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26 Abstract

27  Alternative polyadenylation (APA) plays important roles in modulating mRNA stability,
28 translation, and subcellular localization, and contributes extensively to shaping eukaryotic
29  transcriptome complexity and proteome diversity. Identification of poly(A) sites (pAs) on
30 agenome-wide scale is a critical step toward understanding the underlying mechanism of
31  APA-mediated gene regulation. A number of established computational tools have been
32 proposed to predict pAs from diverse genomic data. Here we provided an exhaustive
33  overview of computational approaches for predicting pAs from DNA sequences, bulk
34  RNA-seq data, and single-cell RNA-seq (scRNA-seq) data. Particularly, we examined
35  several representative tools using RNA-seq and scRNA-seq data from peripheral blood
36  mononuclear cells and put forward operable suggestions on how to assess the reliability of
37 pAs predicted by different tools. We also proposed practical guidelines on choosing
38  appropriate methods applicable to diverse scenarios. Moreover, we discussed in depth the
39  challenges in improving the performance of pA prediction and benchmarking different
40  methods. Additionally, we highlighted outstanding challenges and opportunities using new
41 machine learning and integrative multi-omics techniques and provided our perspective on
42 how computational methodologies might evolve in the future for non-3" UTR, tissue-
43 specific, cross-species, and single-cell pA prediction.

44  Keywords: Polyadenylation; Predictive modeling; RNA-seq; Single-cell RNA-seq;
45  Machine learning

46

47



https://doi.org/10.1101/2022.07.17.500329
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.17.500329; this version posted July 18, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

48 Introduction

49  Precursor mRNA (pre-mRNA) polyadenylation is an essential two-step event in the post-
50 transcriptional regulation of gene expression, which involves the cleavage of the pre-
51  mRNA at the poly(A) site (pA) followed by the addition of an untemplated stretch of
52  adenosines [1, 2]. The selective use of pAs of a single gene, termed alternative
53  polyadenylation (APA), can generate a diversity of isoforms with different 3’ ends and/or
54  encode distinct proteins [3, 4]. APA plays important roles in modulating mRNA stability,
55  translation, and subcellular localization, which contributes extensively to shaping
56  eukaryotic transcriptome complexity and proteome diversity. APA is a widespread
57  regulatory mechanism in eukaryotes, which has been observed in more than 70% of
58 mammalian and plant genes [5-11]. APA is highly tissue specific and dynamically
59  modulated in various conditions, cell types, and/or states [2, 12]. Specific APA programs
60  have been implicated in diverse biological processes and diseases, such as cell activation,
61  proliferation, neurodegenerative disorders, and cancer [3, 4, 13-20]. Given the functional
62  significance of APA, identification and/or quantification of pAs on a genome-wide scale is
63  crucial and may be the first step in understanding the underlying mechanism of APA-
64  mediated gene regulation.

65 Early studies, dating back to the 1990s, predict pAs using conventional machine
66  learning (ML) models like support vector machine (SVM) [21-25], which distinguish
67  whether a nucleotide sequence contains a pA using a variety of hand-crafted features
68  (Figure 1A). In recent years, deep learning (DL) models [26-29] have been shown to
69  provide better performance than traditional ML methods, owing to their great ability for
70  direct and automatic feature extraction and high scalability with large amount of genomic
71 data (Figure 1B). With the advance of next generation sequencing (NGS) technologies,
72 experimental protocols have been designed to capture 3’ ends of mRNAs for direct
73 profiling of genome-wide pAs (Figure 1C), such as DRS [10, 30], 3P-Seq [7, 31], 3'READs
74 [11], PAT-seq [32], TAIL-seq [33, 34], and several others (reviewed in [35-37]). Although
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75  these 3’ end sequencing (3’ seq) approaches are powerful and highly sensitive in detecting
76 the precise locations of pAs, even for lowly expressed genes, they are too technically
77  demanding and costly to be widely applied in genomic research. Alternatively, a myriad of
78  computational tools [38-41] have been developed for identifying and quantifying pAs by
79  leveraging the explosively growing RNA sequencing (RNA-seq) data from diverse
80  biological conditions, cell types, individuals, and organisms (Figure 1D). In recent years,
81 the single-cell RNA-seq (scRNA-seq) techniques, particularly those 3’ tag-based protocols
82  such as CEL-seq [42] and 10x Chromium [43], provide great potential to explore dynamics
83  of APA usage during the process of cellular differentiation. Accordingly, a wide spectrum
84  of tools have been proposed to profile APA from diverse scRNA-seq datasets at cell-type
85  or even single-cell resolution [44-46] (Figure 1E).
86 The tsunami of genomic data especially bulk and single-cell RNA-seq data and the
87  emergence of ensemble deep learning methodologies have revolutionized computational
88  methods for detecting pAs from diverse kinds of data. In the past decade, a few literature
89  reviews have involved the computational tools for bioinformatic analysis of APA. In 2015,
90  our group summarized computations tools for predicting pAs from DNA sequences and 3’
91  seq methods for mapping pAs [37]. Szkop and Nobeli [47] described experimental methods
92  for probing 5" UTRs and 3’ UTRs, and listed computational methods for discovering
93 alternative transcription start sites (TSSs) and pAs from microarray and RNA-seq. Yeh et
94  al. [48] reviewed experimental methods and technologies for studying APA, and briefly
95 listed seven RNA-seq tools for analyzing APA dynamics in tabular form. Chen et al. [49]
96 comprehensively reviewed 3’ seq methods for probing pAs, while their review did not
97  cover the computational tools for APA analysis. Gruber and Zavolan [12] highlighted the
98 importance of APA in health and disease, and briefly listed computational resources for
99  studying APA in a table, including four pA databases, two databases of RBP binding motifs,
100 eight RNA-seq tools for identifying and/or quantifying pAs, and three tools for APA
101  analysis. Our group [50] benchmarked 11 tools for predicting pAs or dynamic APA events


https://doi.org/10.1101/2022.07.17.500329
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.17.500329; this version posted July 18, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

102 from RNA-seq data. Another benchmark study [51] benchmarked five tools for RNA-seq
103  and compared their performance with 3’ seq, Iso-Seq, and PacBio single-molecule full-
104  length RNA-seq method. Ye et al. [52] briefly summarized three computational methods
105  for detecting APA dynamics from diverse single cell types. Zhang et al. [53] focused on the
106  APA regulation in cancer, and briefly listed 14 computational tools for detecting APA.
107  Kandhari et al. [54] highlighted the emerging role of APA as cancer biomarkers and
108 provided an overview of existing relevant experimental and computational methods.
109  However, these two reviews [53, 54] did not distinguish among the prediction of pAs,
110  detection of APA dynamics, and analysis of APA. For example, APAlyzer [55] and
111 movAPA [56] listed in these reviews are actually toolkits for analyzing APA rather than
112 detecting APA dynamics or pAs, which are different from other tools they listed such as
113 DaPars [39] or APAtrap [40]. Generally, although the above reviews have provided detailed
114  overviews of the progress in the complex yet fruitful APA field, none of them has
115  exhaustively summarized available tools for different kinds of data in this field, particularly
116  the emerging DL-based methods and methods for scRNA-seq. Moreover, most reviews
117  only briefly listed tools without delicate summary and sorting, which makes it difficult for
118  the scientific community to decide desirable method for their data analysis. In this review,
119  we described the principles of identifying pAs from different kinds of data and provide an
120  extensive overview of available computational approaches. We catalogued these methods
121  into different categories in terms of the underlying principles of the predictive models and
122 the data they used, and summarized their performance and characteristics such as
123 algorithms, features, and data used in the predictive model. Particularly, we examined
124  several representative tools using RNA-seq and scRNA-seq data from peripheral blood
125  mononuclear cells and put forward operable suggestions on how to assess the reliability of
126  pAs predicted by different tools. We also describe several notes on how to conduct
127  objective benchmark analysis for these massive number of tools. Moreover, we propose

128  practical recommendations on choosing appropriate methods for different scenarios and
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129  discussed implications and future directions. Additionally, we highlight outstanding
130  challenges and opportunities using new machine learning and integrative multi-omics
131  techniques. Lastly, we provide our perspective on how computational methodologies might
132 evolve in the future for pA prediction, including non-3’' UTR, tissue-specific, cross-species,

133 and single-cell pA prediction.

