

1 **Imp is required for timely exit from quiescence in *Drosophila* type II neuroblasts**

2

3 Short title: Imp regulates neuroblast exit from quiescence

4

5 Jordan A. Munroe¹, Mubarak H. Syed^{2*}, and Chris Q. Doe^{1*}

6

7 ¹ Institute of Neuroscience, Howard Hughes Medical Institute, Univ. of Oregon, Eugene, OR 97403

8 ² Department of Biology, Univ. of New Mexico, Albuquerque, NM 87131

9

10 Author contributions: JAM performed all experiments and generated the first draft of text and figures.

11 JAM, MHS and CQD revised the text and figures.

12

13 Key words: neuroblast, type II neuroblast, quiescence, temporal identity, proliferation, Imp, Syp

14

15 * Co-corresponding authors: cdoe@uoregon.edu, FlyGuy@unm.edu

16

17 **Abstract**

18 Stem cells must balance proliferation and quiescence, with excess proliferation favoring tumor formation, and

19 premature quiescence preventing proper organogenesis. *Drosophila* brain neuroblasts are a model for

20 investigating neural stem cell entry and exit from quiescence. Neuroblasts begin proliferating during

21 embryogenesis, enter quiescence prior to larval hatching, and resume proliferation 12-30h after larval hatching.

22 Here we focus on the mechanism used to exit quiescence, focusing on the "type II" neuroblasts. There are 16

23 type II neuroblasts in the brain, and they undergo the same cycle of embryonic proliferation, quiescence, and

24 proliferation as do most other brain neuroblasts. We focus on type II neuroblasts due to their similar lineage as

25 outer radial glia in primates (both have extended lineages with intermediate neural progenitors) and because of

26 the availability of specific markers for type II neuroblasts and their progeny. Here we characterize the role of

27 Insulin-like growth factor II mRNA-binding protein (Imp) in type II neuroblast proliferation and quiescence.
28 Imp has previously been shown to promote proliferation in type II neuroblasts, in part by acting
29 antagonistically to another RNA-binding protein called Syncrip (Syp). Here we show that reducing Imp levels
30 delays neuroblast exit from quiescence in type II neuroblasts, acting independently of Syp, with Syp levels
31 remaining low in both quiescent and newly proliferating type II neuroblasts. We conclude that Imp promotes
32 exit from quiescence, a function closely related to its known role in promoting neuroblast proliferation.

33

34 **Introduction**

35 The generation of neuronal diversity is essential for proper brain assembly and function. This is
36 particularly true for the primate cortex, which derives from a specialized neural stem cell called outer
37 radial glia (oRG). These stem cells are thought to have driven cortical expansion and diversity during
38 evolution (1–3), but how they regulate their proliferation remains incompletely understood.

39 One way to help understand oRG lineages is to use model organisms that contain neural stem cells
40 with lineages similar to oRGs, which can be used to generate testable hypotheses for investigating
41 primate oRG lineages. In *Drosophila*, there is a small pool of 16 neural stem cells in the brain (eight stem
42 cells per brain lobe), called type II neuroblasts (TIINBs), that undergo a lineage similar to primate oRGs
43 to generate neurons (4–6) (Figure 1A). In primates these oRGs generate neurons of the cortex; in
44 *Drosophila* the TIINBs generate neurons of the adult central complex (CX), a region important for
45 navigation, sleep, and sensorimotor integration (7). Like oRGs, TIINBs undergo repeated asymmetric
46 divisions to produce a series of transit amplifying cells called Intermediate Neural Progenitor (INPs),
47 which themselves undergo a more limited division pattern to generate a series of ganglion mother cells
48 (GMCs) which undergo a single terminal division to produce pairs of neurons and/or glia (Figure 1A,
49 left) (4–6).

50 Neuronal diversity is generated at each step in the TIINB lineage. TIINBs change gene expression
51 over time as they generate distinct INPs, with some genes limited to early lineage expression such as
52 insulin-like growth factor II mRNA-binding protein (Imp), Chinmo, and Lin-28; other genes are only

53 expressed late in the lineage such as Syncrip (Syp), Broad, and E93 (8,9). These genes are called candidate
54 temporal transcription factors (TTFs) or temporal identity factors due to their potential role in specifying
55 different neuronal fates based on their time of birth. Subsequently, each individual INP undergoes a TTF
56 cascade to generate molecularly distinct GMCs (10–12). Thus, the TIINBs appear to be an excellent
57 model for understanding oRG lineages in primates.

58 Another important aspect of TIINB lineages is how their pattern of proliferation is regulated to generate
59 large populations of neurons without tumorigenesis. TIINBs begin their lineage in the embryonic brain, followed
60 by a period of quiescence at the transition from embryo to first larval instar (L1), and then proliferation resumes
61 between 12-30 hours after larval hatching (13,14); subsequently all times refer to hours after larval hatching. This
62 is similar to the pattern of proliferation-quiescence-proliferation exhibited by most other embryonic larval
63 neuroblast lineages (15,16). Previous work has shown that neuroblast quiescence is achieved through the
64 accumulation of nuclear Prospero (Pros) (16,17), and upon exit from quiescence each TIINB will generate ~60
65 INPs that produce hundreds of neurons and glia throughout larval development (4–6,18–20). Previous work has
66 shown that low Notch signaling activity is required to drive mushroom body neuroblasts (MB NBs) out of
67 quiescence, while Syp recruits the mediator complex and Pros to drive the MB NBs into decommissioning
68 (21,22). This terminal exit from the cell cycle is also driven by the loss of proliferation and differentiation due to
69 low Imp expression (21,22). High Imp expression in early larval life promotes neuroblast proliferation via the
70 stabilization of *myc* and *chinmo* RNAs as well as inhibition of the Mediator complex (9,21,23). This makes Imp an
71 attractive candidate for studying how TIINBs initiate exit from quiescence. Here we focus on the role of Imp in
72 regulating neuroblast proliferation in TIINB lineages, where we identify a novel role for Imp in promoting TIINB
73 exit from quiescence.

74

75 **Results**

76

77 **Type II neuroblasts exhibit a high-to-low Imp protein gradient overtime.**

78 Previous work has shown that Imp forms a high-to-low RNA and protein gradient in all assayed
79 neuroblast populations (23), but at just a few timepoints. Here we used *Pointed-gal4* (*pnt-gal4*) crossed to
80 *UAS-GFP* to identify TIINBs and co-stained for Imp at 12h intervals throughout larval stages, from 24h
81 to 96h after larval hatching; note that all times subsequently refer to hours after larval hatching (Figure
82 1B). We found that Imp protein forms a gradient from high to low over the first 60h of larval life,
83 becoming virtually undetectable from 72-96h (Figure 1B-F). We conclude that Imp levels drop
84 continuously in TIINBs during larval life.

85

86 **ImpRNAi and Imp overexpression have opposing effects on the timing of the Imp protein
87 gradient in type II neuroblasts**

88 To alter the Imp protein gradient, we performed Imp RNAi in TIINBs. We used *pnt-gal4 UAS-*
89 *impRNAi* to reduce Imp protein levels specifically in TIINB lineages. We found that ImpRNAi in
90 TIINBs significantly reduced Imp protein levels, although an Imp protein gradient persisted, effectively
91 shifting the Imp gradient to earlier times in development (Figure 2A,C-E). In contrast, overexpression of
92 Imp within TIINB lineages results in higher levels of Imp, without abolishing its gradient, effectively
93 shifting the Imp gradient to later times in development (Figure 2B-E). We conclude that ImpRNAi or
94 Imp overexpression reduces or increases Imp protein levels, respectively, and thus they are effective tools
95 for manipulating Imp protein levels in TIINBs.

96

97 ***pnt-gal4 UAS-GFP* can be used to selectively label proliferating type II neuroblasts**

98 Imp has been shown to promote neuroblast proliferation, and the decline in Imp levels in late larva
99 contributes to termination of neuroblast proliferation (21,22). Here we asked a related question: does
100 reduction in Imp levels in TIINB delay exit from quiescence? Proliferating versus quiescent TIINBs can
101 be distinguished by Deadpan (Dpn) and Cyclin E (CycE) expression: proliferative neuroblasts are
102 Dpn⁺CycE⁺ whereas quiescent neuroblasts are Dpn⁺CycE⁻ (15,16). We found that *pnt-Gal4 UAS-GFP*
103 was only expressed by proliferating TIINBs (Figure 3A; quantified in 3C), and no quiescent neuroblasts

104 expressed *pnt-Gal4 UAS-GFP* (Figure 3B; quantified in 3C). This allowed us to quantify how many of the
105 16 TIINBs were proliferating, and infer the remainder were quiescent (see below). We conclude that *pnt-*
106 *gal4 UAS-GFP* can be used to identify proliferating TIINBs (Figure 3D).

