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ABSTRACT - 200 words

The existence of a placental microbiota is under debate. The human placenta has
historically been considered sterile and microbial colonization has been associated with
adverse pregnancy outcomes. Yet, recent investigations using DNA sequencing reported a
microbiota in human placentas from typical term pregnancies. However, this detected
microbiota could represent background DNA contamination. Using fifteen publicly
available 16S rRNA gene datasets, existing data were uniformly re-analyzed. 16S rRNA
gene Amplicon Sequence Variants (ASVs) identified as Lactobacillus were highly
abundant in eight of fifteen studies. However, the prevalence of Lactobacillus, a typical
vaginal bacterium, was clearly driven by bacterial contamination from vaginal delivery and
background DNA. After removal of likely DNA contaminants, Lactobacillus ASVs were
highly abundant in only one of five studies for which data analysis could be restricted to
placentas from term cesarean deliveries. A six study sub-analysis targeting the 16S rRNA
gene V4 hypervariable region demonstrated that bacterial profiles of placental samples and
technical controls share principal bacterial ASVs and that placental samples clustered
primarily by study origin and mode of delivery. Across studies, placentas from typical term
pregnancies did not share a consistent bacterial taxonomic signal. Contemporary DNA-

based evidence does not support the existence of a placental microbiota.
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IMPORTANCE - 150 words

Early-gestational microbial influences on human development are unclear. By applying DNA
sequencing technologies to placental tissue, bacterial DNA signals were observed, leading some
to conclude that a live bacterial placental microbiome exists in typical term pregnancy. However,
the low-biomass nature of the proposed microbiome and high sensitivity of current DNA
sequencing technologies indicate that the signal may alternatively derive from environmental or
delivery-associated bacterial DNA contamination. Here we address these alternatives with a re-
analysis of 16S rRNA gene sequencing data from 15 publicly available placental datasets. After
identical DADAZ2 pipeline processing of the raw data, subanalyses were performed to control for
mode of delivery and environmental DNA contamination. Both environment and mode of
delivery profoundly influenced the bacterial DNA signal from term-delivered placentas. Aside
from these contamination-associated signals, consistency was lacking across studies. Thus,
placentas delivered at term are unlikely to be the original source of observed bacterial DNA

signals.
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94  All DADA2 processed sequence data and metadata from the studies included in this critical
95 review, as well as an R markdown file with the code to produce each of the figures and tables,

96  are available online at https://github.com/jp589/Placental Microbiota Reanalysis. In addition, an

97 R package ‘dada2tools’ with functions for efficient analysis of the data, is available at

98  https://github.com/jp589/dada2tools.

99  WORD COUNT

100 9512 words exclusive of bibliography and with numbered in-text citations.


https://doi.org/10.1101/2022.07.18.500562
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.18.500562; this version posted July 20, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

101  INTRODUCTION

102 The womb has historically been considered sterile throughout typical pregnancy (1-3);
103 yet, the detection of microorganisms, especially bacteria, in some placentas from complicated
104  pregnancies is an established phenomenon (4-7). For instance, there are demonstrated

105  associations between bacterial colonization of the placenta and preterm labor (5, 8-15), preterm
106  prelabor rupture of membranes (PPROM) (11, 12), histological chorioamnionitis (8, 14, 16), and
107  clinical chorioamnionitis (12-14, 16). Therefore, research has largely focused on the presence (9,
108  17-20) and types of bacteria (21-26) associated with the human placenta in the context of

109  spontaneous preterm birth and other pregnancy complications.

110 However, in 2014, bacterial DNA-based evidence was presented for a universal low-

111  biomass placental microbiota even among placentas from term pregnancies (27). Since placental
112 colonization by bacteria suggests that fetal colonization is also feasible, this study revitalized the
113 inutero colonization hypothesis, which maintains that commensal bacteria residing in the

114 placenta and/or amniotic fluid colonize the developing fetus during gestation (3, 28-34). The in
115  utero colonization hypothesis stands in stark contrast to the traditional sterile womb hypothesis,
116  which posits fetal sterility until colonization at delivery or following rupture of the amniotic

117  membranes (1-3, 35-41). Since publication of this seminal study in 2014, many other studies
118  have similarly utilized DNA sequencing techniques to investigate the existence of a placental
119  microbiota in term pregnancies (28, 29, 34, 36-65). Yet, the existence of a placental microbiota
120  remains under debate eight years later (66-69).

121 The debate over the existence of a placental microbiota is fueled by several issues. First,
122 the placenta cannot be readily sampled in utero. Thus, attempts at characterizing a placental

123 microbiota have entailed collection of placental samples following either a vaginal or cesarean
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delivery. While both delivery methods can introduce bacterial contamination (36, 38, 40, 42, 51,
70), in the form of vaginal and skin bacteria, respectively, vaginal delivery likely exposes the
placenta to bacterial contamination to an extent that would overwhelm any weak bacterial DNA
signal legitimately present in placental tissue in utero (40, 42, 56). Thus, to establish that a
placental microbiota exists, it must be documented in placentas from term cesarean deliveries to
minimize misinterpretation of potential delivery associated contamination (3, 29, 71).

Second, a lack of robust technical controls has made it difficult to determine if reagent or
environmental DNA contamination might be the source of bacterial DNA signals attributed to
placentas rather than a resident placental microbiota (27, 29, 46, 53, 54, 57-61, 63-65), given that
such a theoretically sparse bacterial community could easily be obfuscated by background DNA
contamination in laboratories, kits, and reagents (39, 72-75). Technical controls and sterile
collection conditions are therefore essential for the verification of a placental microbiota. Indeed,
several recent studies have shown that the bacterial loads (41) and profiles of placentas from
term cesarean deliveries do not exceed or differ from those of technical controls (41, 42).

Finally, a lack of consistency in the analytical pipelines used to process the DNA
sequence data has resulted in additional debate, including how sequences should be grouped or
split into taxonomic units (73, 76, 77). Specifically, too coarse or too fine a taxonomic resolution
could either potentially reveal a shared bacterial DNA signal between placental tissues and
technical controls or a signal unique to the placenta, respectively.

Ultimately, if there is a placental microbiota it should exist in a majority of, if not all,
placentas from women delivering at term without complications, and there should be some
degree of consistency in the bacterial taxa residing in placentas across studies. For example, the

human vaginal microbiota worldwide is consistently predominated by various species of
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Lactobacillus and, in a smaller proportion of women, higher diversity bacterial communities
exist, which consist of nevertheless predictable genera such as Prevotella, Sheathia,
Megasphaera, Atopobium, Mobiluncus, Streptococcus, and Gardnerella (78, 79). Yet, among
investigators proposing the existence of a placental microbiota, there are conflicting reports
regarding its predominant bacterial members (27-29, 44, 49, 54, 58, 62-65) and, when
complementary culture results are available, placental samples are often culture negative or the
bacteria recovered are discrepant with the DNA sequencing results (19, 28, 40, 41, 44, 56, 80-
85).

