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Abstract 26 

Alternative polyadenylation (APA) plays important roles in modulating mRNA stability, 27 

translation, and subcellular localization, and contributes extensively to shaping eukaryotic 28 

transcriptome complexity and proteome diversity. Identification of poly(A) sites (pAs) on 29 

a genome-wide scale is a critical step toward understanding the underlying mechanism of 30 

APA-mediated gene regulation. A number of established computational tools have been 31 

proposed to predict pAs from diverse genomic data. Here we provided an exhaustive 32 

overview of computational approaches for predicting pAs from DNA sequences, bulk 33 

RNA-seq data, and single-cell RNA-seq (scRNA-seq) data. Particularly, we examined 34 

several representative tools using RNA-seq and scRNA-seq data from peripheral blood 35 

mononuclear cells and put forward operable suggestions on how to assess the reliability of 36 

pAs predicted by different tools. We also proposed practical guidelines on choosing 37 

appropriate methods applicable to diverse scenarios. Moreover, we discussed in depth the 38 

challenges in improving the performance of pA prediction and benchmarking different 39 

methods. Additionally, we highlighted outstanding challenges and opportunities using new 40 

machine learning and integrative multi-omics techniques and provided our perspective on 41 

how computational methodologies might evolve in the future for non-3′ UTR, tissue-42 

specific, cross-species, and single-cell pA prediction. 43 

Keywords: Polyadenylation; Predictive modeling; RNA-seq; Single-cell RNA-seq; 44 

Machine learning 45 
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Introduction 48 

Precursor mRNA (pre-mRNA) polyadenylation is an essential two-step event in the post-49 

transcriptional regulation of gene expression, which involves the cleavage of the pre-50 

mRNA at the poly(A) site (pA) followed by the addition of an untemplated stretch of 51 

adenosines [1, 2]. The selective use of pAs of a single gene, termed alternative 52 

polyadenylation (APA), can generate a diversity of isoforms with different 3′ ends and/or 53 

encode distinct proteins [3, 4]. APA plays important roles in modulating mRNA stability, 54 

translation, and subcellular localization, which contributes extensively to shaping 55 

eukaryotic transcriptome complexity and proteome diversity. APA is a widespread 56 

regulatory mechanism in eukaryotes, which has been observed in more than 70% of 57 

mammalian and plant genes [5-11]. APA is highly tissue specific and dynamically 58 

modulated in various conditions, cell types, and/or states [2, 12]. Specific APA programs 59 

have been implicated in diverse biological processes and diseases, such as cell activation, 60 

proliferation, neurodegenerative disorders, and cancer [3, 4, 13-20]. Given the functional 61 

significance of APA, identification and/or quantification of pAs on a genome-wide scale is 62 

crucial and may be the first step in understanding the underlying mechanism of APA-63 

mediated gene regulation. 64 

Early studies, dating back to the 1990s, predict pAs using conventional machine 65 

learning (ML) models like support vector machine (SVM) [21-25], which distinguish 66 

whether a nucleotide sequence contains a pA using a variety of hand-crafted features 67 

(Figure 1A). In recent years, deep learning (DL) models [26-29] have been shown to 68 

provide better performance than traditional ML methods, owing to their great ability for 69 

direct and automatic feature extraction and high scalability with large amount of genomic 70 

data (Figure 1B). With the advance of next generation sequencing (NGS) technologies, 71 

experimental protocols have been designed to capture 3′ ends of mRNAs for direct 72 

profiling of genome-wide pAs (Figure 1C), such as DRS [10, 30], 3P-Seq [7, 31], 3′READs 73 

[11], PAT-seq [32], TAIL-seq [33, 34], and several others (reviewed in [35-37]). Although 74 
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these 3′ end sequencing (3′ seq) approaches are powerful and highly sensitive in detecting 75 

the precise locations of pAs, even for lowly expressed genes, they are too technically 76 

demanding and costly to be widely applied in genomic research. Alternatively, a myriad of 77 

computational tools [38-41] have been developed for identifying and quantifying pAs by 78 

leveraging the explosively growing RNA sequencing (RNA-seq) data from diverse 79 

biological conditions, cell types, individuals, and organisms (Figure 1D). In recent years, 80 

the single-cell RNA-seq (scRNA-seq) techniques, particularly those 3′ tag-based protocols 81 

such as CEL-seq [42] and 10x Chromium [43], provide great potential to explore dynamics 82 

of APA usage during the process of cellular differentiation. Accordingly, a wide spectrum 83 

of tools have been proposed to profile APA from diverse scRNA-seq datasets at cell-type 84 

or even single-cell resolution [44-46] (Figure 1E).  85 

The tsunami of genomic data especially bulk and single-cell RNA-seq data and the 86 

emergence of ensemble deep learning methodologies have revolutionized computational 87 

methods for detecting pAs from diverse kinds of data. In the past decade, a few literature 88 

reviews have involved the computational tools for bioinformatic analysis of APA. In 2015, 89 

our group summarized computations tools for predicting pAs from DNA sequences and 3′ 90 

seq methods for mapping pAs [37]. Szkop and Nobeli [47] described experimental methods 91 

for probing 5′ UTRs and 3′ UTRs, and listed computational methods for discovering 92 

alternative transcription start sites (TSSs) and pAs from microarray and RNA-seq. Yeh et 93 

al. [48] reviewed experimental methods and technologies for studying APA, and briefly 94 

listed seven RNA-seq tools for analyzing APA dynamics in tabular form. Chen et al. [49] 95 

comprehensively reviewed 3′ seq methods for probing pAs, while their review did not 96 

cover the computational tools for APA analysis. Gruber and Zavolan [12] highlighted the 97 

importance of APA in health and disease, and briefly listed computational resources for 98 

studying APA in a table, including four pA databases, two databases of RBP binding motifs, 99 

eight RNA-seq tools for identifying and/or quantifying pAs, and three tools for APA 100 

analysis. Our group [50] benchmarked 11 tools for predicting pAs or dynamic APA events 101 
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from RNA-seq data. Another benchmark study [51] benchmarked five tools for RNA-seq 102 

and compared their performance with 3′ seq, Iso-Seq, and PacBio single-molecule full-103 

length RNA-seq method. Ye et al. [52] briefly summarized three computational methods 104 

for detecting APA dynamics from diverse single cell types. Zhang et al. [53] focused on the 105 

APA regulation in cancer, and briefly listed 14 computational tools for detecting APA. 106 

Kandhari et al. [54] highlighted the emerging role of APA as cancer biomarkers and 107 

provided an overview of existing relevant experimental and computational methods. 108 

However, these two reviews [53, 54] did not distinguish among the prediction of pAs, 109 

detection of APA dynamics, and analysis of APA. For example, APAlyzer [55] and 110 

movAPA [56] listed in these reviews are actually toolkits for analyzing APA rather than 111 

detecting APA dynamics or pAs, which are different from other tools they listed such as 112 