107

108 **Imp is required for timely exit from quiescence in type II neuroblasts**

109 High Imp expression early in larval development promotes neuroblast proliferation, while late, low
110 Imp expression leads to neuroblast decommissioning (21,22). We wanted to know if high Imp expression
111 early in larval life promoted TIINB exit from quiescence. To answer this question, we decreased Imp
112 levels specifically in TIINB lineages and quantified the number of proliferating TIINBs at intervals from
113 24h to 96h. We used *pnt-gal4* to *UAS-GFP* to identify proliferating TIINBs, *UAS-ImpRNAi* (to reduce
114 Imp levels), and Dpn to mark all neuroblasts (proliferating or quiescent). In wild type, at 24h ~8 of the
115 16 TIINBs are *pnt-Gal4 UAS-GFP* and thus have exited quiescence, with the remainder still in
116 quiescence. By 36h, all 16 TIINBs have exited quiescence and are proliferative (Figure 4A,B). In contrast,
117 following ImpRNAi, only ~2 TIINBs have exited quiescence at 24h, and it takes until 72h for all 16
118 TIINBs to exit quiescence and become proliferative (Figure 4A,B). We also wanted to see if ImpRNAi
119 delayed exit from quiescence in specific TIINB lineages – e.g. the pair of lateral DL neuroblasts or
120 dorsomedial DM neuroblasts – but each class had an indistinguishable time of exit from quiescence (data
121 not shown). We conclude that Imp promotes exit from quiescence in TIINBs.

122 To determine if higher levels of Imp could drive precocious exit from quiescence, we used *pointed-*
123 *gal4* to drive *UAS-Imp* specifically in TIINB lineages. This manipulation results in significantly more Imp
124 protein in TIINBs (Figure 2), but overexpression of Imp does not induce precocious exit from
125 quiescence in TIINBs (Figure 4C,D). We conclude that Imp is necessary but not sufficient to drive
126 TIINB exit from quiescence.

127 Because Imp promotes exit from quiescence, we asked whether quiescent TIINBs have low Imp
128 and proliferating TIINBs have high Imp levels. Interestingly, we observed comparable levels of Imp in
129 proliferating TIINBs (Figure 4E, first column; quantified in 4F) and quiescent TIINBs (Figure 4E,

130 second column; quantified in 4F). Because Imp and Syp can cross-repress each other (23), we assayed Syp
131 levels in proliferating and quiescent TIINBs. As expected, we found Syp to be expressed at a lower level
132 than Imp in both proliferating and quiescent TIINBs (Figure 4E, third and fourth columns; quantified in
133 4F). Interestingly, Syp levels in quiescent TIINBs were slightly higher than Syp levels in proliferative
134 TIINBs (Figure 4F), showing a correlation between higher Syp levels and neuroblast quiescence. We
135 conclude that Imp is expressed in quiescent neuroblasts and is necessary but not sufficient for timely exit
136 from quiescence (Figure 4G).

137

138 Discussion

139 It is well documented in previous studies that Imp is expressed in a temporal gradient in many central brain
140 neuroblasts (8,9,22,23). In this study we have confirmed the Imp gradient in TIINBs from 24h – 96h and have
141 quantified Imp levels in wild type as well as after ImpRNAi knockdown or Imp overexpression. While both
142 knockdown and overexpression show significant changes in Imp levels, the Imp gradient is maintained
143 throughout larval life in all cases. Interestingly, at 36h Imp overexpression levels are lower than WT control levels,
144 but only at this timepoint. This suggests a post-transcriptional ‘homeostatic’ mechanism that reduces Imp levels
145 when they are experimentally increased. A possible explanation for this is Imp targeting by microRNA *let-7*. *let-7*
146 targets Imp in *Drosophila* male testis (24) and is present in MB NBs where it targets the temporal transcription
147 factor Chinmo, which is also present in TIINBs (25). Thus, *let-7* may regulate Imp in TIINBs and should be
148 explored in future work.

149 At 24h wild type larval brains show ~8-10 TIINBs active, and all 16 TIINBs (8 neuroblasts per brain
150 lobe) are active and proliferating by 36h. Imp knockdown results in only ~2-4 TIINBs at 24h and all 16 TIINBs
151 are not proliferating until 72h. This late exit from quiescence shows that Imp is necessary for timely exit from
152 quiescence. Previous studies have shown that high levels of Imp in TIINBs are required to maintain large
153 neuroblast size and proliferative activity through the stabilization of *myc* RNA (22), and overexpression of Imp in
154 neuroblasts can extend proliferation (21,22). Our results add to these findings by showing that Imp is required for
155 TIINB timely exit from quiescence. Additionally, Imp knock down in TIINBs promotes early exit from cell cycle

156 at the end of larval life (21). Imp overexpression in TIINBs did not change the rate at which TIINBs exit from
157 quiescence. Thus, Imp is necessary but not sufficient for exit from quiescence. These findings suggest that a
158 minimum level of Imp is required for the exit from quiescence. A potential mechanism for this would be a
159 negative feedback loop driven by over-expression of Imp, which could lead to over-proliferation if not regulated.
160 Again, a candidate factor for regulation of Imp levels as TIINBs exit quiescence is *let-7*.

161 We quantified Imp levels in both quiescent and proliferative TIINBs to see how they varied and saw no
162 change. We also wanted to compare Syp levels to Imp levels in quiescent and proliferative TIINBs. Syp is
163 required for the entrance into quiescence and decommissioning (21), but it was unknown what Syp levels are in
164 TIINBs nearing the end of quiescence early in larval life. We compared Syp levels in proliferating TIINBs to
165 quiescent TIINBs but found that Syp levels were significantly lower than Imp levels, consistent with their cross-
166 repressive regulation. Interestingly, Syp levels in quiescent TIINBs were higher than Syp levels in proliferative
167 TIINBs, showing a correlation between high Syp levels and neuroblast quiescence, and consistent with earlier
168 work showing Syp is required to elevate levels of nuclear Prospero and enter quiescence (21).

169

170 **Materials and Methods**

171

172 Key Resource Table

Reagent	Designation	Source	Identifiers	Additional information
Species (<i>D. melanogaster</i>)	Pointed-Gal4	(26)	n/a	TIINB driver
Species (<i>D. melanogaster</i>)	UAS-ImpRNAi	BDSC	#34977	Imp knockdown
Species (<i>D. melanogaster</i>)	UAS-Imp	Syed Lab (UNM)	Macdonald lab	Imp overexpression
Species (<i>D. melanogaster</i>)	UAS-myr::GFP	BDSC	#32198	Membrane bound GFP under UAS control
Antibody, polyclonal	Chicken anti-GFP	Abcam (Eugene, OR)	n/a	1:1000
Antibody, polyclonal	Rabbit anti-Imp	MacDonald lab (UT Austin)	n/a	1:1000
Antibody, polyclonal	Rabbit anti-Syp	Desplan Lab (NYU)	n/a	1:1000
Antibody, polyclonal	Rat anti-Dpn	Abcam (Eugene, OR)	n/a	1:20
Antibody, polyclonal	Rabbit anti-CycE	Santa Cruz Biotechnology	#C1209	1:500
Antibody, polyclonal	Guinea pig anti- Asense	Wang lab (Duke)	n/a	1:500
Antibody, polyclonal	Secondary antibodies	Thermofisher (Eugene, OR)	n/a	1:400, 1:200 (Dpn only)

173

174 Key Resource Table continued

Fly genotype used in each figure	Figure	Synopsis
; UAS-myr::GFP ; Pnt-Gal4	1, 2, 3	Control. GFP = TIINBs
; UAS-myr::GFP ; Pnt-Gal4 X ; ; UAS ImpRNAi	2, 3	Imp RNAi. GFP = TIINBs
UAS-Imp ; Sco/Cyo ; X ; UAS-myr::GFP ; Pnt Gal4	2, 3	Imp overexpression. GFP = TIINBs.

175

176 Antibodies and immunostaining

177 All larvae were raised at 25°C and dissected in Hemolymph Like buffer 3.1 (HL3.1) (NaCl 70mM, KCl 5mM,

178 CaCl₂ 1.5mM, MgCl₂ 4mM, sucrose 115mM, HEPES 5mM, NaHCO₃ 10mM, and Trehalose 5mM in double

179 distilled water). Larvae were grown to specified time points, dissected, mounted on poly-D-lysine coated slips

180 (Neuvitro, Camas, WA), and incubated for 30 minutes in 4% paraformaldehyde solution in Phosphate Buffered
181 Saline (PBS) with 1% Triton-X (1% PBS-T) at room temperature. Larval brains were washed twice with 0.5%
182 PBS-T and incubated for 1-7 days at 4°C in a blocking solution of 1% goat serum (Jackson ImmunoResearch,
183 West Grove, PA), 1% donkey serum (Jackson ImmunoResearch, West Grove, PA), 2% dimethyl sulfoxide in
184 organosulfur (DMSO), and 0.003% bovine serum albumin (BSA) (Fisher BioReagents, Fair Lawn, NJ Lot
185 #196941). Larval brains were incubated overnight at 4°C in a solution of primary antibodies (see Key Resource
186 Table) in 0.5% PBS-T. Larval brains were washed for at least 60 minutes in 0.5% PBS-T at room temperature,
187 and then incubated overnight at 4°C in a solution of secondary antibodies (see Key Resource Table) in 0.5% PBS-
188 T. Brains were washed in 0.5% PBS-T for at least 60 minutes at room temperature. Brains were dehydrated by
189 going through a series of 10-minute washes in 30%, 50%, 70%, and 90% EtOH, and two rounds of 10 minutes in
190 100% EtOH and two rounds of 10 minutes in xylene (MP Biomedicals, LLC, Saalon, OH, Lot# S0170), then
191 mounted in dibutyl phthalate in xylene (DPX; Sigma-Aldrich, cat. no. 06522). Brains sat in DPX for at least 48
192 hours at 4°C or 72 hours (48 hours at room temperature and 24 hours at 4°C) before imaging.