Given these current conflicting conclusions regarding the existence of a placental
microbiota, here we performed a critical review and re-analysis of fifteen publicly available 16S
rRNA gene sequencing datasets from human placental microbiota studies for which sample
distinguishing metadata were available (29, 36-44, 50, 53, 57, 86). In this re-analysis we
standardized the analytical process to enable assessment of taxonomic consistency in placental
bacterial profiles across studies conducted by different laboratories across the world (Figure S1).
Briefly, raw sequencing data from each study were processed using the same analytical pipeline,
the Divisive Amplicon Denoising Algorithm (DADA?2), to provide consistent sequence filtering
and clustering methods (87). Additionally, eight of the fifteen studies included sequence data for
at least six technical controls to account for potential background DNA contamination (88). For
these studies, the R package DECONTAM (88) was used to identify and remove likely DNA
contaminants and we report the DNA signal from the bacterial taxa that remained.

Three primary analyses were performed. The first analysis was a comparison of the
bacterial profiles of placental samples to technical controls for studies which included at least six

controls for background DNA contamination (88) since this environmental contamination could
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be a source of the purported placental bacterial DNA signal. Ideally, a valid placental microbiota
would be expected to exhibit a bacterial DNA signal distinct from that of kit reagents or
surrounding laboratory environments. The first analysis revealed no consistent differentiation
between the bacterial DNA signal from placental samples and technical controls, or vaginal
swabs when available.

The second analysis was restricted to placentas from term cesarean deliveries so as to
avoid potential bacterial contamination of placentas that could occur during vaginal delivery (36,
42, 51, 89). If there were a placental microbiota, the bacterial DNA signals should be clear and
consistent across placentas from term cesarean deliveries. This analysis was therefore performed
using data from the six studies for which placental samples could be restricted to those from term
cesarean deliveries. Of the studies which included at least six background technical controls,
after likely contaminant removal, there was no consistent bacterial DNA signal among placental
samples.

The third and final analysis was restricted to studies that targeted the V4 hypervariable
region of the 16S rRNA gene to control for any variation which might arise due to variation in
targeted 16S rRNA gene hypervariable regions across studies or the DNA sequence processing
algorithms used. A valid placental microbiota would be expected to be independent of study
identity and mode of delivery; however, both of these factors largely contributed to the structure
of placental bacterial profiles. Indeed, in these studies, there was a large degree of similarity in
the bacterial profiles of placental samples and technical controls from the same study, and there
were no bacterial taxa that were consistently identified across studies whose presence could not

be explained by background DNA contamination.

10
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192 Collectively, these analyses do not support the presence of a placental microbiota in
193 typical term pregnancies. Observed bacterial signals were products of mode of delivery and
194  background DNA contamination. Although there may be a true, consistent, extremely low

195  biomass bacterial signal beyond the limits of detection by contemporary 16S rRNA gene

196  sequencing, it remains to be demonstrated that the placenta harbors a legitimate bacterial DNA

197  signal or a viable microbiota in typical human pregnancy.

11
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198  RESULTS

199  Overview of studies included in this re-analysis

200  Fifteen studies (Table 1) were included in this re-analysis of investigations of the existence of a
201  placental microbiota. Seven included sequence data from the V4 hypervariable region of the 16S
202  rRNA gene (29, 39, 41, 43, 44, 50, 86), allowing for direct comparisons of sequence data across
203  six of those studies (29, 39, 41, 44, 50, 86); one study could not be included in the direct

204  comparison due to short read lengths of sequences in the publicly available dataset (43). Three of
205  the remaining studies included sequence data from the V1-V2 16S rRNA gene hypervariable
206  region (36-38), two studies sequenced the V6-V8 region (40, 53), and one study each sequenced
207  the V3-V4 (58), V4-V5 (57), and V5-V7 (42) regions. All fifteen studies included at least one
208  placental sample from a term cesarean delivery, but only eight included more than one term

209  cesarean delivered placenta and sufficient background technical controls [i.e., N = 6 (88)] to

210  infer likely DNA contaminants using the R package DECONTAM (36, 39-43, 50, 86) (Figure
211 2). Two of these studies lacked available metadata to discriminate placental samples by

212 gestational age at delivery (42, 50), leaving a total of six studies (36, 39-41, 43, 86) for assessing
213 uniformity of bacterial profiles among term cesarean delivered placentas across studies while
214  accounting for potential background DNA contamination (Figure 2). Notably, five of these six
215  studies concluded that there was no evidence for a placental microbiota in uncomplicated term
216  pregnancies (36, 39-41, 86) (Figure 2). In contrast, the four studies which did not include

217  sequence data from background technical controls concluded that a placental microbiota does
218  exist (29, 53, 57, 58) (Figure 2).

219
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Lactobacillus ASVs are the most consistently identified ASVs across placental microbiota
studies

After processing the raw 16S rRNA gene sequence data from placental samples from all 15
studies through the same DADA?2 analytical pipeline, the most prominent bacterial ASVs, as
defined by mean relative abundance, across studies were classified as Lactobacillus,
Escherichia/Shigella, Saphylococcus, Streptococcus, and Pseudomonas (Table S1).
Lactobacillus ASVs were among the top five ranked ASVs in eight of the 15 studies (37-39, 42,
50, 53, 57, 86), making Lactobacillus the most consistently detected genus in placental samples
across studies with publicly available 16S rRNA gene sequencing data.

The detection of Lactobacillus ASVs was not exclusive to the targeted sequencing of
specifically any one 16S rRNA gene hypervariable region; Lactobacillus ASVs were found
among the top five ASVs in the dataset of at least one study targeting the V1-V2, V4, V4-V5,
V5-V7, or V6-V8 hypervariable region(s) of the 16S rRNA gene (Table S1). Other genera which
were not 16S rRNA gene hypervariable region specific and were detected in the top five ranked
ASVs in more than one dataset, but in no more than four, included Staphylococcus (40, 44, 54,
86), Sreptococcus (38, 40, 42), and Pseudomonas (50, 54, 57). In contrast, Escherichia/Shigella
ASVs were exclusively among the top five ranked ASVs in datasets of studies that targeted the
V4 hypervariable region of the 16S rRNA gene for sequencing (3/7 such datasets) (29, 39, 86)

(Table S1).