134  Computational approaches for pA prediction

135  Methods for predicting pAs from DNA sequences

136  The key trigger for cleavage and polyadenylation is the set of cis-regulatory elements
137  surrounding a pA, including A[A/UJUAAA hexamer or variant thereof, the UGUA element,
138  upstream and downstream U-rich elements, and downstream GU-rich elements [57]. Since
139  poly(A) signals, the core AAUAAA and its variants, are in the vicinity of most mammalian
140  pAs, the identification of the poly(A) signal (PAS) is usually regarded as an alternative to
141  determine the potential position of a pA. In this review, we refer to the task of predicting
142 pAs or PASs as the "pA identification problem". During the past few decades, a wide range
143  of computational approaches have been proposed to predict pAs from DNA sequences
144  using experimental and in silico mapping of 3'-end expressed sequence tags (ESTs) (Files
145  S1 and S2).

146 Methods based on traditional machine learning models

147  Earlier studies established traditional ML models to classify a sequence as containing a pA
148  ornot, using various algorithms such as discriminant functions [21, 22, 58], hidden Markov
149  model (HMM) [23], SVM [24, 59], Bayesian network [60], artificial neural network and
150  random forests [61], and combined classifiers [25, 62] (Figure 2 and File S2). The machine
151  learning frameworks of these methods are similar, except that different classification
152 models were employed and/or diverse hand-crafted sequence features were compiled (File
153  S1). As ML models rely heavily on manually designed features and the poly(A) signal of
154  human/animal is considerably different from that of other species like plants or

155  Saccharomyces cerevisiae (yeast) [37, 63], these ML-based methods can be divided into
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156  two categories according to the applicable species (File S1): 1) methods that are applicable
157  to human or animals, including POLYAH [21], Polyadq [58], ERPIN [23], Poly(A) Signal
158  Miner [64], Polya svm [24], PolyApred [59], POLYAR [22], Chang’s model [65], Dragon
159  PolyA Spotter [61], Xie’s model [66], and Omni-PolyA [25]; ii) methods that are applicable
160 to other species, including the Graber’s method [67] for yeast, POLYA [68] for
161  Caenorhabditis elegans, PASS [69, 70], PAC [60] and PASPA [71] for plants, and Wu’s
162  model for Chlamydomonas Reinhardtii [62]. These methods utilize diverse sequence
163  features around pAs for pA prediction (File S1). The most commonly used features are
164  position weight matrix for the poly(A) motifs, distance between motifs, and k-gram
165 nucleotide acid patterns [21, 23, 24, 58, 59]. With the increase of the prior knowledge of
166  DNA sequences, more carefully hand-crafted features were derived, such as Z-curve [60],
167 RNA secondary structures [62, 65], physico-chemical, thermodynamic and statistical
168  characteristics [61], the term frequency—inverse document frequency weight [62], and
169  spectral latent features extracted by HMM [66]. Particularly, since the significance of
170  poly(A) signal is different in pAs with different strengths, a few studies divided pAs into
171 sub-groups based on the expression level [22] or pattern assembly [62], and then predicted
172 pAs in each group. In terms of the availability and ease of use of tools, several tools were
173 presented as website (Figure 2), which is particularly convenient for users with little
174  program skill. However, since these tools were generally developed many years ago, the
175  programming languages of many tools are outdated, such as Fortran or Perl, and many tools
176  are no longer available or maintained.

177  Methods based on deep learning models

178  Despite considerable progress has been made, the overall accuracy and generalizability of
179  traditional ML-based methods remain moderate due to the limited experimentally verified
180  pAs in the early years and the lack of prior domain knowledge to finely design and acquire
181  useful features. In recent years, DL-based methods are emerging rapidly (File S2 and

182  Figure 2), which directly learn hidden features from input nucleotide sequences in a data-
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183  driven manner, without knowing any prior knowledge of sequence features. Most methods
184  use convolution neural networks (CNNs), including deepPolyA [72], Conv-Net [73],
185  DeeReCT-PolyA [26], DeepPASTA [28], DeepGSR [27], and APARENT [29]. Other deep
186  learning techniques were also utilized, such as the recurrent neural network (RNN)
187  employed in DeepPASTA [28], a hybrid model with four logistic regression models and
188  eight neural networks used in HybPAS [74], and self-attention mechanisms used in
189  SANPolyA [75] and PASNet [76]. All of these tools were implemented using DL
190  frameworks in Python. In addition to pA prediction, several methods can be utilized for
191  multiple tasks. For example, Conv-Net [73] is capable of inferring pA selection and
192  predicting pathogenicity of polyadenylation variants. DeepPASTA [28] can be used for the
193  prediction of the most dominant pA of a gene in a given tissue and the relative dominance
194  of APA sites in a gene. DeepGSR [27] is able to predict genome-wide and cross-organism
195  genomic signals such as translation initiation sites. APARENT [29] can also be utilized for
196  the quantification of the impact of genetic variants on APA. Different from hand-picked
197  features used in ML-based methods, one-hot encoding features without needing fine
198  feature engineering are widely used in DL-based methods, however, DL-based models are
199  generally of poor interpretability. To enhance the interpretability, several methods provide
200 additional function for visualization of signals. Xia et al. [26] showed the interpretability
201 of their DeeReCT-PolyA model by transforming convolutional filters into sequence logos
202 for the comparison between human and mouse. In APARENT [29], features learned across
203  all network layers were visualized, which can reveal cis-regulatory elements known to
204  recruit APA regulators and new sequence determinants of polyadenylation. In addition to
205  performance improvement, DL-based methods have two significant advantages over ML-
206  based methods, the higher generalizability for different species and the higher scalability
207  with large amount of data. For example, DeeReCT-PolyA [26] is an interpretable and
208 transferrable CNN model for recognition of 12 PAS variants, which enables transfer

209  learning across datasets and species. APARENT [29] was trained using isoform expression
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210  data from more than three million synthetic APA reporters.

211 Methods for predicting pAs from bulk RNA-seq data

212 Methods that predict pAs only from DNA sequences conspicuously fail to consider in vivo
213 expression. RNA-seq has become an indispensable approach for transcriptome profiling in
214  diverse biological samples and a number of methods have been proposed for identifying
215  sample-specific pAs from RNA-seq (File S3). Our group previously benchmarked 11
216  representative methods for predicting pAs and/or dynamic APA events from RNA-seq [50].
217 Here we focus on prediction of pAs rather than dynamic APA events. We collected relevant
218  methods summarized in our previous review [50] as well as newly emerging methods, and
219  divided these methods into five categories according to their underlying strategies.

220  Methods that interrogate non-templated poly(A)-capped reads

221  RNA-seq data contain a small fraction (~0.1%) of non-templated poly(A) tail-containing
222 reads (hereinafter referred to as poly(A) reads) [47], which can be considered as direct
223 evidence for polyadenylation. By interrogating poly(A) reads, an early study [77] identified
224 ~8000 novel pAs in Drosophila melanogaster from a total of 1.2 billion RNA-seq reads.
225  Several other methods, such as KLEAT [78] and ContextMap 2 [79], not only employed
226  direct evidence from poly(A) reads but also incorporated transcript assembly to identify
227  pAs. These poly(A) read-based approaches have the advantage to determine the precise
228  locations of pAs, however, it is still challenging to discover pAs of weakly expressed
229  transcripts due to the decreased read coverage near the 3’ end and the low yield of poly(A)
230  reads.