193

194 Imaging and statistical analysis

195 All Imp data were collected with identical confocal settings; all Syp data were collected with identical
196 confocal settings. Fluorescent images were collected on Zeiss LSM 800. TIINBs were counted using the
197 cell counter plugin in FIJI (<https://imagej.net/software/fiji/>). Imp pixel density in each TIINB was
198 calculated in FIJI. TIINBs were manually selected in FIJI using the polygon lasso tool, and the area and
199 Raw Integrated Density (RID) was measured. The nucleus of each TIINB went through the same
200 analysis steps. Imp levels were normalized to cell area using the equation: (Cell Body^{RID} – Nucleus^{RID}) /
201 (Cell Body^{Area} – Nucleus^{Area}). Two-tailed student t-tests were used to compare two sets of data. *p<0.05;
202 **p<0.01; ***p<0.001; ****p<0.0001. All graphs and statistical analysis were done in Prism (GraphPad
203 Software, San Diego, CA).

204

205 Figure production

206 Images for figures were taken in FIJI. Figures were assembled in Adobe Illustrator (Adobe, San Jose,
207 CA). Any changes in brightness or contrast were applied to the entire image.

208

209 **Acknowledgements**

210 We thank Noah Dillon and Gonzalo Morales Chaya for comments on the manuscript, and Adam Fries
211 for help with developing a fluorescent analysis method.

212

213 **Figure 1. Quantification of the Imp gradient in type II neuroblasts**

214 (A) Type II neuroblast lineage (left) (4–6) and outer radial glial lineage (right), adapted from (27).

215 (B,C) Imp protein forms a high-to-low gradient in type II neuroblasts during larval life (hours are time
216 after larval hatching in this and following figures). Type II neuroblasts are identified by expression of
217 *pointed-gal4 UAS-GFP*. Scale bar, 20 μ m.

218 (D,E) Quantification of Imp protein levels (see methods for details) for all n's (D) or for the average
219 levels (E).

220 (F) Summary.

221

222 **Figure 2. Imp RNAi and Imp overexpression result in reduced or increased Imp protein levels**

223 Wild type Imp levels are shown in Figure 1.

224 (A) Imp RNAi within type II neuroblasts (inset: *pointed-gal4 UAS-GFP*) leads to lower Imp levels without
225 disrupting the protein gradient; quantified in C. Scale bar, 20 μ m.

226 (C) Imp overexpression within type II neuroblasts (inset: *pointed-gal4 UAS-GFP*) leads to higher Imp
227 levels without disrupting the protein gradient; quantified in C. Scale bar, 20 μ m.

228 (C, D) Quantification of Imp protein levels in type II neuroblasts in wild type, Imp RNAi, and Imp
229 overexpression. (C) Histogram showing all n's; (D) graph showing average values.

230 (E) Summary.

231

232 **Figure 3. *Pointed-gal4 UAS-GFP*+ TIINBs have exited quiescence and are proliferative**

233 (A) Type II neuroblasts are circled and identified by *pointed-gal4 UAS-GFP* (green), Dpn (magenta), and
234 reconfirmed as proliferative by CycE (cyan) at 24h. Scale bar is 5 μ m.

235 (B) *pointed-gal4 UAS-GFP* (green) and CycE (cyan) are not expressed in quiescent type II neuroblasts, but
236 Dpn (magenta) is still present. Quiescent cells are circled. Scale bar is 5 μ m.

237 (C) Histogram of cells that are Dpn+. One hundred percent of type II neuroblasts that are positive for
238 GFP (*pointed-gal4 UAS-GFP*) are Dpn+ and CycE+, while 0% of cells that are GFP-, Dpn+, CycE-.

239 (D) Summary.

240

241 **Figure 4. Imp is required for timely exit from quiescence in type II neuroblasts.**

242 (A,B) Quantification of proliferating type II neuroblast numbers (expressing *Pointed-gal4 UAS-GFP*) over
243 larval life in wild type and Imp RNAi. Note that there is a maximum of 16 type II neuroblasts per brain.
244 In wild type, all neuroblasts have exited quiescence/resumed proliferating by 36h as shown by *Pointed-gal4*
245 *UAS-GFP* expression. Imp RNAi delays exit from quiescence and the full complement of 16
246 proliferating type II neuroblasts is not achieved until 72h as shown by Pointed-gal4 UAS-GFP
247 expression.

248 (C,D) Quantification of proliferating type II neuroblast numbers (*Pointed-gal4 UAS-GFP*+) across larval
249 development for wild type and Imp overexpression. There is no difference in exit from quiescence
250 between wild type and Imp overexpression genotypes.

251 (E) Imp and Syp levels are the same in quiescent and proliferating type II neuroblasts. Proliferating type
252 II neuroblasts (circled; first and third columns) are identified by expression of *pointed-gal4 UAS-GFP*
253 (green), Dpn (magenta), and lack of Asense (not shown). Quiescent type II neuroblasts do not express
254 *pointed-gal4 UAS-GFP* (green) but can be identified as Dpn+ (magenta) and lack of Asense (data not
255 shown).

256 (F) Quantification of Imp and Syp levels in quiescent and proliferating type II neuroblasts at 24h.

257 (G) Summary.

258

259

260

261 **Ethical Approval and Consent to participate** n/a

262

263 **Consent for publication** All authors consent for this to be published

264

265 **Availability of data and material** No new data sets or fly genotypes were developed.

266

267 **Authors' contributions** JM performed all the experiments, generated all the figures, and wrote the first
268 draft of the paper. MHS and CQD supervised the project and edited figures and text.

269

270 **Competing Interests** None.

271

<u>Funder</u>	<u>Grant reference number</u>	<u>Author</u>
----------------------	--------------------------------------	----------------------

273 NIH	T32HD07348	Jordan Munroe
---------	------------	---------------

274 NSF CAREER award	IOS-2047020	Mubarak Syed
----------------------	-------------	--------------

275 Howard Hughes Medical Institute	None	Chris Doe
-------------------------------------	------	-----------

276

277 The funders had no role in study design, data collection and interpretation, or the decision to submit the
278 work for publication.

279

280 **Author ORCIDs**

281 Chris Q Doe	https://orcid.org/0000-0001-5980-8029
-----------------	---

282 Mubarak Syed	https://orcid.org/0000-0003-2424-175X
------------------	---

283 Jordan Munroe	https://orcid.org/0000-0002-8943-5195
-------------------	---

284

285 **References**

- 286 1. Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of
287 human neocortex. *Nature*. 2010 Mar 25;464(7288):554–61.
- 288 2. Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, et al. OSVZ progenitors of human and
289 ferret neocortex are epithelial-like and expand by integrin signaling. *Nat Neurosci*. 2010 Jun;13(6):690–9.
- 290 3. Noctor SC, Martinez-Cerdeno V, Iovic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric
291 division zones and migrate through specific phases. *Nat Neurosci*. 2004 Feb;7(2):136–44.
- 292 4. Boone JQ, Doe CQ. Identification of Drosophila type II neuroblast lineages containing transit amplifying
293 ganglion mother cells. *Dev Neurobiol*. 2008 Aug;68(9):1185–95.
- 294 5. Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA. The tumor suppressors Brat and
295 Numb regulate transit-amplifying neuroblast lineages in Drosophila. *Dev Cell*. 2008 Apr;14(4):535–46.
- 296 6. Bello BC, Izergina N, Caussinus E, Reichert H. Amplification of neural stem cell proliferation by
297 intermediate progenitor cells in Drosophila brain development. *Neural Dev*. 2008;3:5.
- 298 7. Turner-Evans DB, Jayaraman V. The insect central complex. *Curr Biol*. 2016 Jun 6;26(11):R453-7.
- 299 8. Syed MH, Mark B, Doe CQ. Steroid hormone induction of temporal gene expression in Drosophila brain
300 neuroblasts generates neuronal and glial diversity. *Elife* [Internet]. 2017 Apr 10;6. Available from:
301 <https://www.ncbi.nlm.nih.gov/pubmed/28394252>
- 302 9. Ren Q, Yan CP, Liu Z, Sugino K, Mok K, He Y, et al. Stem cell intrinsic, Seven-up-triggered temporal factor
303 gradients diversify intermediate neural progenitors. *Curr Biol*. 2017;in press.
- 304 10. Bayraktar OA, Doe CQ. Combinatorial temporal patterning in progenitors expands neural diversity. *Nature*.
305 2013 Jun 19;498:445–55.
- 306 11. Abdusselamoglu MD, Eroglu E, Burkard TR, Knoblich JA. The transcription factor odd-paired regulates
307 temporal identity in transit-amplifying neural progenitors via an incoherent feed-forward loop.
308 VijayRaghavan K, Wang H, Sen S, editors. *eLife*. 2019 Jul 22;8:e46566.
- 309 12. Tang JLY, Hakes AE, Krautz R, Suzuki T, Contreras EG, Fox PM, et al. NanoDam identifies Homeobrain
310 (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the Drosophila central brain and visual
311 system. *Dev Cell*. 2022 May 9;57(9):1193–1207.e7.
- 312 13. Álvarez JA, Díaz-Benjumea FJ. Origin and specification of type II neuroblasts in the Drosophila embryo.
313 *Dev Camb Engl*. 2018 Apr 5;145(7):dev158394.
- 314 14. Walsh KT, Doe CQ. Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution
315 to the adult central complex. *Dev Camb Engl*. 2017 Dec 15;144(24):4552–62.
- 316 15. Chell JM, Brand AH. Nutrition-responsive glia control exit of neural stem cells from quiescence. *Cell*. 2010
317 Dec 23;143(7):1161–73.
- 318 16. Lai SL, Doe CQ. Transient nuclear Prospero induces neural progenitor quiescence. *Elife*. 2014;3.

