

All-optical observation on activity-dependent nanoscale dynamics of myelinated axons

Junhwan Kwon^{1,2,✉}, Sungho Lee^{3,4,✉}, Yongjae Jo², Myunghwan Choi^{3,4,*}

¹Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.

²Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.

³School of Biological Sciences, Seoul National University, Seoul, Republic of Korea. ⁴The Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea. [✉]These authors contributed equally to this work.

* Correspondence to:

M. Mark Choi, Ph.D.

Associate Professor

School of Biological Sciences, Seoul National University

Address: 1 Gwanak-ro, Gwanak-gu, Seoul 08826

Tel: +82-2-880-4420

Email: choim@snu.ac.kr

1 **ABSTRACT**

2

3 In the mammalian brain, rapid conduction of neural information is supported by the myelin, whose
4 functional efficacy shows steep dependence on its nanoscale cytoarchitecture. Although previous in
5 vitro studies suggested that neural activity accompanies nanometer-scale cellular deformations, it has
6 remained unexplored whether neural activity can dynamically remodel the myelinated axon due to the
7 technical challenge in observing its nanostructural dynamics in living tissues. To this end, we
8 introduced a novel all-optical approach combining a nanoscale dynamic readout based on spectral
9 interferometry and optogenetic control of neural excitation on a living brain slice preparation. In
10 response to optogenetically evoked neuronal burst firing, the myelinated axons exhibited progressive
11 and reversible spectral redshifts, corresponding to the transient swelling at a subnanometer scale. We
12 further revealed that the activity-dependent nanostructural dynamics was localized to the paranode. In
13 summary, our novel all-optical studies substantiate that myelinated axon exhibits activity-dependent
14 nanoscale swelling, which potentially serves to dynamically tune the transmission speed of neural
15 information.

16

17

18

19

20 **RESEARCH SUMMARIES**

21

22 As neural activity involves rapid ion flux across the cell membrane, researchers have long been
23 tried to detect the accompanying nanoscale morphological dynamics. However, measuring the
24 activity-dependent nanostructural dynamics in the living mammalian brain has been an enigma
25 due to the technical limitations. By combining excitatory optogenetics and *in situ* nanoscale
26 metrology based on spectral interference, we demonstrate the first direct observation that the
27 mammalian axons exhibit transient activity-dependent swelling at subnanometer-scale.

28

29 **INTRODUCTION**

30

31 As neurons function by millisecond-scale ion flux across the cell membrane, neural activity has long
32 been thought to accompany measurable morphological changes^{1–3}. Since the late 1970s, several
33 groups have reported nanometer-scale swelling in the giant axons of invertebrate species (crayfish
34 and squid) by Michelson interferometry⁴ and mechanoelectrical measurement⁵. Later studies in
35 mammalian cultured neurons by dark-field microscopy and full-field interferometry revealed the
36 subnanometer-scale morphological dynamics dependent on electrical potential across the neuronal
37 cell membrane^{4–8}.

38

39 Yet, it is remained as an enigma to what extent neural activity dynamically remodel the axons in
40 living mammalian brains, which are often ensheathed by the insulating layer - myelin. Myelin is a
41 highly compacted subcellular structure of the oligodendrocyte, composed of multi-layered lipid
42 membranes and intervening aqueous mediums. This highly-organized thin-film cytoarchitecture
43 supports rapid and energy-efficient conduction of neural information in a small form factor, enabling
44 formation of highly integrated circuit of the mammalian brains^{9,10}. Considering that the function of
45 myelin has steep dependence on its thin-film structure, the structural dynamics of myelinated axons,
46 even at subnanometer-scale, can have critical impact on neural circuit functions¹¹.

47

48 Investigating the nanostructural dynamics of myelinated axons in living mammalian brains is
49 technically challenging. The current gold-standard on nanoscale imaging of myelinated axons is
50 electron microscopy, which is hardly adoptable to the living biological samples^{12–14}. Super-resolution
51 techniques are a promising alternative for living biological samples but subnanometer-scale precision
52 has yet been attained in the mammalian axons due to high optical aberrations of the lipid-rich myelin
53 layers^{15–17}. Thus, most studies so far focused on long-term dynamics of relatively large morphological
54 changes involving cell proliferation and differentiation^{11–13,18}.

55

56 Several years ago, we developed a spectral interferometric technique, named SpeRe, which
57 offers the nanoscale readout of the thin-film cytoarchitecture of the myelinated axons *in vivo*¹⁹. Here,
58 we combined the SpeRe's nanoscale readout with optogenetic manipulation of neural activity to unveil
59 the neural activity dependent nanostructural dynamics of myelinated axons in a living brain tissue.
60 Our novel all-optical approach revealed that the myelinated axons exhibit subnanometer-scale
61 swelling in response to neuronal burst firing, and that the swelling dynamics is cumulative and
reversible in second-scale.

62

63

62 **RESULTS**

63

64 **System for all-optical investigation**

65 To observe morphological dynamics of functionally active myelinated axons at nanoscale, we
66 introduced a novel all-optical neurophysiology approach (**Fig. 1a,b**). For manipulating neural
67 excitation with minimal mechanical perturbation, we introduced red-shifted excitatory optogenetic
68 protein (ChrimsonR) into cortical excitatory neurons. Neuronal excitation was timely triggered by epi-
69 illuminated fiber-coupled LED at 633 nm on an acute brain slice, and was confirmed by GCaMP-
70 mediated functional calcium imaging on the targeted neurons by two-photon microscopy²⁰. For
71 recording nanostructural dynamics of myelinated axons, we incorporated spectral reflectometry
72 (SpeRe), that captures broadband reflectance spectrums at the geometric center of the axons and
73 decodes the physical size of the multilayered thin-films (i.e., diameter of the myelinated axons) by
74 decoding the spectrums. To assist the pinpointing of the geometric centers, we additionally introduced
75 spectral confocal reflectance imaging (SCoRe)²¹, which provides a volumetric image of reflected light
76 corresponding to the centerlines of myelinated axons.

77 The overall procedure for nanostructural readout begins with acquisition of a volumetric
78 reflectance image from a fresh brain slice by SCoRe (**Fig. 1c**). From the volumetric SCoRe image, the
79 position of maximum intensity for each cross-section is localized, resulting in the geometric centerline
80 along the fibrous structure. The broadband reflectance spectrum is subsequently acquired over time
81 at the center positions, and the structural dynamics is decoded from the acquired spectrums (SpeRe).