231 Methods based on transcript assembly

232 Another series of approaches identify pAs from inferred alternative 3" UTRs by compiling
233 transcript structures from RNA-seq, including PASA [80], Scripture [81], 3USS [82], and
234  ExUTR [83]. These transcriptome assembly-assisted methods deduce gene models first
235  using transcriptome assembly tools, and then identify 3" UTRs that are absent in the

236 deduced gene models, which rely heavily on assembled gene structures. It is widely
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237  accepted that transcriptome assembly from RNA-seq is a rather difficult and
238  computationally demanding task, and it is more challenging to precisely determine 3’ UTRs,
239  especially for lowly expressed genes, due to 3’ biases of read coverage inherent in RNA-
240  seq. Therefore, the performance of these methods is inevitably hindered by potential
241  limitations of existing transcriptome assembly tools.

242 Methods that rely on prior annotations of pAs

243 During the last decade, numerous experimental techniques have been developed to direct
244 sequence 3’ ends of mRNAs, such as 3’ T-fill [84], 3'READs [11], TAIL-seq [33, 34], to
245  name a few (Figure 1C). Accordingly, several pA databases built upon 3’ seq data of diverse
246  species were continuously released, including PolyA DB 3 [85], PolyAsite 2.0 [8], and
247  PlantAPAdb [86]. These databases provide a large number high-confidence pAs, which can
248  be used for establishing pA prediction models and evaluating pA prediction results. It is
249  thus naturally to incorporate annotated pAs for predicting pAs from RNA-seq. Several
250  methods, including QAPA [38], PAQR [87], and APA-scan [88], that rely on pre-defined
251  pA annotations were proposed for predicting pAs from RNA-seq. For these methods, the
252 quality of annotated pAs is particularly critical. Most studies establish a comprehensive
253  compendium of well-annotated pAs by merging non-redundant annotations from diverse
254  sources. By combining priori annotated pAs with RNA-seq, the quality of predicted pAs
255  can be greatly improved. However, currently available pA databases are far from complete
256  and limited to only a few well-studied species, such as human, mouse, and Arabidopsis
257  thaliana, consequently, these tools are not capable of detecting novel pAs beyond existing
258  poly(A) annotations.

259  Methods that infer pAs by detecting significant changes in RNA-seq read density

260  Majority of recent approaches predict pAs by modelling read density changes in terminal
261  exons, including GETUTR [89], IsoSCM [90], DaPars/DaPars2 [39, 91, 92],
262 EBChangePoint [93], APAtrap [40], TAPAS [41], moutainClimber [94], and IPAFinder

263 [95]. According to our previous benchmark on 11 tools for RNA-seq [50], TAPAS generally
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264  obtained higher sensitivity than other tools across different datasets. Of note, unlike most
265  methods that require at least two samples for change point detection, moutainClimber [94]
266  is a de novo cumulative-sum-based approach, which runs on a single RNA-seq sample and
267  simultaneously recognizes multiple TSSs or APA sites in a transcript. Using
268  mountainClimber, Cass and Xiao analyzed 2,342 GTEx samples from 36 tissues of 215
269  individuals and found 75% of genes exhibited differential APA across tissues [94].
270  Different from most pA prediction tools focusing mainly on 3" UTR, IPAFinder was
271  specifically proposed for identifying intronic pAs from RNA-seq [95]. Zhao et al. applied
272 IPAFinder to pan-cancer datasets across six tumor types and discovered 490 recurrent
273 dynamically changed intronic pAs [95]. Methods falling within this category rely on the
274  detection of read density fluctuations which require sufficient read coverage in terminal
275  exons to detect APA sites. It is worth noting that data pre-processing (normalization or
276  smoothing) is particularly important for reducing technical biases caused by non-biological
277  variability [47]. Particularly, some methods, such as APAtrap and DaPars, re-define
278  terminal exon boundaries based on RNA-seq read coverage before identifying pAs, which
279  are capable of detecting pAs in previously unannotated regions.

280  Methods based on machine learning models

281  In recent years, some newly emerging methods employ traditional ML or DL model to
282  identify pAs from RNA-seq, including TECtools [96], IntMAP [97], Terminitor [98], and
283  Aptardi [99]. TECtools [96] first identifies terminal exons and transcript isoforms ending
284  at known intronic pAs. Then a model was trained based on the aligned RNA-seq data for
285  distinguishing terminal exons from internal exons and background regions, using diverse
286  features reflecting differences in read coverage of these regions. TECtool can also be
287  applied on scRNA-seq, which first pools reads of all cells to infer new transcripts and then
288  quantify each transcript in individual cells. IntMAP [97] leverages one unified ML
289  framework to combine the information from RNA-seq and 3’ seq to quantify different 3’

290 UTR isoforms using a global optimization strategy. Terminitor [98] is based on a deep
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291  neural network for three-label classification problem, which can determine whether an
292  input sequence contains a pA with poly(A) signal, a site without poly(A) signal, or non-pA.
293  Aptardi [99] is a multi-omics approach based on bidirectional long short-term memory
294  recurrent neural network (biLSTM), which predicts pAs by leveraging DNA sequences,
295  RNA-seq, and the predilection of transcriptome assemblers.

296  Methods for predicting pAs from single-cell RNA-seq

297  Single-cell RNA-seq is a powerful high-throughput technique for interrogating
298  transcriptome of individual cells and measuring cell-to-cell variability in transcription
299  [100]. Particularly, several 3’ tag-based scRNA-seq methods enriching for mRNA 3’ ends
300 via poly(A) priming, such as CEL-seq [42], Drop-seq [101], and 10x Chromium [43],
301 provide great potential to dissect APA at single-cell resolution. However, the extremely
302  high dropout rate and cell-to-cell variability inherent in scRNA-seq makes it difficult to
303  directly apply bulk RNA-seq methods to scRNA-seq data. During the last few years, a wide
304 range of computational approaches specifically designed for pA identification from
305 scRNA-seq have emerged (File S4 and Figure 2). We divided these methods into three
306  categories according to their underlying strategies.

307  Methods based on peak calling

308 The peak calling strategy is widely used by most methods for pA identification from
309 scRNA-seq, including scAPA [102], polyApipe
310  (https://github.com/MonashBioinformaticsPlatform/polyApipe), Sierra [44], scAPAtrap
311 [45], SAPAS [103], and SCAPE [104]. The underlying principle of these methods is that
312 aligned reads from 3’ tag-based scRNA-seq accumulate to form peaks at genomic intervals
313 upstream of pAs [102]. In scAPA [102], a set of non-overlapping 3’ UTRs is first defined
314  from the genome annotation and then peaks within 3' UTRs are identified using an existing
315  peak calling tool. As adjacent pAs may situate in a single peak, the Gaussian finite mixture
316  model was implemented in scAPA to split large peaks into smaller ones. polyApipe is a

317  pipeline for identifying pAs from 10x Chromium scRNA-seq, which defines peaks of
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318 polyA-containing reads. Sierra [44] employed the splice-aware peak calling based on
319  Gaussian curve fitting to determine potential peaks with pAs and then the peaks were
320 annotated and quantified in individual cells. Our group proposed scAPAtrap [45] for
321  identifying and quantifying pAs in individual cells from 3’ tag-based scRNA-seq.
322 scAPAtrap incorporates a genome-wide sensitive peak calling strategy and poly(A) read
323  anchoring, which can accurate locate pAs without using prior genome annotation, even for
324  those with very low read coverage. Yang et al. proposed SAPAS for identifying pAs from
325  poly(A)-containing reads and quantifying pAs in peak regions determined by a parametric
326  clustering algorithm [103]. They further applied SAPAS to the scRNA-seq data of
327  GABAergic neurons and detected cell type-specific APA events and cell-to-cell modality
328  of APA for different GABAergic neuron types. Very recently, Zhou et al. proposed the
329  SCAPE method based on a probabilistic mixture model for identification and quantification
330  of pAs in single cells by utilizing insert size information [104]. The parametric modeling
331  of peaks in most tools based on peak calling such as scAPA or Sierra may cause biases and
332 reduce statistical power in detecting APA events. Alternatively, ReadZS [105], an
333  annotation-free statistical approach, was proposed to characterize read distributions that
334  bypasses parametric peak calling and identify differential APA usages at single-cell
335  resolution among > 2 cell types. ReadZS can not only detect pAs in normal peak shape,
336  but also identify distributional shifts that are not.

