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Abstract

Motivation: Computational methods for compound–protein affinity and contact (CPAC) prediction aim at
facilitating rational drug discovery by simultaneous prediction of the strength and the pattern of compound–
protein interactions. Although the desired outputs are highly structure-dependent, the lack of protein
structures often makes structure-free methods rely on protein sequence inputs alone. The scarcity of
compound–protein pairs with affinity and contact labels further limits the accuracy and the generalizability
of CPAC models.
Results: To overcome the aforementioned challenges of structure naivety and labelled-data scarcity, we
introduce cross-modality and self-supervised learning, respectively, for structure-aware and task-relevant
protein embedding. Specifically, protein data are available in both modalities of 1D amino-acid sequences
and predicted 2D contact maps, that are separately embedded with recurrent and graph neural networks,
respectively, as well as jointly embedded with two cross-modality schemes. Furthermore, both protein
modalities are pretrained under various self-supervised learning strategies, by leveraging massive amount
of unlabelled protein data. Our results indicate that individual protein modalities differ in their strengths of
predicting affinities or contacts. Proper cross-modality protein embedding combined with self-supervised
learning improves model generalizability when predicting both affinities and contacts for unseen proteins.
Availability: Data and source codes are available at https://github.com/Shen-Lab/CPAC.
Contact: yshen@tamu.edu
Supplementary information: Supplementary data are included.

1 Introduction
Most FDA-approved drug–target pairs are between small-molecule

compounds and proteins (Santos et al., 2017). Considering the
enormous chemical space that is estimated to contain 1060 “drug-like”
compounds (Bohacek et al., 1996), it is desirable to virtually screen
compounds with high throughput and high accuracy, based on their
computationally predicted properties as well as interactions with proteins
(off)targets. Thanks to quickly growing data, modeling techniques, and
computing power, many machine-learning and deep-learning methods
emerge for predicting compound–protein interactions, in particular, the
structure-free ones addressing the often unavailability of protein structures
(Öztürk et al., 2018; Gao et al., 2018; Karimi et al., 2019, 2020; Tsubaki
et al., 2019; Jiang et al., 2020; Li et al., 2020).

Recent progress in structure-free methods includes increasing
resolution of what they predict: from binary interactions (Gao et al.,
2018; Tsubaki et al., 2019) to continuous affinity or activity values
(Öztürk et al., 2018; Karimi et al., 2019). The progress also includes

increasing explainability about how they predict such interactions:
intermolecular atom–residue non-bonded contacts underlying compound–
protein affinities are additionally predicted, often by introducing (Gao
et al., 2018; Karimi et al., 2019), regularizing (Karimi et al., 2020),
and supervising (Karimi et al., 2020; Li et al., 2020) various attention
mechanisms. We refer to such an explainable affinity prediction problem
as compound–protein affinity and contact (CPAC) prediction.

Despite the aforementioned progress, two challenges present major
barriers to the accuracy and the generalizability. (i) Lack of structure
awareness. While being generally applicable by assuming no co-crystal,
docked or even unbound structures as protein inputs, structure-free
methods rely on 1D amino-acid sequences (Öztürk et al., 2018; Li et al.,
2020) and sequence-predicted 1D structural property sequences (Karimi
et al., 2019), thus lack the awareness of 3D structures that are critical to
what they predict (affinity and contact labels). (ii) Scarcity of labelled
data. Compared to the daunting size of compound–protein pairs, only
a tiny fraction are labelled with affinity measurements and even less are
labelled with non-bonded atomic contacts from co-crystal structures. This
challenge for supervised models is known as “supervision starvation”.
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To address the aforementioned challenges, we make two major
contributions accordingly. First, to address structure naivety, without
demanding co-crystal, compound-docked, or even unbound protein 3D
structures, we consider protein data as available in both modalities of
1D sequences and sequence-predicted 2D graphs (contact maps). Recent
revolution in protein structure prediction (Jumper et al., 2021; Baek
et al., 2021) is making the structure modality increasingly available. We
introduce various neural network architectures to separately or jointly
embed protein modalities and introduce cross-modality learning to
inject structure-awareness into resulting protein embeddings. Two cross-
modality strategies, concatenation and cross interactions, are introduced to
encode the modalities independently and dependently. Second, to address
supervision starvation, without demanding more labelled data, we leverage
massive unlabelled protein data and introduce various self-supervised
learning strategies to pre-train protein embedding. Specifically, we use
masked language models (Devlin et al., 2018) for pre-training protein
sequence embedding and graph completion and graph contrastive learning
(You et al., 2021) for pre-training protein contact-map embeddings.

