30 kDa Ultra Centrifugal Filter
531 Units (Amicon) and supplemented with 1 mM DTT and 25% glycerol before snap freezing in liquid
532 nitrogen. The same approach was carried out for purification of untagged p110β: His₆-p85 α and
533 untagged p110δ: His₆-p85α.

534 **Lipid kinase assay**

535 For phosphorylation reactions, predetermined concentrations of protein kinase and PI3K complexes were
536 added to master mix containing 50 µM of ATP, 0.1 mg/mL of BSA and 1x Assay Buffer I (SignalChem)
537 in 40 µl total volumes. Reactions were carried out at 30 °C for 30 minutes. Next, 0.01 mCi/mL ³²P-labeled
538 ATP (Perkin Elmer) and 25 µM PIP₂ (Thermo Scientific) were included, bringing total volume to 100 µL.
539 PIP₂ phosphorylation reactions were carried out at 30°C for 20 min. 50 ul of 4N HCl was added to quench
540 the reaction and the lipid was extracted with 100 µl of CHCl₃: MeOH (1:1) followed by vortexing for 1
541 minute and centrifugation at maximum speed for 2 minutes. 10 µL of the lower hydrophobic phase was
542 extracted with gel loading pipet tips and spotted onto a silica plate (EMD Millipore #M116487001) for
543 thin layer chromatography. Plates were placed in a sealed chamber with 1-propanol: 2M acetic acid
544 (65:35). Radioactivity was imaged with a Typhoon FLA 7000 phosphorimager (GE) and quantified by
545 ImageQuant (GE). For cationic liposomes, EPC (#890704C) and PI (840042C) were purchased from
546 Avanti. Liposomes containing 5% PI, 60% EPC, and 35% cholesterol were prepared by extrusion via 20
547 passes through a 0.1 µm membrane using a Mini-Extruder kit (Avanti). The anionic liposomes in these
548 experiments replaced EPC with PS.

549

550 **Thermal shift assays**

551 500 nM p110 α /p85 α -/+ 100 nM MST1, was added to master mix containing 50 μ M of ATP, 0.1
552 mg/mL of BSA and 1x Assay Buffer I (SignalChem) to a total volume of 50 μ L into a MicroAmp
553 Optical 8-Cap strip (Thermo Fisher). Tubes were placed in a Thermocycler (BioRad). Samples were
554 cycled at 50 °C for 30 seconds, then on a temperature gradient from 50 °C – 65 °C for 3 minutes, then
555 25 °C for 3 minutes. Condensates were collected by minispin for 30 seconds and 40 μ L of the
556 supernatant was transferred to separate Eppendorf tubes. Tubes were spun at maximum speed in a
557 microfuge for 20 minutes at 4 °C. 30 μ L of the supernatant was transferred to separate Eppendorf tubes
558 and 10 μ L of 4 \times LDS Sample Buffer were added. Samples were run out on 4%-12% Bis-Tris Pre-cast
559 Gel (Life Technologies) and soluble p110 α was probed by Western blotting across the temperature
560 gradient using anti-p110 α antibody.

561

562 **Liposome preparation and liposome sedimentation assays**

563 PS (#840032) and PE (#840026C) were purchased from Avanti and cholesterol (#CH800) was purchased
564 from Nu Chek Prep. Lipid stocks were prepared at 35% PE, 30% PS, and 35% cholesterol. N₂ gas was
565 applied for 15 seconds and tubes were frozen and stored at -20 °C. Before the experiments, the lipid stocks
566 were vortexed and 100 μ L of chloroform (HPLC-grade) was transferred to a clean glass vial. N₂ gas was
567 immediately applied to the stock tube, capped, and stored at -20 °C. N₂ gas was applied to the 100 μ L
568 aliquot to evaporate chloroform. Next, 1 mL of 20 mM HEPES/ 1 mM EGTA was added and lipids were
569 rehydrated at room temperature for 1 h. Liposomes were prepared by extrusion via 7 passes through a 0.8
570 μ m membrane using a Mini-Extruder kit (Avanti). Liposomes were transferred to a clean Eppendorf tube
571 and centrifuged at 10,000 \times g for 5 minutes. Supernatant was discarded, and the lipid pellet was
572 resuspended in 50 μ L 1 \times Assay Buffer I (SignalChem), vigorously until resuspended. In parallel, p110 α
573 phosphorylation assays were carried out. 150 μ L volume of reaction mix, containing 500 nM p110 α /p85 α ,
574 -/+ 100 nM MST1, 50 μ M of ATP, 0.1 mg/mL of BSA and 1 \times Assay Buffer I (SignalChem) were added
575 to liposomes and 50 μ L volumes were distributed across three Eppendorf tubes. Binding reactions
576 proceeded for 10 minutes at RT. Samples were centrifuged at 10,000 \times g for 5 min at RT and 40 μ L
577 supernatant was carefully removed without disturbing the pellet and optimal amount of NuPAGE 4 \times LDS
578 Sample Buffer (Life Technologies #NP0008) was added. Lipid pellets were resuspended with 40 μ L of
579 Buffer I with optimal amount of 4 \times LDS Sample Buffer added. The amount of membrane-bound p110 α
580 was probed and analyzed by Western blotting. For quantification, densitometry was performed using
581 ImageStudioLite.

582

583

584 **X-ray crystallography**

585 The constructs used for crystallization comprise residues 1 to 1068 of the catalytic subunit p110 with the
586 phosphomimetic mutation T1061E and residues 308-593 of the regulatory subunit p85. p110 α was
587 expressed in insect cells (SF21) as a complex with p85 α . Crystals of the p110 α (T1061E) /p85 heterodimer
588 in complex with GDC-0077 were obtained using hanging-drop vapor-diffusion set-ups. The p110 α

589 (T1061E)/ p85 complex at a concentration of 9 mg/ml (20 mM Tris/HCl, 150 mM NaCl, 1 mM TCEP,
590 pH 8.0) was pre-incubated with 0.5 mM (6.9-fold molar excess) of GDC-0077 (10 mM in DMSO) for 1
591 h. 1 μ L of the protein solution was then mixed with 1 μ L of reservoir solution (0.10 M Bis-Tris-Propane
592 pH 8.10, 0.20 M Na 3 -citrate, 10.00 % (w/v) PEG 3350) and equilibrated at 20 °C over 0.4 ml of reservoir
593 solution. Well diffracting crystals appeared within 4 days and grew to full size over 20 days. PI3K
594 structural display and mapping was performed using PyMOL.
595

596 **Transcreener assay**

597 Transcreener ADP fluorescence intensity assay (Bellbrook Labs) was applied to determine the ATPase
598 activity of the PI3K complex under different treatment. For preparing the HGK-treated PI3K
599 phosphorylation reaction, 38 μ L of PI3K complex (1.3 mg/ml) (EMD Millipore #14-602M) was incubated
600 with 30 μ L of HGK, 20 μ L of ATP (1 mM) and 412 μ L of kinase Buffer to the total volume of 500 μ L.
601 Reaction was carried out at 30 °C for 1hr. GST-HGK was removed from the reaction using 10 μ L of
602 Glutathione Sepharose beads (Thermo Fisher Scientific #45000285) and batched incubation at 4 °C for
603 30 min. The PIK3CA proteins were diluted to 5X stocks in buffer (20 mM HEPES pH 7.4, 100 mM NaCl,
604 0.5mM EGTA, 0.01% triton-x-100) just before use. 10mM stocks of Alpelisib were serially diluted (3 \times)
605 in neat DMSO and stored in a dessicator at room temperature. PIK3CA, along with buffer components
606 (except ATP) were incubated with or without compound at 27 °C for 1h. After incubation, the reaction
607 was initiated by the addition of 5uL of 125uM ATP. A typical assay mixture (25 μ L) contained 40mM
608 HEPES buffer, pH 7.4, 25 mM MgCl₂, 0.01% v/v triton-X-100, 5% v/v DMSO, 20 mM NaCl, 1-5 nM
609 Wt or H1047R, 25 uM ATP, and 50 uM PIP2diC8 or PIP2 in membrane. The reaction was allowed to
610 proceed till ~10% conversion (2.5 uM ADP) after which time, 10 μ L of reaction mixture was quenched
611 with 25uL of transcreener reagent (transcreener ADP2 FI assay kit, BellBrook labs, Cat. No. 3013). The
612 contents were incubated at RT for 1h and fluorescence was measured using a plate reader (Paradigm,
613 Molecular Devices). The same assay was also run at pH 6.0 or 6.4 using MOPS buffer. A calibration curve
614 was generated under identical buffer conditions with varying ADP amounts. Using that, the observed
615 fluorescence was converted to uM ADP. A plot between [ADP] and log[I] yielded the dose-response
616 curves that enabled the calculation of IC₅₀.
617

618 **LC-MS/MS-based phospho-peptide detection and analyses**

619 MST1-treated and untreated PI3K phosphorylation reaction were prepared as followed: 2 μ L of PI3K
620 complex was incubated -/+ 4.5 μ L MST1 and the mastermix containing 2 μ L of ATP (1 mM) and 31.5 μ L
621 of kinase Buffer to the total volume of 40 μ L. Reaction was carried out at 30 °C for 1h and stopped by
622 adding 4x sample buffer. Samples were running on the SDS-PAGE and gel was stained using QC
623 Colloidal Coomassie Stain (Bio-Rad Laboratories #1610803). The sample was digested in-gel with trypsin
624 overnight at 37 °C following reduction with DTT and alkylation with iodoacetamide. The digest was
625 vacuum centrifuged to near dryness and desalted by C18 stage-tip column. A Thermo Fisher Scientific
626 EASY-nLC 1000 coupled on-line to a Fusion Lumos mass spectrometer (Thermo Fisher Scientific) was
627 used. The raw files were processed using the MaxQuant(Cox and Mann, 2008) computational proteomics
628 platform version 1.5.5.1 (Max Planck Institute, Munich, Germany) for protein identification. The

629 fragmentation spectra were used to search the UniProt human protein database (downloaded September
630 21, 2017). Oxidation of methionine, protein N-terminal acetylation and phosphorylation of serine,
631 threonine and tyrosine were used as variable modifications for database searching. The precursor and
632 fragment mass tolerances were set to 7 and 20 ppm, respectively. Both peptide and protein identifications
633 were filtered at 1% false discovery rate based on decoy search using a database with the protein sequences
634 reversed. Identified phosphopeptides were subjected to manual inspection for confirmation of the
635 identification.

636

637 **Peptide library arrays and computational prediction of phosphorylation**

638 Recombinant MST1 was distributed across 384-well plate, mixed with the peptide substrate library
639 (Anaspec #AS-62017-1 and #AS-62335), kinase assay buffer I (SignalChem) and γ -³²P-ATP, and
640 incubated for 90 mins at 30°C. Each well contains a mixture of peptides with a centralized phosphor-
641 acceptor (serine and threonine at a 1:1 ratio), one fixed amino acid in a randomized background. All 20
642 amino acids were distributed across the range of -5 to +4, relative to the centralized serine/threonine to
643 determine the individual contributions of amino acids along the substrate peptide, as shown in the heatmap
644 where the x-axis represents fixed amino acid and the y-axis represents the relative position. Peptides
645 contained C-terminal biotinylation and were spotted on streptavidin-conjugated membranes (Promega
646 #V2861) and imaged with Typhoon FLA 7000 phosphorimager (GE) and quantified by ImageQuant (GE).
647 Intensities were normalized by position to generate a PSSM for MST1. MST1's PSSM was normalized
648 position-wise (dividing individual amino acid intensities at position -5 by the average intensity at this
649 position, then position -4, etc.) and utilized to score threonines in p110 α 's amino acid sequence. The
650 products of their corresponding values at positions -5 to +4 determined their final scores.

651

652 **pT1061 peptide phosphorylation assays**

653 A synthetic peptide modeled after p110 α 's C-terminus (sequence: [K(LC-biotin)]-K-G-A-M-D-W-I-F-T-
654 I-K-Q-H-A-L-N, where LC=linker chain) were incubated with reaction mixtures, kinase assay buffer I
655 (SignalChem) and γ -³²P-ATP, for 5 min at 30°C. Reactions were spotted onto streptavidin-conjugated
656 membranes (Promega #V2861) and imaged with Typhoon FLA 7000 phosphorimager (GE).

657

658 **Illustrations**

659 Experimental schema and illustrative models were generated by BioRender (<https://biorender.com/>) and
660 Chemdraw. Sequence alignments performed with Geneious. Kinome images generated and modified at
661 <http://kinhub.org/kinmap/index.html>.

662 **Cell culture and cell Lines**

663 All cell lines were cultured at 37 °C with 5% CO₂. MDA-MB-231, Huh7, HEK293A cell lines were
664 cultured in DMEM (Life Technologies #11965092) supplemented with 10% FBS. MCF10A were
665 cultured in DMEM/F12 (Life Technologies #11330032) containing 5% horse serum, 20 ng/ml EGF, 0.5
666 μ g/ml hydrocortisone, 10 μ g/ml insulin, 100 ng/ml cholera toxin, and 50 μ g/ml penicillin/streptomycin
667 (P/S). Primary mouse hepatocytes were cultured in William's E medium (Life Technologies #12551032)

668 containing 10% FBS and 1% P/S. AML12 cells were cultured in DMEM: F12 medium (ATCC #30-
669 2006) supplemented with 10% FBS, Insulin-Transferrin-Selenium (ITS-G) (100X) (Thermo Fisher
670 Scientific #41400045), and 40 ng/ml dexamethasone. For signaling assays, cells were washed 1x in PBS
671 and placed in starvation media (-FBS) for 2-16 h depending upon cell line.
672

673 **Immunoprecipitation and lipid kinase assay**

674 Cell were lysed using the PI3K buffer [25 mM Tris, pH 7.5, 10 mM EDTA, 10 mM EGTA, 1% Nonidet
675 P-40] with one tablet (per 10 mL) of protease and phosphatase inhibitor (Life Technologies). After lysis
676 on ice for 30 min, cell lysates were centrifuged for 10 min, 4 °C and supernatant were used for
677 immunoprecipitation. Lysates were incubated with anti-phospho-Tyr-4G10 (EMD Millipore 05-321),
678 anti-p110 α (CST #4249) or anti-p85 α antibody (EMD Millipore #ABS233) for 1 h, followed by protein
679 A/G beads (Santa Cruz) for additional 1hr, and then washed twice with PI3K buffer, and three times with
680 TNE buffer [10 mM Tris (pH 7.5), 100 mM NaCl, 1 mM EDTA]. For PI3K activity assays, the beads (50
681 μ L) were incubated in 1 \times Assay Buffer I (SignalChem), 0.5 μ L ATP (10 mM), 1 μ L 32 P-labeled ATP
682 (0.01 mCi/mL) and 10 μ L of PIP $_2$ (250 μ M) in 100 μ L total volumes. Reactions were carried out at 30°C
683 for 30 min. 50 μ l of 4N HCl was added to quench the reaction and the lipid was extracted with 100 μ l of
684 CHCl $_3$: MeOH (1:1) followed by vortexing and centrifugation. 20 μ L of the lower hydrophobic phase
685 was extracted with gel loading pipet tips and spotted onto a silica plate (EMD Millipore, M116487001)
686 for thin layer chromatography. Plates were placed in a sealed chamber with 1-propanol: 2M acetic acid
687 (65:35). Radioactivity was visualized and quantified using a Typhoon FLA 7000 phosphorimager.
688

689 **Immunoblotting**

690 Cell lysates were prepared in the cell lysis buffer [50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1 mM EDTA
691 and 1% NP-40 with one tablet (per 10 mL) of protease and phosphatase inhibitor (Life Technologies)].
692 After incubation on ice for 30 min, lysates were centrifuged at top speed for 10 min and supernatant were
693 collected and proteins were quantified using Protein DC assay (BioRad). Proteins were running and
694 separated on 4%-12% Bis-Tris Pre-cast Gel (Life Technologies) using MOPS buffer and transferred to
695 PVDF membrane at 350 mA for 1.5 h. Membranes were blocked in 5% non-fat milk in TBST and
696 incubated with primary antibody overnight. Primary antibody against pAKT (S473) [#3787, #4060],
697 pAKT (T308) [#4056], pAKT2 (S474) [#8599], pan AKT [#2920], AKT1 [#2967], AKT2 [#3063],
698 pCREB (S133) [#9198], pLATS1 (T1079) [#8654], pMOB1 (T35) [#8699], pYAP (S127) [#13008],
699 pPKA substrate motif antibody [#9624], p110 α [#4249], CREB [#4820], MOB1 [#13730], LATS1
700 [#9153], MST1 [#14946] and GAPDH [#5174] were from Cell Signaling Technology. MST2 [#ab52641]
701 was from Abcam, and p110 (pT1061) polyclonal antibody was developed and purified by Cell Signaling
702 Technology. HRP-conjugated secondary antibody was used at 1:5000 in 5% milk and membrane were
703 developed using ECL solution and exposed to film. 7.5% phos-tag gel was used to resolve phosphor-
704 p110 α (T1061) (Wako Diagnostics/Chemicals # 192-18001).