Lactobacillus ASVs in placental samples are typically contaminants introduced through

vaginal delivery and/or background DNA contamination

13
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While it can be difficult to identify the definitive source of a particular ASV in placental
samples, the difference in Lactobacillus predominance between vaginally delivered placentas
and cesarean delivered placentas is striking. Lactobacillus ASVs were among the top five ASVs
in five of seven datasets which included placentas from vaginal deliveries before running the R
package DECONTAM, and three of four datasets which included placentas from vaginal
deliveries after running DECONTAM (Table 2, Table S1). Consider, for instance, the Lauder et
al. (37) and Leiby et al. (38) datasets. While all samples in the Lauder et al. dataset (37) had
Lactobacillus ASVs, the percentage of Lactobacillus normalized reads in cesarean delivered
placental samples was 23% compared to 46% in vaginally delivered placental samples. In the
Leiby et al. dataset (38) only four of 23 (17%) cesarean delivered placentas had any
Lactobacillus ASVs, and they made up only 2% of the total reads from their respective samples.
In contrast, 35 of 116 (30%) placentas from vaginal deliveries had Lactobacillus ASVs, and they
made up 22% of the total reads from those 35 samples.

Lactobacillus ASVs were among the top five ranked ASVs in three (39, 57, 86) of the six
datasets which could be restricted to placental samples from cesarean term deliveries (Table 2).
Yet, after removing potential background DNA contaminants using DECONTAM, only the
Olomu et al. (39) dataset still retained a Lactobacillus ASV in the top five ranked ASVs (Table
2). Notably, the authors of that study identified the origin of Lactobacillus in placental samples
as well-to-well DNA contamination from vaginal to placental samples during 16S rRNA gene
sequence library generation.

Furthermore, Lactobacillus ASVs were also more prominent in samples of placental
tissues of maternal origin, such as the decidua or basal plate, than placental tissues of fetal origin,

such as the amnion, chorion, or villous tree. After separating placental sample data from non-

14
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labor term cesarean deliveries by fetal and maternal origin, with the exception of the Olomu et al.
(39) study, Lactobacillus ASVs were absent from placental samples of fetal origin (Table S2). In
contrast, among samples of maternal origin from the Theis, Winters et al. dataset (86),
Lactobacillus was the most relatively abundant ASV even after removal of likely DNA
contaminants with DECONTAM, and in the Lauder et al. (37) study, only the maternal side of

the single cesarean delivered placenta had a high predominance of Lactobacillus.

The bacterial ASV profiles of placental samples and background technical controls cluster
based on study origin

Beta diversity between placental samples and technical controls was visualized through Principal
Coordinates Analysis for each study in the re-analysis to assess the extent of influence of
background DNA contamination on the bacterial ASV profiles of placental samples (Figure 3).
A majority of placental samples cluster with their respective technical controls across the studies.
Specifically, in five of eleven studies, technical controls covered the entire bacterial profile
spectrum of placental samples (Figure 3A-E), and in the remaining six studies which included
technical controls, the bacterial profiles of most placental samples largely clustered with those of
technical controls (Figure 3F-K). Placental samples in the latter group which did not cluster
with technical controls were characterized by a predominance of Lactobacillus (3F-H),
Cutibacterium (31,K), Gardnerella (3F), Pseudomonas (3F), Ureaplasma (3G), Lactobacillus
(3G-H), Mesorhizobium (31), Prevotella (3J), Actinomyces (3J), Streptococcus (3J), Veillonella
(3J), and Saphylococcus (3K). Notably, the bacterial profiles of most placental samples from
term cesarean deliveries were not significantly different from those of technical controls in either

dispersion or structure (Table S3). In cases where the structure of the bacterial profiles differed
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between placental samples and technical controls, but the dispersion of the bacterial profiles did
not, it was only the bacterial profiles of the exterior surfaces of the placenta which differed from
those of controls. In these cases, the bacterial profiles of the exterior surfaces of placental
samples were characterized by Cupriavidus, Serratia, Corynebacterium, and Staphylococcus

(Table S3), the latter two of which are well-known commensal bacteria of the human skin (90).

The bacterial ASV profiles of vaginally delivered placental samples also cluster with their
respective vaginal samples across studies

Six studies (29, 37-39, 50, 57) in the re-analysis included vaginal or vaginal-rectal swab samples
as a complement to placental samples; four of these studies also included technical controls (37-
39, 50). While most technical controls did not cluster with vaginal samples, placental samples
typically clustered with vaginal samples and/or technical controls (Figure 4A-D), or if technical
controls were not included in the study, with vaginal samples (Figure 4E-F). Notably, nine
Lactobacillus ASVs were shared between the top ranked ASVs of placental and vaginal swab

samples across five studies (37-39, 50, 57) (Figure 4).

Placental and technical control samples co-cluster by study and placental samples
additionally cluster by mode of delivery

In order to fully utilize the capacity for ASVs to be directly compared across placental
microbiota studies, taxonomy and ASV count tables were merged based on the exact ASV
sequence data for six (29, 39, 41, 44, 50, 86) of seven studies (29, 39, 41, 43, 44, 86) which
sequenced the V4 hypervariable region of the 16S rRNA gene using the PCR primers 515F and

805R. Principal Coordinates Analysis (PCoA) illustrated that placental and technical control
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samples formed distinct clusters based on study origin (Figure SA; NPMANOVA using Bray-
Curtis; placental samples: F=16.0, P=0.001; technical controls: F=4.64, P=0.001). The only
exception was the Theis, Winters et al. dataset (86), which encompassed the bacterial profiles of
placental samples from the other studies. This was likely due to the inclusion of samples in
Theis, Winters et al. (86) from multiple regions of the placenta (i.e., amnion, amnion-chorion
interface, subchorion, villous tree, and basal plate) as well as placentas from term and preterm
vaginal and cesarean deliveries (Figure SA). When stratifying by study and thereby taking study
origin into account, placental and technical control samples did exhibit distinct bacterial DNA
profiles (Figure 5A; F=6.66; P=0.512). When technical controls were excluded from the PCoA,
discrete clustering of placental samples by study origin was still apparent (Figure 5B).
Furthermore, the bacterial DNA profiles of placental samples were clearly affected by mode of
delivery across studies (Figure SC; F=21.6, P=0.001). Unsurprisingly, common vaginal bacteria
such as Lactobacillus, Ureaplasma, and Gardnerella were predominant in the profiles of

placental samples from vaginal deliveries (Figure 5C).