In cross-modality learning, we ask whether individual modalities could
excel in predicting either affinities or contacts as well as whether and
how their individual strengths could be combined for better accuracy and
generalizability. Our results indicate that the 1D and 2D modalities of
protein data do not dominate each other in CPAC prediction for proteins
seen in the training set; however, they tend to generalize better for unseen
proteins in affinity prediction and contact prediction, respectively. We thus
provide a conjecture for such observations, which is verified numerically.
To integrate knowledge from 1D and 2D protein modalities, two cross-
modality schemes are proposed, with empirical demonstration that they
achieve the state-of-the-art (SOTA) performance.

In self-supervised learning we ask how to design self-supervised
strategies, within and across individual protein modalities, in order to
improve model accuracy and generalizability. We leverage rich unlabelled
protein data and adopt self-supervised techniques for sequences and graphs
so as to pre-train protein embeddings. Consistent with aforementioned
results without pre-training, self-supervised pre-trainings of individual
protein modalities differ in their strengths of predicting affinity or contacts.
We further explore self-supervision on top of cross-modality learning, ask
which pre-training scheme is beneficial in what circumstances of CPAC
prediction, and provide conjectures to underlying reasons.

The rest of the manuscript is organized as follows. In Materials
and Methods, we will start with our curated, labelled and unlabelled
data, to supervise model training and pre-train protein embedding,
respectively. After introducing a backbone model for CPAC prediction
and our modifications, we will introduce our methods of cross-modality
learning and multi-modal self-supervised learning. In Results, we will
first examine performances from single- and multi-modal learning without
pre-training. We will then examine self-supervised pretraining within and
across modalities.

2 Materials and Methods

2.1 Data

Labelled Dataset. We evaluate compound–protein affinity and contact
(CPAC) prediction methods through performing training and inference on a
CPAC benchmark set (Karimi et al., 2020; You and Shen, 2020) as follows.

(i) Data source: The diverse dataset contains 4,446 pairs between 1,287
proteins and 3,672 compounds that are collected from PDBbind (Liu et al.,
2015) and BindingDB (Liu et al., 2007) together with their affinity labels.
In addition, their contact labels are gathered from the corresponding co-
crystal structures deposited in the PDBsum database (Laskowski et al.,
2018) using LigPlot. Histograms of protein and compound lengths,

measured in the number of protein residues and that of compound atoms,
are shown in Appendix A (Fig. S1).

(ii) Protein and compound graphs: No 3D structures of proteins or
compounds are used. Instead, RaptorX-Contact (Xu, 2019) is used to
predict contact maps of proteins from sequences, where evolutionary
information from multiple sequence alignment and structural information
from its labels are additionally included. Only binary contact maps are
used without 3D structural information, thus called 2D graphs. RDKit
(Landrum et al., 2006) is used to convert 1D SMILES into 2D chemical
structures for compounds, after sanitization.

(iii) Dataset split: The labelled dataset is split into subsets of various
challenging levels in generalizability: 795 pairs involving unseen proteins
(proteins not present in the training set), 521 pairs involving unseen
compounds, and 205 for unseen both; whereas the rest is randomly split
into training (2,334) including validation and the default test (591) sets
(Karimi et al., 2020). Statistics of the dataset split is presented in Table 1.

Table 1. Statistics of the dataset splits for affinity and contact prediction.

3,672 compounds
3,100 572

1,287
proteins

1,228
Training set: 2,334 pairs

Seen-both test set: 591 pairs
Unseen-compound
test set: 521 pairs

59
Unseen-protein

test set: 795 pairs
Unseen-both

test set: 205 pairs

Unlabelled datasets. We pre-train protein embeddings using two
unlabelled datasets of different scales. Both are from Pfam-A, a database
of protein domain sequences (Mistry et al., 2021): (i) The smaller set
with ground-truth structure information consists of 60,137 sequences from
Pfam-A with PDB entries (Berman et al., 2000), from which we extract
contact maps from their PDB structures (two residues are deemed in contact
if their Cβ , or Cα for glycines, are within 8Å). (2) The larger set not
necessarily with ground-truth structure information is Pfam-A RP15 which
consists of 12,798,671 sequences with 15% Representative Proteomes co-
membership (Chen et al., 2011) threshold applied. Histograms of protein
lengths are shown in Appendix A (Fig. S2).

