

1 A comprehensive prediction of transcript isoforms in 19 chicken tissues by 2 Oxford Nanopore long-read sequencing

3 **Dailu Guan¹, Michelle M. Halstead¹, Alma D. Islas-Trejo¹, Daniel E. Gosczynski¹, Hans H.**
4 **Cheng², Pablo Ross^{1,*}, Huaijun Zhou^{1,*}**

5 ¹Department of Animal Science, University of California Davis, Davis, CA, 95616 USA

6 ² USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA

7 * Correspondence:

8 Corresponding Author

9 Pablo Ross pross@ucdavis.edu

10 Huaijun Zhou hzhou@ucdavis.edu

11

12 **Keywords: transcriptome, annotation, transcript isoform, Nanopore, long-read sequencing,**
13 **chicken**

14

15 **Abstract**

16 To comprehensively identify and annotate transcript isoforms in the chicken genome, we generated
17 Nanopore long-read sequencing data from a diverse set of 19 chicken tissues comprising 68 samples
18 collected from experimental line 6 × line 7 F₁ adult males and females. More than 23.8 million reads
19 with mean read length of 790 bases and average quality of 18.2 were generated. The annotation and
20 subsequent filtering resulted in identification of 55,382 transcripts with mean length of 1,700 bases at
21 40,547 loci, representing ~1.4 transcripts per locus. Among them, we predicted 30,967 potential
22 coding transcripts at 19,461 loci and 16,495 potential lncRNA transcripts at 15,512 loci. Compared to
23 reference annotations, we found 52% of annotated transcripts could partially to fully match while
24 47% were novel and potentially transcribed from lncRNA loci. Based on our annotation, we
25 quantified transcript expression across tissues and found brain tissues (i.e. cerebellum, cortex)
26 expressed highest number of transcripts and loci. The further tissue specificity revealed that ~22% of
27 the transcripts displaying tissue specificity. Of them, the reproductive tissues (i.e. testis, ovary)
28 contained the most tissue-specific transcripts. Despite sequencing 68 transcriptomes derived from 19
29 tissues, still ~20% of Ensembl reference loci were not detected. This suggests that including
30 additional samples from different cell types, developmental and physiological conditions, is needed
31 to fully annotate the chicken genome. The application of Nanopore sequencing transcriptomes in this
32 study demonstrated the usefulness of long-read data in discovering additional novel loci (e.g.,
33 lncRNA loci) and resolving complex transcripts (e.g., the longest transcript for the *TTN* locus).

34

35 **1 Introduction**

36 Chicken (*Gallus gallus domesticus*) is one of the most widespread and common domesticated farm
37 animals for egg and meat production, with a total population of 37.2 billion in stocks for the year
38 2020 (<http://www.fao.org/>). As the most popular studied bird species, moreover, its importance to the
39 study of evolution, development, immunology, etc. is self-evident. In 2004, the first draft whole
40 chicken genome was assembled with an estimated set of 20-23,000 protein-coding genes (PCGs)
41 (Hillier et al., 2004). This effort offered a genome-wide view for understanding the configuration of
42 the chicken genome, and the evolution of coding and noncoding vertebrate genomes. Since then,
43 continuous efforts have been made to improve the completeness of chicken genome. For instance,
44 Warren et al. (2017) added an additional 183 Mb sequences and assembled chromosomes 30-33 for
45 the chicken reference genome. To fill the gaps of the chicken reference genome, recently two
46 pangenomes were built that reported additional sequences absent from the GRCg6a reference
47 genome (Wang et al., 2021a; Li et al., 2022).

48 The functional annotation of the chicken genome is also being produced in parallel. The two most
49 commonly used databases, i.e. Ensembl (<https://uswest.ensembl.org>) and National Center for
50 Biotechnology Information (NCBI, <https://www.ncbi.nlm.nih.gov/>) regularly update the chicken
51 genome annotation. For instance, the Ensembl release (V102) included 16,779 PCGs and 39,288
52 transcripts, representing 2.34 transcripts per gene. Compared to the human ~10 transcripts per gene,
53 this estimate is quite low. The high estimate in human is partly attributed to the global efforts, such as
54 GENCODE, which is part of the ENCODE (ENCyclopedia Of DNA Elements) consortium which
55 aims to identify and classify all gene features in the human and mouse genomes. In farm animals,
56 likewise, the consortium of the Functional Annotation of ANimal Genome (FAANG) was formed in
57 order to improve the annotation of livestock genomes (Giuffra et al., 2019; Clark et al., 2020). In
58 prior work, Kern et al. (2021) annotated noncoding genomes of three important livestock including
59 chicken, and predicted 29,526 regulatory elements-gene interactions in chickens. In addition, Kern et
60 al. (2018) also identified a total of 9,393 lncRNAs (including 5,288 novel lncRNAs) by utilizing
61 short-read transcriptomes from eight chicken tissues.

62 The transcribed genomic region, though it only accounts for ~3% of the genome, is very complex due
63 to the alternative usage of transcription start, splicing, and polyadenylation sites. Alternative splicing
64 has been shown to play important roles in evolution, phenotypic diversity, and organ development
65 (Keren et al., 2010; Baralle and Giudice, 2017; Wright et al., 2022). For example, Yu et al. (2019)
66 identified five alternative splicing variants of the *TYR* gene that were associated with skin
67 melanogenesis in chickens. To annotate these features, transcriptome profiling provides important
68 and useful resources (Yandell and Ence, 2012). For example, Jehl et al. (2020) annotated additional
69 1,199 PCGs and 13,009 long non-coding RNA genes (Compared to Ensembl V94) using 364 short-
70 read transcriptomes derived from 25 chicken tissues. In human, a comprehensive annotation using
71 transcriptomes of 41 tissues generated by Genotype-Tissue Expression (GTEx) Consortium improved
72 transcript prediction for 13,429 genes, including 1,831 (63%) Online Mendelian Inheritance in Man
73 (OMIM) genes and 317 neurodegeneration-associated genes (Zhang et al., 2020). This analysis
74 demonstrated that a detailed annotation is better for understanding the genome-to-genome
75 connections. Although the short-read sequencing is widely used for annotating human and animal
76 genomes, it is difficult to accurately resolve the complex structure of transcript isoforms. Chen et al.
77 (2021), for instance, demonstrated that Nanopore long-read transcriptome sequencing classified
78 individual isoforms better than Illumina short-reads despite they generated comparable gene
79 expression estimates.

80 The contiguity of the long-read sequencing technology can sequence full-length transcript, thus is
81 better suitable for dissecting the complexity of transcript structure compared to short-read sequencing

82 (Muret et al., 2017). The Iso-Seq by the Pacific Biosciences is long-read sequencing technology that
83 is widely used in profiling full-length transcriptome in human (Kuo et al., 2020), pig (Beiki et al.,
84 2019), rabbit (Chen et al., 2017). In chickens, Thomas et al. (2014) used Iso-Seq long-read
85 sequencing and identified 9,221 new transcript isoforms in embryonic chicken heart tissue. Later on,
86 Kuo et al. (2017) annotated 64,277 additional distinct transcripts (55,315 in brain and 9,206 in
87 embryo) using Iso-Seq plus 5' cap selection in chicken brain and embryo tissues. However, the few
88 tissues studied (only brain and embryo included in Kuo et al. (2017)) make it difficult to capture the
89 diversity of chicken transcript variations.

90 The Oxford Nanopore Technologies has provided an alternative long-read sequencing approach
91 (Amarasinghe et al., 2020), which has been applied in cattle (Halstead et al., 2021), duck (Lin et al.,
92 2021) and many other species, but not yet in chickens. The Nanopore long-read sequencing allows
93 for accurate identification and quantification of transcript isoforms and for resolving complex
94 isoforms (Byrne et al., 2017; Soneson et al., 2019; Chen et al., 2021). In this study, we aimed to
95 identify and characterize transcripts in a diverse set of chicken tissues, including cerebellum,
96 hypothalamus, cortex, duodenum, jejunum, ileum, cecum, colon, testis, ovary, adipose, gizzard,
97 heart, kidney, liver, lung, muscle, spleen and thymus, using Oxford Nanopore long-read sequencing
98 technology. The data generated from this study will be a valuable source to improve our
99 understanding of the complexity of the chicken transcriptome, and also aid in dissecting the
100 connection of gene expression and phenotypic traits.

101

102 2 Methods and Materials

103 2.1 Sample collection

104 All animals and samples used in this study were obtained in concordance with the Protocol for
105 Animal Care and Use no. 18464 (approved by Institutional Animal Care and Use Committee at the
106 University of California at Davis). All tissues were from one of two FAANG pilot projects
107 (FarmENCODE) (Tixier-Boichard et al., 2021). In brief, ADOL experimental White Leghorn lines 6₃
108 and 7₂ were intermated to produce F₁ progeny, and 4 male and 2 female individuals were euthanized
109 at 20 weeks of age. Tissues were collected within 1-2 hours and stored at -80 °C until further use.