DaPars [39] or APAtrap [40]. Generally, although the above reviews have provided detailed 113 

overviews of the progress in the complex yet fruitful APA field, none of them has 114 

exhaustively summarized available tools for different kinds of data in this field, particularly 115 

the emerging DL-based methods and methods for scRNA-seq. Moreover, most reviews 116 

only briefly listed tools without delicate summary and sorting, which makes it difficult for 117 

the scientific community to decide desirable method for their data analysis. In this review, 118 

we described the principles of identifying pAs from different kinds of data and provide an 119 

extensive overview of available computational approaches. We catalogued these methods 120 

into different categories in terms of the underlying principles of the predictive models and 121 

the data they used, and summarized their performance and characteristics such as 122 

algorithms, features, and data used in the predictive model. Particularly, we examined 123 

several representative tools using RNA-seq and scRNA-seq data from peripheral blood 124 

mononuclear cells and put forward operable suggestions on how to assess the reliability of 125 

pAs predicted by different tools. We also describe several notes on how to conduct 126 

objective benchmark analysis for these massive number of tools. Moreover, we propose 127 

practical recommendations on choosing appropriate methods for different scenarios and 128 
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discussed implications and future directions. Additionally, we highlight outstanding 129 

challenges and opportunities using new machine learning and integrative multi-omics 130 

techniques. Lastly, we provide our perspective on how computational methodologies might 131 

evolve in the future for pA prediction, including non-3′ UTR, tissue-specific, cross-species, 132 

and single-cell pA prediction.  133 

Computational approaches for pA prediction 134 

Methods for predicting pAs from DNA sequences 135 

The key trigger for cleavage and polyadenylation is the set of cis-regulatory elements 136 

surrounding a pA, including A[A/U]UAAA hexamer or variant thereof, the UGUA element, 137 

upstream and downstream U-rich elements, and downstream GU-rich elements [57]. Since 138 

poly(A) signals, the core AAUAAA and its variants, are in the vicinity of most mammalian 139 

pAs, the identification of the poly(A) signal (PAS) is usually regarded as an alternative to 140 

determine the potential position of a pA. In this review, we refer to the task of predicting 141 

pAs or PASs as the "pA identification problem". During the past few decades, a wide range 142 

of computational approaches have been proposed to predict pAs from DNA sequences 143 

using experimental and in silico mapping of 3′-end expressed sequence tags (ESTs) (Files 144 

S1 and S2). 145 

Methods based on traditional machine learning models 146 

Earlier studies established traditional ML models to classify a sequence as containing a pA 147 

or not, using various algorithms such as discriminant functions [21, 22, 58], hidden Markov 148 

model (HMM) [23], SVM [24, 59], Bayesian network [60], artificial neural network and 149 

random forests [61], and combined classifiers [25, 62] (Figure 2 and File S2). The machine 150 

learning frameworks of these methods are similar, except that different classification 151 

models were employed and/or diverse hand-crafted sequence features were compiled (File 152 

S1). As ML models rely heavily on manually designed features and the poly(A) signal of 153 

human/animal is considerably different from that of other species like plants or 154 

Saccharomyces cerevisiae (yeast) [37, 63], these ML-based methods can be divided into 155 
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two categories according to the applicable species (File S1): i) methods that are applicable 156 

to human or animals, including POLYAH [21], Polyadq [58], ERPIN [23], Poly(A) Signal 157 

Miner [64], Polya_svm [24], PolyApred [59], POLYAR [22], Chang’s model [65], Dragon 158 

PolyA Spotter [61], Xie’s model [66], and Omni-PolyA [25]; ii) methods that are applicable 159 

to other species, including the Graber’s method [67] for yeast, POLYA [68] for 160 

Caenorhabditis elegans, PASS [69, 70], PAC [60] and PASPA [71] for plants, and Wu’s 161 

model for Chlamydomonas Reinhardtii [62]. These methods utilize diverse sequence 162 

features around pAs for pA prediction (File S1). The most commonly used features are 163 

position weight matrix for the poly(A) motifs, distance between motifs, and k-gram 164 

nucleotide acid patterns [21, 23, 24, 58, 59]. With the increase of the prior knowledge of 165 

DNA sequences, more carefully hand-crafted features were derived, such as Z-curve [60], 166 

RNA secondary structures [62, 65], physico-chemical, thermodynamic and statistical 167 

characteristics [61], the term frequency–inverse document frequency weight [62], and 168 

spectral latent features extracted by HMM [66]. Particularly, since the significance of 169 

poly(A) signal is different in pAs with different strengths, a few studies divided pAs into 170 

sub-groups based on the expression level [22] or pattern assembly [62], and then predicted 171 

pAs in each group. In terms of the availability and ease of use of tools, several tools were 172 

presented as website (Figure 2), which is particularly convenient for users with little 173 

program skill. However, since these tools were generally developed many years ago, the 174 

programming languages of many tools are outdated, such as Fortran or Perl, and many tools 175 

are no longer available or maintained.  176 

Methods based on deep learning models 177 

Despite considerable progress has been made, the overall accuracy and generalizability of 178 

traditional ML-based methods remain moderate due to the limited experimentally verified 179 

pAs in the early years and the lack of prior domain knowledge to finely design and acquire 180 

useful features. In recent years, DL-based methods are emerging rapidly (File S2 and 181 

Figure 2), which directly learn hidden features from input nucleotide sequences in a data-182 
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driven manner, without knowing any prior knowledge of sequence features. Most methods 183 

use convolution neural networks (CNNs), including deepPolyA [72], Conv-Net [73], 184 

DeeReCT-PolyA [26], DeepPASTA [28], DeepGSR [27], and APARENT [29]. Other deep 185 

learning techniques were also utilized, such as the recurrent neural network (RNN) 186 

employed in DeepPASTA [28], a hybrid model with four logistic regression models and 187 

eight neural networks used in HybPAS [74], and self-attention mechanisms used in 188 

SANPolyA [75] and PASNet [76]. All of these tools were implemented using DL 189 

frameworks in Python. In addition to pA prediction, several methods can be utilized for 190 

multiple tasks. For example, Conv-Net [73] is capable of inferring pA selection and 191 

predicting pathogenicity of polyadenylation variants. DeepPASTA [28] can be used for the 192 

prediction of the most dominant pA of a gene in a given tissue and the relative dominance 193 

of APA sites in a gene. DeepGSR [27] is able to predict genome-wide and cross-organism 194 

genomic signals such as translation initiation sites. APARENT [29] can also be utilized for 195 

the quantification of the impact of genetic variants on APA. Different from hand-picked 196 

features used in ML-based methods, one-hot encoding features without needing fine 197 

feature engineering are widely used in DL-based methods, however, DL-based models are 198 

generally of poor interpretability. To enhance the interpretability, several methods provide 199 

additional function for visualization of signals. Xia et al. [26] showed the interpretability 200 

of their DeeReCT-PolyA model by transforming convolutional filters into sequence logos 201 

for the comparison between human and mouse. In APARENT [29], features learned across 202 

all network layers were visualized, which can reveal cis-regulatory elements known to 203 

recruit APA regulators and new sequence determinants of polyadenylation. In addition to 204 

performance improvement, DL-based methods have two significant advantages over ML-205 

based methods, the higher generalizability for different species and the higher scalability 206 

with large amount of data. For example, DeeReCT-PolyA [26] is an interpretable and 207 

transferrable CNN model for recognition of 12 PAS variants, which enables transfer 208 

learning across datasets and species. APARENT [29] was trained using isoform expression 209 
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data from more than three million synthetic APA reporters.  210 

Methods for predicting pAs from bulk RNA-seq data 211 

Methods that predict pAs only from DNA sequences conspicuously fail to consider in vivo 212 

expression. RNA-seq has become an indispensable approach for transcriptome profiling in 213 

diverse biological samples and a number of methods have been proposed for identifying 214 

sample-specific pAs from RNA-seq (File S3). Our group previously benchmarked 11 215 

representative methods for predicting pAs and/or dynamic APA events from RNA-seq [50]. 216 

Here we focus on prediction of pAs rather than dynamic APA events. We collected relevant 217 

methods summarized in our previous review [50] as well as newly emerging methods, and 218 

divided these methods into five categories according to their underlying strategies. 219 

Methods that interrogate non-templated poly(A)-capped reads 220 

RNA-seq data contain a small fraction (~0.1%) of non-templated poly(A) tail-containing 221 

reads (hereinafter referred to as poly(A) reads) [47], which can be considered as direct 222 

evidence for polyadenylation. By interrogating poly(A) reads, an early study [77] identified 223 

~8000 novel pAs in Drosophila melanogaster from a total of 1.2 billion RNA-seq reads. 224 

Several other methods, such as KLEAT [78] and ContextMap 2 [79], not only employed 225 

direct evidence from poly(A) reads but also incorporated transcript assembly to identify 226 

pAs. These poly(A) read-based approaches have the advantage to determine the precise 227 

locations of pAs, however, it is still challenging to discover pAs of weakly expressed 228 

transcripts due to the decreased read coverage near the 3′ end and the low yield of poly(A) 229 

reads. 230 

Methods based on transcript assembly 231 

Another series of approaches identify pAs from inferred alternative 3′ UTRs by compiling 232 

transcript structures from RNA-seq, including PASA [80], Scripture [81], 3USS [82], and 233 