705

706 **Vectors and compounds**

707 Alpelisib (MEDCHEM EXPRESS LLC #HY-15244), Neratinib (Selleck #S2150), Go6976 (EMD
708 Millipore #365250), DMX-5804 (MEDCHEM EXPRESS LLC# HY-111754), XMU-MP-1 (Selleck
709 #S8334), H-89 (Tocris Bioscience #2910), AT13148 (Selleck #S7563) and Propanolol HCl (Sigma
710 Aldrich #P0884) were purchased and reconstituted using DMSO and stored at -20 before use. cDNA of
711 PKIA were synthesized by IDT (gBlock) and PCR amplified using the two primers: pLenti-PKIA-IF-
712 FW: 5'CGACTCTAGAGGATCCATGACTGATGTGGAAACTACATATG; pLenti-PKIA-IF-Rev: 5'-
713 GAGGTTGATTGTCGACTTAGCTTCAGATTGCTGCTTC and PCR products were purified.
714 Vector pLenti-GFP were double digested with BamHI-HF and SalI-HF and gel purified. Next, PCR
715 product were inserted into the vector backbone using In-fusion HD cloning (Takara) and transformed in
716 Stbl3 competent cells and grown at 37°C overnight.
717

718 **Mouse strain and breeding**

719 All animal studies were conducted following IACUC approved animal protocols (#2013-0116) at Weill
720 Cornell Medicine. Mice were maintained in temperature- and humidity-controlled on a 12-h light/dark
721 cycle and received a normal chow diet with free access to drinking water. C57/BL6 mice were
722 purchased at 8 weeks of age from Jackson laboratories (Bar Harbour, ME). *Stk3^{f/f}*, *Stk4^{f/f}* mice were
723 purchased from Jackson laboratories (Stock No: 017635). Liver specific MST1/2 double knockout mice
724 (*Stk3^{f/f}*, *Stk4^{f/f}*, *Alb-Cre^{-/+}*) were generated by breeding *Stk3^{f/f}*, *Stk4^{f/f}* mice with Albumin-Cre (Stock No:
725 003574) mice. Homozygous null mice for the *Adrb1* and *Adrb2* genes (*Adrb1^{1/1}*; *Adrb2^{1/1}*) were purchased
726 from the Jackson laboratory (Stock No. 003810). Adipocyte-specific deletion of *Pnpla2* gene were
727 generated by breeding *Pnpla2^{f/f}* mice with *Adipoq-Cre* mice. *Pnpla2^{f/f}* mice were purchased from the
728 Jackson laboratory (Stock No.024278). All mice were fed normal chow (Purina 5053) or a 60% high-fat
729 diet (D12492i, Research Diets, Inc. New Brunswick, NJ, USA), when indicated.

730 731 **Mouse injections and metabolic tissue collections**

732 Fed male mice at 10 weeks of age received an intraperitoneal injection of epinephrine (0.3 µg/g) or
733 insulin (0.75 mU/g body weight) for the indicated durations. For assessment of blood glucose, 10 µl of
734 blood was taken from the tail of mice before treatment and at the indicated time points using a handheld
735 glucose meter (OneTouch). Mice were sacrificed using cervical dislocation and the metabolic tissues
736 were harvested and immediately frozen in liquid nitrogen. Samples were stored in -80 °C until use.
737 Frozen tissues were homogenized in 1 ml of lysis buffer (50 mM Tris·HCl (pH 7.4), 150 mM NaCl, 1
738 mM EDTA, 10% glycerol, 1% Nonidet P-40, 0.5% Triton X-100) and 1 tablet (per 10 mL) of protease
739 and phosphatase inhibitor (Life Technologies). Homogenates were centrifuged at top speed for 30 min
740 and 50 µg of protein, determined by Protein DC Assay (BioRad) were used for Western blot analysis.
741

742 **Primary hepatocytes isolation**

743 Mouse hepatocytes were isolated by a 2-step perfusion procedure(Scapa et al., 2008). Briefly, mice were
744 anesthetized with ketamine (100 mg/kg), xylazine (10 mg/kg), and acepromazine (3 mg/kg). Following
745 laparotomy, the liver was perfused *in situ* through the inferior vena cava with 20 ml of prewarmed liver

746 perfusion medium (Invitrogen) followed by 40 ml of liver digestion medium (Invitrogen). The liver was
747 then placed in ice-cold hepatocyte wash medium (Invitrogen), and the capsule of the liver was then
748 gently disrupted in order to release the hepatocytes. The cell suspension was filtered with a 70- μ m cell
749 strainer (Becton, Dickinson), and cells were washed once (30 \times g, 4 min, 4°C). Dead cells were removed
750 using Percoll solution (Sigma-Aldrich) as described previously(Lee et al., 2004). Live cells were
751 washed, pelleted, resuspended in incubation medium, and seeded on 6-well Primaria plates (Becton,
752 Dickinson) at a density of 4 x10⁵ cells/ well. Cells were allowed to adhere to the plates for 3 h, after
753 which the culture medium were replaced by fresh 2 ml medium.

754

755 **Extracellular acidification rates measurement (ECAR)**

756 Cells were plated in XF96 V3 PET cell culture microplates (Seahorse Biosciences, Cat. #; 101104-004)
757 at a density of 20,000 cells per well in DMEM (Life Technologies #11965092) with 10% FBS. After 24
758 h, growth media was changed to bicarbonate-free assay media (XF assay medium, Seahorse
759 Biosciences, Cat. #: 102365-100) and incubated at 37°C for 1 h in a CO₂-free incubator. Extracellular
760 acidification rate (ECAR) was measured using an XF96 Extracellular Flux Analyzer (Seahorse
761 Biosciences).

762

763 **Hyperinsulinemic-euglycemic clamps**

764 *Rat study*

765 All procedures for the rat hyperinsulinemic–euglycemic clamp were approved by the University of
766 Pennsylvania Animal Care and Use Committee. Rats were fasted for 5 hours prior to the initiation of the
767 clamp and acclimated to the bucket containers. Jugular vein and carotid arterial line were hooked up to
768 the dual swivel 2 h prior to the clamp initiation. During the 90 min clamp period, rats received a
769 constant infusion of insulin (Novolin Regular) at 5 mU/kg/min. Blood glucose levels were clamped at
770 euglycemia with a variable infusion of 50% dextrose. Blood glucose levels were monitored via arterial
771 blood sampling every 10 minutes and glucose infusion rates adjusted to maintain euglycemia. 87
772 minutes after initiation of the clamp, rats received either an IV infusion of vehicle saline for 10 min or
773 epinephrine 0.75 ug/kg/min for 10 or 30 min. Blood samples were collected at the beginning of the
774 clamp (-30 and 0 min, basal period) and during the clamp period (30, 60, 90, 100 or 120 min) for the
775 subsequent assay of catecholamines and insulin levels. At study termination, animals were anesthetized
776 with IV pentobarbital and tissues collected and flash frozen in liquid nitrogen for livers.

777 *Mouse study*

778 All procedures for the hyperinsulinemic–euglycemic clamp were approved by the Vanderbilt University
779 Animal Care and Use Committee. Catheters were implanted into a carotid artery and a jugular vein of
780 mice for sampling and infusions respectively five days before the study as described by Berglund et
781 al(Berglund et al., 2008). Insulin clamps were performed on 5 hr-fasted conscious unhandled mice,
782 using a modification of the method described by Ayala et al(Ayala et al., 2006). After 3h of fast, an
783 arterial blood sample was obtained to determine natural isotopic enrichment of plasma glucose.
784 Immediately following this sample, a quantitative stable isotope delivery to increase isotopic enrichment
785 above natural isotopic labelling was initiated as described previously(Hasenour et al., 2015). Briefly, a
786 [6,6-²H₂]Glucose-²H₂O (99.9%)-saline bolus was infused for 25 min to enrich total body water to 4.5%

787 (t=-120 min to -95 min). A continuous infusion of [6,6-²H₂]glucose (t=-95min to 0min; 0.8 mg
788 kg⁻¹ min⁻¹) was started following the [6,6-²H₂]Glucose-²H₂O-saline prime. The insulin clamp was
789 initiated at t=0min with a continuous insulin infusion (2.5 mU/kg body weight/min). At the same time,
790 a variable infusion of glucose was started (50% dextrose + ²H₂O (0.04 MPE) +[6,6-²H₂]Glucose (0.08
791 MPE)) in order to maintain stable euglycemia and stable enrichment of ²H₂O and [6,6-²H₂]Glucose in
792 plasma. At t=91min, an epinephrine infusion was initiated (continuous infusion until sacrifice; 4 ug/kg
793 body weight/min, in 0.7 mg/mL ascorbate for stability). Washed red blood cells were also continuously
794 infused during the clamp period to maintain hematocrit. Every infusate was prepared in a 4.5% ²H₂O -
795 enriched saline solution. Arterial glucose levels were monitored every 10 min to provide feedback for
796 adjustment of the glucose infusion rate (GIR). Blood sampling for glucose kinetics was performed at t=-
797 10;-5 (basal), t=80-90 (insulin) and t=110-140 min (insulin+epinephrine) of the clamp. Clamp insulin
798 was determined at t=120 min. At 140 min, 13 μ Ci of 2[¹⁴C]deoxyglucose ([¹⁴C]2DG) was administered
799 as an intravenous bolus. Blood was taken from t=142-165min for determination of plasma [¹⁴C]2DG.
800 Plasma lactate and catecholamines were determined at t=165min. At t=166min, mice were sacrificed by
801 pentobarbital injection, and tissues immediately frozen in liquid nitrogen. Plasma glucose enrichments
802 ([6,6-²H₂]Glucose), isotopomer distribution and the enrichment ratio of deuterium on the fifth (C5) and
803 second carbon (C2) of glucose were assessed by GC-MS as described previously(Hughey et al., 2017).
804 Glucose fluxes were assessed using non-steady-state equations (volume of distribution of glucose= 130
805 ml/kg)(Steele et al., 1956). The contribution of gluconeogenesis was assessed as the ratio of C5 and C2
806 of plasma glucose(Antoniewicz et al., 2011; Burgess et al., 2004). [¹⁴C]2DG in plasma samples, and
807 [¹⁴C]2DG-6-phosphate in tissue samples were determined by liquid scintillation counting. The glucose
808 metabolic index (Rg) was calculated as previously described(Kraegen et al., 1985). Plasma insulin was
809 determined by RIA. Plasma lactate was determined by colorimetric assay (abcam). Plasma
810 catecholamine levels were determined by HPLC. Stable isotopes were purchased from Cambridge
811 Isotope Laboratories, Inc. (Tewksbury, MA). Radioactive tracers were purchased from Perkin Elmer.
812

813 **Catecholamine measurements**

814 Mice were sacrificed using cervical dislocation and blood were collected immediately using cardiac
815 puncture. EGTA-glutathione solution (pH6.0-7.4) [4.5g EGTA and 3.0g Glutathione/ per 50 mL] was
816 added at the time of blood collection (2 μ l of solution was added per 100 μ l of blood). After centrifuged
817 at 4 °C, 10000 rpm for 10 min, supernatants were collected and aliquoted and samples for catecholamine
818 analysis were flash frozen in liquid nitrogen. Plasma for insulin measurements were stored at -20 °C.
819 Catecholamine and insulin measurements were performed by the VUMC Hormone Assay and
820 Analytical Services Core.
821

822 **Glycogen synthase activity, phosphorylase activity, and tissue content**

823 Glycogen synthase activity was measured using the incorporation of glucose from UDP-[6-³H] D-
824 glucose into glycogen using liver homogenates as previously described(Li et al., 2019). Activity was
825 calculated as the ratio of activated GS activity (-G6P) versus the total GS activity (+G6P). Glycogen
826 phosphorylase activity was measured from liver homogenates using a calorimetric assay that measures
827 the appearance of G1P in the presence of excess substrate (Abcam ab273271). For glycogen tissue
828 content, frozen liver tissue (30–50 mg) and dilutions of glycogen type III obtained from rabbit liver
829 (Sigma-Aldrich) were homogenized in 0.03 N HCl. An aliquot of the homogenate was mixed with 1.25
830 N HCl and heated for 1 h at 95 °C. Samples were centrifuged at 18,400 \times g, and 10 μ L of supernatant
831 was mixed with 1 mL of glucose oxidase reagent (Stanbio Laboratory). After a short incubation at 37
832 °C, the absorbance was read at 505 nm.

833

834 **Statistics**

835 All summary data are expressed as mean \pm SEM. One-way, two-way ANOVA or student's *t* test were
836 used as indicated followed by correction for multiple comparisons test using Prism 7 (GraphPad La
837 Jolla, CA). Statistical significance is indicated as specific p values in figures.

838

839 **REFERENCES:**

840

841 Antoniewicz, M.R., Kelleher, J.K., and Stephanopoulos, G. (2011). Measuring deuterium enrichment of
842 glucose hydrogen atoms by gas chromatography/mass spectrometry. *Anal Chem* 83, 3211-3216.

843 Ayala, J.E., Bracy, D.P., McGuinness, O.P., and Wasserman, D.H. (2006). Considerations in the design
844 of hyperinsulinemic-euglycemic clamps in the conscious mouse. *Diabetes* 55, 390-397.

