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Abstract 21 

Maize is a staple food of smallholder farmers living in highland regions up to 4,000 meters above sea 22 

level worldwide. Mexican and South American highlands are two major highland maize growing 23 

regions, and population genetic data suggests the maize’s adaptation to these regions occurred 24 

largely independently, providing a case study for parallel evolution. To better understand the 25 

mechanistic basis of highland adaptation, we crossed maize landraces from 108 highland and lowland 26 

sites of Mexico and South America with the inbred line B73 to produce F1 hybrids and grew them in 27 

both highland and lowland sites in Mexico. We identified thousands of genes with divergent 28 

expression between highland and lowland populations. Hundreds of these genes show patterns of 29 

convergent evolution between Mexico and South America. To dissect the genetic architecture of the 30 

divergent gene expression, we developed a novel allele-specific expression analysis pipeline to detect 31 

genes with divergent functional cis-regulatory variation between highland and lowland populations. We 32 

identified hundreds of genes with divergent cis-regulation between highland and lowland landrace 33 

alleles, with 20 in common between regions, further suggesting convergence in the genes underlying 34 

highland adaptation. Further analyses suggest multiple mechanisms contribute to this convergence. 35 

Our findings reveal a complex genetic architecture of cis-regulatory alleles underlying adaptation to 36 

highlands in maize. Although the vast majority of evolutionary changes associated with highland 37 

adaptation were region-specific, our findings highlight an important role for convergence at the gene 38 

expression and gene regulation levels as well. 39 

Key words: highland adaptation, allele-specific expression, convergent evolution, flowering time, 40 

maize  41 
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Introduction 42 

Highland maize is cultivated in cold, mountainous regions worldwide, at altitudes of up to 4,000 meters 43 

above sea level (masl) and with mean growing season temperatures below 20℃ (Lothrop 1994; 44 

Hartkamp et al. 2000)�. The International Maize and Wheat Improvement Center (CIMMYT) estimates 45 

that more than 6 million hectares (Mha) are used for highland maize production worldwide, mainly in 46 

developing countries where it is grown by smallholder farmers as one of the main sources of calories 47 

in their diet (Lothrop 1994; Zambrano et al. 2021)�. Mexico (~2.9 Mha, 46.6%) and South America 48 

(~0.6 Mha, 9.4%) are two major highland maize producing regions and are geographically separated 49 

from each other. Highland maize landraces (open-pollinated traditional varieties) in central Mexico and 50 

South America have distinct morphological characteristics from lowland tropical or temperate 51 

germplasm (Janzen et al. 2022)�, including purple stems, drooping leathery leaves, weak roots, 52 

tassels with few branches, conical-shaped ears (Anderson and Cutler 1942), and a changed 53 

biochemical response to UV radiation (Casati and Walbot 2005). They also have other specific 54 

characteristics that make them suitable to live in high-elevation climates, including frost tolerance and 55 

improved seedling emergence, growth, and grain filling at low temperatures (Eagles and Lothrop 56 

1994)�.  57 

These consistent differences between highland and lowland landraces indicate that highland 58 

maize has undergone considerable local adaptation since its introduction to highland environments in 59 

the past 6200 years (Piperno and Flannery 2001)�. However, we still know little about the genetic 60 

basis of highland adaptation in maize: What genes were involved? Was adaptation driven by standing 61 

genetic variation or novel alleles? Is the genetic basis of adaptation parallel between populations from 62 

different geographic regions? Recent population genetic studies have begun to paint a complex and 63 

divergent picture of highland adaptation between Mexican and South American maize. Genome-wide 64 

SNP data shows strong population structure in maize landraces from Mesoamerica and South 65 

America (Van Heerwaarden et al. 2011;� Takuno et al. 2015). Several studies using population 66 

genetic data (Hufford et al. 2013; Pyhäjärvi et al. 2013; Calfee et al. 2021; Rodríguez-Zapata et al. 67 

2021)� identified genomic loci that were introgressed from a wild ancestor of maize, Zea mays ssp. 68 

mexicana (hereafter mexicana) found exclusively in the highlands of central and northern Mexico (De 69 

Jesús Sánchez González et al. 2018), suggesting that alleles contributing to highland adaptation may 70 

have been acquired by crossing with pre-adapted relatives. Three of these loci have been well 71 

characterized: Inv4m (Hufford et al. 2013; Crow et al. 2020�), mhl1 (Hufford et al. 2013; Calfee et al. 72 

2021) and HPC1 (Rodríguez-Zapata et al. 2021), and the mexicana alleles are found almost 73 

exclusively in landraces from the Mexican highlands. Wang et al. (2017)� found no evidence for 74 

substantial spread of mexicana haplotypes to South America and Takuno et al. (2015)� found < 1.8% 75 
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of SNPs and 2.1% of genes showing evidence for convergent evolution between Mesoamerican and 76 

South American highland populations. However, in a recent genome-wide scan with high-density 77 

SNPs, Wang et al. (2021) �identified 10,199-11,345 SNPs and 1,651-2,015 genes with evidence for 78 

population divergence between highland and counterpart lowland populations in Central America and 79 

South America, respectively, including 10.7% of SNPs, 15.0% of genes, and flowering time pathway 80 

showing evidence of parallel adaptation between Andes and Mexican highland landrace populations. 81 

The extent of parallelism in adaptation to highlands is important because it can indicate whether 82 

alleles beneficial for highland adaptation in one geographic region are likely to also be beneficial in 83 

another or whether adaptation is likely constrained by a limited set of possible loci or if multiple 84 

different adaptive paths are available (Lee and Coop, 2017; Wang et al. 2021). 85 

Population genetic scans using SNP markers can efficiently discover loci that have diverged 86 

between populations, indicating a potential role in adaptation. However, discovering mechanisms 87 

controlled by these loci remains a challenge. While predicting the function of protein-coding variants is 88 

possible, we have little ability to predict the function of non-coding variants, including those affecting 89 

gene regulation. For example, although the 13 Mb Inv4m locus has been known about for more than a 90 

decade (Hufford et al. 2013)� and appears to play a role in flowering time (Romero Navarro et al. 91 

2017)�, the mechanisms underlying its role remained unclear. Gene expression analysis can provide 92 

a link between sequence variation and molecular mechanisms, particularly by discovering expression 93 

patterns of groups of genes that share common biological functions or attributes (Maleki et al. 2020)�. 94 

Crow et al. (2020) developed two populations segregating for highland and lowland alleles at this 95 

locus and measured gene expression effects of the locus across nine tissues. They identified 39-607 96 

genes per tissue that were consistently regulated by Inv4m in both families, and gene set enrichment 97 

analyses suggested a role of the locus in the regulation of photosynthesis and several other biological 98 

processes. Other studies have begun to use gene expression to study the process of highland 99 

adaptation in maize as well. Kost et al. (2017)� measured expression variation among landraces from 100 

three distinct elevational zones (highland, midland and lowland) and identified two co-expression 101 

modules correlated with temperature-related environmental parameters. Rocío Aguilar-Rangel et al. 102 

(2017)� used allele-specific expression to study cis-regulatory divergence between the highland 103 

landrace Palomero Toluqueño and the modern inbred B73 and identified 2,386 genes with divergent 104 

expression caused by the different genotypes. These expression studies are limited however, in their 105 

ability to describe the complexity and genetic architecture of gene regulatory adaptation at the 106 

population level where evolution occurs. 107 

In this study, we used population-level allele specific expression (ASE) analyses to identify 108 

gene expression traits that have diverged between highland and lowland populations of Mexican and 109 
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South American maize landraces. We selected maize landraces from 108 highland and lowland sites 110 

that cover broad growing regions of highland maize in Mexico and South America and crossed them 111 

with a common inbred line B73 to produce F1 hybrids (F1s). We planted the F1 families at two locations 112 

that represented highland and lowland environments in Mexico. Our primary objectives were to (i) 113 

identify genes that show evidence for adaptive divergence in cis-regulation between high and low 114 

elevation landraces in Mexico and South America; (ii) identify candidate gene pathways and functional 115 

groups that underwent directional selection for gene regulation during adaptation to highland climates; 116 

and (iii) gain insights into the convergent evolutionary patterns of highland adaptation between 117 

populations in Mexico and South America. We first identified genes with divergent expression between 118 

highland and lowland populations. We then differentiated the two alleles of each gene using ASE and 119 

identified genes with divergent cis-regulation between highland and lowland alleles. To achieve the 120 

population-level ASE analysis, we developed a novel analysis pipeline that can accurately measure 121 

the ASE of each individual at the gene level using RNAseq data alone. We discovered hundreds of 122 

genes with divergent cis-regulation between highland and lowland landrace alleles in the Mexican and 123 