82 For decoding of nanostructural dynamics, we performed numerical optic simulation on the
83 myelinated axons and obtained quantitative relationship between the reflectance spectrum and the
84 nanoscale cytoarchitecture. Briefly, interaction of light waves at the subcellular layers of myelinated
85 axons were described by the thin-film matrix theory, and distribution of light waves at the focus was
86 formulated by the vector diffraction theory. As the morphological dynamics was observed exclusively
87 at the paranode of myelinated axons in our following experiments, we set the simulation parameters
88 including physical size and refractive index for each subcellular layer based on the paranodal region
89 (**Supplementary Table 1**).

90 The resulting simulation database showed that the swelling of myelinated axons ($\Delta D > 0$) leads
91 to negative phase-shift in wavenumber domain ($\Delta v < 0$) with linear relationship (**Supplementary Fig.**
92 **1**). Thus, we decided to use the relative phase-shift (Δv) as a reliable metric to quantify the dynamic
93 swelling of myelinated axons (i.e., phase detection method²²⁻²⁴). To detect subnanometer-scale
94 morphological dynamics, we used the grating of 600 lines \cdot mm⁻¹ and slit size of 10 μ m, resulting in
95 spectral resolution of \sim 0.13 nm.

96

97 **Validation of subnanometer-scale readout precision**

98 To verify subnanometer-scale precision of our SpeRe readout, we used a finely tapered glass fiber
99 prepared by thermal drawing of a glass rod using a micropipette puller (**Fig. 2**). In a tapered fiber, the
100 diameter (D) is a smooth function of its longitudinal position (x), therefore we can simply mimic the
101 nanoscale change in diameter (ΔD) by shifting the position (Δx) using a galvanometric scanner. We

102 first estimated the diameter along the fiber using an image acquired by polarization microscopy, and
103 validated by SpeRe (**Fig. 2a-c**). We then selected two points, x_1 and x_2 , which showed physiological
104 axon diameters (0.3–5 μm). By the linear regression near the selected points, we acquired the slope
105 (dD/dx), which provided the multiplicative factor for converting the step shift in position (Δx) to the
106 change in diameter (ΔD). For example, to introduce increase in diameter by 0.5 nm at x_2 , we shifted
107 the position along the centerline by +55 nm, corresponding to ΔD (0.5 nm) divided by dD/dx (0.009).

108 In a tapered fiber, we obtained broadband reflectance spectra over time on the two selected
109 positions at sampling speed of 20 Hz. To convert the spectral shift (Δv) to the change in physical
110 diameter (ΔD), we applied the linear relationship derived from our numerical simulation for each
111 position (**Supplementary Fig. 2a-c**). The in-position stability of SpeRe acquisition during the initial 2 s
112 was approximately ± 0.2 nm at x_1 and ± 0.1 nm at x_2 in standard deviation (**Supplementary Fig. 2d-f**).
113 The step shifts in the scan position (Δx) with variable distances were introduced at 2 s after the
114 acquisition (**Fig. 2d-f**). By the step shift in the scan position, we observed the reliable negative
115 spectral shift in wavenumber domain ($\Delta v < 0$), corresponding to the swelling. The estimated changes
116 in diameter by SpeRe were precisely matched with the inputs introduced by the shift in position (**Fig.**
117 **2e-f**). These results suggest that our dynamic SpeRe readout provides subnanometer-scale precision.
118

119 **Activity-dependent nanostructural dynamics of myelinated axons**

120 For optical manipulation and recording of neural excitation, we microinjected two types of adeno-
121 associated viruses encoding a red-shifted opsin (AAV9-hSyn-ChrimsonR-tdTomato) and a fluorescent
122 calcium indicator (AAV9-hSyn-GCaMP6s) at the somatosensory cortex of a live mice, and prepared
123 fresh brain slices in oxygenized medium on the experimental day^{25,26} (**Fig. 3a**). By combining two-
124 photon fluorescence and confocal reflectance imaging of the brain slice, we could visualize
125 transfected neurons, as well as their myelinated axons. By illuminating 633 nm light pulses following
126 the high frequency stimulation protocol, we observed reliable functional calcium activity in most
127 neuronal soma expressing both ChrimsonR and GCaMP6s^{10,13} (**Fig. 3b** and **Supplementary Fig. 3**).

128 To address whether neuronal excitation leads to nanostructural dynamics of myelinated axons,
129 we randomly sampled up to 10 myelinated axons for each brain slice, and recorded the nanoscale
130 dynamics by SpeRe for 5 s with light stimuli ('ChR + Light' group, $n = 104$ axons in 5 mice; **Fig. 3c,d**).
131 As negative control groups, we included brain slices without light stimuli ('ChR only' group, $n = 105$
132 axons in 5 mice) and also brain slices without introducing the optogenetic actuator ('Light only' group,
133 $n = 105$ axons in 5 mice). The SpeRe readout was performed at near the either ends of myelin
134 sheaths, corresponding to the paranode, where axo-myelinic communication is known to be active²⁷
135 ²⁹. Apparently, only the group with functional optogenetic excitation ('ChR + Light' group) showed
136 statistically significant spectral shift by $\sim 2,000$ cm^{-1} on average (unpaired t-test: $p < 0.05$; **Fig. 3e**).
137 Intriguingly, the spectral shift was cumulatively increased during the 1 s period of optogenetic
138 excitation and slowly recovered in several seconds, indicating that the activity-dependent
139 morphological dynamics does not follow the neuronal membrane potential having millisecond-scale
140 rise and fall kinetics. Moreover, pharmacological inhibition of action potential generation by
141 tetrodotoxin significantly, but only partially, attenuated the swelling, suggesting that the generation of

142 action potentials is not necessary for inducing the swelling (**Supplementary Fig. 4**).

143 To convert the spectral shift ($\Delta\nu$) to the change in physical diameter (ΔD), we applied the linear
144 relationship derived from our numerical simulation (**Supplementary Fig. 1**). As the nanostructural
145 parameters for individual myelinated axons we sampled were not attainable, we applied the
146 representative structural parameters in **Supplementary Table 1** obtained from previous electron
147 micrographs and estimated from our optical images (**Supplementary Fig. 3**)^{19,30}. Although this
148 approach compromised the precision of estimation on individual axons, we were able to gain
149 information on the population distribution.