ExUTR [83]. These transcriptome assembly-assisted methods deduce gene models first 234 

using transcriptome assembly tools, and then identify 3′ UTRs that are absent in the 235 

deduced gene models, which rely heavily on assembled gene structures. It is widely 236 
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accepted that transcriptome assembly from RNA-seq is a rather difficult and 237 

computationally demanding task, and it is more challenging to precisely determine 3′ UTRs, 238 

especially for lowly expressed genes, due to 3′ biases of read coverage inherent in RNA-239 

seq. Therefore, the performance of these methods is inevitably hindered by potential 240 

limitations of existing transcriptome assembly tools. 241 

Methods that rely on prior annotations of pAs 242 

During the last decade, numerous experimental techniques have been developed to direct 243 

sequence 3′ ends of mRNAs, such as 3′ T-fill [84], 3′READs [11], TAIL-seq [33, 34], to 244 

name a few (Figure 1C). Accordingly, several pA databases built upon 3′ seq data of diverse 245 

species were continuously released, including PolyA_DB 3 [85], PolyAsite 2.0 [8], and 246 

PlantAPAdb [86]. These databases provide a large number high-confidence pAs, which can 247 

be used for establishing pA prediction models and evaluating pA prediction results. It is 248 

thus naturally to incorporate annotated pAs for predicting pAs from RNA-seq. Several 249 

methods, including QAPA [38], PAQR [87], and APA-scan [88], that rely on pre-defined 250 

pA annotations were proposed for predicting pAs from RNA-seq. For these methods, the 251 

quality of annotated pAs is particularly critical. Most studies establish a comprehensive 252 

compendium of well-annotated pAs by merging non-redundant annotations from diverse 253 

sources. By combining priori annotated pAs with RNA-seq, the quality of predicted pAs 254 

can be greatly improved. However, currently available pA databases are far from complete 255 

and limited to only a few well-studied species, such as human, mouse, and Arabidopsis 256 

thaliana, consequently, these tools are not capable of detecting novel pAs beyond existing 257 

poly(A) annotations.  258 

Methods that infer pAs by detecting significant changes in RNA-seq read density 259 

Majority of recent approaches predict pAs by modelling read density changes in terminal 260 

exons, including GETUTR [89], IsoSCM [90], DaPars/DaPars2 [39, 91, 92], 261 

EBChangePoint [93], APAtrap [40], TAPAS [41], moutainClimber [94], and IPAFinder 262 

[95]. According to our previous benchmark on 11 tools for RNA-seq [50], TAPAS generally 263 
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obtained higher sensitivity than other tools across different datasets. Of note, unlike most 264 

methods that require at least two samples for change point detection, moutainClimber [94] 265 

is a de novo cumulative-sum-based approach, which runs on a single RNA-seq sample and 266 

simultaneously recognizes multiple TSSs or APA sites in a transcript. Using 267 

mountainClimber, Cass and Xiao analyzed 2,342 GTEx samples from 36 tissues of 215 268 

individuals and found 75% of genes exhibited differential APA across tissues [94]. 269 

Different from most pA prediction tools focusing mainly on 3′ UTR, IPAFinder was 270 

specifically proposed for identifying intronic pAs from RNA-seq [95]. Zhao et al. applied 271 

IPAFinder to pan-cancer datasets across six tumor types and discovered 490 recurrent 272 

dynamically changed intronic pAs [95]. Methods falling within this category rely on the 273 

detection of read density fluctuations which require sufficient read coverage in terminal 274 

exons to detect APA sites. It is worth noting that data pre-processing (normalization or 275 

smoothing) is particularly important for reducing technical biases caused by non-biological 276 

variability [47]. Particularly, some methods, such as APAtrap and DaPars, re-define 277 

terminal exon boundaries based on RNA-seq read coverage before identifying pAs, which 278 

are capable of detecting pAs in previously unannotated regions. 279 

Methods based on machine learning models 280 

In recent years, some newly emerging methods employ traditional ML or DL model to 281 

identify pAs from RNA-seq, including TECtools [96], IntMAP [97], Terminitor [98], and 282 

Aptardi [99]. TECtools [96] first identifies terminal exons and transcript isoforms ending 283 

at known intronic pAs. Then a model was trained based on the aligned RNA-seq data for 284 

distinguishing terminal exons from internal exons and background regions, using diverse 285 

features reflecting differences in read coverage of these regions. TECtool can also be 286 

applied on scRNA-seq, which first pools reads of all cells to infer new transcripts and then 287 

quantify each transcript in individual cells. IntMAP [97] leverages one unified ML 288 

framework to combine the information from RNA-seq and 3′ seq to quantify different 3′ 289 

UTR isoforms using a global optimization strategy. Terminitor [98] is based on a deep 290 
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neural network for three-label classification problem, which can determine whether an 291 

input sequence contains a pA with poly(A) signal, a site without poly(A) signal, or non-pA. 292 

Aptardi [99] is a multi-omics approach based on bidirectional long short-term memory 293 

recurrent neural network (biLSTM), which predicts pAs by leveraging DNA sequences, 294 

RNA-seq, and the predilection of transcriptome assemblers.  295 

Methods for predicting pAs from single-cell RNA-seq 296 

Single-cell RNA-seq is a powerful high-throughput technique for interrogating 297 

transcriptome of individual cells and measuring cell-to-cell variability in transcription 298 

[100]. Particularly, several 3′ tag-based scRNA-seq methods enriching for mRNA 3′ ends 299 

via poly(A) priming, such as CEL-seq [42], Drop-seq [101], and 10x Chromium [43], 300 

provide great potential to dissect APA at single-cell resolution. However, the extremely 301 

high dropout rate and cell-to-cell variability inherent in scRNA-seq makes it difficult to 302 

directly apply bulk RNA-seq methods to scRNA-seq data. During the last few years, a wide 303 

range of computational approaches specifically designed for pA identification from 304 

scRNA-seq have emerged (File S4 and Figure 2). We divided these methods into three 305 

categories according to their underlying strategies. 306 

Methods based on peak calling 307 

The peak calling strategy is widely used by most methods for pA identification from 308 

scRNA-seq, including scAPA [102], polyApipe 309 

(https://github.com/MonashBioinformaticsPlatform/polyApipe), Sierra [44], scAPAtrap 310 

[45], SAPAS [103], and SCAPE [104]. The underlying principle of these methods is that 311 

aligned reads from 3′ tag-based scRNA-seq accumulate to form peaks at genomic intervals 312 

upstream of pAs [102]. In scAPA [102], a set of non-overlapping 3′ UTRs is first defined 313 

from the genome annotation and then peaks within 3′ UTRs are identified using an existing 314 

peak calling tool. As adjacent pAs may situate in a single peak, the Gaussian finite mixture 315 

model was implemented in scAPA to split large peaks into smaller ones. polyApipe is a 316 

pipeline for identifying pAs from 10x Chromium scRNA-seq, which defines peaks of 317 
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polyA-containing reads. Sierra [44] employed the splice-aware peak calling based on 318 

Gaussian curve fitting to determine potential peaks with pAs and then the peaks were 319 

annotated and quantified in individual cells. Our group proposed scAPAtrap [45] for 320 

identifying and quantifying pAs in individual cells from 3′ tag-based scRNA-seq. 321 

scAPAtrap incorporates a genome-wide sensitive peak calling strategy and poly(A) read 322 

anchoring, which can accurate locate pAs without using prior genome annotation, even for 323 

those with very low read coverage. Yang et al. proposed SAPAS for identifying pAs from 324 

poly(A)-containing reads and quantifying pAs in peak regions determined by a parametric 325 

clustering algorithm [103]. They further applied SAPAS to the scRNA-seq data of 326 

GABAergic neurons and detected cell type-specific APA events and cell-to-cell modality 327 

of APA for different GABAergic neuron types. Very recently, Zhou et al. proposed the 328 