2.2 Model Backbone

The backbone of a CPAC prediction model is a system that is
given a compound–protein pair as inputs and simultaneously predicts
intermolecular affinity and atom–residue contacts as outputs. Here we
adopt the state-of-the-art CPAC model, DeepAffinity+ (Karimi et al.,
2020), as our models’ backbone.

Mathematically, given a compound–protein pair (Xcomp, Xprot) ∈
Xcomp × Xprot consisting of Ncomp atoms in each compound and Nprot

residues in each protein (padding is applied to ensure fixed sizes for
all compounds or proteins), a CPAC model fCPAC : Xcomp × Xprot →
R≥0 × [0, 1]Ncomp×Nprot aims at predicting both the compound–protein
affinity zaff and the intermolecular atom–residue contactsZcont. It includes
the following three major components as shown in Figure 1.

(1) Neural-network encoders fcomp : Xcomp → RNcomp×D and
fprot : Xprot → RNprot×D that separately extract embeddings Hcomp

for the compound Xcomp and Hprot for the protein Xprot where D is
the hidden dimension. In DeepAffinity+ the compounds are available
in 2D chemical graphs and proteins are only available in 1D amino-
acid sequences. Accordingly, DeepAffinity+ used graph neural networks
(GNN) such as GCN and GIN (Kipf and Welling, 2016; Veličković et al.,
2017) to encode 2D chemical graphs of compounds and hierarchical
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Fig. 1. Illustration of the backbone model fCPAC for compound–protein affinity and contact
(CPAC) prediction.

recurrent neural network (HRNN) (El Hihi and Bengio, 1996) to encode
1D amino-acid sequences of proteins.

(2) Contact module fcont : RNcomp×D × RNprot×D →
[0, 1]Ncomp×Nprot ×RL×D takes molecular embeddings from the encoders
Hcomp and Hprot as inputs, employs a joint attention mechanism (Karimi
et al., 2019, 2020) to output the atom–residue interaction matrix Zcont,
and jointly embeds the compound–protein pair into Hcp, where L is the
hidden length determined by Ncomp and Nprot.

(3) Affinity module faff : RL×D → R predicts the affinity zaff

given the joint embedding Hcp. It consists of 1D convolutional, pooling
layers, and multi-layer perceptron (MLP). Note that the contact-predicting
interaction module feeds the affinity module, making affinity prediction
intrinsically interpretable by the underlying contacts.

After the CPAC model fCPAC forwardly generates the outputs
(zaff,Zcont), true labels (yaff,Y cont) are provided to calculate the loss,
lCPAC, which consists of affinity loss laff, intermolecular atom–residue
contact loss lcont and three structure-aware sparsity regularization losses
lgroup, lfused, and lL1 as described in (Karimi et al., 2020):

lCPAC = laff + λcontlcont + λgrouplgroup + λfusedlfused + λL1lL1. (1)

The model is trained end to end while the training loss is minimized. More
details for the pipeline can be found in (Karimi et al., 2020).

2.3 Single-Modality Protein Embeddings

In the conventional structure-free CPAC pipeline, compounds are
represented as 2D chemical graphs since 1D SMILES strings have limited
descriptive power and known worse performance in many tasks (Karimi
et al., 2020, 2019; Li et al., 2020), whereas proteins are usually represented
as 1D amino-acid sequences without exploration of other modalities. We
delve into this under-explored area, proposing to utilize multi-modality
protein data for CPAC prediction.

1D sequences. We follow DeepAffinity+ (Karimi et al., 2020) as
described in Section 2.2 and use HRNN to encode protein sequences. One
change we made is replacing the hierarchical joint attention with naïve
joint attention in the interaction module expressed as:

Zcont = Z′
cont/sum(Z′

cont),

z′cont,i,j = (hcomp,iW comp,attn)
T(hprot,jW prot,attn), (2)

where zi,j = Z[i, j],hi = H[i, :], i = 1, ..., Ncomp, j = 1, ..., Nprot;
W comp,attn and W prot,attn are two learnable attention matrices.

2D contact maps. We propose to adopt the 2D modality of proteins as
additional inputs and model them as graphs with the following reasons. (1)
Graphs are more structure-aware compared to 1D sequences, potentially
resulting in better generalizability. (2) Graphs are concise yet informative
(focusing on pairwise residue interactions) compared to the data structure

of 3D coordinates (which are also harder to predict than contact maps)
(Cao and Shen, 2020). (3) The recent surge of models for graph learning
(Kipf and Welling, 2016; Veličković et al., 2017) provides advanced tools
to facilitate graph representation learning.

