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ABSTRACT

We present MiniVess, the first annotated dataset of rodent cerebrovasculature, acquired using two-photon fluorescence
microscopy. MiniVess consists of 70 3D image volumes with segmented ground truths. Segmentations were created using
traditional image processing operations, a U-Net, and manual proofreading. Code for image preprocessing steps and the U-Net
are provided. Supervised machine learning methods have been widely used for automated image processing of biomedical
images. While much emphasis has been placed on the development of new network architectures and loss functions, there
has been an increased emphasis on the need for publicly available annotated, or segmented, datasets. Annotated datasets are
necessary during model training and validation. In particular, datasets that are collected from different labs are necessary to
test the generalizability of models. We hope this dataset will be helpful in testing the reliability of machine learning tools for
analyzing biomedical images.

Background & Summary

Blood vessel segmentation is often a necessary prerequisite for extracting meaningful analyses from biomedical imaging data.
By creating a segmentation, or a mask, that separates vascular from non-vascular pixels, structural information about the
vascular system can be acquired, such as diameter, branch order, and blood vessel type. Identification of blood vessels as
arterioles, venules, or capillaries can be used to analyze vascular dynamics, such as blood flow and vascular supply. Blood
vessel segmentation has clear clinical value. For example, in ischemic stroke studies, vascular segmentation enables detection
and quantification of vascular occlusions, which can be helpful in determining therapeutic options'-2. Structural characteristics
can also be used as predictors or markers to assist in the diagnosis of diseases, such as Alzheimer’s disease®*, traumatic brain
injury’, brain tumours®, atherosclerosis’, and retinal pathology®°.

Apart from vascular analyses, blood vessel segmentation is also a necessary preprocessing step for the analysis of cells and
pathological entities (Figure 1). In addition to the endothelial and mural cells that make up the blood vessel proper, various
other cell types interact with vascular walls, including astrocyte endfeet processes, perivascular macrophages, and peripheral
leukocytes. Such cells and their interactions with vasculature can be identified and analyzed based on distance metrics to
vascular walls, a task which is simplified with accurate vascular segmentation masks. Vascular-cellular interactions have been
of particular interest in studies focused on diseases. For example, recruitment of peripheral leukocytes to cerebrovasculature
has been observed following traumatic brain injury'?, middle cerebral artery occlusion!!, and in Alzheimer’s disease'?. Similar
distance metrics can be used to analyze pathological entities, such as perivascular A8 plaques'? and atherosclerotic plaques'*.
Thus, segmentation of blood vessels is a necessary preprocessing step that facilitates further vascular and cellular analyses.

In the neurosciences, two-photon fluorescence microscopy (2PFM) is currently the technique of choice for intravital
microscopy. While the resolution of 2PFM can be on par with confocal microscopy, the risk of phototoxicity and photobleaching
of tissues and fluorophores is substantially reduced because the excitation volume is limited to the focal volume of the
microscope'”. The use of longer wavelengths also results in less scattering by the neural tissue, allowing imaging at deeper
depths within the brain. 2PFM has been extensively used to investigate various phenomena, including neural activity using

voltage-sensitive dyes!®and calcium indicators!”, microglial activity using transgenic animal models'®, and vascular dynamics'®.
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Most methods of automated image processing of 2PFM images rely on proprietary software, such as Imaris (Bitplane,
United Kingdom) and Volocity (Quorum Technologies, Canada). Each analysis type, such as vascular segmentation and cell
tracking, is generally sold as separate modules. Comprehensive analyses of datasets are therefore functionally limited by the
modules available and can become prohibitively expensive. Furthermore, while automated modules produce impressive results
for images with high SNR, biomedical images, particularly intravital 2PFM images, are inherently noisy. In practice, substantial
manual modifications are required. An open-source alternative is FIJI (Fiji Is Just ImageJ)>°. However, FIJI plugins often lack
extensive documentation, resulting in a *black-box’ nature that may deter and limit use.

