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6

Abstract7

Neurons in rodent primary visual cortex are simultaneously tuned to several stimulus features,8

including orientation and spatial frequency of moving gratings used in experiments.9

Light-induced signals emitted by retinal ganglion cells (RGC) are relayed to the primary visual10

cortex (V1) via cells in the dorsal lateral geniculate nucleus (dLGN). However, there is currently no11

agreement on which thalamocortical transformation leads to the neuronal tuning curves12

observed in experiments. Here, we outline a model that explains the emergence of13

feature-specific neural responses as the result of a two-step integration process: First, the14

compound input to cortical neurons comes from a set of retinal sensors randomly placed in the15

receptive field. Second, the cortical responses to the combined input are shaped by the16

rectification caused by the spike threshold of the neurons. We performed numerical simulations17

of a thalamocortical network stimulated by moving gratings and found that simultaneous tuning18

to orientation and spatial frequency results from this spatio-temporal integration process. We19

also show how this tuning is related to the complex structure of the receptive fields that reflect20

the input. We conclude that different types of feature selectivity arise naturally from random21

thalamocortical projections. Moreover, we describe in detail the underlying neural mechanism.22

23

Introduction24

Most neurons in the primary visual cortex (V1) of mammals respond selectively to the orientation25

of light bars, edges of objects, and oriented gratings (Hubel and Wiesel, 1962; Ferster and Miller,26

2000; Niell and Stryker, 2008; McLaughlin et al., 2000). Orientation selectivity (OS) is the result of27

computations in neural circuits. It has been considered as a prototypical example of such sensory28

computations since it was first characterized by Hubel and Wiesel (1962). Although a large number29

of experimental and theoretical approaches have been suggested, the exact neuronalmechanisms30

underlying the emergence of OS are still controversial. In some mammalian species, neighboring31

cortical neurons across all layers have similar orientation preferences (Hubel and Wiesel, 1962;32

Kremkow et al., 2016; Hubel and Wiesel, 1977; Blasdel and Salama, 1986). In other species, where33

there is no such order, individual V1 neurons still exhibit strong orientation tuning (Ohki et al., 2005;34

Niell and Stryker, 2008; Hofer et al., 2011). Therefore, it is not clear whether the samemechanism35

for the emergence of OS applies to all species.36

In the feedforward model originally proposed by Hubel and Wiesel (1962), the receptive fields37

of dorsal lateral geniculate nucleus (dLGN) neurons converging to a single V1 neuron are assumed38

to be lined up in the visual field. Under certain conditions, this arrangement of inputs implies an39

elongated receptive field of the V1 target neuron, which then exhibits selectivity for a stimulus of40

matching orientation. This concept, however, cannot explain the pronounced dependence of orien-41

tation tuning on the spatial frequency of the grating used for stimulation (Ayzenshtat et al., 2016).42
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In addition, this model requires a mechanism to establish the specific arrangement of receptive43

fields during development, possibly driven by visual experience. Interestingly, however, mouse V144

neurons exhibit OS already when they open their eyes for the first time and V1 circuits are not yet45

fully maturated (Ko et al., 2013). Therefore, an alternative mechanism that does not depend on46

precisely arranged thalamocortical projections might underly the emergence of OS. In fact, several47

alternative such mechanisms have been suggested in the past (Priebe, 2016; Jang et al., 2020).48

In previous theoretical work (Hansel and van Vreeswijk, 2012; Pehlevan and Sompolinsky, 2014;49

Sadeh et al., 2014; Sadeh and Rotter, 2015), it was pointed out that highly selective and contrast-50

invariant neuronal responses robustly emerge in inhibition-dominated randomrecurrent networks.51

In these models, it was assumed that each V1 neuron receives a mix of multiple thalamic inputs52

with a weak bias for specific orientations. In experiments, it was also reported that the weak tuning53

of compound thalamic inputs is amplified by cortical circuits (Lien and Scanziani, 2013), resulting54

in orientation-specific responses of L4 neurons. Orientation tuning of compound thalamic inputs55

was reported for the amplitude of temporal oscillations (F1) but not themean firing rate (F0). It has56

been suggested that the tuning of the F1 amplitude could be the consequence of a spatial offset57

of ON and OFF subfields. In many cases this idea predicted the preferred orientation (PO) of a neu-58

ron quite well, and thus spatial segregation of subfields was proposed as a general mechanism to59

induce orientation selectivity in V1 (Lien and Scanziani, 2013; Pattadkal et al., 2018; Jin et al., 2011;60

Clay Reid and Alonso, 1995). However, this concept could not explain how the orientation tuning61

in the amplitude (F1) of thalamic input was transformed into the output tuning in the average fir-62

ing rate (F0) of V1 neurons. Moreover, the segregation of ON and OFF subfields alone could not63

account for the observed sensitivity of OS to spatial frequency of the grating.64

The new model presented here addresses both aspects simultaneously and thus provides an65

integrated explanation for several hitherto unexplained features of emergent orientation selec-66

tivity in V1. The idea is that OS arises from random projections at the thalamocortical interface,67

exploiting the nonlinear transfer of V1 neurons. Provided the number of projections is small, a68

weak bias of thalamic inputs emerges by random symmetry breaking, strong enough to be ampli-69

fied by the cortical circuit with the help of recurrent inhibition. We demonstrate the feasibility of70

such a scenario by adopting the inhibition-dominated random network described by Brunel (2000)71

as a model for V1, similar to previous work (Hansel and van Vreeswijk, 2012; Sadeh et al., 2014).72

The neurons in this V1 network are driven by convergent inputs from untuned excitatory dLGN73

neurons, balanced by feedforward inhibition, and exhibit pronounced contrast-invariant tuning.74

Consistent with experimental observations (Lien and Scanziani, 2013), in our model the amplitude75

of the compound thalamic input (F1) converging to a V1 neuron has a weak but significant ori-76

entation bias, while the mean (F0) is insensitive to stimulus orientation. We then show that the77

orientation bias in F1 amplitude of the input can be transformed into a tuning for the mean firing78

rate (F0) of the response, exploiting the non-linear properties of single neurons. Previous compu-79

tational models also studied the emergence of OS from random connectivity and the dependence80

on the spatial properties of the stimulus, as described in experiments (Von der Malsburg, 1973;81

Pattadkal et al., 2018). However, these models were so far not able to outline any key neuronal82

mechanism for these phenomena.83

Using numerical simulations supported by analytical considerations, we then investigate the84

underlying mechanism of the thalamocortical transfer. We use conventional methods of extract-85

ing ON and OFF subfields and found receptive fields that are comparable to experimental works.86

We also found that the input-output transformation of the orientation bias (F1 to F0) requires a87

nonlinear transformation. Furthermore, the contrast-invariant tuning curves of V1 neurons de-88

pend on the number of convergent thalamic inputs, as well as the spatial frequency of the grating89

used for stimulation. Remarkably, the model exhibits not only biologically plausible behaviour of90

the neuronal network, but it also explains how orientation tuning in the input is transformed into91

the output. This nonlinear input-output transformation is also applicable to computations in other92

sensory systems that rely on the processing of oscillatory signals.93
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Results94

To identify the underlying neuronal circuitmechanisms of orientation selective neuronal responses95

in V1, we performed numerical simulations of a thalamocortical network model, using sinusoidal96

drifting gratings for visual stimulation (cf. Equation 5). The stimuli were presented at 12 different97

orientations, uniformly sampling all orientations between 0◦ and 180◦ in discrete steps of 15◦. The98

movement direction was always orthogonal to the orientation of the grating.99

In order to directly compare our results with experiments and othermodels, we also stimulated100

the network with flashed sparse noise arrays to estimate the receptive fields of neurons.101

Orientation tuning of compound thalamic activity102

In our model, neurons in the dLGN were assumed to have circular receptive fields. The activity in-103

duced in retinal ganglion cells by a grating passing by is an oscillation with the temporal frequency104

of the grating (cf. Equation 6). Information about the orientation of the stimulus lies only in the105

phase of the oscillatory activation. Neither the temporal mean, nor the oscillation amplitude of106

single neuron activity is sensitive for the orientation of the stimulus. The actual input to cortical107

neurons, however, comes frommultiple thalamic neurons. Here we assume that each cortical neu-108

ron receives the same number𝐾dLGN
V1 of thalamic inputs. The compound signal is again a harmonic109

oscillation of the same frequency, but the phases of its components matter. Depending on the rel-110

ative positions of all contributing dLGN neurons, the oscillation amplitude of the compound signal111

may now be tuned to the orientation of the grating.112

On the level of the membrane potential, the compound thalamic input to a single V1 neuron 𝑖
is a linear sum of the responses of all presynaptic neurons

𝜈dLGN𝑖 (𝑡) =
𝐾dLGN
V1
∑

𝑗=1
𝜈𝑗(𝑡)

=
𝐾dLGN
V1
∑

𝑗=1
𝜈𝑏 +

𝐾dLGN
V1
∑

𝑗=1
𝐶 ⋅ 𝜈0𝑚 cos [𝑘 ⋅ (𝑥𝑖, 𝑦𝑖) − 2𝜋𝑓𝑡)] .