South American populations, respectively. Of these, 20 genes were in common between populations, 124 

suggesting a low level of convergence at the gene regulation level underlies highland adaptation in 125 

maize. 126 

New Approaches 127 

Allelic read counts are the starting point of all ASE analyses (Castel et al. 2015)�. Most ASE analyses 128 

have been done either based on individual SNPs (Shao et al. 2019; Zhou et al. 2019; Li et al. 2021)� 129 

or by integrating allelic read counts across SNPs within a gene (Lemmon et al. 2014, Fan et al. 130 

2020)�. Gene-level ASE ratios are more robust because they are based on more total reads, and in a 131 

population sample SNP-level ASE ratios cannot reliably be compared across individuals because 132 

many SNPs are individual-specific. Therefore, most existing studies using ASE have been based on a 133 

single F1 individual (Rocío Aguilar-Rangel et al. 2017; Shao et al. 2019; Zhou et al. 2019, but see 134 

Lemmon et al. 2014 who used 29 F1s from different maize and teosinte parents to study the genetics 135 

of maize domestication)�, so the generality of the discoveries to whole populations was unclear.  136 

We have developed a novel analysis pipeline that can accurately measure ASE of each 137 

individual at the gene level using RNAseq data alone, and efficiently detect genes with common 138 

functional variation in cis-regulatory regions that have diverged between populations. First, we crossed 139 

maize landraces from 108 highland and lowland sites in Mexico and South America with a common 140 

inbred line B73 to produce F1 hybrids and took advantage of this genetic design to phase 141 

heterozygous SNPs of each F1 sample based on the B73 reference genome. Then, we extracted 142 

reads that were assigned to either of the two parental origins at all overlapping loci with heterozygous 143 
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SNPs into separate BAM files and counted the reads overlapping each gene feature in each BAM file. 144 

These gene counts are the allelic expressions of the maternal and paternal alleles of each gene, 145 

respectively. Finally, we tested for cis-regulatory divergence between highland and lowland 146 

populations in the Mexican and South American populations by analyzing the average difference in 147 

landrace allele-specific expression (relative to B73 allele-specific expression) between F1s derived 148 

from highland and lowland landraces.  149 

Our methodology can efficiently detect genes showing cis-regulatory divergence between 150 

populations. In addition, gene-level ASE ratios estimated with our method can be used to identify 151 

gene-trait relationships relevant to hybrid breeding through transcriptome-wide association studies 152 

(TWAS). In such programs, candidate lines are evaluated by crossing to common testers. TWAS 153 

using ASE can pinpoint causal gene regulatory traits underlying key performance traits of interest, 154 

enabling further targeted gene editing for genetic improvement. 155 

Results 156 

Geographical origins and population structure of maize landraces 157 

We selected 108 maize landraces from CIMMYT's germplasm bank representing highland and 158 

lowland sites (one landrace accession per site) across broad geographical regions of Mexico and 159 

South America where maize landraces are cultivated (fig. 1A; supplementary table S1). Individuals 160 

from highland (> 2000 masl) and lowland (<1000 masl) sites were paired latitudinally (within 1 degree 161 

latitude) and chosen such that all pairwise distances were greater than 50 km (fig. 1A). 162 

We did whole-genome skim sequencing of a single plant of each of these 108 landraces and 163 

performed a principal component analysis (PCA, fig. 1B) to study the genetic structure of the 164 

landraces. The first two principal components (PCs) separated the landraces into four populations 165 

(Mexican Highland, Mexican Lowland, South American Highland, South American Lowland). The 166 

genomic relationships of the 108 maize landraces estimated here were consistent with Janzen et al. 167 

(2022)� who used a different individual from each of the same landrace populations genotyped with 168 

DArTseq-Based SNP markers (Wenzl et al. 2004)�. Our results were also consistent with patterns of 169 

genetic structure reported by Van Heerwaarden et al. (2011)� using a small SNP panel of 1,127 170 

accessions of maize landraces. 171 

Highland and lowland landraces show widespread divergences in gene expression 172 

We measured gene expression in F1 hybrids derived from the 108 landraces described above in two 173 

leaf-derived tissues sampled from two locations: leaf tip and leaf base samples from a fully expanded 174 

leaf of a V4 plant from each F1 family in each of two field blocks at the highland site in Metepec, 175 
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Mexico at 2620 masl, and leaf tip samples from a comparably staged leaf from a single plant from 176 

each F1 family in a single field block at the lowland site in Puerto Vallarta, Mexico at 7 masl. These 177 

tissues (hereafter site:tissues) are labeled MetLeaftip, MetLeafbase, and PvLeaftip below. In each of 178 

these three site:tissues, we tested for differences in the expression of each expressed gene between 179 

highland and lowland-derived F1s separately for the Mexican and South American populations, 180 

accounting for sampling effects due to time of collection and collection team, and leveraging shared 181 

signals across site:tissues using multi-variate adaptive shrinkage (mash) (Urbut et al. 2019)�. In total, 182 

we discovered 4,432 and 1,816 (supplementary tables S2, S3) genes with differential expression 183 

between highland and lowland derived F1 plants from the Mexican and South American continents, 184 

respectively, using a 5% local false sign rate (lfsr) threshold for declaring significance. Breaking these 185 

lists down by site:tissue, we discovered 1278, 3716, and 319 genes with divergent highland 186 

expression in the Mexican F1 families in MetLeaftip, MetLeafbase, and PvLeaftip, and 715, 1626, and 187 

368 genes with divergent highland expression in the South American F1 families (fig. 2A, 188 

supplementary fig. S1). We detected many more genes with differential expression between highland 189 

and lowland landraces on each continent than between the Mexican and South American populations 190 

on average (total of 124 genes, supplementary table S3), or that were associated with latitude on 191 

either continent (total of 60 and 131 genes in the Mexican and South American populations, 192 

respectively, supplementary table S3). However, many more genes showed significant changes in 193 

expression during the approximately 1.5hr sampling window within each site:tissue (a total of 18,844 194 

out of the 21,599 genes assayed across the 3 site:tissues, supplementary table S3, supplementary fig. 195 

S2), suggesting that the transcriptome-wide consequences of elevation adaptation were smaller than 196 

diel expression variation during the course of a morning. 197 

Among these genes with differential expression in highland populations, a small minority were 198 

significantly associated with elevation in the F1 families of both continents. 131, 429 and 30 were 199 

detected in both continents per site:tissue, representing 18%, 26% and 8% of the lesser of the number 200 

of significant genes from either continent (fig. 2A, supplementary fig. S1, supplementary table S4). 201 

However, despite being a relatively small overlap, this is many more than expected by chance 202 

(p=2.74×10-25, 1.12×10-17, and 3.28×10-12 per site:tissue, respectively), and if we relax the significance 203 

threshold, the overlap percentage grows considerably larger. Furthermore, of the genes with 204 

significant responses to elevation on both continents, both the direction and magnitude of expression 205 

difference between highland and lowland populations was highly correlated (fig. 2B, supplementary fig. 206 

S3). While the estimated highland effects were positively correlated for all genes (r=0.22, 0.26, and 207 

0.20), the effects of genes with significant effects in both populations were much higher (r=0.96, 0.94, 208 

and 0.97). We thus considered the 126, 411 and 30 genes exhibiting identical directional change of 209 

expression as having convergent evolution of gene expression between the two continents. 210 
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Because previous studies of highland adaptation in maize have described earlier flowering as 211 

a characteristic of highland landraces (Romero Navarro et al. 2017; Wang et al. 2021; Janzen et al. 212 

2022)�, we inspected a list of maize of 886 flowering time genes and candidates aggregated by Li et 213 

al. (2016)� and Swarts et al. (2016)�. Of these, 17 showed convergent expression differences in F1 214 

families from both continents (fig. 2C, supplementary fig. S4, table 1), including four well-known 215 

transcription factors and ZCN8 that contributes to early flowering during highland adaptation (Guo et al. 216 

2018). Additionally, phosphatidylglycerols have been linked to the regulation of flowering through the 217 

sequestration of florigen in phloem cells (Susila et al. 2021)�, and we found 31 and 12 differentially 218 

expressed genes (supplementary table S5) labeled with the Gene Ontology term “phosphatidylglycerol 219 

biosynthetic process” (GO:0006655) associated with elevation from the Mexican and South American 220 

continents, respectively, using a 5% lfsr to declare differentially expressed genes. All of these 221 

differentially expressed genes were down-regulated in the highlands in both populations, consistent 222 

with earlier flowering. If we relax the significance threshold, for example lfsr=0.2, the differentially 223 

expressed genes mapped to GO:0006655 and down-regulated in the highlands in both populations 224 

grow to 50 and 36 with 30 in common (supplementary table S5). These results further support Wang 225 

et al.’s (2021) finding of convergent evolution of flowering regulation along elevational gradients in 226 