Bacterial profiles of placental and technical control samples characterized using the V4
hypervariable region of the 16S rRNA gene share prominent ASVs

While placental samples from each study exhibited characteristic patterns of predominant ASVs,
some ASVs such as ASV2533-Escherichia/Shigella, ASV6218-Lactobacillus, and ASV6216-
Lactobacillus were predominant in the datasets of several studies (Figure 6A-B, E). However,
across studies, nearly every ASV that was consistently predominant in the bacterial DNA
profiles of placental samples, was also consistently predominant in the profiles of the technical

control samples from the same dataset (Figure 6). For instance, in two studies, all ASVs with a
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334  mean relative abundance greater than 1% in placental samples were also greater than 2% mean
335 relative abundance in technical control samples (Figure 6B-C). In a third study, all ASVs other
336 than ASV5229-Cutibacterium were also greater than 2% mean relative abundance across

337  technical control samples (Figure 6D). These data collectively indicate that prominent placental
338  ASVs were likely derived from background DNA contamination captured by the technical

339  control samples.
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340 DISCUSSION

341  Principal findings of the study

342 In this re-analysis of fifteen placental microbiota studies, of the ASVs which were ranked
343  inthe top five ASVs for relative abundance in any one study, Lactobacillus ASVs were clearly
344  the most prevalent across studies. Yet, Lactobacillus ASV prevalence was explained by

345  background DNA contamination, contamination from the birth canal during vaginal delivery, or
346  well-to-well contamination from vaginal samples during the sequence library build process.

347  Opverall, the bacterial DNA profiles of placental samples were highly similar to those of technical
348  controls in their respective studies. Indeed, a secondary analysis of the six studies which targeted
349  the V4 hypervariable region of the 16S rRNA gene for sequencing, showed that the bacterial
350  DNA signal of both placental and technical control samples clustered by study of origin rather
351  than by sample type. In addition, the top two ASVs in placental samples from each of the six
352  studies in the secondary analysis were also the top ranked ASVs in technical controls from the
353  corresponding study. Considered in isolation, placental samples clustered by mode of delivery,
354  suggesting that the process of delivery greatly affected the bacterial DNA profiles of placentas.
355  Therefore, placental samples included in this re-analysis do not provide evidence of a consistent
356  bacterial DNA signal in typical term pregnancy independent of mode of delivery. Instead, the
357 modest consistency in bacterial DNA signals identified across studies was associated with

358  general background DNA contamination or contamination introduced during vaginal delivery.
359

360  The findings of this study in the context of prior reports

361  Currently, the extent of bacterial presence within the placenta is under debate. There have been

362  numerous reviews, commentaries, and editorials, which have sought to synthesize and resolve
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conflicting results regarding the existence of a placental microbiota (3, 30, 32, 33, 66-68, 73, 91-
135). Although there has been disagreement about the existence of a placental microbiota in
typical human pregnancy, there is a consensus that any given body site, including the placenta,
can be at least transiently infected by microorganisms. Several reviews have emphasized that
microorganisms in placental tissue would not be able to survive for long durations given the
structure of the placenta and the immunobiological response of the host (3, 101). In contrast,
some have proposed that microorganisms could survive intracellularly within the basal plate of
the placenta and thus effectively evade the host immune system (68, 136). Many reviews
addressing prior microbiota datasets have been challenged to draw conclusions given the
multiple confounding factors which could significantly influence results: the specific 16S rRNA
gene hypervariable region targeted for sequencing, brand and lot number of the DNA extraction
kits, gestational age at delivery and sampling, mode of delivery of the placenta, inadequate
metadata for deposited sequence data, and a general lack of technical controls to account for
background DNA contamination. Regardless, many have viewed the current evidence for
placental and/or in utero colonization as theoretically tenuous given the existence of germ-free
mammals and the strong potential for background bacterial DNA to influence DNA sequencing
surveys of low microbial biomass samples (36-41, 81, 103). Finally, similar to the results
presented here in this re-analysis, the prevalence of Lactobacillus across placental samples in
prior studies has been acknowledged, yet so too has been the high variability in the bacterial taxa
reported within placental tissues across studies. Indeed, variability is high even across studies of
similar cohorts from the same research groups (27, 41, 44, 63-65, 86). The current study sought
to remedy the lack of consensus in the literature regarding the existence of a placental microbiota

in typical term pregnancy through a re-analysis of the current publicly available data on placental
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microbiotas while controlling for targeted region of the 16S rRNA gene for sequencing,

background DNA contamination, and mode of delivery.

Mode of delivery must be taken into account when investigating the existence and structure of a
placental bacterial DNA signal
Eleven studies (27, 38, 43, 44, 52, 54, 57, 59) concluded that the bacterial DNA signals in
placentas from cesarean deliveries were not significantly different from those in placentas
delivered vaginally. Yet, six other studies (36, 38, 42, 51, 86, 89) have reported that the bacterial
DNA signals in placentas from vaginal and cesarean deliveries significantly differ. The latter
studies have reported increased prevalence and relative abundance of Lactobacillus and other
vaginally associated taxa in placentas from vaginal deliveries. Additionally, even the rupture of
membranes, a prerequisite for labor and vaginal delivery, provides microorganisms access to the
amniotic cavity (137) and thus the placenta, with prolonged access leading to microbial invasion
and infection (138, 139). Notably, bacterial culture of placentas from vaginal deliveries have
significantly higher positivity rates (18, 86), higher total colony counts (40), and a higher
prevalence of bacterial colonies from Lactobacillus and Gardnerella, both of which are typical
residents of the human vagina (78). In contrast, placentas from cesarean deliveries consistently
yield bacteria which typically predominate on the skin, such as Propionibacterium,
Saphylococcus, and Streptococcus (40, 90).

Importantly, through robust analysis of the entire bacterial DNA signal from hundreds of
placental samples, this re-analysis clearly highlights the influence of mode of delivery on the
bacterial DNA signal from placental samples by demonstrating mode of delivery-associated

clustering across six studies. Furthermore, it is apparent that removing the exterior layers (i.e.,
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amnion, chorion, and basal plate) of a placenta delivered vaginally is not sufficient to eliminate
delivery associated DNA contamination of the sample since the diversity and structure of
bacterial DNA profiles from the inner layers (i.e., subchorion, villous tree) of the placenta
differed significantly between cesarean and vaginal deliveries. Evidence in the literature
combined with this re-analysis warrants careful consideration of mode of delivery and even time
since rupture of membranes (52, 138, 139) when investigating the bacterial DNA signal from

placental samples.