(1)

Therefore, the compound signal is again a harmonic oscillation. Its mean (F0 component) and its
amplitude (F1 component) can be calculated using the Fourier theorem (Waldert et al., 2009)

F0𝑖 =
⟨

𝜈dLGN𝑖 (𝑡)
⟩

= 𝐾dLGN
V1 𝜈𝑏

F1𝑖 = 𝐶 ⋅ 𝜈0𝑚

√

√

√

√

√

𝐾dLGN
V1 + 2

𝑛
∑

𝑗,𝑘=1
𝑗≠𝑘

cos(𝛼𝑗 − 𝛼𝑘)
(2)

where 𝛼𝑗 = 𝑘 ⋅ (𝑥𝑗 , 𝑦𝑗) with 𝑘 determined by the stimulus orientation 𝜃 and spatial frequency 𝜆 (see113

Methods and Materials).114

In our model, the receptive field centers of dLGN neurons are randomly positioned, assuming115

a uniform coverage of the visual field. Each V1 neuron receives input from those dLGN neurons116

whose receptive fields are closest to its receptive field center. As a result, the receptive fields of117

V1 neurons are not all of the same size, although the number of inputs is the same (see Figure 1).118

ON center and OFF center dLGN cells are randomly mixed. Importantly, the mean (F0 component)119

of the compound thalamic input does not depend on the orientation of the stimulus, while the120

amplitude (F1 component) is significantly tuned to orientation (Figure 1B). It was also shown in121

experiments (Lien and Scanziani, 2013) that it is mainly the F1 component of thalamic excitation122

that is tuned to stimulus orientation.123

Nonlinear signal transmission of single LIF neurons124

We have demonstrated that in our model the oscillation amplitude of thalamic compound input to125

cortical neurons is tuned to stimulus orientation. As the temporal mean of the compound input is126

untuned, it is necessary to explain how information about orientation in the input is transformed to127
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Figure 1. Compound thalamic input to the cortex. A In the example shown here, each cortical neuronreceives input from 100 dLGN neurons. The receptive field of each dLGN neuron is indicated by a small circle,shown are 20 out of 100 receptive fields. Red and blue color denotes ON and OFF center receptive fields,respectively. Receptive field centers are randomly distributed and uniformly cover the (larger) receptive fieldof the target V1 neuron. The background shows a stimulus grating with an orientation of 60◦ and a spatialfrequency of 0.08 cycles per degree (cpd). B Not only the activity of individual dLGN neurons, but also thecompound signal of a group of dLGN neurons reflect the temporal modulation induced by the drifting gratingstimulus. Solid lines of different colors correspond to the temporal responses for different orientations of thegrating, respectively. The dashed line indicates the temporal mean of the compound signal, which does notdepend on stimulus orientation.

a tuned spike response of the neuron. To derive a quantitative description of this transformation,128

we assume that a LIF neuron receives effective excitatory and inhibitory input matching the input129

level in our network simulation. The compound excitatory input is again a harmonic oscillation,130

and the inhibitory input does not vary in time. Therefore, the effective input to the LIF neuron is131

characterized by a baseline and by the amplitude of the oscillation, the phase of which is irrelevant132

for the questions discussed here. As the input is realized as a Poissonian barrage of action poten-133

tials with time-varying rate, we have an effective description of the resulting postsynaptic current134

as Gaussian White Noise with a mean 𝜇𝑡 and a fluctuation amplitude 𝜎𝑡 that depends on the input135

rates (Brunel, 2000). For simplicity we assume that the neuron is always at its steady state, produc-136

ing an output that follows the relatively slow temporal modulation of its input. Its instantaneous137

firing rate 𝜈𝑡 is then given by the nonlinear transfer function138

𝜈𝑡 =
[

𝜏ref + 𝜏𝑚
√

𝜋 ∫

𝑉th−𝜇𝑡
𝜎𝑡

𝑉r −𝜇𝑡
𝜎𝑡

𝑒𝑥2 (1 + erf(𝑥)) 𝑑𝑥
]−1

, (3)
where the parameters 𝜏𝑚, 𝑉th and 𝑉r represent the biophysical parameters of the neuron. Themean139

response rate of the neuron is conceived as the temporal mean of 𝜈𝑡. As the instantaneous firing140

rate 𝜈𝑡 has the same period as the input oscillation, it is sufficient to average over one oscillation141

period to obtain the temporal mean (see Figure 2). It is obvious that the mean of the output (Fig-142

ure 2A3) does not correspond to themean of the input (Figure 2A1) on the nonlinear transfer curve143

(Figure 2A2). In other words, themean input is not the only factor that contributes to themean out-144

put. When the operating point is in the nonlinear regime, the oscillatory input curve is distorted145

by the transfer function and the amplitude of the input oscillation also contributes to the mean146

response. The stationary rate model (SRM) is normally used to describe the input-output relation147

of a LIF neuron for stationary Poisson input. As in the present scenario the input is not station-148

ary, however, we have to additionally account for the lowpass filter properties of the postsynaptic149

membrane. This motivates the dynamic rate model (DRM) adopted here. Since the excitatory in-150

put is oscillatory, its amplitude is attenuated by the frequency-dependent factor 1
√

1+(2𝜋𝜏𝑓 )2
that can151
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Figure 2. Nonlinear signal transmission of single neurons. A1 Time-dependent output firing rate of asingle spiking neuron (leaky integrate-and-fire, LIF) during stimulation with a drifting grating. Thin linesindicate the temporal mean of the time-dependent signal of the same color. The temporal frequency of thegrating is 3Hz throughout. A2 Stationary input-output transfer function of the sample neuron shown. It isderived from the standard diffusion approximation. The output firing rate is scattered against the inputcurrent. A3 Time-dependent current input to the LIF neuron, induced by a drifting grating. As it is asuperposition of harmonic oscillations with a common frequency, it is again a harmonic oscillation of thesame frequency. B Comparison of single neuron firing rates of three different models, for a wide range oftemporal frequencies: numerical simulation of a spiking neuron (LIF), static rate model (SRM), dynamic ratemodel (DRM). The black line and gray shadow indicates the mean±std of numerical simulations of duration
60 s across 100 LIF neurons. The inset shows the change of the attenuation factor with temporal frequency.

be derived by Fourier transforming the leaky integrator equation for the subthreshold response152

of the neuronal membrane. We compared the output firing rates of both firing rate models (SRM153

and DRM) and the simulated LIF model (SIM) for different input frequencies. We generally found a154

good agreement between SRM and SIM at low frequencies and a significant discrepancy at higher155

frequencies. The DRM, in contrast, fits quite well to the SIM for all frequencies (Figure 2).156

The simulation of a LIF neuron revealed a specific dependence of the output rate on both the157

baseline and the amplitude of the input oscillation. Therefore, we separately investigated the ef-158

fects of changing baseline and amplitude. When the baseline of the input is fixed and the oscillation159

amplitude increases (Figure 3A), the output firing rate also gets larger (Figure 3B). Observe that the160

mean output firing rate varies nonlinearly with the oscillation amplitude (Figure 3C). A similar non-161

linear dependency was obtained when fixing the oscillation amplitude and changing the baseline162

of the input (Figure 3D-F). Altogether, this implies that the output of a single neuron depends on163

the baseline and the amplitude of the input in a nonlinear fashion.164
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Figure 3. Nonlinear transduction of oscillatory input to a neuron. A The input current to a LIF neuron is aharmonic oscillation with a certain amplitude and additive offset. The green signal is the same as in Fig 2A3.The purple signal represents an oscillation with a larger amplitude but the same baseline. Thin horizontallines indicate the temporal mean of the signal with matching colors. B Time-dependent output rate of the LIFneuron (see text for parameters), obtained by numerical simulation. Note the nonlinear distortion of theharmonic oscillation offered as input. C The amplitude of the input current is nonlinearly transformed to themean output rate, assuming a fixed baseline. D-F Orange color indicates the outcome of a changing baselineand fixed amplitude.

Orientation selectivity emerges from random TC projections165

In previous sections, we demonstrated that the compound signal of a random sample of thala-166

mic neurons has an orientation bias. We also showed a nonlinear dependence of single neuron167

responses on the F0 and F1 components of their input. Combining these two findings, we now ad-168

dress the question how tuning in the oscillation amplitude of compound thalamic input to cortical169

neurons could be transformed to tuned firing rates. To this end, we devised a thalamo-cortical170

network model (Figure 4) and performed computer simulations of its activity dynamics. The net-171

work model of V1 has been described previously Sadeh et al. (2014), based on seminal work by172

Brunel (2000). The V1 network model consists of 𝑁 = 12 500 leaky integrate-and-fire (LIF) neurons,173

of which 80% are excitatory and 20% are inhibitory. Each V1 neuron receives input from 𝜖 = 10%174

of all excitatory and inhibitory neurons, the connectivity is random. Inhibitory synapses are 𝑔 = 8175

times stronger than excitatory synapses, resulting in an inhibition dominated network. A new fea-176

ture of the model considered here is the feedforward inhibition (FFI), which effectively provides177

inhibitory thalamic input on top of the direct excitatory dLGN input. Each neuron in the recurrent178

network receives the same constant background input, which helps adjusting the operating point179

and also sets the mean response rate. All spiking network simulations were performed in NEST180