110

111 2.2 RNA extraction and library preparation

112 RNA extraction and library preparation were done by following the protocols reported in (Halstead et
113 al., 2021). Briefly, frozen tissues were mashed using a pestle in a mortar filled with liquid nitrogen.
114 Then, Trizol reagent (Invitrogen, Carlsbad, CA, United States) was added to extract total RNA using
115 the Direct-zol RNA Mini Prep Plus kit (Zymo Research, Irvine, CA, United States). The integrity and
116 quality of extracted RNA were checked using an Experion electrophoresis system (Bio-Rad,
117 Hercules, CA, United States) and those passing quality control were used for library preparation.
118 First, 50 ng of total RNA in a volume of 9 µl was mixed with 1 µl 10 µM VNP primer, 1 µl 10 mM
119 dNTPs for incubation 5 min at 65 °C. The products were used for strand-switching and reverse
120 transcription reactions. Then, barcodes were ligated to the cDNA products generated from the last
121 step using the Oxford Nanopore PCR barcoding expansion 1-96 kit (cat. no. EXP-PBC096), which
122 were further ligated with adapters from the SQK-DCS109 kit following the manufacturer's
123 guidelines. Products were loaded onto a PromethION flow cell (vR9.4.1) for sequencing.

124

125 **2.3 Base calling, quality control and preprocessing**

126 After base calling and de-multiplexing with the ont-guppy-for-minknow (v3.0.5) tool
127 (<https://nanoporetech.com/>), we run quality control using NanoPlot (v1.0.0) software in order to
128 summarize read length, average quality, among others. Then, the Pychopper software
129 (<https://github.com/nanoporetech/pychopper>) was employed to identify and orient full-length reads,
130 which were mapped against the reference genomes (GRCg6a, Ensembl V102) with options of “-ax
131 splice -uf -k14 -G 1000000” using the minimap2 software (Li, 2018). We discarded reads with a
132 minimum quality score of 10 using SAMtools (v1.9) (Li et al., 2009) and counted the gene
133 expression using the HTSeq 0.13.5 software (Anders et al., 2015). Read counts were then normalized
134 into variance stabilizing transformation (VST), which was used for sample clustering analysis with
135 the function of “plotPCA” implemented in the DEseq2 software (Love et al., 2014).
136

137 **2.4 Reference-guided prediction of transcript isoforms**

138 To predict transcripts, we used a computational pipeline supported by the Oxford Nanopore
139 Technology community (<https://github.com/nanoporetech/pipeline-nanopore-ref-isoforms>). Briefly,
140 the oriented full-length reads with fastq format were pooled together and then mapped against the
141 Ensembl annotation (GRCg6a, V102) using minimap2 (Li, 2018) in order to carry out a reference-
142 guided transcriptome assembly. The mapped reads were then used to annotate transcripts using the
143 StringTie2 software (Kovaka et al., 2019) in the long-read mode (with the option of “-L”).
144 Transcripts on unplaced scaffolds, as well as those with exon coverage < 100% and read depth < 2
145 were excluded. Then we only keep single-exon transcripts with expression TPM > 1 in > 2 samples
146 of a tissue, and multi-exon transcripts with expression TPM > 0.1 in > 2 samples of a tissue. After that,
147 we further excluded transcripts categorized as potential artifacts (see **Comparing predicted**
148 **transcripts to previous annotations** section).

149

150 **2.5 Prediction of coding and non-coding transcripts and loci**

151 To predict the coding potential of predicted transcripts, we employed the TransDecoder
152 (<https://github.com/TransDecoder/TransDecoder>) and CPP2 software (Kang et al., 2017). The final
153 predictions are composed of either TransDecoder or CPP2 ones. After prediction of coding potential,
154 we obtained the list of non-coding transcripts, which were further used for predicting whether they
155 are lncRNA loci using the FEElnc software (Wucher et al., 2017).

156

157 **2.6 Comparing predicted transcripts to previous annotations**

158 The predicted transcripts were compared to the Ensembl (V102) and NCBI reference (V105)
159 annotations using GffCompare tool (version 0.11) (Pertea and Pertea, 2020) and classified into 14
160 classes. According to Halstead et al. (2021), the predicted transcripts classified into four categories:
161 exact match (class code “=”), which means the intron chains of our annotated transcripts can exactly
162 match to reference annotations; novel isoform (class codes ‘c,’ ‘k,’ ‘j,’ ‘m,’ ‘n,’ or ‘o’), which means
163 predicted transcript can not match a reference transcript but can match a reference gene; novel loci

164 (class codes ‘i,’ ‘u,’ ‘y,’ or ‘x’), which means predicted transcript can not match either a reference
165 transcript or a reference locus; and potential artifacts (class codes ‘e,’ ‘s,’ or ‘p’), which are possibly
166 due to mapping error, e.g. pre-mRNA fragments, polymerase run-on, etc. To compare our prediction
167 with novel transcripts reported by Thomas et al. (2014), we first converted positions of their
168 transcripts from galGal4 to GRCg6a using the liftOver software (Kuhn et al., 2013). Then the
169 GffCompare tool was used for comparing our annotation to their transcripts.

170

171 **2.7 Quantification of predicted transcripts**

172 We extracted sequences of predicted transcripts using GffRead v0.12 (Pertea and Pertea, 2020),
173 which constituted a reference transcriptome in the FASTA format. Then, we mapped the full-length
174 reads generated by Pychopper (<https://github.com/nanoporetech/pychopper>) to the predicted
175 transcriptome using minimap2 (v2.1) (Li, 2018). The transcript expression was quantified using
176 Nanocount (v0.2.4) (Leger, 2020). Based on the metric of the transcripts per million (TPM), we
177 categorized transcripts as highly (average TPM ≥ 10), moderately ($1 \leq \text{average TPM} < 10$), and lowly
178 expressed (average TPM < 1) (Halstead et al., 2021).

179

180 **2.8 Tissue-specificity analysis**

181 The tissue specificity of transcripts expression across tissues were evaluated by using a tissue
182 specificity index (*TSI*) (Julien et al., 2012; Halstead et al., 2021):

$$TSI = \frac{\max_{1 \leq i \leq n} (x_i)}{\sum_{i=1}^n x_i}$$

183 Where x_i is an average of transcript expression (TPM) in a given tissue, n is the number of tissues.
184 Transcripts were then categorized as tissue-specific ($TSI \geq 0.8$), broadly expressed ($TSI < 0.5$), or
185 biased towards a group of tissues ($0.5 \leq TSI < 0.8$). To reveal functional biology of tissue specific
186 transcripts, we extracted tissue-specific transcript sequences and blast them against the SwissProt
187 (protein sequence database, V5) using the Diamond blastx tool (v2.0.11.149) (Buchfink et al., 2015).
188 We then carried out functional enrichment (only considering Gene Ontology Biological Process
189 terms) using the matched UniProt identifiers using the PANTHER tool (Mi et al., 2013). The false
190 discovery rate (FDR) approach (Benjamini and Hochberg, 1995) was used for multiple testing
191 corrections and FDR value less than 0.05 was set as the significance threshold.

192

193 **2.9 Differential alternative splicing analysis**

194 To detect differential alternative splicing (DAS) events, we employed the LIQA software (Hu et al.,
195 2021). Based on our annotation, we quantified isoform expression using the “quantify” function.
196 Then the DAS events between tissues were detected using the “diff” within the LIQA tool (Hu et al.,
197 2021). After multiple testing correction using FDR approach (Benjamini and Hochberg, 1995), the
198 threshold of significance was set as FDR < 0.05 .

199

200 3 Results

201 To comprehensively annotate transcripts of the chicken genome, we sequenced 68 samples
202 comprising of 19 tissues collected from six individuals (two females: CC and CD; and four males:
203 CA, CB, M1, M2) (**Supplementary Table 1**). The tissues collected were cerebellum, hypothalamus,
204 cortex, duodenum, jejunum, ileum, cecum, colon, testis, ovary, adipose, gizzard, heart, kidney, liver,
205 lung, muscle, spleen and thymus. Sequencing generated a total of 23.8 million reads, with an average
206 of 344,650 reads per tissue and an average length of 790 bp (**Figure 1a, Supplementary Table 2**).

207 Principal component analysis (PCA) and hierarchical clustering of mapped sequencing reads to the
208 Ensembl annotation (GRCg6a, version 102) revealed that samples generally clustered according to
209 the origin of tissues or organs as expected (**Figure 1b** and **Supplementary Figure 1**). Moreover, we
210 found samples from the same biological system tend to cluster together, such as brain cortex,
211 cerebellum and hypothalamus from the central neural system; cecum, colon, duodenum, ileum, and
212 jejunum from the intestinal system (**Figure 1b**). However, an outlier (i.e., Cecum_CA) in the PCA
213 plot and hierarchical clustering (indicated by a red arrow in **Figure 1b** and **Supplementary Figure**
214 **2**) was observed, even separated from the same cecum tissue. The summary statistic indicates that the
215 unexpected clustering is possibly due to the insufficient sequencing depth (number of reads = 1,279),
216 which was lower than the rest (average number of reads for remaining samples = 355,008,
217 **Supplementary Figure 2**). However, 895 out of 1,279 reads from Cecum_CA reads aligned to the
218 GRCg6a genome, corresponding to a mapping rate of 70%. In the light of these analyses, we
219 included the Cecum_CA sample in transcript prediction, but not in the transcript expression analysis,
220 e.g., tissue specificity of transcript expression, differential alternative splicing (DAS) analysis.

