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Chemical live/dead assay has a long history of providing information about the viability of cells
cultured in vitro. The standard methods rely on imaging chemically-stained cells using fluorescence
microscopy and further analysis of the obtained images to retrieve the proportion of living cells in the
sample. However, such a technique is not only time-consuming but also invasive. Due to the toxicity
of chemical dyes, once a sample is stained, it is discarded, meaning that longitudinal studies are
impossible using this approach. Further, information about when cells start programmed cell death
(apoptosis) is more relevant for dynamic studies. Here, we present an alternative method where cell
images from phase-contrast time-lapse microscopy are virtually-stained using deep learning. In this
study, human endothelial cells are stained live or apoptotic and subsequently counted using the self-
supervised single-shot deep-learning technique (LodeSTAR). Our approach is less labour-intensive
than traditional chemical staining procedures and provides dynamic live/apoptotic cell ratios from
a continuous cell population with minimal impact. Further, it can be used to extract data from
dense cell samples, where manual counting is unfeasible.

Evaluating cellular behaviour in vitro is essential when
assessing their responses to external influences of physical
and chemical nature. One standard evaluation method is
to use a live/dead assay. Such an assay involves staining
the cells with fluorescent dyes followed by fluorescence
microscopy imaging and subsequent cell counting (live or
dead). Unfortunately, this method comes with many dis-
advantages. Chemical staining and fluorescence imaging
procedures can disrupt or harm the cells, [I, 2] and the
fluorescent dyes themselves can even be cytotoxic.[3H5]
Moreover, even if performed on live cells, standard stain-
ing protocols require dissolving chemical dyes in buffers
where the cells do not receive the necessary nutrients.
This may harm them or, at the very least, affect the
equilibrium of the sample. Therefore, chemical staining
is performed as an endpoint assay, sacrificing samples
at every chosen time-point of the experiment. If viabil-
ity information is required during the experiment, it is
necessary to prepare enough cell cultures that may be
sacrificed during the course of the experiment, making it
impossible to carry out longitudinal experiments on the
same cell population.

Standard in vitro cell culturing is performed in static
conditions, where control of the external environment is
limited, and dynamic time-lapse experiments are chal-
lenging to achieve. Further, due to the far from in vivo-
like environment, statically cultured cells may not display
their inherent morphology, functionality or viability. In
contrast, microfluidics and organs-on-chips resemble such
environments and can be tailored for different cell condi-
tions. [6H8] Such platforms offer high control of the ex-
tracellular environment and, when optically transparent,
enable monitoring of dynamic cell responses over time.
However, microfluidics also suffers from the drawbacks
of standard viability assays, as it also requires multiple
devices that can be sacrificed throughout the experiment
(Fig[Th). Consequently, longitudinal viability data col-
lection is time-consuming and labour-intensive, and dy-

namic cell behaviour observations on the same popula-
tion of cells over time are still impossible.

Another combination of viability dyes is required when
applying rapid environmental changes using microflu-
idics. Instead of staining already dead cells, it is ad-
vantageous to identify unhealthy cells as early as pos-
sible in the apoptotic process. If the apoptotic process
is observed early, the extracellular environment can be
changed, with the possibility to reverse the active pro-
cess of programmed cell death.[d] However, also apop-
totic dyes suffer from the same limitations previously
mentioned.

Thanks to recent advances in deep learning, several of
the abovementioned limitations can be overcome. Vir-
tual staining of subcellular structures like cytoplasm or
nuclei, or H&E analysis of tissues has been achieved using
bright-field[TI0] or quantitative phase microscopy[ITHI3]
images as input. This approach allows users to retrieve
quantitative information from their samples without af-
fecting cells’ environment by exposing them to harmful
chemical dyes or fluorescent illumination.

Here, we present an analysis method for detecting and
discriminating live or apoptotic cells using deep learn-
ing. Detecting apoptotic rather than dead cells enables
dynamic and real-time perturbation studies. We pro-
pose a conditional generative adversarial neural network
(¢cGAN)-based method using phase-contrast images to
generate virtually-stained live or apoptotic cells. Sub-
sequently, we apply a self-supervised single-shot deep-
learning technique (LodeSTAR) to count the cells in the
stained images.[I4] Our method can provide long-term
cell viability data on the same population throughout the
whole experiment, without the administration of chemi-
cal dyes (Fig[ip).