337  Methods that rely on prior annotations of pAs

338 In contrast to the peak calling-based methods used for de novo pA identification, a few
339  approaches identify pAs base on prior pA annotations, including MAPPER [106],
340 SCAPTURE [107], and scUTRquant [108]. Li et al. developed MAPPER [106] for
341  predicting pAs from both bulk RNA-seq and scRNA-seq data, which incorporates
342  annotated pAs in PolyA DB 3 [85] and pools single cells of the same type to mimic
343  pseudo-bulk samples. MAAPER also provides a likelihood-based statistical framework for

344  analyzing APA changes and can identify common and distinct APA events in cell groups


https://doi.org/10.1101/2022.07.17.500329
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.17.500329; this version posted July 18, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

345  from different individuals. The group of MAPPER later developed SCAPTURE [107]
346 which embedded a DL model DeepPASS for evaluating called peaks from scRNA-seq. The
347 DL model was trained by sequences shifting, using annotated pAs from PolyA DB 3,
348  PolyA-seq, PolyASite 2.0 and GENCODE v39. The authors used SCAPTURE to profile
349  APA dynamics between COVID-19 patients and healthy individuals, and found the
350 preference of proximal pA usage in numerous immune response-associated genes upon
351  SARS-CoV-2 infection. Fansler et al. developed scUTRquant [108] for measuring 3’ UTR
352  isoform expression from scRNA-seq, which relies on a cleavage site atlas established from
353  GENCODE annotation and a mouse Microwell-seq dataset of 400,000 single cells [109].
354  Other methods for predicting pAs from scRNA-seq

355  Additionally, some other methods do not use the peak calling strategy, including APA-Seq
356 [110] and scDaPars [46]. Levin et al. [110] designed the APA-seq approach to detect and
357  quantify pAs from CEL-seq, which interrogates the gene identity and poly(A) information
358 in the paired Read 1 and Read 2. Although APA-Seq is in principle applicable to other 3’
359  tag-based scRNA-seq methods, it may not be universally applied in practice in that only
360  sample barcodes rather than the whole 3’ end sequence of the transcript are retained in Read
361 1 of many public scRNA-seq data [45]. Unlike most tools that are only applicable to 3' tag-
362  based scRNA-seq, scDaPars [46] that was proposed by the group of DaPars [39] can
363  identify and quantify APA events from either 3’ tag (e.g., 10x Chromium) or full-length
364  (e.g., Smart-seq2) scRNA-seq. In the scDaPars pipeline, DaPars, a tool for identifying APA
365 events from bulk RNA-seq, was first adopted to calculate raw relative APA usage in
366  individual cells, and then a regression model was utilized to impute missing values in the
367  sparse single-cell APA usage matrix. By applying scDaPars to cancer and human endoderm
368  differentiation data, Gao et al. revealed cell type-specific APA regulation and detected
369  novel cell subpopulations that were not found in conventional gene expression analysis.
370  Methods for APA analysis rather than pA prediction

371  In addition to the task of pA prediction (hereinafter termed task 1), there are additional
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372 tasks related to the bioinformatic analysis of APA, mainly including the prediction of
373 tissue-specific pAs (task 2), prediction of dominant pAs (task 3), prediction of APA site
374  switching (task 4), and other kinds of APA analysis (task 5). Although most tools described
375 in this review are developed for task 1, several tools are capable of performing multiple
376  tasks. For example, DeepPASTA [28] is able to perform tasks 1-3; Conv-Net [73] can
377  perform tasks 1/3. In this review, we focus only on tools that are applicable to task 1. Of
378  note, NGS-based techniques specially designed for probing pAs, generally known as 3’ seq,
379  such as DRS[10, 30], 3P-Seq [7, 31], and 3'READs [11], are experimental methods rather
380  than computational methods for identifying pAs. Genome-wide pAs generated from 3’ seq
381  are highly confident and are usually regarded as the true reference (i.e., prior information)
382  for building models or evaluating computational methods. These 3’ seq methods are beyond
383  the scope of this review, while have been reviewed in several other reviews [12, 47, 49,
384  54]. In addition, we have briefly summarized tools or resources designed for APA analysis
385  rather than pA prediction in File S5. Tools such as DeeReCT-APA [111], polyA code [112],
386  and TSAPA [113] are not targeted at task 1 but for other tasks 2/3, such as predicting tissue-
387  specific pAs. Among the five tasks, detection of APA site switching (Task 4) is usually a
388  routine step involved in the analysis of RNA-seq or scRNA-seq. APA site switching reflects
389 the differential usage of APA sites between samples, which does not necessarily need the
390  prediction of pAs (task 1) as a prerequisite. Of note, there are other commonly used phrases
391  similar to ‘APA site switching’ mentioned in this review, such as differential APA site usage
392 [8, 39], 3' UTR shortening/lengthening [45, 102], and APA dynamics [39, 45, 99, 114].
393  Some approaches for RNA-seq, such as PHMM [115], ChangePoint [116], MISO [117],
394  and roar [118], directly discover APA site switching by detecting sudden change of read
395 density at terminal exons without identifying APA sites. Recently, several tools were
396  developed for scRNA-seq, such as SCUREL [119], scMAPA [120], and scDAPA [121].
397  For example, our group developed scDAPA [121] for characterizing differential usages of

398  APA in different cell types using 10x Chromium data, and found APA plays important role


https://doi.org/10.1101/2022.07.17.500329
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.17.500329; this version posted July 18, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

399  in acute myeloid leukemia [114]. Additionally, some toolkits were developed for routine
400 analyses of APA (e.g., annotation and visualization, task 5) using annotated pAs and/or
401 RNA-seq, such as APAlyzer [55] and movAPA [56], while they are not capable of
402  predicting pAs. These diverse tools provide a wide range of complementary resources and

403  opportunities to address the more complex but fruitful field of APA.

404 Discussion

405  Performance of pA prediction models

406 At present, there are only a few benchmark studies that systematically evaluate the
407  performance of different tools. Previously, our group benchmarked 11 tools for RNA-seq
408  [50] and found that the sensitivity of some methods varied greatly among different species.
409  For instance, QAPA [38] performs the second best on human data, while it performs the
410  worst on mouse data. APAtrap [40] is the top performer for Arabidopsis data, while TAPAS
411  [41] performs the best on human or mouse data. Recently, Shah et al. [51] benchmarked
412 five tools for RNA-seq against 3' seq, Iso-Seq, and a full-length RNA-seq method and
413  found that pAs from 3’ seq and Iso-Seq are more reliable than pAs predicted from RNA-
414  seq. They suggested that incorporating the RNA-seq prediction tool QAPA [38] with pA
415  annotations derived from 3’ seq or Iso-Seq can reliably quantify APA dynamics across
416  conditions.