845 Barsanti, P.A., Pan, Y., Lu, Y., Jain, R., Cox, M., Aversa, R.J., Dillon, M.P., Elling, R., Hu, C., Jin, X., et
846 al. (2015). Structure-Based Drug Design of Novel, Potent, and Selective Azabenzimidazoles (ABI) as
847 ATR Inhibitors. *ACS Med Chem Lett* 6, 42-46.

848 Battram, D.S., Graham, T.E., and Dela, F. (2007). Caffeine's impairment of insulin-mediated glucose
849 disposal cannot be solely attributed to adrenaline in humans. *The Journal of Physiology* 583, 1069-
850 1077.

851 Berglund, E.D., Li, C.Y., Poffenberger, G., Ayala, J.E., Fueger, P.T., Willis, S.E., Jewell, M.M., Powers,
852 A.C., and Wasserman, D.H. (2008). Glucose metabolism in vivo in four commonly used inbred mouse
853 strains. *Diabetes* 57, 1790-1799.

854 Bessey, P.Q., Brooks, D.C., Black, P.R., Aoki, T.T., and Wilmore, D.W. (1983). Epinephrine acutely
855 mediates skeletal muscle insulin resistance. *Surgery* 94, 172-179.

856 Burgess, S.C., Hausler, N., Merritt, M., Jeffrey, F.M., Storey, C., Milde, A., Koshy, S., Lindner, J.,
857 Magnuson, M.A., Malloy, C.R., et al. (2004). Impaired tricarboxylic acid cycle activity in mouse livers
858 lacking cytosolic phosphoenolpyruvate carboxykinase. *J Biol Chem* 279, 48941-48949.

859 Burke, J.E. (2018). Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement
860 in Human Disease. *Mol Cell* 71, 653-673.

861 Cansby, E., Amrutkar, M., Manneras Holm, L., Nerstedt, A., Reyahi, A., Stenfeldt, E., Boren, J.,
862 Carlsson, P., Smith, U., Zierath, J.R., et al. (2013). Increased expression of STK25 leads to impaired
863 glucose utilization and insulin sensitivity in mice challenged with a high-fat diet. *FASEB J* 27, 3660-
864 3671.

865 Carson, J.D., Van Aller, G., Lehr, R., Sinnamon, R.H., Kirkpatrick, R.B., Auger, K.R., Dhanak, D.,
866 Copeland, R.A., Gontarek, R.R., Tummino, P.J., et al. (2008). Effects of oncogenic p110alpha subunit
867 mutations on the lipid kinase activity of phosphoinositide 3-kinase. *Biochem J* 409, 519-524.

868 Chaussade, C., Cho, K., Mawson, C., Rewcastle, G.W., and Shepherd, P.R. (2009). Functional
869 differences between two classes of oncogenic mutation in the PIK3CA gene. *Biochem Biophys Res
870 Commun* 381, 577-581.

871 Chen, M., Choi, S., Jung, O., Wen, T., Baum, C., Thapa, N., Lambert, P.F., Rapraeger, A.C., and
872 Anderson, R.A. (2019). The Specificity of EGF-Stimulated IQGAP1 Scaffold Towards the PI3K-Akt
873 Pathway is Defined by the IQ3 motif. *Sci Rep* 9, 9126.

874 Cori, C.F., and Cori, G.T. (1929). The Influence of Insulin and Epinephrine on Glycogen Formation in
875 the Liver. *Journal of Biological Chemistry* 85, 275-280.

876 Cori, G.T., Cori, C.F., and Buchwald, K.W. (1930). The Mechanism of Epinephrine Action V. Changes
877 in Liver Glycogen and Blood Lactic Acid After Injection of Epinephrine and Insulin. *Journal of Biological*
878 *Chemistry* 86, 375-388.

879 Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-
880 range mass accuracies and proteome-wide protein quantification. *Nat Biotechnol* 26, 1367-1372.

881 Deibert, D.C., and DeFronzo, R.A. (1980). Epinephrine-induced insulin resistance in man. *J Clin Invest*
882 65, 717-721.

883 Dickson, J.M., Lee, W.J., Shepherd, P.R., and Buchanan, C.M. (2013). Enzyme activity effects of N-
884 terminal His-tag attached to catalytic sub-unit of phosphoinositide-3-kinase. *Biosci Rep* 33.

885 Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, R.A.,
886 Maitra, A., and Pan, D. (2007). Elucidation of a universal size-control mechanism in *Drosophila* and
887 mammals. *Cell* 130, 1120-1133.

888 Dufour, S., Lebon, V., Shulman, G.I., and Petersen, K.F. (2009). Regulation of net hepatic
889 glycogenolysis and gluconeogenesis by epinephrine in humans. *American Journal of Physiology.*
890 *Endocrinology and Metabolism* 297, E231-235.

891 Fan, F., He, Z., Kong, L.L., Chen, Q., Yuan, Q., Zhang, S., Ye, J., Liu, H., Sun, X., Geng, J., et al.
892 (2016). Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and
893 regeneration. *Sci Transl Med* 8, 352ra108.

894 Fritsch, R., de Krijger, I., Fritsch, K., George, R., Reason, B., Kumar, M.S., Diefenbacher, M., Stamp,
895 G., and Downward, J. (2013). RAS and RHO families of GTPases directly regulate distinct
896 phosphoinositide 3-kinase isoforms. *Cell* 153, 1050-1063.

897 Fruman, D.A., Chiu, H., Hopkins, B.D., Bagrodia, S., Cantley, L.C., and Abraham, R.T. (2017). The
898 PI3K Pathway in Human Disease. *Cell* 170, 605-635.

899 Furet, P., Guagnano, V., Fairhurst, R.A., Imbach-Weese, P., Bruce, I., Knapp, M., Fritsch, C., Blasco,
900 F., Blanz, J., Aichholz, R., et al. (2013). Discovery of NVP-BYL719 a potent and selective
901 phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. *Bioorg Med Chem Lett* 23,
902 3741-3748.

903 Gkeka, P., Evangelidis, T., Pavlaki, M., Lazani, V., Christoforidis, S., Agianian, B., and Cournia, Z.
904 (2014). Investigating the structure and dynamics of the PIK3CA wild-type and H1047R oncogenic
905 mutant. *PLoS Comput Biol* 10, e1003895.

906 Gomes, A., Soares, R., Costa, R., Marino, F., Cosentino, M., Malagon, M.M., and Ribeiro, L. (2019).
907 High-fat diet promotes adrenaline production by visceral adipocytes. *Eur J Nutr.*

908 Gymnopoulos, M., Elsliger, M.A., and Vogt, P.K. (2007). Rare cancer-specific mutations in PIK3CA
909 show gain of function. *Proc Natl Acad Sci U S A* 104, 5569-5574.

910 Han, W., Menezes, D.L., Xu, Y., Knapp, M.S., Elling, R., Burger, M.T., Ni, Z.J., Smith, A., Lan, J.,
911 Williams, T.E., et al. (2016). Discovery of imidazo[1,2-a]-pyridine inhibitors of pan-PI3 kinases that are
912 efficacious in a mouse xenograft model. *Bioorg Med Chem Lett* 26, 742-746.

913 Harvey, K.F., Pfleger, C.M., and Hariharan, I.K. (2003). The *Drosophila* Mst ortholog, hippo, restricts
914 growth and cell proliferation and promotes apoptosis. *Cell* 114, 457-467.

915 Hasenour, C.M., Wall, M.L., Ridley, D.E., Hughey, C.C., James, F.D., Wasserman, D.H., and Young,
916 J.D. (2015). Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to
917 quantify liver metabolic fluxes in vivo. *Am J Physiol Endocrinol Metab* 309, E191-203.

918 Heffron, T.P., Heald, R.A., Ndubaku, C., Wei, B., Augustin, M., Do, S., Edgar, K., Eigenbrot, C.,
919 Friedman, L., Gancia, E., et al. (2016). The Rational Design of Selective Benzoxazepin Inhibitors of the
920 alpha-Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (S)-2-((2-(1-Isopropyl-
921 1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-
922 0326). *J Med Chem* 59, 985-1002.

923 Hol, W.G., van Duijnen, P.T., and Berendsen, H.J. (1978). The alpha-helix dipole and the properties of
924 proteins. *Nature* 273, 443-446.

925 Hon, W.C., Berndt, A., and Williams, R.L. (2012). Regulation of lipid binding underlies the activation
926 mechanism of class IA PI3-kinases. *Oncogene* 31, 3655-3666.

927 Hopkins, B.D., Goncalves, M.D., and Cantley, L.C. (2020). Insulin-PI3K signalling: an evolutionarily
928 insulated metabolic driver of cancer. *Nature Reviews Endocrinology* 16, 276-283.

929 Huang, C.H., Mandelker, D., Schmidt-Kittler, O., Samuels, Y., Velculescu, V.E., Kinzler, K.W.,
930 Vogelstein, B., Gabelli, S.B., and Amzel, L.M. (2007). The structure of a human p110alpha/p85alpha
931 complex elucidates the effects of oncogenic PI3Kalpha mutations. *Science* 318, 1744-1748.

932 Hughey, C.C., James, F.D., Bracy, D.P., Donahue, E.P., Young, J.D., Viollet, B., Foretz, M., and
933 Wasserman, D.H. (2017). Loss of hepatic AMP-activated protein kinase impedes the rate of
934 glycogenolysis but not gluconeogenic fluxes in exercising mice. *J Biol Chem* 292, 20125-20140.

935 Hutti, J.E., Jarrell, E.T., Chang, J.D., Abbott, D.W., Storz, P., Toker, A., Cantley, L.C., and Turk, B.E.
936 (2004). A rapid method for determining protein kinase phosphorylation specificity. *Nature methods* 1,
937 27-29.

938 Iglesias, C., Floridia, E., Sartages, M., Porteiro, B., Fraile, M., Guerrero, A., Santos, D., Cunarro, J.,
939 Tovar, S., Nogueiras, R., et al. (2017). The MST3/STK24 kinase mediates impaired fasting blood
940 glucose after a high-fat diet. *Diabetologia* 60, 2453-2462.

941 Jensen, J., Ruge, T., Lai, Y.-C., Svensson, M.K., and Eriksson, J.W. (2011). Effects of adrenaline on
942 whole-body glucose metabolism and insulin-mediated regulation of glycogen synthase and PKB
943 phosphorylation in human skeletal muscle. *Metabolism* 60, 215-226.

944 Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K., and Koike, T. (2006). Phosphate-binding tag, a new
945 tool to visualize phosphorylated proteins. *Mol Cell Proteomics* 5, 749-757.

946 Kraegen, E.W., James, D.E., Jenkins, A.B., and Chisholm, D.J. (1985). Dose-response curves for in
947 vivo insulin sensitivity in individual tissues in rats. *Am J Physiol* 248, E353-362.

948 Lee, P., Peng, H., Gelbart, T., and Beutler, E. (2004). The IL-6- and lipopolysaccharide-induced
949 transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient
950 hepatocytes. *Proc Natl Acad Sci U S A* 101, 9263-9265.

951 Lewis, G.F., Carpentier, A.C., Pereira, S., Hahn, M., and Giacca, A. (2021). Direct and indirect control
952 of hepatic glucose production by insulin. *Cell Metabolism* 33, 709-720.

953 Li, Q., Zhao, Q., Zhang, J., Zhou, L., Zhang, W., Chua, B., Chen, Y., Xu, L., and Li, P. (2019). The
954 Protein Phosphatase 1 Complex Is a Direct Target of AKT that Links Insulin Signaling to Hepatic
955 Glycogen Deposition. *Cell Reports* 28, 3406-3422.e3407.

956 Liu, Q., Li, J., Zhang, W., Xiao, C., Zhang, S., Nian, C., Li, J., Su, D., Chen, L., Zhao, Q., et al. (2021).
957 Glycogen accumulation and phase separation drives liver tumor initiation. *Cell*, S0092-
958 8674(0021)01175-01172.

959 Mandelker, D., Gabelli, S.B., Schmidt-Kittler, O., Zhu, J., Cheong, I., Huang, C.H., Kinzler, K.W.,
960 Vogelstein, B., and Amzel, L.M. (2009). A frequent kinase domain mutation that changes the interaction
961 between PI3Kalpha and the membrane. *Proc Natl Acad Sci U S A* 106, 16996-17001.

962 Manning, B.D., and Toker, A. (2017). AKT/PKB Signaling: Navigating the Network. *Cell* 169, 381-405.

963 Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase
964 complement of the human genome. *Science* 298, 1912-1934.

965 Meng, Z., Moroishi, T., Mottier-Pavie, V., Plouffe, S.W., Hansen, C.G., Hong, A.W., Park, H.W., Mo,
966 J.S., Lu, W., Lu, S., et al. (2015). MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2
967 in the Hippo pathway. *Nat Commun* 6, 8357.

968 Miled, N., Yan, Y., Hon, W.C., Perisic, O., Zvelebil, M., Inbar, Y., Schneidman-Duhovny, D., Wolfson,
969 H.J., Backer, J.M., and Williams, R.L. (2007). Mechanism of two classes of cancer mutations in the
970 phosphoinositide 3-kinase catalytic subunit. *Science* 317, 239-242.

971 Miller, C.J., Lou, H.J., Simpson, C., van de Kooij, B., Ha, B.H., Fisher, O.S., Pirman, N.L., Boggon, T.J.,
972 Rinehart, J., Yaffe, M.B., et al. (2019). Comprehensive profiling of the STE20 kinase family defines
973 features essential for selective substrate targeting and signaling output. *PLoS Biol* 17, e2006540.

974 Nolte, R.T., Eck, M.J., Schlessinger, J., Shoelson, S.E., and Harrison, S.C. (1996). Crystal structure of
975 the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes. *Nat Struct Biol* 3,
976 364-374.

977 Petersen, K.F., Laurent, D., Rothman, D.L., Cline, G.W., and Shulman, G.I. (1998). Mechanism by
978 which glucose and insulin inhibit net hepatic glycogenolysis in humans. *The Journal of Clinical
979 Investigation* 101, 1203-1209.

980 Petersen, M.C., and Shulman, G.I. (2018). Mechanisms of Insulin Action and Insulin Resistance.
981 *Physiological reviews* 98, 2133-2223.

982 Rizza, R.A., Cryer, P.E., Haymond, M.W., and Gerich, J.E. (1980). Adrenergic mechanisms for the
983 effects of epinephrine on glucose production and clearance in man. *The Journal of Clinical Investigation*
984 65, 682-689.

985 Sakamoto, K., Hirshman, M.F., Aschenbach, W.G., and Goodyear, L.J. (2002). Contraction regulation
986 of Akt in rat skeletal muscle. *J Biol Chem* 277, 11910-11917.

987 Scapa, E.F., Pocai, A., Wu, M.K., Gutierrez-Juarez, R., Glenz, L., Kanno, K., Li, H., Biddinger, S.,
988 Jelicks, L.A., Rossetti, L., et al. (2008). Regulation of energy substrate utilization and hepatic insulin
989 sensitivity by phosphatidylcholine transfer protein/StarD2. *FASEB J* 22, 2579-2590.