As unbound or ligand-bound structure data is not readily available for
many proteins, we use sequence-predicted 2D contact maps (Xu, 2019) and
can also use AlphaFold2 (Jumper et al., 2021). Thereby, we additionally
represent a protein input Xprot as a graph Gprot = {Vprot, Eprot} where
vertices stand for residues and edges exist between residues predicted
to be in contact. The graphs are associated with feature matrix F prot ∈
RNprot×D (embedded amino-acid types of residues) and the adjacency
matrix Aprot ∈ {0, 1}Nprot×Nprot (binary contact map). We employ
an expressive GNN model, graph attention network (GAT) (Veličković
et al., 2017) with K layers as the protein encoder fprot to extract graph
embeddings, with the formulation of each layer’s forward propagation as:

H
(k)
prot = MLP(S̃

(k−1)
H

(k−1)
prot ),

S̃
(k−1)

= D(k−1)−1
(S(k−1) ⊙Aprot),

S(k−1) = exp(H
(k−1)
prot W (k−1)H

(k−1)
prot

T
), (3)

where Hprot = H
(K)
prot ,H

(0)
prot = F prot, the normalization matrix

D(k−1) = diag((S(k−1) ⊙ Aprot)JNprot,1), ⊙ is the element-wise
multiplication, JNprot,1 is an all-ones matrix with size Nprot × 1, and
W (k−1) is a learnable weight matrix. Comparison with the simplest GNN
model, graph convolutional network (GCN) is conducted in Appendix B
to demonstrate the necessity of adopting the more expressive GAT.

2.4 Cross-Modality Protein Embeddings

To integrate the knowledge from both 1D and 2D protein modalities,
we introduce two cross-modality protein embedding schemes as follows.

Cross-modality concatenation. A simple integration model is to
concatenate the extracted embeddings of the 1D and 2D modalities
encoded by HRNN and GAT, respectively, as shown in Figure 2(a). Indeed,
concatenation is commonly used in previous work (Hamilton et al., 2017;
Xu et al., 2018) to preserve information from different sources. The
concatenated output is fed to a multi-layer perception (MLP) for the final
protein embedding Hprot.

Cross-modality cross interaction. Although the aforementioned
concatenation strategy preserves the information of individual modalities,
the encoding processes for the two modalities are isolated. In other words,
the two types of embeddings from different modalities were independently
encoded and then mixed through concatenation. However, the different
modalities of proteins are intrinsically correlated with each other and
could be coupled in a properly-designed representation-learning process.
Therefore, we introduce a cross interaction module to facilitate the encoder
to learn protein embeddings from correlated data (1D and 2D modalities),
as shown in Figure 2(b). Specifically, given the outputs of encoders
H′

prot,seq and H′
prot,graph, we calculate sequence and graph cross-modality

outputs Hprot,seq and Hprot,graph, respectively:

hprot,seq,n =
(
sigmoid(h′′

prot,graph,n
T
h′

prot,seq,n) + 1
)
h′

prot,seq,n,

hprot,graph,n =
(
sigmoid(h′′

prot,seq,n
T
h′

prot,graph,n) + 1
)
h′

prot,seq,n,

(4)

where hn = H[n, :] , H′′
prot,graph = H′

prot,graphW cross,graph, H′′
prot,seq =

H′
prot,seqW cross,seq; W cross,seq and W cross,graph are learnable weights.
Instead of independently extracting knowledge from protein modalities

(1D sequences and 2D contact maps), the cross interaction module enforces
a learned relationship between the encoded embeddings of the two protein
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(a)

CI Cross interaction module

2D graph

K

Y

Q

L
...

GAT
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HRNN
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K
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...

CI-Seq
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(b)

Fig. 2. Cross-modality encoders for proteins (fprot in Figure 1) to capture and integrate knowledge across data modalities. (a) Naïve concatenation preserves information from different
sources, and (b) cross interaction additionally introduces information flows between modalities.

modalities, which is expected to better capture the information from the
correlated modalities and to benefit the affinity and contact prediction.
Again, Hprot,seq and Hprot,graph (now with information from each other)
are concatenated and fed to an MLP for the final protein embeddingHprot.

The idea of cross interaction was previously introduced in (Tan and
Bansal, 2019) and modified here as follows. (1) We do not normalize cross
interaction along residues (sequence length is 1,000 here) since it would
significantly change the scale of the residue embeddings. (2) We restrict
the cross interaction for each residue in the range of [0, 1] with sigmoid
function to represent the cross-modality “interaction strength".