Mexico and South America. 227 

Beyond flowering regulation, the long lists of differentially expressed genes (supplementary 228 

table S2) themselves are difficult to parse for insights into highland elevation. Therefore, to summarize 229 

these results, we tested for enrichment of Gene Ontology categories (Wimalanathan et al. 2018) �and 230 

KEGG (Kanehisa et al. 2021)� and CornCyc (Hawkins et al. 2021) �pathways among the lists of 231 

significant genes, measuring enrichment separately for up-regulated and down-regulated highland 232 

genes in each site:tissue. A total of 763 GO categories, 38 KEGG pathways and 3 CornCyc pathways 233 

were significantly enriched in at least one site:tissue at a 5% false discovery rate (FDR) 234 

(supplementary table S6). The most significant GO terms were thylakoid (GO:0009579), plastid 235 

envelope (GO:0009526), chloroplast envelope (GO:0009941). 236 

Of these functional GO categories, 16 were identified in F1 families from both continents, and 237 

10 of them were similarly enriched with up-regulated or down-regulated genes on both continents 238 

suggesting that the evolutionary changes were convergent (fig. 2D). Confirming the results above, 239 

categorical enrichments of the genes individually declared to show convergent expression evolution 240 

identified 6 and 15 terms in MetLeaftip and MetLeafbase (fig. 2E, supplementary table S7), 241 

respectively, including the terms positive regulation of flower development (GO:0009911) and 242 

chloroplast organization (GO:0009658), and also including endoplasmic reticulum (ER) retention 243 

sequence binding (GO:0046923). 244 
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To explore whether the gene expression changes could be partially explained by alterations in 245 

cell-type compositions of leaf tissues, we used a set of marker genes for 7 cell populations identified 246 

by single cell sequencing of a maize leaf (Bezrutczyk et al. 2021)� to estimate relative cell population 247 

sizes in each sample. The first two principal components of our cell population scores clearly 248 

separated the three site:tissues (fig. 3A), and the scores explained significantly more variation among 249 

samples than expected from random subsets of genes (fig. 3B), suggesting that these gene sets 250 

captured meaningful variation, even if the precise identities of the cell populations are not clear. The 251 

first principal component of the cell population scores of the MetLeafbase sample were also unevenly 252 

distributed across the field, suggesting spatial variation in leaf anatomy or developmental stage. 253 

However, within each range of the field the highland and lowland samples from the Mexican 254 

population were clearly differentiated, and highland and lowland samples from the South American 255 

population were also clearly differentiated across 3/5 of the field (fig. 3C), suggesting that there were 256 

consistent anatomical differences between highland and lowland leaves. These anatomical differences 257 

likely cause the appearance of differential expression because different cell populations express 258 

genes at different levels.  259 

We attempted to control for these anatomical differences when testing for differential 260 

expression between highland and lowland accessions by including the cell population scores as 261 

covariates. In these models the number of differentially expressed genes and enriched GO terms 262 

dropped significantly (a total of 648 genes and 0 GO terms were significant for elevation in the 263 

Mexican population, and a total of 1182 genes and 68 GO terms were significant for elevation in the 264 

South American population, supplementary table S8) suggesting that anatomical differences were the 265 

primary driver of expression differences observed above, at least for the Mexican population. However, 266 

the differential expression of flowering-related genes remained significant even after accounting for 267 

these anatomical differences. 268 

Development of a novel allele specific expression analysis pipeline to identify genetic 269 

loci underlying morphological and/or transcriptomic differences between highland and 270 

lowland landraces 271 

The gene expression analysis results above point to a diverse set of expression traits associated with 272 

highland adaptation in Mexican and South American landraces; however, the genetic architecture of 273 

these differences remains unclear. While differential gene expression analyses can detect differences 274 

in thousands of expression traits, it remains possible that a small number of genetic loci might be 275 

responsible for most of these changes (Crow et al. 2020)�. On the other hand, differences in 276 

expression between the two allelic copies of each gene in each F1 individual can only be caused by 277 

differences in the local cis-regulatory region around each gene (Sun and Hu 2013)�. Therefore, we 278 
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used ASE (defined as the ratio of landrace allelic count to B73 allelic count) to scan the genome for 279 

genes that have undergone divergence in the cis-control of gene expression between highland and 280 

lowland landraces.  281 

To resolve major challenges (supplementary text) for ASE detection across individuals at the 282 

gene level when only RNAseq data is available, we took advantage of our genetic design involving the 283 

108 F1 hybrids all crossed to the same tester line B73 (fig. 4). We developed a novel analysis pipeline 284 

for directly counting allelic reads at the gene level in each F1 individual. Briefly, our pipeline included 285 

three parts: First, we identified a set of high-confidence SNPs between any of the landrace parents 286 

and B73 from our low-coverage whole-genome sequencing data. Next, we used the RNAseq data to 287 

genotype and phase these SNPs within each F1 sample. Finally, we counted the number of reads 288 

confidently assigned to either the B73 reference or landrace genome, accounting for allelic mapping 289 

bias using the WASP algorithm (Van De Geijn et al. 2015)�. Full details are available in the Methods. 290 

To assess the reliability of our pipeline, we performed three validation analyses. First, the 291 

distribution of log2ASE ratios across all genes was approximately symmetric around zero for each 292 

sample, suggesting that we did not have strong reference bias towards the B73 allele (supplementary 293 

fig. S5A). In contrast, less stringent filtering of SNPs led to strong reference allele bias (supplementary 294 

fig. S5B). Second, the ASE values from our real data had much more variation than expected by 295 

counting variance alone, suggesting the observed variation is due to biology (supplementary fig. S6). 296 

Finally, the correlation of ASE between samples collected from two different individuals from the same 297 

F1 family was high for genes in genomic regions where the two individuals shared the same haplotype 298 

but much lower for genes in genomic regions where the two individuals did not share the same 299 

haplotype (supplementary fig. S7). Full details are available in the supplemental results. 300 

Detection of differential cis-regulation of landrace alleles between highland and 301 

lowland landrace populations 302 

We tested for cis-regulatory divergence at the population level between highland and lowland alleles in 303 

the Mexican and South American populations by comparing ASE ratios among samples for each gene. 304 

We refer to this as differential allele-specific expression (DASE) analysis. In total, we identified 341 305 

and 260 genes (fig. 5, supplementary tables S9, S10) with DASE between highland and lowland 306 

derived F1 plants from the Mexican and South American continents, respectively, in at least one 307 

site:tissue by metanalysis using a 5% lfsr threshold. The number of genes that were significantly 308 

differentiated in ASE between highland and lowland landraces on each continent was slightly higher 309 

than the number of genes that were differentially expressed between the Mexican and South 310 

American populations on average (249, supplementary table S10) and was much higher than the 311 
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number of genes that were associated with latitude on either continent (17 and 23 in the Mexican and 312 

South American populations, respectively, supplementary table S10). However, more genes showed 313 

significant changes in allele-specific expression during the approximately 1.5hr sampling window 314 

within each site:tissue (760 genes across the 3 site:tissues, supplementary table S10), which was 315 

consistent with our observations in the gene expression analysis above. 316 

Subsequently, we inspected the three loci with known genetic differentiation between highland 317 

and lowland landraces in Mexico: Inv4m, mhl1 and HPC1. There were 13 and 2 DASE genes detected 318 

inside the Inv4m and mhl1 regions in the Mexican population, but only one gene with weak evidence 319 

(lfsr=0.03) in the mhl1 region in the South American population (fig. 5). This is consistent with our 320 

knowledge that the mexicana-to-maize introgression mainly happened in Mexican highlands (Hufford 321 

et al. 2013; Pyhäjärvi et al. 2013; Wang et al. 2017; Crow et al. 2020; Calfee et al. 2021)�. The 322 

differences of landrace allele-specific expression were not significant in the HPC1 gene in either 323 

population. 324 

Beyond the genes detected in the genomic regions that have been characterized (Hufford et al. 325 

2013; Pyhäjärvi et al. 2013; Crow et al. 2020; Rodríguez-Zapata et al. 2021)�, the remaining genes 326 

with differentiated cis-regulation between highland and lowland landrace alleles had not been reported 327 

in previous studies and were distributed through all 10 chromosomes with no obvious clustering (fig. 5). 328 

We compared this list of genes (i.e., DASE), to the genes previously identified with differential gene 329 

expression (i.e., DE), between highland and lowland landraces. Of the 4,432 and 1,816 DE genes 330 

detected in the Mexican and South American populations, respectively, roughly 70% (3364 and 1235) 331 

were successfully assayed for ASE (supplementary fig. S8A). 168 and 91 genes were detected in both 332 

differential gene expression analysis and differential allele-specific analysis (supplementary fig. S8B), 333 

which account for 50% and 35% of the total numbers of DASE genes detected in the two populations. 334 