221 To assemble potential transcripts, we identified, oriented and trimmed full-length reads using the
222 Pychopper v2 software. Then, the StringTie tool with the long read mode was used for predicting
223 transcripts (<https://github.com/nanoporetech/pipeline-nanopore-ref-isoforms>). As a result, 79,757
224 transcripts in 54,551 loci in total were identified. After filtering out transcripts on unplaced scaffolds,
225 as well as those with exon coverage < 100% and read depth < 2, we obtained 74,665 transcripts in
226 50,569 loci, of which there were 45,132 multi-exon and 29,533 single-exon transcripts. Moreover,
227 we required multi-exon transcripts with expression TPM (Transcripts Per Million) > 0.1 and single-
228 exon transcripts with expression TPM > 1 in at least 2 sample of a tissue. By doing so, there were
229 61,556 transcripts in 45,284 loci remained. To further exclude potential artifacts, we compared
230 assembled transcripts with NCBI (V105) and Ensembl (V102) reference annotations. The result is
231 shown in **Figure 2a** and **Table 1** (see **Methods**). Overall, we found ~14% of predicted transcripts
232 can exactly match the reference annotations (**Figure 2a**). With the Ensembl annotation, 77% of them
233 were considered as novel transcripts, either novel isoforms (35%) or novel loci (42%). In addition,
234 ~8% were potential artifacts, which possibly caused by pre-mRNA fragment, polymerase run-on or
235 mapping error (**Figure 2a**). After excluding these potential artifacts, we finally kept 55,382
236 transcripts in 40,547 loci, representing 1.4 transcripts per locus (**Supplementary Data 1**).

237 The length of predicted transcripts ranged from 49 to 34,500 bp, with a mean length of 1,767 bp
238 (**Figure 2b**). The longest transcript, for instance, is located on chromosome 7 (15,343,033-
239 15,384,347), which highly matched to the *TTN* gene encoding the giant protein titin (NCBI reference
240 sequence XM_046921719.1, E-value = 0.0, percent of identity = 99.99%) (**Figure 2d**). This protein
241 plays important roles in the movement of skeletal muscle, but its gene locus has not been annotated
242 in both NCBI (V105) and Ensembl (V102) GRCg6a reference annotations (**Figure 2d**). Moreover,
243 we found the annotated 55,382 transcripts are supported by 171,651 unique exons, with an average
244 estimate of 4.34 exons per transcript (**Figure 2c**).

245 To predict the coding potential of predicted transcripts, we employed the CPC2 and TransDecoder
246 software. The former predicted 21,984 transcripts at 12,999 loci with coding potential, and the latter
247 one predicted open reading frames for 30,727 transcripts corresponding to 19,306 loci. In total, we
248 predicted 30,967 uniquely potential coding transcripts at 19,461 loci, representing 1.6 transcripts per
249 locus (**Supplementary Table 3**). Furthermore, we surveyed whether the remaining 24,415 transcripts
250 were long non-coding RNAs (lncRNAs). To do so, we employed the FEELnc software and found
251 16,495 potential lncRNA transcripts at 15,512 loci (**Supplementary Table 3**).

252 We compared our prediction to two reference annotations and found the number of transcripts per
253 locus of our annotation (~1.4) is lower than reference annotations (Ensembl v102: ~1.8 transcripts
254 per locus; NCBI v105: ~3.3 transcripts per locus), but we predicted ~20K more loci, of which a
255 substantial proportion is lncRNA loci (**Figures 3a and 3c**). At the transcript level, we classified
256 transcripts into three categories (see **Methods**): 1) exact match: predicted transcripts completely
257 match to reference annotations; 2) novel isoform: predicted transcripts do not match reference
258 transcripts but match reference loci; 3) novel loci: predicted transcripts do not match any reference
259 loci and transcripts (**Figure 3b**). Concordantly, we found our prediction identified high proportion of
260 “novel loci” transcripts (47%), followed by “novel isoforms” (37%) when comparing to Ensembl
261 annotation (V102) (**Figure 3b**). A similar pattern was observed when comparing to NCBI annotation
262 (**Supplementary Figure 3**). By further comparing lncRNA loci predicted in this study with those
263 predicted by Jehl et al. (2020), we found ~ 83% of our predicted lncRNA transcripts can match their
264 annotations (**Supplementary Figure 4**). Thomas et al. (2014) also reported 9K novel transcripts
265 from long-read sequenced embryonic chicken heart transcriptomes. By comparing these available
266 novel transcripts to our annotation, we found 89% of them can completely or partially match to our
267 annotation, while there were still 1,000 transcripts categorized as “novel loci” (**Supplementary**
268 **Figure 5**). Moreover, we found the transcripts grouped into the “novel isoform” and “novel loci”
269 categories tend to be lowly expressed, while the expressions of transcripts in “exact match” group are
270 higher (**Figure 3d**).

271 Considering the largest set of tissues used, we then sought to identify tissue-specifically expressed
272 transcripts. By quantifying transcript expressions, we found the number of expressed transcripts and
273 loci ranged from 14,841 (liver) to 28,648 (cerebellum), and from 10,285 (liver) to 21,662
274 (cerebellum), respectively (**Supplementary Figure 6**). The tissue specificity index (TSI) indicated
275 that the set of “exact match” transcripts tend to be lowly tissue-specific, while “novel isoform” and
276 “novel loci” transcripts are highly tissue-specific (**Figure 4a**). We observed that the set of transcripts
277 with low expression tended to have high tissue-specificity, while in contrast, highly expressed
278 transcripts are commonly found across tissues (**Figure 4b**). Moreover, we identified tissue-specific
279 transcripts and found the reproductive tissues (i.e., testis and ovary) have high proportion of tissue-
280 specific transcripts, followed by brain-related tissues (i.e., cerebellum and cortex) (**Figure 4c**). For
281 instance, we identified a novel transcript located on chromosome 4 (52,482,563-52,492,561), which
282 is specifically expressed in testis samples (**Figures 4d and 4e**). This transcript was predicted as a
283 sense intergenic lncRNA by using the FEELnc software (Wucher et al., 2017) (**Supplementary**
284 **Tables 3 and 4**). To reveal the function of tissue-specific transcripts, we aligned sequences of tissue-
285 specific transcripts to SwissProt (V5) database with the blastx function implemented in the Diamond
286 tool (v2.0.11.149) (Buchfink et al., 2015). Then, the matched UniProt identifiers were used for
287 carrying out functional enrichment analysis with the PANTHER tool (Mi et al., 2013). This analysis
288 revealed that tissue-specific transcripts recapitulated the tissue biology (**Figure 5a, Supplementary**
289 **Table 5**), such as muscle contraction, muscle cell differentiation enriched in muscle and heart tissues,
290 trans-synaptic signaling and nervous system development in cerebellum and brain cortex, and B cell

291 receptor signaling pathway in spleen (**Figure 5a, Supplementary Table 5**), a finding concordant
292 with previous results (Yang et al., 2018; Fang et al., 2020).

293 The utilization of large scale of tissues allows us to investigate which tissue is better to capture more
294 transcripts and to annotate chicken genome. Herein we tried to detect the number of unique
295 transcripts expressed as a function of more tissues added. By doing so, we found brain-related tissues
296 (i.e., cerebellum and cortex) could detect the higher number of transcripts as expected (**Figure 5b**,
297 **Supplementary Table 6**). In addition, our design including a diverse set of 19 chicken tissues offers
298 the opportunity to analyze DAS events between chicken tissues. To do so, we quantified isoform
299 expression and identified differential alternative splicing events using the LIQA software (Hu et al.,
300 2021). The results are shown in **Supplementary Figure 7** and **Supplementary Table 7**. In total, we
301 found a list of 4,211 loci showing DAS events between tissues (FDR < 0.05). For instance, the top
302 significant locus is the *CYB561A3* gene showing DAS between heart and testis (FDR = 9.12E-16,
303 **Figure 5c**). This gene encodes cytochrome B561 family member A3 whose functions are related
304 cellular iron ion homeostasis and mitochondrial respiration (Wang et al., 2021b).

305

306 4 Discussion

307 A well-annotated chicken genome is essential in associating genomic variation to phenotypic
308 variation, and there are a number of ongoing efforts through the Functional Annotation of Animal
309 Genomes (FAANG) consortium (Andersson et al., 2015), primarily focus on non-coding functional
310 elements in farm animals including chicken (Kern et al., 2021). In this study, using Oxford Nanopore
311 long-read sequencing in 19 chicken tissues, we preliminary annotated 79,757 transcripts in 54,551
312 loci, while the subsequent filtering resulted in the exclusion of ~2K transcripts. Finally, our
313 prediction resulted in the identification of 55,382 clean transcripts derived from 40,547 loci,
314 representing ~1.4 transcripts per locus, an estimate lower than the Ensembl (~1.8 transcripts per
315 locus), and the NCBI annotations (~3.3 transcripts per locus). The lower estimate in our study might
316 be due to the higher number of annotated loci (N = 40,547), i.e. around 2.6-fold higher than both
317 reference annotations.

318 The number of transcripts of loci predicted in this study is substantially higher than two reference
319 annotations (Ensembl V102: 27,955 transcripts in 15,305 loci; NCBI V105: 51,222 in 15,706 loci),
320 while our prediction is lower than Kuo et al. who annotated 60K transcripts and 29K genes using the
321 Iso-Seq approach (Kuo et al., 2017). Unfortunately, the unavailability of their annotation hinders us
322 to exclusively make a comparison. Specifically, we predicted higher proportion of lncRNA loci,
323 indicating that reference annotations are not annotated lncRNAs well. Indeed, Jehl et al. (2020)
324 annotated additional 13,009 lncRNA genes (compared to Ensembl V94) using 364 chicken short-read
325 transcriptomes derived from 25 tissues. Indeed, when we compared our lncRNA transcripts to Jehl et
326 al. (2020), we found over 80% of them completely or partially match to their lncRNA loci. Still, our
327 annotation contains 4,953 additional novel lncRNA transcripts despite we used the sample lncRNA
328 prediction tool (FEELnc, Wucher et al., 2017), which may be due to the increased sensitivity of long-
329 read sequencing (Lagarde et al., 2017). Moreover, we found > 89% of novel transcripts reported by
330 Thomas et al. (2014) could match our prediction. These evidences collectively indicate our
331 annotation is reliable.