319 17. Maurange C, Cheng L, Gould AP. Temporal transcription factors and their targets schedule the end of neural
320 proliferation in *Drosophila*. *Cell*. 2008 May 30;133(5):891–902.

321 18. Bayraktar OA, Boone JQ, Drummond ML, Doe CQ. *Drosophila* type II neuroblast lineages keep Prospero
322 levels low to generate large clones that contribute to the adult brain central complex. *Neural Dev*. 2010;5:26.

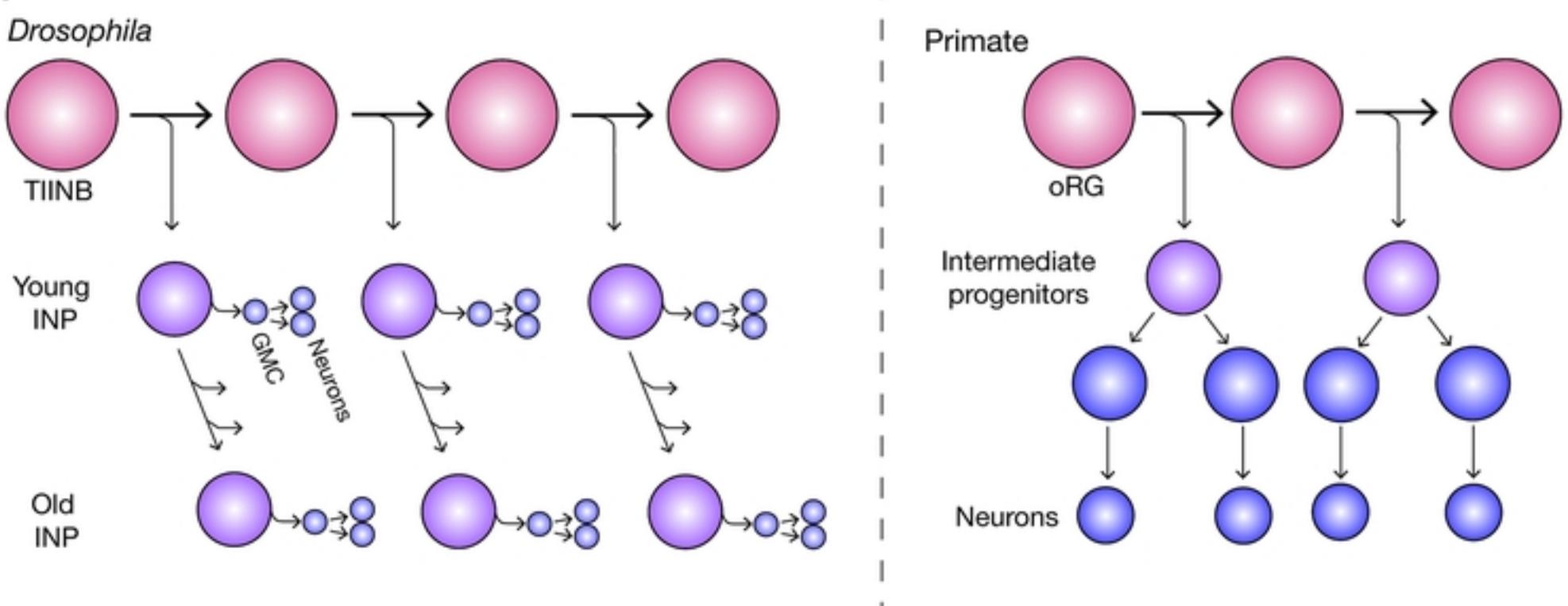
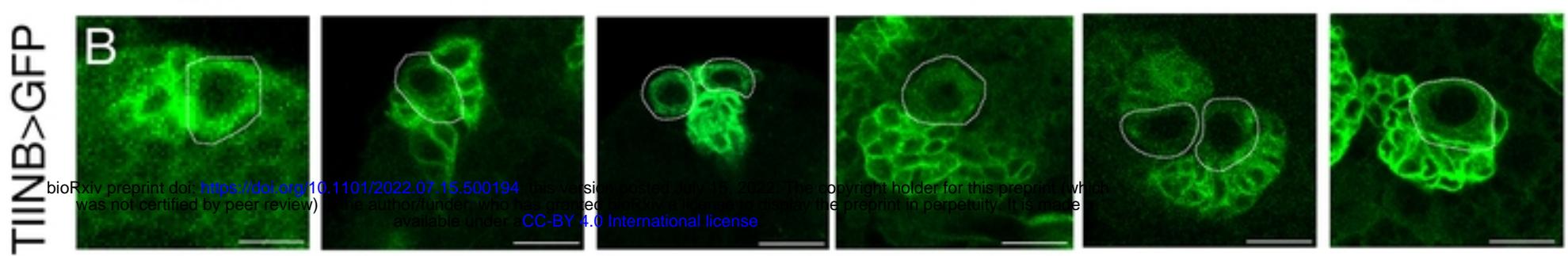
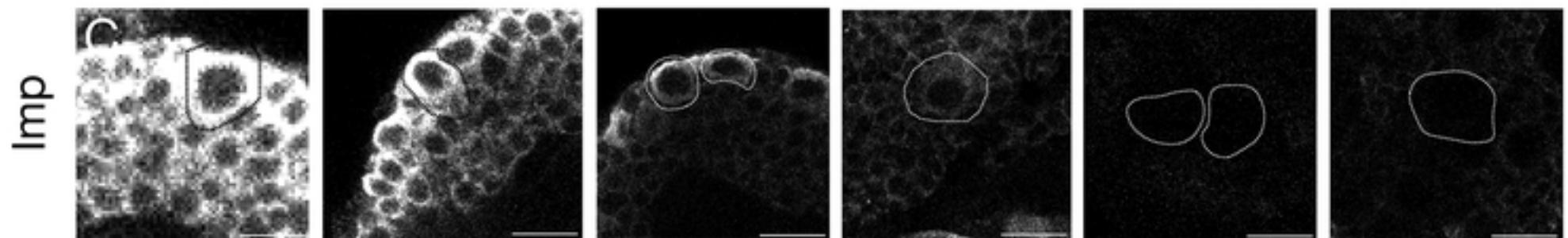
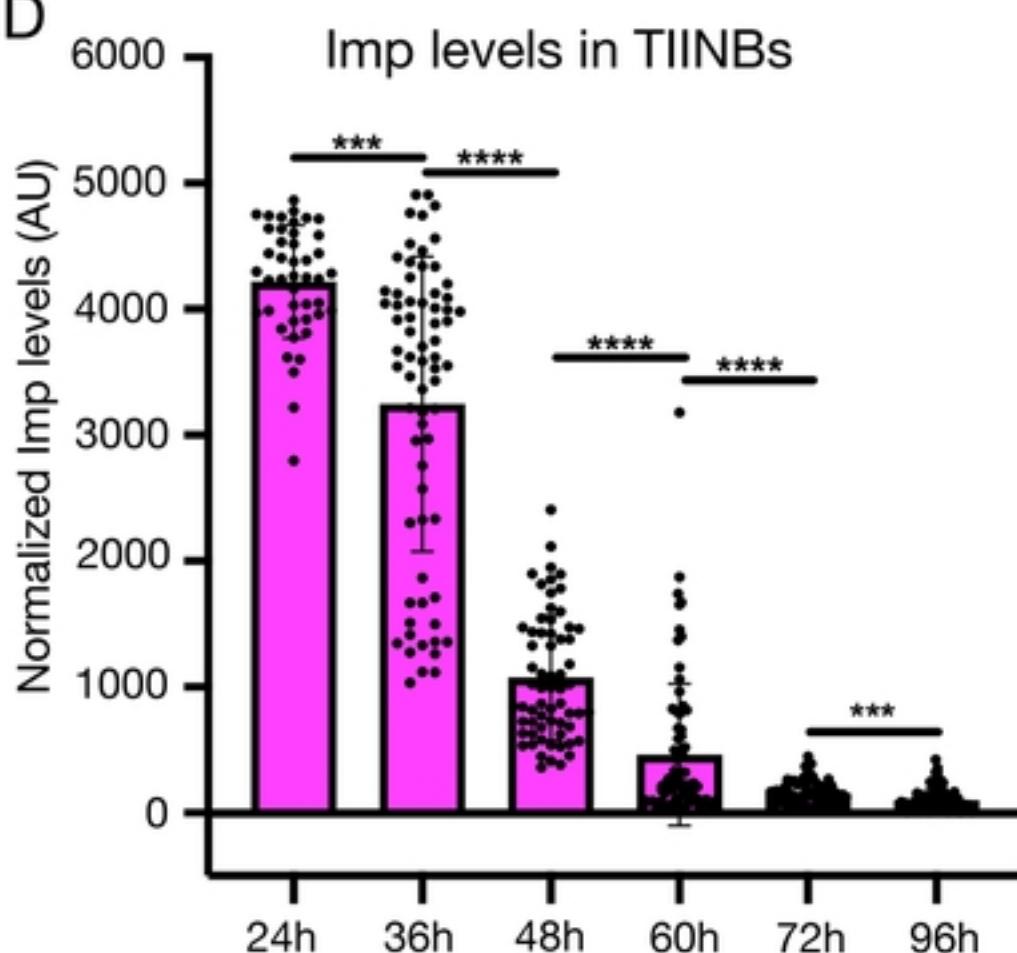
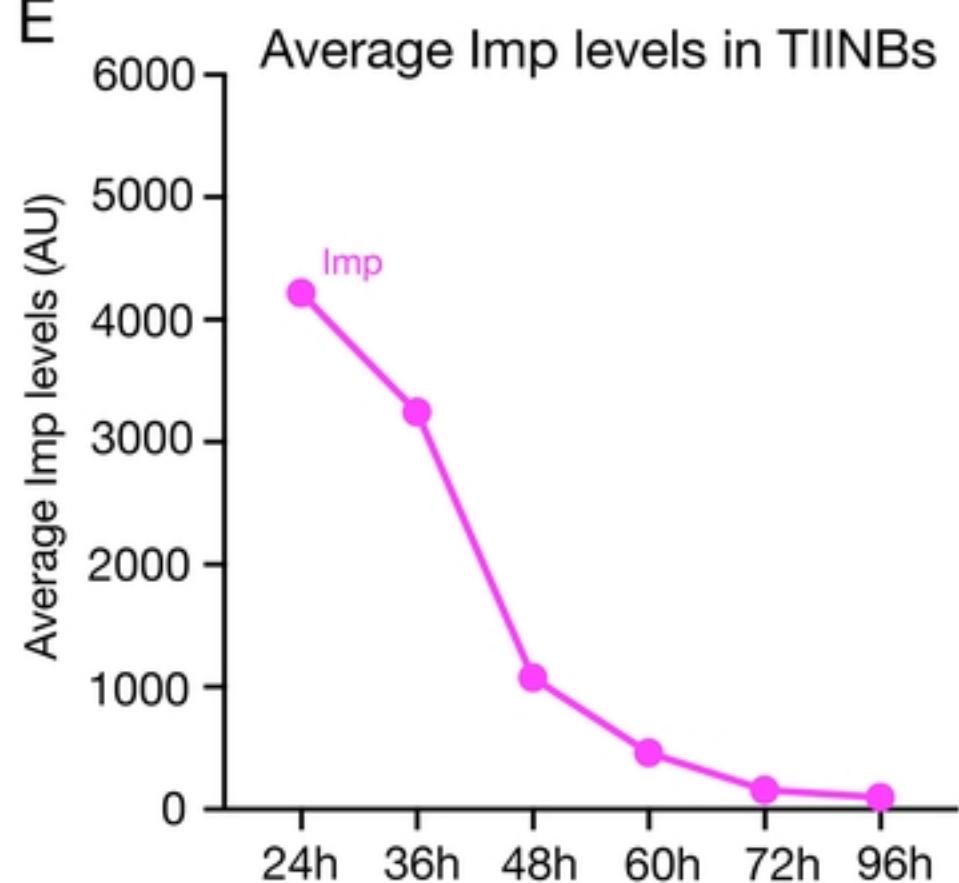
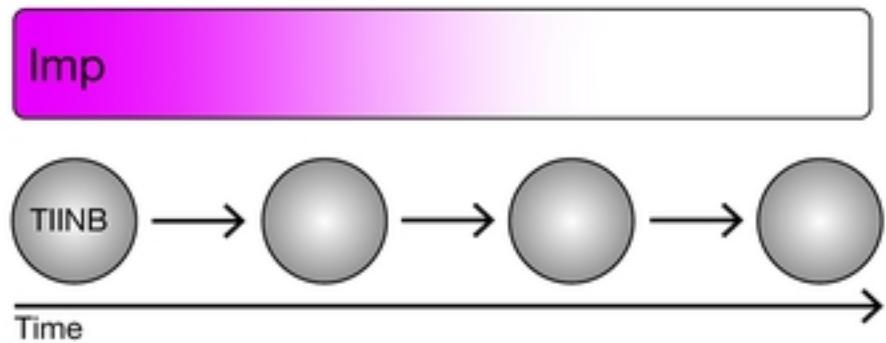
323 19. Yu HH, Awasaki T, Schroeder MD, Long F, Yang JS, He Y, et al. Clonal development and organization of
324 the adult *Drosophila* central brain. *Curr Biol*. 2013 Apr 22;23(8):633–43.