Convergent cis-regulatory evolution between the Mexican and South American 335 

populations 336 

Among these genes that were significantly differentiated in ASE between highland and lowland 337 

populations (fig. 5, supplementary table S9), 20 were significantly associated with elevation in the F1 338 

families of both continents, representing 8% of the lesser of the number of significant genes from 339 

either continent (fig. 6A, table 2). However, despite being a relatively small overlap, this is many more 340 

than expected by change (p=8.74×10-6). In addition, each of the 20 genes showed the same direction 341 

of changes of ASE between highland and lowland populations in both continents and the estimated 342 

highland effects of the 20 genes (r=0.93) were much more highly correlated between continents than 343 
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that of all measured genes (r=0.12, fig. 6B). Therefore, we classified these 20 genes as showing 344 

convergent cis-regulatory evolution between the two continents. 345 

To understand the biological functions of the 20 DASE genes that were significantly associated 346 

with elevation in both continents, we searched their annotation from the Gramene database (Tello-ruiz 347 

et al. 2022)� and their characterized function from maizeGDB (Woodhouse et al. 2021)�. 5 of them 348 

have gene names from the maizeGDB, and at least 3 of them are transcription factors (table 2). The 349 

gene Zm00001d041711 encodes auxin binding protein 1 (ZmABP1), which binds auxin and is a 350 

receptor for a number of auxin responses (Sauer and Kleine-Vehn 2011)�. The genes 351 

Zm00001d027874, Zm00001d028936 and Zm00001d040775 encode Nuclear transcription factor Y 352 

subunit A1 (NFYA1), bZIP transcription factor bZIP52, and GATA transcription factor GATA27, 353 

respectively. These transcription factors and transcription factor families play important roles in plant 354 

development, growth, and abiotic stress responses (Zhang et al. 2016; Guo et al. 2021; Zhang et al. 355 

2021; Li et al. 2022)�. 356 

For each of the 20 genes that showed consistency in both expression scales and directions in 357 

the two continents (fig. 6C, table 2), we performed a principal component analysis of the landraces 358 

based on SNPs called from the whole-genome sequencing data. We analyzed 8 genes with more than 359 

10 SNPs each and found that landraces were separated by elevation for at least 6 genes. Highland 360 

landraces from Mexico and South America were clustered together for ABP1, Zm00001d046218, 361 

Zm00001d041719 and Zm00001d021306 and showed divergence for Zm00001d021580 and bZIP52 362 

(fig. 6D).  363 

Identifying links between DASE and DE 364 

While cis-regulatory variation should contribute to the total gene expression variation among samples, 365 

other sources of variation due to developmental, environmental, or trans-regulatory variation may 366 

dominate the gene expression variation for many genes (Liu et al. 2019). We observed generally 367 

positive correlations between log2ASE and log2Expression for most genes in each site:tissue 368 

(Supplementary fig. S9). The correlation between log2ASE and log2Expression increased when we 369 

accounted for technical factors (sampling group, order of sampling, and block), and cell type 370 

composition. However, for the majority of genes log2ASE only explained a few percent of the total 371 

expression variation. 372 

Since several of our candidate genes for cis-regulatory adaptation are transcription factors, we 373 

used the MaizeGRN dataset (Zhou et al. 2020)� which contains predicted gene regulatory networks 374 

for ~2,000 transcription factors based on co-expression results across multiple maize datasets. For 375 

each transcription factor network, we used goseq as described above to test whether the network was 376 
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enriched for up- or down- regulated genes between highland and lowland populations. A total of 216 377 

networks were significantly enriched in the Mexican population and 55 in the South American 378 

population in at least one site:tissue (supplementary table S11). However, we did not find any 379 

examples of these networks with transcription factors for which we observed significant divergence in 380 

cis-regulatory alleles in either population. 381 

Discussion 382 

Complex process of maize high-elevation adaptation 383 

Previous studies have demonstrated substantial differences in phenotype (Anderson and Cutler 1942; 384 

Eagles and Lothrop 1994; Janzen et al. 2022)� and gene expression (Kost et al. 2017; Rocío Aguilar-385 

Rangel et al. 2017; Crow et al. 2020) between highland and lowland maize.� However, the genetic 386 

architecture of regulatory variants that control these phenotypic and expression traits is still unclear 387 

and cannot be directly determined either with analyses of sequence variation or differential gene 388 

expression analysis. Differential gene expression studies cannot identify how many independent loci 389 

across the genome control expression of these genes because a single locus could plausibly affect 390 

the expression of every other gene in the genome by altering processes like cellular physiology, tissue 391 

anatomy, or organismal level development. Allele-specific expression, in contrast, as studied in the 392 

maize highland adaptation context by Aguilar-Rangel et al. (2017), is not sensitive to these trans-393 

regulatory mechanisms because the two alleles of a gene are always observed in the same cellular 394 

environment. Therefore, most genes identified by Aguilar-Rangel et al. (2017) are likely controlled by 395 

distinct functional variants in cis to each gene�. However, since this study used only a single highland 396 

and a single lowland genotype, it is unclear which of the cis-regulatory differences they observed are 397 

common in highland populations and which may be unique to this particular lineage. 398 

Therefore, we used population-level allele specific expression analysis, which allows us to 399 

count at least a lower-bound of the number of independent genetic loci that have diverged between 400 

highland and lowland populations. Of the 13,632 genes we successfully assayed for ASE in at least 401 

one site:tissue, 341 and 260 genes (fig. 6A) showed significantly differential allele-specific regulation 402 

between highland and lowland populations in Mexico and South America, respectively, and these 403 

genes were distributed across all 10 chromosomes with no obvious clustering (fig. 5). It is reasonable 404 

to expect more DASE genes would be detected if all the 36,207 expressed genes in maize (Hoopes et 405 

al. 2019)� were analyzed across multiple tissues. Therefore, our results suggest a complex genetic 406 

architecture of cis-regulatory variants driving expression of genes for highland adaptation in maize. 407 

Furthermore, since our DASE analysis cannot detect functional variants in protein sequence or activity, 408 

for example transcription factor DNA binding affinity or other trans-regulatory variants, our list of 409 
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candidate regulatory variants is clearly an underestimate of the total genetic architecture underlying 410 

highland adaptation. For example, recent studies have estimated that 70% or more of total expression 411 

variation in any gene is caused by trans effects, not cis effects (Liu et al. 2019)�. While some of these 412 

trans effects may be caused by cis effects on upstream genes, we have likely underestimated the 413 

number of functional variants that differ between highland and lowland maize populations. 414 

Evolutionary patterns of maize highland adaptation in Mexico and South America 415 

We found a small proportion of genes for which differential gene expression or allele-specific 416 

expression were detected in both the Mexican and South American populations (fig. 2A, 417 

supplementary fig. S1). Even when assaying higher-level processes through GO categories or KEGG 418 

pathways, we found little evidence of shared patterns among the loci with gene expression divergence. 419 

Takuno et al. (2015) investigated the molecular basis of convergent adaptation in maize to highland 420 

climates in Mesoamerica and South America and found limited evidence for convergent evolution at 421 

the nucleotide level. Using high-depth resequencing data to investigate demographic change during 422 

highland adaptation, Wang et al. (2017) detected introgression from mexicana to maize landraces in 423 

the highlands of Mexico, Guatemala, and the southwestern USA, but found no evidence for substantial 424 

spread of mexicana haplotypes to South America. Consistent with these results, our analysis of two 425 

loci shown to have adaptively introgressed from mexicana into highland Mexicoan maize, Inv4m and 426 

mhl1, finds evidence of DASE in the Mexican population but not in the South American population 427 

(except one gene with very weak evidence detected in mhl1, fig. 5). Together, both our new results 428 

and previous studies suggest that the loci underlying adaptations to highlands were largely distinct 429 

and supports the model of predominantly independent evolution to the highlands in Mexican and 430 