417 The performance of different tools described in the respective studies was summarized
418  in Files S1 to S4. Generally, for predicting pAs from DNA sequences, DL-based models
419  significantly outperformed ML-based methods and are more suitable for large-scale
420  analysis, owning to the good ability of automatic feature extraction and scalability for big
421  data analysis (Table S2). For example, DeepPASTA [28] has an area under the curve score
422 over 93% in predicting pAs on a DNA sequence dataset, which performed much better than
423  ML-based tools like PolyAR [22] or Dragon PolyA Spotter [61]. APARENT [29], based
424  on deep neural network, was trained on over three million synthetic APA reporter genes,

425  which overcomes inherent size limitations of traditional biological datasets. In contrast,
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426  traditional ML-based methods like POLYAR [22] and Omni-PolyA [25] require a
427  considerable amount of prior knowledge and are unable to cope with the rapidly growing
428  data. In terms of the model generalizability, methods for RNA-seq or scRNA-seq are
429  generally applicable to different species if the reference genome and the genome annotation
430  are available. In contrast, the cross-species applicability of methods for DNA sequences is
431  more complex. Models applied to human are normally applicable to other mammals like
432 mouse due to similar poly(A) signals among mammals [57]. However, although most
433  models can be in principle trained using data from a different species, users need collect
434  training data from the other species which are not always available, and most models use
435  hand-crafted features that may not be generalized well across species. Recent techniques
436 like deep learning and transfer learning greatly enhance the generalizability of models.
437  Cross-species experiments have been performed for evaluating the generalizability of some
438  tools, such as DeepGSR [27] and Poly(A)-DG [122], and for these tools single model
439  trained over one species can be generalized well to datasets of other species without
440  retraining. We need to point out that, the evaluation results in a single study may be biased
441  and should be treated with caution, because different datasets and performance indicators
442  were used for the performance evaluation in different studies (Files S1 to S4). In the
443  following section of Conclusions and prospects, we also put forward several notes on how
444 to conduct more objective benchmarking in order to make a fairer comparison of different
445  tools.

446  How reliable are the obtained results?

447  Currently, there is no benchmark evaluation of tools for DNA sequence or scRNA-seq data.
448  Here we attempted to make a preliminary examination of the reliability of results obtained
449  from different pA prediction tools, using a matched bulk RNA-seq and 10x Chromium
450  scRNA-seq data of human peripheral blood mononuclear cells (PBMCs) (File S6). We
451  chose representative tools from each category, including DaPars2 [91], TAPAS [41], and
452 Aptardi [99] for bulk RNA-seq, Sierra [44], scAPAtrap [45], and SCAPTURE [107] for
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453  scRNA-seq, and DeepPASTA [28] for DNA sequences (Figure 3A top). We collected a
454 total of 676,424 non-redundant pAs from GENCODE v39, PolyASite 2.0, and PolyA DB
455 3, which were compiled from 3" seq and can be used as the true reference (Figure 3A
456  bottom). The number of pAs predicted by different tools, even those under the same
457  category, varies greatly (Figure 3B, left). For example, the number of pAs predicted from
458 RNA-seq by TAPAS and DaPars was nearly 8 times and 4 times that of Aptardi. The
459  number of pAs predicted from scRNA-seq by Sierra and scAPAtrap is about twice that of
460 SCAPTURE. Of note, scAPAtrap can predict pAs for the whole genome including
461  intergenic regions and all the three tools predict a large number of pAs in introns (Figure
462 3B, right). If only 3" UTR regions are considered, the number of pAs predicted by the three
463  scRNA-seq tools is much closer (Figure 3C, left). As most tools only identify pAs in 3’
464  UTR, here we used 3’ UTR pAs for subsequent evaluation. Next, we assessed the
465  authenticity of the predicted pAs by checking whether they are supported by annotated pAs
466  in the true reference. The overlap of pAs predicted from RNA-seq with annotated pAs is
467  much lower than that of scRNA-seq (Figure 3C, left). Particularly, the overlap rate between
468  pAs predicted by SCAPTURE and annotated pAs is as high as 96%, which may be because
469  that the DL model embedded in SCAPTURE was trained with annotated pAs. The position
470  of pAs predicted by TAPAS, SCAPTURE, and scAPAtrap is much more precise than that
471 by other tools (Figure 3C, right). Further, we examined the consistency of the results
472 predicted by different tools. Generally, the consistency among different tools is very low
473 (Figure 3D). For RNA-seq data, only 289 pAs were identified by all the three tools, whereas
474  the vast majority of pAs were identified exclusively by a single tool (Figure 3D, top). In
475  contrast, the consistency of pAs predicted from scRNA-seq by different tools is relatively
476  higher (Figure 3D, bottom). In addition, we assessed the reliability of predicted pAs by
477  investigating sequence features. The single nucleotide profile around pAs predicted by
478  TAPAS, SCAPTURE, and scAPAtrap resembles the general profile [50] (Figure 3E), which

479 s also consistent with the fact that they determine more precise locations for pAs (Figure
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480  3C, right). The percentage of AATAAA around pAs predicted by scRNA-seq is much
481  higher than that of bulk RNA-seq (Figure 3F), indicating that predicted pAs from scRNA-
482  seq tend to be more reliable and more accurate than that from bulk RNA-seq. Next, we
483  used the pA prediction tool for DNA sequence, DeepPASTA, to examine how many pAs
484  identified from RNA-seq data are predicted as true solely based on the sequence
485  characteristics. We extracted the upstream and downstream sequences of pAs predicted by
486  RNA-seq tools as the input for DeepPASTA. The proportion of pAs obtained by different
487  tools to be predicted as true by DeepPASTA is not high and varies greatly, ranging from
488  28% to 79% (Figure 3G, top), indicating again the low overlap of pAs predicted by different
489  tools. Considering only positive pAs by DeepPASTA, the percentage of AATAAA and 1-
490 nt variants of different tools increased slightly (Figure 3G, bottom vs., Figure 3F),
491  reflecting that positive pAs confirmed by DeepPASTA are relatively more reliable than
492  negative ones. Finally, we examined predicted pAs of the immunoglobulin M heavy chain
493  (IGMM) gene, which was reported to express a secreted form using the proximal pA and
494  the membrane-bound form using the distal one [123]. The proximal pA of /GHM has been
495  recently found preferentially used in B cells and plasma cells of COVID-19 samples [107].
496  SCAPTURE and scAPAtrap predicted the precise location of both proximal and distal pAs
497  from scRNA-seq data, while Sierra only predicted the proximal one (Figure 3H). TAPAS
498  predicted three pAs from bulk RNA-seq data, of which two perfectly matched the reference
499  pAs in PolyASite 2.0. In contrast, Aptardi failed to predict any pA for this gene and
500 DaPars?2 predicted two pAs yet not verified by reference pAs.

501 Although this preliminary benchmark is far from objective or exhaustive to reflect the
502 advantages and disadvantages of different tools, it reveals several potential issues when
503 using the results obtained by different pA prediction methods. First, although a
504  considerable number of pAs were identified by most tools, the overall prediction accuracy
505  and sensitivity of these tools is low (Figure 3C). Our previous comparative study [50] on

506  tools for bulk RNA-seq have also revealed that a considerable number of predicted pAs
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507  were not annotated in 3’ seq, and the overall prediction accuracy of these tools, even the
508  Dbest one, TAPAS, is not high (40%—60% for human/mouse data). It is still challenging to
509  determine whether a pA not present in prior annotations is false or novel. We anticipate that
510 at least part of predicted pAs that are not overlapping with annotated ones may potentially
511  be true due to that the current pA annotations are still far from complete. Second, the
512  number of pAs identified by different tools, either for bulk RNA-seq or sScRNA-seq, varies
513  greatly, and the consensus of results obtained by different tools is limited (Figure 3D). This
514  is also similar to the observation in our previous benchmark that each tool predicts an
515 independent set of pAs and the overlap of results from different tools is extremely low (<
516 7% for human/mouse data) [50]. Third, as some tools incorporate additional information
517  to predict pAs, e.g., prior pAs used by SCAPTURE and poly(A) reads used by scAPAtrap,
518 the resolution of pAs predicted by different tools varies greatly (Figures 3C&E). Fourth,
519  21% to 72% of the predicted pAs by different tools were not recognized as true pAs based
520 on their sequence features (Figure 3G). Fifth, although scRNA-seq data suffers from
521  extremely high level of noise and sparsity, prediction results from scRNA-seq seem to be
522  more reliable and consistent than those from bulk RNA-seq (Figures 3C, D &F). However,
523  this is not unexpected because that it may be less challenging to computationally predict
524  pAs from the 3'-tag based scRNA-seq data than the full-length-based bulk RNA-seq data.
525  Still, further benchmark study with more complete prior annotations, diverse datasets, and
526  performance indicators is needed in order to assess the results obtained from different tools
527  more fairly and objectively.