990 Shekar, S.C., Wu, H., Fu, Z., Yip, S.C., Nagajyothi, Cahill, S.M., Girvin, M.E., and Backer, J.M. (2005).
991 Mechanism of constitutive phosphoinositide 3-kinase activation by oncogenic mutants of the p85
992 regulatory subunit. *J Biol Chem* 280, 27850-27855.

993 Steele, R., Wall, J.S., De Bodo, R.C., and Altszuler, N. (1956). Measurement of size and turnover rate
994 of body glucose pool by the isotope dilution method. *Am J Physiol* 187, 15-24.

995 Sun, M., Hart, J.R., Hillmann, P., Gymnopoulos, M., and Vogt, P.K. (2011). Addition of N-terminal
996 peptide sequences activates the oncogenic and signaling potentials of the catalytic subunit p110alpha
997 of phosphoinositide-3-kinase. *Cell Cycle* 10, 3731-3739.

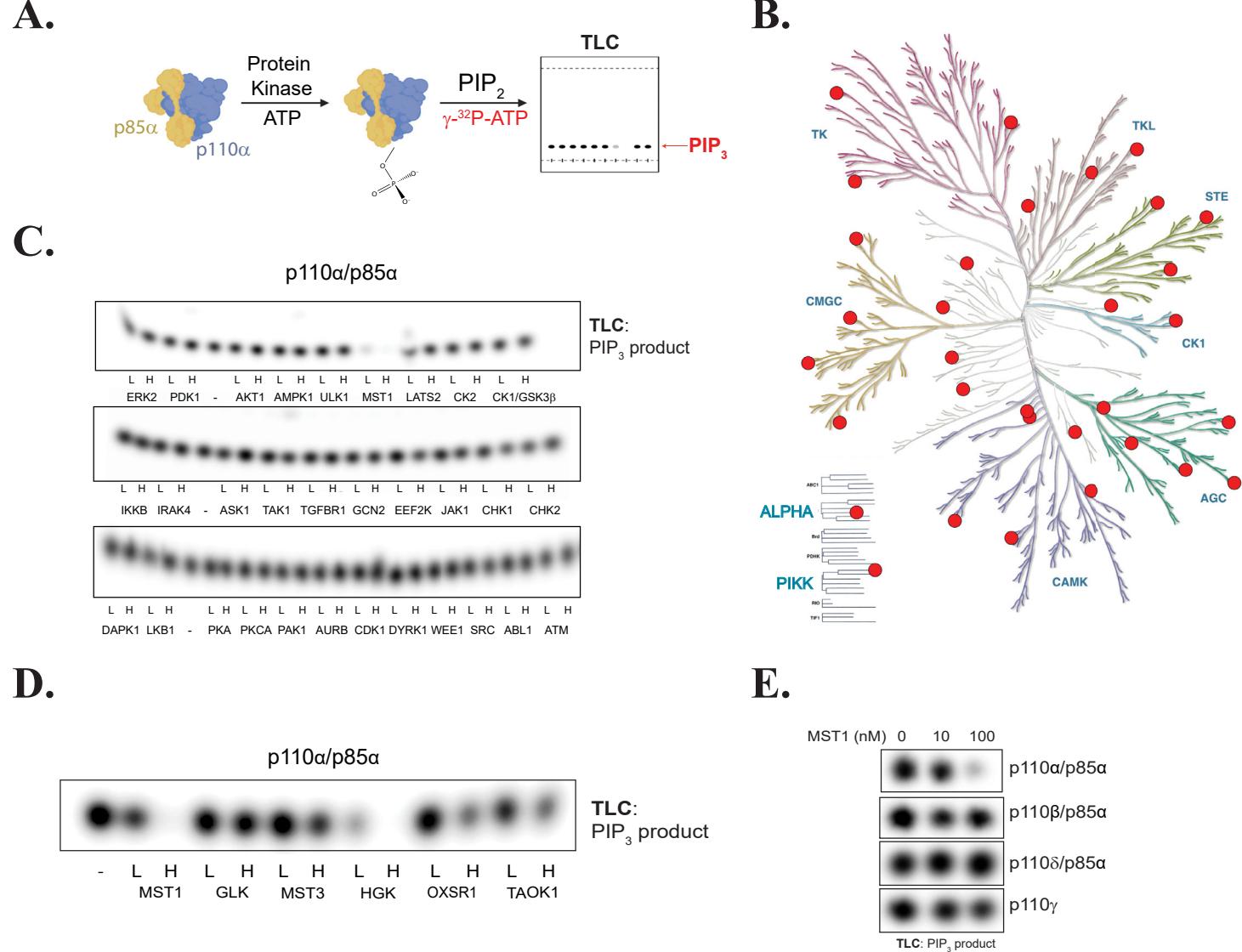
998 Vasan, N., Razavi, P., Johnson, J.L., Shao, H., Shah, H., Antoine, A., Ladewig, E., Gorelick, A., Lin,
999 T.Y., Toska, E., et al. (2019). Double PIK3CA mutations in cis increase oncogenicity and sensitivity to
1000 PI3Kalpha inhibitors. *Science* 366, 714-723.

1001 Virbasius, J.V., and Czech, M.P. (2016). Map4k4 Signaling Nodes in Metabolic and Cardiovascular
1002 Diseases. *Trends Endocrinol Metab* 27, 484-492.

1003 Walker, E.H., Pacold, M.E., Perisic, O., Stephens, L., Hawkins, P.T., Wymann, M.P., and Williams, R.L.
1004 (2000). Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002,
1005 quercetin, myricetin, and staurosporine. *Mol Cell* 6, 909-919.

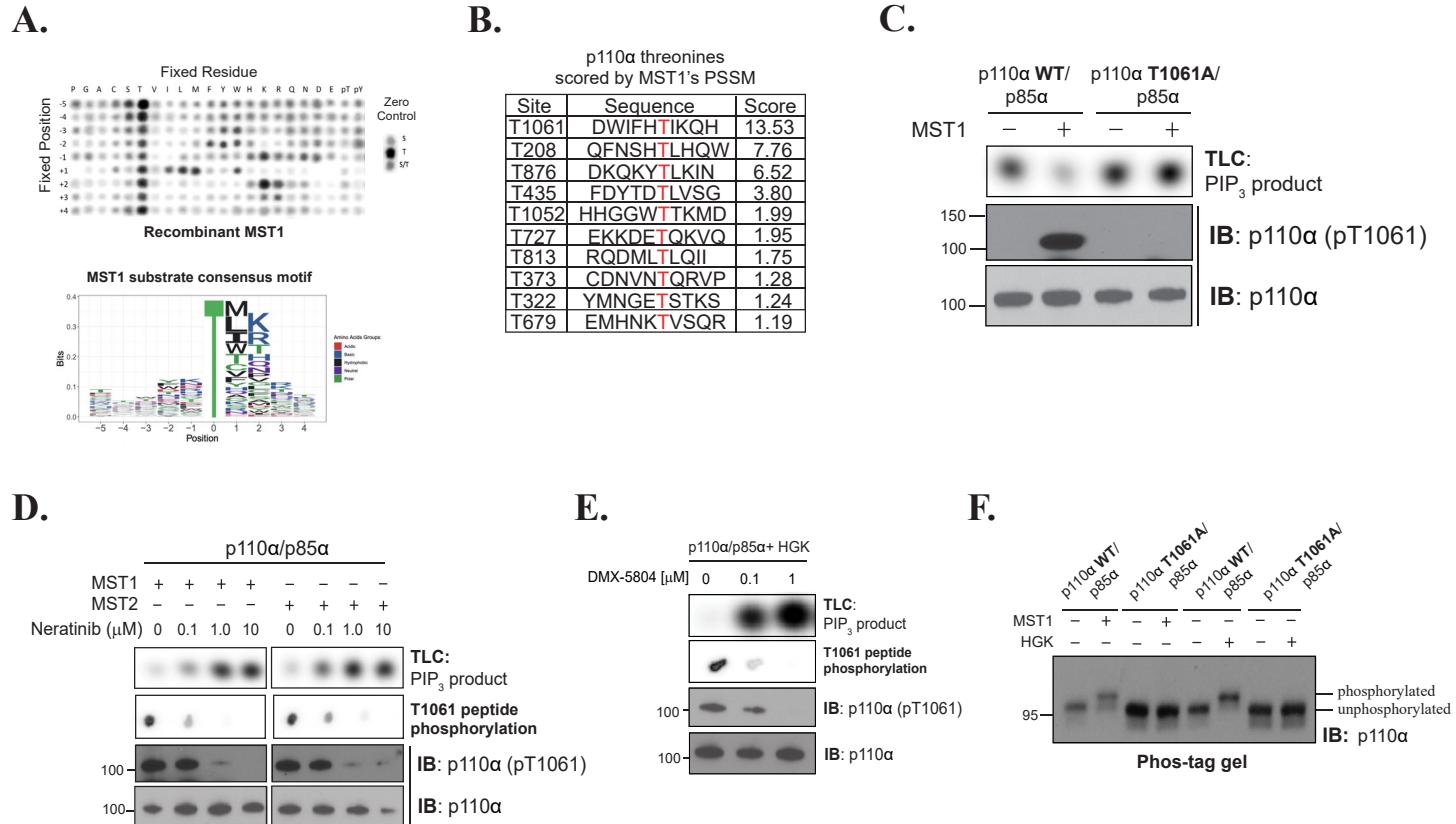
1006 Walker, E.H., Perisic, O., Ried, C., Stephens, L., and Williams, R.L. (1999). Structural insights into
1007 phosphoinositide 3-kinase catalysis and signalling. *Nature* 402, 313-320.

1008 Wu, S., Huang, J., Dong, J., and Pan, D. (2003). hippo encodes a Ste-20 family protein kinase that
1009 restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. *Cell* 114, 445-
1010 456.


1011 Xu, S., Liu, Y., Hu, R., Wang, M., Stöhr, O., Xiong, Y., Chen, L., Kang, H., Zheng, L., Cai, S., et al.
1012 (2021). TAZ inhibits glucocorticoid receptor and coordinates hepatic glucose homeostasis in normal
1013 physiological states. *eLife* 10, e57462.

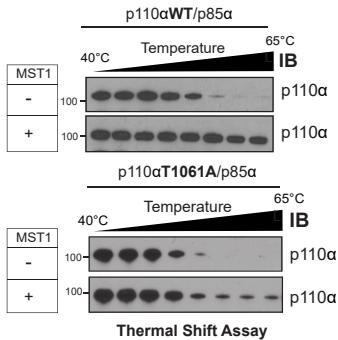
1014 Yu, F.X., Zhang, Y., Park, H.W., Jewell, J.L., Chen, Q., Deng, Y., Pan, D., Taylor, S.S., Lai, Z.C., and
1015 Guan, K.L. (2013). Protein kinase A activates the Hippo pathway to modulate cell proliferation and
1016 differentiation. *Genes Dev* 27, 1223-1232.

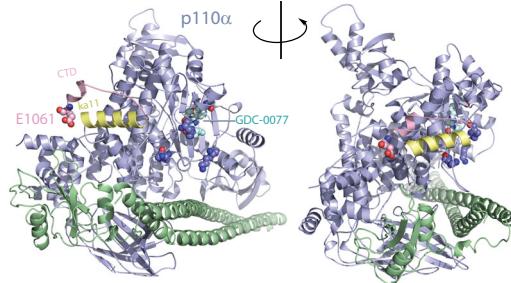
1017 Yu, F.X., Zhao, B., Panupinthu, N., Jewell, J.L., Lian, I., Wang, L.H., Zhao, J., Yuan, H., Tumaneng, K.,
1018 Li, H., et al. (2012). Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. *Cell*
1019 150, 780-791.


1020 Zhou, D., Conrad, C., Xia, F., Park, J.S., Payer, B., Yin, Y., Lauwers, G.Y., Thasler, W., Lee, J.T.,
1021 Avruch, J., et al. (2009). Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular
1022 carcinoma development through inactivation of the Yap1 oncogene. *Cancer Cell* 16, 425-438.

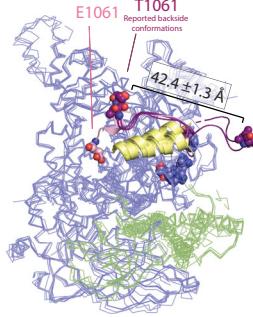
1023

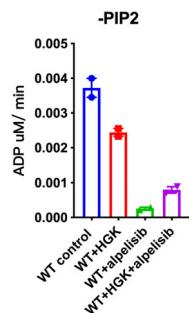
Fig. 1 Kinase screen identifies GCK kinases as negative regulators of PI3K α activity.

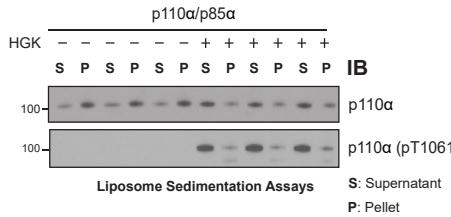

(A) Experimental schema. (B) Dendrogram of the human protein kinome that highlights the kinases selected for our screen. (C) Thin layer chromatography (TLC)-autoradiography of [32 P]PIP₃ produced by recombinant PI3K α complexes (p110 α /p85 α , 500 nM) after incubation with the indicated recombinant protein kinases at 10 nM (L) or 100 nM (H) concentrations or with enzyme storage buffer (-). (D) PIP₂ kinase assays with PI3K α after incubation with subset of the GCK family, performed as described in (C). (E) PIP₂ kinase assays with the class I PI3K isoforms (PI3K α , PI3K β , PI3K γ , and PI3K δ , 500 nM) after incubation with MST1.

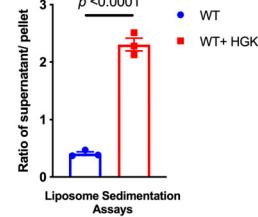

Fig.2 MST1/2 and HGK inhibit catalytic activity of p110 α through phosphorylation at T1061.

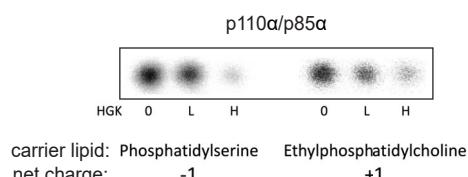
(A) (Top) Peptide phosphorylation by MST1 to characterize its substrate consensus motif. Positional scanning peptide arrays were utilized, where 22 residues (20 amino acids + 2 PTM residues) were scanned across nine neighboring positions of the phospho-acceptor. The zero controls (righthand side), consisting of serine only, threonine only, or a 1:1 mixture of both were examined as phospho-acceptors. Phosphorylation was measured by autoradiography. (Bottom) Sequence logo of the substrate consensus motif of MST1 as determined in top panel. Letter height is proportional to favorability of corresponding amino acid. (B) p110 α 's threonine residues scored by MST1's PSSM obtained from (A). (C) Incubation of p110 α (WT)/p85 α and p110 α (T1061A)/p85 α with MST1. Top: Autoradiography of 32 PPIP₃ production by p110 α . Bottom: Immunoblots of total p110 α and pT1061 p110 α . (D) Incubation of MST1 or MST2 with increasing concentrations of Neratinib, followed by incubation with PI3K α . Top: Autoradiography of 32 PPIP₃ production by p110 α . Second from top: Autoradiography of T1061-modeled peptidesubstrate peptide phosphorylation by MST1 or MST2. Bottom: Immunoblots of total p110 α and pT1061. (E) Repeat of (D) using HGK and its specific inhibitor DMX-5804. (F) Immunoblot of p110 α (WT and T1061A) on Phos-tag gel after treatment with MST1 or HGK.