2.5 Multi-Modality Self-Supervised Pre-Training

On top of the aforementioned cross-modality learning models, we
further propose self-supervised pre-training for the following two reasons.
(1) The paired and labelled data curated for CPAC (Karimi et al., 2020) are
limited (4,446 compound–protein pairs in total), while there are more than
billions of unpaired and unlabelled data available (here we make use of
protein domain sequences as described in Section 2.1). Exploiting such
abundant unlabelled data would generate context-relevant embeddings
for downstream, as previously explored under unsupervised learning in
CPAC prediction (Karimi et al., 2019). (2) Compared to conventional
unsupervised learning, recently emerging self-supervised learning on both
sequences (Devlin et al., 2018) and graphs (You et al., 2020b,a, 2021, 2022)
further exploits the benefit from unlabelled data.

For reasons above we introduce the following pretraining strategies,
as illustrated in Figure 3. In addition, graph contrastive learning GraphCL
(You et al., 2021) is also applied.

Predict:

S?

1D sequence
Y

F

I

S,

masked

... HRNN MLP

(a)

2D graph

... GAT MLP
Predict:


S?

(b)

Y

I

F

S,

masked

N

A

N

A

Fig. 3. Self-supervised tasks for pre-training cross-modality encoders (Figure 2) in CPAC.
(a) Masked language modeling (MLM) takes the randomly masked amino-acid sequences
as inputs, predicting the masked residues with network outputs, and (b) graph completion
(GraphComp) with inputting masked-residues contact maps, makes prediction for the
masked tokens.

Masked language modeling for sequences. We adopt masked
language modeling (MLM) for the 1D sequence encoder HRNN, which

is well-known as the dominant pre-training strategy in natural language
processing (Devlin et al., 2018). MLM takes the randomly masked amino-
acid sequences as inputs, and tries to predict the masked residues (we use
residue types for a proper self-supervising “curriculum”) with network
outputs, as illustrated in Figure 3(a). The mathematical formulation of
MLM optimization is expressed as:

min{HRNN, MLP} LCE

(
MLP(HRNN(F̄ prot)),Y mask

)
,

s.t. F̄ prot,Y mask = mask(F prot), (5)

where LCE(·) is cross-entropy loss, F̄ prot is the masked feature matrix,
Y mask is the masked residues , and mask(·) is the masking function.

MLM reconstructs and enforces the missing knowledge through
utilizing the sequential relation (where the information flow is specified by
sequential inputs), which aligns with the 1D-modality model exploiting
protein sequence information. We thus hypothesize that MLM pre-training
provides performance gains in the tasks where the 1D-modality model has
performed well, i.e. affinity prediction, which is supported by experimental
results in Section 3.4.

Masked graph modeling (graph completion) for contact maps.
Self-supervision on graph-structured data recently raises great interests
with numerous self-supervised tasks proposed (You et al., 2020b,a,
2021). We choose a simple and effective scheme, graph completion or
GraphComp (You et al., 2020b), to pre-train the 2D graph encoder GAT.
GraphComp can be viewed as “the graph version of MLM”: it takes graphs
with randomly masked residues as input and aims at making prediction
for the masked tokens using the structure-aware graph information, as
illustrated in Figure 3(b). GraphComp optimization is mathematically
formulated as:

min{GAT, MLP} LCE

(
MLP(GAT(F̄ prot,Aprot)),Y mask

)
,

s.t. F̄ prot,Y mask = mask(F prot). (6)

Joint self-supervised pre-training. Besides single-modality pre-
training, we also propose joint pre-training for the cross-modality models,
that simultaneously performs MLM and GraphComp for self-supervision
(since sequence and protein encoders share the amino-acid embedding
layer, we cannot individually pre-train them and then load the checkpoints).
Given benefits from single-modality pre-training, we expect more benefits
can be achieved from multi-modality pre-training in both tasks of affinity
prediction (where 1D modality models performed well) and contact
prediction (where 2D modality models performed well). Results in Section
3.5 partly justified the added benefits.

Details about model training, including hyperparameters, are in
Appendix H.
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3 Results and Discussion
We organize results and discussion as follows. Experiments on cross-

modality protein embeddings are presented in Sections 3.1 and 3.2, with
additional generalizability tests and case studies. Self-supervised pre-
training experiments on top of cross-modality models are reported in
Sections 3.4 and 3.5.
Table 2. Comparison among competing methods and ours in compound–protein
affinity prediction (measured by RMSE and Pearson’s correlation coefficient
r) and contact prediction (measured by AUPRC and AUROC). ∗ denotes the
cited performances. Boldfaced numbers are the best performances for given test
sets. We note that, as intermolecular contacts only represent a minority (around
0.4%) of all compound–protein atom-residue pairs, AUPRC is a much more
relevant measure than AUROC for assessing contact prediction.