(Fardet et al., 2020).181

In order to investigate the orientation preference of V1 neurons, we stimulated the thalamo-182

cortical network with sinusoidal moving gratings. We used 12 different orientations evenly dis-183

tributed between 0◦ and 180◦. Then, the tuning curves of individual recurrent V1 neurons were184

extracted from the recorded spike trains. To evaluate orientation preference quantitatively and185

study its dependence on the input, we calculated the preferred orientation (PO) and the orienta-186

tion selectivity index (OSI) from the tuning curves, using methods from circular statistics. The PO is187

an angle between 0◦ and 180◦. The OSI is a number between 0 and 1, where higher values denote a188

more pronounced orientation selectivity. First, we determinedwhich component of the compound189

thalamic input conveys the orientation bias that is amplified by the V1 network. The thalamic input190

of a randomly selected cortical neuron is depicted in Figure 5, along with some important analysis191
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Figure 4. Configuration of the thalamocortical network model. The primary visual cortex (V1) comprisesdifferent types of excitatory (red) and inhibitory (blue) neurons. The thalamus (dLGN) relays light-inducedactivity from the retina to V1. Unspecific background input (BG) provides additional excitatory driveindependent of the stimulus. Stimulus processing is collectively performed by all V1 neurons. Feedforwardinhibition (FFI) and recurrent inhibition (I) together balance the recurrent excitation (E) of cortical pyramidalneurons and stabilize the operating point of the network.

results. The input current is noisy, as a result of the random arrival of spikes generated by thalamic192

neurons. Fourier transformation reveals that the F0 and F1 components together carry most of193

the signal power. The orientation bias, however, selectively shows up in the F1 component of the194

compound thalamic input.195

The total feedforward input to recurrent cortical neurons is composed of time-dependent ex-196

citation from dLGN neurons, inhibition from cortical FFI neurons, and constant excitatory back-197

ground input. The latter is not considered here, as it is identical for all recurrent neurons and does198

not convey any information about the stimulus. For each recurrent neuron, three tuning curves199

are extracted, namely for the mean IFFF0 and the amplitude IFFF1 of the feedforward input current, and200

for the mean output firing rate 𝜈V1. All three types of tuning curves are plotted in Figure 6, for a201

random sample of recurrent neurons. These curves essentially confirm the outcome of our single-202

neuron analysis. The mean input current IFFF0 is essentially untuned, while the oscillation amplitude203

of IFFF1 significantly varies with the orientation of the stimulus (Figure 6, top). The orientation bias204

in the input is then transformed into responses of recurrent neurons that exhibit a pronounced205

orientation selectivity (Figure 6, bottom).206

Next, we jointly quantified the orientation preference of cortical neurons and their correspond-207

ing thalamic inputs. The coefficients POV1
F0 and OSIV1F0 account for the PO and the OSI of the firing208

rate responses of recurrent V1 neurons, respectively. Since the orientation bias of the compound209

thalamic input shows up in F1, but not in the F0 component, its tuning is characterized by POdLGN
F1210

and OSIdLGNF1 , respectively. Our simulations demonstrated very clearly that orientation selectivity of211

V1 neurons can indeed emerge from random thalamo-cortical projections (Figure 7B). The OS of212

neuronal responses is strongly correlated with the OS of their thalamic inputs in the F1 component,213

which is fully consistent with experimental observations (Li et al., 2013; Lien and Scanziani, 2013).214

A small residual discrepancy between input and output is due to lateral inputs from the recurrent215

network, as we will demonstrate later.216

Receptive fields in thalamus and cortex217

After having shown that orientation selective responses can emerge from randomly sampling the218

visual field, we next investigated the receptive fields (RF) of neurons at all stages of the visual path-219

way represented in our model and compared them to experimental observations. As described in220

Lien and Scanziani (2013), we also used flashed black or white squares against a gray background221
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Figure 5. Compound thalamic inputs to a single V1 neuron. A Shown are the spike trains of 20 out of 100afferent dLGN neurons that converge to a specific V1 neuron. Their locations are depicted in Fig 1A. Theorientation of the drifting grating stimulus is 60◦, its temporal frequency amounts to 3Hz. B Compoundthalamic input of all 100 afferents to a single neuron. The current is calculated from the number of spikesarriving in each time bin of the simulation (bin width 5ms). C Power spectral density of the compound inputsignal computed by Fast Fourier Transform (FFT). The solid blue line represents the mean signal power over
50 trials, each of duration 6 s. The grey shaded area indicates the mean ± standard deviation across trials.
D Orientation selectivity index (OSI) of the mean signal power, extracted separately for each frequencychannel. Significant orientation tuning emerges only for the temporal frequency of the grating at 3 Hz.

as stimuli and estimated receptive fields using reverse correlation. In some neurons, the estimated222

PO of the RF (RFPref ) obtained by connecting the peaks of ON and OFF subfields was similar to the223

PO extracted from moving grating stimuli (GratingPref ) (see Figure 8 #39, #3013, #11335). In other224

examples (#2471, #7400), however, where RFPref deviated from GratingPref , the detailed shape of all225

subfields must be considered to predict the tuning curve. This phenomenon was also illustrated226

in Pattadkal et al. (2018). Since OS in V1 is essentially determined by its thalamic input, it comes227

as no surprise that thalamic inputs and neuronal responses have generally very similar RFs (mean228

correlation coefficient ≈ 0.68).229

In addition, we also stimulated the random network with locally sparse noise (see Methods230

and Materials and Figure S1). Again, the RFs of neuronal responses in V1 were very similar to the231

RFs of their respective thalamic input. However, the RF structure was a bit different from those232

obtained by flashed squares stimuli: the RFs estimated from sparse noise were generally more233

intricate. This was probably due to a different spatial resolution of sparse noise (0.2◦) as compared234

to flashed squares (5◦).235

Nonlinear transfer of the network236

As demonstrated by numerical simulations of spiking networks, orientation selectivity in V1 can237

emerge from random samples of the visual field at the interface between thalamus and cortex.238
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Figure 6. Input and output tuning curves of V1 neurons. Examples of matching input (top) and output (bottom) orientation tuning curves in polarcoordinates (360◦). The radial axis indicates the F0 (orange) and the F1 (green) component of the input current, as well as the mean output firing rate(purple), for five different neurons, respectively.

Cortical neurons amplify the weak orientation bias conveyed by their compound thalamic input.239

A possible mechanism based on nonlinear signal transfer was explained above, but it was left240

to be verified that the same mechanism could also cause OS emergence in recurrent networks.241

To this end, we replaced spiking neurons (LIF) by an effective dynamic firing rate model (DRM).242

Each neuron 𝑖 in this rate model is characterized by an explicit input-output transfer function 𝐹𝑖243

(Equation 14), see Methods and Materials for more details. As before, we used sinusoidal moving244

gratings with different orientations as stimuli. Each orientation was presented for a full temporal245

oscillation cycle at around 33ms. The analysis was performed in 60 discrete steps per cycle. Assum-246

ing stationary responses for each step of duration 20ms, the output firing rate was computed as247

a function of the respective input current. This way, we obtained the full time-locked response of248

input and output (Figure 9A,C). As before, we extracted the transfer function from these data by249

relating input and output in time step (Figure 9B). The resulting transfer curve has a characteris-250

tic form: With increasing input, the output firing rate of neurons first rises in a convex way and251

then enters a linear regime. The form of this curve indeed supports OS emergence, provided the252

operating point can be stabilized by the network.253

Effect of the recurrent input254

Having identified the nonlinear input-output transfer curve of neurons in the network, we went on255

to characterize the individual contributions of feedforward and recurrent inputs, respectively, to256

the emergence of orientation selectivity. To this end, feedforward input current If f and the total257

input current Iall were calculated separately and plotted against the output firing rates of single258

neurons. Not surprisingly, feedforward inputs essentially follow the shape of the transfer curve,259

although with some uncertainty (Figure 9B green dots). When the recurrent input is also taken260

into consideration, the relation between input and output is much more determined (Figure 9B261

red dots). This indicates that the output firing rate is mainly caused by feedforward input and262

only slightly perturbed by recurrent input. This explains the strong correlation between preferred263

orientations of input and output, as well as the residual discrepancies between them, observed in264

simulations (see Figure 7).265
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Figure 7. Orientation selectivity of the V1 population. Distribution of the OSI for all recurrent excitatoryand inhibitory neurons in V1 (B) and their respective thalamic compound inputs (A). Unlike the output OSI,which is extracted from the orientation tuning of mean firing rates (F0), the input OSI is calculated from theoscillation amplitudes (F1) as the mean input is untuned. The scatter plots for input vs. output PO (C) and OSI(D) of all neurons show that, on average, the output OSI is slightly larger than the input OSI.