325 20. Yang JS, Awasaki T, Yu HH, He Y, Ding P, Kao JC, et al. Diverse neuronal lineages make stereotyped
326 contributions to the *Drosophila* locomotor control center, the central complex. *J Comp Neurol*. 2013 Aug
327 15;521(12):2645–62.

328 21. Yang CP, Samuels TJ, Huang Y, Yang L, Ish-Horowicz D, Davis I, et al. Imp and Syp RNA-binding proteins
329 govern decommissioning of *Drosophila* neural stem cells. *Dev Camb Engl*. 2017 Oct 1;144(19):3454–64.

330 22. Samuels TJ, Järvelin AI, Ish-Horowicz D, Davis I. Imp/IGF2BP levels modulate individual neural stem cell
331 growth and division through myc mRNA stability. *eLife*. 2020 Jan 14;9:e51529.

332 23. Liu Z, Yang CP, Sugino K, Fu CC, Liu LY, Yao X, et al. Opposing intrinsic temporal gradients guide neural
333 stem cell production of varied neuronal fates. *Science*. 2015 Oct 16;350(6258):317–20.







334 24. Toledano H, D'Alterio C, Czech B, Levine E, Jones DL. The let-7-Imp axis regulates ageing of the
335 *Drosophila* testis stem-cell niche. *Nature*. 2012 May 23;485(7400):605–10.

336 25. Wu YC, Chen CH, Mercer A, Sokol NS. Let-7-complex microRNAs regulate the temporal identity of
337 *Drosophila* mushroom body neurons via chinmo. *Dev Cell*. 2012 Jul 17;23(1):202–9.

338 26. Riebli N, Viktorin G, Reichert H. Early-born neurons in type II neuroblast lineages establish a larval
339 primordium and integrate into adult circuitry during central complex development in *Drosophila*. *Neural*
340 *Dev*. 2013;8:6.

341 27. Liu J, Liu W, Yang L, Wu Q, Zhang H, Fang A, et al. The Primate-Specific Gene TMEM14B Marks Outer
342 Radial Glia Cells and Promotes Cortical Expansion and Folding. *Cell Stem Cell*. 2017 Nov 2;21(5):635–
343 649.e8.