Deep learning, such as convolutional neural networks (CNNs) and recent transformer-based model architectures
have been extensively used for automated segmentation tasks in biomedical imaging. For example, the U-Net, a fully CNN,
achieves impressive performance in segmenting densely packed neurons in electron microscopy images?. Clinically, CNNs
have achieved state-of-the-art performances in segmenting brain vasculature in magnetic resonance angiography>* and retinal
vasculature in optical coherence tomography angiography>> datasets, which have been used to assist in the identification of
pathological features.

A common challenge in the application of deep learning models to the biomedical imaging field is the generalizability
of models. Models are often exclusively trained on datasets that were collected from a single site. Such models often fail
to perform when evaluated on datasets collected at different sites due to a so-called ’"domain shift’ (see e.g. Ouyang et al.
20212 for an example in medical image segmentation), caused by differences in tissue preparation, scanner or microscope
set-up, and/or inter-user variability in defining labels?>”-?®. The problem is compounded by poor reporting of the number of
evaluation sites and samples used”’. One way to improve the reliability and transparency of ML models is to use diverse
samples during training, and independent data cohorts for testing’’. However, the availability of such annotated, publicly
available biomedical imaging datasets is limited due to ethical and privacy concerns, particularly in clinical studies. Another
strategy is to use synthetic datasets or publicly available non-biomedical datasets (e.g. ImageNet) as part of the training process,
and then evaluate the trained model on the real dataset, a process known as "transfer learning’3!-32. For example, using transfer
learning, a CNN that was pre-trained on a synthetic dataset of blood vessels resulted in impressive segmentation of real mouse
brain vasculature®3. However, the availability of real, annotated, field-specific datasets remains to be a need for evaluating the
generalizability of models in the biomedical imaging field. In addition, there has been a recent shift in focus from adjusting
model parameters to achieve better performance metrics ('model-centric’), to improving the quality of datasets to improve
performance metrics (’data-centric’) , highlighting the importance of high-quality, publicly available datasets.

Public microscopy datasets have been curated by various research groups world-wide. For example, the Human Protein
Atlas shows the distribution and expression of proteins and genes across major organ systems>*>%, the Broad Bioimage
Benchmark Collection contains annotated cell datasets®’, and the Allen Brain Cell Types Atlas offers electrophysiological,
morphological, and transcriptomic data measured from human and mouse brain. However, vascular datasets have not been as
extensively documented. The availability of an annotated 2PFM vascular dataset would assist in diversifying the samples used
for training a segmentation model, or in evaluating the performance of segmentation models that were trained on other datasets.

We hereby present MiniVess, an expert-annotated dataset of 70 3D 2PFM image volumes of rodent cerebrovasculature. The
dataset can be used for training segmentation networks’®3°, fine-tuning self-supervised pre-trained networks>-3>4°_ and as an
external validation set for assessing a model’s generalizability*'. The 3D volumes in this dataset have been curated to only
contain clean XYZ imaging in order to ensure correct and consistent annotations, or segmentations, which has been observed to
be integral to the evaluation of machine learning models*?. Code for image preprocessing and the U-Net workflow are also
provided in the MiniVess project Github page. The U-Net code was written using MONAI, a PyTorch-based framework that
was built to encourage best practices for Al development in healthcare research. We hope that the availability of the image
volumes and code will assist in evaluating the reliability of models built for the analysis of biomedical images.

21,22

Methods

Animal preparation

This dataset consists of 2PFM images of the cortical vasculature in adult male and female mice from the C57BL/6 and CD1
strains (20-30 g), and EGFP Wistar rats (Wistar-TgN(CAG-GFP)184ys) (310-630 g)*3. All animal procedures were approved
and conducted in compliance with the Animal Care Committee guidelines at Sunnybrook Research Institute, Canada.