Methods
Seen-Protein Sets Unseen-Protein Sets

Seen-Both Unseen-Compound Unseen-Protein Unseen-Both
Affinity Prediction in RMSE (Pearson’s r in parentheses)

Gao et al.∗ 1.87 (0.58) 1.75 (0.51) 1.72 (0.42) 1.79 (0.42)
MONN 1.44 (0.70) 1.28 (0.75) 1.67 (0.46) 1.75 (0.45)

DeepAffinity+∗ 1.49 (0.70) 1.34 (0.71) 1.57 (0.47) 1.61 (0.52)
1D Sequences 1.57 (0.67) 1.38 (0.73) 1.63 (0.44) 1.79 (0.40)

Pred. 2D Graphs 1.49 (0.68) 1.37 (0.70) 1.75 (0.43) 1.93 (0.34)
True 2D Graphs 1.69 (0.59) 1.62 (0.58) 1.88 (0.33) 1.99 (0.25)
Concatenation 1.47 (0.68) 1.37 (0.71) 1.78 (0.47) 1.91 (0.40)

Cross Interaction 1.55 (0.65) 1.43 (0.68) 1.56 (0.50) 1.62 (0.53)
Contact Prediction in AUPRC (AUROC in parentheses, %)

Gao et al.∗ 0.60 (51.57) 0.57 (51.50) 0.48 (51.60) 0.48 (51.55)
MONN 0.98 (58.57) 0.99 (60.15) 0.99 (65.66) 0.98 (64.59)

DeepAffinity+∗ 19.74 (73.78) 19.98 (73.80) 4.77 (60.01) 4.11 (59.09)
1D Sequences 20.51 (79.01) 20.80 (80.00) 6.54 (73.03) 6.36 (73.41)

Pred. 2D Graphs 17.29 (77.34) 17.46 (78.70) 8.78 (77.94) 7.05 (76.59)
True 2D Graphs 21.41 (84.60) 21.33 (85.17) 10.52 (84.08) 9.40 (84.29)
Concatenation 23.85 (80.90) 23.52 (81.64) 7.74 (80.59) 7.29 (78.95)

Cross Interaction 23.49 (81.30) 23.29 (82.07) 12.43 (80.64) 9.60 (79.78)

3.1 Individual modalities have strengths in different tasks.

Without pre-training, Table 2 reports various models’ performances
for affinity prediction and contact predictionfor various test sets. Figure 4
further splits unseen molecules into proteins and compounds of different
similarity bins compared to the training set.

In affinity prediction, 1D sequences or 2D graphs did not lead to
significant difference for seen proteins. However, speaking of unseen
proteins or even non-homologous proteins (sequence identity below 30%)
where model generalizability is required, 1D sequences dominated over
2D graphs as inputs for affinity prediction (0.1 lower in RMSE).

One conjecture is that the information in graphs might be more difficult
to learn compared to sequences (the training RMSE losses are 0.71 and
0.99 for 1D and 2D modalities, respectively ). Moreover, affinity prediction
for unseen-protein cases are not as challenging as intermolecular contact
prediction to show the benefit of the 2D modality (shown next), as contact
prediction often involves tens of thousands of values (rather than a single
value) to fit for each compound–protein pair.

In contact prediction, encoding proteins as 1D sequences again
performed better (+3.22% at AUPRC and +1.67% at AUROC) for seen
proteins (the proteins in the training set). However, encoding 2D contact
maps (graphs) significantly outperformed doing 1D protein sequences
(+4.91% at AUPRC and +2.24% at AUROC) for unseen proteins (Table 2)
and even more for non-homologous proteins (Figure 4). Using “true”
contact maps from (unbound) protein structures showed the same and
improved AUROC.

We conjecture that sequential knowledge encoded in 1D amino-acid
sequences is well captured especially for seen proteins after training. The
sequential dependency learned from the encoder could be accurate toward
intermolecular contact prediction for close or even distant homologs of

seen proteins. However such dependency is less generalizable to unseen or
non-homologous proteins. In contrast, the structural topology information
encoded in protein 2D contact maps is more difficult for graph neural
networks to capture even for seen proteins, leading to the worse contact
predictions for seen proteins. But the information can generalize to unseen
proteins well toward contact prediction. In particular, even when sequence
similarity for non-homologous proteins (to training ones) is too low to be
detectable using RNNs, binding-pocket (subgraph) similarity could still
preserve and be detected in 2D contact maps using GNNs thus eventually
leads to much better intermolecular contact prediction (Figure 4).