SCAPE method based on a probabilistic mixture model for identification and quantification 329 

of pAs in single cells by utilizing insert size information [104]. The parametric modeling 330 

of peaks in most tools based on peak calling such as scAPA or Sierra may cause biases and 331 

reduce statistical power in detecting APA events. Alternatively, ReadZS [105], an 332 

annotation-free statistical approach, was proposed to characterize read distributions that 333 

bypasses parametric peak calling and identify differential APA usages at single-cell 334 

resolution among ≥ 2 cell types. ReadZS can not only detect pAs in normal peak shape, 335 

but also identify distributional shifts that are not. 336 

Methods that rely on prior annotations of pAs 337 

In contrast to the peak calling-based methods used for de novo pA identification, a few 338 

approaches identify pAs base on prior pA annotations, including MAPPER [106], 339 

SCAPTURE [107], and scUTRquant [108]. Li et al. developed MAPPER [106] for 340 

predicting pAs from both bulk RNA-seq and scRNA-seq data, which incorporates 341 

annotated pAs in PolyA_DB 3 [85] and pools single cells of the same type to mimic 342 

pseudo-bulk samples. MAAPER also provides a likelihood-based statistical framework for 343 

analyzing APA changes and can identify common and distinct APA events in cell groups 344 
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from different individuals. The group of MAPPER later developed SCAPTURE [107] 345 

which embedded a DL model DeepPASS for evaluating called peaks from scRNA-seq. The 346 

DL model was trained by sequences shifting, using annotated pAs from PolyA_DB 3, 347 

PolyA-seq, PolyASite 2.0 and GENCODE v39. The authors used SCAPTURE to profile 348 

APA dynamics between COVID-19 patients and healthy individuals, and found the 349 

preference of proximal pA usage in numerous immune response-associated genes upon 350 

SARS-CoV-2 infection. Fansler et al. developed scUTRquant [108] for measuring 3′ UTR 351 

isoform expression from scRNA-seq, which relies on a cleavage site atlas established from 352 

GENCODE annotation and a mouse Microwell-seq dataset of 400,000 single cells [109].  353 

Other methods for predicting pAs from scRNA-seq 354 

Additionally, some other methods do not use the peak calling strategy, including APA-Seq 355 

[110] and scDaPars [46]. Levin et al. [110] designed the APA-seq approach to detect and 356 

quantify pAs from CEL-seq, which interrogates the gene identity and poly(A) information 357 

in the paired Read 1 and Read 2. Although APA-Seq is in principle applicable to other 3′ 358 

tag-based scRNA-seq methods, it may not be universally applied in practice in that only 359 

sample barcodes rather than the whole 3′ end sequence of the transcript are retained in Read 360 

1 of many public scRNA-seq data [45]. Unlike most tools that are only applicable to 3′ tag-361 

based scRNA-seq, scDaPars [46] that was proposed by the group of DaPars [39] can 362 

identify and quantify APA events from either 3′ tag (e.g., 10x Chromium) or full-length 363 

(e.g., Smart-seq2) scRNA-seq. In the scDaPars pipeline, DaPars, a tool for identifying APA 364 

events from bulk RNA-seq, was first adopted to calculate raw relative APA usage in 365 

individual cells, and then a regression model was utilized to impute missing values in the 366 

sparse single-cell APA usage matrix. By applying scDaPars to cancer and human endoderm 367 

differentiation data, Gao et al. revealed cell type-specific APA regulation and detected 368 

novel cell subpopulations that were not found in conventional gene expression analysis. 369 

Methods for APA analysis rather than pA prediction 370 

In addition to the task of pA prediction (hereinafter termed task 1), there are additional 371 
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tasks related to the bioinformatic analysis of APA, mainly including the prediction of 372 

tissue-specific pAs (task 2), prediction of dominant pAs (task 3), prediction of APA site 373 

switching (task 4), and other kinds of APA analysis (task 5). Although most tools described 374 

in this review are developed for task 1, several tools are capable of performing multiple 375 

tasks. For example, DeepPASTA [28] is able to perform tasks 1-3; Conv-Net [73] can 376 

perform tasks 1/3. In this review, we focus only on tools that are applicable to task 1. Of 377 

note, NGS-based techniques specially designed for probing pAs, generally known as 3′ seq, 378 

such as DRS [10, 30], 3P-Seq [7, 31], and 3′READs [11], are experimental methods rather 379 

than computational methods for identifying pAs. Genome-wide pAs generated from 3′ seq 380 

are highly confident and are usually regarded as the true reference (i.e., prior information) 381 

for building models or evaluating computational methods. These 3′ seq methods are beyond 382 

the scope of this review, while have been reviewed in several other reviews [12, 47, 49, 383 

54]. In addition, we have briefly summarized tools or resources designed for APA analysis 384 

rather than pA prediction in File S5. Tools such as DeeReCT-APA [111], polyA code [112], 385 

and TSAPA [113] are not targeted at task 1 but for other tasks 2/3, such as predicting tissue-386 

specific pAs. Among the five tasks, detection of APA site switching (Task 4) is usually a 387 

routine step involved in the analysis of RNA-seq or scRNA-seq. APA site switching reflects 388 

the differential usage of APA sites between samples, which does not necessarily need the 389 

prediction of pAs (task 1) as a prerequisite. Of note, there are other commonly used phrases 390 

similar to ‘APA site switching’ mentioned in this review, such as differential APA site usage 391 

[8, 39], 3′ UTR shortening/lengthening [45, 102], and APA dynamics [39, 45, 99, 114]. 392 

Some approaches for RNA-seq, such as PHMM [115], ChangePoint [116], MISO [117], 393 

and roar [118], directly discover APA site switching by detecting sudden change of read 394 

density at terminal exons without identifying APA sites. Recently, several tools were 395 

developed for scRNA-seq, such as SCUREL [119], scMAPA [120], and scDAPA [121]. 396 

For example, our group developed scDAPA [121] for characterizing differential usages of 397 

APA in different cell types using 10x Chromium data, and found APA plays important role 398 
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in acute myeloid leukemia [114]. Additionally, some toolkits were developed for routine 399 

analyses of APA (e.g., annotation and visualization, task 5) using annotated pAs and/or 400 

RNA-seq, such as APAlyzer [55] and movAPA [56], while they are not capable of 401 

predicting pAs. These diverse tools provide a wide range of complementary resources and 402 

opportunities to address the more complex but fruitful field of APA. 403 

Discussion 404 

Performance of pA prediction models 405 

At present, there are only a few benchmark studies that systematically evaluate the 406 

performance of different tools. Previously, our group benchmarked 11 tools for RNA-seq 407 

[50] and found that the sensitivity of some methods varied greatly among different species. 408 

For instance, QAPA [38] performs the second best on human data, while it performs the 409 

worst on mouse data. APAtrap [40] is the top performer for Arabidopsis data, while TAPAS 410 

[41] performs the best on human or mouse data. Recently, Shah et al. [51] benchmarked 411 

five tools for RNA-seq against 3′ seq, Iso-Seq, and a full-length RNA-seq method and 412 

found that pAs from 3′ seq and Iso-Seq are more reliable than pAs predicted from RNA-413 

seq. They suggested that incorporating the RNA-seq prediction tool QAPA [38] with pA 414 

annotations derived from 3′ seq or Iso-Seq can reliably quantify APA dynamics across 415 

conditions.  416 

The performance of different tools described in the respective studies was summarized 417 

in Files S1 to S4. Generally, for predicting pAs from DNA sequences, DL-based models 418 

significantly outperformed ML-based methods and are more suitable for large-scale 419 

analysis, owning to the good ability of automatic feature extraction and scalability for big 420 

data analysis (Table S2). For example, DeepPASTA [28] has an area under the curve score 421 

over 93% in predicting pAs on a DNA sequence dataset, which performed much better than 422 