332 Comparing to the reference annotations, we observed a higher percentage of novel loci (~47%) than
333 that of cattle (6% predicted transcripts did not match to a reference gene), whilst the exact matched

334 transcripts predicted in this study were also lower (16% in our study vs. 21% in cattle), though the
335 cattle study included more tissues (Halstead et al., 2021). Potential reasons are low number of
336 samples, possible degradations of RNA samples or low sequencing depth. We also cannot rule out
337 the possibility that the annotation of the bovine reference genome is better than the chicken one in the
338 database. It should be noted that a substantial proportion of novel loci predicted by us are lncRNA
339 loci which can to some extend match to a previous study (Jehl et al., 2020). These results suggest
340 more efforts for annotating the chicken genome is needed in the future. The human genome is
341 considered to be better-annotated than farm animals', while 36.4% of full-length transcripts identified
342 by long-read Iso-Seq methods are classified as "novel" in human cortex tissue (Leung et al., 2021).
343 Using the same approach, another study also reported 17 to 55% of novel isoforms in human breast
344 cancer samples (Veiga et al., 2022). These studies, together with ours, indicate long-read sequencing
345 is better approach for discovering novel isoforms and being able to better annotate animal genomes.

346 The number of transcripts reported by this study, reference genome annotations, as well as by Kuo et
347 al. (2017) varies widely, ranging from 27,955 to 74,665. Although sequencing depth could be one of
348 reasons, another possible interpretation is that the number of detectable transcripts is tissue-
349 dependent. Indeed, our study with similar sequencing depth also detected variable number of
350 expressed transcripts across tissues, ranging from 14,841 (liver) to 28,648 (cerebellum). These
351 observations suggest that including as diverse and many tissues as possible can detect tissue-specific
352 transcripts and better annotate the chicken genome. It is reported that brain tissues have a higher level
353 of alternative splicing, such as skipped exons, alternative 3' splice site exons or 5' splice site exons,
354 (Yeo et al., 2004; Melé et al., 2015). Our analysis supported this notion, suggesting brain-related
355 tissues are better for annotating an animal genome if available tissues are limited. The consistent
356 pattern of the higher number of transcripts observed in brain possibly reflects the complexity of
357 tissue biology (Naumova et al., 2013; Fang et al., 2020). Moreover, the whole embryo was also
358 expected to include as many transcripts as possible since it contains all organs. Unfortunately, our
359 study design did not include the whole embryo, but in Kuo et al. study they identified 55,932
360 transcripts in brain while only 9,368 transcripts in embryo (Kuo et al., 2017).

361 Although our study has annotated a substantial proportion of novel transcripts, there were still some
362 limitations, e.g., our study only includes a single developmental stage (adult). Previous reports
363 indicate that detecting gene expression using long-read sequencing approaches requires lower
364 number of reads, such as Nanopore sequencing needs ~ 40-fold less reads or ~ 8-fold less bases than
365 Illumina technology, which required over 36 million reads for accurately quantifying highly
366 expressed genes (FPKM > 10), and over 80 million reads for lowly expressed genes (FPKM < 10)
367 (Sims et al., 2014; Su et al., 2014; Oikonomopoulos et al., 2020). Based on that estimate, at least 7.5
368 million long-reads are likely to be required per tissue, while this will be the cost-prohibitive given the
369 cost of Nanopore long-read sequencing we did in 2019 with so many samples. This indicates our
370 study, very possibly, missed a proportion of transcripts due to the low sequencing depth, though we
371 reported a higher number of transcripts and loci than reference annotations. This is also reflected by
372 the ratio that each gene can only produce 1.4 transcripts per locus based on our data, while each
373 human gene can produce ~10 splicing transcripts (Mathur et al., 2019). With continued DNA
374 technologies development in cost-effective, tissues from more developmental stages and
375 physiological status, and more in-depth sequencing on full-length transcriptome are warranted to
376 improve the annotation of transcript isoforms in the chicken genome.

377 **1 Conflict of Interest**

378 None.

379

380 **2 Author Contributions**

381 HZ and PR conceived and designed the experiments. ADI, DEG, HC collected samples and carried
382 out nanopore sequencing experiments. DG and MM developed the computational pipeline and
383 analyzed all data. DG and HJ wrote the paper. All authors read, edited and approved the final
384 manuscript.

385

386 **3 Funding**

387 Funding for sample collection was provided by the United States Department of Agriculture,
388 National Institute of Food and Agriculture, Agriculture and Food Research Initiative grant no. 2015-
389 43567015-22940 awarded to HZ and PR. Funding for library generation, and sequencing, was
390 provided by the United States Department of Agriculture, National Institute of Food and Agriculture,
391 Agriculture and Food Research Initiative grant no. 2017-67015-26297 awarded to PR and HZ.
392 Funding for bioinformatics analysis was provided by Agriculture and Food Research Initiative grant
393 no. 2020-67015-31175 awarded to HZ.

394 **4 Acknowledgments**

395 We thank Dr. Ying Wang, Dr. Perot Saelao, and Ganrea Chanthavixay for their assistance in sample
396 collection, organization, and storage. We also thank the staff at the University of California, Davis,
397 DNA Technologies Core for their guidance and assistance with Nanopore library construction and
398 sequencing.

399 **5 References**

400 Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., and Gouil, Q. (2020). Opportunities
401 and challenges in long-read sequencing data analysis. *Genome Biology* 21, 30. doi:
402 10.1186/s13059-020-1935-5.

403 Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq—a Python framework to work with high-
404 throughput sequencing data. *Bioinformatics* 31, 166–169. doi: 10.1093/bioinformatics/btu638.

405 Andersson, L., Archibald, A. L., Bottema, C. D., Brauning, R., Burgess, S. C., Burt, D. W., et al.
406 (2015). Coordinated international action to accelerate genome-to-phenome with FAANG, the
407 Functional Annotation of Animal Genomes project. *Genome Biology* 16, 57. doi:
408 10.1186/s13059-015-0622-4.

409 Baralle, F. E., and Giudice, J. (2017). Alternative splicing as a regulator of development and tissue
410 identity. *Nat Rev Mol Cell Biol* 18, 437–451. doi: 10.1038/nrm.2017.27.

411 Beiki, H., Liu, H., Huang, J., Manchanda, N., Nonneman, D., Smith, T. P. L., et al. (2019). Improved
412 annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data.
413 *BMC Genomics* 20, 344. doi: 10.1186/s12864-019-5709-y.

414 Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and
415 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B
416 (Methodological)* 57, 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.

417 Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein alignment using
418 DIAMOND. *Nat Methods* 12, 59–60. doi: 10.1038/nmeth.3176.

419 Byrne, A., Beaudin, A. E., Olsen, H. E., Jain, M., Cole, C., Palmer, T., et al. (2017). Nanopore long-
420 read RNAseq reveals widespread transcriptional variation among the surface receptors of
421 individual B cells. *Nat Commun* 8, 16027. doi: 10.1038/ncomms16027.

422 Chen, S.-Y., Deng, F., Jia, X., Li, C., and Lai, S.-J. (2017). A transcriptome atlas of rabbit revealed
423 by PacBio single-molecule long-read sequencing. *Sci Rep* 7, 7648. doi: 10.1038/s41598-017-
424 08138-z.

425 Chen, Y., Davidson, N. M., Wan, Y. K., Patel, H., Yao, F., Low, H. M., et al. (2021). A systematic
426 benchmark of Nanopore long read RNA sequencing for transcript level analysis in human cell
427 lines. *bioRxiv*, 2021.04.21.440736. doi: 10.1101/2021.04.21.440736.

428 Clark, E. L., Archibald, A. L., Daetwyler, H. D., Groenen, M. A. M., Harrison, P. W., Houston, R.
429 D., et al. (2020). From FAANG to fork: application of highly annotated genomes to improve
430 farmed animal production. *Genome Biology* 21, 285. doi: 10.1186/s13059-020-02197-8.

431 De Coster, W., D’Hert, S., Schultz, S. T., Cruts, M., and Broeckhoven, C. V. (2018). NanoPack:
432 visualizing and processing long-read sequencing data. *Bioinformatics* 34, 26666–2669. doi:
433 10.1093/bioinformatics/bty149.

434 Fang, L., Cai, W., Liu, S., Canela-Xandri, O., Gao, Y., Jiang, J., et al. (2020). Comprehensive
435 analyses of 723 transcriptomes enhance genetic and biological interpretations for complex
436 traits in cattle. *Genome Res.* doi: 10.1101/gr.250704.119.

437 Giuffra, E., Tuggle, C. K., and FAANG Consortium (2019). Functional Annotation of Animal
438 Genomes (FAANG): Current Achievements and Roadmap. *Annu Rev Anim Biosci* 7, 65–88.
439 doi: 10.1146/annurev-animal-020518-114913.