528 Here we try to give some operable suggestions on how to obtain high-confidence pAs.
529  The most straightforward way may be making a consensus set of pAs that are predicted by
530 multiple tools, however, this may result in a relatively small number of pAs due to the
531 limited overlap by different tools. Another way is to obtain the intersection of predicted
532  sites and real sites, using annotated pAs that are manually curated and available in several

533  databases such as PolyASite 2.0 and PolyA DB 3. However, it should be noted that these
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534  annotated data sources were compiled from limited biological samples and species; they
535 are far from complete to cover all real sites especially tissue-specific ones. Similar to our
536  benchmark analysis on RNA-seq and scRNA-seq PBMCs (Figure 3), users can also use
537  data from another omics from similar biological samples, if available, to predict pAs for
538  mutual verification. In addition, since many sequence motifs, e.g., AAUAAA and its
539  variants, have been reported to have a positional preference relative to the pA, it is naturally
540 to examine sequence patterns surrounding each predicted pA to get pAs with explicit
541  poly(A) signals. This is particularly useful for assessing the authenticity of pAs from
542  animals because AAUAAA and its 1-nt variants appeared in > 90% of animal pAs [8]. In
543  contrast, AAUAAA only accounts for < 10% of pAs in plants, therefore it is not practical
544  to validate plant pAs through sequence features. Moreover, the general single nucleoside
545  compositions surrounding pAs in different species have been clearly reported, we can thus
546  inspect the base composition around predicted pAs. Of note, this way is applicable to
547  evaluation of the overall quality of the pAs, while it cannot be used to assess the reliability
548  of a single pA. The movAPA package [56] can be used for most of the above-mentioned
549  quality assessments.

550  Practical guidelines for choosing appropriate methods

551 Based on the summary of different methods (Files S1-S4), we attempt to choose
552  representative tools from each category and propose a set of practical guidelines for users
553  (Table 1). As methods in different categories use different kinds of data as the input, the
554  choice of the method first depends on the users’ own data. For bulk RNA-seq data, the
555  choice of the method should be mainly driven by the availability of pA annotations. For
556  scRNA-seq data, the choice of the method mainly depends on the protocol of the scRNA-
557 seq (e.g., 3' tag or full-length) and the availability of pA annotations. For methods
558  predicting pAs from DNA sequence, the choice of the method should be primarily driven
559 by the algorithm used, deep learning or traditional machine learning. Particularly, for cross-

560  species pA prediction from DNA sequences, users should pay extra attention to whether
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561 they need to retrain the model for individual species, which may require users to have
562  certain programming ability. Additionally, several tools are in the form of web servers,
563  providing a portable platform for predicting pAs from DNA sequences for researchers with
564  limited programming ability. Several other factors also affect the choice of methods, such
565 as the availability of the tool or code, the popularity, the ease of use, the clarity of
566  documentation, and the scale of the data. When predicting pAs on a dataset of interest, it
567 is important to further consider two points. First, it is critical that the obtained pAs and/or
568 the downstream results (e.g., differential APA events) are confirmed by multiple pA
569  prediction methods. This is to ensure that the prediction is not biased due to predefined
570  parameter settings or the specific algorithm used in the method. The merit of using different
571  methods is also demonstrated by the benchmark results in previous studies [50, 51] and in
572 this study (Figure 3), which show substantial complementarity between different methods.
573  Second, even if prior pA annotations are available, it can be also beneficial to try out
574  methods that do not rely on prior annotations. When predicted pAs, even a small portion,

575  are confirmed using such a different method, it provides users with additional evidence.

576  Conclusions and prospects

577  Challenges in improving the performance of pA prediction

578  The field of pA prediction is progressing rapidly, primarily in the aspects of using DL
579  models and predicting pAs at the single-cell resolution. However, the overall accuracy,
580  sensitivity, and specificity of currently available methods remain moderate (Figure 3). The
581  coming flood of extensive sequencing data, especially multi-omics and single-cell data,
582  will provide new opportunities but also demand new computational methods to exploit this
583  new information. Potential challenges of improving the prediction performance include but
584  are not limited to: paucity of annotated pAs covering diverse tissues and species; mis-
585 assemblies caused by the low complexity 3' UTR sequences; mis-alignment of short reads
586 or incomplete sequence coverage near 3’ ends; difficulty in capturing pAs in low-

587  expression genes; poor knowledge on primary, secondary or higher structure information
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588  of poly(A) signals, particularly in plants; gaps in our knowledge on understanding APA
589  regulators in different omics layers; limited success in integrating the quantitative features
590 from multiple omics layers; lack of transferrable intelligent methods for cross-species
591  prediction; lack of interpretability in models based on deep neural networks; hurdle in
592  constructing negative datasets due to the prevalence of unconventional pAs in CDS and
593 introns; difficulty in identifying multiple pAs anywhere in the transcript; lack of effective
594  algorithms to deal with the extremely high isoform-level dropout rate and noise inherent in
595 scRNA-seq. Furthermore, higher standards for software quality assurance and
596  documentation would help improve the ease of use of these tools and facilitate their
597  application in the broader community. Finally, new algorithms should be designed to cope
598  with ever-increasing amount of different kinds of data, especially the explosion in single-
599  cell data with multi-omics features.

600  Notes on benchmarking different methods for predicting pAs

601  Till now, there are few reports on the exhaustive evaluation of computational tools for
602  predicting pAs. Previously, our group benchmarked 11 representative tools for predicting
603  pAs and/or dynamic APA events from RNA-seq [50]. Lately, Shah et al. [51] evaluated five
604  tools for RNA-seq against 3’ seq, [so-Seq, and a full-length RNA-seq method in identifying
605 pAs and quantifying pA usage. However, there is no study to provide an exhaustive
606  evaluation of existing tools for pA prediction from different kinds of data, particularly those
607  tools for scRNA-seq. Here we attempt to give some notes on benchmarking analysis in this
608  field. First, the real pA dataset is very critical for performance evaluation, however, the
609  reference datasets used in different studies are quite different. Therefore, it is imperative to
610  compile reliable reference datasets with uniform standards. In particular, RNA-seq or
611  scRNA-seq data are sample-specific, so the reference pA dataset from matched samples
612  should also be considered. Moreover, due to the paucity of real pA dataset at the single-cell
613  level, possible deviations need to be considered when using real pA data from bulk data for