ML-based tools like PolyAR [22] or Dragon PolyA Spotter [61]. APARENT [29], based 423 

on deep neural network, was trained on over three million synthetic APA reporter genes, 424 

which overcomes inherent size limitations of traditional biological datasets. In contrast, 425 
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traditional ML-based methods like POLYAR [22] and Omni-PolyA [25] require a 426 

considerable amount of prior knowledge and are unable to cope with the rapidly growing 427 

data. In terms of the model generalizability, methods for RNA-seq or scRNA-seq are 428 

generally applicable to different species if the reference genome and the genome annotation 429 

are available. In contrast, the cross-species applicability of methods for DNA sequences is 430 

more complex. Models applied to human are normally applicable to other mammals like 431 

mouse due to similar poly(A) signals among mammals [57]. However, although most 432 

models can be in principle trained using data from a different species, users need collect 433 

training data from the other species which are not always available, and most models use 434 

hand-crafted features that may not be generalized well across species. Recent techniques 435 

like deep learning and transfer learning greatly enhance the generalizability of models. 436 

Cross-species experiments have been performed for evaluating the generalizability of some 437 

tools, such as DeepGSR [27] and Poly(A)-DG [122], and for these tools single model 438 

trained over one species can be generalized well to datasets of other species without 439 

retraining. We need to point out that, the evaluation results in a single study may be biased 440 

and should be treated with caution, because different datasets and performance indicators 441 

were used for the performance evaluation in different studies (Files S1 to S4). In the 442 

following section of Conclusions and prospects, we also put forward several notes on how 443 

to conduct more objective benchmarking in order to make a fairer comparison of different 444 

tools.  445 

How reliable are the obtained results? 446 

Currently, there is no benchmark evaluation of tools for DNA sequence or scRNA-seq data. 447 

Here we attempted to make a preliminary examination of the reliability of results obtained 448 

from different pA prediction tools, using a matched bulk RNA-seq and 10x Chromium 449 

scRNA-seq data of human peripheral blood mononuclear cells (PBMCs) (File S6). We 450 

chose representative tools from each category, including DaPars2 [91], TAPAS [41], and 451 

Aptardi [99] for bulk RNA-seq, Sierra [44], scAPAtrap [45], and SCAPTURE [107] for 452 
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scRNA-seq, and DeepPASTA [28] for DNA sequences (Figure 3A top). We collected a 453 

total of 676,424 non-redundant pAs from GENCODE v39, PolyASite 2.0, and PolyA_DB 454 

3, which were compiled from 3′ seq and can be used as the true reference (Figure 3A 455 

bottom). The number of pAs predicted by different tools, even those under the same 456 

category, varies greatly (Figure 3B, left). For example, the number of pAs predicted from 457 

RNA-seq by TAPAS and DaPars was nearly 8 times and 4 times that of Aptardi. The 458 

number of pAs predicted from scRNA-seq by Sierra and scAPAtrap is about twice that of 459 

SCAPTURE. Of note, scAPAtrap can predict pAs for the whole genome including 460 

intergenic regions and all the three tools predict a large number of pAs in introns (Figure 461 

3B, right). If only 3′ UTR regions are considered, the number of pAs predicted by the three 462 

scRNA-seq tools is much closer (Figure 3C, left). As most tools only identify pAs in 3′ 463 

UTR, here we used 3′ UTR pAs for subsequent evaluation. Next, we assessed the 464 

authenticity of the predicted pAs by checking whether they are supported by annotated pAs 465 

in the true reference. The overlap of pAs predicted from RNA-seq with annotated pAs is 466 

much lower than that of scRNA-seq (Figure 3C, left). Particularly, the overlap rate between 467 

pAs predicted by SCAPTURE and annotated pAs is as high as 96%, which may be because 468 

that the DL model embedded in SCAPTURE was trained with annotated pAs. The position 469 

of pAs predicted by TAPAS, SCAPTURE, and scAPAtrap is much more precise than that 470 

by other tools (Figure 3C, right). Further, we examined the consistency of the results 471 

predicted by different tools. Generally, the consistency among different tools is very low 472 

(Figure 3D). For RNA-seq data, only 289 pAs were identified by all the three tools, whereas 473 

the vast majority of pAs were identified exclusively by a single tool (Figure 3D, top). In 474 

contrast, the consistency of pAs predicted from scRNA-seq by different tools is relatively 475 

higher (Figure 3D, bottom). In addition, we assessed the reliability of predicted pAs by 476 

investigating sequence features. The single nucleotide profile around pAs predicted by 477 

TAPAS, SCAPTURE, and scAPAtrap resembles the general profile [50] (Figure 3E), which 478 

is also consistent with the fact that they determine more precise locations for pAs (Figure 479 
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3C, right). The percentage of AATAAA around pAs predicted by scRNA-seq is much 480 

higher than that of bulk RNA-seq (Figure 3F), indicating that predicted pAs from scRNA-481 

seq tend to be more reliable and more accurate than that from bulk RNA-seq. Next, we 482 

used the pA prediction tool for DNA sequence, DeepPASTA, to examine how many pAs 483 

identified from RNA-seq data are predicted as true solely based on the sequence 484 

characteristics. We extracted the upstream and downstream sequences of pAs predicted by 485 

RNA-seq tools as the input for DeepPASTA. The proportion of pAs obtained by different 486 

tools to be predicted as true by DeepPASTA is not high and varies greatly, ranging from 487 

28% to 79% (Figure 3G, top), indicating again the low overlap of pAs predicted by different 488 

tools. Considering only positive pAs by DeepPASTA, the percentage of AATAAA and 1-489 

nt variants of different tools increased slightly (Figure 3G, bottom vs., Figure 3F), 490 

reflecting that positive pAs confirmed by DeepPASTA are relatively more reliable than 491 

negative ones. Finally, we examined predicted pAs of the immunoglobulin M heavy chain 492 

(IGMM) gene, which was reported to express a secreted form using the proximal pA and 493 

the membrane-bound form using the distal one [123]. The proximal pA of IGHM has been 494 

recently found preferentially used in B cells and plasma cells of COVID-19 samples [107]. 495 

SCAPTURE and scAPAtrap predicted the precise location of both proximal and distal pAs 496 

from scRNA-seq data, while Sierra only predicted the proximal one (Figure 3H). TAPAS 497 

predicted three pAs from bulk RNA-seq data, of which two perfectly matched the reference 498 

pAs in PolyASite 2.0. In contrast, Aptardi failed to predict any pA for this gene and 499 

DaPars2 predicted two pAs yet not verified by reference pAs.  500 

Although this preliminary benchmark is far from objective or exhaustive to reflect the 501 

advantages and disadvantages of different tools, it reveals several potential issues when 502 

using the results obtained by different pA prediction methods. First, although a 503 

considerable number of pAs were identified by most tools, the overall prediction accuracy 504 

and sensitivity of these tools is low (Figure 3C). Our previous comparative study [50] on 505 

tools for bulk RNA-seq have also revealed that a considerable number of predicted pAs 506 
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were not annotated in 3′ seq, and the overall prediction accuracy of these tools, even the 507 

best one, TAPAS, is not high (40%–60% for human/mouse data). It is still challenging to 508 

determine whether a pA not present in prior annotations is false or novel. We anticipate that 509 

at least part of predicted pAs that are not overlapping with annotated ones may potentially 510 

be true due to that the current pA annotations are still far from complete. Second, the 511 

number of pAs identified by different tools, either for bulk RNA-seq or scRNA-seq, varies 512 

greatly, and the consensus of results obtained by different tools is limited (Figure 3D). This 513 

is also similar to the observation in our previous benchmark that each tool predicts an 514 

independent set of pAs and the overlap of results from different tools is extremely low (< 515 

7% for human/mouse data) [50]. Third, as some tools incorporate additional information 516 

to predict pAs, e.g., prior pAs used by SCAPTURE and poly(A) reads used by scAPAtrap, 517 

the resolution of pAs predicted by different tools varies greatly (Figures 3C&E). Fourth, 518 

21% to 72% of the predicted pAs by different tools were not recognized as true pAs based 519 

on their sequence features (Figure 3G). Fifth, although scRNA-seq data suffers from 520 

extremely high level of noise and sparsity, prediction results from scRNA-seq seem to be 521 

more reliable and consistent than those from bulk RNA-seq (Figures 3C, D &F). However, 522 

this is not unexpected because that it may be less challenging to computationally predict 523 

pAs from the 3′-tag based scRNA-seq data than the full-length-based bulk RNA-seq data. 524 