440 Halstead, M. M., Islas-Trejo, A., Goszczynski, D. E., Medrano, J. F., Zhou, H., and Ross, P. J.
441 (2021). Large-Scale Multiplexing Permits Full-Length Transcriptome Annotation of 32
442 Bovine Tissues From a Single Nanopore Flow Cell. *Front. Genet.* 0. doi:
443 10.3389/fgene.2021.664260.

444 Hillier, L. W., Miller, W., Birney, E., Warren, W., Hardison, R. C., Ponting, C. P., et al. (2004).
445 Sequence and comparative analysis of the chicken genome provide unique perspectives on
446 vertebrate evolution. *Nature* 432, 695–716. doi: 10.1038/nature03154.

447 Hu, Y., Fang, L., Chen, X., Zhong, J. F., Li, M., and Wang, K. (2021). LIQA: long-read isoform
448 quantification and analysis. *Genome Biology* 22, 182. doi: 10.1186/s13059-021-02399-8.

449 Jehl, F., Muret, K., Bernard, M., Boutin, M., Lagoutte, L., Désert, C., et al. (2020). An integrative
450 atlas of chicken long non-coding genes and their annotations across 25 tissues. *Sci Rep* 10,
451 20457. doi: 10.1038/s41598-020-77586-x.

452 Julien, P., Brawand, D., Soumillon, M., Necsulea, A., Liechti, A., Schütz, F., et al. (2012).
453 Mechanisms and Evolutionary Patterns of Mammalian and Avian Dosage Compensation.
454 *PLOS Biology* 10, e1001328. doi: 10.1371/journal.pbio.1001328.

455 Kang, Y.-J., Yang, D.-C., Kong, L., Hou, M., Meng, Y.-Q., Wei, L., et al. (2017). CPC2: a fast and
456 accurate coding potential calculator based on sequence intrinsic features. *Nucleic Acids
457 Research* 45, W12–W16. doi: 10.1093/nar/gkx428.

458 Keren, H., Lev-Maor, G., and Ast, G. (2010). Alternative splicing and evolution: diversification,
459 exon definition and function. *Nat Rev Genet* 11, 345–355. doi: 10.1038/nrg2776.

460 Kern, C., Wang, Y., Xu, X., Pan, Z., Halstead, M., Chanthavixay, G., et al. (2021). Functional
461 annotations of three domestic animal genomes provide vital resources for comparative and
462 agricultural research. *Nat Commun* 12, 1821. doi: 10.1038/s41467-021-22100-8.

463 Kovaka, S., Zimin, A. V., Pertea, G. M., Razaghi, R., Salzberg, S. L., and Pertea, M. (2019).
464 Transcriptome assembly from long-read RNA-seq alignments with StringTie2. *Genome
465 Biology* 20, 278. doi: 10.1186/s13059-019-1910-1.

466 Kuhn, R. M., Haussler, D., and Kent, W. J. (2013). The UCSC genome browser and associated tools.
467 *Briefings in Bioinformatics* 14, 144–161. doi: 10.1093/bib/bbs038.

468 Kuo, R. I., Cheng, Y., Zhang, R., Brown, J. W. S., Smith, J., Archibald, A. L., et al. (2020).
469 Illuminating the dark side of the human transcriptome with long read transcript sequencing.
470 *BMC Genomics* 21, 751. doi: 10.1186/s12864-020-07123-7.

471 Kuo, R. I., Tseng, E., Eory, L., Paton, I. R., Archibald, A. L., and Burt, D. W. (2017). Normalized
472 long read RNA sequencing in chicken reveals transcriptome complexity similar to human.
473 *BMC Genomics* 18, 323. doi: 10.1186/s12864-017-3691-9.

474 Lagarde, J., Uszczynska-Ratajczak, B., Carbonell, S., Pérez-Lluch, S., Abad, A., Davis, C., et al.
475 (2017). High-throughput annotation of full-length long noncoding RNAs with capture long-
476 read sequencing. *Nat Genet* 49, 1731–1740. doi: 10.1038/ng.3988.

477 Leger, A. (2020). a-slide/NanoCount. Available at: <https://zenodo.org/badge/latestdoi/142873004>.

478 Leung, S. K., Jeffries, A. R., Castanho, I., Jordan, B. T., Moore, K., Davies, J. P., et al. (2021). Full-
479 length transcript sequencing of human and mouse cerebral cortex identifies widespread
480 isoform diversity and alternative splicing. *Cell Reports* 37, 110022. doi:
481 10.1016/j.celrep.2021.110022.

482 Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34, 3094–
483 3100.

484 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The Sequence
485 Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078–2079. doi:
486 10.1093/bioinformatics/btp352.

487 Li, M., Sun, C., Xu, N., Bian, P., Tian, X., Wang, X., et al. (2022). De novo assembly of 20 chicken
488 genomes reveals the undetectable phenomenon for thousands of core genes on micro-
489 chromosomes and sub-telomeric regions. *Molecular Biology and Evolution*, msac066. doi:
490 10.1093/molbev/msac066.

491 Lin, J., Guan, L., Ge, L., Liu, G., Bai, Y., and Liu, X. (2021). Nanopore-based full-length
492 transcriptome sequencing of Muscovy duck (*Cairina moschata*) ovary. *Poultry Science* 100,
493 101246. doi: 10.1016/j.psj.2021.101246.

494 Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion
495 for RNA-seq data with DESeq2. *Genome Biology* 15, 550. doi: 10.1186/s13059-014-0550-8.

496 Mathur, M., Kim, C. M., Munro, S. A., Rudina, S. S., Sawyer, E. M., and Smolke, C. D. (2019).
497 Programmable mutually exclusive alternative splicing for generating RNA and protein
498 diversity. *Nat Commun* 10, 2673. doi: 10.1038/s41467-019-10403-w.

499 Melé, M., Ferreira, P. G., Reverter, F., DeLuca, D. S., Monlong, J., Sammeth, M., et al. (2015). The
500 human transcriptome across tissues and individuals. *Science* 348, 660–665. doi:
501 10.1126/science.aaa0355.

502 Mi, H., Muruganujan, A., Casagrande, J. T., and Thomas, P. D. (2013). Large-scale gene function
503 analysis with the PANTHER classification system. *Nat Protoc* 8, 1551–1566. doi:
504 10.1038/nprot.2013.092.

505 Naumova, O. Yu., Lee, M., Rychkov, S. Yu., Vlasova, N. V., and Grigorenko, E. L. (2013). Gene
506 Expression in the Human Brain: The Current State of the Study of Specificity and Spatio-
507 temporal Dynamics. *Child Dev* 84, 76–88. doi: 10.1111/cdev.12014.

508 Oikonomopoulos, S., Bayega, A., Fahiminiya, S., Djambazian, H., Berube, P., and Ragoussis, J.
509 (2020). Methodologies for Transcript Profiling Using Long-Read Technologies. *Frontiers in
510 Genetics* 11, 606. doi: 10.3389/fgene.2020.00606.

511 Pertea, G., and Pertea, M. (2020). GFF Utilities: GffRead and GffCompare. *F1000Research*. doi:
512 10.12688/f1000research.23297.2.

513 Sims, D., Sudbery, I., Ilott, N. E., Heger, A., and Ponting, C. P. (2014). Sequencing depth and
514 coverage: key considerations in genomic analyses. *Nat Rev Genet* 15, 121–132. doi:
515 10.1038/nrg3642.

516 Soneson, C., Yao, Y., Bratus-Neuenschwander, A., Patrignani, A., Robinson, M. D., and Hussain, S.
517 (2019). A comprehensive examination of Nanopore native RNA sequencing for
518 characterization of complex transcriptomes. *Nat Commun* 10, 3359. doi: 10.1038/s41467-
519 019-11272-z.

520 Su, Z., Łabaj, P. P., Li, S., Thierry-Mieg, J., Thierry-Mieg, D., Shi, W., et al. (2014). A
521 comprehensive assessment of RNA-seq accuracy, reproducibility and information content by
522 the Sequencing Quality Control Consortium. *Nat Biotechnol* 32, 903–914. doi:
523 10.1038/nbt.2957.

524 Thomas, S., Underwood, J. G., Tseng, E., Holloway, A. K., and Subcommittee, on behalf of the B.
525 T. B. C. I. (2014). Long-Read Sequencing of Chicken Transcripts and Identification of New
526 Transcript Isoforms. *PLOS ONE* 9, e94650. doi: 10.1371/journal.pone.0094650.

527 Tixier-Boichard, M., Fabre, S., Dhorne-Pollet, S., Goubil, A., Acloque, H., Vincent-Naulleau, S., et
528 al. (2021). Tissue Resources for the Functional Annotation of Animal Genomes. *Frontiers in*
529 *Genetics* 12, 847. doi: 10.3389/fgene.2021.666265.

530 Veiga, D. F. T., Nesta, A., Zhao, Y., Mays, A. D., Huynh, R., Rossi, R., et al. (2022). A
531 comprehensive long-read isoform analysis platform and sequencing resource for breast
532 cancer. *Science Advances*. doi: 10.1126/sciadv.abg6711.

533 Wang, K., Hu, H., Tian, Y., Li, J., Scheben, A., Zhang, C., et al. (2021a). The chicken pan-genome
534 reveals gene content variation and a promoter region deletion in IGF2BP1 affecting body
535 size. *Molecular Biology and Evolution*. doi: 10.1093/molbev/msab231.