To allow optical access to the brain, an acute cranial window was created over the parietal bone (Figure 1). Detailed
protocols on cranial window procedures have been published elsewhere**. Briefly, animals were anesthetized using 1.5-2%
isoflurane in a mix of medical air and oxygen. Following fur and scalp removal, a 3-4 mm circle (mice) or rectangle (rats) of
bone was removed from the parietal bone using a dental drill, and replaced with a glass cover slip. Due to the thickness of the
skull in rats, 1% agarose was deposited onto the brain to prevent air bubbles beneath the cover slip. Animal physiology was
monitored using a pulse oximeter, and temperature was maintained using a heating pad with a rectal thermistor. To visualize
vasculature, Texas Red 70 kDa dextran (dissolved in PBS, 5 mg/kg; Invitrogen, Canada) was injected through a tail vein catheter.
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Animals were sacrificed under deep anesthesia using cervical dislocation (mice) or euthanol injection (rats) following the end
of imaging.

Imaging

Imaging was conducted using a FV1000MPE multiphoton laser scanning microscope (Olympus Corp., Japan) with an InSight
DS tunable laser (Spectra-Physics, USA), or a Ti:Sa laser (MaiTai, Spectra-Physics, Germany). A 25x water-immersion
objective lens (XLPN25XWMP2, NA 1.05, WD 2 mm, Olympus Corp., Japan) was used to collect 512 x 512 images with a
lateral resolution of 0.621-0.994 um/pixel, an imaging speed of 2-8 ps/pixel, and a step-size of 1-10 pm, for a maximum depth
of 700 um. Excitation wavelengths of 810 or 900 nm were used. Fluorescent emissions were collected with photo-multiplier
tubes or gallium arsenide phosphide (GaAsP) detectors. Images were saved in Olympus’s .oib or .oir file formats. Image details
are listed in Online-only Table 1.

File conversions

Image volumes were converted to the NIfTT (.nii) file format to make segmentation model protoyping faster, as it is commonly
used in neuroimaging and ML frameworks, such as MONAI (https://monai.io/). In MONALI, users can create dataloaders
that are customized for their data formats by using Python libraries [such as tifffile (https://pypi.org/project/tiftfile/),

python-bioformats (https://pypi.org/project/python-bioformats/), and pyomet i £ £ (https://github.com/filippocastelli/pyometift)].

In the future, we plan to develop a dataloader to allow direct use of microscopy formats, skipping the NIfTI conversion. Here,
we provide the code to convert Olympus files (.oib and .oir) to NifTI (.nii) format, with metadata encoded in the NifTT1 header
format. NifTI files were further compressed as .gz archive files (.nii.gz). The original Olympus files are 12-bit, and the exported
NifTI files are saved as 16-bit images, as a 12-bit data type is not available. The code also provides options to export each
channel separately in multichannel image volumes, separate time volumes as single volumes, and remove top and bottom slices.
Further details can be found in the GitHub repository https://github.com/ctpn/minivess.

Ground-truth annotation

Pre-processing

To create segmented image volumes, images were first preprocessed in Python. Single channel image volumes were individually
processed using histogram equalization, Gaussian filtering, morphological operators, and thresholded into binary images. If
present, image slices with poor SNR were removed from the top of a stack. Fine-tuning of binary images was achieved using
3D Slicer®. A general workflow of the pipeline to achieve ground-truth annotations is shown in Figure 3.

Machine learning

To improve segmentations, a 2D U-Net>® was trained using raw images and the preprocessed, segmented images. The U-Net
consisted of 5 channels, consisting of 16, 32, 64, 128, and 256 filters, a stride of 2, batch normalization, Adam optimization
(1e-4 learning rate), and the Dice loss function. Outputs from the U-Net were refined through manual corrections in 3D Slicer.
Manual corrections were kept to a minimum to ensure consistency in labels within each volume. Emphasis was also placed
on removing spurious noise and conserving smooth boundaries. Final segmented volumes are the result of five rounds of 2D
U-Net and manual corrections in 3D Slicer (Figure 5). Supervised learning was implemented using the PyTorch-based MONAI
framework*S.