Background bacterial DNA limits analysis of bacterial 16SrRNA gene signal from the placenta
Theoretically, a low bacterial biomass community is detectable using 16S rRNA gene
sequencing when its concentration is at least 10-100CFU/mL (140). However, discerning a true
tissue-derived low bacterial DNA signal from other potential sources is exceedingly difficult.
This re-analysis, along with eight other studies (36-41, 81, 86), found that placental samples and
technical controls share highly abundant bacterial taxa when 16S rRNA gene sequencing is used.
Since technical controls represent the environment and reagents to which the placenta is exposed
post-delivery, it follows that a majority of the bacterial DNA signal from placental samples is
also acquired from those environments and reagents. While a placental tissue limit of bacterial
detection through DNA sequencing is yet to be determined, other low-bacterial-biomass sample
types such as oral rinse, bronchoalveolar lavage fluid, and exhaled breath condensate were
predominated by stochastic noise below 10* 16S rRNA gene copies per sample (141). Even the
bacterial DNA signal from a pure culture of Salmonella bongori serially diluted to a final
concentration of 10° CFU/mL was mostly contamination (74). If these limits are comparable to

those in placental tissue, then stochastic noise and background DNA contamination would
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predominate the bacterial DNA signal from placental tissue leaving any true DNA signal well
beyond the detection limits of 16S rRNA gene sequencing. Therefore it follows that 16S rRNA
gene sequencing is inadequate to make a clear assessment of the existence of a placental

microbiota.

Prior reports of 16S rRNA gene sequencing on placentas from term pregnancies
With the prior considerations in mind, out of the 40 studies which performed 16S rRNA gene
sequencing on placental samples, 32 included at least some term deliveries. However, only 16
focused exclusively on placentas from term deliveries (28, 37, 39-41, 43, 49, 53, 54, 56-58, 62-
65). Additionally, only nine of these studies focused exclusively on placentas from cesarean
deliveries (28, 39, 41, 49, 56, 58, 62, 64, 65) and only three included technical controls and their
DNA sequencing data thus accounting for gestational age, mode of delivery, and background
DNA contamination (39, 41, 49). Two of three concluded that there was no evidence for a
placental microbiota in the context of term cesarean delivery (39, 41).

Many studies have reported evidence for a low biomass placental microbiota (27, 29, 30,
43-47, 49, 50, 52-54, 57, 58, 60, 61, 63-65, 82, 83, 136, 142) but only nine of these studies
exclusively sampled placentas from term deliveries (43, 49, 53, 54, 57, 58, 63-65). Predominant
bacterial taxa reported in these studies included Pseudomonas (54, 64, 65), Lactobacillus (49,
54), Bacteroidales (64), Enterococcus (63), Mesorhizobium (43), Prevotella (58), unclassified
Proteobacteria (57), Ralstonia (43), and Streptococcus (54). Two studies from this term delivery
subset, which sampled multiple regions of the placenta, observed gradients of Lactobacillus

relative abundance across levels of the placenta, but in opposite directions (43, 49).
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In contrast, five studies did not find evidence for a microbiota in placentas from term
deliveries since neither the placental bacterial DNA signal from 16S rRNA gene sequencing (37,
39-41) nor the bacterial load as determined by quantitative real-time PCR (37, 39-41, 56) were
significantly different from technical controls. One study even noted that no operational
taxonomic units greater than 1% relative abundance in placental samples, were less than 1% in
technical control samples, emphasizing the overlap between the two sample types (37). Three of
these studies (40, 41, 56) also attempted to culture viable bacteria from placental tissue, but were
rarely successful. In cases where culture was successful, viable bacteria often conflicted with the

DNA sequencing results suggesting that cultured bacteria were likely contaminants (40, 41).

Clinical significance

Non-viable or viable bacterial DNA could feasibly be filtered from maternal blood by the
placenta leading to a placental bacterial DNA signal

The placenta is a transient internal organ with functions that include promotion of gas exchange,
nutrient and waste transport, maternal immunoglobulin transport, and secretion of hormones
critical for fetal growth and development (143). These exchanges and transfers occur due to
diffusion gradients between fetal and maternal blood, the latter of which bathes the chorionic
villi in the intervillous space of the placenta (99). This maternal blood, which cannot be fully
drained from the placenta before biopsy or sampling, can undoubtedly contain bacterial particles
or even the remnants of a low-grade bacterial infection (56, 103, 144). Because of its structure,
the placenta functions as a filter and retains these particles or bacteria, dead or alive. A bacterial

DNA signal due to this filtering process would be extremely weak and transient. In addition, the
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bacterial taxa identified would be highly variable since they do not correspond to a specific

niche, which is consistent with the findings of this re-analysis.

Infection is a potential source for the placental bacterial DNA signal

Instead of in-utero colonization, it is more likely that the bacterial DNA signal coming from a
subset of placental samples is caused by infection. It is curious to note that specific bacteria are
associated with stronger bacterial DNA signals and inflammation in placental tissue resulting in
adverse pregnancy outcomes including preterm birth and/or preterm prelabor rupture of
membranes (PPROM) (52, 55, 89). Spontaneous preterm birth has been shown to increase
bacterial load (55) and the relative abundances of several taxa in placental samples including but
not limited to Ureaplasma (26, 36, 38, 42, 51, 52, 145, 146), Fusobacterium (51, 52),
Mycoplasma (42, 51, 52), Streptococcus (36, 51), Burkholderia (27), Escherichia/Shigella (55),
Gardnerella(51), Gemella (52), and Pseudomonas (50). Ureaplasma urealyticum, Mycoplasma
hominis, Bacteroides spp., Gardenerella spp, Mobiluncus spp., various enterococci, and
Streptococcus agalactiae (also known as Group B Streptococcus or GBS) are frequently
associated with histologic acute chorioamnionitis as well as uterine infection (16, 26, 99, 146).
GBS is also a major cause of early onset neonatal sepsis and has been commonly isolated at
autopsy in addition to E. coli, and Enterococcus (16, 147). While strain level variation could
conclusively determine the pathogenicity of bacterial DNA in the placenta, 16S rRNA gene
sequencing is not capable of such resolution. Nevertheless, the DNA of the notoriously
pathogenic bacterial genera detailed above were all found in placental tissue, suggesting an

invasive phenotype rather than commensal colonization.
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Recommendations for future studies

In order to establish the existence of a viable placental microbiota several criteria need to be met,
which have been detailed previously (36, 41). Studies which aim to assess the viability of a
bacterial DNA signal in a purported low biomass sample type should start with the null
hypothesis that the entire DNA signal results from contamination and subsequently attempt to
reject it with experimental evidence (148). Therefore, any study evaluating a potential microbiota
of the placenta should attempt to demonstrate viability through both culture and DNA
sequencing. Placentas should come from term cesarean deliveries without labor to obviate
contamination during vaginal delivery and subjects should be screened to ensure that only
healthy women are sampled (i.e., no history of antenatal infection, pre-eclampsia, recent
antibiotic use, signs of infection or inflammation). Additionally, future studies should include
ample sequenced technical controls in order to identify and account for sources of contamination,
which will inevitably exist no matter how rigorous and/or sterile the protocol (71). Further,
biological replicates from the same placenta should also be included to ascertain the consistency
of any bacterial DNA signal. Since 16S rRNA gene sequencing limits of detection have not yet
been thoroughly interrogated in placental tissue, serial dilutions of spiked-in live bacteria or cell-
free DNA should be included in a portion of tissue samples to demonstrate the feasibility of
recovering the bacterial DNA signal from placental tissue. When multiplexing samples, unique
dual index primer sets should be used to eliminate the possibility of barcode hopping which is
another source of sample “contamination” (149, 150), and before sequencing, low biomass
samples should be segregated from higher biomass samples to avoid well-to-well contamination
(39, 151). Finally, in conjunction with publishing, all sequence data and detailed metadata should

be submitted to a public database so that others can replicate the work and verify the results.
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Strengths of this study