150 Although statistically significant, the group-averaged spectral shift of $\sim 2,000 \text{ cm}^{-1}$ corresponds to
151 $\sim 0.2 \text{ nm}$, which was at least several folds smaller than previously reported axonal swelling observed
152 in cell culture and invertebrate systems (**Fig. 3e**). This discrepancy can be explained by our
153 experimental design, which randomly samples myelinated axons in brain slices. Conceivably, a
154 significant portion of long-projecting myelinated axons is expected to be severed during the tissue
155 slicing procedure and contains insufficient optogenetic proteins due to stochastic nature of viral
156 transfection. Consequently, the large portion of the samples even in the 'ChR + Light' group might
157 have been nonresponsive to optogenetic stimuli. Indeed, the histograms of change in diameters for
158 the experimental and the negative control groups were largely similar with statistically significant
159 difference observed only at the swelling greater than $\sim 0.5 \text{ nm}$ (**Fig. 3f**).

160 We thus questioned if we could observe reliable nanostructural dynamics in the myelinated
161 axons that are morphologically intact and functionally active (**Fig. 4**). By two-photon imaging of
162 neuronal morphology and functional calcium activity with optogenetic stimuli, we identified the three
163 morphologically intact and functionally active myelinated axons, which were connected to the intact
164 neuronal soma (**Fig. 4a,b**). As expected, the three myelinated axons repeatedly exhibited progressive
165 increase in their diameters by $0.3\text{--}1 \text{ nm}$ in response to optogenetic stimuli (**Fig. 4c,d** and
166 **Supplementary Fig. 5**). We further observed that the morphological dynamics was localized to the
167 paranode (**Fig. 4e**) and that the degree of swelling was positively correlated with the duration of
168 optogenetic stimuli (**Fig. 4f**).

169

170

171 **DISCUSSION**

172

173 By combining nanoscale readout based on spectral interferometry (SpeRe) and optogenetic
174 manipulation of neural excitation, we reported the first experimental evidence that myelinated axons
175 exhibit activity-dependent subnanometer-scale morphological dynamics of $\sim 0.5 \text{ nm}$. We further
176 revealed that the nanostructural change displays slow kinetics at second-scale and localized to the
177 paranode. As conduction efficacy of neural information has steep dependence on the subcellular
178 structure of the paranode, we expect that its nanostructural dynamics can serve as a regulatory mode
179 of controlling conduction speed in the mammalian brains.

180 The functional consequence of the morphological remodeling at the paranode can be inferred
181 by the periaxonal nanocircuit model of the myelinated axons¹⁰. According to this model, the periaxonal

182 space is electrically conductive and the paranodes are only partially sealed, resulting in leaky
183 propagation of neural information. Thus, the swelling of the paranode can attenuate the leakage and
184 accelerate the conduction speed. By the theoretical double cable model, 1 nm swelling at the
185 paranode leads to ~1.3% acceleration in conduction speed. Accordingly, the observed swelling of ~0.5
186 nm is expected to increase the conduction speed by ~0.7%. Consistently, Yamazaki et al. reported
187 short-term increase in conduction speed by directly depolarizing the myelinating oligodendrocyte^{28,31}.
188 The physiological relevance of this change in conduction velocity on neural circuit function requires
189 further investigation.

190 Our results revealed that the paranodal swelling occurs cumulatively and reversibly at second
191 scale, suggesting that the neuronal membrane potential having millisecond-scale rise and fall kinetics
192 is not the direct source of the swelling (**Fig. 3d** and **Fig. 4d**). In addition, pharmacologic inhibition of
193 voltage-gated sodium channel by tetrodotoxin only partially attenuated the paranodal swelling
194 (**Supplementary Fig. 4**), suggesting that generation of action potential is not necessary for inducing
195 the swelling. Considering that ChrimsonR is light-gated channel permeable to both sodium and
196 calcium ions^{26,32}, we expect the calcium influx may play a key role in the paranodal swelling. In
197 agreement with our thought, we observed calcium transients by ChrimsonR-mediated optogenetics in
198 our inhibition study with tetrodotoxin, and the degree of calcium increase was attenuated compared to
199 the control group. Further pharmacological inhibition of ion channel subtypes or use of ion-selective
200 opsins will clarify the underlying molecular mechanism.

201 Although our results consistently suggest that the neuronal excitation leads to enlargement of
202 myelinated axons at the paranode, it remains to be answered which subcellular components are
203 remodeled. Chéreau et al. reported that high frequency stimulation of neurons leads to axonal
204 swelling in the mouse brain¹⁵. Trigo and Smith also showed that micron-scale axonal swelling
205 following prolonged electric stimulation of the peripheral nerves²⁷. As mature myelin sheaths do not
206 typically exhibit axonal activity dependent functional responses, we estimate that the axon at the node
207 of Ranvier swells in response to ionic redistribution across the membrane and the surrounding myelin
208 is passively enlarged. Detailed multiparametric analysis based on the thin-film model with a priori
209 structural information on each subcellular composition may provide a solution to this question.

210

211

212 **METHODS**

213 **Tapered glass fiber sample:** The tapered glass fibers were obtained by the thermal
214 drawing of a glass rod (1.5 mm in diameter) using a micropipette puller (P-1000, Sutter
215 Instrument). To mimic the typical axon diameters (1–5 μm), the optimal parameters for the
216 micropipette puller were obtained by trials and errors (ramp = 500 temperature = 550, pull =
217 40, velocity = 20, and pressure = 500). The tapered fiber was glued on a plain slide glass
218 using an acrylic adhesive (401, Loctite) ensuring that the fiber is parallel to the slide glass
219 (i.e., orthogonal to the optical axis of the objective lens). To firmly hold the fiber, a silicone-
220 based sealant (Kwik-Cast, World Precision Instruments) was introduced around the fiber tip,
221 exposing only the fiber tip in the air. The sample was imaged by a polarization microscope
222 (SP8, Leica) and the diameter along the fiber was measured by applying the 'Distance map'
223 module in ImageJ.