Still, further benchmark study with more complete prior annotations, diverse datasets, and 525 

performance indicators is needed in order to assess the results obtained from different tools 526 

more fairly and objectively. 527 

Here we try to give some operable suggestions on how to obtain high-confidence pAs. 528 

The most straightforward way may be making a consensus set of pAs that are predicted by 529 

multiple tools, however, this may result in a relatively small number of pAs due to the 530 

limited overlap by different tools. Another way is to obtain the intersection of predicted 531 

sites and real sites, using annotated pAs that are manually curated and available in several 532 

databases such as PolyASite 2.0 and PolyA_DB 3. However, it should be noted that these 533 
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annotated data sources were compiled from limited biological samples and species; they 534 

are far from complete to cover all real sites especially tissue-specific ones. Similar to our 535 

benchmark analysis on RNA-seq and scRNA-seq PBMCs (Figure 3), users can also use 536 

data from another omics from similar biological samples, if available, to predict pAs for 537 

mutual verification. In addition, since many sequence motifs, e.g., AAUAAA and its 538 

variants, have been reported to have a positional preference relative to the pA, it is naturally 539 

to examine sequence patterns surrounding each predicted pA to get pAs with explicit 540 

poly(A) signals. This is particularly useful for assessing the authenticity of pAs from 541 

animals because AAUAAA and its 1-nt variants appeared in > 90% of animal pAs [8]. In 542 

contrast, AAUAAA only accounts for < 10% of pAs in plants, therefore it is not practical 543 

to validate plant pAs through sequence features. Moreover, the general single nucleoside 544 

compositions surrounding pAs in different species have been clearly reported, we can thus 545 

inspect the base composition around predicted pAs. Of note, this way is applicable to 546 

evaluation of the overall quality of the pAs, while it cannot be used to assess the reliability 547 

of a single pA. The movAPA package [56] can be used for most of the above-mentioned 548 

quality assessments. 549 

Practical guidelines for choosing appropriate methods 550 

Based on the summary of different methods (Files S1-S4), we attempt to choose 551 

representative tools from each category and propose a set of practical guidelines for users 552 

(Table 1). As methods in different categories use different kinds of data as the input, the 553 

choice of the method first depends on the users’ own data. For bulk RNA-seq data, the 554 

choice of the method should be mainly driven by the availability of pA annotations. For 555 

scRNA-seq data, the choice of the method mainly depends on the protocol of the scRNA-556 

seq (e.g., 3′ tag or full-length) and the availability of pA annotations. For methods 557 

predicting pAs from DNA sequence, the choice of the method should be primarily driven 558 

by the algorithm used, deep learning or traditional machine learning. Particularly, for cross-559 

species pA prediction from DNA sequences, users should pay extra attention to whether 560 
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they need to retrain the model for individual species, which may require users to have 561 

certain programming ability. Additionally, several tools are in the form of web servers, 562 

providing a portable platform for predicting pAs from DNA sequences for researchers with 563 

limited programming ability. Several other factors also affect the choice of methods, such 564 

as the availability of the tool or code, the popularity, the ease of use, the clarity of 565 

documentation, and the scale of the data. When predicting pAs on a dataset of interest, it 566 

is important to further consider two points. First, it is critical that the obtained pAs and/or 567 

the downstream results (e.g., differential APA events) are confirmed by multiple pA 568 

prediction methods. This is to ensure that the prediction is not biased due to predefined 569 

parameter settings or the specific algorithm used in the method. The merit of using different 570 

methods is also demonstrated by the benchmark results in previous studies [50, 51] and in 571 

this study (Figure 3), which show substantial complementarity between different methods. 572 

Second, even if prior pA annotations are available, it can be also beneficial to try out 573 

methods that do not rely on prior annotations. When predicted pAs, even a small portion, 574 

are confirmed using such a different method, it provides users with additional evidence. 575 

Conclusions and prospects 576 

Challenges in improving the performance of pA prediction 577 

The field of pA prediction is progressing rapidly, primarily in the aspects of using DL 578 

models and predicting pAs at the single-cell resolution. However, the overall accuracy, 579 

sensitivity, and specificity of currently available methods remain moderate (Figure 3). The 580 

coming flood of extensive sequencing data, especially multi-omics and single-cell data, 581 

will provide new opportunities but also demand new computational methods to exploit this 582 

new information. Potential challenges of improving the prediction performance include but 583 

are not limited to: paucity of annotated pAs covering diverse tissues and species; mis-584 

assemblies caused by the low complexity 3′ UTR sequences; mis-alignment of short reads 585 

or incomplete sequence coverage near 3′ ends; difficulty in capturing pAs in low-586 

expression genes; poor knowledge on primary, secondary or higher structure information 587 
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of poly(A) signals, particularly in plants; gaps in our knowledge on understanding APA 588 

regulators in different omics layers; limited success in integrating the quantitative features 589 

from multiple omics layers; lack of transferrable intelligent methods for cross-species 590 

prediction; lack of interpretability in models based on deep neural networks; hurdle in 591 

constructing negative datasets due to the prevalence of unconventional pAs in CDS and 592 

introns; difficulty in identifying multiple pAs anywhere in the transcript; lack of effective 593 

algorithms to deal with the extremely high isoform-level dropout rate and noise inherent in 594 

scRNA-seq. Furthermore, higher standards for software quality assurance and 595 

documentation would help improve the ease of use of these tools and facilitate their 596 

application in the broader community. Finally, new algorithms should be designed to cope 597 

with ever-increasing amount of different kinds of data, especially the explosion in single-598 

cell data with multi-omics features. 599 

Notes on benchmarking different methods for predicting pAs 600 

Till now, there are few reports on the exhaustive evaluation of computational tools for 601 

predicting pAs. Previously, our group benchmarked 11 representative tools for predicting 602 

pAs and/or dynamic APA events from RNA-seq [50]. Lately, Shah et al. [51] evaluated five 603 

tools for RNA-seq against 3′ seq, Iso-Seq, and a full-length RNA-seq method in identifying 604 

pAs and quantifying pA usage. However, there is no study to provide an exhaustive 605 

evaluation of existing tools for pA prediction from different kinds of data, particularly those 606 

tools for scRNA-seq. Here we attempt to give some notes on benchmarking analysis in this 607 

field. First, the real pA dataset is very critical for performance evaluation, however, the 608 

reference datasets used in different studies are quite different. Therefore, it is imperative to 609 

compile reliable reference datasets with uniform standards. In particular, RNA-seq or 610 

scRNA-seq data are sample-specific, so the reference pA dataset from matched samples 611 

should also be considered. Moreover, due to the paucity of real pA dataset at the single-cell 612 

level, possible deviations need to be considered when using real pA data from bulk data for 613 

evaluation. For example, pAs exclusively recognized in single cells may be authentic pAs 614 
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from rare transcripts or rare cells, even though they may not be present in the bulk pA 615 

reference. Second, most tools were evaluated using data only in mammals (mainly human 616 

and mouse), therefore the scalability of these tools in different species, especially their 617 

applicability to plants, needs to be further evaluated. Third, almost all published prediction 618 

tools provide their own benchmark pipelines using different datasets, which potentially 619 

favors their prediction efficiency. These benchmark protocols might be credible, but may 620 

lack objectivity, simplicity, and effectiveness. We have sorted out the data used for 621 

performance evaluation in the respective study of each tool in detail (Files S1-S4), which 622 

can facilitate researchers to compile more diverse and standard data for objective 623 

benchmark in the future. So far, the most widely used datasets for evaluating pA tools for 624 

DNA sequences are the PASS dataset [69, 70] of plant species, the ERPIN dataset [23], and 625 