Broad searches of the available literature were utilized to ensure that all publicly available 16S
rRNA gene sequencing data of placental samples (with associated metadata to partition pooled
sample data) were incorporated into the re-analysis, which re-examined the data with in-depth
comparisons of term placental samples to technical controls. This allowed for the detection of
background DNA contamination in the bacterial DNA signal from placental tissue. In addition,
potential confounding variables such as mode of delivery, gestational age at delivery, and 16S
rRNA gene target hypervariable region were controlled for whenever possible. By utilizing
DADAZ2 to process the sequence data, variation and biases due to post-sequencing processing
were eliminated. This enabled ASV-to-ASV comparisons for six studies which targeted the same
16S rRNA gene hypervariable region using the same PCR primers, a first in the placental

microbiota field.

Limitations of this study

The quality and public availability of data and metadata were the primary limiting factors of this
re-analysis. Unfortunately, the availability of metadata or even the data themselves is a pervasive
issue in the microbiome field (152-154). While study cohort statistics were well reported overall,
detailed metadata for each subject are required in order to perform a proper re-analysis. Ideally,
any study investigating the existence of a viable placental microbiota would, at a minimum,
include associated metadata by subject for potential confounders (e.g., gestational age at

delivery, and mode of delivery).
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An additional limitation of the current study was that the impacts of individual low
abundance ASVs (i.e., less than 1% mean relative abundance) were not evaluated, but these
ASVs were likely stochastic environmental DNA contamination. Finally, while the R package
DECONTAM was used to remove likely contaminants by comparing the prevalence of ASVs in
biological samples and technical controls, this tool is not appropriate for identifying
contaminants introduced during sampling or delivery. In addition, the contaminant identification
accuracy of DECONTAM also diminishes when used on low biomass samples such as placental

samples where the majority of the sequences are likely contaminants (71, 155).

Conclusion

The initial premise of this critical review and re-analysis was to determine if a true consistent
bacterial DNA signal could be identified in placental samples from women delivering at term
across studies despite various differences in sampling methodologies and sequencing analyses.
16S rRNA gene sequencing data from fifteen studies were processed and analysed in the same
manner to control for as much post-sequencing variation as possible. By doing so, Lactobacillus
ASVs were identified as the most prevalent top-ranked ASVs by relative abundance across
studies; however, their prevalence in placentas from term cesarean deliveries was attributable to
some form of contamination in every case. While bacterial DNA signals were observed in
placental samples, they were largely similar to those seen in technical control samples.
Furthermore, the bacterial DNA signal from placental samples clustered by mode of delivery,
indicating placental delivery-associated contamination. This observation, in combination with
the existence of germ-free mammals (156, 157), has yet to be reconciled with in-utero

colonization. Even if the placenta has a bacterial DNA signal apart from that of background
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DNA or delivery-associated contamination, alternative sources for the bacterial DNA signal such
as extracellular DNA or dead bacteria circulating within maternal blood still need to be ruled out.

As we push the boundaries of DNA sequencing technologies we need to tread carefully,
especially in purported low-biomass sites such as the placenta. The limitations of current DNA
sequencing technology make detection of a legitimate signal or determination of viability
unattainable at such low levels (72, 74). Regardless, a bacterial DNA signal can indeed be
detected even in placentas from term cesarean deliveries, but the placenta is unlikely to be the
source. Only after demonstrating a valid, viable bacterial DNA signal from term cesarean
deliveries, through sterile protocol, with technical controls, and associated culture positive data,
can we evaluate the degree to which the maternal immune system tolerates these bacteria and
whether their presence resembles commensal existence or infection. Finally, the placental
microbiota may or may not exist, but it is quite clear that attempts to maintain sterility and avoid
contamination have not been successful since the vast majority of sequencing reads from
placental samples can be attributed to multiple modes of contamination. Therefore, sequencing
methodologies require significant improvement before a placental microbiota can be established
as 16S rRNA gene sequencing appears to lack the ability to discriminate between a markedly

low biomass microbiota and background DNA contamination at present.
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MATERIALS AND METHODS

Study inclusion criteria

79 e 29 <

Searches for “human placental microbiome”, “placenta microbiota”, “placental microbiomes”,
and “placenta 16S” were queried on PubMed with a cutoff date of 6/16/21 to identify studies
addressing the existence of a placental microbiota or lack thereof. Additionally we included our
recent preprint (86) in this pool of studies. Of the 387 unique studies identified, 58 performed
primary research and 41 implemented 16S rRNA gene sequencing on placental samples (Error!
Reference source not found.). Therefore we focused on 16S rRNA gene sequencing data. 16S
rRNA gene sequencing is a well-characterized way of detecting and classifying bacterial
communities within biological samples (158-160), and it is potentially sensitive enough to detect
the typically low number of 16S rRNA bacterial gene copies hypothesized to be in the placenta
(34, 161). 33 of the 41 studies which implemented 16S rRNA gene sequencing included at least
one placental sample from an uncomplicated delivery at term (27-29, 36-45, 47, 49-65, 86, 142).
However, only 15 of these 33 studies included publicly available 16S rRNA gene sequence data
(i.e., sequencing files uploaded to a public database with a published and accurate accession
number with sufficient metadata to partition pooled sample data) (29, 36-44, 50, 53, 57, 58, 86).

Thus, the re-analysis ultimately included 15 studies.