614  evaluation. For example, pAs exclusively recognized in single cells may be authentic pAs
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615  from rare transcripts or rare cells, even though they may not be present in the bulk pA
616  reference. Second, most tools were evaluated using data only in mammals (mainly human
617 and mouse), therefore the scalability of these tools in different species, especially their
618  applicability to plants, needs to be further evaluated. Third, almost all published prediction
619  tools provide their own benchmark pipelines using different datasets, which potentially
620  favors their prediction efficiency. These benchmark protocols might be credible, but may
621  lack objectivity, simplicity, and effectiveness. We have sorted out the data used for
622  performance evaluation in the respective study of each tool in detail (Files S1-S4), which
623  can facilitate researchers to compile more diverse and standard data for objective
624  benchmark in the future. So far, the most widely used datasets for evaluating pA tools for
625  DNA sequences are the PASS dataset [69, 70] of plant species, the ERPIN dataset [23], and
626  DeepGSR dataset [27] of animal species; datasets for RNA-seq are the MAQC dataset [ 124]
627  and the HEK293 dataset [ 125]; datasets for scRNA-seq are the 10x human PBMC data and
628  the Tabula Muris atlas [126] (Files S1-S4). Moreover, genomic data could be small sample
629  data and large-scale data, it is also necessary to evaluate the performance of different tools
630  under different sizes of data. Fourth, the output format varies among different tools. For
631  example, most tools for DNA sequences generate binary output or probabilities between 0
632 and 1; some tools for RNA-seq or scRNA-seq output potential regions of pA instead of
633  exact pA position. Therefore, how to unify the output of different tools for objective
634  evaluation needs to be carefully considered. Fifth, compared with the benchmark of tools
635  for DNA sequence data, the benchmark for scRNA-seq tools is much less uniform (Files
636  S1-S4). Almost all studies examined the consensus between the identified pAs and
637  annotated pAs, while there is still no commonly used objective evaluation strategies with
638  diverse indicators. Therefore, it is necessary to use a variety of performance indicators (e.g.,
639  sensitivity, specificity, and precision) that are complementary in nature for comprehensive
640  performance evaluation, particularly for the evaluation of the emerging scRNA-seq tools.

641 At the same time, it is also important to simply present an overall ranking of different tools.
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642  The last but not least, many tools have parameters that can be adjusted, however, only the
643  default parameters were normally used for evaluation. Therefore, some strategies (e.g., grid
644  search) should be proposed to evaluate the impact of different parameters of a method.
645  Predicting pAs in non-3’' UTRs

646  With the advance of 3’ seq, more and more unconventional pAs located in non-3" UTR
647  regions like intron and CDS were discovered [3, 49, 127]. These non-3" UTR pAs may
648  generate mRNA isoforms encoding distinct proteins or result in the creation of premature
649  stop codons. Intronic polyadenylation has been found associated with cancer through the
650  inactivation of tumor-suppressor genes [95, 128]. The differential use of intronic pAs is a
651  potential indicator for the differential expression of pre-spliced mRNA transcripts, which
652  contributes to detecting newly transcribed genes and ultimately helps estimate the rate and
653  direction of cell differentiation [129]. Till now, almost all computational tools focused on
654  pA prediction in 3" UTRs. Many tools, particularly those for DNA sequences, usually
655  consider random sequences from introns as negative datasets for model training, which
656  would cause some real intronic pAs to be mistakenly regarded as negative instances.
657  Therefore, even for the pA prediction in 3" UTRs, it is necessary to consider the prevalence
658  of unconventional pAs when constructing the negative dataset. Lately, some tools for bulk
659  or single-cell RNA-seq have found a considerable number of pAs in introns. By applying
660 IPAFinder [95] on pan-cancer data from bulk RNA-seq, 490 recurrent dynamically
661  changed intronic pAs were found. Sierra [44] utilized a splice-aware strategy and identified
662  a considerable number of intronic peaks from scRNA-seq, however, the majority of these
663  peaks may be internal priming artifacts as they are proximal to A-rich regions. SCAPTURE
664  [107] also found > 16,000 candidate intronic pAs from 10x PBMC samples, while < 20%
665  pAs were overlapped with known intronic sites and a large number of false positives were
666  present in lowly expressed genes. Therefore, further careful inspection or filtering is critical
667  to obtain true non-3' UTR pAs or new intelligent algorithms are demanded to effectively

668  call non-3"' UTR pAs.
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669  Predicting tissue-specific pAs

670  APA plays a significant role in tissue-specific regulation of gene expression [2, 12].
671  Profiling APA dynamics or differential APA usages under different physiological or
672  pathological conditions has become a routine analysis in most APA studies. Computational
673  prediction of tissue-specific pAs may be an alternative yet cost-effective solution for
674  analyzing tissue-specificity of APA. The pA prediction problem described in this review is
675  essentially a binary classification problem, which aims to distinguish between nucleotide
676  sequences or genomic regions that contain a pA and those do not. Studies are currently in
677  progress to solve the problem of pA quantification, which aims to predict the strength or
678  dominance of a given pA across tissues. Weng et al. [112] and Hafez et al. [130] predicted
679  whether a given pA is tissue-specific or not, whereas they do not tackle the question of
680  alternative choice of APA sites. One way to study tissue specificity of pAs is to explore the
681  differential usage of APA sites in a gene (e.g., proximal and distal pAs). Several tools, such
682  as Conv-Net [73], have been proposed to predict the strength of APAs sites. Leung et al
683  [73] predicted relative dominance of pAs within 3’ UTR in human tissues solely based on
684  nucleotide sequences using a DL model. However, these methods only make predictions
685  based on sequence features, while fail to consider sample-specificity and in vivo expression.
686  In contrast, many tools for RNA-seq or scRNA-seq can be used for pairwise comparisons
687  between two samples, while they are not very suitable for profiling APA across multiple
688  tissues. Ever-larger RNA-seq or scRNA-seq data comprising of growing number of
689  samples from diverse tissues are increasingly available, which places new demands on
690 developing new methods to efficiently tackle the question of tissue-specificity of APA.
691  Cross-species prediction of pAs

692  Traditional ML methods, such as those based on SVM, can hardly adapt to different species,
693  because they used hand-crafted features learnt for a specific species. Although many DL-
694  based tools have been proposed to improve the performance of pA prediction, most tools

695  still need species-specific real pA collection for model training. Consequently, these tools
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696  may suffer from high risks of overfitting and are not applicable to species without any prior
697 pA annotations. Therefore, it is a promising direction to design new transferrable
698  algorithms for cross-species pA prediction or to improve the generalizability of existing
699  tools, which allows a well-trained model from a species with rich annotations to be
700 transferred to data from a different species without retraining or prior knowledge.
701  Annotation-assisted methods, compared to methods without using prior annotations,
702 generally ensure higher data quality and achieve better performance, however their
703 application is limited to data from specific species or biological conditions. Collection of
704  more extensive pA annotations from different sources would definitely contribute to
705  predicting novel sites and increasing the coverage of pAs in diverse cell types, biological
706  conditions, and species. Therefore, an alternative solution for predicting pAs in poorly
707  annotated species could be building an elegant model for well-annotated species and then
708  transferring the model to a different but related species, even without an established pA
709  collection. An initial attempt has been made by some existing methods like Poly(A)-DG
710  [122], which extracts shared features from multiple species and can be generalized to the
711 target species without fine-tuning. However, Poly(A)-DG was only tested between four
712 animals. Till now, tools applicable to plants are still limited. It is widely accepted that the
713 sequence conservation in poly(A) signals in plants is very low, where the most dominant
714  AAUAAA only appears in less than 10% of pAs [57]. Our group recently developed a tool
715  called QuantifyPoly(A) [63] to profile genome-wide polyadenylation choices, which found
716  plant pAs generally exhibit higher micro-heterogeneity than animal ones, and UGUA,
717  UAAA and/or AAUAAA are used in a species-dependent manner. Still, more efforts are
718  needed to explore additional motifs and/or higher-order structures associated with plant
719  polyadenylation and more intelligent algorithms are demanded in order to better predict
720  pAs in multiple species.