South American maize landraces. 431 

Nonetheless, the small but significant overlap of convergent genes detected from either 432 

differential gene expression or differential allele-specific expression in both continents suggests 433 

convergent evolution plays a non-negligible role in highland adaptation. While the genetic basis of 434 

convergence at the expression level is not clear from differential expression data alone, convergence 435 

at the cis-regulatory level implies functionally similar local regulatory alleles differentiating highland 436 

and lowland accessions on both continents. There are three possible mechanisms of convergence 437 

adaptation: independent mutation, shared ancestral standing variation, or spread throughout 438 

subpopulations via geneflow (Lee and Coop 2017). Of the eight genes that showed convergent cis-439 

regulatory evolution between the two continents based on differential allele specific expression 440 

analysis and of which we had sufficient data from the low-coverage genome sequencing to measure 441 

local genetic relationships among samples, at least four clustered by elevation with no clear 442 

separation between Mexican highland and South American highland individuals (fig. 6D), suggesting a 443 
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potential homogenization of the two highland populations through gene flow, consistent with 444 

observations of (Wang et al. 2021)� where the majority of shared loci between Mexican and Andes 445 

highland landraces were due to migration. In addition, we also found at least two genes for which 446 

accessions clustered by elevation (fig. 6D), but Mexican highland and South American highland 447 

individuals clustered separated from each other. This suggests different haplotypes have arisen and/or 448 

spread independently in the two highland populations but that these two haplotypes likely have a 449 

similar biological function in each continent. However, our data cannot distinguish whether these 450 

haplotypes contain independent causal mutations, or both have captured the same variant 451 

segregating in the ancestral population. Therefore, both our results and those of Wang et al. (2021)� 452 

suggest convergent evolution plays a role in maize highland adaptation, and that this adaptation likely 453 

occurred through a combination of migration and the parallel recruitment of standing and/or new 454 

mutations.  455 

Applications and limitations of population-level ASE analyses in evolutionary genetics 456 

and plant science 457 

Most prior studies of ASE have been based on SNP-level allelic counts in single individuals (Rocío 458 

Aguilar-Rangel et al. 2017; Shao et al. 2019; Zhou et al. 2019). While observating ASE in an individual 459 

demonstrates that two cis-regulatory alleles differ functionally from each other, we cannot conclude 460 

from one individual that the populations that these individuals came from have diverged in cis-461 

regulatory function until we have replicated the ASE results across multiple independently derived F1s. 462 

Lemmon et al. (2014) pioneered this approach in maize, demonstrating cis-regulatory divergence in 463 

many genes relative to its wild relative teosinte. Our experimental design was similar to Lemmon et 464 

al.’s (2014), except we used many more parental lines and crossed each to a common tester 465 

genotype (B73) to facilitate comparisons among all landrace alleles. As in this earlier study, we did not 466 

focus on discovering all functionally variable cis-regulatory alleles, but instead on identifying alleles 467 

with large changes in frequency between highland and lowland populations, as a signature of 468 

selection on gene regulation at this locus. In some cases, the divergence may represent a sweep of a 469 

particular haplotype (e.g., Inv4m, mhl1 are candidates for this), in other cases divergence may be 470 

more polygenic even for a single gene, with an increase in frequency of multiple (potentially unrelated) 471 

haplotypes with similar cis-regulatory function. Detailed investigation of these alternatives will require a 472 

closer look at individual samples with higher coverage genome sequencing. 473 

 While our experimental design was optimized for discovering loci with divergent cis-regulatory 474 

activity between populations, it lacks power to describe the downstream effects of these loci on other 475 

traits. Since the functional alleles are necessarily in a heterozygous state in each F1 plant (because all 476 

landraces were crossed to a common tester), for any locus we only observe individuals that are either 477 
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heterozygous or homozygous for one allele - we never observe individuals homozygous for both allelic 478 

states, and therefore cannot observe the full phenotypic effect of substituing alleles. The phenotypic 479 

differences that we observe are expected to be half of the effect we’d see if the loci were homozygous, 480 

but may be much less if the landrace allele is recessive. This likely explains why we do not see strong 481 

correlations between ASE and phenotypic traits. Even for the expression of a gene itself, cis-482 

regulatory haplotypes often explain only a small percentage of the expression variation (Liu et al. 2019) 483 

due to the large number of sources of trans-regulatory effects. This is likely true in our study as well. 484 

We see evidence of large trans-effects caused by the time of day and changes in tissue composition 485 

across samples (fig. 3A,B), and after correcting for these sources of variation the correlations between 486 

ASE and gene expression do increase (supplementary fig. S9). Many of these trans-effects may 487 

ultimately be caused by cis-effects on other genes, potentially at other times or stages of development, 488 

but those effects cannot be discovered in our experiment itself. Further study of the biological roles of 489 

the cis-regulatory alleles we discovered here will require isolating them in other genomic backgrounds 490 

and replicating their effects in homozygous states.  491 

Finally, while we have designed our experiment to answer questions about regulatory 492 

divergence among populations, we believe similar strategies could be used to identify gene-trait 493 

relationships relevant to hybrid breeding schemes. Hybrids dominate many key crops including maize. 494 

In such programs, candidate lines are evaluated by crossing to common testers. Experimental 495 

methods for assaying gene-level ASE as we have used here could be used for transcriptome-wide 496 

association studies (TWAS) in such hybrid populations. TWAS using ASE can pinpoint causal gene 497 

regulatory traits underlying key performance metrics, enabling further targeted gene editing work and 498 

breeding. 499 

Materials and Methods  500 

Plant materials  501 

108 maize landraces (Supplementary table S1) from highland and lowland sites of Mexico and South 502 

America were chosen from the CIMMYT's germplasm bank: 28 accessions from high elevation sites (> 503 

2000 masl) and 28 accessions from low elevation sites (<1000 masl) of Mexico, and 26 accessions 504 

from high elevation sites (> 2000 masl) and 26 accessions from low elevation sites (<1000 masl) of 505 

South America. The landraces were paired latitudinally and east-west of the continental divide (Figure 506 

1A), such that both landrace accessions of a pair collected from the same 1-degree of latitude bin and 507 

all pairwise distances between accessions were greater than 50 km. Each of the 108 maize landraces 508 

was used as a pollinator to cross with the inbred line B73 to produce 108 F1 families. Crosses were 509 

performed at Curtiss Farm at Iowa State University and in Columbia, Missouri, and an approximately 510 
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balanced set of successful F1 families of each type (Highland/Lowland and Mexico/South America) 511 

were chosen from each site. 512 

Field experimental design and leaf sample collection  513 

The F1 families were planted at two locations in Mexico: Puerto Vallarta and Metepec. Puerto Vallarta 514 

is located at 20°40′N 105°16′W and represents a lowland environment at approximately 7 masl. Over 515 

the course of the year, the temperature typically varies from 16°C to 32°C. Metepec is located at 516 

19°14'N 99°35'W and represents a highland environment at approximately 2620 masl. Over the 517 

course of the year, the temperature typically varies from 7°C to 27°C. At each of the two locations, a 518 

randomized complete block design with two replications were used for the field trial design. The two 519 

landraces from the same latitudinal band were planted in consecutive 20 kernel rows.  520 

Leaf tissue was sampled at the V4 developmental stage (collar of the fourth leaf became 521 

visible) from within 5 cm of the tip of the leaf blade (leaf tip) and within 5 cm of the leaf blade base 522 

(leaf base) at both locations from a randomly selected healthy-looking plant in the interior of each row. 523 

Both fields were sampled 4 hours after sunrise and all samples were taken within 90 minutes. 524 

Approximately 20 mg of tissue was sampled, placed into a 2 ml centrifuge tube, flash frozen in liquid 525 

nitrogen, and stored at -80 C until RNA extraction. Leaf tissues of the 108 landrace parents were 526 

collected, placed on ice, and transported to the laboratory where tissue was lyophilized and ground 527 

through bead beating or mortar and pestle prior to DNA isolation. 528 

RNA extraction, library preparation and Illumina sequencing of F1 hybrids 529 

Leaf tissue was ground using stainless steel beads in a SPEX Geno/Grinder (Metuchen, NJ, USA). 530 

mRNA was extracted using oligo (dT) beads (DYNABEADS direct) to extract polyadenylated mRNA 531 

using the double-elution protocol. We prepared strand specific mRNA-seq libraries using the BrAD-532 

seq protocol (Townsley et al. 2015)� with random priming and 14 PCR cycles. Samples were 533 

quantified using the Quant-iTTM PicoGreen dsDNA kit, and then normalized to 1ng/ul. We multiplexed 534 

96 samples for sequencing and sequenced each on 2-4 lanes of an Illumina HiSeq X platform 535 

generating 150 nucleotides (nt) paired-end (PE) sequences. Trimmomatic version 0.39 (Bolger et al. 536 

2014)� was used to remove the BrAD-seq adapters remnants and bases with an average base quality 537 

value below 15 within 4-bp sliding windows of each read. Entire reads were removed if the remaining 538 

length was shorter than 36 nt. 539 

Differential gene expression analysis in gene expression data 540 

RNAseq reads of the F1 families were aligned to B73 AGPv4 using the STAR software version 2.7.2a 541 