Data Records

The data is currently stored in the (EBRAINS) repository in compressed NiFTi format (*.nii.gz). Each raw image stack has an
annotated equivalent, designated by a ’y’ in the file name. Details for each image can be found in the metadata, encoded in the
NIfTI1 header format. Each image stack represents a different field-of-view in the cerebrovasculature. Information specific to
each image stack can be found in Online-only Table 1. Maximum projection images of all image volumes are shown in Figure
4.

Technical Validation

Image volumes were collected and curated by CP (7 years of experience). Ground truth annotations were achieved by using
classic image processing tools (see Methods), manual annotations by CP, and a 2D U-Net??. Accuracy of the final annotations
were qualitatively confirmed by CP, and then independently confirmed by MFR and HS (Figure 2). Final segmentations
are the result of 5 rounds of manual annotations or corrections and outputs of the U-Net. A comparison between rounds of
segmentations can be found in Figure 5.
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Usage Notes

MiniVess contains image volumes of cerebrovasculature from wild-type mouse, transgenic mouse, and transgenic rat brains.
Although small in size, the variety of background strains and species in the MiniVess dataset represents rodent strains that are
commonly used in wet labs.

The dataset can be downloaded as NiFTi (.nii.gz) files which can then be easily uploaded into machine learning models, or
manipulated using FIJT (Fiji Is Just Imagel), Python, MATLAB, etc. We provide a tutorial of how to use the MiniVess dataset in
a U-Net, built in the MONAI framework (https://github.com/project-monai/monai). The MONAI framework
also provides several tutorials using NiFTi images, which can be further explored using the MiniVess dataset.

By making the raw and annotated data available, we hope that the MiniVess dataset can be used as a validation dataset
by those evaluating their supervised, semi-supervised, or unsupervised segmentation models, and assist the field to use more
data-centric ways to design and evaluate their segmentation models.

Code availability

We provide the Python code to separate multichannel and time series 2PFM image volumes into single volumes, which
are easier to manipulate. multichannel XY, XYZ, XYT, and XYZT images are supported. For multichannel images, the
user will be asked to select the channel of interest to export. For images with multi-T volumes (XYT and XYZT), the user
has the option of exporting each T-stack separately, or as a single file. The code can be accessed at our Github repository
https://github.com/ctpn/minivess.
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file name dtype size (pixels) physical size (um) step-size species
index raw seg raw seg X y z X y z

1 mv0l.nii.gz mvOl_y.nii.gz uintl6 uint§ 512 512 22 0.994 0.994 1 mouse
2 mv02.nii.gz mv02_y.nii.gz uintl6 uint8§ 512 512 61 4.971 4.971 5 mouse
3 mv03.nii.gz mv03_y.nii.gz uintl6 uint§ 512 512 64 0.994 0.994 5 mouse
4 mv04.nii.gz mv04_y.nii.gz uintl6 uint§ 512 512 58  0.994 0.994 5 mouse
5 mv05.nii.gz mv05_y.nii.gz uintl6 uint8§ 512 512 71 0.994 0.994 5 mouse
6 mv06.nii.gz  mv06_y.nii.gz uintl6 uint8§ 512 512 51 0.994 0.994 5 mouse
7 mv07.nii.gz mv07_y.nii.gz uintl6 uint§ 512 512 71 0.994 0.994 5 mouse
8 mv08.nii.gz mvO08_y.nii.gz uintl6 uint§ 512 512 51 0.994 0.994 5 mouse
9 mv09.nii.gz mv09_y.nii.gz uintl6 uint§ 512 512 75 0.994 0.994 5 mouse
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Table 1 — continued from previous page

file name dtype size (pixels) physical size (um) step-size  species
index raw seg raw seg X y z X y z