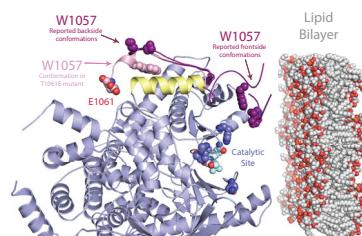

A.


B.

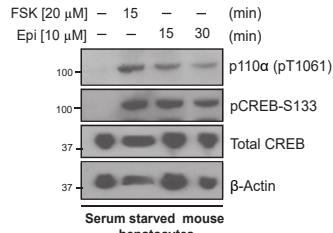

C.

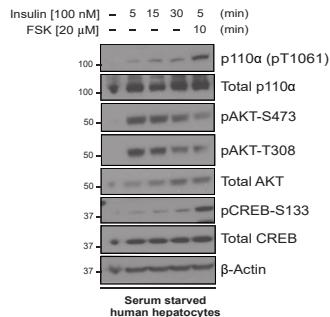

D.


E.

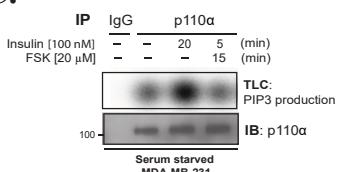

F.

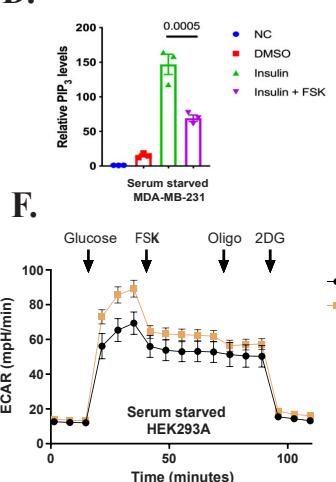
G.

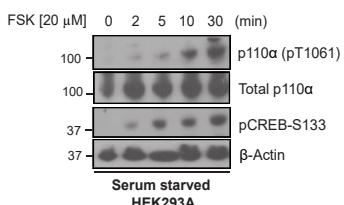

H.

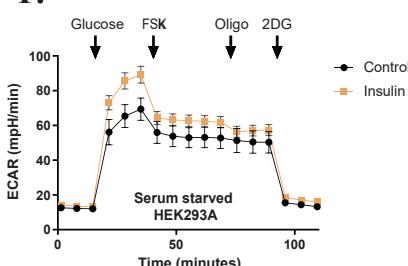

Fig. 3 Phosphorylation at T1061 prevents p110 α 's association with membranes.

(A) Thermal shift assays of p110 α (WT and T1061A) after MST1 treatment. (B) Structure of p110 α (T1061E)/p85 α -niSH2. Residues 1049-1061, constituting the C-tail, are displayed in pink. E1061's side chain is displayed as spheres. Residues 1032-1048, constituting helix ka11, are displayed in yellow. Catalytic residue side chains K776, H917, and H936³⁵ are displayed as dark blue spheres and the bound catalytic inhibitor GDC-0077 is displayed as teal spheres. (C) Overlay of the crystal structure of p110 α (E1061) with six reported p110 α (WT) structures where threonine 1061 was resolved. C-tails from frontside conformations (pdb ids: 4a55 and 5dxh) and backside conformations (pdb ids: 4jps, 4waf, 4zop, and 5f4) of reported structures are shown in purple. (D) ADP Glo measurements of ATPase activity of PI3K α -/+ HGK and -/+ 1 μ M alpelisib. (E) Liposome sedimentation assays of PI3K α -/+ HGK, shown as immunoblots of p110 α or p110 α (pT1061) recovered from membrane enriched pellet (P) and supernatant (S). (F) Quantification of densitometries from (E), as ratios of p110 α or pT1061 recovery from supernatant over pellet. Data were represented as means \pm SEMs. Significance was calculated using student's t test (N=3). (G) Activity assays of PI3K α on PI in anionic and cationic liposomes after incubation with HGK. [³²P]PIP₃ products were resolved by TLC and measured by autoradiography. (H) Overlay of p110 α (T1061E)'s crystal structure (C-tail in pink) with the 6 reported p110 α (WT) structures (in purple, C-tails shown only) selected in Figure 2C. The coloring scheme corresponds to Figure 2C. W1057 sidechains are represented as spheres. Catalytic site is indicated by residues K776, H917, and H936 (dark blue) and bound GDC-0077 (teal), shown as spheres. The phospholipid membrane model was obtained from RCSB PDB (pdb id: 2mlr).

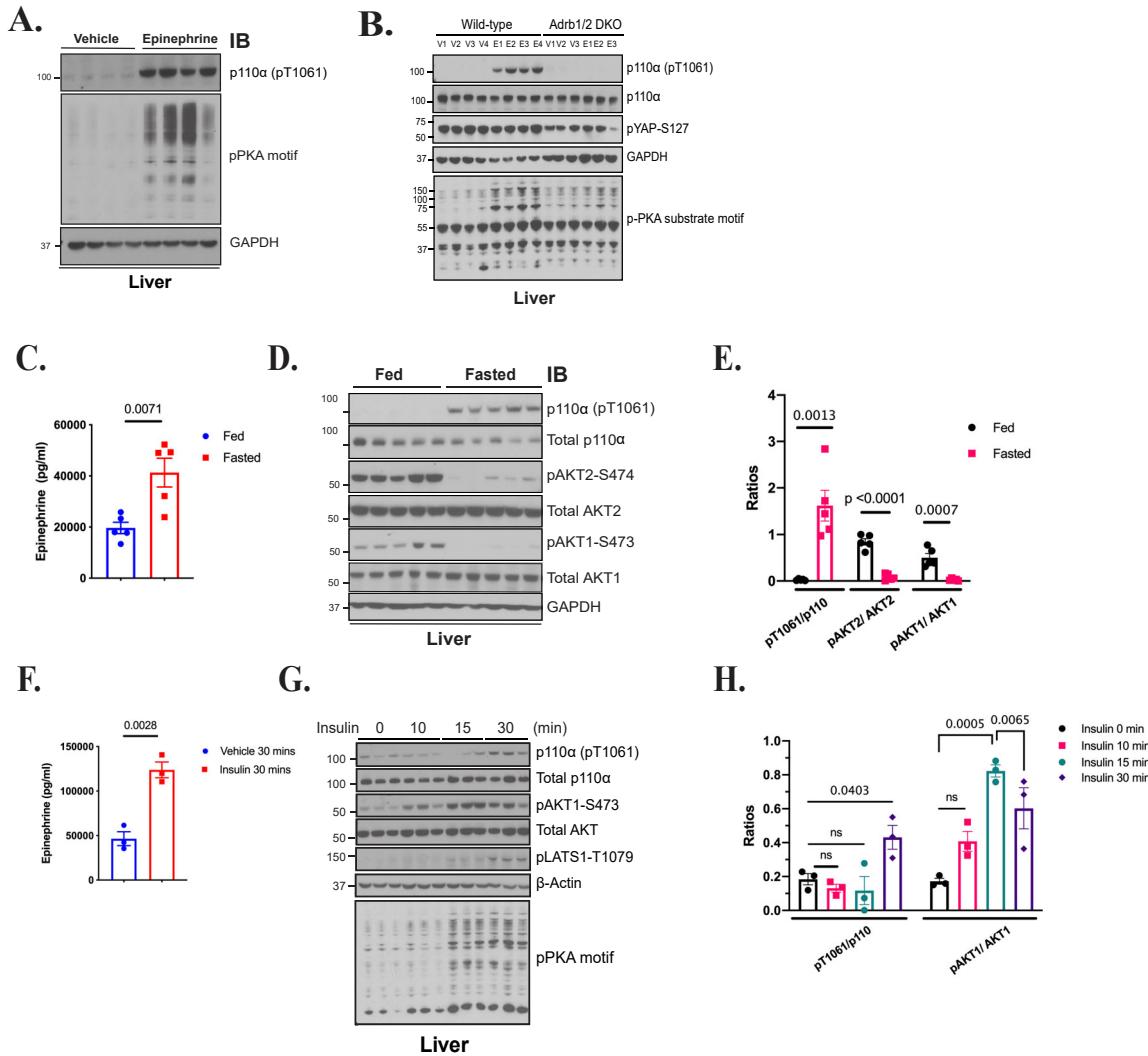

A.


B.

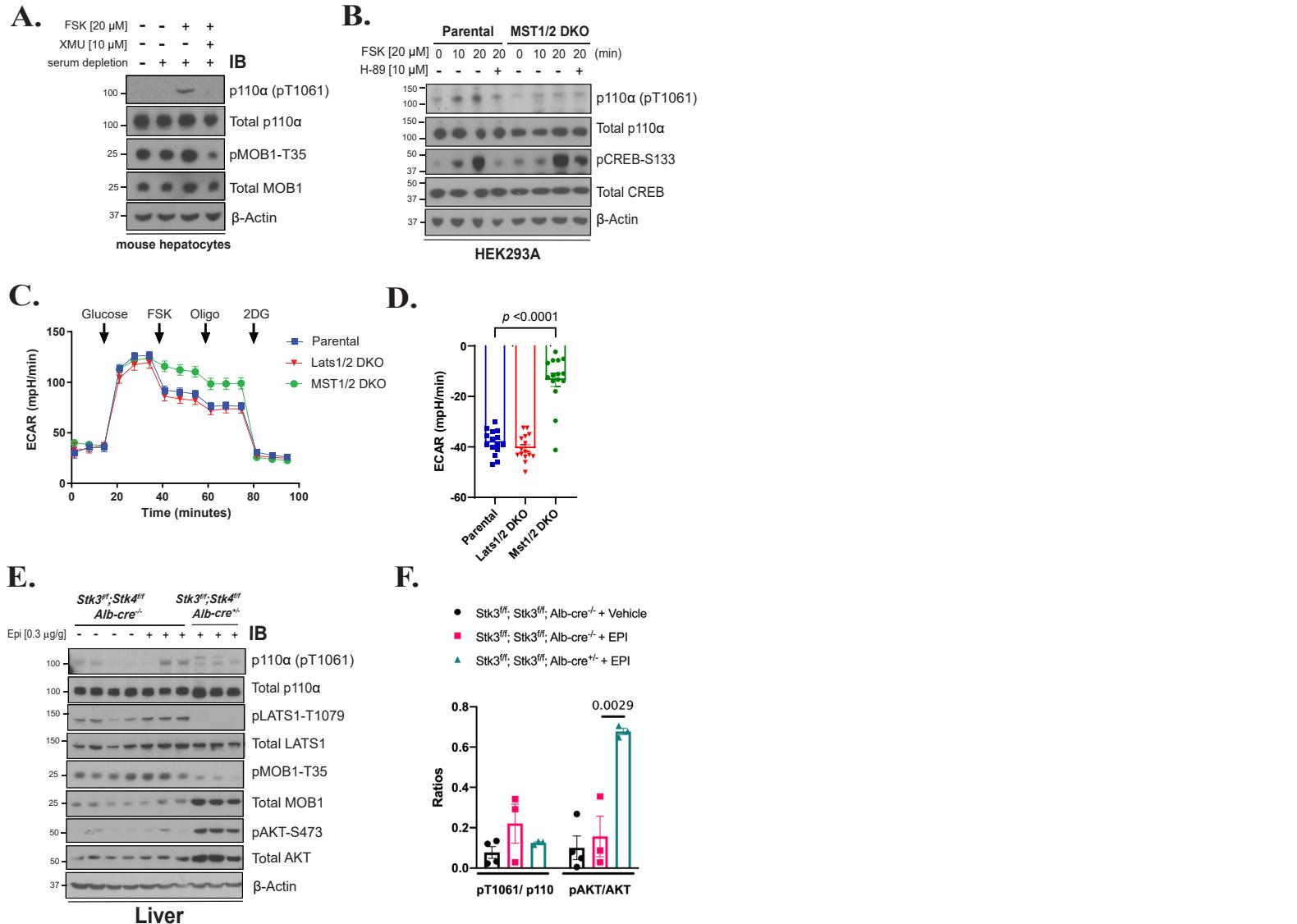

C.


D.

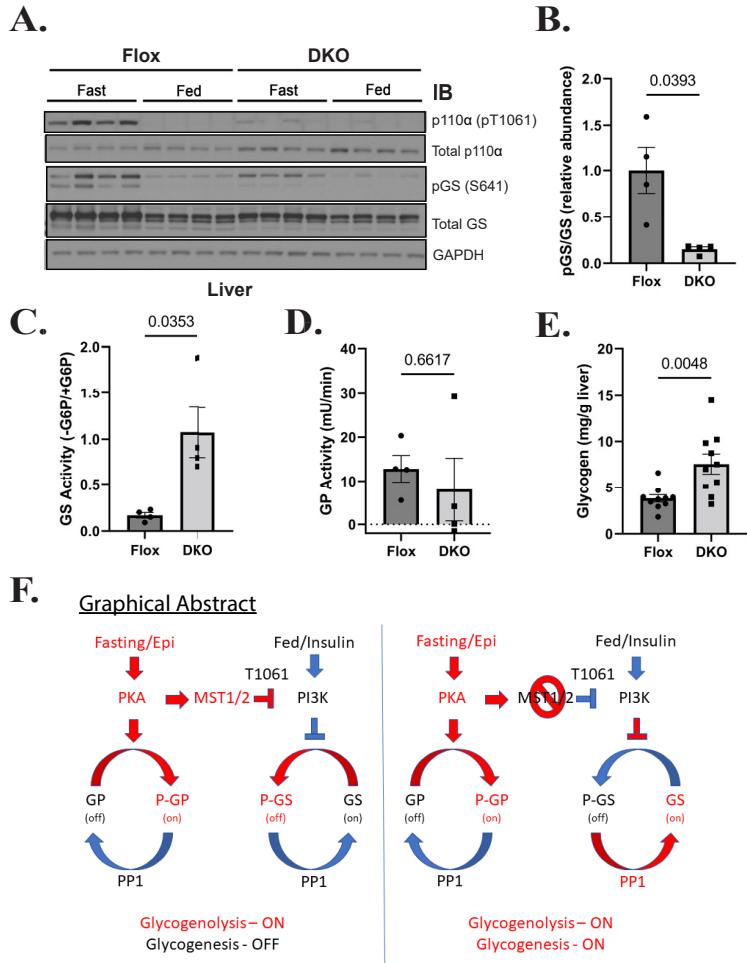
E.