344

A**B****C****D****E****F****Figure 1**

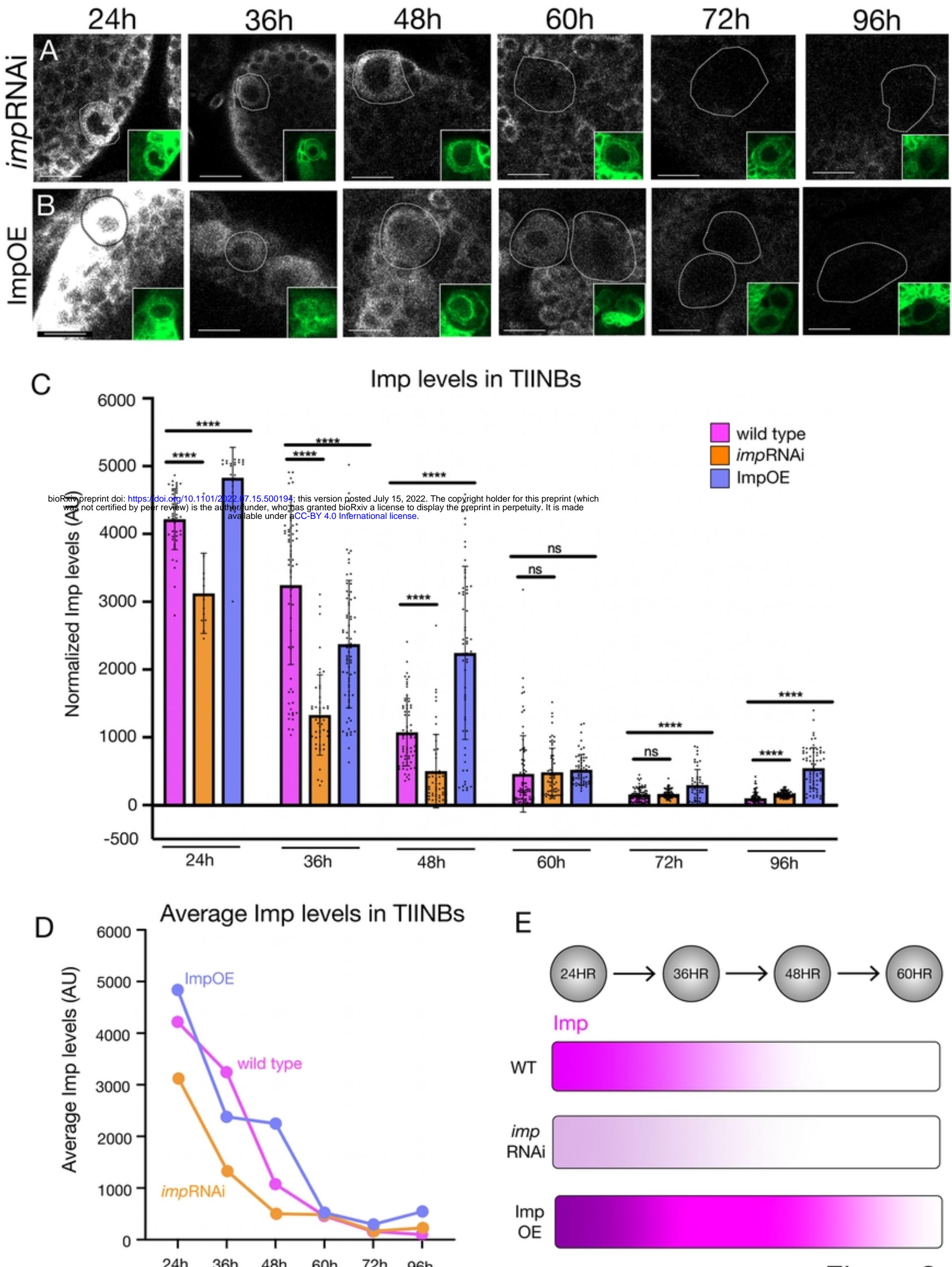


Figure 2

24h ALH

Proliferating
Quiescent

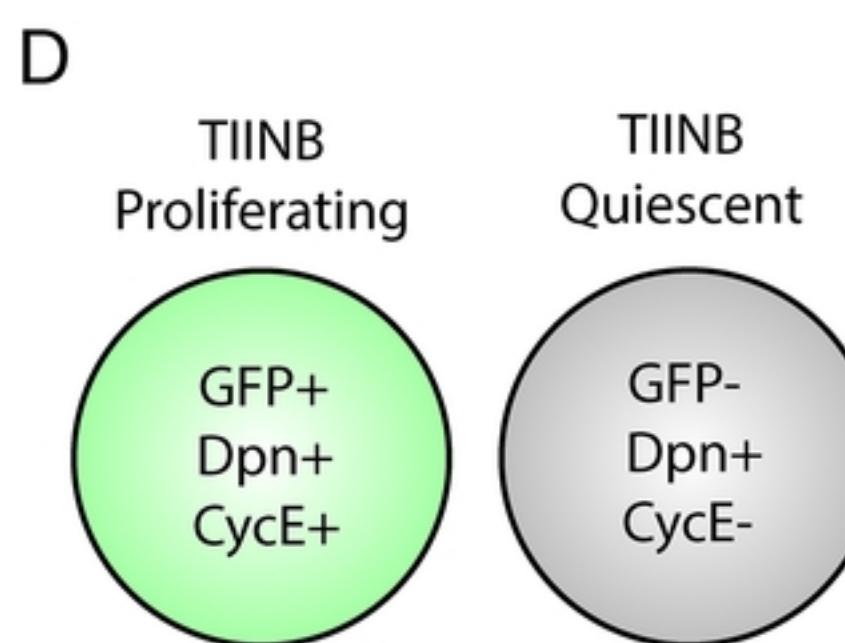
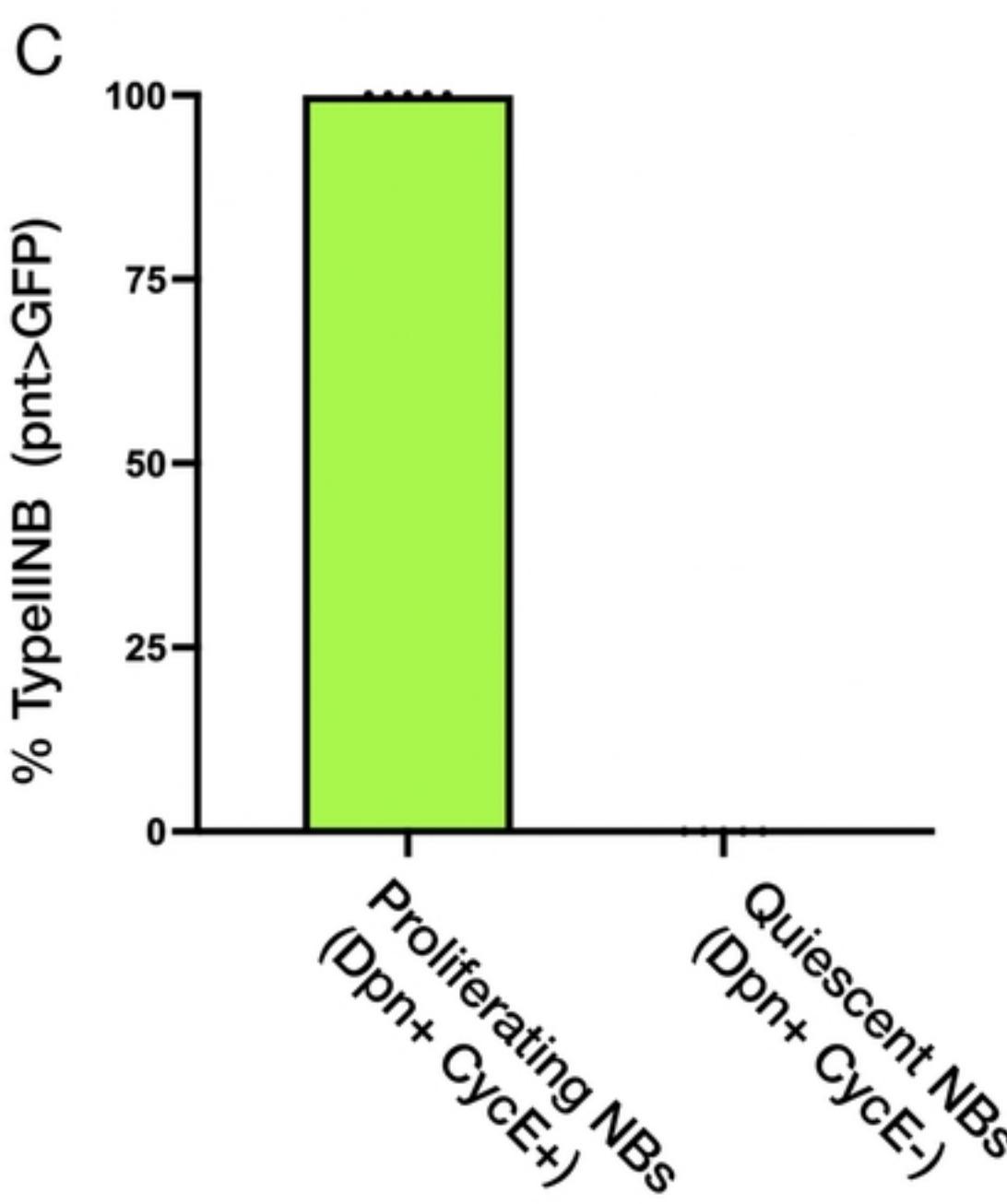