In this study, we cultured human endothelial cells un-
der constant perfusion in a custom-made microfluidic de-
vice. In vivo, endothelial cells are constantly exposed to
shear stress via perfusion[I5HI7] and optimally should
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FIG. 1. Retrieving cell viability information from inside a
microfluidic device. (a) The standard procedure consists of
performing chemical staining on-chip, sacrificing two devices
at each intended time point, e.g. beginning, half-time and
the end of a long experiment (days) and imaging them with
a fluorescence microscope. This approach is time-consuming
and workload intensive only providing snapshots of the cellu-
lar behaviour. Scale bar is 50 pm. (b) The developed method
based on deep learning uses two neural networks, one for gen-
erating virtually-stained images from phase-contrast images
and the other to count cells on previously generated images.
The method allows for probe-free, non-invasive and dynamic
longitudinal cell response evaluation on the same cell popula-
tion. Scale bar is 50 pm.

be cultured alike in vitro. We used a microfluidic de-
vice designed as a universal platform for dynamic mam-
malian cell studies of either shear stress or gradient expo-
sure. The device was fabricated in polydimethylsiloxane
(PDMS) using a master manufactured via soft lithogra-
phy as a template. [I8, [T9] It consists of a 1 mm wide cen-

tre channel and two 500 pm side channels with a height of
49 pm (a schematic of the device can be seen in Fig and
in Fig.S1). Before the experiments, the devices were pre-
coated with 1:100 v/v collagen solution in sterile water
(collagen type I from rat tail, Sigma-Aldrich) to create a
suitable substrate for cell attachment and growth inside
the microchannels.

We used two different chemical dyes to assess the
cells’ viability. To account for live cells, we used cal-
cein AM (Thermo Fisher), a lipid-soluble esterase sub-
strate that can passively cross the cell membrane. In-
side live, correctly functioning cells, it is converted by
intracellular esterases into a green fluorescent molecule
(calcein). Even if calcein is considered to remain in-
side the cells as long as the cell membrane is intact,
[20] it suffers from a slow spontaneous leakage.[21] Pre-
vious non-steady-state studies have also shown that cal-
cein can self-quench when the dye reaches high enough
concentrations. [22] 23] Yet another limitation of this live-
cell dye is that hydrolysed (i.e. fluorescent) calcein
molecules can remain inside the cells’ cytoplasm even
though the apoptotic metabolic process has been initi-
ated. [24H26] To account for apoptotic cells, we used
CellEvent™ Caspase-3/7 Green Detection Reagent (in
short, caspase-3/7), also from Thermo Fisher, that ini-
tially is a non-fluorescent conjugate. In early apoptotic
cells, it binds to DNA thanks to caspase metabolic pro-
cesses activation and emits a green fluorescent signal. A
minor drawback of this dye, reported by the manufac-
turer, is that also healthy cells display a minimal posi-
tive caspase signal. Because of the spectral overlap be-
tween these two dyes, two different chemical staining so-
lutions were prepared using the endothelial cell complete
medium with the final concentration of 2 pM for calcein
AM and 10 uM for caspase-3/7.

To monitor cells’ transition from living to apoptotic
over time, we kept cells chemically-stained at all times
to follow this process. Human dermal microvascular en-
dothelial cells, HMEC-1 (ATCC® CRL-3243™) were
maintained in a static environment at 37°C with 5% CO4
according to the manufacturer’s protocol. On the day of
the experiment, cells were detached, centrifuged at 100
ref (relative centrifugal force) for 7 min and seeded (ap-
proximate density of 3.4 * 107 cells/mL) into the coated
microfluidic devices. Cells were left to sediment for 2
hours at 37°C to attach to the collagen coating and ac-
quire their typical elongated morphology. We used two
different inflow velocities, 0.1 pL/min and 2 pL/min, an-
ticipating that it would result in distinct cell behaviours,
i.e., display different dynamic live/apoptotic ratios. En-
dothelial cells are thin (below 10 pm thickness[27]), so
we estimate that the microfluidic-hosted HMEC-1 cells
would experience shear stress values of 4 mPa and 80
mPa for low and high flow, respectively. These values
lie within the physiological range of shear stress values
found in blood capillaries. [28]