10 mv10.nii.gz mv10_y.nii.gz uintl6 uint8§ 512 512 61  2.485 2.485 5 mouse
11 mvll.niigz mvll_ynii.gz uintl6 uint§ 512 512 67 0.621 0.621 5 mouse
12 mvl2.nii.gz mvl2_y.nii.gz uintl6 uint§ 512 512 23 0.621 0.621 10 mouse
13 mvl3.nii.gz mvl3_ynii.gz uintl6 uint§ 512 512 37 0.621 0.621 5 mouse
14 mvl4.nii.gz mvl4_ynii.gz uintl6 uint§ 512 512 56 0.621 0.621 5 mouse
15 mvlS.nii.gz mvl5_y.nii.gz uintl6 uint§ 512 512 39  0.994 0.994 5 mouse
16 mvl6.nii.gz mvl6_y.nii.gz uintl6 uint§ 512 512 39  0.621 0.621 5 mouse
17 mvl7.nii.gz mvl7_ynii.gz uintl6 uint§ 512 512 35 0.621 0.621 5 mouse
18 mv18.nii.gz mvl8_y.nii.gz uintl6 uint§ 512 512 41 0.621 0.621 5 mouse
19 mv19.nii.gz mv19_y.nii.gz uintl6 uint§ 512 512 33 0.621 0.621 5 mouse
20 mv20.nii.gz mv20_y.nii.gz uintl6 uint8§ 512 512 31 0.621 0.621 5 mouse
21 mv21l.nii.gz mv2l_y.nii.gz uintl6 uint§ 512 512 31 0.621 0.621 2 mouse
22 mv22.nii.gz mv22_y.nii.gz uintl6 uint§ 512 512 61 0.621 0.621 5 mouse
23 mv23.nii.gz mv23_y.nii.gz uintl6 uint§ 512 512 61 0.621 0.621 5 mouse
24 mv24.nii.gz mv24_y.nii.gz uintl6 uint§ 512 512 101 0.994 0.994 5 mouse
25 mv25.nii.gz  mv25_y.nii.gz uintl6 uint8§ 512 512 53  0.31 0.31 5 mouse
26 mv26.nii.gz mv26_y.nii.gz uintl6 uint§ 512 512 52 0.621 0.621 5 mouse
27 mv27.nii.gz mv27_y.nii.gz uintl6 uint§ 512 512 81 0.621 0.621 5 mouse
28 mv28.nii.gz mv28_y.nii.gz uintl6 uint§ 512 512 57 0.621 0.621 5 mouse
29 mv29.nii.gz mv29_y.nii.gz uintl6 uint§ 512 512 45 0.621 0.621 5 mouse
30 mv30.nii.gz mv30_y.nii.gz uintl6 uint§ 512 512 27 0.621 0.621 5 mouse
31 mv31l.nii.gz mv31_y.nii.gz uintl6 uint§ 512 512 21  0.621 0.621 10 mouse
32 mv32.nii.gz mv32_y.nii.gz uintl6 uint§ 512 512 25 0.621 0.621 5 mouse
33 mv33.nii.gz mv33_y.nii.gz uintl6 uint§ 512 512 43 0.994 0.994 5 mouse
34 mv34.nii.gz mv34_y.nii.gz uintl6 uint§ 512 512 110 0.994 0.994 5 mouse
35 mv35.nii.gz mv35_y.nii.gz uintl6 uint§ 512 512 95 0.994 0.994 5 mouse
36 mv36.nii.gz  mv36_y.nii.gz uintl6 uint8§ 512 512 25 0.994 0.994 5 mouse
37 mv37.nii.gz mv37_y.nii.gz uintl6 uint§ 512 512 15 0.994 0.994 5 mouse
38 mv38.nii.gz mv38_y.nii.gz uintl6 uint§ 512 512 61 0.994 0.994 5 mouse
39 mv39.nii.gz mv39_y.nii.gz uintl6 uint8§ 512 512 5 0.994 0.994 5 mouse
40 mv40.nii.gz mv40_y.nii.gz uintl6 uint§ 512 512 10 0.994 0.994 5 rat
41 mv41l.nii.gz mv41_ynii.gz uintl6 uint§ 512 512 80 0.621 0.621 5 mouse
42 mv42.nii.gz mv42_y.nii.gz uintl6 uint§ 512 512 31  0.994 0.994 2 mouse
43 mv43.nii.gz mv43_y.nii.gz uintl6 uint§ 512 512 47  0.994 0.994 5 mouse
44 mv44.nii.gz  mv44_y.nii.gz uintl6 uint8§ 512 512 51  0.994 0.994 5 mouse
45 mv45.nii.gz  mv45_y.nii.gz uintl6 uint8§ 512 512 78  0.994 0.994 5 mouse
46 mv46.nii.gz mv46_y.nii.gz uintl6 uint§ 512 512 41  0.621 0.621 5 mouse
47 mv47.nii.gz  mv47_y.nii.gz uintl6 uint§ 512 512 17  0.994 0.994 2 mouse
48 mv48.nii.gz mv48_y.nii.gz uintl6 uint§ 512 512 21  0.994 0.994 5 mouse
49 mv49.nii.gz mv49_y.nii.gz uintl6 uint§ 512 512 27  0.994 0.994 10 mouse
50 mv50.nii.gz  mvS50_y.nii.gz uintl6 uint§ 512 512 24 0.621 0.621 10 mouse
51 mv51l.nii.gz mvS1_ynii.gz uintl6 uint§ 512 512 28  0.621 0.621 10 mouse
52 mv52.nii.gz mv52_y.nii.gz uintl6 uint§ 512 512 23 0.621 0.621 10 mouse