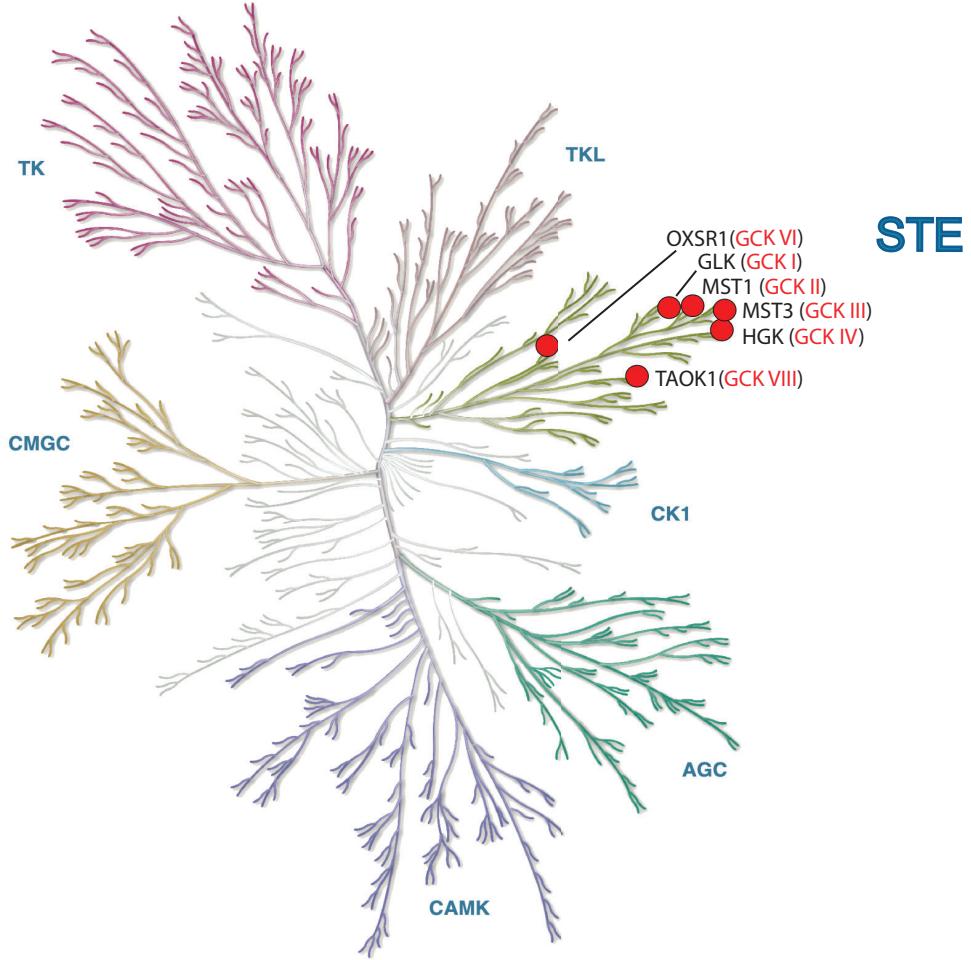
F.


Fig. 4 Forskolin and epinephrine exposure phosphorylate and inhibit p110 α in cells.

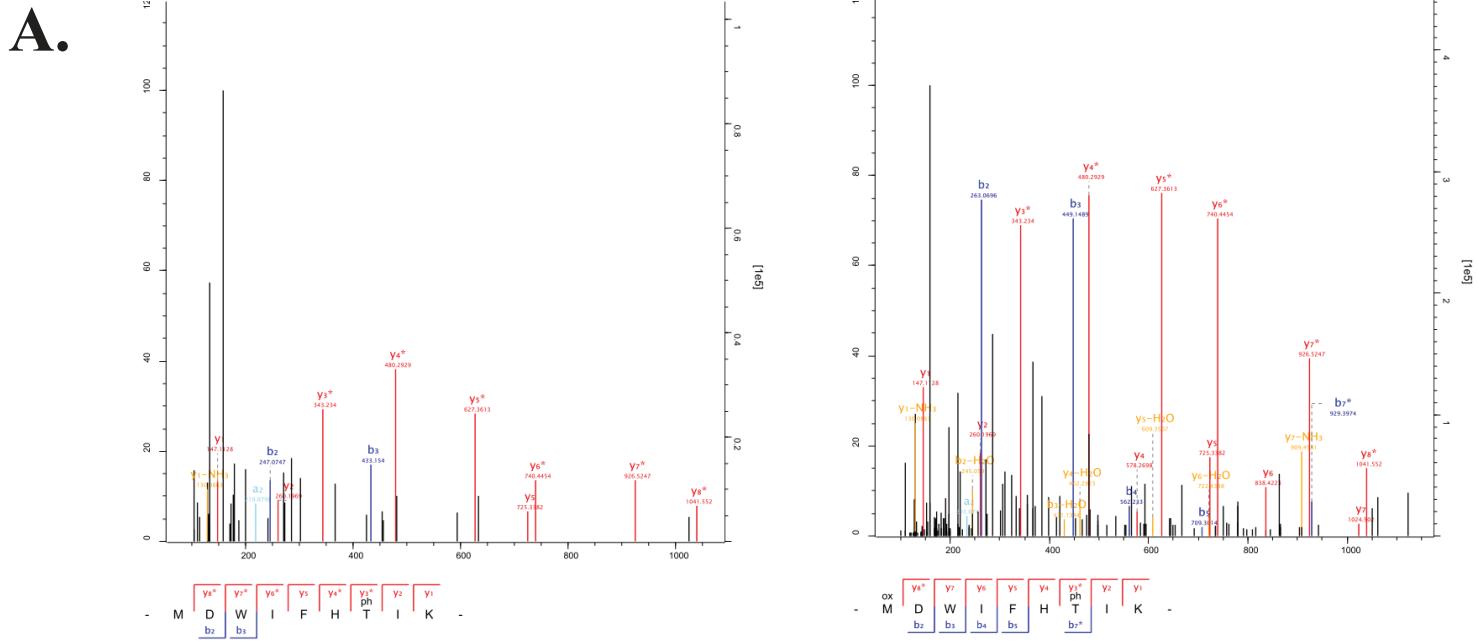
(A) Immunoblot for the indicated proteins using lysates from primary mouse hepatocytes that were serum starved 12 h before stimulation with forskolin (FSK, 20 μ M) for 15 min or epinephrine (Epi, 10 μ M) for 15 and 30 min. (B) Immunoblot for the indicated proteins using lysates from primary human hepatocytes that were serum starved for 12 h, and treated with insulin [100 nM] for different time points (0, 5, 15, 30 min) or insulin followed by FSK [20 μ M] for 10 min. (C) Top: Radioautograph of a TLC separation demonstrating PIP₃ production of endogenous p110 α that was immunoprecipitated from serum starved MDA-MB-231 cells treated with vehicle, insulin [100 nM] or insulin plus FSK [20 μ M] for 15 min. Bottom: Corresponding immunoblot for p110 α using the same immunoprecipitate lysate. (D) Quantification of the radioautograph from (C) averaged over three independent experiments. Means \pm SEM. Comparisons made using ANOVA with Tukey's multiple comparisons post-test (N=3). *** p <0.001. (E) Immunoblot for the indicated proteins using lysates from HEK293A cells that were serum starved for 2 h before stimulated with FSK [20 μ M] for 0, 2, 5, 10, and 30 min. (F) The extracellular acidification rate (ECAR) was monitored in serum starved HEK293A cells with or without insulin [0.1 μ M] pre-treatment for 1 h. Arrows indicate injection of glucose [10 mM], FSK [20 μ M], oligomycin [Oligo, 1 μ M], and 2-deoxy-D-glucose [2DG, 50 mM]. N=19


Fig. 5 Epinephrine exposure induces phosphorylation and inhibition of p110 α in the liver.

(A) Immunoblot for the indicated proteins using lysates from livers taken from WT mice that were injected with vehicle (normal saline) or epinephrine [0.3 μ g/g] for 10 min (n=4). (B) Immunoblot for the indicated proteins using lysates from livers taken from WT and β 1/ β 2 double knockout mice (Adrb1/2 DKO) treated with vehicle (V, saline) or epinephrine (E, Epi) via I.P. injection for 10 min. (C) Plasma Epi levels in WT mice that were fasted for 18 h (Fasted) and then euthanized or provided food for 4 h (Fed). N=5. (D) Immunoblot for the indicated proteins using lysates from liver taken from WT Fed and Fasted mice (n=5). (E) Quantification of the ratios of pT1061 to total p110 α , pAKT2 to total AKT2 and pAKT1 to total AKT1 using band intensity from (D). N=5. (F) Plasma Epi levels in WT mice that were injected with insulin [0.75 mIU/g] for 0 and 30 min. N=3. (G) Immunoblot for the indicated proteins using lysates from livers taken from WT mice injected with insulin [0.75 mIU/g] for different time periods (0, 10, 15 and 30 min). (H) Quantification of the ratios of phosphorylated p110 α (pT1061) to total p110 α and pAKT1 to total AKT1 using band intensity from (G). N=3. Lines and bars indicate Mean \pm SEM. For C, E, F comparisons made via student's t-test. For H, comparisons made via ANOVA with Dunnett's post-test comparing to insulin time 0 min.


Fig. 6 Loss of MST1/2 activity in cells and liver reduces p110 α phosphorylation.

(A) Immunoblot for the indicated proteins using lysates from serum starved primary mouse hepatocytes isolated from WT mice that were stimulated with vehicle (DMSO), FSK [20 μ M], or FSK and the MST1/2 inhibitor, XMU [10 μ M]. (B) Immunoblot for the indicated proteins using lysates from HEK293A parental cells or a line with CRISPR deletion of MST1 and MST2 (MST1/2 DKO) that were serum starved for 2 h, and pretreated with vehicle (DMSO) or PKA inhibitor, H-89 [10 μ M] for 1 h before stimulating with FSK [20 μ M] for 10 or 20 min. (C) The extracellular acidification rate (ECAR) was monitored in HEK293A Parental, MST1/2 DKO and Last1DKO cells for 1 h. Arrows indicate injection of glucose [10 mM], FSK [20 μ M], oligomycin [1 μ M], and 2-deoxy-D-glucose [50 mM]. (D) The suppression (%) of ECAR following the addition of FSK [20 μ M] using data from C. N= 15 (E) Immunoblot for the indicated proteins using lysates from livers taken from animals (Stk3^{fl/fl}; Stk4^{fl/fl}, Alb-Cre^{-/-} and Stk3^{fl/fl}; Stk4^{fl/fl}, Alb-Cre^{+/+}) that were injected with vehicle (normal saline) or Epi [0.3 μ g/g]. (F) Quantification of the ratios of pT1061 to total p110 α , and pAKT to total AKT using band intensity from (E). In C, D, and F, data is represented as Mean \pm SEMs. Comparisons made via two-way ANOVA with Sidak's multiple comparisons post-test (D) and ANOVA with Turkey's multiple comparisons post-test (F).


Fig. 7 Loss of MST1/2 alters fasting glycogen metabolism.

(A) Immunoblot for the indicated proteins using lysates from *Stk3^{fl/fl},Stk4^{fl/fl}, Alb-Cre^{-/-}* (Flox) and *Stk3^{fl/fl}, Stk4^{fl/fl}, Alb-Cre^{+/+}* (DKO) that were fasted for 18 h (Fast) and then euthanized or provided food for 4 h (Fed). N=4. (B) Quantification of the ratio of phosphorylated glycogen synthase (pGS) to total glycogen synthase (GS) using band intensity for the Fasted mice in A. The ratio was normalized to the average of the Fasted Flox mice. Hepatic GS activity (C, N=4), glycogen phosphorylase (GP) activity (D, N=4), and glycogen content (E, N=10) were measured from Fasted Flox and DKO mice. Data is presented as Mean \pm SEMs. Comparisons made via student's t-test. (F) Schematic model depicting the normal fasting-induced regulation of glycogen metabolism including the activation of MST1/2 activity and subsequent phosphorylation and inhibition of PI3K α . Loss of MST1/2 activity leads to persistent GS activity during fasting, likely via persistent PP1 activity.

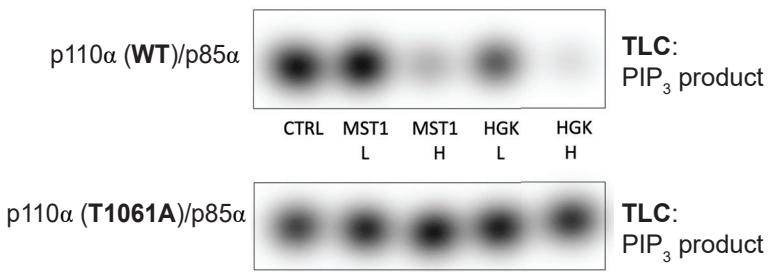
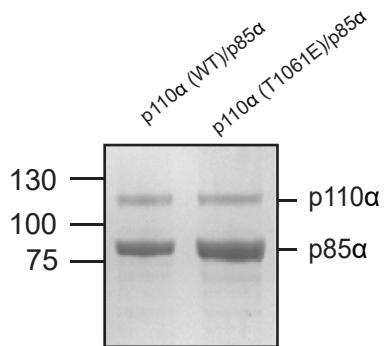
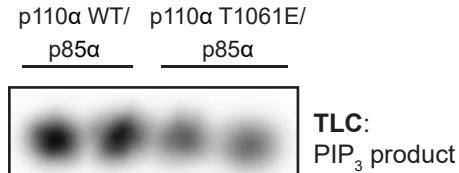


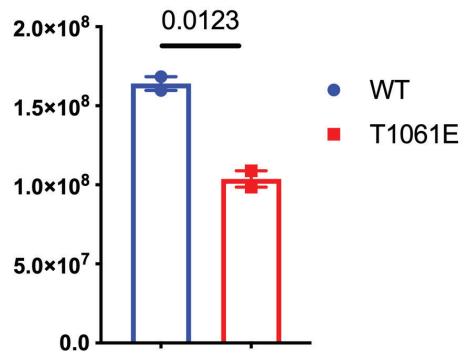
Fig. S1 The GCK family kinases.

Six GCK family members selected for PI3K α activity screens. Their positions are highlighted on the evolutionary dendrogram of the human protein kinase.

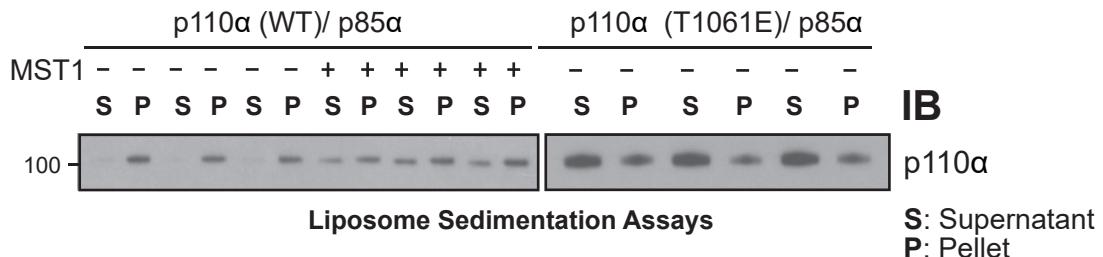

B.