The microfluidic device was placed in an on-stage in-
cubator (Chamlide TC, Live Cell Instrument) and cells
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were monitored using an inverted epi-fluorescence micro-
scope (DMI6000B, Leica Microsystem) with 20x mag-
nification (HCX PL FLUOTAR, NA 0.40, Leica Mi-
crosystems). The automated time-lapse imaging started
jointly with the constant infusion of a respective stain-
ing medium. Sequential imaging with phase-contrast and
fluorescence microscopy continued for up to 12 hours.
From the time-lapse phase-contrast images, a ¢cGAN
was trained to generate virtually-stained fluorescence im-
ages of live (simulating calcein AM) and apoptotic (sim-
ulating caspase-3/7) cells. The data from the low flow
experiments were used for the cGAN training and inter-
nal validation. Because of the spectral overlap of the two
dyes, separate data sets were acquired for each of them.
The training data comprised 1440 pairs of phase contrast
and fluorescence images for live cells and 1980 pairs for
apoptotic cells. The internal validation data set consisted
of 450 pairs of images for live cells and 792 for apoptotic
cells. We used the high-flow data as external validation
data to evaluate the network performance (1170 pairs of
images for live cells and 3668 for apoptotic cells).

Our cGAN consists of three neural networks (see
Fig.S2). First, a generator receives phase-contrast im-
ages as input and generates virtually-stained fluorescence
images of live and apoptotic cells. The second network
is a discriminator, which aims to distinguish the gener-
ated images from the images of chemically-stained cells
(authentic images), classifying them accordingly. And
the third one is a perceptual discriminator that exploits
the perceived similarities between the generated and au-
thentic images. As we train these three networks simul-
taneously, the generator gradually becomes more adept
at generating virtually-stained images that fool the dis-
criminator. The discriminator, in turn, becomes better
at distinguishing images of chemically-stained cells. The
perceptual discriminator is novel in virtual staining ap-
plications. It guides the training of the generator to-
wards generating virtually-stained images that resemble
authentic images in terms of perceptual content.

The first two networks have been described in detail in
a previous work [29]. The additional perceptual discrimi-
nator consists of a Densely Connected Convolutional Net-
works (DenseNet121) [30], pre-trained on the ImageNet
dataset. This network receives virtually- and chemically-
stained images and maps them into an N-dimensional
representation to assess their similarities in feature space
[31]. This approach allows the network to evaluate dis-
crepancies in content and style, improving the generator’s
performance to reproduce cell elongations and internal
texture and discern cell boundaries in high-density sce-
narios. Importantly, this network remains fixed during
the ¢cGAN training, and no changes are applied to its
pre-trained weights.

To obtain quantitative information about the sam-
ple’s viability we used a deep-learning method to train
neural networks using only a single label-free image to
track particles called LodeSTAR.[14] This method forms
part of the Python library DeepTrack 2.1.[29] We based
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FIG. 2. Evaluation of the virtual staining and automatic cell
counting. (a) Time evolution of the number of live and apop-
totic cells when stained chemically or virtually (colour-coded)
during two different low flow experiments. The displayed data
were normalised to an average of the first three data points
for each dye and type. (b) Comparison of manual counting
versus LodeSTAR network output. Five images of each type
were manually-counted by two independent counters and the
average of those counts was compared with the automatic
counting approach. (c-d) The trained LodeSTAR networks
were used to analyse the virtually-stained phase-contrast im-
ages of cells cultured under low (c) and high (d) flows. The
data were normalised to the total number of cells at time zero
for each experiment and averaged by using a rolling average
with window size 5.

our counting networks on one of the provided example
notebooks[32] and trained four separate networks, one for
each dye (live or apoptotic) and type of data (chemically-
or virtually-stained) by choosing representative images
for these four cases.

Time evolution of the number of live or apoptotic cells
from the internal validation dataset at low flow veloc-
ity when stained chemically or virtually is represented
in Figure 2h. We acquired the data for 12 hours, but
cells exposed to calcein suddenly ruptured after approx-
imately half of the experiment. Therefore, we chose
images for both calcein and caspase internal validation
within the first five hours. All data were normalised to
an average of the first three data points for each dye
and type. The number of live cells is stable over time
in the virtually-stained images but decays to almost half
in 5 hours in the chemically-stained ones. The discrep-
ancy between the number of chemically- and virtually-
stained viable cells can be explained by several mecha-
nisms: First, in our experimental approach, the chemical
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stain is mixed with the medium and continuously flows
through the cell culture. There are two consequences
of this. (i) The administrated calcein concentration is
higher than recommended by the manufacturer, and self-
quenching could occur. (ii) The cells’ constant exposure
to dye and illumination light for hours becomes cyto-
toxic (what we observed in the internal validation data
set). Either the mechanism, the calcein fluorescence in-
tensity in affected cells decreases (meanwhile the back-
ground increases) and subsequently the cells are ignored
by the automatic counting network. This is not seen in
the virtually stained images as the phase contrast images
remain unaffected. The cytotoxic effect (see Movies S1-
S2) was confirmed in a control experiment where cells
were only subjected to culture medium and imaged with
phase-contrast microscopy (see Movie S3). The con-
trol experiment shows that cells keep their morphological
phenotype throughout the experiment compared to the
calcein-exposed cells.