536 Wang, Z., Guo, R., Trudeau, S. J., Wolinsky, E., Ast, T., Liang, J. H., et al. (2021b). CYB561A3 is
537 the key lysosomal iron reductase required for Burkitt B-cell growth and survival. *Blood* 138,
538 2216–2230. doi: 10.1182/blood.2021011079.

539 Warren, W. C., Hillier, L. W., Tomlinson, C., Minx, P., Kremitzki, M., Graves, T., et al. (2017). A
540 New Chicken Genome Assembly Provides Insight into Avian Genome Structure. *G3*
541 *Genes/Genomes/Genetics* 7, 109–117. doi: 10.1534/g3.116.035923.

542 Wright, C. J., Smith, C. W. J., and Jiggins, C. D. (2022). Alternative splicing as a source of
543 phenotypic diversity. *Nat Rev Genet*, 1–14. doi: 10.1038/s41576-022-00514-4.

544 Wucher, V., Legeai, F., Hédan, B., Rizk, G., Lagoutte, L., Leeb, T., et al. (2017). FEELnc: a tool for
545 long non-coding RNA annotation and its application to the dog transcriptome. *Nucleic Acids*
546 *Research* 45, e57. doi: 10.1093/nar/gkw1306.

547 Yandell, M., and Ence, D. (2012). A beginner’s guide to eukaryotic genome annotation. *Nat Rev*
548 *Genet* 13, 329–342. doi: 10.1038/nrg3174.

549 Yang, R. Y., Quan, J., Sodaei, R., Aguet, F., Segrè, A. V., Allen, J. A., et al. (2018). A systematic
550 survey of human tissue-specific gene expression and splicing reveals new opportunities for
551 therapeutic target identification and evaluation. *bioRxiv*, 311563. doi: 10.1101/311563.

552 Yeo, G., Holste, D., Kreiman, G., and Burge, C. B. (2004). Variation in alternative splicing across
553 human tissues. *Genome Biology* 5, R74. doi: 10.1186/gb-2004-5-10-r74.

554 Yu, S., Wang, G., Liao, J., and Tang, M. (2019). Five alternative splicing variants of the TYR gene
555 and their different roles in melanogenesis in the Muchuan black-boned chicken. *British*
556 *Poultry Science* 60, 8–14. doi: 10.1080/00071668.2018.1533633.

557 Zhang, D., Guelfi, S., Garcia-Ruiz, S., Costa, B., Reynolds, R. H., D’Sa, K., et al. (2020). Incomplete
558 annotation has a disproportionate impact on our understanding of Mendelian and complex
559 neurogenetic disorders. *Science Advances* 6, eaay8299. doi: 10.1126/sciadv.aay8299.

560

561 **6 Supplementary Material**

562 **Supplementary data 1** Predicted transcripts in the General Feature Format (GTF) format

563 **Supplementary Table 1** Information about tissue sampling used in this study
564 **Supplementary Table 2** Summary statistics of sequencing samples
565 **Supplementary Table 3** Predicted transcript types (including protein-coding, lncRNA and other
566 non-coding)
567 **Supplementary Table 4** A list of tissue-specific transcripts
568 **Supplementary Table 5** Functional enrichment of tissue-specific transcripts (only Biological
569 Process of Gene Ontology terms)
570 **Supplementary Table 6** Number of unique transcripts detected when adding more tissues
571 **Supplementary Table 7** A list of loci showing differential alternative splicing (DAS) events
572 between tissues
573 **Supplementary Figure 1** Hierarchical clustering of samples used in this study. The dendrogram is
574 built based on gene expressions quantified with Transcripts Per Million (TPM > 0.1). The distance
575 between individuals is indicated by 1-r, where r is the Pearson correlation coefficient
576 **Supplementary Figure 2** Dotplot depicting the number of sequencing reads (x-axis) and the number
577 of expressed genes (y-axis). A given gene was considered as expressed when Transcripts Per Million
578 (TPM) > 0.1. The red text indicates the outlier sample in principal component analysis (PCA) plot
579 (Figures 1b) and hierarchical clustering (Supplementary Figure 1).
580 **Supplementary Figure 3** GffCompare types when comparing our predicted transcripts to NCBI
581 annotation (V105)
582 **Supplementary Figure 4** GffCompare types when comparing protein-coding (a) and lncRNA loci
583 (b) predicted in this study with those predicted in Jehl et al., (2020).
584 **Supplementary Figure 5** GffCompare types when comparing novel transcripts reported by Thomas
585 et al. (2014) to our annotation.
586 **Supplementary Figure 6** Number of expression loci and transcripts (TPM > 0.1) across tissues
587 **Supplementary Figure 7** Number of loci showing differential alternative splicing (DAS) between
588 tissues
589

590 7 Data Availability Statement

591 The Nanopore sequencing data are accessible in the Sequence Read Archive (SRA) database of the
592 National Center for Biotechnology Information with the identifier PRJNA671673
593 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA671673>). The code used for annotating full-length
594 transcripts can be accessed by the link: https://github.com/guandailu/nanopore_annotation.
595

596 **Table 1** Comparison of reference and predicted transcripts using GffCompare tool

Level	Predicted vs Ensembl		Predicted vs NCBI		NCBI vs Ensembl	
	Sensitivity	Precision	Sensitivity	Precision	Sensitivity	Precision
Base	70.9	30.6	54.1	41.3	86.6	43.6
Exon	62.6	55.3	55.1	55.6	78.5	64.5
Intron	66.3	74.2	58.8	77.5	88.6	72.2

Transcript	38.7	14.5	21.1	14.5	41.6	21.1
Locus	57.8	17.5	54.3	17.0	59.7	47.3
Missed exons	44,538/179919 (24.8%)	60,304/211468 (28.5%)	10,378/202,369 (5.1%)			
Novel exons	63,322/201,393 (31.4%)	54,465/201,393 (27.0%)	50,528/252,210 (20.0%)			
Missed introns	41,164/157,463 (26.1%)	53,133/185,508 (28.6%)	6,790/175,889 (3.9%)			
Novel introns	22,985/140,865 (16.3%)	19,416/140,865 (13.8%)	30,813/215,950 (14.3%)			
Novel loci	32,725/50,569 (64.7%)	29,332/50,569 (58.0%)	5,656/23,336 (24.2%)			