224

225 **Artificial cerebrospinal fluid (aCSF):** Two types of artificial cerebrospinal fluid (aCSF)
226 solutions were prepared, one is for surgery and the other is for recording. The surgical aCSF
227 was composed of (in mM) 92 NMDG, 2.5 KCl, 1.25 NaH_2PO_4 , 30 NaHCO_3 , 20 HEPES, 25
228 glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 $\text{CaCl}_2\cdot 2\text{H}_2\text{O}$, and 10 $\text{MgSO}_4\cdot 7\text{H}_2\text{O}$.
229 The recording aCSF was composed of (in mM) 124 NaCl, 2.5 KCl, 1.2 NaH_2PO_4 , 24
230 NaHCO_3 , 12.5 glucose, 2 $\text{CaCl}_2\cdot 2\text{H}_2\text{O}$, and 2 $\text{MgSO}_4\cdot 7\text{H}_2\text{O}$ (Sigma Aldrich). Both solutions
231 were titrated to have pH 7.3–7.4 and 300–310 mOsm while aerated with 95% O_2 and 5%
232 CO_2 .

233

234 **Mouse preparation:** All mice were housed with littermates in groups of two to five in reverse
235 day/night cycle and given ad libitum access to food and water. All animal experiments were
236 performed in compliance with institutional guidelines and approved by the sub-committee on
237 research animal care at Sungkyunkwan University and Seoul National University. Male or
238 female C57BL6J wild-type mice aged 4-week-old (Jackson Laboratory) were used for virus-
239 mediated transduction of a genetically-encoded calcium indicator (GCaMP6s) and/or an
240 optogenetic protein (ChrimsonR-tdT). The mouse was anesthetized by inhaling 4%
241 isoflurane (Hanapharm) in an induction chamber and were subsequently maintained with 1–
242 1.5% isoflurane during surgery. The mouse skull was affixed on a custom-made stereotaxic
243 frame and the body temperature was maintained at 37°C using a homeothermic blanket
244 (TC-1000, CWE) and a thermistor probe (YSI-451, CWE). After removing the scalp, the hole
245 was made on the center of the somatosensory area at a diameter of ~1 mm. The 700 nL of a
246 solution containing AAV9- hSyn-GCaMP6s and/or AAV5-hSyn-Chrimson-tdTomato (~5 x
247 10^{11} $\text{GC}\cdot\text{ml}^{-1}$ each in the recording aCSF) was slowly infused to the cortical layer 3–4. After
248 3 weeks, the mice were used for the acute slice experiments.

249

250 **Brain slice preparation:** Mice were decapitated under deep anesthesia by inhaling 3%
251 isoflurane in O₂. The mouse brain was harvested and sliced using a vibratome (thickness =
252 300 μ m; VT1200S, Leica). During the slicing procedure, the immersion solution was the
253 surgical aCSF solution kept at 4°C. Subsequently, the brain slices were incubated in the
254 surgical aCSF solution at 35°C for 20 min and were immersed in the recording aCSF
255 solution at room temperature (22–24°C) with continuous aeration of 95% O₂ and 5% CO₂ for
256 30min. The brain slices were mounted on an imaging chamber using a tissue anchor (SHD-
257 41/10, Warner instruments). For the neuronal inhibition study, tetrodotoxin (TTX) was added
258 to the recording aCSF at 10 μ M.

259

260 **Optic setup:** Our customized optic system shown in Fig. 1b was designed to incorporate the
261 following 3 modalities: (i) two-photon fluorescence imaging for recording neuronal activity; (ii)
262 spectral reflectance spectroscopy for nanostructural readout of myelinated axons; and (iii)
263 optogenetics for manipulating neural activity. The system was constructed based on an
264 upright galvanometer-based laser scanning microscope (Ultima IntraVital, Bruker), coupled
265 to a Ti-Sapphire femtosecond laser (for two-photon fluorescence imaging; Chameleon Ultra
266 II, Coherent) and a supercontinuum white-light laser (for SpeRe and SCoRe; EXB-6, NKT
267 photonics). The femtosecond laser was tuned to 920 nm for exciting GCaMP6s and was
268 attenuated to 10–20 mW at the objective back aperture. The supercontinuum laser was
269 attenuated to ~0.4 mW at the objective back aperture using a neutral density filter and
270 bandpass-filtered to 450–700 nm. An apochromatic water-immersion objective lens (25X,
271 0.95 NA, Leica) was used for both two-photon fluorescence and SpeRe/SCoRe readouts.
272 For two-photon fluorescence imaging, a GaAsP photomultiplier tube placed at the non-
273 descanned path was used along with a bandpass filter at 500–550 nm. For the SCoRe
274 imaging, a silicon photomultiplier tube placed at the descanned path was used. For SpeRe
275 measurements, an array spectrometer (SR303i and Newton, Andor) was introduced at the
276 descanned path. For spectroscopy, the grating of 600 lines \cdot mm⁻¹ was adjusted to accept
277 spectral window of 550 to 650 nm, where the input white light exhibited near uniform
278 intensity profile over the spectral window. The slit size was set to 10 μ m, providing a spectral
279 resolution ~0.13 nm with enough signal-to-noise ratio at acquisition speed of 20 Hz. For
280 optogenetics, a 633 nm diode laser (MRL-III-633, CNI laser) was coupled to a multimode
281 fiber (400 μ m core, 0.39 NA; M119L02, Thorlabs), which was mounted on a motorized 3-axis
282 micromanipulator (MP-285, Sutter Instrument). Optical irradiance for optogenetic stimulation
283 was set to 10 mW \cdot mm⁻² at the tissue surface, which was delivered at 100 Hz with 50% duty
284 cycle for the duration of 0.5–2 s.

285

286 **Data analysis:** For SpeRe, the time-series reflectance spectrums were filtered in spectral
287 and time domains in Matlab. To reduce artifactual jittering noise, the lowpass filter at a cutoff
288 frequency of 0.65 nm^{-1} was applied in the wavelength domain by applying the 'lowpass'
289 function, and the smoothing filter with the bin of 0.5 s was applied in temporal domain by
290 using the 'smooth data' function. From the filtered spectral data, relative phase shift over
291 time from the baseline was retrieved based on the least-square method. Occasionally,
292 unpredictable motion artifacts (e.g., instability of media perfusion) interfered reliable
293 quantification of the phase shift. Thus, we excluded the data if it displayed at least one of the
294 following indications of excessive motion artifact: change in reflectance intensity greater than
295 10% and the phase drifted over 3 nm. For calcium imaging data, we quantified relative
296 change in fluorescence normalized by the baseline fluorescent intensity ($\Delta F/F$).
297

298

299 **Statistical analysis:** GraphPad Prism was used for statistical analysis. Group comparisons were
300 conduction using unpaired t-tests (parametric). The data are presented as mean \pm standard error. We
301 considered a p-value less than 0.05 to be statistically significant.