For apoptotic cells, the trend is similar for the num-
ber of cells in chemically- and virtually-stained images.
There are slightly fewer cells counted as apoptotic in the
virtually-stained images than in the chemically-stained
ones.

Figure shows the correlation between manual and
automatic counting with LodeSTAR. The number of cells
in twenty images, five per dye and staining type, was
manually counted by two independent counters. The
plot represents the correlation between an average of the
results of the two counters and the automatic counting
done by LodeSTAR. The human eye generally tends to
classify more spots as cells than the neural network. As
mentioned previously, the low-intensity caspase signal in
healthy cells might result in subjective analysis. We con-
sidered this when training the LodeSTAR, resulting in a
slightly more restrictive network than manual counters.

In Figure 2k-d, the time evolution of cells automat-
ically stained by the cGAN as live or apoptotic when
cultured in low (c¢) or high (d) flow and subsequently
counted by LodeSTAR is shown. The presented data
is the result of virtual staining of the phase-contrast im-
ages from the experiments with chemical caspase-3/7 dye
as experiments with calcein suffered from the problems
mentioned previously. For visualisation, the data were
averaged using a rolling average with a window size of 5
data points and normalised to the total number of cells
(live+apoptotic) at the time zero. Over time, the num-
ber of live cells is stable regardless of the flow rate expo-
sure. These results support our previous reasoning that
the virtually-stained cells are not affected by the self-
quenching mechanism.

The number of apoptotic cells increases in both flow
experiments over time but at different rates. Cells ex-
posed to low flow suddenly turn apoptotic after approx-
imately 5 hours into the experiment, compared to the
cells cultured under high flow. This is expected as the
cells cultured in low flow are exposed to a lower rate of
media replenishment, which is detrimental to the cells in

the long run. Cells cultured under high flow also undergo
apoptosis but at a much slower rate. Again, this is pos-
sibly caused by the continuous exposure to illumination
light and chemical dyes.

Apoptosis is an active process and requires cells to be
alive, i.e., having an intact membrane. The total number
of cells is seemingly increasing over the time course of
the experiment, a behaviour more evident for the low-
than the high-flow cell culture condition. This mirrors
the used dyes’ working principles, where most apoptotic
cells are stained positive for both calcein and caspase.

To conclude, we have developed a non-invasive method
based on deep learning to discriminate between alive
HMEC-1 cells and cells that have initiated apoptosis
by following their viability over time. This approach is
based on virtually-stained images obtained from time-
lapse phase-contrast images of the sample and further cell
counting to attain live versus apoptotic cell ratios for dif-
ferent experimental conditions. These microscopy images
provide enough information about the thin HMEC-1 cells
for the network to distinguish between live and apop-
totic cells based on their morphology and possibly in-
ternal subcellular structures. In physiologically-relevant
studies, cells have cell-cell contact, and corresponding
in vitro experiments result in high confluency. Even
if optimal for the cellular function, the resulting non-
homogeneous 2D cell layer is difficult to analyse and,
specifically, to stain with standard chemical dyes. The
microscopy imaging and subsequent cell counting using
traditional approaches are also very challenging and may
force investigators to dilute the cell sample even to per-
form the analysis. A lower magnification speeds up the
monitoring and enables capturing dynamic cell changes
in large cell populations. Once again, while optimal for
high throughput and statistics, the large amount of data
to process restricts manual cell counting and urges for
automatic analysis.

Our presented approach is much less labour-intensive
and cell-invasive than standard fluorescent stain-
dependent methods. It may be used for further functional
studies on HMEC-1 cells or other cells that thrive in high
perfusion environments where a continuous infusion of
a chemical dye is required to follow long-term dynamic
events. Our cell viability method allows for studying
other processes that still require fluorescent probes and
chemical staining. Consequently, it facilitates a higher in-
formation gain on the same cell population than relying
only on the conventional chemical staining procedures.
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