597 The annotation versions of NCBI and Ensembl are V105 and V102, respectively.

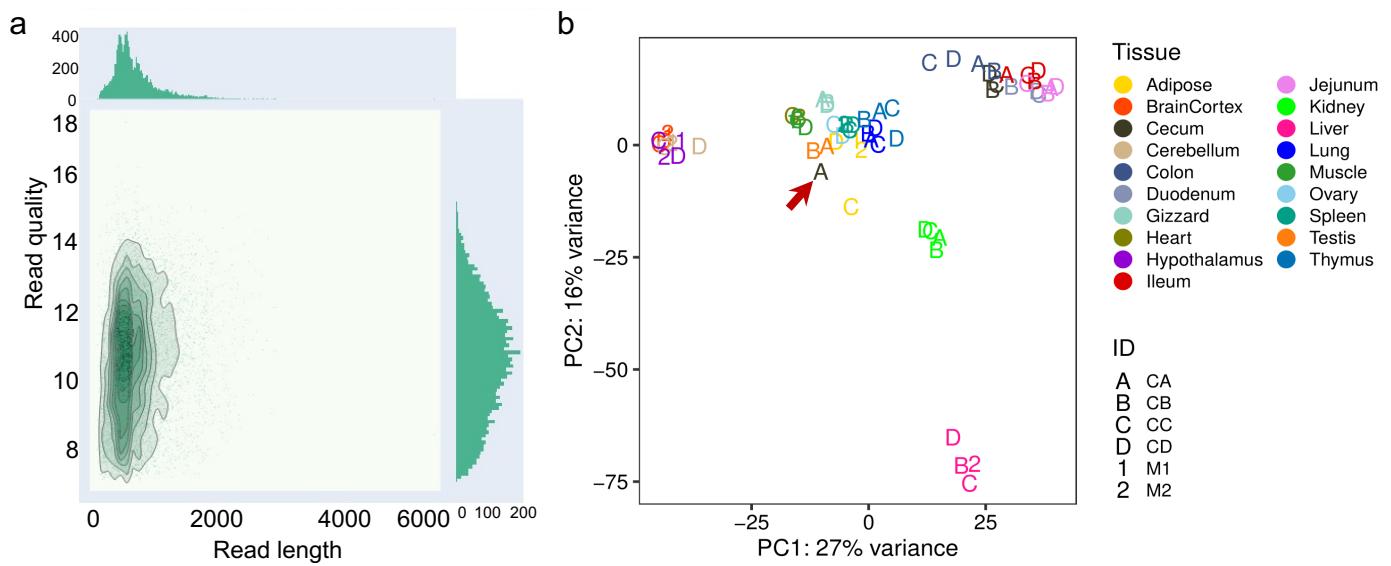
598

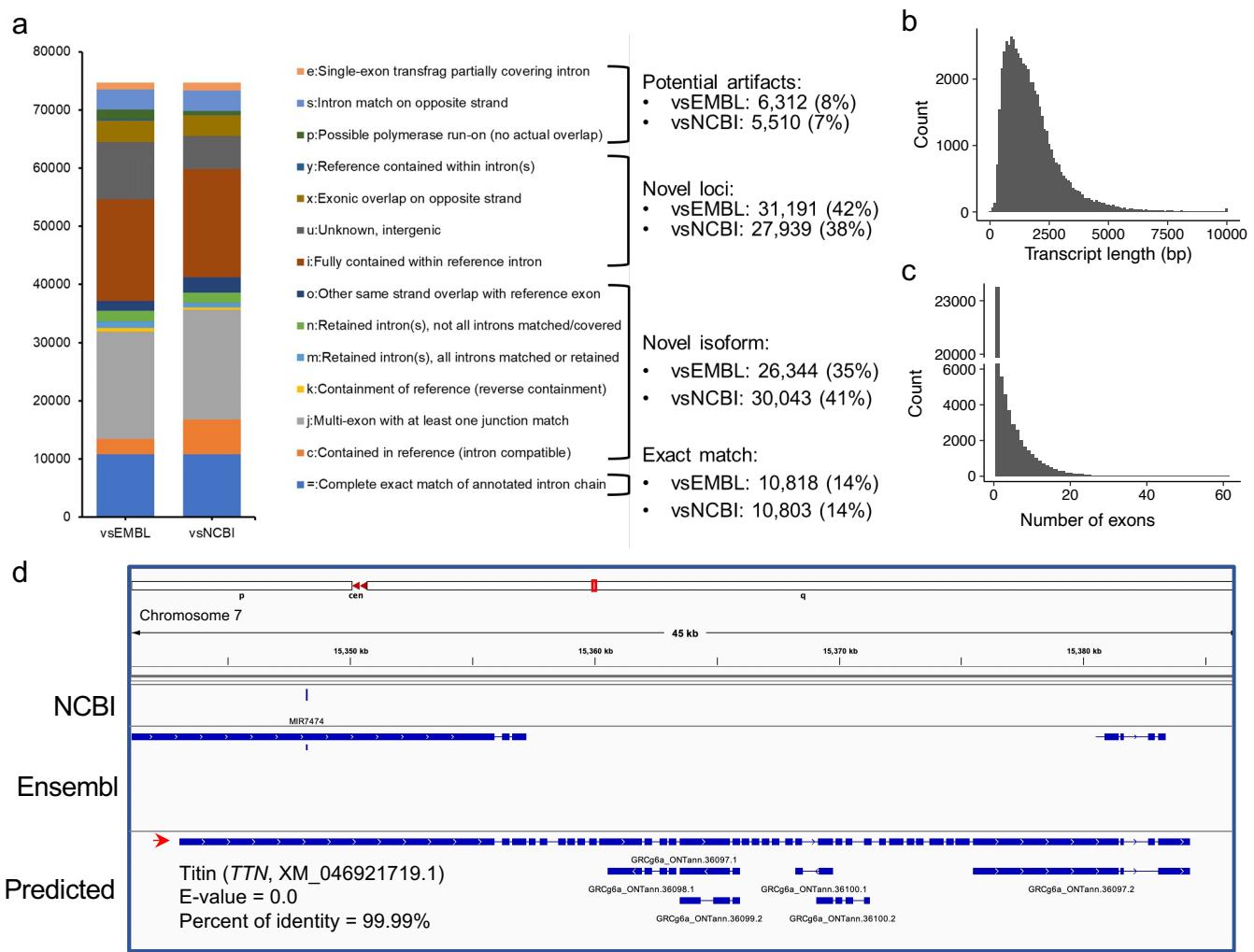
599 **Figure Legends**

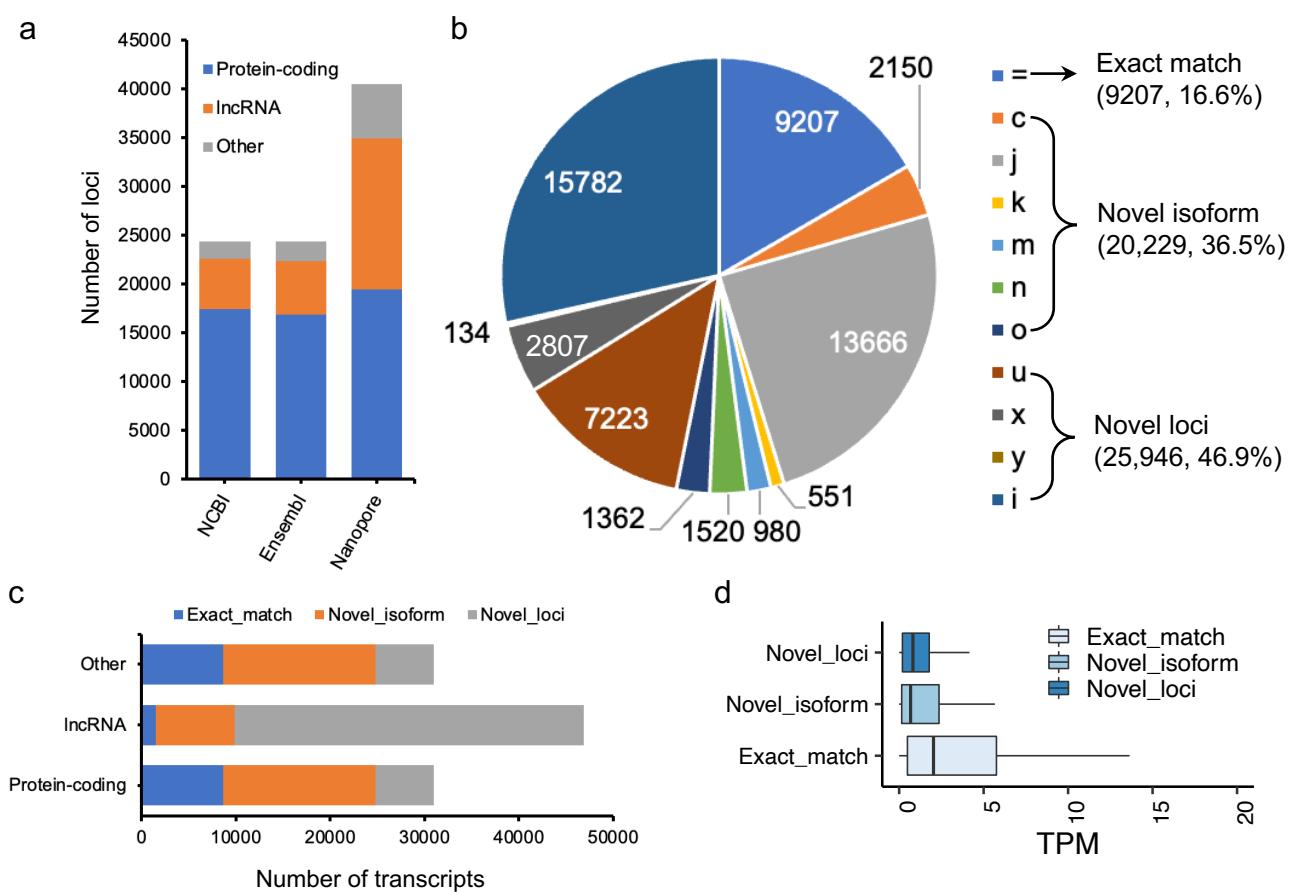
600 **Figure 1** (a) Bivariate plot (De Coster et al., 2018) depicting read length (x-axis) and quality (y-axis)
601 of Nanopore long-read sequencing in 68 samples (b) Principal component analysis of 68 chicken
602 Nanopore long-read transcriptomes. The red arrow indicated the sample, CA_Cecum, which was not
603 clustered with other samples from the cecum tissue.

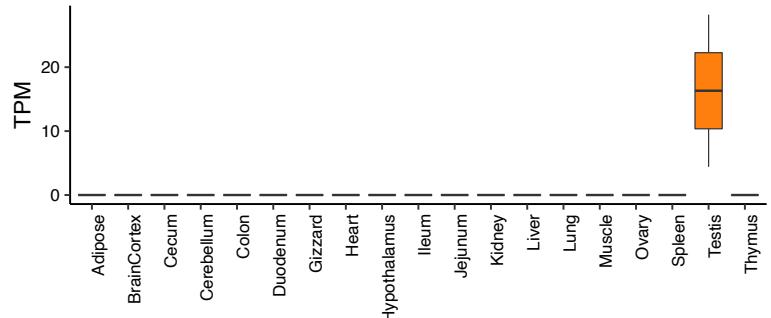
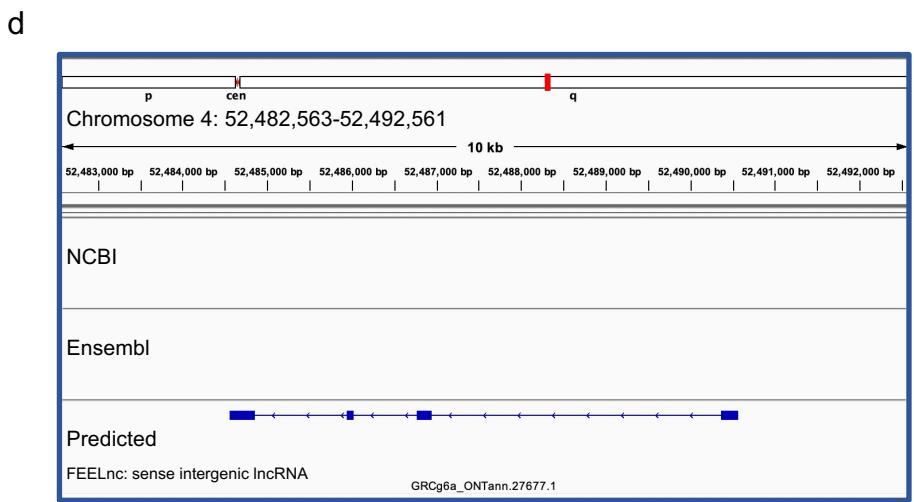
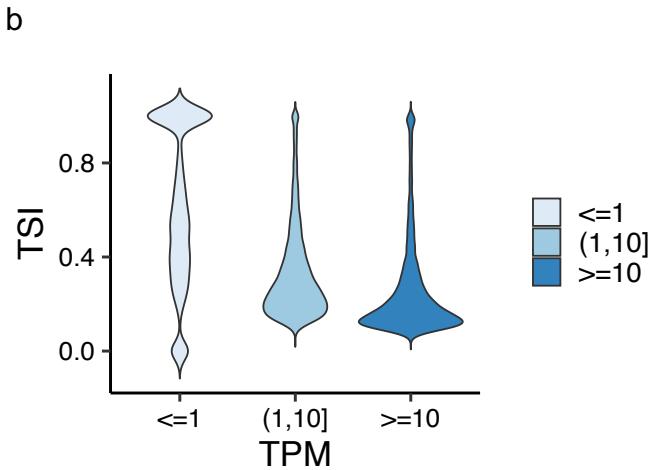
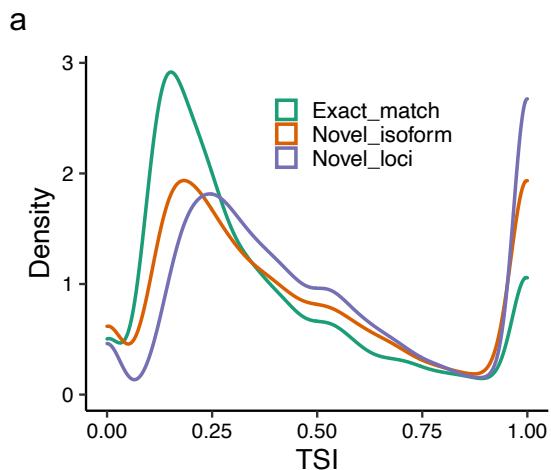
604