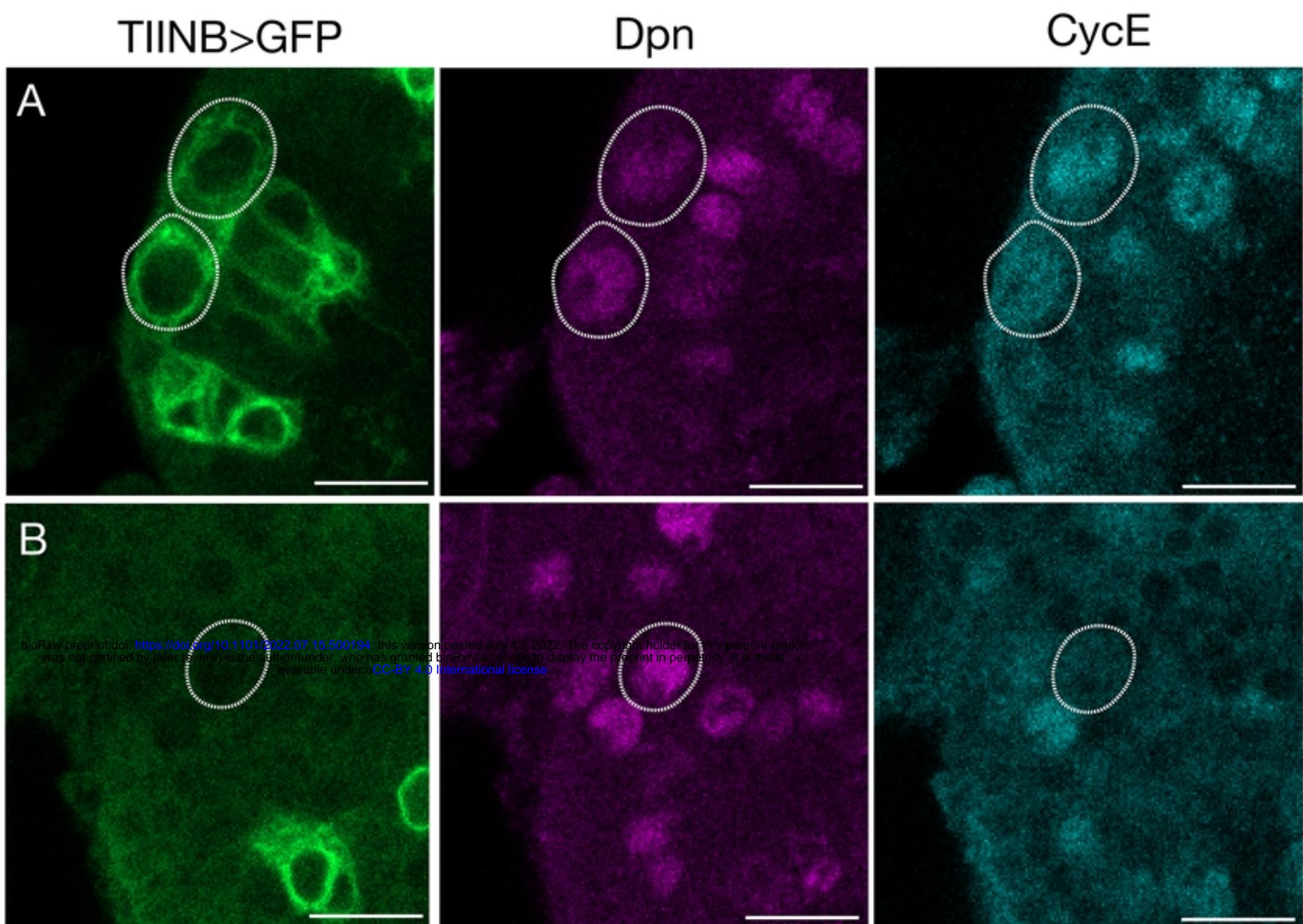
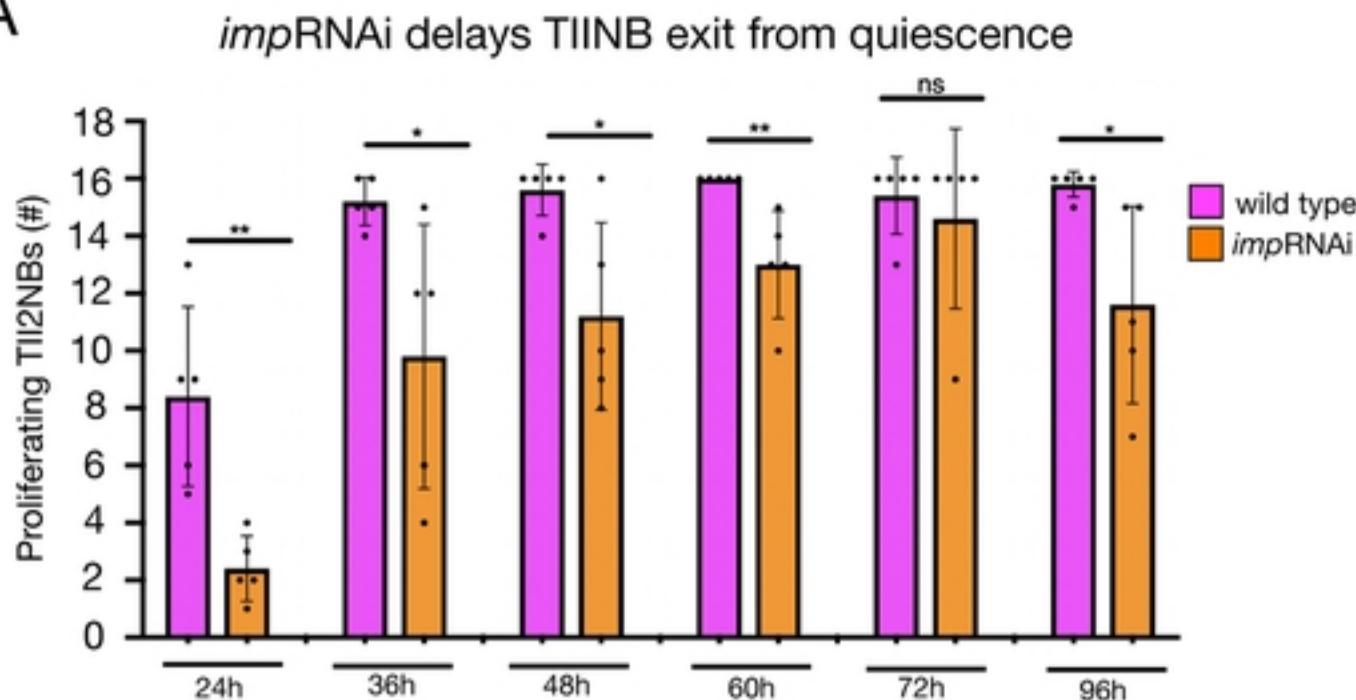
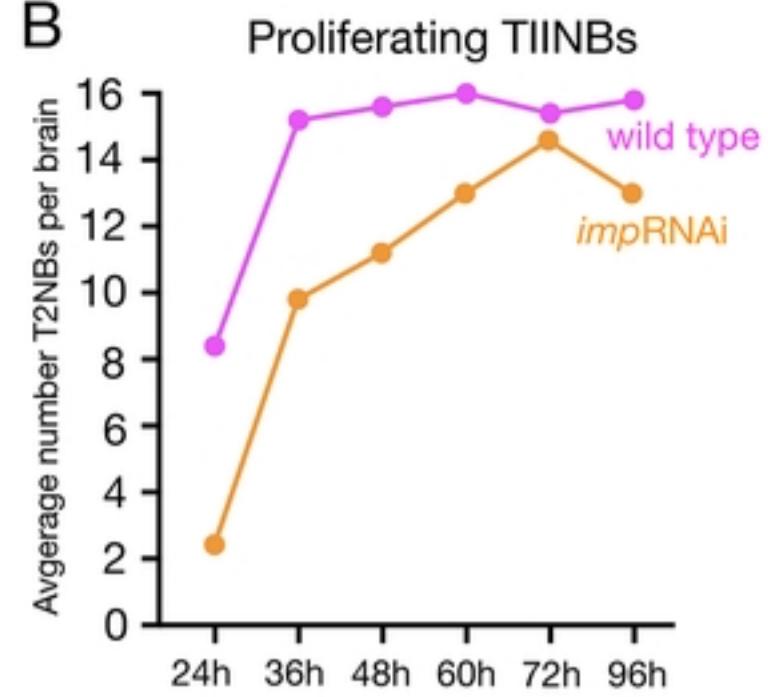
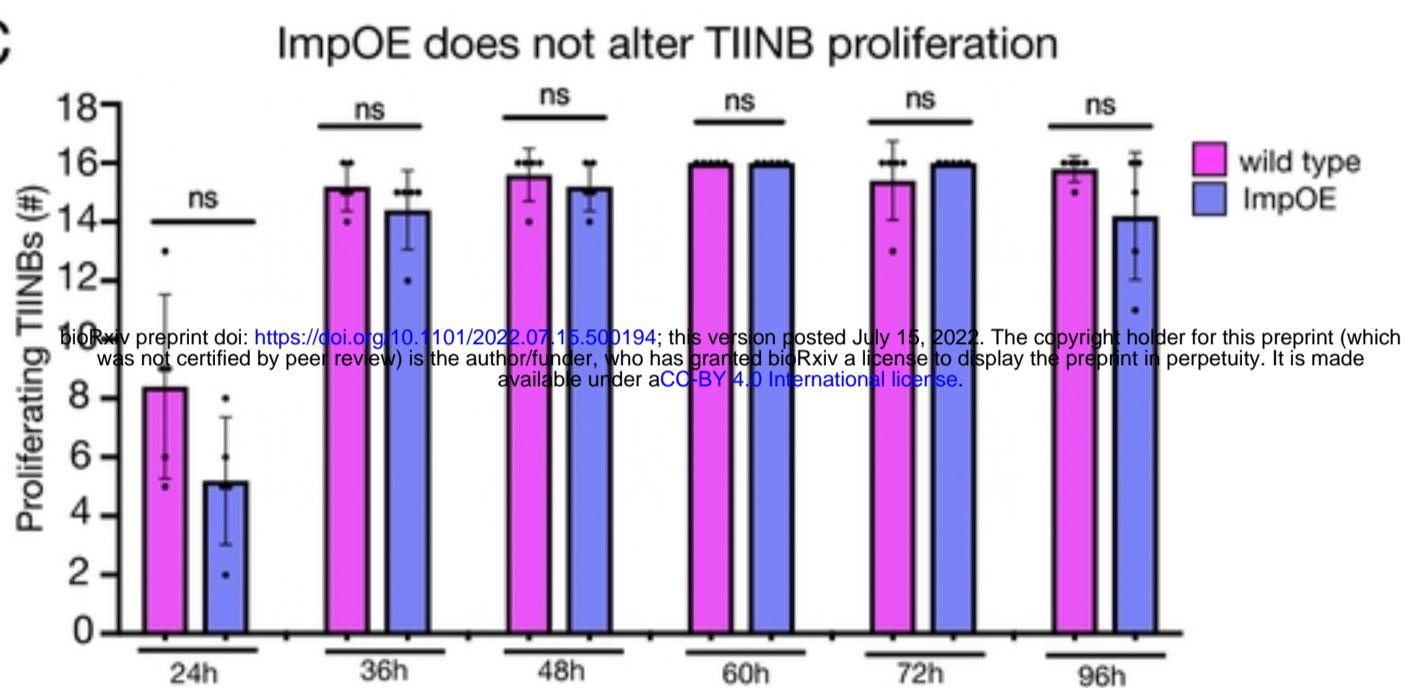
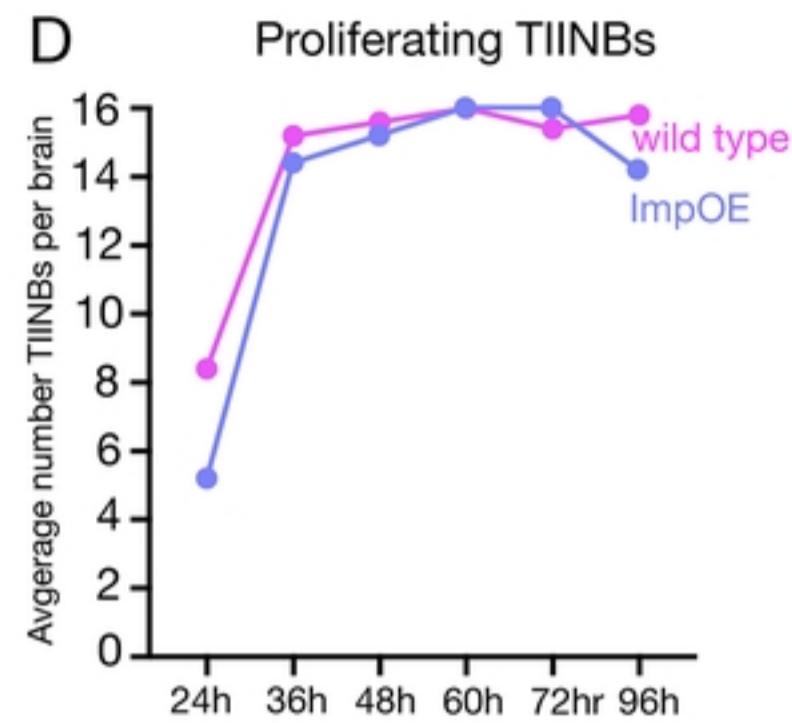