Comparison of spiking neurons and firing rate neurons266

In the previous section, we have seen consistent behavior of simulated LIF neurons and the DRM,267

for a range of different temporal frequencies (Figure 2D). For amoving sinusoidal grating with tem-268

poral frequency 𝑓 = 3Hz, the DRM is able to track the dynamics of the input signal with high fidelity.269

Therefore, we consider it as a useful approximation of the spiking neuron. A comparison of both270

models at this frequency also yields good consistency with regard to the preferred orientation (PO)271

and orientation selectivity (OSI) of single neurons (Figure 10), respectively. Residual discrepancies272

between the two models are explained by random fluctuations in the timing of individual spikes.273

Parameter dependence of orientation selectivity274

In the previous paragraph, we have outlined a candidate mechanism how orientation selective275

responses of recurrent V1 neurons can emerge from random thalamocortical connectivity. Em-276

ploying a nonlinear transfer function, the F1 tuning in the input is transformed into a F0 tuning277

curve at the output. As a result, the input F1 component is an essential determinant of the output278

OS in recurrent V1 neurons. As expressed by Equation 2, the F1 component of the input depends279

explicitly on the number of dLGN neurons that converge on a recurrent V1 neuron 𝐾dLGN
V1 . In addi-280

tion, it depends on the spatial frequency of the moving grating 𝜆. In this section, we investigated281

the detailed dependence of the output OS on these two parameters.282
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Figure 8. Receptive fields of recurrent V1 neurons and their thalamic inputs are similar. A. Receptivefields of the thalamic inputs to V1 neurons. Blue and red colors show ON and OFF subfields, respectively. Thecircles indicate the peaks of ON and OFF subfields, and the estimated PO is orthogonal to the line connectingthe circles (dashed). B. Tuning curves of the thalamic inputs to the V1 neurons shown in A. Green curvesrepresent the tuning curves at a fixed spatial frequency of 0.08 cpd, while the turquoise curves are the tuningcurves at their respective preferred spatial frequencies. The green and turquoise lines indicate the POsextracted from the respective tuning curves (GratingPref ). The black lines indicate the POs estimated from theirreceptive fields (RFPref ). C. Scatter of GratingPref vs. RFPref for 40 neurons. The solid line is the main diagonaland the dashed lines indicate a shift by ±30◦. D. The circular difference between RFPref and GratingPref at
0.08 cpd and the preferred spatial frequency, respectively. E. Receptive fields of two individual dLGN cells, oneON and one OFF center cell. F. Receptive fields of two sample V1 neurons. The RFs of their thalamic inputs aredepicted in panel A. G. Histogram of RF similarities of V1 neurons and their thalamic inputs (𝑛 = 200,
mean ≈ 0.68, median ≈ 0.68). The samples shown were obtained by spike-triggered averaging over 20 000 frameswith no additional smoothing or fitting applied.

Thalamo-cortical convergence number affects neuronal selectivity283

To elucidate the role of the number of thalamo-cortical projections𝐾dLGN
V1 for orientation selectivity284

of cortical neurons, we determined its impact on the output OSI of recurrent V1 neurons. Through-285

out all simulations, the size of thalamic receptive fields and themean current IdLGNF0 corresponding to286

compound thalamic input to V1 neurons were kept fixed. Mean and standard deviation of the OSI287

across all neurons are depicted for different values of the thalamo-cortical convergence number288
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Figure 9. Nonlinear transfer of the network. A Time-dependent firing rate of a sample neuron in therecurrent V1 network. The orientation of the stimulus is 75◦ (lighter colors) and 105◦ (darker colors). Thin linesof matching colors represent the temporal mean of the signals. B The input-output transfer curve of a V1neuron in the recurrent network. The output firing rate is plotted against the feedforward (green) and totalincluding recurrent (red) input currents, respectively, as shown in C.

(Figure 11). We found that strong and reliable tuning is obtained for a very broad range of values289

for 𝐾dLGN
V1 , covering more than two orders of magnitude between a few and a few hundreds (Fig-290

ure 11B). Anatomical counts, in fact, yielded numbers in the range between 15 and 125, depending291

on the animal species (Alonso et al., 2001; Peters and Payne, 1993; Potjans and Diesmann, 2012).292

If not stated otherwise, the convergence number in our model was set to 100.293

We also investigated the dependence of the F1 component of compound thalamic input on294

the number of convergent inputs, as it represents the most important determinant of the out-295

put orientation preference. For increasing convergence numbers, the oscillation amplitude of the296

compound thalamic input current IdLGNF1 decreases (Figure 11C), while the OSI of the input ampli-297

tude remains at a fixed level (Figure 11A). As a result of nonlinear signal transfer, the output OSI298

depends on the convergence number in a complex manner (Figure 11B). When the convergence299

number is low, the oscillation amplitude is large, resulting in high output firing rate. In this case,300

the operating point is almost shifted outside the nonlinear range, and the output OSI becomes301

smaller. When the convergence number gets larger, the input OSI remains unchanged, but the os-302

cillation amplitude decreases. Therefore, the output OSI declines as the oscillation is amplified less.303

Overall, the orientation selectivity of the output does not only depend on the oscillation amplitude304

of the thalamic input IdLGNF1 , but also its orientation selectivity OSIdLGNF1 .305
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Figure 10. Performance of the DRM compared to numerical simulations of spiking neurons. Thebehavior of individual LIF neurons in network simulations is compared to predictions from the dynamic ratemodel (DRM), see text for details. Shown are scatter plots of the PO (A) and the OSI (B) for all recurrent V1neurons. The gray diagonal line indicates a perfect match.

Spatial frequency affects neuronal orientation tuning306

The second parameter that affects the orientation preference in the compound thalamic input and307

further in V1 is spatial frequency (see Equation 2). Sinusoidal moving gratings at different spatial308

frequencies ranging from 0.001 cpd to 0.4 cpd were used as visual stimuli. Orientation preference309

(PO and OSI) was extracted from the single-neuron tuning curves at each spatial frequency. For310

the network layout considered in our model, strongest tuning was observed between 0.06 cpd and311

0.08 cpd, and the tuning became rather weak for very small (below 0.01 cpd) and for very large (above312

0.3 cpd) spatial frequencies (Figure 12A). This showed that the strength of orientation tuning (OSI) of313

the output was strongly affected by the spatial frequency of the stimulus, and the strongest tuning314

was obtained for a spatial frequency at about 0.08 cpd.315

In addition, we observed that the preferred orientation (PO) of single neurons was different316

for different spatial frequencies. To quantify the changes in PO, we first determined the PO for317

different spatial frequencies, for all neurons in the network. Separately for each spatial frequency,318

we then calculated the circular correlation (see Methods and Materials) of these angular variables319

with the PO obtained for the same neuron at the reference spatial frequency of 0.08 cpd. The corre-320

lation is very high for similar frequencies and very small for distant frequencies (Figure 12B). The321

correlation coefficient is around 0.35 for 0.07 cpd (Figure 12D), while it is close to 0 for 0.01 cpd (Fig-322

ure 12E). Similar observations were also made in experiments in rodents and higher mammals.323

The spatial frequency has generally a strong impact on the OSI, and different spatial frequencies324

lead to a different PO in single neurons (Ayzenshtat et al., 2016; Pattadkal et al., 2018). Note that325

models of primary visual processing that link orientation selectivity with excitatory and inhibitory326

subfields of neuronal receptive fields cannot explain such dependencies in principle, as the spatial327

frequency of the stimulus is not taken into account.328

Contrast-invariant orientation tuning329

Theperceivedorientation of a stimulus should, ideally, not dependon the stimulus contrast. Contrast-330

invariant tuning curves were indeed widely observed in the visual cortex of cats as well as mice331

(Ferster and Miller, 2000; Priebe and Ferster, 2008; Niell and Stryker, 2008). Here, we report that332

contrast-invariance of orientation tuning is also a property of neuronal responses in our model.333

Sinusoidal drifting gratings with contrasts varying between 0 and 1 (see Methods and Materials)334

were presented for 12 different orientations, as described before. Note that the mean luminosity335

of the grating remained unchanged for the different contrasts considered here. As a consequence,336
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Figure 11. Thalamo-cortical convergence and orientation selectivity. Four quantities are plotted againstthe number of thalamic afferents converging on a single cortical neuron: A The OSI of oscillation amplitudesof the compound thalamic input, B the OSI of firing rate output in recurrent neurons, C the amplitude ofcompound thalamic input current oscillations, and D the mean firing rate of recurrent neurons. Solid linesand gray shaded areas represent the mean ± standard deviation. Depending on the animal species,convergence numbers between 80 and 200 have been reported. A convergence number of 100 was chosen inmost of our simulations (dashed line).

the mean firing rates of dLGN neurons were unchanged as well, while the stimulus contrast was337

reflected by the amplitude of temporal oscillations. For zero contrast, the sinusoidal "grating" is338

just a uniform gray with the same (mean) luminosity everywhere. Clearly, no stimulus orientation339

can be observed under this condition. Although the response amplitudes at the preferred orienta-340

tion are higher for stronger contrasts, the shape of the tuning curves does not depend on contrast341

(examples see Figure 13C,D).342

To investigate the impact of stimulus contrast on orientation preference, the PO and the OSI of343

single neurons were extracted. We found that the OSI was generally proportional to contrast (Fig-344

ure 13A). This reflects the fact that the tuning strength is related to the signal-to-noise ratio, which345

is here determined by the amplitude of temporal oscillations and the offset. We also quantified the346

stability of tuning by calculating the absolute PO difference for single neurons at reduced contrasts347

compared to the maximum contrast 1. Figure 13B demonstrates that the PO extracted from sim-348

ulated spike trains is rather stable. For very low contrasts, however, low signal-to-noise ratios do349

not support reliable estimates of the PO. Our analysis supports the notion that orientation tuning350

curves are contrast-invariant, consistent with what has been reported from experiments.351

Discussion352

We studied themechanism and the properties of emergent orientation selectivity in the early visual353

system. In fact, our analysis of the thalamocortical pathway combined different perspectives:354

We used numerical simulations to demonstrate that orientation selective responses in the pri-355
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Figure 12. Impact of spatial frequency on orientation selectivity. A The OSI depends on the spatialfrequency of the drifting grating used for stimulation in the model. The solid curve and the gray shaded arearepresent the mean ± standard deviation. B The PO of individual neurons in the same network changes withthe spatial frequency of the grating. The PO at 0.08 cpd is very different from the PO for deviating spatialfrequencies, as indicated by the circular correlation coefficient. C The oscillation amplitude of compoundinput current is the most important determinant for the OSI of the output firing rate in recurrent neurons.
D,E A similar picture emerges by directly comparing the PO of all recurrent neurons at nearby spatialfrequencies (0.07 vs. 0.08 cpd) and at strongly deviating spatial frequencies (0.01 vs. 0.08 cpd).