53 mv53.nii.gz mv53_y.nii.gz uintl6 uint§ 512 512 40 0.621 0.621 5 mouse
54 mv54.nii.gz mv54_y.nii.gz uintl6 uint§ 512 512 30 0.621 0.621 5 mouse
55 mv55.nii.gz  mv>55_y.nii.gz uintl6 uint§ 512 512 18  0.994 0.994 5 mouse
56 mv56.nii.gz  mv56_y.nii.gz uintl6 uint8§ 512 512 11  0.994 0.994 5 rat
57 mv57.nii.gz mv57_y.nii.gz uintl6 uint8§ 512 512 13 0.994 0.994 2 rat
58 mv58.nii.gz  mv58_y.nii.gz uintl6 uint8 512 512 25 0.994 0.994 2 rat
59 mv59.nii.gz  mv59_y.nii.gz uintl6 uint8 512 512 30 0.994 0.994 2 rat
60 mv60.nii.gz mv60_y.nii.gz uintl6 uint8§ 512 512 56  0.994 0.994 2 rat
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Table 1 — continued from previous page

file name dtype size (pixels) physical size (um) step-size  species
index raw seg raw seg X y z X y z

61 mv61.nii.gz mv6l_y.nii.gz uintl6 uint§ 512 512 35 0.994 0.994 2 rat
62 mv62.nii.gz mv62_y.nii.gz uintl6 uint§ 512 512 58  0.994 0.994 5 mouse
63 mv63.nii.gz mv63_y.nii.gz uintl6 uint8§ 512 512 54  0.994 0.994 5 mouse
64 mv64.nii.gz mv64_y.nii.gz uintl6 uint8§ 512 512 30 0.994 0.994 5 mouse
65 mv65.nii.gz mv65_y.nii.gz uintl6 uint§ 512 512 31  0.994 0.994 5 mouse
66 mv66.nii.gz mv66_y.nii.gz uintl6 uint§ 512 512 10 0.994 0.994 5 mouse
67 mv67.nii.gz mv67_y.nii.gz uintl6 uint§ 512 512 9 0.994 0.994 5 mouse
68 mv68.nii.gz mv68_y.nii.gz uintl6 uint§ 512 512 106 0.994 0.994 2 mouse
69 mv69.nii.gz mv69_y.nii.gz uintl6 uint8§ 512 512 37  0.994 0.994 5 mouse
70 mv70.nii.gz  mv70_y.nii.gz uintl6 uint§ 512 512 15 0.994 0.994 5 mouse

Table 1.