DeepGSR dataset [27] of animal species; datasets for RNA-seq are the MAQC dataset [124] 626 

and the HEK293 dataset [125]; datasets for scRNA-seq are the 10x human PBMC data and 627 

the Tabula Muris atlas [126] (Files S1-S4). Moreover, genomic data could be small sample 628 

data and large-scale data, it is also necessary to evaluate the performance of different tools 629 

under different sizes of data. Fourth, the output format varies among different tools. For 630 

example, most tools for DNA sequences generate binary output or probabilities between 0 631 

and 1; some tools for RNA-seq or scRNA-seq output potential regions of pA instead of 632 

exact pA position. Therefore, how to unify the output of different tools for objective 633 

evaluation needs to be carefully considered. Fifth, compared with the benchmark of tools 634 

for DNA sequence data, the benchmark for scRNA-seq tools is much less uniform (Files 635 

S1-S4). Almost all studies examined the consensus between the identified pAs and 636 

annotated pAs, while there is still no commonly used objective evaluation strategies with 637 

diverse indicators. Therefore, it is necessary to use a variety of performance indicators (e.g., 638 

sensitivity, specificity, and precision) that are complementary in nature for comprehensive 639 

performance evaluation, particularly for the evaluation of the emerging scRNA-seq tools. 640 

At the same time, it is also important to simply present an overall ranking of different tools. 641 
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The last but not least, many tools have parameters that can be adjusted, however, only the 642 

default parameters were normally used for evaluation. Therefore, some strategies (e.g., grid 643 

search) should be proposed to evaluate the impact of different parameters of a method.  644 

Predicting pAs in non-3′ UTRs 645 

With the advance of 3′ seq, more and more unconventional pAs located in non-3′ UTR 646 

regions like intron and CDS were discovered [3, 49, 127]. These non-3′ UTR pAs may 647 

generate mRNA isoforms encoding distinct proteins or result in the creation of premature 648 

stop codons. Intronic polyadenylation has been found associated with cancer through the 649 

inactivation of tumor-suppressor genes [95, 128]. The differential use of intronic pAs is a 650 

potential indicator for the differential expression of pre-spliced mRNA transcripts, which 651 

contributes to detecting newly transcribed genes and ultimately helps estimate the rate and 652 

direction of cell differentiation [129]. Till now, almost all computational tools focused on 653 

pA prediction in 3′ UTRs. Many tools, particularly those for DNA sequences, usually 654 

consider random sequences from introns as negative datasets for model training, which 655 

would cause some real intronic pAs to be mistakenly regarded as negative instances. 656 

Therefore, even for the pA prediction in 3′ UTRs, it is necessary to consider the prevalence 657 

of unconventional pAs when constructing the negative dataset. Lately, some tools for bulk 658 

or single-cell RNA-seq have found a considerable number of pAs in introns. By applying 659 

IPAFinder [95] on pan-cancer data from bulk RNA-seq, 490 recurrent dynamically 660 

changed intronic pAs were found. Sierra [44] utilized a splice-aware strategy and identified 661 

a considerable number of intronic peaks from scRNA-seq, however, the majority of these 662 

peaks may be internal priming artifacts as they are proximal to A-rich regions. SCAPTURE 663 

[107] also found > 16,000 candidate intronic pAs from 10x PBMC samples, while < 20% 664 

pAs were overlapped with known intronic sites and a large number of false positives were 665 

present in lowly expressed genes. Therefore, further careful inspection or filtering is critical 666 

to obtain true non-3′ UTR pAs or new intelligent algorithms are demanded to effectively 667 

call non-3′ UTR pAs. 668 
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Predicting tissue-specific pAs 669 

APA plays a significant role in tissue-specific regulation of gene expression [2, 12]. 670 

Profiling APA dynamics or differential APA usages under different physiological or 671 

pathological conditions has become a routine analysis in most APA studies. Computational 672 

prediction of tissue-specific pAs may be an alternative yet cost-effective solution for 673 

analyzing tissue-specificity of APA. The pA prediction problem described in this review is 674 

essentially a binary classification problem, which aims to distinguish between nucleotide 675 

sequences or genomic regions that contain a pA and those do not. Studies are currently in 676 

progress to solve the problem of pA quantification, which aims to predict the strength or 677 

dominance of a given pA across tissues. Weng et al. [112] and Hafez et al. [130] predicted 678 

whether a given pA is tissue-specific or not, whereas they do not tackle the question of 679 

alternative choice of APA sites. One way to study tissue specificity of pAs is to explore the 680 

differential usage of APA sites in a gene (e.g., proximal and distal pAs). Several tools, such 681 

as Conv-Net [73], have been proposed to predict the strength of APAs sites. Leung et al 682 

[73] predicted relative dominance of pAs within 3′ UTR in human tissues solely based on 683 

nucleotide sequences using a DL model. However, these methods only make predictions 684 

based on sequence features, while fail to consider sample-specificity and in vivo expression. 685 

In contrast, many tools for RNA-seq or scRNA-seq can be used for pairwise comparisons 686 

between two samples, while they are not very suitable for profiling APA across multiple 687 

tissues. Ever-larger RNA-seq or scRNA-seq data comprising of growing number of 688 

samples from diverse tissues are increasingly available, which places new demands on 689 

developing new methods to efficiently tackle the question of tissue-specificity of APA.  690 

Cross-species prediction of pAs 691 

Traditional ML methods, such as those based on SVM, can hardly adapt to different species, 692 

because they used hand-crafted features learnt for a specific species. Although many DL-693 

based tools have been proposed to improve the performance of pA prediction, most tools 694 

still need species-specific real pA collection for model training. Consequently, these tools 695 
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may suffer from high risks of overfitting and are not applicable to species without any prior 696 

pA annotations. Therefore, it is a promising direction to design new transferrable 697 

algorithms for cross-species pA prediction or to improve the generalizability of existing 698 

tools, which allows a well-trained model from a species with rich annotations to be 699 

transferred to data from a different species without retraining or prior knowledge. 700 

Annotation-assisted methods, compared to methods without using prior annotations, 701 

generally ensure higher data quality and achieve better performance, however their 702 

application is limited to data from specific species or biological conditions. Collection of 703 

more extensive pA annotations from different sources would definitely contribute to 704 

predicting novel sites and increasing the coverage of pAs in diverse cell types, biological 705 

conditions, and species. Therefore, an alternative solution for predicting pAs in poorly 706 

annotated species could be building an elegant model for well-annotated species and then 707 

transferring the model to a different but related species, even without an established pA 708 

collection. An initial attempt has been made by some existing methods like Poly(A)-DG 709 

[122], which extracts shared features from multiple species and can be generalized to the 710 

target species without fine-tuning. However, Poly(A)-DG was only tested between four 711 

animals. Till now, tools applicable to plants are still limited. It is widely accepted that the 712 

sequence conservation in poly(A) signals in plants is very low, where the most dominant 713 

AAUAAA only appears in less than 10% of pAs [57]. Our group recently developed a tool 714 

called QuantifyPoly(A) [63] to profile genome-wide polyadenylation choices, which found 715 

plant pAs generally exhibit higher micro-heterogeneity than animal ones, and UGUA, 716 