Processing of 16S rRNA gene sequence data using DADA2

Fastq files of the 16S rRNA gene sequence data from samples included in each study were
downloaded from publicly accessible databases. If a study included fastq files that contained
sequence data from multiple samples, the data were demultiplexed using QIIME2 (version

2020.2) (162) and SED (GNU Sed 4.7), a stream editor for text processing (163).
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Sequence datasets from each study were individually processed using the Differential
Abundance Denoising Algorithm (DADA2), which is an R package designed to partition 16S
rRNA gene sequences into distinct Amplicon Sequence Variants (ASVs) and to taxonomically
classify the resultant ASVs (87). R version 3.6.1 (164) was used for DADA2 processing and all
downstream analyses. Processing followed the 1.16 DADA?2 guidelines

(https://benjjneb.github.io/dada2/tutorial.html), except when stated otherwise. Samples that had

an average sequence quality score which dipped below 30 before the expected trim length cutoffs
were removed from the dataset. Trim length cutoffs were set to maximize the read length and
number of passing samples while still removing poor quality base calls from the ends of reads.
Reads were then filtered using the filterAndTrim() function with multithread set to TRUE to
enable parallel computation and decrease real time spent computing. Error rates of base calling
in the filtered sequences were inferred from the data using the learnErrors() function with
multithread set to TRUE. Using the inferred error rates, sequences were partitioned into ASVs
with pool and multithread set to TRUE. If the dada() function failed to complete partitioning
after 7 days for a particular study’s dataset, which occurred for only one study (36), pool was set
to FALSE for sample independent sequence partitioning.

If forward and reverse sequences were not yet merged, they were merged using the
mergePairs() function. In cases where the forward and reverse reads were already merged in
publicly available data files, the DADA2 merging step was omitted and the code adjusted for
merged input sequences. Merged sequences with lengths greater or less than 20 nucleotides from
the expected amplified region were removed from the data set since they were most likely due to
non-specific merging of forward and reverse reads resulting in extra-long or extra-short reads.

Chimeric sequences were detected and removed using the removeBimeraDenovo() function with
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multithread set to FALSE. This employs the default consensus method instead of the pooled
method. The consensus method determines chimeric sequences in each sample and then
compares detected chimeric sequences across samples for a consensus. Taxonomy was assigned
to sequences using the Silva 16S rRNA gene bacterial database (v 138) (159, 165). Species
assignments were added, when possible.

For each study, merged datasets of ASV counts and taxonomic classifications were
filtered using functions from the R package dplyr (166) to remove ASVs that were classified as
mitochondrial, chloroplast, or not of bacterial origin. ASVs not classified at the phylum level and
samples which did not have at least 100 sequence reads after filtering were removed from the

data set.

Removal of likely DNA contaminants through the R package DECONTAM
To control for background DNA contamination, the R package DECONTAM was used to

identify and remove sequences which were more prevalent in technical controls than in placental
samples. For likely sequence contaminant removal, studies which included at least six technical
controls (36-43, 50, 86) were included based on the recommendation of the authors of
DECONTAM (88). Technical controls included air swabs, blank DNA extraction kits, and
template-free PCR reactions. The DECONTAM function isNotContaminant() was used to
remove ASVs which were more prevalent in technical controls than in biological samples.
Thresholds were study specific with the goal of excluding most of the low prevalence ASVs
while retaining high prevalence ASVs not likely to be contaminants. Despite using these
stringent study specific thresholds, the results were unchanged if the default threshold of 0.5 was

used instead.
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Normalization of 16S rRNA gene sequence datasets within and across studies

All datasets were normalized using the function rarefy even_depth() from the R package
phyloseq (1.30.0) (167). Following the normalization process, samples whose sequence libraries
did not have at least 100 reads were excluded. The remaining samples were subsampled without
replacement (i.e., the same sequence was never reselected when subsampling) to the minimum
number of sequences per sample within a study. RNGseed was set to 1 to fix the seed for
reproducible random number generation. This normalization approach was utilized since 16S
rRNA gene read counts can vary by five orders of magnitude among samples in a single study.
Given this degree of variability, normalization to the same sequence depth is justified and

required for accurate comparisons of 16S rRNA gene profiles among samples (168).

Data Visualization

Heatmaps illustrating the relative abundances of ASVs were prepared using the
ComplexHeatmap R package (version 2.2.0) (169). Samples were grouped by sample type and
ASVs were ordered based on ASV mean relative abundances within samples.

The function vegdist() from the R package vegan (version 2.5-6) (170) was used to create
Bray-Curtis dissimilarity matrices which were then used as the basis for Principal Coordinates
Analysis (PCoA) plots that were generated using the pco() function from the R package ecodist
(version 2.0.7) (171). The Bray-Curtis index was used because it takes into account both the
composition and structure of 16S rRNA gene sequence bacterial profiles (172). The Lingoes
method was used to correct for negative eigenvalues so that dissimilarity between samples could

be completely explained in Euclidean space (173).
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672 All code to produce the published figures from the raw data is included in the
673  supplementary materials in an R markdown file available at

674  https://github.com/jpS589/Placental Microbiota Reanalysis.

675  Statigtical analysis

676  Homogeneity of 16S rRNA gene sequence profiles between placental samples and technical

677  controls was tested using betadisper() from the R package vegan (version 2.5-6) (170).

678  Differences in 16S rRNA gene profile structure between placental samples by sampling level and
679  technical controls were evaluated using the function pairwise.adonis() from the R package

680  pairwiseAdonis (version 0.4) (174).

681 All code to recapitulate these analyses are included in an R markdown file available at

682  https://github.com/jp589/Placental Microbiota Reanalysis.
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1143  TABLES —

1144  Table 1. Overview of placental microbiota studies that were based on 16S rRNA gene

1145  sequencing data and that were included in this critical review and re-analysis

1146 The presented study characteristics include the: name of the first author(s); geographical location
1147  at which subjects were sampled; specific 16S rRNA gene hypervariable region that was targeted
1148  for sequencing; number of placentas sampled by mode of delivery and whether delivery was
1149  before (i.e., preterm) or after (i.e. term) 37 weeks; number of technical controls included to

1150  address potential background DNA contamination; and whether we were able to categorize

1151  placental samples based on mode of delivery, gestational age at delivery (i.e., before or after 37
1152 weeks), and whether DECONTAM analysis could be performed to identify background DNA
1153  contaminants (i.e., N > 6 technical controls included in the study) (88). Square brackets indicate
1154  that available sample metadata did not allow for placentas to be grouped by gestational age at

1155  delivery.
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16S rRNA Cesarean Vaginal Ability to group by
Stud Geographic gene Technical . Ability to run
y Location hypervariable Term Preterm | Term Preterm Controls De"very Gestational DECONTAM
region Age
de Goffau Part I> Cambridge, UK V1-V2 80 0 0 0 47 X X X
Lauder Bg‘fde'ph'a’ PA. v1v2 1 0 5 0 39 X X X
Leiby Philadelphia, PA, /4y 1 5 19 15 103 X X X
USA
Lansing, MI, a
Olomu USA V4 47 0 0 0 131 X X X
St. Louis, MO,
Parnell USA V4 34 0 23 0 21 X X X
Theis® Detroit, MI, USA  v4 29° 0 0 0 43 X X X
Theis, Winters Detroit, MI, USA  v4 28 14 21 6 12 X X X
Sterpu §t°°kh°'m’ V6-V8 50° 0 2% 0 6 X X X
weden
Dinsdale South Hedland, [19] [31] 8 X X
Australia
Tang Shanghai, China  v3-v4 15% 0 0 0 0 X X
Liu Kunming, China  v4-v5 42 0 36 0 X X
Gomez-Arango  D'isbane, V6-V8 160 0 20 0 0 X
Australia
Durham, NC, a
Younge USA V4 5 5 0 0 0 X
London,
Leon England, UK V5-V7 [136] [120] 21 X
. Houston, TX,
Seferovic USA V4 26 8 0 18 2