(Dobin et al. 2013)� and the STAR 2-pass method with default parameters (Engström et al. 2013)�. 542 
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We counted reads at each locus using featureCounts v2.0.1(Liao et al. 2014)� with default 543 

parameters. We filtered the raw count matrix separately for each tissue and estimated effect sizes for 544 

elevation of origin in each tissue separately, then combined evidence across three single-tissue 545 

analyses by meta-analysis to identify the union set of genes differentially expressed in at least one 546 

tissue. In detail: 547 

First, in each single-tissue analysis, we removed F1 samples with fewer than 2 million mapped 548 

reads filtered genes using the filterByExpr function from EdgeR (Robinson et al. 2010)�, requiring at 549 

least 10 samples in one population-by-elevation class group to have at least 32 reads. This reduced 550 

the gene expression matrices of MetLeaftip, MetLeafbase and PvLeaftip to 18,369 genes × 160 551 

samples, 20,401 genes × 164 samples, and 18,079 genes × 110 samples, respectively. A total of 552 

21,599 genes were assayed in at least one site:tissue, and 16,851 genes in common among all the 553 

three tissues after filtering. 554 

Then, for each tissue separately, we calculated normalization factors using the 555 

calcNormFactors function in EdgeR, normalized to log2(counts per million) and estimated weighting 556 

factors with voom (Law et al. 2014)�. To perform voom processing, for each tissue, we specified a 557 

linear model accounting for Block (in Metepec samples only), the sampling team (3 teams sampled 558 

tissue in parallel), sampling time (expressed as a cubic polynomial of the order in the field, separately 559 

for each of the 3 sampling teams), the interaction of Population (Mexico or South America) and 560 

Elevation class (Highland or Lowland parental landrace), and the interaction of Population and 561 

Latitude of the parental landrace. 562 

Next, we re-fitted the linear model described above using lmFit in limma (Ritchie et al. 2015)� 563 

taking the precision weights estimated by voom into account. We used the eBayes function to perform 564 

empirical Bayes moderation of the t-statistics. We extracted the estimated average difference in 565 

log2(counts per million) between highland and lowland-derived F1s for each population separately 566 

from fit$coefficients and the standard errors of these estimates as sqrt(fit$s2.post) * fit$stdev.unscaled. 567 

Finally, we performed a meta-analysis of the elevation effects of each gene across three 568 

tissues, accounting for correlations of measurements among conditions using the multi-variate 569 

adaptive shrinkage (mash) method implemented in mashr package 0.2.50 (Urbut et al. 2019)�� on 570 

the estimated effect sizes and standard errors calculated above. This produced a union set of genes 571 

with evidence of a difference in the average expression between highland and lowland F1s in any 572 

condition. We used the 21,599 genes with estimated elevation effects in at least one site:tissue for the 573 

meta-analysis, setting input effect sizes and output results to NA for genes not assayed in a particular 574 

site:tissue. We ran mashr with the mash_estimate_corr_em to estimate a residual correlation matrix, 575 

passing both the canonical covariance matrices (cov_canonical) and data-driven covariance matrices 576 
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(cov_ed, with inputs from cov_pca pasted on the genes significant at a lfsr of 0.05 in at least one 577 

condition). 578 

Gene set analysis in gene expression data 579 

We ran gene set enrichment analyses on gene lists discovered by the meta-analysis across tissues, 580 

separately for the Mexican and South American populations, using the goseq function of the goseq R 581 

package (Young et al. 2010)�. We began with a list of 12,035 Gene Ontolog (GO) categories 582 

(Wimalanathan et al. 2018)�, 137 KEGG pathways (Kanehisa et al. 2021)�, and 556 CornCyc 583 

pathways (Hawkins et al. 2021)�, and then filtered for categories with between 10 and 1000 assayed 584 

genes in a particular site:tissue. We ran the enrichment analyses separately for up- and down-585 

regulated genes selected with by lfsr < 0.05 in each site:tissue. We accounted for biased probabilities 586 

of detection as a function of expression and gene length using the nullp function with bias.data set to 587 

the log of the average counts per gene across all samples in that site:tissue, including only genes that 588 

passed the expression filter described above. 589 

We assessed convergence in each site:tissue at the gene level by selecting genes with lfsr < 590 

0.05 for effects of elevation separately in the Mexican and South American populations and filtering for 591 

genes where the Posterior Mean effect size estimate had the same size in both populations. We 592 

assessed convergence at the gene set level based on Benjamini-Hochberg adjusted p-values < 0.05 593 

in the test of either up-regulated or down-regulated genes for both populations. 594 

Assessment of cell composition variation among samples 595 

We used single-cell expression data from Bezrutczyk et al. (2021)� to estimate cell composition in 596 

each sample. This dataset included 200-900 marker genes with enriched expression in 7 cell types (5 597 

classified as mesophyll and 2 as bundle sheath). We calculated a projection score for each of our 598 

samples against each of the 7 cell as the weighted sum of mean-centered expression of the marker 599 

genes (weighted by the avg_log2FC in the specific cell population in the reference dataset). This is 600 

closely related to the OLS method for estimating cell type proportions in single-cell expression data 601 

(Avila Cobos et al. 2020)�, but less restrictive because we do not assume that all cell populations in 602 

our samples are represented in the reference dataset. We summarized variation in cell type 603 

composition across samples using a principal components analysis of the 7 projection scores. 604 

To assess the reliability of the projection scores we re-calculated the scores 200 times after 605 

randomly assigning the marker gene identities to random expressed genes and measuring the total 606 

variation explained by the real or permuted scores across samples.  607 
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We assessed whether the projection scores representing cell composition variation could 608 

account for some of the differential expression observed between highland and lowland-derived F1s by 609 

including the 7 projection scores as additional covariates in the design matrices for the differential 610 

expression analyses derived above.  611 

Whole-genome sequencing and variant identification from the landrace parents 612 

Since variant calling from RNAseq libraries is notoriously difficult due to: (i) allelic imbalance, since 613 

most variant callers assume the true frequency of each allele is 50%, (ii) highly variable sequencing 614 

coverage across loci, negating depth filters from variant calling software, and (iii) mapping difficulties 615 

due to spliced reads, we used low-coverage whole-genome sequencing data of the landrace parents 616 

to identify a set of high-confidence genic SNPs to use for ASE quantification. 617 

DNA was extracted from parental landrace leaf tissue using the CTAB method. The tissue was 618 

collected from the same male plant used to produce the F1s that were used for RNA sequencing. 619 

Sample concentrations were quantified using Qubit (Life Technologies), and 1ug of DNA was 620 

fragmented using a bioruptor (Diagenode) with cycles of 30 seconds on, 30 seconds off. Fragments of 621 

DNA were then prepared for Illumina sequencing. (1) DNA fragments were repaired with the End-622 

Repair enzyme mix (New England Biolabs). (2) A deoxyadenosine triphosphate was added at each 623 

3’end with the Klenow fragment (New England Biolabs), and (3) Illumina Truseq adapters (Affymetrix) 624 

were added with the Quick ligase kit (New England Biolabs). Between each enzymatic step, DNA was 625 

washed with sera-mags speed beads (Fisher Scientific). Finally, samples were multiplexed using 626 

Illumina compatible adapters with inline barcodes and libraries were sequenced with Illumina HiSeq X 627 

platform generating 150 nucleotides (nt) paired-end (PE) sequences, resulting in an average of 628 

9,862,996 properly paried reads/library, corresponding to an average of ~1.2x coverage. Reads 629 

were aligned to version 4 of the B73 reference genome (Jiao et al. 2017)� with BWA-MEM version 630 

0.7.17 (Li and Durbin 2009)�. High-confidence SNPs between any landrace and B73 were identified 631 

with Analysis of Next Generation Sequencing Data (ANGSD) version 0.931-2 (Korneliussen et al. 632 

2014)� using the following parameters: angsd -GL 2 -P 20 -uniqueOnly 1 -remove_bads 1 -633 

only_proper_pairs 1 -trim 0 -C 50 -minMapQ 20 -mminQ 20 -SNP_pval 1e-6 -doMaf 2 -doMajorMinor 634 

4 -doSaf 1. SNPs outside of annotated exons in the B73 genome were excluded. 635 

Since the landrace parents were outbred, their genomes are heterozygous and the ~1x whole-636 

genome sequencing (WGS) reads will likely not detect ~50% of the SNPs caried by each parent and 637 

passed on to the F1 individuals. Given the size of the maize genome, achieving sufficiently high 638 

coverage for each individual for comprehensive SNP discovery would have been prohibitively 639 

expensive. However, SNPs relative to the reference genome (B73 AGPv4) that are relatively common 640 
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in the population (e.g. > 2% frequency) are likely to be sequenced by multiple reads across all 108 641 

WGS libraries. This includes a large number of SNPs where the B73 allele is rare which will be 642 

observed in nearly every landrace. In total, we identified 53,891,495 high-confidence SNPs in exonic 643 

regions across the 108 landraces, providing a large set of candidate SNPs to test for ASE in the 644 