UAAA and/or AAUAAA are used in a species-dependent manner. Still, more efforts are 717 

needed to explore additional motifs and/or higher-order structures associated with plant 718 

polyadenylation and more intelligent algorithms are demanded in order to better predict 719 

pAs in multiple species. 720 

Predicting pAs by integrating multi-omics data 721 

Poly(A) sites can be derived from different kinds of data. For example, 3′ seq has the unique 722 
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advantage of acquiring high-quality pAs transcriptome-wide, which contributes to a larger 723 

compendium of authentic pAs. Third-generation sequencing technologies, such as PacBio 724 

sequencing, are powerful in profiling full-length transcriptome, which could provide a 725 

more accurate transcriptome annotation. Widely conducted bulk RNA-seq data can be used 726 

for capture and quantify pAs of low-abundance transcripts, and the rapid growing scRNA-727 

seq data support the identification of relatively rare transcripts in single cells. In addition 728 

to the genome or transcriptome layers, APA modulation has been found associated with 729 

other layers of gene regulation, such as nucleosome positioning, transcription rate, DNA 730 

methylation, and RNA-binding proteins [2, 131-133]. By integrating multi-omics data, 731 

weak signals from one layer can be amplified or noises be reduced to avoid false negative 732 

predictions by referring to the complementary information from additional layers. For 733 

instance, potential pAs identified from RNA-seq without well-recognized poly(A) signals 734 

could be eliminated if there is no evidence in 3′ seq or full-length RNA-seq data. Initial 735 

attempts have been made for APA analysis using multi-omics data. scUTRquant [108] 736 

incorporates a cleavage site atlas established from a mouse full-length Microwell-seq 737 

dataset of 400,000 single cells [109] for filtering high-confidence pAs predicted from 3′ 738 

tag scRNA-seq. Leung, et al. [73] predicted strength of pAs using nucleotide sequences, 739 

considering features from additional layers like nucleosome positioning and RNA/binding 740 

protein motifs. IntMAP [97] is a unified ML-based framework, which can fine-tune the 741 

contributions of RNA-seq and 3′ seq data by tailoring the parameter λ. Currently, DL 742 

models have been widely used in predicting pAs from DNA sequences. However, in many 743 

cases, DL models fail to make accurate prediction, while patterns of RNA-seq coverage 744 

provide clear evidence of polyadenylation, and vice versa [111]. Accordingly, several DL-745 

based tools integrated bulk or single-cell RNA-seq with DNA sequences for pA prediction, 746 

such as SCAPTURE [107] and Aptardi [99]. It is promising yet challenging to formulate 747 

one unified computational framework, especially leveraging the strength of intelligent 748 

algorithms, to integrate the quantitative information from multiple omics layers, e.g., 749 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2022. ; https://doi.org/10.1101/2022.07.17.500329doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.17.500329
http://creativecommons.org/licenses/by-nc-nd/4.0/


genomic DNA, transcriptome data, methylation data, and chromatin accessibility data, to 750 

identify and quantify pAs genome-wide. 751 

Predicting pAs at the single-cell level 752 

With the rapid development of scRNA-seq technology, different tools continue to emerge 753 

for pA identification in single cells. Currently, most methods, like scAPA [102], Sierra [44], 754 

and MAPPER [106], construct pseudo-bulk RNA-seq data by pooling reads from cells of 755 

the same cell cluster (or cell type) to address the high dropout rate and variability inherent 756 

in scRNA-seq. Although many of these tools, like scAPA or Sierra, can still quantify the 757 

expression of a pA in each cell by counting reads within a poly(A) region, single cell-based 758 

quantification may have high noise level and missing values due to biological and technical 759 

variance [106]. As such, APA usage is characterized at the cell-cluster resolution rather than 760 

the single-cell resolution, which somewhat contradicts the ultimate goal of single-cell 761 

sequencing. Moreover, cell clusters or cell types in these studies were inferred by the 762 

conventional gene-cell expression profile, consequently, the APA analysis is limited to 763 

predefined cell types and the result may be affected by different cell type annotations. 764 

Alternatively, scDaPars [46] quantifies single-cell APA usage based on the model for bulk 765 

RNA-seq introduced in DaPars [39], and then recovers missing APA usage by leveraging 766 

APA information of the same gene in similar cells. Another limitation of most tools for 767 

scRNA-seq is that they are only applicable to 3′ tag based scRNA-seq like 10x Chromium 768 

or CEL-seq. Till now, only scDaPars can be applied to both 3′ tag and full-length scRNA-769 

seq, e.g., Smart-seq2. However, although scDaPars is reported to be able to quantify APA 770 

usage in individual cells independent of gene expression, pAs were actually predicted from 771 

the bulk RNA-seq tool DaPars that was not specifically designed for scRNA-seq. Moreover, 772 

it is challenging to identify and verify low-expression pAs in highly sparse scRNA-seq, 773 

particularly those in rare cells. In addition, the tsunami of complex scRNA-seq datasets 774 

with various tissue sources, batch effects, and library sizes also have brought huge 775 

computational and analytical challenges. Therefore, more efforts are needed to develop 776 
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new methods to address inherent issues in scRNA-seq for establishing a more 777 

comprehensive landscape of pAs at the single-gene and single-cell resolution. 778 
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Figure legends 1079 

Figure 1  Schematic of computational approaches for predicting pAs from different 1080 

kinds of sequencing data 1081 

A. Predicting pAs from DNA sequences based on traditional ML models. B. Predicting 1082 

pAs from DNA sequences based on DL models. C. Identifying pAs from 3′ seq data. D. 1083 

Predicting pAs from bulk RNA-seq data. E. Predicting pAs from single-cell RNA-seq data. 1084 

Some representative methods are listed in the text box on the right. pA, poly(A) site; ML, 1085 

machine learning; T, true; F, false; DL, deep learning; scRNA-seq, single-cell RNA-seq. 1086 

 1087 

Figure 2  Landscape of computational approaches for predicting pA from DNA 1088 

sequences, bulk RNA-seq, and single-cell RNA-seq over time 1089 

scRNA-seq, single-cell RNA-seq; DL, deep learning; LDF, linear discriminant function; 1090 

QDF, quadratic discriminant function; HMM, hidden Markov model; SVM, support vector 1091 

machine; BN, Bayesian network; ANN, artificial neural network; PM, probabilistic model; 1092 

RF, random forest; CC, combined classifier; CP, change point; AN, annotation-based 1093 

method; TA, transcript assembly; PK, peak calling; TL, transcript assembly and read 1094 

linking. 1095 

 1096 

Figure 3  Comparison of representative tools for predicting pAs from a matched 1097 

bulk RNA-seq and scRNA-seq data of human PBMCs  1098 

A. Schematic of the benchmark (top) and the collection of reference pAs from GENCODE 1099 

v39, PolyASite 2.0, and PolyA_DB 3 (bottom). B. Number of pAs obtained by different 1100 

tools (left) and distributions of pAs in different genomic regions (right). C. Overlap of 3′ 1101 

UTR pAs predicted by different tools with reference pAs (left) and distributions of distance 1102 

from predicted 3′ UTR pAs to reference pAs (right). D. Overlap of 3′ UTR pAs predicted 1103 

by different tools from RNA-seq data (top) and scRNA-seq data (bottom). E. Single 1104 

nucleotide profile around 3′ UTR pAs predicted by different tools. For each tool, the 1105 
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sequence logo of the most dominant motif around the pA identified by DREME was also 1106 

shown. F. Number of occurrences of AATAAA and 1-nt variants around pAs predicted by 1107 

different tools. G. The proportion of pAs obtained by different tools to be predicted as 1108 

positive or negative by DeepPASTA (top) and the number of occurrences of AATAAA and 1109 

1-nt variants around positive pAs (bottom). The upstream and downstream sequences of 1110 

pAs predicted by each RNA-seq tool were extracted as the input for DeepPASTA. H. 1111 

Predicted 3′ UTR pAs by different tools for the IGHM gene. Tracks from top to the bottom 1112 

are gene model, reference pAs from three databases, read coverage from bulk RNA-seq, 1113 

predicted pAs from bulk RNA-seq, read coverage for each cell type of scRNA-seq, and 1114 

predicted pAs from scRNA-seq. The red triangles on the chromosome strip highlight the 1115 

two representative pAs of IGHM. 1116 

Tables 1117 

Table 1  Recommended tools for predicting pAs from DNA sequences, bulk RNA-1118 

seq, and single-cell RNA-seq 1119 

Supplementary material 1120 

File S1  List of methods for predicting poly(A) sites or poly(A) signals from DNA 1121 

sequences based on traditional machine learning models 1122 

File S2  List of methods for predicting poly(A) sites or poly(A) signals from DNA 1123 

sequences based on deep learning models 1124 

File S3  List of methods for predicting poly(A) sites from RNA-seq 1125 

File S4  List of methods for predicting poly(A) sites from single-cell RNA-seq 1126 

File S5  List of methods or resources for analysis of alternative polyadenylation 1127 

rather than prediction of poly(A) sites 1128 

File S6  Materials and methods used in this study 1129 
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