302

303 **Code availability:** The MATLAB scripts used for data analysis are available at an open source
304 repository (<https://github.com/Neurophoton>).

305

306 **Data availability:** All relevant data are available from the corresponding author upon request. A
307 reporting summary for this Article is available as a Supplementary Information file.

307 **References**

- 308 1. Akkin, T., Landowne, D. & Sivaprakasam, A. Optical coherence tomography phase
309 measurement of transient changes in squid giant axons during activity. *J. Membr. Biol.* **231**, 35–
310 46 (2009).
- 311 2. Yang, Y. *et al.* Imaging action potential in single mammalian neurons by tracking the
312 accompanying sub-nanometer mechanical motion. *ACS Nano* **12**, 4186–4193 (2018).
- 313 3. Tang, J. *et al.* Imaging localized fast optical signals of neural activation with optical coherence
314 tomography in awake mice. *Opt. Lett.* **46**, 1744–1747 (2021).
- 315 4. Hill, B. C., Schubert, E. D., Nokes, M. A. & Michelson, R. P. Laser interferometer measurement
316 of changes in crayfish axon diameter concurrent with action potential. *Science (80-.)* **196**, 426–
317 428 (1977).
- 318 5. Iwasa, K., Tasaki, I. & Gibbons, R. C. Swelling of nerve fibers associated with action potentials.
319 *Science (80-.)* **210**, 338–339 (1980).
- 320 6. LaPorta, A. & Kleinfeld, D. Interferometric detection of action potentials. *Cold Spring Harb.*
321 *Protoc.* **2012**, pdb-ip068148 (2012).
- 322 7. Andersen, S. S. L., Jackson, A. D. & Heimburg, T. Towards a thermodynamic theory of nerve
323 pulse propagation. *Prog. Neurobiol.* **88**, 104–113 (2009).
- 324 8. Stepnoski, R. A. *et al.* Noninvasive detection of changes in membrane potential in cultured
325 neurons by light scattering. *Proc. Natl. Acad. Sci.* **88**, 9382–9386 (1991).
- 326 9. Richardson, A. G., McIntyre, C. C. & Grill, W. M. Modelling the effects of electric fields on nerve
327 fibres: influence of the myelin sheath. *Med. Biol. Eng. Comput.* **38**, 438–446 (2000).
- 328 10. Cohen, C. C. H. *et al.* Saltatory conduction along myelinated axons involves a periaxonal
329 nanocircuit. *Cell* **180**, 311–322 (2020).
- 330 11. Cullen, C. L. *et al.* Periaxonal and nodal plasticities modulate action potential conduction in the
331 adult mouse brain. *Cell Rep.* **34**, 108641 (2021).
- 332 12. Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling
333 through experience-dependent oligodendrogenesis in the adult somatosensory cortex. *Nat.*
334 *Neurosci.* **21**, 696–706 (2018).
- 335 13. Gibson, E. M. *et al.* Neuronal Activity Promotes Oligodendrogenesis and Adaptive Myelination in
336 the Mammalian Brain. *Science (80-.)* **344**, 1252304 (2014).
- 337 14. Stedehouder, J., Brizee, D., Shpak, G. & Kushner, S. A. Activity-dependent myelination of
338 parvalbumin interneurons mediated by axonal morphological plasticity. *J. Neurosci.* **38**, 3631–
339 3642 (2018).
- 340 15. Chéreau, R., Saraceno, G. E., Angibaud, J., Catteart, D. & Nägerl, U. V. Superresolution
341 imaging reveals activity-dependent plasticity of axon morphology linked to changes in action
342 potential conduction velocity. *Proc. Natl. Acad. Sci.* **114**, 1401–1406 (2017).
- 343 16. D'Este, E., Kamin, D., Balzarotti, F. & Hell, S. W. Ultrastructural anatomy of nodes of Ranvier in
344 the peripheral nervous system as revealed by STED microscopy. *Proc. Natl. Acad. Sci.* **114**,
345 E191–E199 (2017).
- 346 17. Tillberg, P. W. *et al.* Protein-retention expansion microscopy of cells and tissues labeled using

347 standard fluorescent proteins and antibodies. *Nat. Biotechnol.* **34**, 987–992 (2016).

348 18. Young, K. M. *et al.* Oligodendrocyte dynamics in the healthy adult CNS: Evidence for myelin
349 remodeling. *Neuron* **77**, 873–885 (2013).

350 19. Kwon, J. *et al.* Label-free nanoscale optical metrology on myelinated axons in vivo. *Nat.*
351 *Commun.* **8**, 1–9 (2017).

352 20. Emiliani, V., Cohen, A. E., Deisseroth, K. & Häusser, M. All-optical interrogation of neural
353 circuits. *J. Neurosci.* **35**, 13917–13926 (2015).

354 21. Schain, A. J., Hill, R. A. & Grutzendler, J. Label-free in vivo imaging of myelinated axons in
355 health and disease with spectral confocal reflectance microscopy. *Nat. Med.* **20**, 443–449
356 (2014).

357 22. Debnath, S. K., Kothiyal, M. P., Schmit, J. & Hariharan, P. Spectrally resolved white-light phase-
358 shifting interference microscopy for thickness-profile measurements of transparent thin film
359 layers on patterned substrates. *Opt. Express* **14**, 4662–4667 (2006).

360 23. Kim, D. & Kim, S. Direct spectral phase function calculation for dispersive interferometric
361 thickness profilometry. *Opt. Express* **12**, 5117–5124 (2004).

362 24. Sandoz, P., Tribillon, G. & Perrin, H. High-resolution profilometry by using phase calculation
363 algorithms for spectroscopic analysis of white-light interferograms. *J. Mod. Opt.* **43**, 701–708
364 (1996).

365 25. Chen, T.-W. *et al.* Ultrasensitive fluorescent proteins for imaging neuronal activity. *Nature* **499**,
366 295–300 (2013).

367 26. Klapoetke, N. C. *et al.* Independent optical excitation of distinct neural populations. *Nat.*
368 *Methods* **11**, 338–346 (2014).

369 27. Trigo, D. & Smith, K. J. Axonal morphological changes following impulse activity in mouse
370 peripheral nerve in vivo: the return pathway for sodium ions. *J. Physiol.* **593**, 987–1002 (2015).