3.2 Cross-modality models combine the strengths.

Fusing two modalities’ knowledge together, even by a simple
concatenation strategy, could get the best of both modalities. Specifically,
the cross-modality model by concatenation had better contact prediction
than single-modality models (Table 2). It also had a boost in affinity
prediction (better than the 2D single-modality model and slightly worse
than the 1D single-modality model).

Enforcing a learned correlation between the 1D and 2D embeddings
rather than independently learning two individual embeddings, the cross-
modality model with cross interaction further improved affinity prediction
and actually had the best affinity accuracy among all methods for unseen
proteins or unseen both. Moreover, it impressively achieved the best
AUPRC for unseen proteins and unseen both. These results re-enforce our
rationale that the learned correlation between embeddings from different
modalities can better capture the data and better perform CPAC predictions.

Our models compare favorably to the state-of-the-art (SOTA) models.
They used similar backbone as DeepAffinity+ (Karimi et al., 2020) and
revised the joint attention mechanism as mentioned in Section 2.4; thus
our 1D sequence-based single-modality model and DeepAffinity+, both
using protein sequences, had similar performances in affinity prediction
but ours improved contact prediction. Our cross-modality models further
improved the performance compared with SOTAs including Gao et al.
(after being converted from a binary predictor) (Gao et al., 2018), MONN
(Li et al., 2020) and DeepAffinity+ (Karimi et al., 2020), especially for
unseen proteins (Table 2) and non-homologous proteins (Figure 4).

When the protein sequence encoder was changed from HRNN to a
pre-trained Transformer, no improvement was found (Appendix C).

3.3 Case studies for cross-modality models.

All methods are compared in five case studies about compound–protein
pairs (Karimi et al., 2020). With detailed results included in Appendix
D, we conclude that one or both cross-modality models improved over
DeepAffinity+ in AUPRC for four of the five cases. They performed on
par with DeepAffinity+ in the precision of the predicted top-10 contacts.
The case of LHL–LCK presented the most improvement in the precision
of top-10 predicted contacts, from 0.4 to 0.6, as visualized in Figure 5.

3.4 Single-modality pretraining further enhance individual
modalities’ strengths.

We proceed to pre-train our cross-modality model (cross interaction) in
a single-modality setting. In other words, we pretrain the protein sequence
and graph encoders using MLM and GraphComp, respectively. The results
are detailed in Table 3.

Different pre-training strategies showed different performances
relative to no pre-training, depending on the task (affinity or contact
prediction) and the test set (seen or unseen proteins/compounds).
Consistent with our earlier observation of single-modality models without
pretraining, pre-training the embedding of a single modality tended to
enhance the strength of the corresponding modality. Specifically, sequence
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Fig. 4. Generalizability test on various methods for predicting affinity (measured in RMSE and r) and contact (measured in AUPRC and AUROC).

(a) 1D Sequences (b) 2D Graphs (c) Concatenation (d) Cross Interaction

Fig. 5. Visualizing top-10 atom–residue contacts predicted by single- and cross-modal learning for the compound–protein pair of LHL–LCK. Compounds are shown in sticks (green for
carbon, red for oxygen and blue for nitrogen atoms), proteins in wheat cartoons (with red patches of binding sites), and predicted contacts in dashed lines (red for true positives and cyan
for false positives).

Table 3. Comparison among different pre-training settings (masked language
modeling and graph completion, with graph contrastive learning in Appendix
E) based upon the cross interaction model in compound–protein affinity and
contact prediction. Boldfaced are the best performances.

Cross Interaction
Seen-Protein Sets Unseen-Protein Sets

Seen-Both Unseen-Compound Unseen-Protein Unseen-Both
Affinity Prediction in RMSE (Pearson’s r in parentheses)

Non Pre-Train 1.57 (0.66) 1.46 (0.68) 1.63 (0.49) 1.64 (0.54)
MLM-S 1.53 (0.64) 1.40 (0.68) 1.46 (0.56) 1.53 (0.58)

GraphComp-S 1.62 (0.59) 1.44 (0.66) 1.60 (0.43) 1.67 (0.47)
MLM+GraphComp-S 1.64 (0.58) 1.46 (0.65) 1.65 (0.39) 1.65 (0.50)