721 Predicting pAs by integrating multi-omics data

722 Poly(A) sites can be derived from different kinds of data. For example, 3’ seq has the unique
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723 advantage of acquiring high-quality pAs transcriptome-wide, which contributes to a larger
724  compendium of authentic pAs. Third-generation sequencing technologies, such as PacBio
725  sequencing, are powerful in profiling full-length transcriptome, which could provide a
726  more accurate transcriptome annotation. Widely conducted bulk RNA-seq data can be used
727  for capture and quantify pAs of low-abundance transcripts, and the rapid growing scRNA-
728  seq data support the identification of relatively rare transcripts in single cells. In addition
729  to the genome or transcriptome layers, APA modulation has been found associated with
730  other layers of gene regulation, such as nucleosome positioning, transcription rate, DNA
731  methylation, and RNA-binding proteins [2, 131-133]. By integrating multi-omics data,
732 weak signals from one layer can be amplified or noises be reduced to avoid false negative
733 predictions by referring to the complementary information from additional layers. For
734  instance, potential pAs identified from RNA-seq without well-recognized poly(A) signals
735  could be eliminated if there is no evidence in 3’ seq or full-length RNA-seq data. Initial
736  attempts have been made for APA analysis using multi-omics data. scUTRquant [108]
737  incorporates a cleavage site atlas established from a mouse full-length Microwell-seq
738  dataset of 400,000 single cells [109] for filtering high-confidence pAs predicted from 3’
739  tag scRNA-seq. Leung, et al. [73] predicted strength of pAs using nucleotide sequences,
740  considering features from additional layers like nucleosome positioning and RNA/binding
741  protein motifs. IntMAP [97] is a unified ML-based framework, which can fine-tune the
742  contributions of RNA-seq and 3’ seq data by tailoring the parameter 4. Currently, DL
743  models have been widely used in predicting pAs from DNA sequences. However, in many
744  cases, DL models fail to make accurate prediction, while patterns of RNA-seq coverage
745  provide clear evidence of polyadenylation, and vice versa [111]. Accordingly, several DL-
746  based tools integrated bulk or single-cell RNA-seq with DNA sequences for pA prediction,
747  such as SCAPTURE [107] and Aptardi [99]. It is promising yet challenging to formulate
748  one unified computational framework, especially leveraging the strength of intelligent

749  algorithms, to integrate the quantitative information from multiple omics layers, e.g.,
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750  genomic DNA, transcriptome data, methylation data, and chromatin accessibility data, to
751  identify and quantify pAs genome-wide.

752  Predicting pAs at the single-cell level

753  With the rapid development of scRNA-seq technology, different tools continue to emerge
754  for pA identification in single cells. Currently, most methods, like scAPA [102], Sierra [44],
755 and MAPPER [106], construct pseudo-bulk RNA-seq data by pooling reads from cells of
756  the same cell cluster (or cell type) to address the high dropout rate and variability inherent
757  in scRNA-seq. Although many of these tools, like scAPA or Sierra, can still quantify the
758  expression of a pA in each cell by counting reads within a poly(A) region, single cell-based
759  quantification may have high noise level and missing values due to biological and technical
760  variance [106]. As such, APA usage is characterized at the cell-cluster resolution rather than
761  the single-cell resolution, which somewhat contradicts the ultimate goal of single-cell
762  sequencing. Moreover, cell clusters or cell types in these studies were inferred by the
763  conventional gene-cell expression profile, consequently, the APA analysis is limited to
764  predefined cell types and the result may be affected by different cell type annotations.
765  Alternatively, scDaPars [46] quantifies single-cell APA usage based on the model for bulk
766  RNA-seq introduced in DaPars [39], and then recovers missing APA usage by leveraging
767  APA information of the same gene in similar cells. Another limitation of most tools for
768  scRNA-seq is that they are only applicable to 3’ tag based scRNA-seq like 10x Chromium
769  or CEL-seq. Till now, only scDaPars can be applied to both 3’ tag and full-length scRNA-
770  seq, e.g., Smart-seq2. However, although scDaPars is reported to be able to quantify APA
771 usage in individual cells independent of gene expression, pAs were actually predicted from
772 the bulk RNA-seq tool DaPars that was not specifically designed for scRNA-seq. Moreover,
773 it is challenging to identify and verify low-expression pAs in highly sparse scRNA-seq,
774  particularly those in rare cells. In addition, the tsunami of complex scRNA-seq datasets
775  with various tissue sources, batch effects, and library sizes also have brought huge

776  computational and analytical challenges. Therefore, more efforts are needed to develop
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777 new methods to address inherent issues in scRNA-seq for establishing a more

778  comprehensive landscape of pAs at the single-gene and single-cell resolution.
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1079  Figure legends

1080 Figure 1 Schematic of computational approaches for predicting pAs from different
1081  Kkinds of sequencing data

1082  A. Predicting pAs from DNA sequences based on traditional ML models. B. Predicting
1083  pAs from DNA sequences based on DL models. C. Identifying pAs from 3’ seq data. D.
1084  Predicting pAs from bulk RNA-seq data. E. Predicting pAs from single-cell RNA-seq data.
1085  Some representative methods are listed in the text box on the right. pA, poly(A) site; ML,
1086  machine learning; T, true; F, false; DL, deep learning; scRNA-seq, single-cell RNA-seq.
1087

1088  Figure 2 Landscape of computational approaches for predicting pA from DNA
1089  sequences, bulk RNA-seq, and single-cell RNA-seq over time

1090  scRNA-seq, single-cell RNA-seq; DL, deep learning; LDF, linear discriminant function;
1091  QDF, quadratic discriminant function; HMM, hidden Markov model; SVM, support vector
1092  machine; BN, Bayesian network; ANN, artificial neural network; PM, probabilistic model;
1093  RF, random forest; CC, combined classifier; CP, change point; AN, annotation-based
1094  method; TA, transcript assembly; PK, peak calling; TL, transcript assembly and read
1095  linking.

1096

1097  Figure 3 Comparison of representative tools for predicting pAs from a matched
1098  bulk RNA-seq and scRNA-seq data of human PBMCs

1099  A. Schematic of the benchmark (top) and the collection of reference pAs from GENCODE
1100  v39, PolyASite 2.0, and PolyA DB 3 (bottom). B. Number of pAs obtained by different
1101 tools (left) and distributions of pAs in different genomic regions (right). C. Overlap of 3’
1102 UTR pAs predicted by different tools with reference pAs (left) and distributions of distance
1103  from predicted 3' UTR pAs to reference pAs (right). D. Overlap of 3' UTR pAs predicted
1104 by different tools from RNA-seq data (top) and scRNA-seq data (bottom). E. Single

1105  nucleotide profile around 3" UTR pAs predicted by different tools. For each tool, the
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sequence logo of the most dominant motif around the pA identified by DREME was also
shown. F. Number of occurrences of AATAAA and 1-nt variants around pAs predicted by
different tools. G. The proportion of pAs obtained by different tools to be predicted as
positive or negative by DeepPASTA (top) and the number of occurrences of AATAAA and
1-nt variants around positive pAs (bottom). The upstream and downstream sequences of
pAs predicted by each RNA-seq tool were extracted as the input for DeepPASTA. H.
Predicted 3' UTR pAs by different tools for the /IGHM gene. Tracks from top to the bottom
are gene model, reference pAs from three databases, read coverage from bulk RNA-seq,
predicted pAs from bulk RNA-seq, read coverage for each cell type of scRNA-seq, and
predicted pAs from scRNA-seq. The red triangles on the chromosome strip highlight the
two representative pAs of /IGHM.

Tables

Tablel Recommended tools for predicting pAs from DNA sequences, bulk RNA-

seq, and single-cell RNA-seq

Supplementary material

File S1 List of methods for predicting poly(A) sites or poly(A) signals from DNA
sequences based on traditional machine learning models

File S2  List of methods for predicting poly(A) sites or poly(A) signals from DNA
sequences based on deep learning models

File S3 List of methods for predicting poly(A) sites from RNA-seq

File S4 List of methods for predicting poly(A) sites from single-cell RNA-seq
File S5 List of methods or resources for analysis of alternative polyadenylation
rather than prediction of poly(A) sites

File S6 Materials and methods used in this study
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