Details of raw and segmented image volumes.

266

» Figures & Tables

raw image stack
(*.oib, *.air, *.nii.gz)

segmented image stack
(*.nii.gz)

Figure 1. General workflow for 2PFM image processing. a) A cranial window was created on the parietal bone, enabling in
vivo 2PFM imaging. Superficial blood vessels can be observed through the cranial window (left) and ocular lens of the
microscope (right). b) Raw image volumes of rodent cerebrovasculature were collected and saved in Olympus image formats
(*.oib, *.0ir). ¢) Segmentations of blood vessels were achieved using a U-Net and manual corrections. In the MiniVess dataset,
raw and segmented image volumes are shared as NIfTI files (*.nii.gz). Segmentation of blood vessels enables downstream
analyses, such as (d) cell tracking (arrow heads), (¢) vasoconstriction and dilation (arrows), and (f) analysis of pathological
entities, such as AB plaques (cyan). Blood vessels are shown in magenta. Scale bars = 50 um.
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Figure 2. Example of a raw and segmented image volume pair in the MiniVess dataset. Orthogonal views and maximum
projections of (a,b) raw and (c) segmented image volumes. (d) 3D visualization of the whole image volume in (X,Y) and (X,Z)
views using 3D Slicer.

64

128 1287 Convad [+ stride 2]
BatchNorm3d
PRelLU
ConvTranspose3d +stride 2

256

Channel cat

,_
L

= Skip connection
Thresholding @ Tensor addition

raw preprocessed — corrected
Manual corrections in 3D Slicer

Figure 3. Blood vessel segmentation workflow. a) Raw image volumes from 2PFM imaging went through a series of b)
preprocessing steps, followed by manual corrections conducted in 3D Slicer®. c) These segmented image volumes were
further refined by using a 2D U-Net, which outputs d) segmented image volumes. Raw and segmented image volumes, and
code for preprocessing and U-Net workflows are provided in the MiniVess project.
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Figure 4. MiniVess volumes. Maximum projection images of all raw and segmented (’y’) image volumes of the MiniVess
data are shown for navigation purposes. For clarity, maximum projection images consist of a maximum of 30 slices in each
volume. Dark regions within the image volume that appear to have no blood vessels (e.g. diagonal in mv16, top of mv18) likely
have blood vessels, but are difficult to see due to shadows’ cast by larger blood vessels above, which are not included in the

image volume.
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slice - 1 (XY) slice (XY) slice + 1 (XY) slice (XZ)

first seg raw

final seg

Figure 5. Validation of segmentations. Cropped images from the XY and XZ planes taken from the raw volume ('raw’), and
the first (first seg’) and final (’final seg”) rounds of segmentations, are shown for comparison (image volume mvI8). In
addition to the slice-of-interest (’slice (XY)’ and ’slice (XZ)’), the image slices above (’slice - 1 (XY)’) and below (’slice + 1
(XY)’) are also shown. In the first segmentation, vessel edges are less uniform (arrows), spurious noise is evident in the
segmentations (angles), and vessel segments that are outside of the slice-of-interest, but present in the slices above or below, are
included in the segmentation of the current slice (compare dotted outlines). In contrast, in the final segmentation, vessel edges
are more uniform, and segmentations are closer to what is visible in the current slice only, according to acquisition parameters.
Each round of segmentation consisted of manual corrections and U-Net outputs. For manual corrections of U-Net outputs,
emphasis was placed on minimizing manual drawing to reduce human error, and smoothing edges. For example, jagged
borders (arrows) observed in the first round of segmentation are smooth by the final segmentation.
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