RNAseq data.  645 

Per-sample detection of ASE-tagging SNPs without biasing ASE ratios 646 

While the WGS-derived SNPs are likely real in the whole population, only SNPs that are heterozygous 647 

in a particular F1 individual are useful for ASE quantification. Including the same set of fixed loci in 648 

ASE counts across samples will severely bias allelic read counts for a gene because all reads from 649 

both alleles will be assigned to the same allele. We therefore used the RNAseq data to genotype each 650 

F1 individual at all WGS-derived SNPs.  651 

Using WGS-derived SNPs alleviates the issue of confident SNP detection, but genotyping 652 

using RNAseq data for ASE applications still presents challenges: 653 

i) When a small number of reads cover a SNP (e.g. when in a low-expressed gene) one allele 654 

will frequently drop-out due to sampling error even if there is no actual allelic imbalance. In our 655 

experimental design, we know that every locus contains at least one copy of the B73 allele (since B73 656 

was the female parent). While loci where only the landrace allele was observed are almost certainly 657 

heterozygous and therefore informative for ASE, keeping these loci would bias the genes estimated 658 

ASE ratio towards the landrace allele, because the opposite loci (where only the B73 allele is detected) 659 

would be dismissed as apparently homozygous. We therefore kept only SNPs where both the B73 and 660 

the landrace allele were observed to prevent biased ASE ratios. 661 

ii) When a large number of reads covers a SNP (e.g. when in a high-expressed gene), the low 662 

rate of sequencing errors present in Illumina data can generate false-positive heterozygous calls. 663 

Including these loci in the ASE analysis will severely bias ASE ratios towards the B73 allele (because 664 

most sequencing errors will be away from the reference and therefore look like low-expressed non-665 

B73 alleles. 666 

iii) Mismatches relative to the reference can cause ambiguous or incorrect read-mapping, 667 

biasing ASE ratios. We used the WASP algorithm (Van De Geijn et al. 2015)�� implemented in the 668 

STAR software version 2.7.2a to identify reliably mapped reads. WASP uses an allele swapping and 669 

RNA-seq remapping strategy to filter out reads with mapping biases�, and the STAR-WASP algorithm 670 

assigns a multi-locus genotype to each individual read for all SNPs it overlaps. 671 

RNAseq reads of the F1 families were aligned to B73 AGPv4 using the STAR software version 2.7.2a 672 

and the STAR 2-pass method was used with default parameters�. For each F1 sample separately, 673 
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alleles were counted at WGS-derived loci using ASEReadCounter from GATK version 4.0.11.0. To 674 

minimize the impact of the above issues on downstream ASE analyses, we kept only SNPs for each 675 

sample where both alleles were detected, the total number of reads covering the SNP was at least 10, 676 

and the absolute value of the log2ASE ratio: log2(ALT)-log2(REF) was less than 2. We applied these 677 

filters to each SNP in each RNAseq sample. 678 

Identifying regions of IBD between plants from the same F1 family 679 

We used the heterozygous SNP calls from each RNAseq sample to identify regions of IBD between 680 

the three plants per F1 family (two plants from two blocks in Metepec and one plant from Puerta 681 

Vallarta). For each F1 family, we compared RNAseq samples of two tissues from the same plant in 682 

Metepec and of two plants from two blocks in Metepec/Puerta Vallarta for the same tissue. For each 683 

pair of RNAseq samples, we divided each chromosome into 20 blocks with equal numbers of SNPs 684 

from the WGS data, and in each bin counted the number of heterozygous sites identified in common 685 

between the two samples. We then divided this number by the minimum number of heterozygous sites 686 

identified in each sample separately. This percentage of common sites was generally bimodal across 687 

bins, reflecting the inheritance of the two paternal alleles in the sibling plants. We fit a gaussian 688 

mixture distribution to these percentages for each sample with k=2 using the normalmixEM function 689 

from the mixtools package (Benaglia et al. 2009)� to classify each bin into either IBD (if the posterior 690 

probability of the bin being in the higher-probability class was > 90%), not-IBD (posterior-probability < 691 

10%), or ambiguous. 692 

Gene-level allelic read counts for F1 samples 693 

While SNP-level allelic expression counts can document allelic imbalance in a single sample, to 694 

identify genes with common allelic imbalance at the population level we combined the information 695 

across SNPs in the same gene into a single ASE ratio per gene per sample. Gene-level ASE ratios 696 

should be more robust because they are based on more total reads, and in a population sample SNP-697 

level ASE ratios cannot reliably be compared across individuals because many SNPs are individual-698 

specific. 699 

To combine SNP-level allelic expression counts into gene-level allelic expression we used the 700 

WASP algorithm (Van De Geijn et al. 2015)�� implemented in STAR-WASP (Dobin et al. 2013)�. 701 

Therefore, we extracted reads that were assigned either REF or ALT genotypes at all overlapping loci 702 

into separate BAM files, and then counted the reads overlapping each gene feature in each BAM file 703 

using featureCounts v2.0.1 (Liao et al. 2014)�. These gene counts are the allelic expressions of the 704 

maternal and paternal alleles of each gene, respectively. 705 
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Differential allele-specific expression analysis  706 

Using the gene-level allelic read counts, we analyzed the average difference in landrace allele-specific 707 

expression (relative to B73 allele-specific expression) between F1s derived from highland and lowland 708 

landraces. We modeled this landrace elevation effect separately for three tissues: the leaf tip and leaf 709 

base tissues from the Metepec field (MetLeaftip, MetLeafbase), and the leaf tip samples from the 710 

Puerta Vallarta field (PvLeaftip). We then performed a meta-analysis across three tissues to identify 711 

the set of genes with divergent allelic expression between highland and lowland F1s in any condition.  712 

First, in each single-tissue analysis, we removed F1 samples with fewer than 2 million mapped 713 

reads and genes in which fewer than 10 samples had at least 32 ASE-informative reads in each of the 714 

4 populations. This stronger filter was necessary for the ASE analysis because genes with few reads 715 

are informative for total expression analyses (i.e. low expressed), but uninformative for ASE. For each 716 

gene in each F1 sample, we calculated the log2ASE ratio as log2(landrace counts) – log2(B73 counts), 717 

where landrace and B73 are actually paternal and maternal alleles, respectively. This resulted in 718 

datasets of size: 10,886 genes × 160 samples for MetLeaftip, 12,747 genes × 164 samples for 719 

MetLeafbase, and 9178 genes × 110 samples for PvLeaftip. A total of 13,632 genes were assayed in 720 

at least one site:tissue, and 8,605 genes were in common among all the three tissues after filtering.  721 

We expected that the precision of these log2ASE ratios would vary strongly among genes and 722 

samples due to the expression of each gene, the number of informative SNPs, and the sequencing 723 

depth of each sample. This heteroskedasticity would reduce the efficiency of standard tests for 724 

differential expression (similarly to the effect of counting variance on total expression in RNAseq 725 

samples). We therefore developed an adaptation of the voom algorithm for modeling the expected 726 

variance of each datapoint. For each tissue, we specified the same linear model accounting for Block, 727 

sampling group, order in the field, the interaction of Population and Elevation class, and the interaction 728 

of Population and Latitude of the parental landrace as described above in the total expression analysis. 729 

We used the lmFit function in limma version 3.42.2 (Ritchie et al. 2015)�� to fit this model to the 730 

log2ASE ratios of each gene and extracted the estimate of the residual standard deviation of each 731 

gene. In this step, all genes with zero counts from either allele were set to missing (given zero weights) 732 

because a zero log2ASE ratios implies equal allelic expression while zero counts is a complete lack of 733 

information about the actual allelic ratio. Next, we used the lowess function to fit a smoothed trend to 734 

the square root of residual standard deviations extracted above as a function of an average 735 

normalized total counts of each gene (in log2 scale). Finally, we used this trend line to predict the 736 

variance of each observation in the data matrix as a function of the total read count (landrace + B73) 737 

of that gene in that sample.  738 
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Next, we re-fitted the linear model above using lmFit, this time including the inverse of the 739 

estimated variance matrix as precision weights, again setting the weights of points with zero total 740 

counts to zero. We used the eBayes function to perform empirical Bayes moderation of the t-statistics. 741 

We extracted the estimated average difference in log2ASE between highland and lowland-derived F1s 742 

for each population separately from fit$coefficients and the standard errors of these estimates as 743 

sqrt(fit$s2.post) * fit$stdev.unscaled. 744 

Finally, based on the observed effect sizes and corresponding standard errors of each gene of 745 

three single-tissue analyses, we performed a meta-analysis using mashr (Urbut et al. 2019)�� to 746 

identify a union set of genes with evidence of a difference in the average landrace allele-specific 747 

expression between highland and lowland F1s in any condition following the same procedure of total 748 

expression analysis. In this analysis, the mash results suggested the correlation in true effect sizes 749 

was close to 1 across all three site:tissues. We therefore used the overall lfsr across all three 750 

site:tissues as a measure of signficance, and did not break results down by site:tissue. 751 