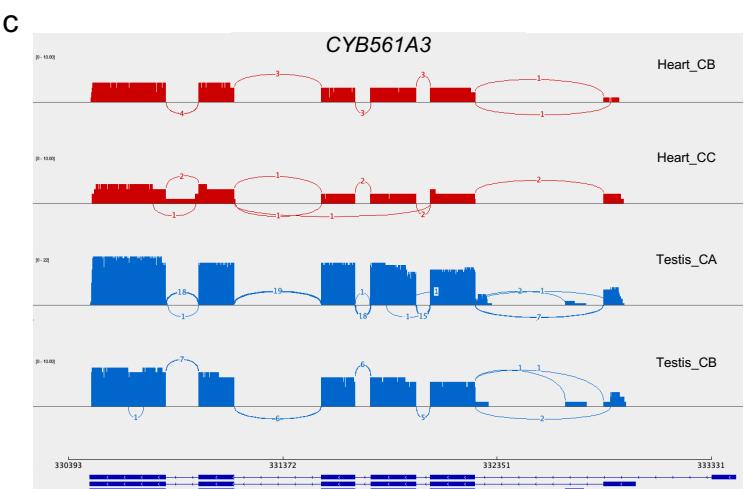
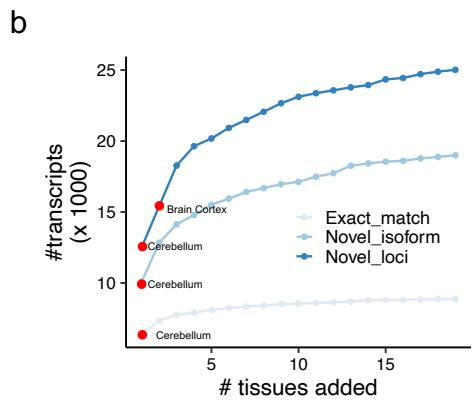
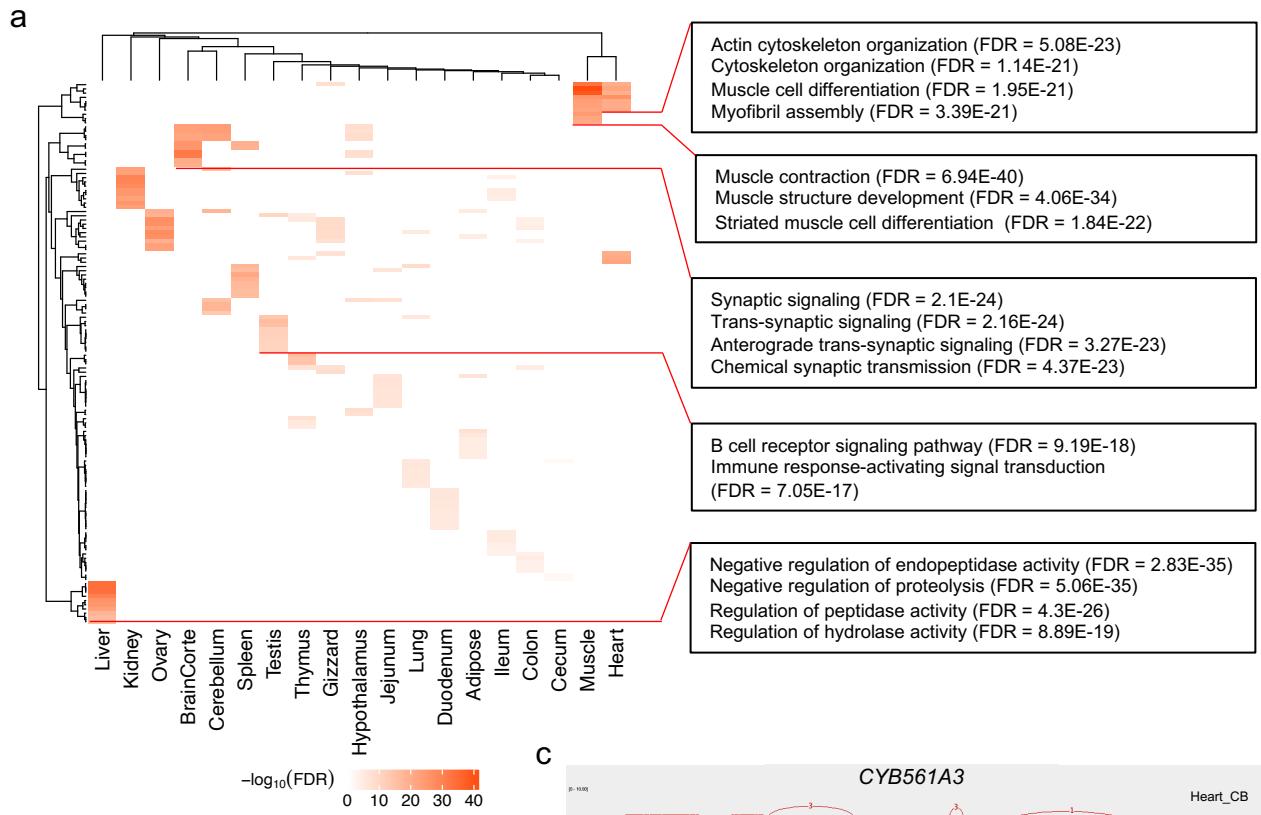
605 **Figure 2** (a) Comparisons of predicted transcripts against Ensembl (V102, vsEMBL) and NCBI
606 annotation (V105, vsNCBI). The transcripts were classified according to the GffCompare software
607 (Pertea and Pertea, 2020). The panels (b) to (c) depict the distributions of predicted transcript length
608 and exon numbers, respectively. (d) A screenshot showing the predicted longest transcript, which is
609 located on chromosome 7 (15,343,033-15,384,347). Blast analysis indicated the transcript matched to
610 the *TTN* gene locus encoding the titin protein.


611 **Figure 3** (a) Number of loci in NCBI (V105), Ensembl (V102) and our annotations. (b) Pie chart
612 depicting GffCompare types to Ensembl annotation (V102). See **Methods** for explanation of the type
613 codes. (c) Number of transcripts as a function of protein-coding, lncRNA, and other non-coding loci.
614 (d) Transcript expression measured as transcript per million (TPM) as a function of different types of
615 transcripts classified by GffCompare (See **Methods**).


616


617 **Figure 4** (a) Tissue specificity index (TSI) as a function of different types of transcripts classified by
618 GffCompare (See **Methods**). (b) Transcript expression measured as transcript per million (TPM) as a
619 function of tissue specificity index (TSI). We grouped transcripts according to their expressions (see
620 **Methods**). (c) Number of tissue-specific transcripts in each tissue. (d) A screenshot showing a novel
621 transcript only predicted by our data, which is located on chromosome 4 (52,482,563-52,492,561).
622 The transcript is highly expressed in testis samples, but not any other tissue samples. The FEELnc
623 predicted it as a sense intergenic lncRNA.





624




625 **Figure 5** (a) Heatmap depicting the negative \log_{10} FDR (false discovery rate) values for the top 10
626 Gene Ontology (GO) Biological Process terms. At the right side, we show several examples of GO
627 terms, as well as their FDR values. (b) Number of unique transcripts detected as a function of tissues
628 added. Transcripts are categories into three types (see **Methods**). (c). Sashimi plots of *CYB561A3*
629 gene which showed DAS between heart (red) and testis (blue).