mary visual cortex can emerge from random sampling the visual field based on unstructured pro-356

jections from the thalamus to cortex. Nomatterwhether the stimulus consisted ofmoving gratings,357

flashed squares or sparse noise, we found that the estimated PO was linked with the segregation358

and the intricate shape of the ON and OFF subfields (Figure 8). In all cases, the properties of cor-359

tical responses were strongly correlated with the properties of the thalamic input. We generally360

found that the contrast-invariant tuning curves in V1 neurons were quite sensitive to the spatial361

frequency of the stimulus. Both the OSI and PO of neuronal responses were strongly influenced362

by the spatial frequency of the grating used for stimulation, similar to what has been found in363

experiments (Ferster and Miller, 2000; Ayzenshtat et al., 2016).364

The number of thalamo-cortical afferents was identified as a critical anatomical parameter of365

the system. Numerical simulations of our model revealed that the orientation selectivity of the366

output depended strongly on the number of dLGN afferents, matching the numbers known from367

different animal species (Alonso et al., 2001). All these insights combined allowed us to study the368

feedforward transfer of feature selectivity underlying OS emergence using analytical tools. We369

found that nonlinear signal transduction and input statistics together can explain the F1-to-F0370

input-output transformation, as well as the strong correspondence of the PO in input and output.371

Both facts have been reported in experiments Lien and Scanziani (2013).372

It was claimed in Pattadkal et al. (2018) that the OSI is robust to the number of convergent373

afferents and the spatial frequency of the stimulus. Our conclusions strongly deviate from this, as374

we covered a wider range of parameters. For the convergence number, we considered a range375

between 2 and 1 000, whereas Pattadkal et al. took only the small window between 25 and 100 into376

consideration. For the spatial frequency of the gratings, we tested values between 0.001 and 0.4 cpd,377

while they considered the range between 0.01 and 0.15 cpd only.378
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Figure 13. Contrast-invariance of tuning curves. A Shown is the OSI of V1 neurons for different values ofthe stimulus contrast (mean ± standard deviation). B Deviation of the PO in degrees for a stimulus of reducedcontrast as compared to maximal contrast (1). C,D Sample tuning curves for one excitatory (left) and oneinhibitory (right) neuron, at different contrasts of the stimulus. Lighter colors represent lower contrasts.Dotted lines indicate the neuronal responses at 0 contrast.

Orientation tuning of dLGN neurons379

In our model, by design, dLGN neurons respond equally to all stimulus orientations of oriented380

drifting gratings. Orientation selective responses of V1 neurons emerge, for the first time, at the381

interface between thalamus and cortex. In contrast to single dLGN neurons, the oscillation am-382

plitude of compound thalamic inputs has a significant orientation bias. This bias in the oscillation383

amplitude (F1) is transformed into a bias of mean firing rates (F0). Contrast-invariant tuning curves384

result with the help of recurrent inhibition in the V1 network.385

Since orientation selectivity was first described in cat visual cortex Hubel and Wiesel (1962), it386

has long been thought that individual dLGN neurons convey only untuned inputs to the visual cor-387

tex. However, recent experimental studies in mice revealed that some dLGN relay cells are some-388

what orientation selective (Scholl et al., 2013; Tang et al., 2016). These tuned dLGN cells indeed389

project to layer 4, the main input layer of V1 (Sun et al., 2016). In our network model, the mean390

and dispersion of orientation selectivity across cortical neurons is a bit smaller than reported in ex-391

periments (Ko et al., 2013; Niell and Stryker, 2008). Accounting for individual thalamic inputs with392

orientation preference would potentially increase the tuning of the input amplitude and, therefore,393

also yield slightly stronger orientation selectivity in V1 neurons. This might bring our model even394

closer to experimental findings.395

Contribution of the input amplitude396

In the model developed here, the orientation bias in the amplitude of input oscillations is trans-397

formed into orientation tuning of output firing rate, exploiting generic nonlinear properties of spik-398

ing neurons (input rectification induced by the spike threshold). Themean input, which is the same399

for all stimulus orientations, sets the operating point. Unfavorable combinations of parameters,400
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however, may compromise the nonlinear transduction and attenuate the output tuning. Our anal-401

ysis revealed that orientation selectivity of the output is mainly determined by the amplitude of402

input oscillations (Figure 7D, Figure 11, Figure 12C). On the one hand, small oscillation amplitudes403

render the nonlinear transduction mechanism ineffective. On the other hand, large input ampli-404

tudes can lead to low output selectivity, if the modulation of the input amplitude is small. The405

magnitude IdLGNF1 as well as the modulation OSIdLGNF1 of input amplitude work together to determine406

the output selectivity of V1 neurons.407

Role of feedforward inhibition408

To achieve optimal orientation selectivity of firing rates, it is important to stabilize the operating409

point in the nonlinear regime of the neuronal transfer function. In the thalamocortical network410

model considered here, the untuned component of the thalamic input is compensated by feedfor-411

ward inhibition, and a stable F1-to-F0 transformation is enabled. Feedforward inhibition is gener-412

ally associated with parvalbumin (PV) expressing GABAergic interneurons. In experiments, it has413

indeed been shown that PV neurons provide untuned feedforward inhibition to excitatory neurons414

in V1 (Ma et al., 2010). In addition, layer 4 PV interneurons are directly innervated by thalamocor-415

tical axons in layer 4 (Rudy et al., 2011; Ji et al., 2015). Fast spiking basket cells, a subtype of PV416

interneurons, were explicitly shown to mediate the feedforward inhibition of thalamocortical in-417

puts. These findings are consistent with the role assigned to feedforward inhibition in our network418

model: These interneurons are mainly driven by thalamic input, they typically fire at high rates,419

and their output provides essentially untuned inhibitory input to recurrent V1 neurons.420

Besides feedforward inhibition in our network, there are other known pathways which might421

contribute to stabilize the baseline of thalamic input. For instance, the thalamic reticular nucleus422

(TRN) is comprised exclusivley of GABAergic interneurons and can make an indirect contribution423

being involved in a corticothalamic pathway. In this feedback loop, TRN cells receive input from424

both thalamus and cortical layer 6 and then exclusively project to thalamic nuclei. This enhanced425

recurrent circuit might control the excitation of thalamocortical relay cells and this way modulate426

thalamic signaling (Sherman, 2011, 2016; Neyer et al., 2016; Coulon et al., 2009).427

Choice of the neuron model428

The emergence of orientation selectivity in our model depends in an essential way on the generic429

nonlinear transmission properties of spiking neurons. In our simulations, all neurons are con-430

ceived as current-based leaky integrate-and-fire (LIF) point neurons. The question arises whether431

cortical nerve cells in particular are well represented by this reduced neuron model. Despite the432

lack of structured dendrites and detailed intrinsic conductances, however, the LIF neuronmodel is433

able to capture fundamental processes performed by biological nerve cells, namely synaptic input434

integration and spike-based signaling. This generic model is, in fact, themost widely usedmodel to435

study the dynamic behavior of large recurrent networks (Brunel, 2000) and has been found useful436

in studying information processing in neural networks (Burkitt, 2006). Therefore, the LIF model is437

a natural and adequate choice to also study the generic mechanisms underlying thalamocortical438

signal processing.439

Consistency with experiments440

The results of ourmodel-based analyses arewidely consistentwith observations reported inmouse441

experiments. In ourmodel, the ON andOFF subfields of V1 neurons and their thalamic inputs were442

estimated from the neuronal responses to flashed square stimuli. Experimental work showed that443

the spatial offset of ON and OFF subfields can often predict the preferred orientation of neurons444

(Jin et al., 2011; Lien and Scanziani, 2013). We found, however, that not only the offset but also445

the detailed shape of subfields influences orientation preference, as reported in Pattadkal et al.446

(2018). We can add here that the similarity between receptive fields of thalamic inputs and cortical447

outputs is generally quite high.448
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It has been proposed that the offset between the peaks of ON and OFF subfields can give rise449

to an orientation bias in the thalamic F1 component (Lien and Scanziani, 2013). A key role of visual450

cortex in transforming and amplifying the tuned thalamic input was also demonstrated in these451

experiments. In line with these findings, we also observed that the F0 component of thalamic input452

in our model is essentially untuned to stimulus orientation, while the F1 component has a signif-453

icant orientation bias. This initial bias is then transformed into strong and contrast-invariant ori-454

entation tuning in recurrent V1 neurons. In our model, the orientation preference of V1 neuronal455

responses is strongly correlated with the preferred orientation of their thalamic inputs. The output456

has a slightly stronger orientation selectivity than the input, measured by theOSI (Figure 7C,D). The457

orientation selectivity of recurrent V1 neurons in the model, however, is somewhat smaller than458

reported in experiments (Scholl et al., 2013; Pattadkal et al., 2018). On the one hand, tuned input459

from the thalamus, which is not considered in our model, can potentially increase cortical orien-460

tation selectivity. On the other hand, thalamocortical projections in animals are not as random as461

assumed in our model. Nonrandom spatial sampling of TC projections will typically also enhance462

the orientation selectivity of cortical neurons. The spatial frequency of the visual stimulus has a463

strong impact on the preferred orientation as well as the strength of the orientation selectivity,464

which also has been reported in experiments (Ayzenshtat et al., 2016).465

Comparison with alternative models466

Most previous theoretical works account of orientation selectivity referred to recordings from cats467

and primates (Von der Malsburg, 1973; Soodak, 1987; Ringach, 2004). These models assume that468

the projections from retinal ganglion cells to cortical neurons pass through dLGN without modifi-469

cation. The emergence of orientation selectivity from random inputs is due to distance-dependent470

connectivity between them, and orientation columns naturally emerge in this scenario. In rodents,471

the orientation preferences of V1 neurons, however, do not seem to be neatly organized in patches472

and smoothmaps (Ohki et al., 2005), and the salt-and-pepper distribution of preferences does not473

suggest spatial models to make a strong contribution.474

It has beenpreviously suggested (Pattadkal et al., 2018) that orientation selectivity could emerge475

from random connectivity, without a dedicated alignment of the sensors (Hubel and Wiesel, 1962),476

and in absence of orientation maps (Ohki et al., 2005). The explanation offered by Pattadkal and477

colleagues was that orientation-selective responses of cortical neurons could be the result of ran-478

domly emerging ON and OFF subfields of thalamic inputs. The weak and random orientation bias479

in the thalamic input would then be amplified by the excitatory-inhibitory cortical network. Under480

these conditions, it was found that the OSI was robust with regard to the number of thalamo-481

cortical projections and spatial frequency of the stimulus (apart from very low frequencies), while482

the PO itself depended strongly on spatial frequency. The exact input-output transformation was483

not considered. In contrast, our simulation results concluded that the orientation preference in-484

deed depends on these parameters if a wider range of values is considered for them.485