371 28. Yamazaki, Y. *et al.* Modulatory effects of oligodendrocytes on the conduction velocity of action
372 potentials along axons in the alveus of the rat hippocampal CA1 region. *Neuron Glia Biol.* **3**, 325
373 (2007).

374 29. Micu, I. *et al.* The molecular physiology of the axo-myelinic synapse. *Exp. Neurol.* **276**, 41–50
375 (2016).

376 30. Jarjour, A. A. *et al.* Maintenance of axo-oligodendroglial paranodal junctions requires DCC and
377 netrin-1. *J. Neurosci.* **28**, 11003–11014 (2008).

378 31. Yamazaki, Y. *et al.* Region-and cell type-specific facilitation of synaptic function at destination
379 synapses induced by oligodendrocyte depolarization. *J. Neurosci.* **39**, 4036–4050 (2019).

380 32. Mager, T. *et al.* High frequency neural spiking and auditory signaling by ultrafast red-shifted
381 optogenetics. *Nat. Commun.* **9**, 1–14 (2018).

382

383 **Acknowledgments**

384 We thank Dr. Moonseok Kim for guidance on the optic simulation and Dr. Seong-gi Kim for the
385 support on the experimental infrastructure. This work was supported by the Institute of Basic Science
386 (IBS-R015-D1) and by the by Basic Science Research Program through the National Research
387 Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07042834,
388 2019M3E5D2A01058329, 2019M3A9E2061789, 2020M3C1B8016137, 2020R1A5A1018081).

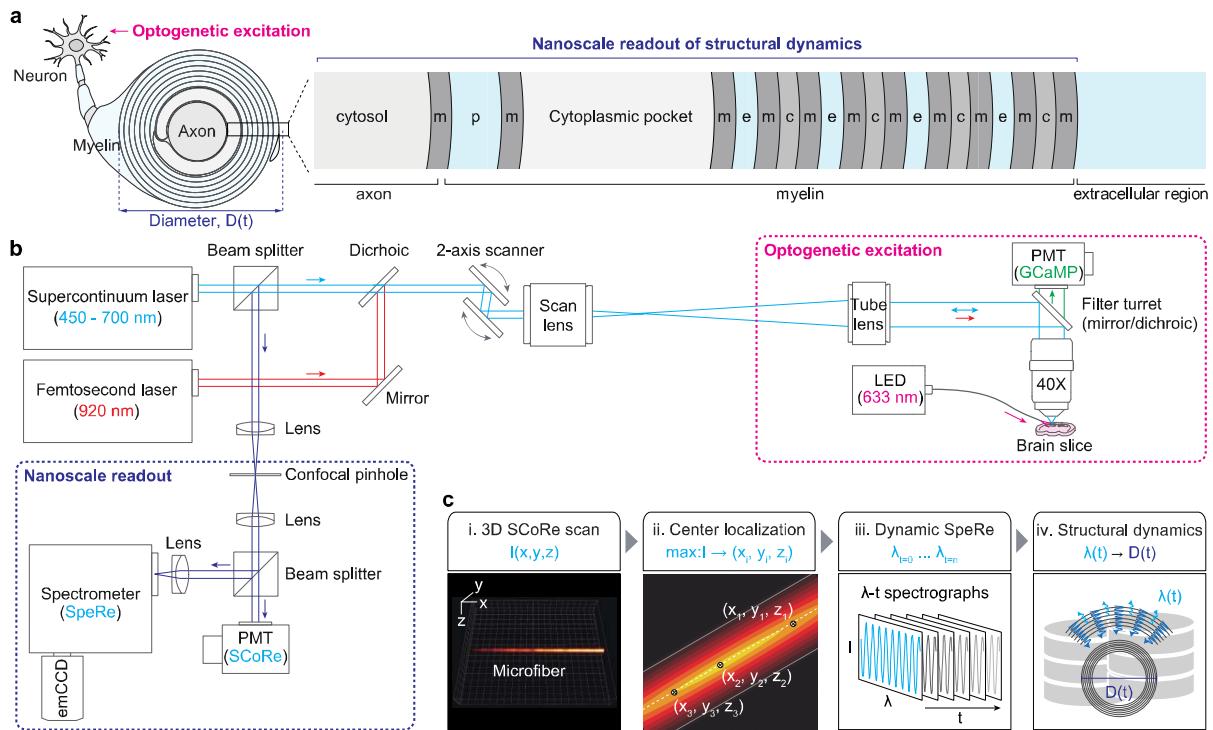
389

390 **Author contributions**

391 M.C. initiated and supervised the study. Y.J. developed the optical hardware and acquisition software.
392 J.K. performed the brain slice experiments and data analysis. All the authors cowrote the manuscript.