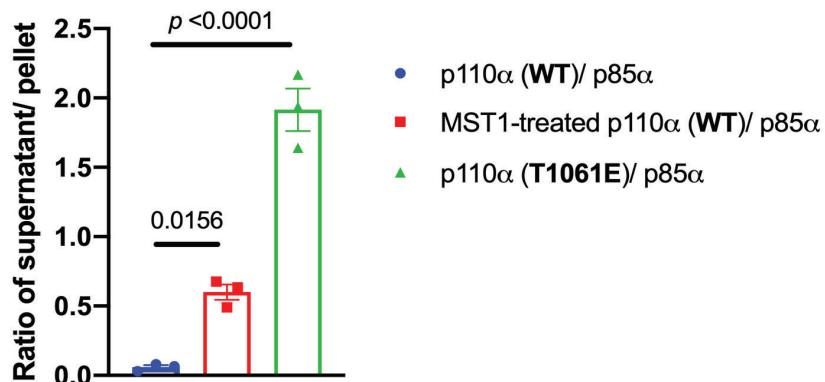

Fig. S2 MST1/2 and HGK inhibit catalytic activity of p110 α through phosphorylation at T1061.

(A) Phosphopeptides containing T1061 were identified by MS/MS using purified p110 α /p85 α incubated with MST1 for 1h. Two versions of phosphopeptides were identified, with differences in methionine oxidation status. (B) Autoradiography of [32 P]PIP₃ production by the purified p110 α (WT)/p85 α or p110 α (T1061A)/p85 α after treatment with MST1 or HGK.

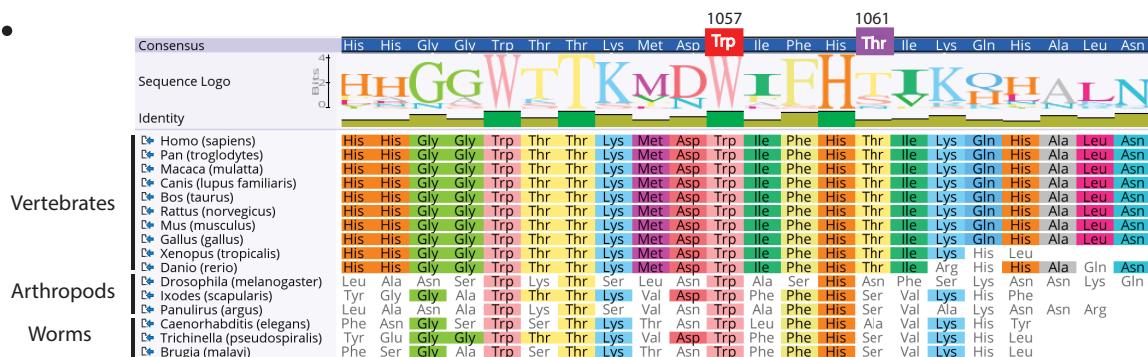

A.

B.


C.


Fig. S3 Characterization of the phosphomimetic T1061 p110α mutant.

(A) Top: Coomassie stain comparison of purified recombinant p110α (WT)/His₆-p85α and p110α (T1061E)/His₆-p85α. (B) Second from top: Basal activities of p110α (WT) and the phosphomimetic mutant, p110α (T1061E) as measured by [³²P]PIP₃ production. (C) Bar graph of corresponding densitometries. Quantification of densitometries from (B). Data were represented as means ± SEMs. Significance , was calculated using student's t test (N=2).


A.

B.

C.

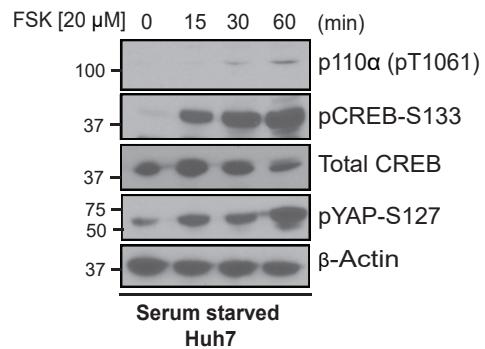
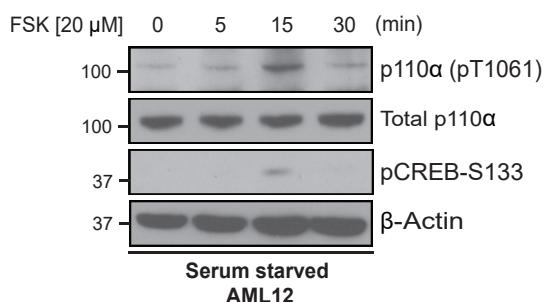
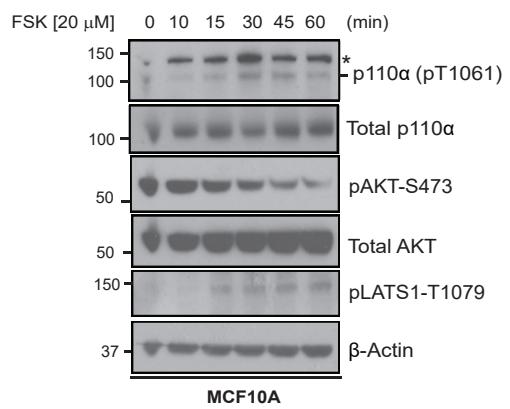
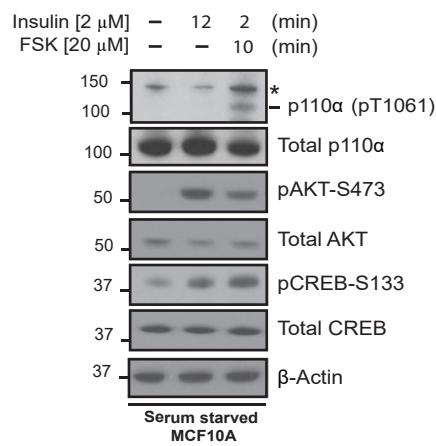


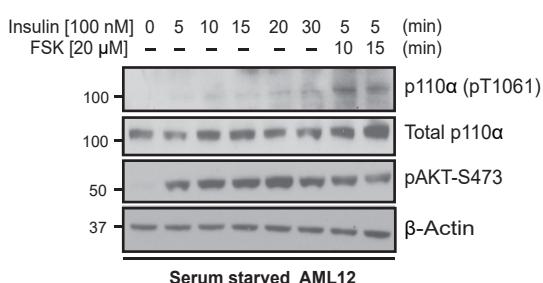
Fig. S4 Phosphorylation of p110 α by the Hippo kinases inhibits p110 α 's interaction with membranes.


(A) Liposome sedimentation assays of PI3K α -/+ MST1 and untreated phosphomimetic mutant p110 α (T1061E)/p85 α . Immunoblots of p110 α recovered from pellet (P) and supernatant (S).

(B) Bar graph of corresponding densitometries from (A): as ratios of p110 α recovery from supernatant over pellet. Data were represented as means \pm SEMs. Significance was calculated using one-way ANOVA with Turkey's multiple comparisons post-test (N=3). (C) Evolutionary alignment of the C-tails of p110 α orthologs, highlighting W1057 and T1061.


A.


B.


C.

D.

E.

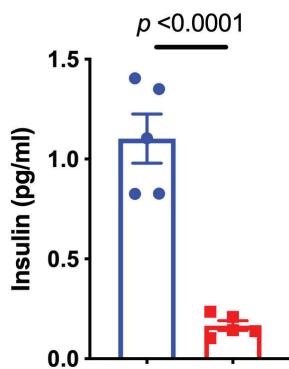
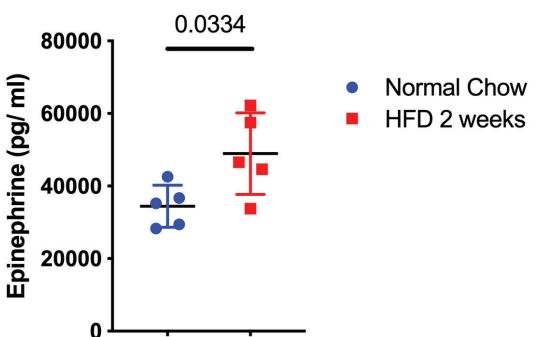
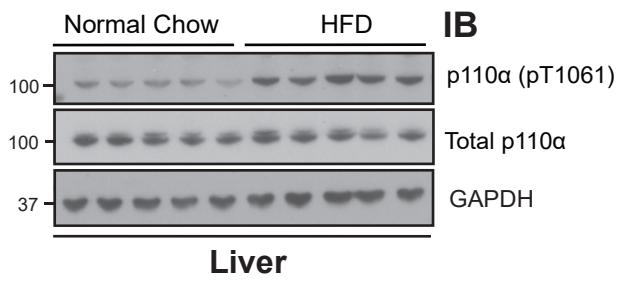
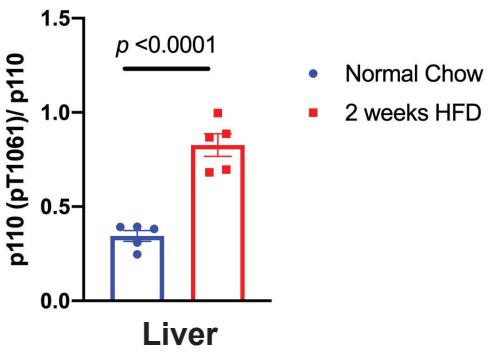
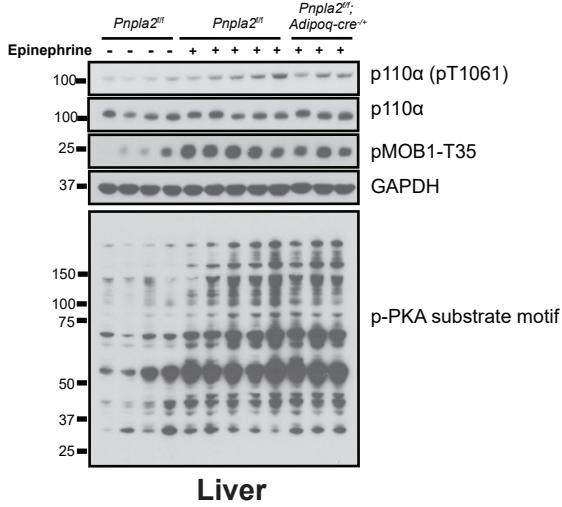





Fig. S5 Activation of adenylyl cyclase promotes phosphorylation and inhibition of p110 α .

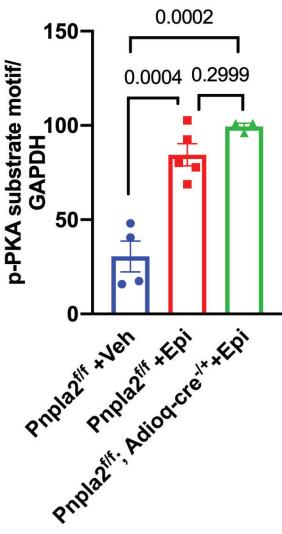
(A) Immunoblot for the indicated proteins using lysates from Huh7 cells that were serum starved for 12 h before stimulated with FSK [20 μ M] for 0, 15, 30 and 60 min. (B) Immunoblot for the indicated proteins using lysates from AML12 cells that were serum starved for 12 h before stimulated with FSK [20 μ M] for 0, 5, 15 and 30 min. (C) Immunoblot for the indicated proteins using lysates from MCF10A cells cultured in full medium that were stimulated with FSK [20 μ M] for 0, 10, 15, 30, 45, and 60 min. (D) Immunoblot for the indicated proteins using lysates from MCF10A cells that were serum starved for 16 h, and then stimulated with DMSO, insulin [2 μ M], or insulin [2 μ M] followed by FSK [20 μ M] for 10 min. *: non-specific band. (E) Immunoblot for the indicated proteins using lysates from AML12 cells that were serum starved for 12 h before stimulated with insulin [100 nM] for 0, 5, 10, 15, 20 and 30 min or insulin [100 nM] followed by FSK [20 μ M] for 10 or 15 min.

A.

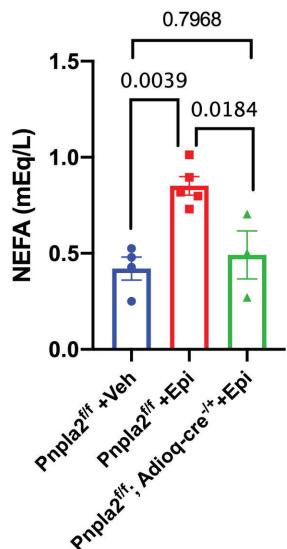

bioRxiv preprint doi: <https://doi.org/10.1101/2020.07.19.500601>; this version posted July 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B.**C.****D.**

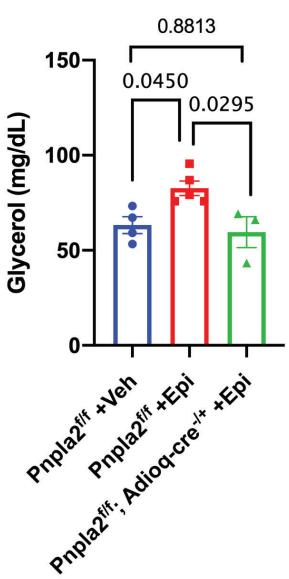
Fig. S6 Epinephrine promotes phosphorylation of p110 α in vivo.

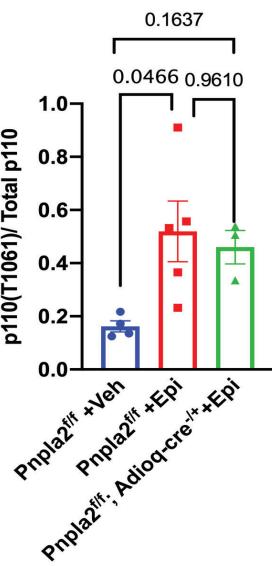

(A) Plasma insulin levels in WT mice that were fasted for 18 h (Fasted) and then euthanized or provided food for 4 h (Fed). Data were represented as means \pm SEMs. Significance was calculated using student's t test (N=5). (B) Plasma Epi levels in WT mice fed either normal chow or 60% high-fat diet (HFD) for 2 weeks. Data were represented as means \pm SEMs. Significance was calculated using student's t test (N=5). (C) Immunoblot for the indicated proteins using lysates from liver taken from WT mice fed normal chow or HFD for 2 weeks. (D) Quantification of the ratio of pT1061 to total p110 α using band intensity from (C). Data is represented as means \pm SEMs. Significance was calculated using student's t test (N=5).

A.

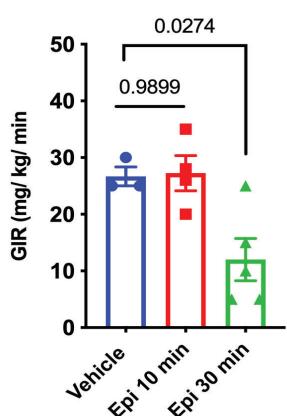


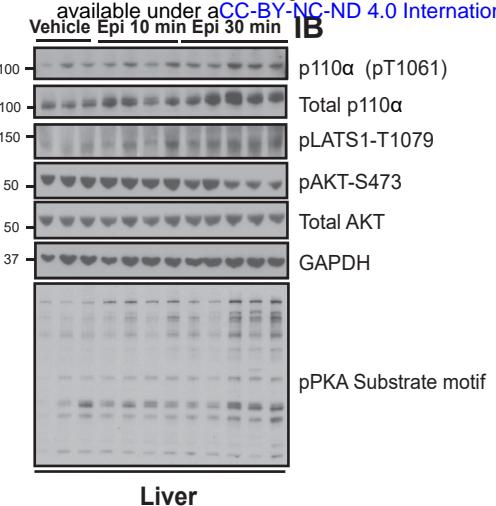
Liver


B.