Adopting the same general idea in our new work, we have come up with a detailed explana-486

tion of the phenomenon by emphasizing other aspects of the computations performed by the487

thalamo-cortical circuit. In our model, we also assumed projections from thalamus to cortex with488

no particular a priori structure. Each individual cortical neuron thus extracts a different random489

sample of the visual field. If stimulated with a moving grating, the resulting compound input had490

a temporal modulation entrained by the grating, with a phase resulting from the interference of491

many oscillatory inputs of different phases. The amplitude of these resulting oscillationswas tuned492

to orientation, in full agreement with experimental findings (Lien and Scanziani, 2013). Despite the493

same findings of the cortical OS dependence on the RF structures of thalamic inputs, our analysis494

revealed that the F1-to-F0 transformation, which is the key input-output transfermechanism in our495

model, is naturally mediated by the nonlinear transfer performed by individual spiking neurons496

(see Fig 9G). Combining these two effects, our theory shows explicitly that the tuning of cortical497

neurons depends on the thalamo-cortical convergence number and on the spatial frequency of498
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the stimulus (see Fig 11 and Fig 12). Compared to previous models, therefore, our model did not499

only exhibit reliable tuning in numerical simulations, but it also explained the detailed neuronal500

mechanisms underlying the emergence of contrast-invariant tuning curves in V1 neurons.501

As the mechanisms described in our study are very general, they might also account for the502

emergence of feature selectivity in other sensorymodalities, provided the information is conveyed503

in the amplitude of periodic signals. This might particularly apply to the whisker system in rodents,504

or the auditory system in all mammals.505

Methods and Materials506

Description of the model system507

Network model508

The basic model network used in this work is composed of two parts: the thalamic (dLGN) feedfor-509

ward projection and the cortical (V1) recurrent network (Figure 4). The layout of our V1 network is510

identical to the one introduced by Brunel (2000). It consists of 𝑁 = 12 500 leaky integrate-and-fire511

neurons, of which 𝑎 = 80% are excitatory and 1 − 𝑎 = 20% are inhibitory. The recurrent connec-512

tivity 𝜖 = 10% is uniform throughout the network (Braitenberg and Schüz, 1998). As a result, each513

neuron receives exactly 1 000 excitatory and 250 inhibitory inputs from within the same network,514

drawn randomly and independently. Self-connections are excluded. The amplitudes of excitatory515

recurrent synapses are 𝐽E = 0.2mV. Inhibitory couplings are set to be 𝑔 = 8 times stronger than516

excitatory ones. As a consequence, the amplitudes of inhibitory synapses are 𝐽I = −𝑔𝐽E = −1.6mV.517

This results in an inhibition-dominated recurrent network.518

Besides recurrent input, V1 neurons receive additional feedforward input from three sources:519

constant background, thalamic excitation and feedforward inhibition. Background inputs repre-520

sent projections from any other brain areas except visual thalamus. In our model, they are iden-521

tical for all recurrent neurons and keep the recurrent neural activity going in absence of visual522

stimulation. They are rendered as a stationary Poisson process with constant rate 𝜈bg. The synap-523

tic weights are 𝐽bg = 0.1mV for all simulations. The second input source is the visual thalamus. In524

the primary visual cortex, the visual information ismainly conveyed by the dorsal lateral geniculate525

nucleus (dLGN) through thalamocortical projections. A recurrent V1 neuron receives input from ex-526

actly𝐾dLGN
V1 neurons in dLGN. As a result, the emerging receptive fields of recurrent V1 neurons are527

of similar size, but vary slightly from neuron to neuron. Receptive fields are roughly circular, but528

non-uniform, reflecting the random positions of dLGN inputs. Experiments in vitro reported that529

thalamocortical synapses are several times stronger than intracortical synapses (Gil et al., 1999;530

Richardson et al., 2009). Here, we assume that the efficacy of direct thalamocortical projections531

is 10 times larger than recurrent excitatory connections, 𝐽 dLGN
V1 = 2.0mV. The third source of input532

are feedforward inhibitory projections (FFI) from other cortical neurons. FFI neurons represent533

a specific type of inhibitory interneurons, which selectively target recurrent V1 neurons. They re-534

ceive input from 𝐾dLGN
FFI neurons in dLGN, each with a synaptic efficacy of 𝐽 dLGN

FFI . Thalamic afferents535

are the only driver of FFI neurons in our model, so their activity is fully determined by its thalamic536

inputs. Finally, 𝐾FFI
V1 FFI neurons project onto each V1 neuron, each with synaptic weight 𝐽 FFI

V1 . In the537

cortical circuit just described, the connections between FFI neurons and recurrent V1 neurons are538

established randomly and independently.539

Neurons and receptive fields540

Neurons in the lateral geniculate nucleus (dLGN) have circular antagonistic center-surround recep-541

tive fields, either ON-center/OFF-surround or OFF-center/ON-surround. ON-center cells respond542

strongest when the center of their receptive fields is exposed to light, and they are inhibited when543

the surround is illuminated. OFF-center cells respond in exactly the opposite way. The center and544

surround sub-regions of the receptive field are described by two-dimensional normalized Gaus-545

sian functions of different widths 𝜎+ and 𝜎−, respectively. For ON-center cells, we have 𝜎+ < 𝜎− and546
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Figure 14. Isotropic receptive field of dLGN neurons. The two-dimensional receptive field of a single dLGNneuron is conceived as difference of Gaussians (DOG). Shown is the neuronal response (solid line) of anON-center/OFF-surround cell (inset) to small spots of light at the position indicated. Dashed lines representthe responses for a separate stimulation of either the center or the surround, respectively.

𝜎+ > 𝜎− for OFF-center cells. The receptive field is simply represented by the difference of these547

two Gaussians (DoG) and has the form548

RF = 1
2𝜋𝜎2

+
⋅ 𝑒

−
(𝑥−𝜇𝑥 )2+(𝑦−𝜇𝑦 )2

2𝜎2+ − 𝛼 ⋅
1

2𝜋𝜎2
−
⋅ 𝑒

−
(𝑥−𝜇𝑥 )2+(𝑦−𝜇𝑦 )2

2𝜎2− (4)
where (𝜇𝑥, 𝜇𝑦) denotes the position of the receptive field center of dLGN neurons. The scaling549

factor 𝛼 describes the relative weight of integrated subfields. In cat and monkey, the value is re-550

ported to be approx. 0.85 for retinal ganglion cells and LGN neurons (Tadmor and Tolhurst, 2000).551

In mouse superior colliculus neurons, the factor is approx. 1.07 (Wang et al., 2010). In our simula-552

tion, the scaling factor 𝛼 is set to 1.0, indicating that the center and surround subfields are equally553

weighted. Note that our conclusions are not affected by any specific choice of this number. Fig-554

ure 14 shows an example of the receptive field of an ON center cell. In ourmodel, an equal number555

of ON center and OFF center cells are distributed randomly in the visual field.556

In order to investigate orientation selectivity in line with experiments, we use moving oriented557

gratings with luminance changing sinusoidally both in space and time. Each of these visual stimuli558

has an orientation 𝜃, a temporal frequency 𝑓 and a spatial frequency 𝜆. The movement direction559

of the grating is always orthogonal to its orientation. The light intensity of the stimulus at position560

(𝑥, 𝑦) at time 𝑡 is given by561

𝑆(𝑥, 𝑦, 𝑡) = 𝑠0[1 + 𝐶 cos(𝑘 ⋅ (𝑥, 𝑦) − 2𝜋𝑓𝑡)] (5)
where 𝑠0 is themean luminance of the stimulus, 𝐶 is the contrast of the grating, and 𝑘 = 2𝜋𝜆(cos(𝜃−562

𝜋
2
), sin(𝜃− 𝜋

2
)) is the wave vector. In someworks however, in contrast to our definition, 𝜃 denotes the563

direction of movement which is perpendicular to the stripes of the grating (Pattadkal et al., 2018;564