% Indicates that placental samples were delivered without labor.
bAnalyzed data are from the Cohort 1 component of the study.
¢ Analyzed data are from the nested PCR component of the study.
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1157  Table 2. Summary of prominent bacterial ASVs in term cesarean delivered placental

1158  samples before and after removal of background DNA contaminants using the R package
1159 DECONTAM

1160  The top five ASVs as determined by mean relative abundance across placental samples after
1161  DADAZ2 processing are provided for studies which could be restricted to cesarean delivered
1162  placental samples. Asterisks indicate ASV sequence genus level classifications which were

1163  assigned by NCBI BLAST with the highest percent identity in excess of 95%. The Liu et al. [1]
1164  dataset could not be assessed post-DECONTAM since no technical controls were included in the

1165  study.
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16S rRNA
Study B ervari ASV1 ASV2 ASV3 ASV4 ASV5
ypervariable
region
Before DECONTAM
Olomu V4 Escherichia/Shigella Lactobacillus Lactobacillus Finegoldia Fenollaria
Parnell V4 Leptospira Leptospira Leptospira Cutibacterium Leptospira
Theis V4 Achromobacter Delftia Phyllobacterium Clostridium sensu stricto 5  Stenotrophomonas
Theis, Winters V4 Lactobacillus Staphylococcus Escherichia/Shigella  Serratia* Streptococcus
Liu V4-V5 Pseudomonas Pantoea* Pantoea* Lactobacillus Pantoea*
Sterpu V6-V8 Cutibacterium Staphylococcus Streptococcus Streptococcus Streptococcus
After DECONTAM
Olomu V4 Fenollaria Acinetobacter Lactobacillus Campylobacter Peptoniphilus
Parnell V4 Leptospira Leptospira Leptospira Cutibacterium Leptospira
Theis V4 Achromobacter Alcaligenaceae Escherichia/Shigella Achromobacter Alcaligenaceae
Theis, Winters V4 Corynebacterium Serratia* Mycoplasma Corynebacterium Fusobacterium
Sterpu V6-V8 Staphylococcus Gardnerella Staphylococcus Staphylococcus Streptococcus

ASV1-5 are rank designations based on percent relative abundance
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FIGURE LEGENDS

Figure 1. Study inclusion flowchart

Four searches were performed on PubMed to identify studies for inclusion in the re-analysis.
Filtering criteria were: primary research article, 16S rRNA gene sequencing data, placentas
obtained from term deliveries, sequencing data accessible with published accession number, and
sufficient metadata available to parse sequencing data into individual samples.

Figure 2. Conclusions of thirteen studies evaluating the existence of a placental microbiota,
which included data from multiple placentas delivered via cesarean section at term

The studies are principally separated and contrasted depending upon whether they included
technical controls to account for potential background DNA contamination.

Figure 3. Principal Coordinates Analyses of the beta diversity of bacterial DNA profiles
between placental samples and technical controls in published placental microbiota studies
Studies were included if technical controls were sequenced and made publicly available to
account for background DNA contamination. Beta diversity between placental (red open circles)
and technical control (black open circles) samples is illustrated by study in PCoA plots based on
the Bray-Curtis dissimilarity index. Genus level classifications of the top ten ASVs in placental
samples and technical controls by total reads are plotted at their weighted average positions (grey
diamonds). Asterisks indicate ASV sequence genus level classifications which were assigned by
NCBI BLAST with the highest percent identity in excess of 95%.

Figure 4. Principal Coordinates Analyses of the beta diversity of the bacterial DNA profiles
of placental and vaginal/vaginal-rectal samples in placental microbiota studies

Prior published studies were included if vaginal or vaginal-rectal samples were sequenced and

made publicly available alongside placental samples. The top ten ASVs shared between placental
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1189  samples and technical controls, and the top ten ASVs in vaginal samples are plotted at their
1190  weighted average positions in the ordination space (grey diamonds) and their genus level

1191  classifications are noted. Agglomerated genus level classifications were plotted for the Liu

1192  dataset instead of ASVs since no ASVs were greater than 1% mean relative abundance across
1193  placental samples. Asterisks indicate ASV sequence genus level classifications which were

1194  assigned by NCBI BLAST with the highest percent identity in excess of 95%.

1195  Figure 5. Placental and technical control samples cluster by study origin, mode of delivery,
1196  and gestational age at delivery

1197  A) Beta diversity between placental (open circles) and technical control samples (open triangles)
1198  from studies which sequenced the V4 hypervariable region of the 16S rRNA gene is visualized
1199  through principal coordinate analysis (PCoA) based on the Bray-Curtis dissimilarity index. B)
1200  Beta diversity of placental samples without technical control samples from each study. C)

1201  Placental samples from the same six studies were characterized by mode of delivery and

1202  gestational age at delivery. Weighted average positions of ASVs greater than 1% were plotted as
1203  grey diamonds and labelled with genus level classifications. Asterisks indicate ASV sequence
1204  genus level classifications which were assigned by NCBI BLAST with the highest percent

1205  identity in excess of 95%.

1206  Figure 6. Heatmaps of the bacterial DNA profiles of placental and technical control

1207  samples from studies which sequenced the V4 hypervariable region of the 16S rRNA gene
1208  demonstrating a high degree of overlap between these two sample types

1209  ASVs are listed by study if they had a mean relative abundance greater than 1% across placental
1210  samples (green bar). Red asterisks indicate ASVs which had a mean relative abundance greater

1211  than 2% across all technical control samples (purple bar) from that study. Regular asterisks
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1212 indicate ASV sequence genus level classifications which were assigned by NCBI BLAST with

1213 the highest percent identity in excess of 95%.

1214
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387 unidti°Artiecles Fetlified frofti'searches
for "Tnuman placental microbiome",
"placental microbiota", "placental microbiomes",

and "placenta 16S"

58 were primary research articles

41 performed 16S rRNA gene sequencing
on placental samples

33 included term delivered samples
(>37 weeks gestation)

17 were publicly available (i.e., data was
uploaded to a public database with
an accurate accession number)

15 included complete data which were able
to be parsed into individual samples
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