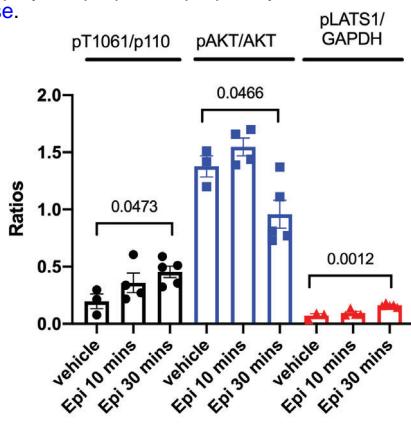

C.

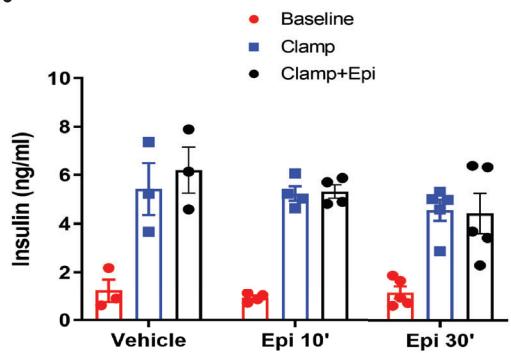
D.

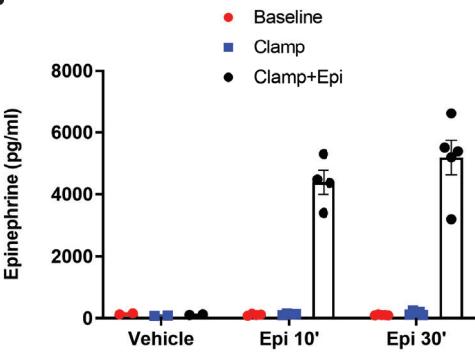

E.


Fig. S7 Effects of epinephrine on mice without adipocyte lipolysis.

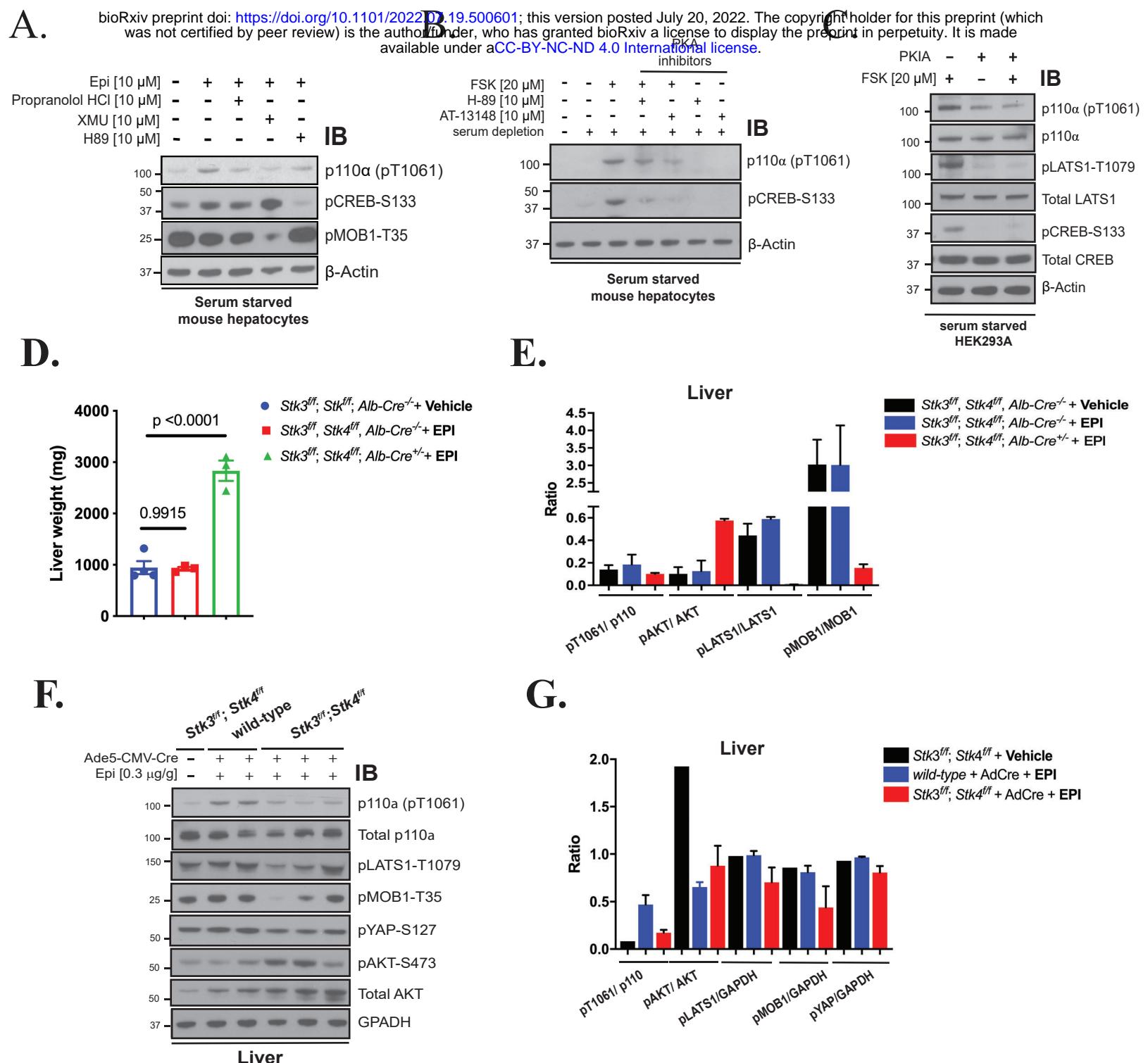
Lipolysis-deficient mice (*Pnpla2^{f/f}; Adipoq-Cre^{+/+}*) and littermate controls (*Pnpla2^{f/f}*) were treated with vehicle (Veh, saline) or epinephrine (Epi) via I.P. injection (N=4, 5, 3). Blood and liver tissue were harvested 10 minutes later. (A) Markers of MST1/2 activation from liver lysates using Western blot. Quantification of combined PKA substrate motif lane normalized to GAPDH. Significance calculated using ANOVA with Turkey's multiple comparisons post-test. Serum (C) non-esterified fatty acids (NEFA) and (D) glycerol from mice in A. Significance calculated using ANOVA with Turkey's multiple comparisons post-test. (E) T1061 p110a phosphorylation normalized to total p110a. Significance calculated using ANOVA with Sidak's multiple comparisons post-test. All data represented as means \pm SEMs.


A.


B.

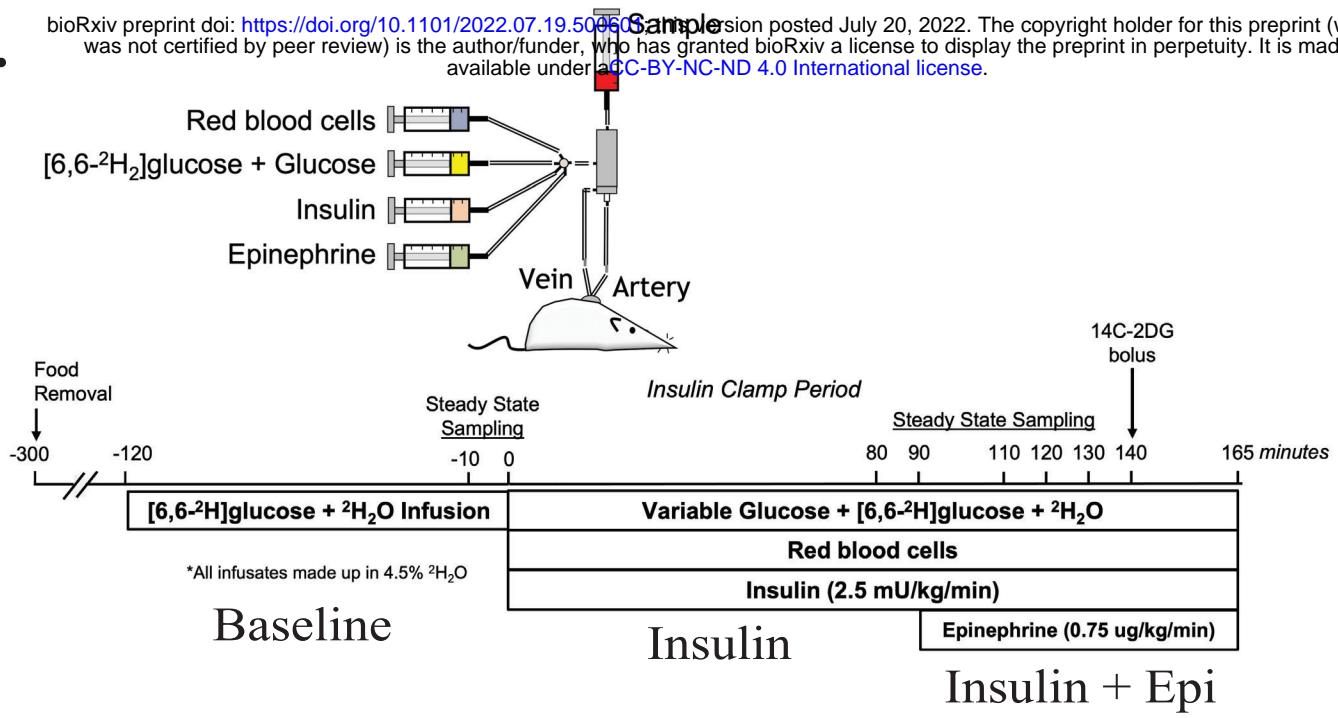

C.

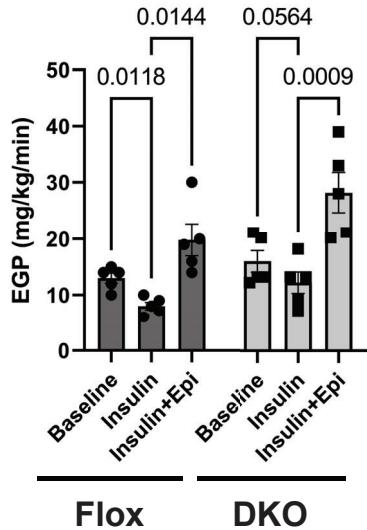
D.



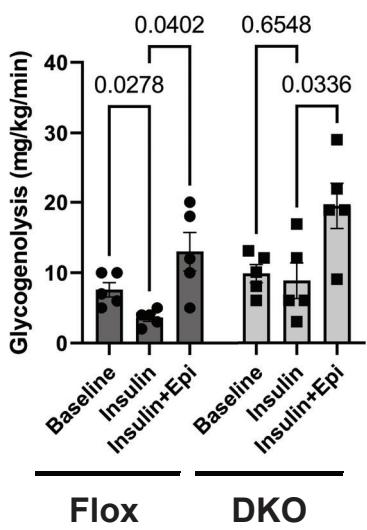
E.

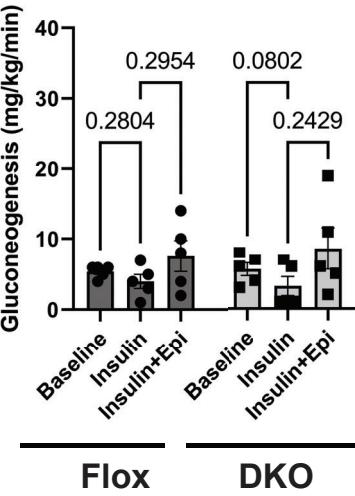
Fig. S8 Epinephrine-mediated insulin resistance correlates with T1061 phosphorylation.


(A) Steady-state glucose infusion rate (GIR) during a hyperinsulinemic-euglycemic clamp performed on WT rats. After 87 min, rats received an infusion of vehicle (normal saline, N=3) or Epi (0.75 μ g/kg/min) for either 10 min (N=4) or 30 min (N=5). (B) Immunoblot for the indicated proteins using lysates from liver taken from WT rats in A. (C) Quantification of the ratio of pT1061 to total p110 α , phosphorylated AKT to total AKT, and pLATS1 (T1079) to GAPDH using band intensity from (B). Significance calculated using ANOVA with Dunnett's multiple comparisons to vehicle control. (D-E) Measurements of blood insulin and epinephrine levels during the hyperinsulinemic-euglycemic clamp. Data were represented as means \pm SEMs.


Fig. S9 PKA and the Hippo kinases regulate FSK/ Epi-mediated p110 α phosphorylation.

(A) Immunoblot for the indicated proteins using lysates from serum starved primary mouse hepatocytes isolated from WT mice that were treated with Epi [10 μ M], or Epi with Propranolol HCl [10 μ M], XMU [10 μ M], or H-89 [10 μ M]. (B) Immunoblot for the indicated proteins using lysates from primary mouse hepatocytes that were serum starved 12 h before stimulated with DMSO, FSK [20 μ M], FSK [20 μ M] with two PKA inhibitors (H-89 and AT13148) [10 μ M] or inhibitors alone. (C) Immunoblot for the indicated proteins using lysates from HEK293A cells transfected with control or PKIA vector f or 2 days before serum starved for 2 h, followed by stimulation with FSK [20 μ M] for 15 min. (E) Quantification of the ratio of phosphorylated proteins over total proteins using band intensity from [Fig. 6E]. Data were represented as means \pm SEMs. (F) Immunoblot for the indicated proteins using lysates from liver taken from *Stk3^{ff}, Stk4^{ff}* or WT mice. Mice were injected with Ad5-CMV-Cre virus [10⁹] to induce liver-specific MST1/2 gene deletion, and then two weeks later, the mice were injected with vehicle (saline) or Epi [0.3 μ g/g] and liver were harvested. (G) Quantification of the ratio of phosphorylated proteins over total proteins using band intensity from (F).


A.


B.

C.

D.

Fig. S10 Epinephrine-mediated glycogenolysis is intact in MST1/2 DKO mice under hyperinsulinemic-euglycemic conditions.

(A) Schematic describing hyperinsulinemic-euglycemic-hyperepinephrinemic clamp protocol performed on *Stk3^{f/f}, Stk4^{f/f}, Alb-Cre^{-/-}* (Flox, N=5) and *Stk3^{f/f}, Stk4^{f/f}, Alb-Cre^{+/+}* (DKO, N=5) mice. Rates of (B) endogenous glucose production (EGP), (C) glycogenolysis, and (D) gluconeogenesis during the clamp protocol. Comparisons made via Two-way ANOVA. Data presented as mean \pm SEM.