Kondo et al., 2016). In this case, the wave vector becomes 𝑘 = 2𝜋𝜆(cos(𝜃), sin(𝜃)). The resulting firing565

rate of dLGN neuron 𝑖 at position (𝑥𝑖, 𝑦𝑖) in response to the stimulus grating can then be calculated566

as567

𝜈𝑖(𝑡) = 𝜈𝑏 + 𝐶𝜈0𝑚 cos (𝑘 ⋅ (𝑥𝑖, 𝑦𝑖) − 2𝜋𝑓𝑡) (6)
where 𝑚 = 𝑒−

(2𝜋𝜆𝜎+)2
2 − 𝑒−

(2𝜋𝜆𝜎−)2
2 and 𝜈0 is the rate of a dLGN neuron in response to the mean stimulus568

luminance 𝑠0. 𝑚max is the maximum value of 𝑚 for a given set of (𝜎+, 𝜎−) when varying the spatial569

frequency 𝜆. The baseline firing rate is given by 𝜈𝑏 = 𝑚max𝜈0 such that the firing rate of a single dLGN570

neuron will always be non-negative.571

The dLGN neurons are modeled as Poisson neurons, i.e. spikes are generated randomly and572

independently with firing rate 𝜈𝑖(𝑡) at each point in time. A Dirac delta-function 𝛿(𝑡 − 𝑡𝑘𝑖 ) is used to573

20 of 29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2022.07.18.500396doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500396
http://creativecommons.org/licenses/by/4.0/


represent spike 𝑘 generated by neuron 𝑖. The spike train of dLGN neuron 𝑖 is the sum of all spikes574

it generates∑𝑘 𝛿(𝑡 − 𝑡𝑘𝑖 ).575

Cortical neurons, in contrast, are conceived as leaky integrate-and-fire (LIF) neurons. The sub-576

threshold time evolution of the membrane potential 𝑉𝑖(𝑡) of neuron 𝑖 is determined by577

𝜏𝑚𝑉̇𝑖(𝑡) + [𝑉𝑖(𝑡) − 𝑉r] = 𝑅𝐼𝑖(𝑡) , (7)
where 𝜏𝑚 is the membrane time constant and 𝑅 is the leak resistance. The current 𝐼𝑖(𝑡) represents578

the total input to neuron 𝑖. A spike is elicited when the membrane potential reaches the threshold579

𝑉th, after which 𝑉𝑖(𝑡) is reset to its resting potential 𝑉r . It remains at the resting potential for a short580

refractory period 𝑡ref . During this absolute refractory period, no spike will be generated.581

Mathematical implementation of the model582

Network of spiking neurons583

In order to study the orientation preference of recurrent neurons in the network described above,584

we set up a spiking neuronal network. In this network, cortical neurons receive presynaptic spike585

inputs, resulting in transient changes of the postsynaptic membrane potential. Excitatory and in-586

hibitory recurrent neurons, as well as FFI neurons, are conceived as leaky integrate-and-fire neu-587

rons. The time evolution of the membrane potential 𝑉𝑖(𝑡) is described by a differential equation588

Eq 7, separately for each neuron 𝑖. Thereby, the total input current 𝐼𝑖(𝑡) is the superposition of all589

inputs590

𝐼𝑖(𝑡) = 𝐼 rec
𝑖 + 𝐼bg

𝑖 + 𝐼dLGN
𝑖 + 𝐼FFI

𝑖 , (8)
accounting for their respective synaptic strengths.591

The background inputs 𝐼bg
𝑖 are all identical and target recurrent V1 neurons. They are modeled592

as a Poisson process with mean firing rate 𝜈bg. The corresponding background input current is593

given by594

𝑅𝐼bg
𝑖 (𝑡) = 𝜏𝑚𝐽bg

∑

𝑘
𝛿(𝑡 − 𝑡𝑘 −𝐷) , (9)

where 𝑡𝑘 is the emission time of 𝑘-th spike of the input and 𝐽𝑏𝑔 is the amplitude of postsynaptic595

potential.596

In all other pathways, convergent projections need to be accounted for. Therefore, the input
current of each component is given by the sumof spike input fromall presynaptic neurons, indexed
by 𝑗

𝑅𝐼 rec
𝑖 (𝑡) = 𝜏𝑚

∑

𝑗
𝐽𝑖𝑗

∑

𝑘
𝛿(𝑡𝑘𝑗 +𝐷 − 𝑡)

𝑅𝐼dLGN
𝑖 (𝑡) = 𝜏𝑚

∑

𝑗
𝐽 dLGN
V1

∑

𝑘
𝛿(𝑡𝑘𝑗 +𝐷 − 𝑡)

𝑅𝐼FFI
𝑖 (𝑡) = 𝜏𝑚

∑

𝑗
𝐽 FFI
V1

∑

𝑘
𝛿(𝑡𝑘𝑗 +𝐷 − 𝑡) .

(10)

Note that this entails 𝜖𝑁 ,𝐾dLGN
V1 and𝐾FFI

V1 non-zero contributions to the respective sum, respectively.597

Although the convergence numbers are the same for all recurrent V1 neurons in each pathway,598

their presynaptic neurons are different. As the FFI neurons are also modeled as LIF neurons, the599

samemethodwas be applied to calculate their input currents and then extract the respective spike600

trains.601

Combining all the inputs above, the V1 neurons in the network respond to a visual stimulus602

in terms of spike trains. All numerical simulations of this model were performed in the neural603

simulation tool NEST (Gewaltig and Diesmann, 2007; Fardet et al., 2020). All the parameters used604

in numerical simulations are shown in Table 1.605
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Analytical firing rate model606

Although spiking neurons (here, LIF) provide a more biologically realistic model, the numerical607

effort to study input-output transfer functions via simulations is quite high. To reduce the effort,608

and to provide additional mathematical insight, we employed analytical firing rate models that609

generalize the well-known diffusion approximation to certain time-dependent inputs. First, we610

devised a stationary rate model (SRM) to estimate the output. Assuming that the input to the611

neuron changes slowly, allowing that it is in equilibrium in every moment, we can just use the612

known steady-state solution, moment by moment. However, this approach has limitations. As in613

the setting considered here V1 neurons receive oscillatory inputs from the thalamus, a dynamic614

rate model (DRM) appeared to be more appropriate. As the membrane acts as a lowpass with615

frequency-dependent attenuation, we assume that the input amplitude depends on the temporal616

frequency 𝑓 according to 1
√

1+(2𝜋𝜏𝑓 )2
, where 𝜏 is the time constant of themembrane. On this basis, the617

DRM provides good estimates of the output firing rate for a wider range of temporal frequencies.618

The nonlinear firing rate model used here is based on the diffusion approximation to single619

neurons, see e.g. Brunel (2000); Siegert (1951); Ricciardi (1977); Amit and Tsodyks (1991). In this620

setting, the total synaptic input current to a neuron 𝑖 is replaced by a Gaussian White Noise of621

mean 𝜇𝑖 and amplitude 𝜎𝑖, which drives the neuron in an equivalent way622

𝑅𝐼𝑖(𝑡) = 𝜇𝑖(𝑡) + 𝜎𝑖
√

𝜏𝑚𝜂𝑖(𝑡) , (11)
As described above, the total input to a single recurrent V1 neuron is composed of the recurrent
and feedforward inputs from four sources. Assuming their statistical independence, this yields

𝜇𝑖(𝑡) = 𝜇rec
𝑖 + 𝜇bg

𝑖 + 𝜇dLGN
𝑖 + 𝜇FFI

𝑖

𝜎2
𝑖 (𝑡) = 𝜎rec2

𝑖 + 𝜎bg2
𝑖 + 𝜎dLGN2

𝑖 + 𝜎FFI2
𝑖 .

(12)
Mean and variance of each source is related to the respective presynaptic firing rates 𝜈 and synaptic
strength 𝐽 . When a sinusoidal grating moves over the visual field, the firing rates of all individual
dLGN neurons change sinusoidally over time (see Eq 6). As the rate of background input is fixed
for all recurrent V1 neurons, the mean and variance of the background input is constant over time.
The rates of FFI neurons are determined by their thalamic inputs. The mean and variance of each
part is then given by

𝜇rec
𝑖 (𝑡) = 𝜏𝑚

∑

𝑗=1
𝐽𝑖𝑗𝜈𝑗(𝑡), 𝜎rec2

𝑖 (𝑡) = 𝜏𝑚
∑

𝑗=1
𝐽 2
𝑖𝑗𝜈𝑗(𝑡)

𝜇bg
𝑖 = 𝜏𝑚𝐽bg𝜈

bg, 𝜎bg2
𝑖 = 𝜏𝑚𝐽

2
bg𝜈

bg

𝜇dLGN
𝑖 (𝑡) = 𝜏𝑚

∑

𝑗=1
𝐽 dLGN
V1 𝜈dLGN𝑗 (𝑡), 𝜎dLGN2

𝑖 (𝑡) = 𝜏𝑚
∑

𝑗=1
𝐽 dLGN2

V1 𝜈dLGN𝑗 (𝑡)

𝜇FFI
𝑖 (𝑡) = 𝜏𝑚

∑

𝑗=1
𝐽 FFI
V1 𝜈

FFI
𝑗 (𝑡), 𝜎FFI2

𝑖 (𝑡) = 𝜏𝑚
∑

𝑗=1
𝐽 FFI2
V1 𝜈FFI𝑗 (𝑡) .