Supplementary Material 752 

All supplementary figures, tables, results and text have been included in the supplementary files. 753 
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944 

Fig.1 The Geographical origins (A) and genomic relationships (B) of the 108 maize landraces used945 

paternal parents of the F1 populations. MH=Mexican Highland, ML=Mexican Lowland, SH=So946 

American Highland, and SL=South American Lowland. In Figure A, the larger dots represent physi947 

positions of the two field trials, and the smaller dots represent physical positions where the 108 ma948 

landraces were collected. 949 
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951 

Fig. 2 Results of gene expression analyses. (A) Numbers of differentially expressed genes betwe952 

highland and lowland populations from Mexico and South America and common genes detected953 

both continents in the MetLeaftip tissue. The small inset in the overlapping region shows gen954 

significant in both populations, but with opposite directions of expression change (B) Correlation955 

Posterior Mean highland effects between Mexican and South American population for all gen956 

measured for gene expression (in gray) and a subset of genes showing evidence of converg957 

evolution (in red) in the MetLeaftip tissue. (C) Expression of flowering-related genes in the Mexic958 

Highland (ML), Mexican Lowland (ML), South American Highland (SA), and South American Lowla959 

(SL) populations in the MetLeaftip tissue. These flowering-related genes are identified by looking 960 

overlapping between the convergent genes and maize flowering time candidate genes aggregated961 

Li et al. (2016) and Swarts et al. (2016). (D) False discovery rate (FDR) of 16 Gene Ontology (G962 

terms that are significant in both Mexican and South American populations across three site:tiss963 

The size of each triangle indicates the enrichment ratio of this GO term, defined as ratio of number964 

differentially expressed genes in a GO category divided by the size of the category. We tested 965 

regulated and down-regulated differentially expressed genes separately and triangles and upsid966 

down triangles represent up-regulated and down-regulated GO categories, respectively. (E) G967 
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categorical enrichments of the genes individually classified as having convergent expression evolut968 

in MetLeaftip and MetLeafbase. 969 

970 

Fig. 3 Cell type proportion inference. (A) Each point represents a single RNA sample, colored by 971 

site:tissue and positioned according to its coordinates on the first two principal component axes of 972 

projections onto seven sets of cell-type specific genes identified by Bezrutczyk et al. (2021)� in ma973 

leaves. (B) Red points show the standard deviation of the cell-type projection scores within ea974 

tissue. Black box-plots show the distribution of 200 randomized projection scores based on rand975 

sets of genes. (C) Distributions of the PC1 coordinates for the MetLeafbase samples, separated 976 

population and range of the field.  977 
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978 
Fig. 4 The analysis pipeline for gene-level allelic read count. LR=landrace, WGS=whole geno979 

sequencing, AGPv4=B73 reference genome version 4, bams=bam files, MH=Mexican Highla980 

ML=Mexican Lowland, SH=South American Highland, and SL=South American Lowland. 981 

nome 

land, 
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982 
Fig. 5 Manhattan plots showing the local false sign rate (lfsr) of the meta-analysis with mash 983 

detecting differential allele-specific expression between highland and lowland landraces in the 984 

Mexican and (B) South American F1 populations, expressed as −log 10 (lfsr). The lfsr is analogous985 

a false discovery rate but more stringent (Stephens, 2017). Each dot represents a gene. The dash986 

lines in each plot indicats the significant level at lfsr < 0.05. Blue dots highlight genes within the th987 

prior-identified loci: HPC1, Inv4m and mhl1 and not being significant, respectively. Mex=Mexican988 

population, SA=South American F1 population.  989 
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990 
Fig. 6 Results of allele-specific expression analyses. (A) Numbers of genes showing cis-regulat991 
divergence between highland and lowland populations from Mexico and South America and comm992 
genes detected in both continents. (B) Correlation of estimated highland effects between Mexican a993 
South American populations for all genes measured for ASE (in gray) and a subset of 20 gen994 
showing evidence of convergent evolution (in red). (C) ASE values of 8 of the 20 convergent genes995 
the Mexican Highland (ML), Mexican Lowland (ML), South American Highland (SA), and So996 
American Lowland (SL) populations. The 8 genes were selected based on a threshold of more than997 
SNPs from the landrace parents in each of the 20 convergent genes. (D) Principal component analy998 
of the landraces based on SNPs called from the whole-genome sequencing data for each of 8 gen999 
with more than 10 SNPs.1000 
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Table 1 17 flowering-related genes that showed convergent expression differences between highland and lowland-derived F1 families 1001 

from Mexican and South American populations 1002 

 1003 

GeneID Gene Name Chr Position(bp) Description 
Expression 
changes in 
highland genotypes 

References 

Zm00001d022088 MADS67 7 169,844,061 MADS-transcription factor 67 up Li et al. 2016 

Zm00001d010752 PEBP8/ZCN8 8 126,880,531 
phosphatidylethanolamine-
binding protein8 up Swarts et al. 

2016 

Zm00001d038725 PEBP7/ZCN7 6 163,368,049 
phosphatidylethanolamine-
binding protein7 up Swarts et al. 

2016  

Zm00001d010987 RAP2 8 136,009,216 
rap2 - rap2.7 orthologue 
(transcription factor) down Swarts et al. 

2016 
Zm00001d025099 

 10 103,947,429  up Li et al. 2016 
Zm00001d016506 cl27878_1 5 165,302,124  down Li et al. 2016 

Zm00001d048474 MADS1/ZMM5 9 156,960,598 transcription factor down 
Swarts et al. 
2016  

Zm00001d049543 CCA1 4 34,070,590  down Swarts et al. 
2016 

Zm00001d051951 
 4 175,147,743  down Li et al. 2016 

Zm00001d014990 RUP1 5 71,267,717 
repressor of UV-B 
photomorphogenesis homolog1 down Li et al. 2016 

Zm00001d015293 
 5 82,992,330  up Li et al. 2016 

Zm00001d005814 
 2 189,518,235  down Li et al. 2016 

Zm00001d040323 CAL2 3 38,197,170 calmodulin2 up Li et al. 2016 
Zm00001d022558 

 7 180,004,346  up Li et al. 2016 
Zm00001d023833 

 10 23,764,459  down Li et al. 2016 
Zm00001d046935 

 9 111,766,412  down Li et al. 2016 

Zm00001d012119 JMJ11 8 168,442,999 
JUMONJI-transcription factor 
11 

up Li et al. 2016 

Position(bp) represents starting physical position of a gene (bp; B73 AGPv4) 1004 
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Table 2 20 genes with convergent highland cis-regulatory evolution in both the Mexican and South American populations 1006 

Gene Model Gene Name Chr Position(bp) Description 

Zm00001d032370 1 224,157,746 Co-chaperone protein p23-1   

Zm00001d021306 7 148,361,780 ER lumen protein retaining receptor B 

Zm00001d010995 8 136,175,479 Thylakoid membrane protein TERC, chloroplastic 

Zm00001d046218 9 72,602,369 Protein NDL1 

Zm00001d030623 1 149,354,547 Solute carrier family 40 member 3, chloroplastic 

Zm00001d016736 5 174,721,846 2-Cys peroxiredoxin BAS1-like, chloroplastic 

Zm00001d041711 ABP1 3 134,550,012 auxin binding protein1 

Zm00001d021580 7 156,778,841 Transducin/WD40 repeat-like superfamily protein 

Zm00001d027874 NFYA1 1 16,038,734 nuclear transcription factor y subunit a1 

Zm00001d052769 4 200,157,142 Thioredoxin H-type 5   

Zm00001d050238 4 75,293,161 unknown 

Zm00001d028936 bZIP52 1 52,167,612 bZIP-transcription factor 52 

Zm00001d041719 3 134,955,964 Heat shock protein 90-6 mitochondrial 

Zm00001d040775 GATA27 3 64,946,021 C2C2-GATA-transcription factor 27 

Zm00001d021654 7 159,175,708 unknown 

Zm00001d016553 5 167,128,735 F-box/kelch-repeat protein  

Zm00001d043070 MAGI104405 3 188,315,697 Ubiquitin-conjugating enzyme E2-17 kDa-like 

Zm00001d032383 1 224,766,461 Phosphoenolpyruvate/phosphate translocator 2, chloroplastic 

Zm00001d030892 1 166,128,618 unknown 

Zm00001d026326 10 143,599,140 F-BOX PROTEIN 2 

Position(bp) represents starting physical position of a gene (bp; B73 AGPv4) 1007 
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