393

394 **Competing interests**


395 The authors declare no competing interests.

396

397 **Corresponding author**

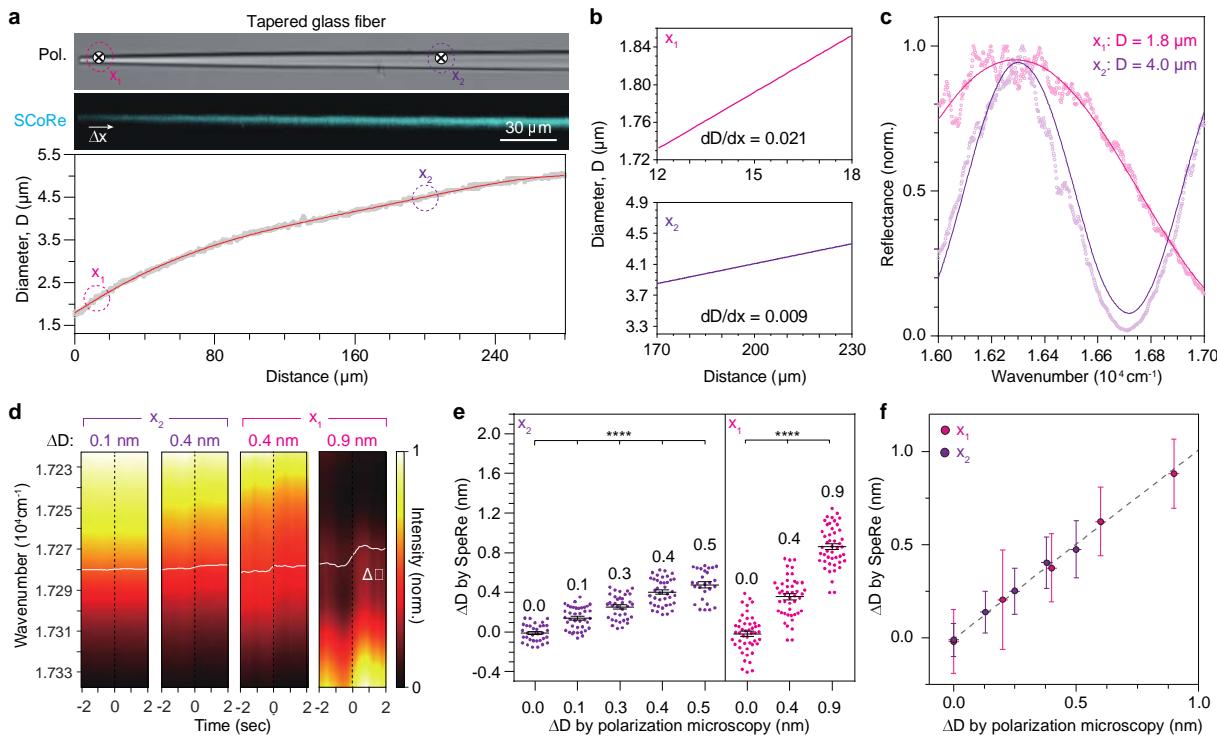

398 Correspondence to M. Choi (e-mail: choim@snu.ac.kr)

Figure 1

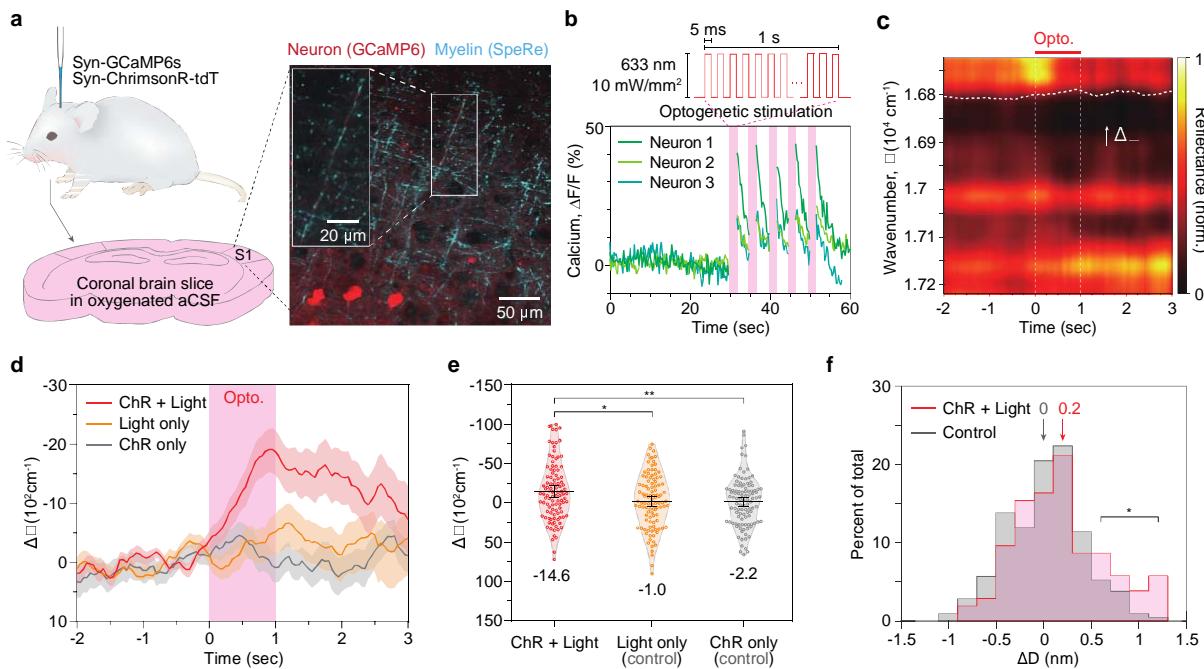

Figure 1 | All-optical approach for observing activity-dependent nanostructural dynamics of living myelinated axons. (a) A cross-sectional view on the nanoscale cytoarchitecture of a myelinated axon at the paranodal region. The thin-film layers of the myelinated axons are shown in the magnified view. m, membrane. p, periaxonal space. c, cytosolic layer of the myelin. e, extracellular region. D, diameter. t, time. (b) The optic setup incorporating spectral confocal reflectance imaging (SCoRe), spectral reflectometry (SpeRe), two-photon fluorescence imaging, and optogenetic excitation. The supercontinuum laser serves as a light source for SpeRe and SCoRe, and the femtosecond laser provides two-photon excitation for recording GCaMP-mediated neuronal calcium activity. The auxiliary fiber-coupled light-emitting diode (LED) at 633 nm was used for triggering ChrimsonR-mediated excitatory optogenetics. (c) A pipeline for the nanoscale readout of structural dynamics of a myelinated axon. i, 3D SCoRe scan to acquire a volumetric reflectance image of myelinated axons. ii, Localization of the geometric centers based on the maximal reflectance intensity. iii, Time-lapse acquisition of the reflectance spectrographs at the geometric center. iv, Decoding of the structural dynamics from the acquired spectrographs. I, intensity. λ , wavelength.