(13)

The steady-state firing rate of all recurrent V1 neurons are given by a transfer function 𝐹𝑖 Siegert623

(1951)624

𝜈𝑖 = 𝐹𝑖(𝜈, 𝜈dLGN𝑖 , 𝜈FFI𝑖 ) , (14)
where 𝐹𝑖 is defined by625

𝐹𝑖(𝜈, 𝜈dLGN𝑖 , 𝜈FFI𝑖 ) =
[

𝜏ref + 𝜏𝑚
√

𝜋 ∫

𝑉th−𝜇𝑖
𝜎𝑖

𝑉r −𝜇𝑖
𝜎𝑖

𝑒𝑥2 (1 + erf(𝑥)) 𝑑𝑥
]−1 (15)

where erf is the error function. The self-consistent solutions of these nonlinear equations will626

return the estimation of the firing rates of individual recurrent neurons.627

The firing rates of FFI neurons are easier to obtain, as there are no recurrent connections and
we do not need to solve the equations self-consistently. As each FFI neuron 𝑖 only receives inputs
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from dLGN neurons, its input mean and variance is given by
𝜇𝑖(𝑡) = 𝜇dLGN

𝑖 (𝑡) = 𝜏𝑚
∑

𝑗=1
𝐽 dLGN
FFI 𝜈dLGN𝑗 (𝑡)

𝜎2
𝑖 = 𝜎dLGN2

𝑖 = 𝜏𝑚
∑

𝑗=1
𝐽 dLGN2

FFI 𝜈dLGN𝑗 (𝑡) .
(16)

The steady state firing rate of FFI neuron 𝑖 can be calculated from the transfer function 𝐹𝑖(𝜈dLGN𝑖 ) by628

solving Eq 15 with their respective inputs.629

Visual Stimulus630

Drifting Grating631

Sinusoidal drifting gratings were used as stimuli to extract the orientation tuning of neurons. They632

covered the entire visual field. The gratings were presented at 12 different orientations, evenly633

covering the range between 0◦ and 180◦ in discrete steps of 15◦. The movement direction of the634

grating was always orthogonal to the orientation of the grid lines. Each stimulus lasted for 6 s.635

Receptive field636

In order to better compare our network simulations to experimental results, two different stimula-637

tion protocols were adopted to measure the receptive fields. In the Results, the protocol is similar638

to the experiments in Lien and Scanziani (2013). Each stimulus consists of a light (maximum lumi-639

nance) or dark (minimum luminance) square on top of a gray (mean luminance) background. The640

width of each square is 5◦, and it is randomly placed at one of 35 × 35 locations to cover the entire641

175◦ × 175◦ stimulus field. Note that the actual width of the visual field is only 134◦. The stimulus642

field for calculating the receptive fields of neurons is extended to 175◦ to avoid boundary effects.643

Each stimulus is presented for 20 s, its location and luminance (light or dark) are random. Each644

location of the grid is eventually stimulated with light and dark squares. The total stimulation time645

is 49 000 s.646

The receptive fields of cortical recurrent neurons and their respective thalamic inputs are also647

mapped using locally sparse noise (see Appendix). For each stimulus image, an equal number of648

light and dark spots are placed randomly in the visual field on a gray background. Approximately649

20% of the visual field is covered by spots. Again, in order to eliminate the boundary effects of dLGN650

neurons at the border of the visual field, the stimulus image is extended by gray background. The651

diameter of the spots is 4◦ and the resolution of the grid for positioning is 0.2◦. In total, 20 000652

stimulus frames are used during a simulation, and each frame is presented for 33ms.653

Data analysis654

Orientation selectivity655

To quantify the orientation selectivity of single cortical neurons, the preferred orientation (PO)656

and the orientation selectivity index (OSI) are calculated for each neuron. This information can be657

extracted from its respective tuning curve, 𝜈(𝜃), representing the mean firing rate of a neuron for658

stimulus orientation 𝜃. The method used here is to first compute the orientation selectivity vector659

(here represented as a complex number) from circular statistics (Batschelet et al., 1981; Piscopo660

et al., 2013)661

⃖⃖⃖⃖⃖⃖⃖⃗OSV =
∑

𝜃 𝜈(𝜃)𝑒2𝑖𝜃
∑

𝜃 𝜈(𝜃)
. (17)

The PO is then extracted as the phase (angle) of the OSV662

PO = arg( ⃖⃖⃖⃖⃖⃖⃖⃗OSV) . (18)
In contrast, the OSI is extracted as the magnitude (length) of the OSV663

OSI = |
⃖⃖⃖⃖⃖⃖⃖⃗OSV| . (19)
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The OSI is often used to describe the strength of orientation selectivity. A neuron with high ori-664

entation selectivity, which only responds to one stimulus orientation and keeps silent for other665

orientations, returns OSI = 1. For an unselective neuron responding to all orientations equally, we666

have OSI = 0.667

In some experimental literature, an alternative measure of orientation selectivity is used. It is668

calculated byOSI∗ = (𝜈pref−𝜈orth)∕(𝜈pref+𝜈orth), where 𝜈pref is the firing rate at the preferred orientation669

and 𝜈orth is the firing rate at its orthogonal orientation. In previous theoretical work, it has been670

pointed out that, for a perfect cosine tuning curve, OSI∗ is twice as large as the OSI (Sadeh et al.,671

2014).672

Preferred orientation of gratings673

In order to evaluate the comparison of the orientation preference across different conditions674

(e.g. spatial frequency of the stimulus), we use the circular correlation (CC) of PO (Pattadkal et al.,675

2018). If PO𝑖 is the preferred orientation of neuron 𝑖 at one spatial frequency, 𝜃𝑖𝑗 = PO𝑖 − PO𝑗 is the676

difference of PO of neuron 𝑖 and 𝑗 at this spatial frequency, and 𝜃′𝑖𝑗 is the difference of neuron 𝑖 and677

𝑗 at another spatial frequency. The circular correlation between PO at different spatial frequencies678

is extracted by679

CC(𝜃𝑖𝑗 , 𝜃′𝑖𝑗) =

∑

𝑖,𝑗 sin(𝜃𝑖𝑗) sin(𝜃′𝑖𝑗)
√

∑

𝑖,𝑗 sin
2(𝜃𝑖𝑗)

∑

𝑖,𝑗 sin
2(𝜃′𝑖𝑗)

. (20)
The value of CC ranges from −1 to 1. The preferred orientations at different spatial frequencies are680

perfectly linear correlated when CC = 1, and CC = 0means no correlation between them.681

Receptive fields682

The raw receptive fields are estimated by reverse correlation. This is a commonly used method to683

reconstruct the receptive fields by averaging all the frames, each of themweighted by the neuronal684

response it evokes. By following themethod described in Lien and Scanziani (2013), we extract the685

ON and OFF subfields of V1 neurons and their thalamic inputs and then predict the PO of the686

receptive fields (RFPref ). As shown in Figure 8, the RFPref is orthogonal to the axis connecting the687

peaks of the ON and OFF subfields, respectively. The similarity between the RF of V1 neuron and688

its compound thalamic input is calculated as the correlation coefficient between them. The raw689

receptive fields of dLGN neurons, V1 neurons and their thalamic inputs stimulated by sparse noise690

are shown in Appendix. Note that no extra smoothing was applied to these figures of receptive691

fields.692
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Network connectivity

Number of V1 neurons 𝑁 12500
Recurrent connection probability 𝜖 10%
Number of dLGN neurons 𝑁dLGN 3071
Number of FFi neurons 𝑁FFI 1500
Projection number of dLGN→V1 𝐾dLGN

V1 100
Projection number of dLGN→FFi 𝐾dLGN

FFI 8
Projection number of FFi→V1 𝐾FFI

V1 320
Neuron model

Membrane time constant 𝜏m 20 ms
Refractory period 𝜏ref 2 ms
Membrane resistance R 40 MΩ

Membrane capacitance 𝐶m 250 pF
Resting potential 𝑉r 0 mV
Threshold voltage of V1 neurons 𝑉th 20 mV
Threshold voltage of FFi neurons 𝑉 FFI

th 20 mV
Synaptic model

Synaptic delay 𝐷 1.5 ms
Recurrent exc. synaptic efficacy 𝐽E 0.2 mV
Inhibition dominance ratio 𝑔 8
Recurrent inh. synaptic efficacy 𝐽I −𝑔𝐽𝐸

Background input strength 𝐽bg 0.1 mV
Synaptic strength of dLGN→V1 𝐽 dLGN

V1 2.0 mV
Synaptic strength of dLGN→FFi 𝐽 dLGN

FFI 2.0 mV
Synaptic strength of FFi→V1 𝐽 FFI

V1 -1.6 mV
Simulation

Background firing rate 𝜈bg 8350 Hz
Mean luminosity of grating 𝑠0

dLGN rate response to 𝑠0 𝜈0 100 Hz
Stimulus orientation 𝜃 0°, 15°, ... , 165°
Spatial frequency 𝜆 0.04, 0.08, ... cpd
Temporal frequency 𝑓 3 Hz
Simulation time T 6 s
Contrast 𝐶 0, 0.1, 0.3, 0.5, 0.8, 1

Table 1. Table of parameters
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Appendix 1837

838

Figure S1. The neuronal responses and receptive fields stimulated by sparse noise. A Top rowshows sample frames of a sparse spot stimulus. Each frame is presented for 33ms. The bottom rasterplots are the spikes of V1 neurons (10% of the whole population) that were elicited by sparse spotstimulation. B Some examples of receptive fields stimulated by sparse noise shown in A. Thereceptive fields of four example dLGN cells (2 ON center and 2 OFF center cells) are shown in the firstcolumn. The right and middle column depict the RFs of four V1 neurons and their thalamic inputs,respectively. The example neurons are exactly the same as in Figure 8. Blue and red colors indicateON and OFF subfields.
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