MLM-L 1.59 (0.62) 1.46 (0.65) 1.62 (0.47) 1.63 (0.57)
MLM+GraphComp-L 1.58 (0.62) 1.45 (0.66) 1.74 (0.33) 1.85 (0.32)

Contact Prediction in AUPRC (AUROC in parentheses, %)
Non Pre-Train 23.91 (79.48) 23.06 (80.60) 11.40 (77.73) 8.41 (76.42)

MLM-S 23.78 (80.34) 23.33 (81.09) 7.73 (77.44) 6.44 (76.42)
GraphComp-S 23.63 (79.71) 23.41 (81.31) 11.36 (76.67) 9.36 (76.00)

MLM+GraphComp-S 24.13 (82.09) 23.65 (82.70) 11.38 (78.75) 10.83 (78.63)
MLM-L 23.30 (80.40) 23.05 (81.18) 11.35 (81.01) 9.40 (79.46)

MLM+GraphComp-L 23.71 (81.21) 23.22 (82.33) 13.47 (82.00) 11.17 (80.10)

pretraining with MLM, especially with the smaller unlabelled protein
dataset, improved upon what the 1D protein modality is good at — affinity
prediction, for unseen proteins. MLM over the larger unlabelled set of
protein sequences did not show much more benefits, possibly due to the
fact that the smaller unlabelled set and the labelled test sets are biased with
protein of structures. Meanwhile, graph pretraining with GraphComp, over
the smaller or the larger unlabelled protein dataset, improved upon what
the 2D protein modality is good at – contact prediction, mainly for unseen
both. Replacing GraphComp (You et al., 2020b) with contrastive learning
(GraphCL) (You et al., 2021) had similar performances (Appendix E).

We observe some trade-off between affinity and contact prediction
while pre-training a single modality. Part of the reason could be that the
two tasks compete with each other while their weighted losses are summed
together. The question that remains is whether and how the pre-training
strategies for individual modalities can be combined to further enhance
model accuracy and generalizability, which is addressed next.

3.5 Multi-modal joint pre-training could further synergize
1D and 2D modalities.

We further pretrain our cross-modality model in a multi-modal setting.
In other words, we jointly pretrain both the sequence and the graph
encoders that share layers. The results are reported in Table 3 as before.

We found that jointly pre-training sequence and graph embedding with
the smaller unlabelled dataset didn’t change affinity prediction much for
unseen proteins and improved contact prediction for the most challenging
case of unseen both (+2.4% in AUPRC compared to no pretraining).
Interestingly, doing so with the larger unlabelled dataset again improved
contact prediction for the most challenging case of unseen both (+2.7% in
AUPRC compared to no pretraining) and additionally did so for the unseen
proteins (+2.1% in AUPRC compared to no pretraining). Impressively,
the joint pre-training strategies with predicted protein contact maps even
outperformed non pre-training with actual protein contact maps. In the
end, the cross-modality model (cross interaction) with joint sequence-
graph pretraining over the larger set achieved the best contact prediction
for both unseen proteins and unseen both. And doing that over the smaller
set achieved best balanced improvement in affinity and contact prediction,
potentially suggesting the importance of data quality over data quantity.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.18.500559doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500559
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cross-Modality and Self-Supervised Protein Embedding 7

We also tested additional pre-training for embedding 2D compound
graphs on top of the cross-modality model with joint pretraining of protein
data. To do so, we leveraged unlabelled compound data from STITCH.
Further improvements, albeit moderate, were observed (Appendix G).

4 Conclusion
In this paper, we address two major challenges to advance explainable

prediction of compound–protein affinity (or CPAC, compound–protein
affinity and contact): the sequence-dominant yet structure-naive models
and the scarce labelled data. By introducing multi-modal and self-
supervised learning for the first time to CPAC prediction, we address
both challenges through fostering context- and task-relevant protein
embedding. Specifically, to overcome structure naivety, we treat protein
data as available in both modalities of 1D sequences and 2D graphs
(predicted) and introduce cross-modality learning for sequence- and
structure-aware protein embeddings. Empirical results indicated that
individual modalites excel in different tasks and our approach of cross-
modality learning could bring out the best of both modalities. Additionally,
to overcome labelled-data scarcity, we design self-supervised learning
strategies within and across modalities to pretrain cross-modal protein
embedding. Empirical results indicated that cross-modal learning with
joint pre-training can further improve model generalizability for unseen
molecules and outperform the state of the art. Meanwhile, there is still
much to do for improving the synergy between both tasks of affinity and
contact prediction.
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