Figure 2

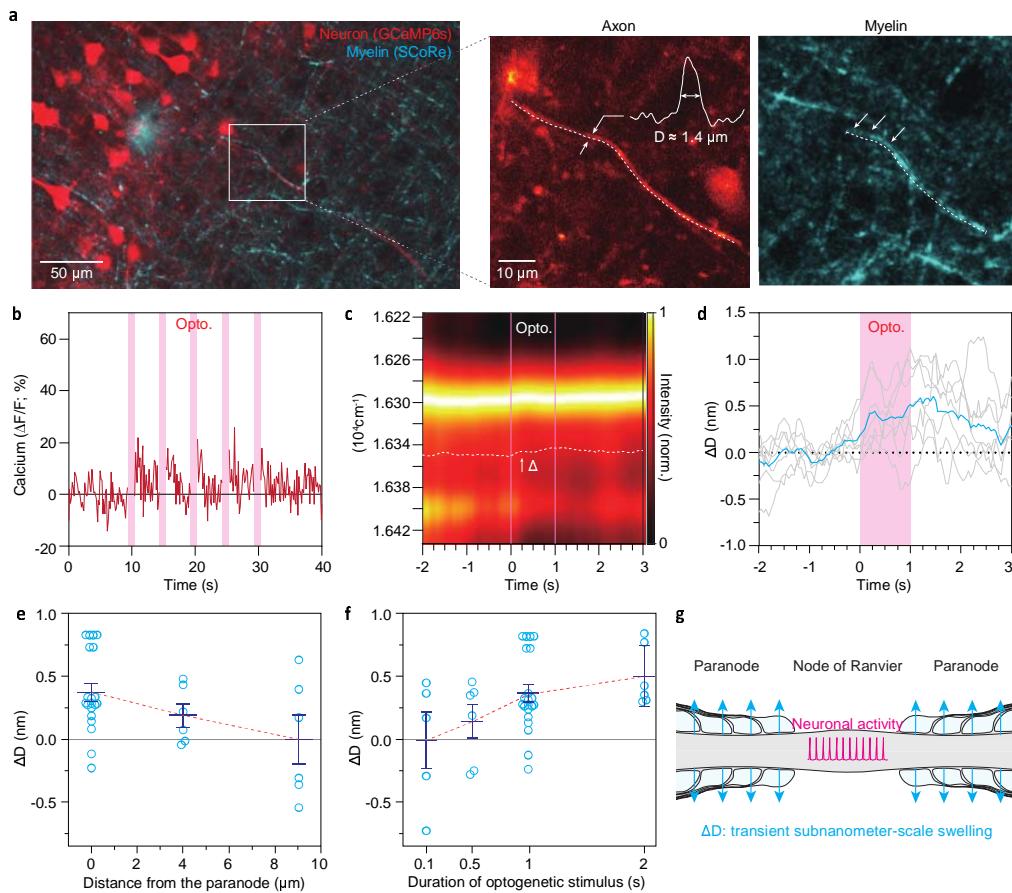

Figure 2 | Validation on nanometer-scale readout precision of SpeRe. (a) A tapered glass fiber sample for quantifying the nanoscale readout precision. The tapered fiber is imaged by polarization microscopy (Pol.) and spectral confocal reflectance imaging (SCoRe). The gradually varying diameter (D) along the fiber was acquired from the polarization microscopic image. (b) The spatial derivatives of the diameter (dD/dx) at the representative positions (x_1 and x_2) along the tapered glass fiber. (c) Reflectance spectrographs at the positions, x_1 and x_2 . The acquired spectrographs (dots) were overlaid with best-fit simulated spectrums (curved lines). (d) Representative time-lapse reflectance spectrographs measured at the indicated positions (x_1 for $\Delta D = 0.4$ nm and 0.9 nm; x_2 for $\Delta D = 0.1$ nm and 0.4 nm) with step shifts in position at 0 s. The step change in position was introduced by shifting the focal point along the centerline of the fiber. The white curves indicate the relative spectral shift. (e-f) Change in diameters (ΔD) estimated by SpeRe with the corresponding estimates by polarization microscopy. *, $p < 0.0001$ (unpaired t-test). The error bars indicate standard deviations.

Figure 3

Figure 3 | All-optical observation of activity-dependent subnanometer-scale swelling of myelinated axons. (a) Sample preparation. The neurons in the somatosensory cortex (S1) were transfected with a fluorescent calcium indicator (GCaMP6s) and an optogenetic actuator (ChrimsonR). A representative fluorescence/reflectance image from the brain slice is shown on the right. (b) Optogenetic excitation. Neurons transfected with ChrimsonR was excited by illuminating pulsed light (wavelength: 633 nm, irradiance: 10 mW/mm², frequency: 100 Hz, pulse width: 5 ms). Calcium traces in soma from 3 neurons in (a) are shown. The shaded areas in pink indicate the duration of optogenetic stimulation. (c) A representative phase shifts ($\Delta\Box$) induced by the optogenetic neural activity. The red bar indicates the duration of optogenetic stimulus (1 s). The white dashed line indicates the relative phase shift from the baseline (-1.0 – -0.5 s). (d) The group averaged phase shifts ($\Delta\Box$) for each experimental group. The red curve ('ChR + Light' group, n = 104 axons in 5 mice) indicates the ChrimsonR-expressing neurons with light stimulus, the yellow curve ('Light only' group, n = 105 axons in 5 mice) indicates the wild-type neurons receiving photostimulation, and the gray curve ('ChR only' group, n = 105 axons in 5 mice) indicates the ChrimsonR-expressing neurons without light stimulus. Note that only the 'ChR + Light' group exhibited distinguishable negative shift in wavenumber. (e) Statistical group comparison of phase-shifts ($\Delta\Box$) in (d). The phase-shifts were quantified by averaging the relative phase shifts during 0.5–1 s. *, p < 0.05 (unpaired t-test). **, p < 0.01 (unpaired t-test). (f) Histograms of activity-dependent changes in diameters of myelinated axons (ΔD). The positive value of ΔD corresponds to swelling.

Figure 4

Figure 4 | Correlative characterization of subnanometer-scale swelling in an optogenetically active axon. **(a)** Representative images of myelinated axons. The neurons are imaged by two-photon fluorescence of GCaMP6s (red) and the myelin is visualized by SCoRe (cyan). The magnified view of the myelinated axon of interest is shown on the left. The axon diameter (D) was estimated to be full-width-half-maximum of the transverse intensity profile ($D \approx 1.4 \mu\text{m}$). The dashed lines indicate the axon and the myelin sheath. **(b)** Axonal calcium activity triggered by optogenetic excitation of ChrimsonR. The shaded area in magenta indicates the duration of optogenetic excitation (633 nm, 10 mW/mm²). **(c)** Observation of time-dependent change in reflectance spectrum at the optogenetically active myelinated axon. The dashed lines indicate the duration of optogenetic stimulation. Note the progressive spectral redshift ($\Delta\lambda$) during the optogenetic stimulation. **(d)** Time dependent changes in the diameter of myelinated axons (ΔD) in response to optogenetic stimulation (shaded region in magenta). Cyan curve indicates the averaged trace of 7 repeated trials (individual traces are shown in grey). **(e)** The swelling is localized to the paranode. **(f)** Dependency of ΔD on the duration of optogenetic stimuli at the paranode. **(g)** The schematic diagram of the activity-dependent nanoscale dynamics of the myelinated axons.