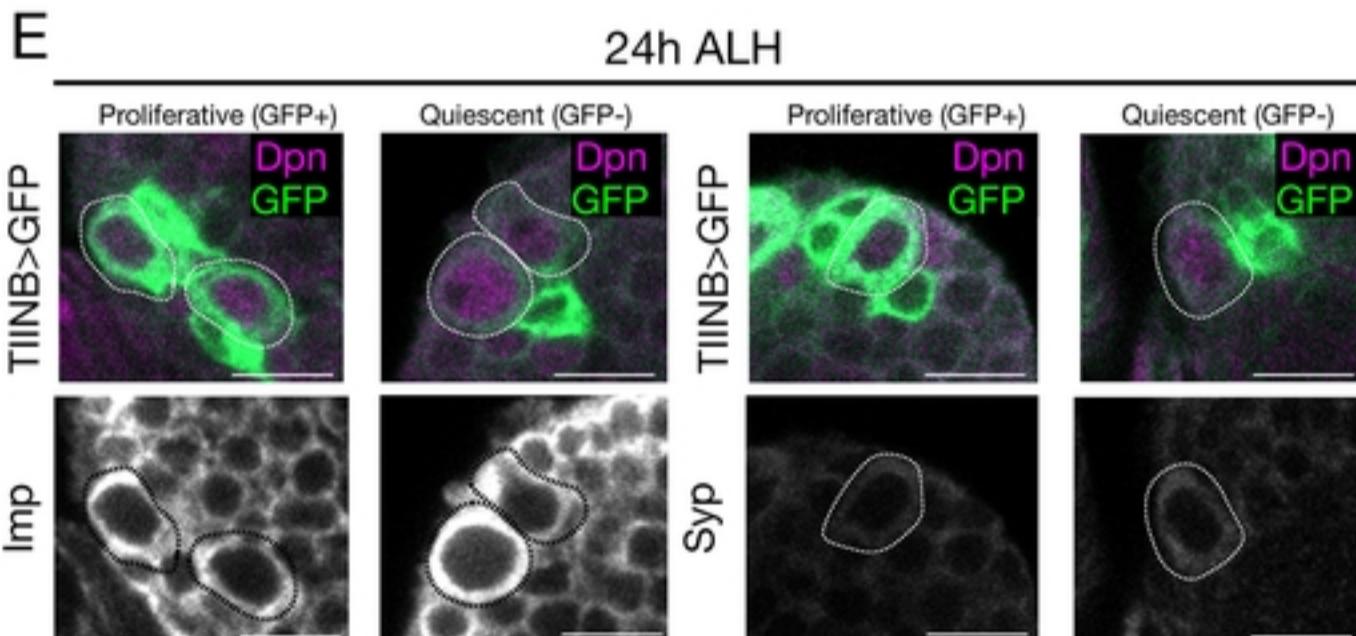
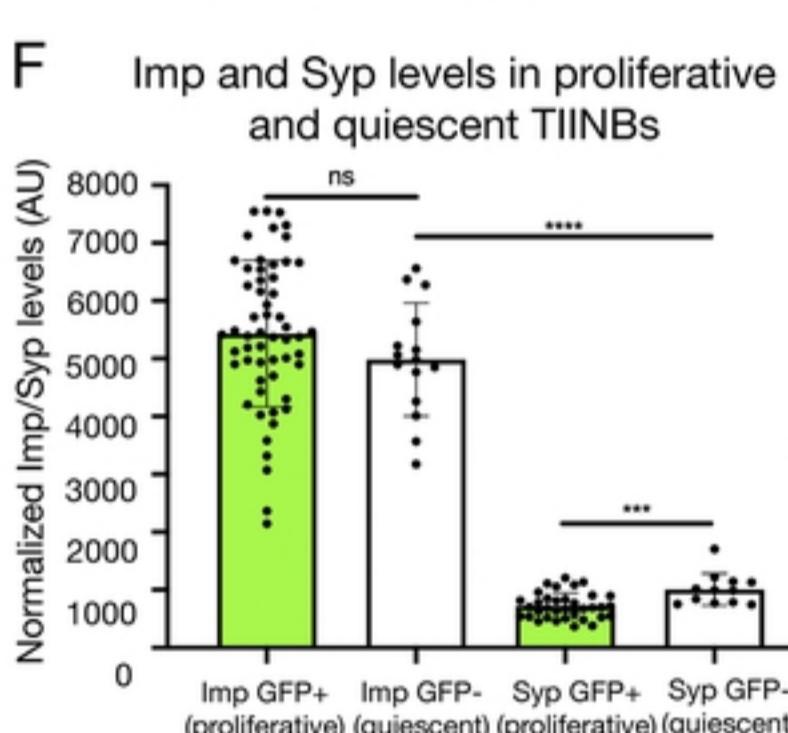
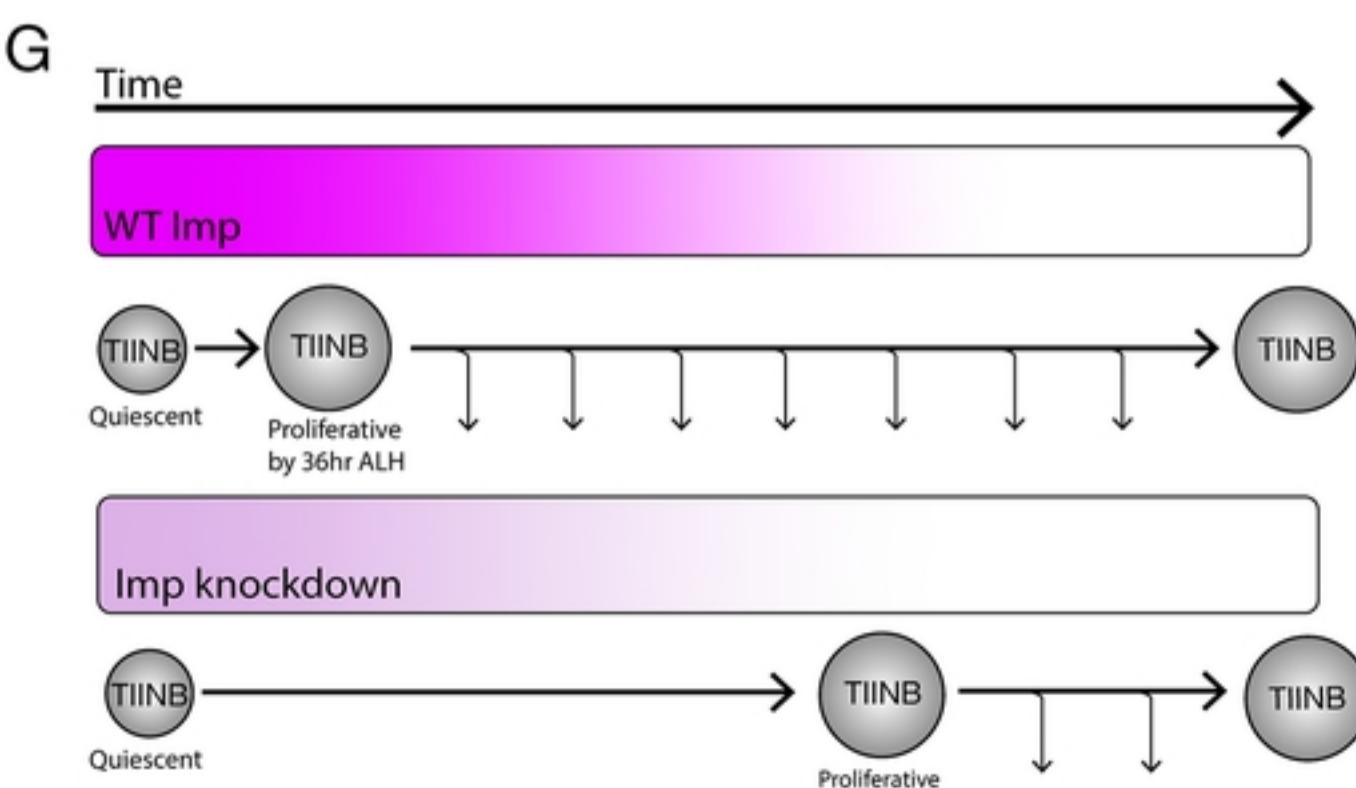











Figure 3

figure 3

A**B****C****D****E****F****G****Figure 4**